max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
test/test_cursor_binding.py
rhlahuja/snowflake-connector-python
0
4200
<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2012-2018 Snowflake Computing Inc. All right reserved. # import pytest from snowflake.connector.errors import (ProgrammingError) def test_binding_security(conn_cnx, db_parameters): """ SQL Injection Tests """ try: with conn_cnx() as cnx: cnx.cursor().execute( "CREATE OR REPLACE TABLE {name} " "(aa INT, bb STRING)".format( name=db_parameters['name'])) cnx.cursor().execute( "INSERT INTO {name} VALUES(%s, %s)".format( name=db_parameters['name']), (1, 'test1')) cnx.cursor().execute( "INSERT INTO {name} VALUES(%(aa)s, %(bb)s)".format( name=db_parameters['name']), {'aa': 2, 'bb': 'test2'}) for rec in cnx.cursor().execute( "SELECT * FROM {name} ORDER BY 1 DESC".format( name=db_parameters['name'])): break assert rec[0] == 2, 'First column' assert rec[1] == 'test2', 'Second column' for rec in cnx.cursor().execute( "SELECT * FROM {name} WHERE aa=%s".format( name=db_parameters['name']), (1,)): break assert rec[0] == 1, 'First column' assert rec[1] == 'test1', 'Second column' # SQL injection safe test # Good Example with pytest.raises(ProgrammingError): cnx.cursor().execute( "SELECT * FROM {name} WHERE aa=%s".format( name=db_parameters['name']), ("1 or aa>0",)) with pytest.raises(ProgrammingError): cnx.cursor().execute( "SELECT * FROM {name} WHERE aa=%(aa)s".format( name=db_parameters['name']), {"aa": "1 or aa>0"}) # Bad Example in application. DON'T DO THIS c = cnx.cursor() c.execute("SELECT * FROM {name} WHERE aa=%s".format( name=db_parameters['name']) % ("1 or aa>0",)) rec = c.fetchall() assert len(rec) == 2, "not raising error unlike the previous one." finally: with conn_cnx() as cnx: cnx.cursor().execute( "drop table if exists {name}".format( name=db_parameters['name'])) def test_binding_list(conn_cnx, db_parameters): """ SQL binding list type for IN """ try: with conn_cnx() as cnx: cnx.cursor().execute( "CREATE OR REPLACE TABLE {name} " "(aa INT, bb STRING)".format( name=db_parameters['name'])) cnx.cursor().execute( "INSERT INTO {name} VALUES(%s, %s)".format( name=db_parameters['name']), (1, 'test1')) cnx.cursor().execute( "INSERT INTO {name} VALUES(%(aa)s, %(bb)s)".format( name=db_parameters['name']), {'aa': 2, 'bb': 'test2'}) cnx.cursor().execute( "INSERT INTO {name} VALUES(3, 'test3')".format( name=db_parameters['name'])) for rec in cnx.cursor().execute(""" SELECT * FROM {name} WHERE aa IN (%s) ORDER BY 1 DESC """.format(name=db_parameters['name']), ([1, 3],)): break assert rec[0] == 3, 'First column' assert rec[1] == 'test3', 'Second column' for rec in cnx.cursor().execute( "SELECT * FROM {name} WHERE aa=%s".format( name=db_parameters['name']), (1,)): break assert rec[0] == 1, 'First column' assert rec[1] == 'test1', 'Second column' rec = cnx.cursor().execute(""" SELECT * FROM {name} WHERE aa IN (%s) ORDER BY 1 DESC """.format(name=db_parameters['name']), ((1,),)) finally: with conn_cnx() as cnx: cnx.cursor().execute( "drop table if exists {name}".format( name=db_parameters['name'])) def test_unsupported_binding(conn_cnx, db_parameters): """ Unsupported data binding """ try: with conn_cnx() as cnx: cnx.cursor().execute( "CREATE OR REPLACE TABLE {name} " "(aa INT, bb STRING)".format( name=db_parameters['name'])) cnx.cursor().execute( "INSERT INTO {name} VALUES(%s, %s)".format( name=db_parameters['name']), (1, 'test1')) sql = 'select count(*) from {name} where aa=%s'.format( name=db_parameters['name']) with cnx.cursor() as cur: rec = cur.execute(sql, (1,)).fetchone() assert rec[0] is not None, 'no value is returned' # dict with pytest.raises(ProgrammingError): cnx.cursor().execute(sql, ({'value': 1},)) finally: with conn_cnx() as cnx: cnx.cursor().execute( "drop table if exists {name}".format( name=db_parameters['name']))
2.828125
3
taln2016/icsisumm-primary-sys34_v1/nltk/nltk-0.9.2/nltk/model/__init__.py
hectormartinez/rougexstem
0
4201
# Natural Language Toolkit: Language Models # # Copyright (C) 2001-2008 University of Pennsylvania # Author: <NAME> <<EMAIL>> # URL: <http://nltk.sf.net> # For license information, see LICENSE.TXT class ModelI(object): """ A processing interface for assigning a probability to the next word. """ def __init__(self): '''Create a new language model.''' raise NotImplementedError() def train(self, text): '''Train the model on the text.''' raise NotImplementedError() def probability(self, word, context): '''Evaluate the probability of this word in this context.''' raise NotImplementedError() def choose_random_word(self, context): '''Randomly select a word that is likely to appear in this context.''' raise NotImplementedError() def entropy(self, text): '''Evaluate the total entropy of a message with respect to the model. This is the sum of the log probability of each word in the message.''' raise NotImplementedError()
3.15625
3
flask-graphene-sqlalchemy/models.py
JovaniPink/flask-apps
0
4202
import os from graphene_sqlalchemy import SQLAlchemyObjectType from sqlalchemy import Column, Integer, String, create_engine from sqlalchemy.orm import scoped_session, sessionmaker from sqlalchemy.ext.declarative import declarative_base POSTGRES_CONNECTION_STRING = ( os.environ.get("POSTGRES_CONNECTION_STRING") or "postgres://postgres:password@localhost:6432/postgres" ) engine = create_engine(POSTGRES_CONNECTION_STRING, convert_unicode=True) db_session = scoped_session( sessionmaker(autocommit=False, autoflush=False, bind=engine) ) Base = declarative_base() Base.query = db_session.query_property() class UserModel(Base): __tablename__ = "users" id = Column(Integer, primary_key=True) name = Column(String) balance = Column(Integer) class MinAmountModel(Base): __tablename__ = "min_amount" amount = Column(Integer, primary_key=True) class User(SQLAlchemyObjectType): class Meta: model = UserModel class MinAmount(SQLAlchemyObjectType): class Meta: model = MinAmountModel
2.546875
3
curlypiv/synthetics/microsig.py
sean-mackenzie/curlypiv
0
4203
# microsig """ Author: <NAME> More detail about the MicroSIG can be found at: Website: https://gitlab.com/defocustracking/microsig-python Publication: Rossi M, Synthetic image generator for defocusing and astigmatic PIV/PTV, Meas. Sci. Technol., 31, 017003 (2020) DOI:10.1088/1361-6501/ab42bb. """ import numpy as np import imageio import tkinter as tk import os from os import listdir from os.path import isfile, basename, join, isdir import sys import glob # import time as tm from tkinter import filedialog # ----- code adapted by <NAME> ------ # 2.0 define class class CurlypivMicrosigCollection(object): def __init__(self, testSetup, synCol, use_gui=False, use_internal_setting=False, setting_file=None, use_internal_data=False, data_files=None, to_internal_sequence=False, destination_folder=None, output_dtype='np.uint16'): if not isinstance(testSetup, object): raise ValueError("{} must be a CurlypivTestSetup class object".format(testSetup)) if not isinstance(synCol, object): raise ValueError("{} must be a CurlypivSyntheticCollection class object".format(synCol)) valid_output_dtype = ['np.uint16', 'np.uint8'] if output_dtype not in valid_output_dtype: raise ValueError("{} must be one of {}".format(output_dtype, valid_output_dtype)) self.testSetup = testSetup self.synCol = synCol self.use_gui = use_gui self.output_dtype = output_dtype if self.use_gui: run() else: if use_internal_setting: self.setting_file = self.synCol.microsigSetup else: if not isinstance(setting_file, str): raise ValueError("{} must be a filepath to microsig settings text file".format(setting_file)) self.setting_file = os.path.abspath(setting_file) if use_internal_data: raise ValueError("script to use internal data still in development") else: if not isinstance(data_files, str): raise ValueError("{} must be a filepath to particle location text files".format(data_files)) all_files = glob.glob(data_files + '/*.txt') save_files = [] for ff in [f for f in all_files if f.endswith('.txt')]: save_files.append(ff) save_files.sort() self.data_files = save_files if to_internal_sequence: raise ValueError("script to use internal data still in development") else: if not isinstance(destination_folder, str): raise ValueError("{} must be a filepath to write output images".format(destination_folder)) self.destination_folder = os.path.abspath(destination_folder) self.generate() def generate(self): # %% mic = {} f = open(self.setting_file) for x in f: words = x.split() mic[words[0]] = float(words[2]) mic['pixel_dim_x'] = int(mic['pixel_dim_x']) mic['pixel_dim_y'] = int(mic['pixel_dim_y']) mic['n_rays'] = int(mic['n_rays']) # %% ii = 0; ii_tot = len(self.data_files) for data in self.data_files: ii = ii + 1 print('creating image {0} of {1} ...'.format(ii, ii_tot)) P = np.genfromtxt(data) if len(P.shape) == 1: P = np.array([P]) head, tail = os.path.split(data) I = take_image(mic, P) if self.output_dtype == 'np.uint16': imageio.imwrite(os.path.join(self.destination_folder, (tail[:-3] + 'tif')), np.uint16(I)) elif self.output_dtype == 'np.uint8': imageio.imwrite(os.path.join(self.destination_folder, (tail[:-3] + 'tif')), np.uint8(I)) print('done!') # %% def sorter(f): sorting = int(f[:-4]) return sorting def run(): # %% root = tk.Tk() root.attributes('-topmost', True) root.withdraw() setting_file = filedialog.askopenfilenames( title="Select settings file", parent=root, filetypes=(("txt files", "*.txt"), ("all files", "*.*"))) if not setting_file: sys.exit('input file not valid') data_files = filedialog.askopenfilenames( title="Select data file(s)", parent=root, filetypes=(("txt files", "*.txt"), ("all files", "*.*"))) if not setting_file: sys.exit('input file not valid') destination_folder = filedialog.askdirectory( title="Select destination file", parent=root) if not setting_file: sys.exit('input file not valid') # %% mic = {} f = open(setting_file[0]) for x in f: words = x.split() mic[words[0]] = float(words[2]) mic['pixel_dim_x'] = int(mic['pixel_dim_x']) mic['pixel_dim_y'] = int(mic['pixel_dim_y']) mic['n_rays'] = int(mic['n_rays']) # %% ii = 0; ii_tot = len(data_files) for data in data_files: ii = ii + 1 print('creating image {0} of {1} ...'.format(ii, ii_tot)) P = np.genfromtxt(data) if len(P.shape) == 1: P = np.array([P]) head, tail = os.path.split(data) I = take_image(mic, P) print('done!') # %% def take_image(mic, P): # NOTE: x and xp represent here light fields and should not be confused$ # with particle image coordinates which are represented by P I = np.zeros((mic['pixel_dim_y'], mic['pixel_dim_x'])); dp_s = np.unique(P[:, 3]) if P.shape[1] == 5 or P.shape[1] == 8: k_id = P[:, -1] else: k_id = np.ones(P.shape[0]) if P.shape[1] <= 5 and dp_s.size == 1: n_points = int(np.round(mic['points_per_pixel'] * 2 * np.pi * (dp_s * mic['magnification'] / mic['pixel_size']) ** 2)) xp = create_particle(dp_s, n_points, mic['n_rays']) for ii in range(0, P.shape[0]): Id = image_spherical(mic, xp, P[ii, 0:3]) I = I + Id * k_id[ii] elif P.shape[1] <= 5 and dp_s.size != 1: for ii in range(0, P.shape[0]): n_points = int(np.round(mic['points_per_pixel'] * 2 * np.pi * (P[ii, 3] * mic['magnification'] / mic['pixel_size']) ** 2)) xp = create_particle(P[ii, 3], n_points, mic['n_rays']) Id = image_spherical(mic, xp, P[ii, 0:3]) I = I + Id * k_id[ii] elif P.shape[1] >= 7: for ii in range(0, P.shape[0]): n_points = int(np.round(mic['points_per_pixel'] * 2 * np.pi * (P[ii, 3] * mic['magnification'] / mic['pixel_size']) ** 2)) ecc = P[ii, 4] if ecc > 1: # area elipsoid/area sphere fact = 1 / 2 * (1 + ecc / np.sqrt(1 - 1 / ecc ** 2) * np.arcsin(np.sqrt(1 - 1 / ecc ** 2))) n_points = int(np.round(fact * n_points)) elif ecc < 1: # area elipsoid/area sphere fact = 1 / 2 * (1 + ecc ** 2 / np.sqrt(1 - ecc ** 2) * np.arctan(np.sqrt(1 - ecc ** 2))) n_points = int(np.round(fact * n_points)) xp = create_ellipsoid(P[ii, 3:7], n_points, mic['n_rays']) Id = image_spherical(mic, xp, P[ii, 0:3]); I = I + Id * k_id[ii] I = I * mic['gain'] if mic['background_mean'] != 0: I = I + mic['background_mean'] if mic['background_noise'] != 0: Irand = np.random.normal(0, mic['background_noise'], (mic['pixel_dim_y'], mic['pixel_dim_x'])) I = I + np.round(Irand) # I = np.round(I+random('norm',0,mic.background_noise,... # mic.pixel_dim_y,mic.pixel_dim_x)); return I # %% def image_spherical(mic, xp, P1): # take image of a particle with a spherical lens # NOTE: x and xp represent here light fields and should not be confused$ # with particle image coordinates which are represented by P1 lens_radius = (np.tan(np.arcsin(mic['numerical_aperture'])) * (1 + 1 / mic['magnification']) * mic['focal_length']) # distance lens-ccd dCCD = -mic['focal_length'] * (mic['magnification'] + 1); # distance particle-lens dPART = P1[2] + mic['focal_length'] * (1 / mic['magnification'] + 1); # linear transformation from the object plane to the lens plane T2 = np.array([[1, 0, dPART, 0], [0, 1, 0, dPART], [0, 0, 1, 0], [0, 0, 0, 1]]) # light field right before the lens x = np.linalg.inv(T2) @ xp # remove rays outside of the lens aperture ind = x[0, :] ** 2 + x[1, :] ** 2 <= lens_radius ** 2 x = x[:, ind] # transformation of the light field with spherical lens a = x[0, :]; b = x[1, :] c = x[2, :]; d = x[3, :] # radius of curvature of the lens rk = mic['focal_length'] * (mic['ri_lens'] / mic['ri_medium'] - 1) * 2 dum = a * 0 # refraction medium-lens # ray-vector befor lens Vr = np.vstack((1 + dum, c, d)) Vr = (Vr / np.tile(np.sqrt(sum(Vr ** 2)), (3, 1))) # normal-vector to the lens surface Vl = np.vstack((rk + dum, a, b)) Vl = (Vl / np.tile(np.sqrt(sum(Vl ** 2)), (3, 1))) # tangent-vector to the lens surface Vrot = np.cross(Vr, Vl, axisa=0, axisb=0) Vrot = np.cross(Vrot, Vl, axisa=1, axisb=0).transpose() Vrot = Vrot / np.tile(np.sqrt(sum(Vrot ** 2)), (3, 1)) # angle after snell-law correction vx = np.sum(Vr * Vl, axis=0) # dot product! vy = np.sum(Vr * Vrot, axis=0) # dot product! th11 = np.arcsin(mic['ri_medium'] / mic['ri_lens'] * np.sin(np.arctan(vy / vx))) # new ray-vector inside the lens Vr11 = (Vl * np.tile(np.cos(th11), (3, 1)) + Vrot * np.tile(np.sin(th11), (3, 1))) Vr = Vr11 / np.tile(Vr11[0, :], (3, 1)) # refraction lens-medium # normal-vector to the lens surface Vl2 = np.vstack((Vl[0, :], -Vl[1:, :])) # tangent-vector to the lens surface Vrot = np.cross(Vr, Vl2, axisa=0, axisb=0) Vrot = np.cross(Vrot, Vl2, axisa=1, axisb=0).transpose() Vrot = Vrot / np.tile(np.sqrt(sum(Vrot ** 2)), (3, 1)) # angle after snell-law correction vx = np.sum(Vr * Vl2, axis=0) # dot product! vy = np.sum(Vr * Vrot, axis=0) # dot product! th11 = np.arcsin(mic['ri_lens'] / mic['ri_medium'] * np.sin(np.arctan(vy / vx))) # new ray-vector outside the lens Vr11 = (Vl2 * np.tile(np.cos(th11), (3, 1)) + Vrot * np.tile(np.sin(th11), (3, 1))) Vr = Vr11 / np.tile(Vr11[0, :], (3, 1)) # light field after the spherical lens x[2, :] = Vr[1, :] x[3, :] = Vr[2, :] if mic['cyl_focal_length'] == 0: # linear transformation from the lens plane to the ccd plane T1 = np.array([[1, 0, -dCCD, 0], [0, 1, 0, -dCCD], [0, 0, 1, 0], [0, 0, 0, 1]]) # light field at the ccd plane xs = np.linalg.inv(T1) @ x else: # # linear transformation from the lens plane to the cyl_lens plane T1c = np.array([[1, 0, -dCCD * 1 / 3, 0], [0, 1, 0, -dCCD * 1 / 3], [0, 0, 1, 0], [0, 0, 0, 1]]) # # light field at the cylindrical lens plane xc = np.linalg.inv(T1c) @ x # # light field after the cylindrical lens plane Tc = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [-1 / mic['cyl_focal_length'], 0, 1, 0], [0, 0, 0, 1]]) xc_a = np.linalg.inv(Tc) @ xc # # light field at the ccd plane T1 = np.array([[1, 0, -dCCD * 2 / 3, 0], [0, 1, 0, -dCCD * 2 / 3], [0, 0, 1, 0], [0, 0, 0, 1]]); # # light field at the ccd plane xs = np.linalg.inv(T1) @ xc_a # transform the position in pixel units X = np.round(xs[0, :] / mic['pixel_size'] + P1[0]) Y = np.round(xs[1, :] / mic['pixel_size'] + P1[1]) # remove rays outside the CCD ind = np.all([X > 0, X <= mic['pixel_dim_x'], Y > 0, Y <= mic['pixel_dim_y'], X.imag == 0, Y.imag == 0], axis=0) # count number of rays in each pixel countXY = np.sort(Y[ind] + (X[ind] - 1) * mic['pixel_dim_y']) indi, ia = np.unique(countXY, return_index=True) nCounts = np.hstack((ia[1:], countXY.size + 1)) - ia # prepare image I = np.zeros((mic['pixel_dim_y'], mic['pixel_dim_x'])) Ifr = I.flatten('F') Ifr[indi.astype(int) - 1] = nCounts I = Ifr.reshape(mic['pixel_dim_y'], mic['pixel_dim_x'], order='F') return I # %% def create_particle(D, Ns, Nr): R = D / 2 V = spiral_sphere(Ns) V[0:2, V[0, :] > 0] = -V[0:2, V[0, :] > 0] x = R * V[0, :] y = R * V[1, :] z = R * V[2, :] V0 = spiral_sphere(Nr + 2) V0 = V0[:, 1:-1] u = np.tile(x, (Nr, 1)) v = np.tile(y, (Nr, 1)) s = u * 0 t = u * 0 phs = np.random.uniform(-np.pi, np.pi, z.size) cs = np.cos(phs) sn = np.sin(phs) for k in range(0, Ns): Rot = np.array([[cs[k], -sn[k], 0], [sn[k], cs[k], 0], [0, 0, 1]]) Vr = Rot @ V0 Vr[0, :] = -abs(Vr[0, :]) s[:, k] = Vr[1, :] / Vr[0, :] t[:, k] = Vr[2, :] / Vr[0, :] u[:, k] = y[k] - s[:, k] * x[k] v[:, k] = z[k] - t[:, k] * x[k] xp = np.vstack((u.flatten('F'), v.flatten('F'), s.flatten('F'), t.flatten('F'))) return xp # %% def create_ellipsoid(Deab, Ns, Nr): D = Deab[0]; ecc = Deab[1] alpha = Deab[2]; beta = Deab[3] R = D / 2 V = spiral_sphere(Ns) V = R * V V[2, :] = V[2, :] * ecc R_beta = np.array([[np.cos(beta), 0, np.sin(beta)], [0, 1, 0], [-np.sin(beta), 0, np.cos(beta)]]) R_alpha = np.array([[np.cos(alpha), -np.sin(alpha), 0], [np.sin(alpha), np.cos(alpha), 0], [0, 0, 1]]) Vf = R_alpha @ (R_beta @ V) ii1 = (Vf[1, :] == np.min(Vf[1, :])).nonzero()[0][0] ii2 = (Vf[1, :] == np.max(Vf[1, :])).nonzero()[0][0] ii3 = (Vf[2, :] == np.min(Vf[2, :])).nonzero()[0][0] ii4 = (Vf[2, :] == np.max(Vf[2, :])).nonzero()[0][0] Vdum = Vf[:, [ii1, ii2, ii3, ii4]] A = np.c_[Vdum[1, :], Vdum[2, :], np.ones(Vdum.shape[1])] C, _, _, _ = np.linalg.lstsq(A, Vdum[0, :], rcond=None) V1dum = C[0] * Vf[1, :] + C[1] * Vf[2, :] + C[2] ind = (Vf[0, :] - V1dum) < 0 x = Vf[0, ind] y = Vf[1, ind] z = Vf[2, ind] Ns = z.size V0 = spiral_sphere(Nr + 2) V0 = V0[:, 1:-1] u = np.tile(x, (Nr, 1)) v = np.tile(y, (Nr, 1)) s = u * 0 t = u * 0 phs = np.random.uniform(-np.pi, np.pi, z.size) cs = np.cos(phs) sn = np.sin(phs) for k in range(0, Ns): Rot = np.array([[cs[k], -sn[k], 0], [sn[k], cs[k], 0], [0, 0, 1]]) Vr = Rot @ V0 Vr[0, :] = -abs(Vr[0, :]) s[:, k] = Vr[1, :] / Vr[0, :] t[:, k] = Vr[2, :] / Vr[0, :] u[:, k] = y[k] - s[:, k] * x[k] v[:, k] = z[k] - t[:, k] * x[k] xp = np.vstack((u.flatten('F'), v.flatten('F'), s.flatten('F'), t.flatten('F'))) return xp # %% def spiral_sphere(N): gr = (1 + np.sqrt(5)) / 2 # golden ratio ga = 2 * np.pi * (1 - 1 / gr) # golden angle ind_p = np.arange(0, N) # particle (i.e., point sample) index lat = np.arccos(1 - 2 * ind_p / ( N - 1)) # latitude is defined so that particle index is proportional to surface area between 0 and lat lon = ind_p * ga # position particles at even intervals along longitude # Convert from spherical to Cartesian co-ordinates x = np.sin(lat) * np.cos(lon) y = np.sin(lat) * np.sin(lon) z = np.cos(lat) V = np.vstack((x, y, z)) return V # %% if __name__ == '__main__': run()
2.328125
2
planning/scenario_planning/lane_driving/motion_planning/obstacle_avoidance_planner/scripts/trajectory_visualizer.py
kmiya/AutowareArchitectureProposal.iv
0
4204
<gh_stars>0 # Copyright 2020 Tier IV, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # !/usr/bin/env python # -*- coding: utf-8 -*- # TODO(<NAME>): write ros2 visualizer # import rospy # from autoware_planning_msgs.msg import Trajectory # from autoware_planning_msgs.msg import TrajectoryPoint # import matplotlib.pyplot as plt # import numpy as np # import tf # from geometry_msgs.msg import Vector3 # def quaternion_to_euler(quaternion): # """Convert Quaternion to Euler Angles # quaternion: geometry_msgs/Quaternion # euler: geometry_msgs/Vector3 # """ # e = tf.transformations.euler_from_quaternion( # (quaternion.x, quaternion.y, quaternion.z, quaternion.w)) # return Vector3(x=e[0], y=e[1], z=e[2]) # class TrajectoryVisualizer(): # def __init__(self): # self.in_trajectory = Trajectory() # self.debug_trajectory = Trajectory() # self.debug_fixed_trajectory = Trajectory() # self.plot_done1 = True # self.plot_done2 = True # self.plot_done3 = True # self.length = 50 # self.substatus1 = rospy.Subscriber( # "/planning/scenario_planning/lane_driving/motion_planning/obstacle_avoidance_planner/trajectory", # Trajectory, self.CallBackTraj, queue_size=1, tcp_nodelay=True) # rospy.Timer(rospy.Duration(0.3), self.timerCallback) # def CallBackTraj(self, cmd): # if (self.plot_done1): # self.in_trajectory = cmd # self.plot_done1 = False # def CallBackDebugTraj(self, cmd): # if (self.plot_done2): # self.debug_trajectory = cmd # self.plot_done2 = False # def CallBackDebugFixedTraj(self, cmd): # if (self.plot_done3): # self.debug_fixed_trajectory = cmd # self.plot_done3 = False # def timerCallback(self, event): # self.plotTrajectory() # self.plot_done1 = True # self.plot_done2 = True # self.plot_done3 = True # def CalcArcLength(self, traj): # s_arr = [] # ds = 0.0 # s_sum = 0.0 # if len(traj.points) > 0: # s_arr.append(s_sum) # for i in range(1, len(traj.points)): # p0 = traj.points[i-1] # p1 = traj.points[i] # dx = p1.pose.position.x - p0.pose.position.x # dy = p1.pose.position.y - p0.pose.position.y # ds = np.sqrt(dx**2 + dy**2) # s_sum += ds # if(s_sum > self.length): # break # s_arr.append(s_sum) # return s_arr # def CalcX(self, traj): # v_list = [] # for p in traj.points: # v_list.append(p.pose.position.x) # return v_list # def CalcY(self, traj): # v_list = [] # for p in traj.points: # v_list.append(p.pose.position.y) # return v_list # def CalcYaw(self, traj, s_arr): # v_list = [] # for p in traj.points: # v_list.append(quaternion_to_euler(p.pose.orientation).z) # return v_list[0: len(s_arr)] # def plotTrajectory(self): # plt.clf() # ax3 = plt.subplot(1, 1, 1) # x = self.CalcArcLength(self.in_trajectory) # y = self.CalcYaw(self.in_trajectory, x) # if len(x) == len(y): # ax3.plot(x, y, label="final", marker="*") # ax3.set_xlabel("arclength [m]") # ax3.set_ylabel("yaw") # plt.pause(0.01) # def main(): # rospy.init_node("trajectory_visualizer") # TrajectoryVisualizer() # rospy.spin() # if __name__ == "__main__": # main()
2.375
2
main/forms.py
agokhale11/test2
0
4205
from django.contrib.auth.forms import AuthenticationForm, UserCreationForm from django.contrib.auth.models import User from django import forms class UploadFileForm(forms.Form): title = forms.CharField(max_length=50) file = forms.FileField() # If you don't do this you cannot use Bootstrap CSS class LoginForm(AuthenticationForm): username = forms.CharField(label="Username", max_length=16, widget=forms.TextInput(attrs={'class': 'form-control', 'name': 'username'})) password = forms.CharField(label="Password", max_length=16, widget=forms.PasswordInput(attrs={'class': 'form-control', 'name': 'password'})) class SignUpForm(UserCreationForm): full_name = forms.CharField(label="Full Name", max_length=50, widget=forms.TextInput(attrs={'class': 'form-control', 'name': 'full_name'})) email = forms.EmailField(label = "Email", max_length =50, widget=forms.EmailInput(attrs={'class': 'form-control', 'name': 'email'})) class Meta: model = User fields = ("email", "full_name", "username", "<PASSWORD>", "<PASSWORD>") def save(self, commit=True): user = super(SignUpForm, self).save(commit=False) user.full_name = self.cleaned_data["full_name"] user.email = self.cleaned_data["email"] if commit: user.save() return user class EmailSignupForm(UserCreationForm): full_name = forms.CharField(label="Full Name", max_length=50, widget=forms.TextInput(attrs={'class': 'form-control', 'name': 'full_name'})) class Meta: model = User fields = ("full_name", "username", "<PASSWORD>", "<PASSWORD>") def save(self, commit=True): user = super(EmailSignupForm, self).save(commit=False) user.full_name = self.cleaned_data["full_name"] if commit: user.save() return user class ChangePasswordForm(forms.Form): security_code = forms.CharField(label="Security Code", max_length=50, widget=forms.TextInput(attrs={'class': 'form-control', 'name': 'security_code'})) password1 = forms.CharField(label="New Password", max_length=16, widget=forms.PasswordInput(attrs={'class': 'form-control', 'name': 'password1'})) password2 = forms.CharField(label="Re-enter New Password", max_length=16, widget=forms.PasswordInput(attrs={'class': 'form-control', 'name': 'password2'})) class Meta: fields = ("security_code", "password1", "password2")
2.546875
3
pandas 9 - Statistics Information on data sets.py
PythonProgramming/Pandas-Basics-with-2.7
10
4206
import pandas as pd from pandas import DataFrame df = pd.read_csv('sp500_ohlc.csv', index_col = 'Date', parse_dates=True) df['H-L'] = df.High - df.Low # Giving us count (rows), mean (avg), std (standard deviation for the entire # set), minimum for the set, maximum for the set, and some %s in that range. print( df.describe()) x = input('enter to cont') # gives us correlation data. Remember the 3d chart we plotted? # now you can see if correlation of H-L and Volume also is correlated # with price swings. Correlations for your correlations print( df.corr()) x = input('enter to cont') # covariance... now plenty of people know what correlation is, but what in the # heck is covariance. # Let's defined the two. # covariance is the measure of how two variables change together. # correlation is the measure of how two variables move in relation to eachother. # so covariance is a more direct assessment of the relationship between two variables. # Maybe a better way to put it is that covariance is the measure of the strength of correlation. print( df.cov()) x = input('enter to cont') print( df[['Volume','H-L']].corr()) x = input('enter to cont') # see how it makes a table? # so now, we can actually perform a service that some people actually pay for # I once had a short freelance gig doing this # so a popular form of analysis within especially forex is to compare correlations between # the currencies. The idea here is that you pace one currency with another. # import datetime import pandas.io.data C = pd.io.data.get_data_yahoo('C', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) AAPL = pd.io.data.get_data_yahoo('AAPL', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) MSFT = pd.io.data.get_data_yahoo('MSFT', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) TSLA = pd.io.data.get_data_yahoo('TSLA', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) print( C.head()) x = input('enter to cont') del C['Open'] # , 'high', 'low', 'close', 'volume' del C['High'] del C['Low'] del C['Close'] del C['Volume'] corComp = C corComp.rename(columns={'Adj Close': 'C'}, inplace=True) corComp['AAPL'] = AAPL['Adj Close'] corComp['MSFT'] = MSFT['Adj Close'] corComp['TSLA'] = TSLA['Adj Close'] print( corComp.head()) x = input('enter to cont') print( corComp.corr()) x = input('enter to cont') C = pd.io.data.get_data_yahoo('C', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) AAPL = pd.io.data.get_data_yahoo('AAPL', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) MSFT = pd.io.data.get_data_yahoo('MSFT', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) TSLA = pd.io.data.get_data_yahoo('TSLA', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) BAC = pd.io.data.get_data_yahoo('BAC', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) BBRY = pd.io.data.get_data_yahoo('BBRY', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) CMG = pd.io.data.get_data_yahoo('CMG', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) EBAY = pd.io.data.get_data_yahoo('EBAY', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) JPM = pd.io.data.get_data_yahoo('JPM', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) SBUX = pd.io.data.get_data_yahoo('SBUX', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) TGT = pd.io.data.get_data_yahoo('TGT', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) WFC = pd.io.data.get_data_yahoo('WFC', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) x = input('enter to cont') print( C.head()) del C['Open'] # , 'high', 'low', 'close', 'volume' del C['High'] del C['Low'] del C['Close'] del C['Volume'] corComp = C corComp.rename(columns={'Adj Close': 'C'}, inplace=True) corComp['BAC'] = BAC['Adj Close'] corComp['MSFT'] = MSFT['Adj Close'] corComp['TSLA'] = TSLA['Adj Close'] corComp['AAPL'] = AAPL['Adj Close'] corComp['BBRY'] = BBRY['Adj Close'] corComp['CMG'] = CMG['Adj Close'] corComp['EBAY'] = EBAY['Adj Close'] corComp['JPM'] = JPM['Adj Close'] corComp['SBUX'] = SBUX['Adj Close'] corComp['TGT'] = TGT['Adj Close'] corComp['WFC'] = WFC['Adj Close'] print( corComp.head()) x = input('enter to cont') print( corComp.corr()) x = input('enter to cont') fancy = corComp.corr() fancy.to_csv('bigmoney.csv')
4.125
4
working/tkinter_widget/test.py
songdaegeun/school-zone-enforcement-system
0
4207
import cv2 import numpy as np import threading def test(): while 1: img1=cv2.imread('captured car1.jpg') print("{}".format(img1.shape)) print("{}".format(img1)) cv2.imshow('asd',img1) cv2.waitKey(1) t1 = threading.Thread(target=test) t1.start()
3.015625
3
ceilometer/compute/virt/hyperv/utilsv2.py
aristanetworks/ceilometer
2
4208
# Copyright 2013 Cloudbase Solutions Srl # # Author: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Utility class for VM related operations. Based on the "root/virtualization/v2" namespace available starting with Hyper-V Server / Windows Server 2012. """ import sys if sys.platform == 'win32': import wmi from oslo.config import cfg from ceilometer.compute.virt import inspector from ceilometer.openstack.common.gettextutils import _ from ceilometer.openstack.common import log as logging CONF = cfg.CONF LOG = logging.getLogger(__name__) class HyperVException(inspector.InspectorException): pass class UtilsV2(object): _VIRTUAL_SYSTEM_TYPE_REALIZED = 'Microsoft:Hyper-V:System:Realized' _PROC_SETTING = 'Msvm_ProcessorSettingData' _SYNTH_ETH_PORT = 'Msvm_SyntheticEthernetPortSettingData' _ETH_PORT_ALLOC = 'Msvm_EthernetPortAllocationSettingData' _PORT_ACL_SET_DATA = 'Msvm_EthernetSwitchPortAclSettingData' _STORAGE_ALLOC = 'Msvm_StorageAllocationSettingData' _VS_SETTING_DATA = 'Msvm_VirtualSystemSettingData' _METRICS_ME = 'Msvm_MetricForME' _BASE_METRICS_VALUE = 'Msvm_BaseMetricValue' _CPU_METRIC_NAME = 'Aggregated Average CPU Utilization' _NET_IN_METRIC_NAME = 'Filtered Incoming Network Traffic' _NET_OUT_METRIC_NAME = 'Filtered Outgoing Network Traffic' # Disk metrics are supported from Hyper-V 2012 R2 _DISK_RD_METRIC_NAME = 'Disk Data Read' _DISK_WR_METRIC_NAME = 'Disk Data Written' def __init__(self, host='.'): if sys.platform == 'win32': self._init_hyperv_wmi_conn(host) self._init_cimv2_wmi_conn(host) self._host_cpu_info = None def _init_hyperv_wmi_conn(self, host): self._conn = wmi.WMI(moniker='//%s/root/virtualization/v2' % host) def _init_cimv2_wmi_conn(self, host): self._conn_cimv2 = wmi.WMI(moniker='//%s/root/cimv2' % host) def get_host_cpu_info(self): if not self._host_cpu_info: host_cpus = self._conn_cimv2.Win32_Processor() self._host_cpu_info = (host_cpus[0].MaxClockSpeed, len(host_cpus)) return self._host_cpu_info def get_all_vms(self): vms = [(v.ElementName, v.Name) for v in self._conn.Msvm_ComputerSystem(['ElementName', 'Name'], Caption="Virtual Machine")] return vms def get_cpu_metrics(self, vm_name): vm = self._lookup_vm(vm_name) cpu_sd = self._get_vm_resources(vm, self._PROC_SETTING)[0] cpu_metrics_def = self._get_metric_def(self._CPU_METRIC_NAME) cpu_metric_aggr = self._get_metrics(vm, cpu_metrics_def) cpu_used = 0 if cpu_metric_aggr: cpu_used = long(cpu_metric_aggr[0].MetricValue) return (cpu_used, int(cpu_sd.VirtualQuantity), long(vm.OnTimeInMilliseconds)) def get_vnic_metrics(self, vm_name): vm = self._lookup_vm(vm_name) ports = self._get_vm_resources(vm, self._ETH_PORT_ALLOC) vnics = self._get_vm_resources(vm, self._SYNTH_ETH_PORT) metric_def_in = self._get_metric_def(self._NET_IN_METRIC_NAME) metric_def_out = self._get_metric_def(self._NET_OUT_METRIC_NAME) for port in ports: vnic = [v for v in vnics if port.Parent == v.path_()][0] metric_value_instances = self._get_metric_value_instances( port.associators(wmi_result_class=self._PORT_ACL_SET_DATA), self._BASE_METRICS_VALUE) metric_values = self._sum_metric_values_by_defs( metric_value_instances, [metric_def_in, metric_def_out]) yield { 'rx_mb': metric_values[0], 'tx_mb': metric_values[1], 'element_name': vnic.ElementName, 'address': vnic.Address } def get_disk_metrics(self, vm_name): vm = self._lookup_vm(vm_name) metric_def_r = self._get_metric_def(self._DISK_RD_METRIC_NAME) metric_def_w = self._get_metric_def(self._DISK_WR_METRIC_NAME) disks = self._get_vm_resources(vm, self._STORAGE_ALLOC) for disk in disks: metric_values = self._get_metric_values( disk, [metric_def_r, metric_def_w]) # Thi sis e.g. the VHD file location if disk.HostResource: host_resource = disk.HostResource[0] yield { # Values are in megabytes 'read_mb': metric_values[0], 'write_mb': metric_values[1], 'instance_id': disk.InstanceID, 'host_resource': host_resource } def _sum_metric_values(self, metrics): tot_metric_val = 0 for metric in metrics: tot_metric_val += long(metric.MetricValue) return tot_metric_val def _sum_metric_values_by_defs(self, element_metrics, metric_defs): metric_values = [] for metric_def in metric_defs: if metric_def: metrics = self._filter_metrics(element_metrics, metric_def) metric_values.append(self._sum_metric_values(metrics)) else: # In case the metric is not defined on this host metric_values.append(0) return metric_values def _get_metric_value_instances(self, elements, result_class): instances = [] for el in elements: associators = el.associators(wmi_result_class=result_class) if associators: instances.append(associators[0]) return instances def _get_metric_values(self, element, metric_defs): element_metrics = element.associators( wmi_association_class=self._METRICS_ME) return self._sum_metric_values_by_defs(element_metrics, metric_defs) def _lookup_vm(self, vm_name): vms = self._conn.Msvm_ComputerSystem(ElementName=vm_name) n = len(vms) if n == 0: raise inspector.InstanceNotFoundException( _('VM %s not found on Hyper-V') % vm_name) elif n > 1: raise HyperVException(_('Duplicate VM name found: %s') % vm_name) else: return vms[0] def _get_metrics(self, element, metric_def): return self._filter_metrics( element.associators( wmi_association_class=self._METRICS_ME), metric_def) def _filter_metrics(self, all_metrics, metric_def): return [v for v in all_metrics if v.MetricDefinitionId == metric_def.Id] def _get_metric_def(self, metric_def): metric = self._conn.CIM_BaseMetricDefinition(ElementName=metric_def) if metric: return metric[0] def _get_vm_setting_data(self, vm): vm_settings = vm.associators( wmi_result_class=self._VS_SETTING_DATA) # Avoid snapshots return [s for s in vm_settings if s.VirtualSystemType == self._VIRTUAL_SYSTEM_TYPE_REALIZED][0] def _get_vm_resources(self, vm, resource_class): setting_data = self._get_vm_setting_data(vm) return setting_data.associators(wmi_result_class=resource_class)
1.664063
2
src/cli.py
cajones314/avocd2019
0
4209
# system from io import IOBase, StringIO import os # 3rd party import click # internal from days import DayFactory # import logging # logger = logging.getLogger(__name__) # logger.setLevel(logging.DEBUG) # ch = logging.StreamHandler() # logger.addHandler(ch) @click.group(invoke_without_command=True) @click.option('-d', '--day', required=True, type=click.IntRange(1, 31), metavar="<1..31>", help="Day you want to select.") @click.option('-p', '--puzzle', required=True, type=click.IntRange(1, 2), metavar="<1|2>", help="Puzzle you want to run.") @click.option('-i', '--input', required=True, type=click.Path(exists=True), help="Path to puzzle data.") def cli(day: int, puzzle: int, input: str): filename = os.path.join(input, f"{day:02}_puzzle_{puzzle}.txt") if os.path.exists(filename): input_stream = open(filename, "r") else: input_stream = StringIO('') avocd = DayFactory(day, input_stream) try: print(avocd.run(puzzle)) except NotImplementedError: print(f"Puzzle {puzzle} for day {day} not implemented.") if __name__ == "__main__": # pylint: disable=no-value-for-parameter cli()
2.625
3
option_c.py
wrosecrans/colormap
231
4210
from matplotlib.colors import LinearSegmentedColormap from numpy import nan, inf # Used to reconstruct the colormap in viscm parameters = {'xp': [-5.4895292543686764, 14.790571669586654, 82.5546687431056, 29.15531114139253, -4.1316769886951761, -13.002076438907238], 'yp': [-35.948168839230306, -42.273376159885785, -28.845467523197698, 52.03426124197, 36.832712600868973, 40.792291220556734], 'min_JK': 16.8314150305, 'max_JK': 95} cm_data = [[ 5.03832136e-02, 2.98028976e-02, 5.27974883e-01], [ 6.35363639e-02, 2.84259729e-02, 5.33123681e-01], [ 7.53531234e-02, 2.72063728e-02, 5.38007001e-01], [ 8.62217979e-02, 2.61253206e-02, 5.42657691e-01], [ 9.63786097e-02, 2.51650976e-02, 5.47103487e-01], [ 1.05979704e-01, 2.43092436e-02, 5.51367851e-01], [ 1.15123641e-01, 2.35562500e-02, 5.55467728e-01], [ 1.23902903e-01, 2.28781011e-02, 5.59423480e-01], [ 1.32380720e-01, 2.22583774e-02, 5.63250116e-01], [ 1.40603076e-01, 2.16866674e-02, 5.66959485e-01], [ 1.48606527e-01, 2.11535876e-02, 5.70561711e-01], [ 1.56420649e-01, 2.06507174e-02, 5.74065446e-01], [ 1.64069722e-01, 2.01705326e-02, 5.77478074e-01], [ 1.71573925e-01, 1.97063415e-02, 5.80805890e-01], [ 1.78950212e-01, 1.92522243e-02, 5.84054243e-01], [ 1.86212958e-01, 1.88029767e-02, 5.87227661e-01], [ 1.93374449e-01, 1.83540593e-02, 5.90329954e-01], [ 2.00445260e-01, 1.79015512e-02, 5.93364304e-01], [ 2.07434551e-01, 1.74421086e-02, 5.96333341e-01], [ 2.14350298e-01, 1.69729276e-02, 5.99239207e-01], [ 2.21196750e-01, 1.64970484e-02, 6.02083323e-01], [ 2.27982971e-01, 1.60071509e-02, 6.04867403e-01], [ 2.34714537e-01, 1.55015065e-02, 6.07592438e-01], [ 2.41396253e-01, 1.49791041e-02, 6.10259089e-01], [ 2.48032377e-01, 1.44393586e-02, 6.12867743e-01], [ 2.54626690e-01, 1.38820918e-02, 6.15418537e-01], [ 2.61182562e-01, 1.33075156e-02, 6.17911385e-01], [ 2.67702993e-01, 1.27162163e-02, 6.20345997e-01], [ 2.74190665e-01, 1.21091423e-02, 6.22721903e-01], [ 2.80647969e-01, 1.14875915e-02, 6.25038468e-01], [ 2.87076059e-01, 1.08554862e-02, 6.27294975e-01], [ 2.93477695e-01, 1.02128849e-02, 6.29490490e-01], [ 2.99855122e-01, 9.56079551e-03, 6.31623923e-01], [ 3.06209825e-01, 8.90185346e-03, 6.33694102e-01], [ 3.12543124e-01, 8.23900704e-03, 6.35699759e-01], [ 3.18856183e-01, 7.57551051e-03, 6.37639537e-01], [ 3.25150025e-01, 6.91491734e-03, 6.39512001e-01], [ 3.31425547e-01, 6.26107379e-03, 6.41315649e-01], [ 3.37683446e-01, 5.61830889e-03, 6.43048936e-01], [ 3.43924591e-01, 4.99053080e-03, 6.44710195e-01], [ 3.50149699e-01, 4.38202557e-03, 6.46297711e-01], [ 3.56359209e-01, 3.79781761e-03, 6.47809772e-01], [ 3.62553473e-01, 3.24319591e-03, 6.49244641e-01], [ 3.68732762e-01, 2.72370721e-03, 6.50600561e-01], [ 3.74897270e-01, 2.24514897e-03, 6.51875762e-01], [ 3.81047116e-01, 1.81356205e-03, 6.53068467e-01], [ 3.87182639e-01, 1.43446923e-03, 6.54176761e-01], [ 3.93304010e-01, 1.11388259e-03, 6.55198755e-01], [ 3.99410821e-01, 8.59420809e-04, 6.56132835e-01], [ 4.05502914e-01, 6.78091517e-04, 6.56977276e-01], [ 4.11580082e-01, 5.77101735e-04, 6.57730380e-01], [ 4.17642063e-01, 5.63847476e-04, 6.58390492e-01], [ 4.23688549e-01, 6.45902780e-04, 6.58956004e-01], [ 4.29719186e-01, 8.31008207e-04, 6.59425363e-01], [ 4.35733575e-01, 1.12705875e-03, 6.59797077e-01], [ 4.41732123e-01, 1.53984779e-03, 6.60069009e-01], [ 4.47713600e-01, 2.07954744e-03, 6.60240367e-01], [ 4.53677394e-01, 2.75470302e-03, 6.60309966e-01], [ 4.59622938e-01, 3.57374415e-03, 6.60276655e-01], [ 4.65549631e-01, 4.54518084e-03, 6.60139383e-01], [ 4.71456847e-01, 5.67758762e-03, 6.59897210e-01], [ 4.77343929e-01, 6.97958743e-03, 6.59549311e-01], [ 4.83210198e-01, 8.45983494e-03, 6.59094989e-01], [ 4.89054951e-01, 1.01269996e-02, 6.58533677e-01], [ 4.94877466e-01, 1.19897486e-02, 6.57864946e-01], [ 5.00677687e-01, 1.40550640e-02, 6.57087561e-01], [ 5.06454143e-01, 1.63333443e-02, 6.56202294e-01], [ 5.12206035e-01, 1.88332232e-02, 6.55209222e-01], [ 5.17932580e-01, 2.15631918e-02, 6.54108545e-01], [ 5.23632990e-01, 2.45316468e-02, 6.52900629e-01], [ 5.29306474e-01, 2.77468735e-02, 6.51586010e-01], [ 5.34952244e-01, 3.12170300e-02, 6.50165396e-01], [ 5.40569510e-01, 3.49501310e-02, 6.48639668e-01], [ 5.46157494e-01, 3.89540334e-02, 6.47009884e-01], [ 5.51715423e-01, 4.31364795e-02, 6.45277275e-01], [ 5.57242538e-01, 4.73307585e-02, 6.43443250e-01], [ 5.62738096e-01, 5.15448092e-02, 6.41509389e-01], [ 5.68201372e-01, 5.57776706e-02, 6.39477440e-01], [ 5.73631859e-01, 6.00281369e-02, 6.37348841e-01], [ 5.79028682e-01, 6.42955547e-02, 6.35126108e-01], [ 5.84391137e-01, 6.85790261e-02, 6.32811608e-01], [ 5.89718606e-01, 7.28775875e-02, 6.30407727e-01], [ 5.95010505e-01, 7.71902878e-02, 6.27916992e-01], [ 6.00266283e-01, 8.15161895e-02, 6.25342058e-01], [ 6.05485428e-01, 8.58543713e-02, 6.22685703e-01], [ 6.10667469e-01, 9.02039303e-02, 6.19950811e-01], [ 6.15811974e-01, 9.45639838e-02, 6.17140367e-01], [ 6.20918555e-01, 9.89336721e-02, 6.14257440e-01], [ 6.25986869e-01, 1.03312160e-01, 6.11305174e-01], [ 6.31016615e-01, 1.07698641e-01, 6.08286774e-01], [ 6.36007543e-01, 1.12092335e-01, 6.05205491e-01], [ 6.40959444e-01, 1.16492495e-01, 6.02064611e-01], [ 6.45872158e-01, 1.20898405e-01, 5.98867442e-01], [ 6.50745571e-01, 1.25309384e-01, 5.95617300e-01], [ 6.55579615e-01, 1.29724785e-01, 5.92317494e-01], [ 6.60374266e-01, 1.34143997e-01, 5.88971318e-01], [ 6.65129493e-01, 1.38566428e-01, 5.85582301e-01], [ 6.69845385e-01, 1.42991540e-01, 5.82153572e-01], [ 6.74522060e-01, 1.47418835e-01, 5.78688247e-01], [ 6.79159664e-01, 1.51847851e-01, 5.75189431e-01], [ 6.83758384e-01, 1.56278163e-01, 5.71660158e-01], [ 6.88318440e-01, 1.60709387e-01, 5.68103380e-01], [ 6.92840088e-01, 1.65141174e-01, 5.64521958e-01], [ 6.97323615e-01, 1.69573215e-01, 5.60918659e-01], [ 7.01769334e-01, 1.74005236e-01, 5.57296144e-01], [ 7.06177590e-01, 1.78437000e-01, 5.53656970e-01], [ 7.10548747e-01, 1.82868306e-01, 5.50003579e-01], [ 7.14883195e-01, 1.87298986e-01, 5.46338299e-01], [ 7.19181339e-01, 1.91728906e-01, 5.42663338e-01], [ 7.23443604e-01, 1.96157962e-01, 5.38980786e-01], [ 7.27670428e-01, 2.00586086e-01, 5.35292612e-01], [ 7.31862231e-01, 2.05013174e-01, 5.31600995e-01], [ 7.36019424e-01, 2.09439071e-01, 5.27908434e-01], [ 7.40142557e-01, 2.13863965e-01, 5.24215533e-01], [ 7.44232102e-01, 2.18287899e-01, 5.20523766e-01], [ 7.48288533e-01, 2.22710942e-01, 5.16834495e-01], [ 7.52312321e-01, 2.27133187e-01, 5.13148963e-01], [ 7.56303937e-01, 2.31554749e-01, 5.09468305e-01], [ 7.60263849e-01, 2.35975765e-01, 5.05793543e-01], [ 7.64192516e-01, 2.40396394e-01, 5.02125599e-01], [ 7.68090391e-01, 2.44816813e-01, 4.98465290e-01], [ 7.71957916e-01, 2.49237220e-01, 4.94813338e-01], [ 7.75795522e-01, 2.53657797e-01, 4.91170517e-01], [ 7.79603614e-01, 2.58078397e-01, 4.87539124e-01], [ 7.83382636e-01, 2.62499662e-01, 4.83917732e-01], [ 7.87132978e-01, 2.66921859e-01, 4.80306702e-01], [ 7.90855015e-01, 2.71345267e-01, 4.76706319e-01], [ 7.94549101e-01, 2.75770179e-01, 4.73116798e-01], [ 7.98215577e-01, 2.80196901e-01, 4.69538286e-01], [ 8.01854758e-01, 2.84625750e-01, 4.65970871e-01], [ 8.05466945e-01, 2.89057057e-01, 4.62414580e-01], [ 8.09052419e-01, 2.93491117e-01, 4.58869577e-01], [ 8.12611506e-01, 2.97927865e-01, 4.55337565e-01], [ 8.16144382e-01, 3.02368130e-01, 4.51816385e-01], [ 8.19651255e-01, 3.06812282e-01, 4.48305861e-01], [ 8.23132309e-01, 3.11260703e-01, 4.44805781e-01], [ 8.26587706e-01, 3.15713782e-01, 4.41315901e-01], [ 8.30017584e-01, 3.20171913e-01, 4.37835947e-01], [ 8.33422053e-01, 3.24635499e-01, 4.34365616e-01], [ 8.36801237e-01, 3.29104836e-01, 4.30905052e-01], [ 8.40155276e-01, 3.33580106e-01, 4.27454836e-01], [ 8.43484103e-01, 3.38062109e-01, 4.24013059e-01], [ 8.46787726e-01, 3.42551272e-01, 4.20579333e-01], [ 8.50066132e-01, 3.47048028e-01, 4.17153264e-01], [ 8.53319279e-01, 3.51552815e-01, 4.13734445e-01], [ 8.56547103e-01, 3.56066072e-01, 4.10322469e-01], [ 8.59749520e-01, 3.60588229e-01, 4.06916975e-01], [ 8.62926559e-01, 3.65119408e-01, 4.03518809e-01], [ 8.66077920e-01, 3.69660446e-01, 4.00126027e-01], [ 8.69203436e-01, 3.74211795e-01, 3.96738211e-01], [ 8.72302917e-01, 3.78773910e-01, 3.93354947e-01], [ 8.75376149e-01, 3.83347243e-01, 3.89975832e-01], [ 8.78422895e-01, 3.87932249e-01, 3.86600468e-01], [ 8.81442916e-01, 3.92529339e-01, 3.83228622e-01], [ 8.84435982e-01, 3.97138877e-01, 3.79860246e-01], [ 8.87401682e-01, 4.01761511e-01, 3.76494232e-01], [ 8.90339687e-01, 4.06397694e-01, 3.73130228e-01], [ 8.93249647e-01, 4.11047871e-01, 3.69767893e-01], [ 8.96131191e-01, 4.15712489e-01, 3.66406907e-01], [ 8.98983931e-01, 4.20391986e-01, 3.63046965e-01], [ 9.01807455e-01, 4.25086807e-01, 3.59687758e-01], [ 9.04601295e-01, 4.29797442e-01, 3.56328796e-01], [ 9.07364995e-01, 4.34524335e-01, 3.52969777e-01], [ 9.10098088e-01, 4.39267908e-01, 3.49610469e-01], [ 9.12800095e-01, 4.44028574e-01, 3.46250656e-01], [ 9.15470518e-01, 4.48806744e-01, 3.42890148e-01], [ 9.18108848e-01, 4.53602818e-01, 3.39528771e-01], [ 9.20714383e-01, 4.58417420e-01, 3.36165582e-01], [ 9.23286660e-01, 4.63250828e-01, 3.32800827e-01], [ 9.25825146e-01, 4.68103387e-01, 3.29434512e-01], [ 9.28329275e-01, 4.72975465e-01, 3.26066550e-01], [ 9.30798469e-01, 4.77867420e-01, 3.22696876e-01], [ 9.33232140e-01, 4.82779603e-01, 3.19325444e-01], [ 9.35629684e-01, 4.87712357e-01, 3.15952211e-01], [ 9.37990034e-01, 4.92666544e-01, 3.12575440e-01], [ 9.40312939e-01, 4.97642038e-01, 3.09196628e-01], [ 9.42597771e-01, 5.02639147e-01, 3.05815824e-01], [ 9.44843893e-01, 5.07658169e-01, 3.02433101e-01], [ 9.47050662e-01, 5.12699390e-01, 2.99048555e-01], [ 9.49217427e-01, 5.17763087e-01, 2.95662308e-01], [ 9.51343530e-01, 5.22849522e-01, 2.92274506e-01], [ 9.53427725e-01, 5.27959550e-01, 2.88883445e-01], [ 9.55469640e-01, 5.33093083e-01, 2.85490391e-01], [ 9.57468770e-01, 5.38250172e-01, 2.82096149e-01], [ 9.59424430e-01, 5.43431038e-01, 2.78700990e-01], [ 9.61335930e-01, 5.48635890e-01, 2.75305214e-01], [ 9.63202573e-01, 5.53864931e-01, 2.71909159e-01], [ 9.65023656e-01, 5.59118349e-01, 2.68513200e-01], [ 9.66798470e-01, 5.64396327e-01, 2.65117752e-01], [ 9.68525639e-01, 5.69699633e-01, 2.61721488e-01], [ 9.70204593e-01, 5.75028270e-01, 2.58325424e-01], [ 9.71835007e-01, 5.80382015e-01, 2.54931256e-01], [ 9.73416145e-01, 5.85761012e-01, 2.51539615e-01], [ 9.74947262e-01, 5.91165394e-01, 2.48151200e-01], [ 9.76427606e-01, 5.96595287e-01, 2.44766775e-01], [ 9.77856416e-01, 6.02050811e-01, 2.41387186e-01], [ 9.79232922e-01, 6.07532077e-01, 2.38013359e-01], [ 9.80556344e-01, 6.13039190e-01, 2.34646316e-01], [ 9.81825890e-01, 6.18572250e-01, 2.31287178e-01], [ 9.83040742e-01, 6.24131362e-01, 2.27937141e-01], [ 9.84198924e-01, 6.29717516e-01, 2.24595006e-01], [ 9.85300760e-01, 6.35329876e-01, 2.21264889e-01], [ 9.86345421e-01, 6.40968508e-01, 2.17948456e-01], [ 9.87332067e-01, 6.46633475e-01, 2.14647532e-01], [ 9.88259846e-01, 6.52324832e-01, 2.11364122e-01], [ 9.89127893e-01, 6.58042630e-01, 2.08100426e-01], [ 9.89935328e-01, 6.63786914e-01, 2.04858855e-01], [ 9.90681261e-01, 6.69557720e-01, 2.01642049e-01], [ 9.91364787e-01, 6.75355082e-01, 1.98452900e-01], [ 9.91984990e-01, 6.81179025e-01, 1.95294567e-01], [ 9.92540939e-01, 6.87029567e-01, 1.92170500e-01], [ 9.93031693e-01, 6.92906719e-01, 1.89084459e-01], [ 9.93456302e-01, 6.98810484e-01, 1.86040537e-01], [ 9.93813802e-01, 7.04740854e-01, 1.83043180e-01], [ 9.94103226e-01, 7.10697814e-01, 1.80097207e-01], [ 9.94323596e-01, 7.16681336e-01, 1.77207826e-01], [ 9.94473934e-01, 7.22691379e-01, 1.74380656e-01], [ 9.94553260e-01, 7.28727890e-01, 1.71621733e-01], [ 9.94560594e-01, 7.34790799e-01, 1.68937522e-01], [ 9.94494964e-01, 7.40880020e-01, 1.66334918e-01], [ 9.94355411e-01, 7.46995448e-01, 1.63821243e-01], [ 9.94140989e-01, 7.53136955e-01, 1.61404226e-01], [ 9.93850778e-01, 7.59304390e-01, 1.59091984e-01], [ 9.93482190e-01, 7.65498551e-01, 1.56890625e-01], [ 9.93033251e-01, 7.71719833e-01, 1.54807583e-01], [ 9.92505214e-01, 7.77966775e-01, 1.52854862e-01], [ 9.91897270e-01, 7.84239120e-01, 1.51041581e-01], [ 9.91208680e-01, 7.90536569e-01, 1.49376885e-01], [ 9.90438793e-01, 7.96858775e-01, 1.47869810e-01], [ 9.89587065e-01, 8.03205337e-01, 1.46529128e-01], [ 9.88647741e-01, 8.09578605e-01, 1.45357284e-01], [ 9.87620557e-01, 8.15977942e-01, 1.44362644e-01], [ 9.86509366e-01, 8.22400620e-01, 1.43556679e-01], [ 9.85314198e-01, 8.28845980e-01, 1.42945116e-01], [ 9.84031139e-01, 8.35315360e-01, 1.42528388e-01], [ 9.82652820e-01, 8.41811730e-01, 1.42302653e-01], [ 9.81190389e-01, 8.48328902e-01, 1.42278607e-01], [ 9.79643637e-01, 8.54866468e-01, 1.42453425e-01], [ 9.77994918e-01, 8.61432314e-01, 1.42808191e-01], [ 9.76264977e-01, 8.68015998e-01, 1.43350944e-01], [ 9.74443038e-01, 8.74622194e-01, 1.44061156e-01], [ 9.72530009e-01, 8.81250063e-01, 1.44922913e-01], [ 9.70532932e-01, 8.87896125e-01, 1.45918663e-01], [ 9.68443477e-01, 8.94563989e-01, 1.47014438e-01], [ 9.66271225e-01, 9.01249365e-01, 1.48179639e-01], [ 9.64021057e-01, 9.07950379e-01, 1.49370428e-01], [ 9.61681481e-01, 9.14672479e-01, 1.50520343e-01], [ 9.59275646e-01, 9.21406537e-01, 1.51566019e-01], [ 9.56808068e-01, 9.28152065e-01, 1.52409489e-01], [ 9.54286813e-01, 9.34907730e-01, 1.52921158e-01], [ 9.51726083e-01, 9.41670605e-01, 1.52925363e-01], [ 9.49150533e-01, 9.48434900e-01, 1.52177604e-01], [ 9.46602270e-01, 9.55189860e-01, 1.50327944e-01], [ 9.44151742e-01, 9.61916487e-01, 1.46860789e-01], [ 9.41896120e-01, 9.68589814e-01, 1.40955606e-01], [ 9.40015097e-01, 9.75158357e-01, 1.31325517e-01]] test_cm = LinearSegmentedColormap.from_list(__file__, cm_data) if __name__ == "__main__": import matplotlib.pyplot as plt import numpy as np try: from viscm import viscm viscm(test_cm) except ImportError: print("viscm not found, falling back on simple display") plt.imshow(np.linspace(0, 100, 256)[None, :], aspect='auto', cmap=test_cm) plt.show()
1.882813
2
RPI/yolov5/algorithm/planner/algorithms/hybrid_astar/draw/draw.py
Aditya239233/MDP
4
4211
<reponame>Aditya239233/MDP import matplotlib.pyplot as plt import numpy as np import math from algorithm.planner.utils.car_utils import Car_C PI = np.pi class Arrow: def __init__(self, x, y, theta, L, c): angle = np.deg2rad(30) d = 0.3 * L w = 2 x_start = x y_start = y x_end = x + L * np.cos(theta) y_end = y + L * np.sin(theta) theta_hat_L = theta + PI - angle theta_hat_R = theta + PI + angle x_hat_start = x_end x_hat_end_L = x_hat_start + d * np.cos(theta_hat_L) x_hat_end_R = x_hat_start + d * np.cos(theta_hat_R) y_hat_start = y_end y_hat_end_L = y_hat_start + d * np.sin(theta_hat_L) y_hat_end_R = y_hat_start + d * np.sin(theta_hat_R) plt.plot([x_start, x_end], [y_start, y_end], color=c, linewidth=w) plt.plot([x_hat_start, x_hat_end_L], [y_hat_start, y_hat_end_L], color=c, linewidth=w) plt.plot([x_hat_start, x_hat_end_R], [y_hat_start, y_hat_end_R], color=c, linewidth=w) class Car: def __init__(self, x, y, yaw, w, L): theta_B = PI + yaw xB = x + L / 4 * np.cos(theta_B) yB = y + L / 4 * np.sin(theta_B) theta_BL = theta_B + PI / 2 theta_BR = theta_B - PI / 2 x_BL = xB + w / 2 * np.cos(theta_BL) # Bottom-Left vertex y_BL = yB + w / 2 * np.sin(theta_BL) x_BR = xB + w / 2 * np.cos(theta_BR) # Bottom-Right vertex y_BR = yB + w / 2 * np.sin(theta_BR) x_FL = x_BL + L * np.cos(yaw) # Front-Left vertex y_FL = y_BL + L * np.sin(yaw) x_FR = x_BR + L * np.cos(yaw) # Front-Right vertex y_FR = y_BR + L * np.sin(yaw) plt.plot([x_BL, x_BR, x_FR, x_FL, x_BL], [y_BL, y_BR, y_FR, y_FL, y_BL], linewidth=1, color='black') Arrow(x, y, yaw, L / 2, 'black') def draw_car(x, y, yaw, steer, color='black', extended_car=True): if extended_car: car = np.array([[-Car_C.RB, -Car_C.RB, Car_C.RF, Car_C.RF, -Car_C.RB, Car_C.ACTUAL_RF, Car_C.ACTUAL_RF, -Car_C.ACTUAL_RB, -Car_C.ACTUAL_RB], [Car_C.W / 2, -Car_C.W / 2, -Car_C.W / 2, Car_C.W / 2, Car_C.W / 2, Car_C.W/2, -Car_C.W/2, -Car_C.W/2, Car_C.W/2]]) else: car = np.array([[-Car_C.RB, -Car_C.RB, Car_C.RF, Car_C.RF, -Car_C.RB], [Car_C.W / 2, -Car_C.W / 2, -Car_C.W / 2, Car_C.W / 2, Car_C.W / 2]]) wheel = np.array([[-Car_C.TR, -Car_C.TR, Car_C.TR, Car_C.TR, -Car_C.TR], [Car_C.TW / 4, -Car_C.TW / 4, -Car_C.TW / 4, Car_C.TW / 4, Car_C.TW / 4]]) rlWheel = wheel.copy() rrWheel = wheel.copy() frWheel = wheel.copy() flWheel = wheel.copy() Rot1 = np.array([[math.cos(yaw), -math.sin(yaw)], [math.sin(yaw), math.cos(yaw)]]) Rot2 = np.array([[math.cos(steer), math.sin(steer)], [-math.sin(steer), math.cos(steer)]]) frWheel = np.dot(Rot2, frWheel) flWheel = np.dot(Rot2, flWheel) frWheel += np.array([[Car_C.WB], [-Car_C.WD / 2]]) flWheel += np.array([[Car_C.WB], [Car_C.WD / 2]]) rrWheel[1, :] -= Car_C.WD / 2 rlWheel[1, :] += Car_C.WD / 2 frWheel = np.dot(Rot1, frWheel) flWheel = np.dot(Rot1, flWheel) rrWheel = np.dot(Rot1, rrWheel) rlWheel = np.dot(Rot1, rlWheel) car = np.dot(Rot1, car) frWheel += np.array([[x], [y]]) flWheel += np.array([[x], [y]]) rrWheel += np.array([[x], [y]]) rlWheel += np.array([[x], [y]]) car += np.array([[x], [y]]) plt.plot(car[0, :], car[1, :], color) plt.plot(frWheel[0, :], frWheel[1, :], color) plt.plot(rrWheel[0, :], rrWheel[1, :], color) plt.plot(flWheel[0, :], flWheel[1, :], color) plt.plot(rlWheel[0, :], rlWheel[1, :], color) Arrow(x, y, yaw, Car_C.WB * 0.8, color)
2.8125
3
models/database_models/comment_model.py
RuiCoreSci/Flask-Restful
7
4212
from sqlalchemy import Integer, Text, DateTime, func, Boolean, text from models.database_models import Base, Column class Comment(Base): __tablename__ = "comment" id = Column(Integer, primary_key=True, ) user_id = Column(Integer, nullable=False, comment="评论用户的 ID") post_id = Column(Integer, nullable=False, comment="Post 文章的 ID") content = Column(Text, nullable=False, comment="用户的评论") create_time = Column(DateTime, server_default=func.now(), comment="创建时间") update_time = Column(DateTime, server_default=func.now(), onupdate=func.now(), comment="更新时间") deleted = Column(Boolean, default=False, server_default=text('0'), nullable=False, comment="该项目是否被删除")
2.75
3
aws_deploy/ecs/helper.py
jmsantorum/aws-deploy
0
4213
<reponame>jmsantorum/aws-deploy import json import re from datetime import datetime from json.decoder import JSONDecodeError import click from boto3.session import Session from boto3_type_annotations.ecs import Client from botocore.exceptions import ClientError, NoCredentialsError from dateutil.tz.tz import tzlocal from dictdiffer import diff JSON_LIST_REGEX = re.compile(r'^\[.*\]$') LAUNCH_TYPE_EC2 = 'EC2' LAUNCH_TYPE_FARGATE = 'FARGATE' def read_env_file(container_name, file): env_vars = [] try: with open(file) as f: for line in f: if line.startswith('#') or not line.strip() or '=' not in line: continue key, value = line.strip().split('=', 1) env_vars.append((container_name, key, value)) except Exception as e: raise EcsTaskDefinitionCommandError(str(e)) return tuple(env_vars) class EcsClient(object): def __init__(self, aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, region_name=None, profile_name=None): session = Session( aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, aws_session_token=aws_session_token, region_name=region_name, profile_name=profile_name ) self.boto: Client = session.client('ecs') self.events = session.client('events') def describe_services(self, cluster_name, service_name): return self.boto.describe_services( cluster=cluster_name, services=[service_name] ) def describe_task_definition(self, task_definition_arn): try: return self.boto.describe_task_definition( taskDefinition=task_definition_arn, include=[ 'TAGS', ] ) except ClientError: raise UnknownTaskDefinitionError( u'Unknown task definition arn: %s' % task_definition_arn ) def list_tasks(self, cluster_name, service_name): return self.boto.list_tasks( cluster=cluster_name, serviceName=service_name ) def describe_tasks(self, cluster_name, task_arns): return self.boto.describe_tasks(cluster=cluster_name, tasks=task_arns) def register_task_definition(self, family, containers, volumes, role_arn, execution_role_arn, tags, additional_properties): if tags: additional_properties['tags'] = tags return self.boto.register_task_definition( family=family, containerDefinitions=containers, volumes=volumes, taskRoleArn=role_arn, executionRoleArn=execution_role_arn, **additional_properties ) def deregister_task_definition(self, task_definition_arn): return self.boto.deregister_task_definition( taskDefinition=task_definition_arn ) def update_service(self, cluster, service, desired_count, task_definition): if desired_count is None: return self.boto.update_service( cluster=cluster, service=service, taskDefinition=task_definition ) return self.boto.update_service( cluster=cluster, service=service, desiredCount=desired_count, taskDefinition=task_definition ) def run_task(self, cluster, task_definition, count, started_by, overrides, launchtype='EC2', subnets=(), security_groups=(), public_ip=False, platform_version=None): if launchtype == LAUNCH_TYPE_FARGATE: if not subnets or not security_groups: msg = 'At least one subnet (--subnet) and one security ' \ 'group (--securitygroup) definition are required ' \ 'for launch type FARGATE' raise TaskPlacementError(msg) network_configuration = { "awsvpcConfiguration": { "subnets": subnets, "securityGroups": security_groups, "assignPublicIp": "ENABLED" if public_ip else "DISABLED" } } if platform_version is None: platform_version = 'LATEST' return self.boto.run_task( cluster=cluster, taskDefinition=task_definition, count=count, startedBy=started_by, overrides=overrides, launchType=launchtype, networkConfiguration=network_configuration, platformVersion=platform_version, ) return self.boto.run_task( cluster=cluster, taskDefinition=task_definition, count=count, startedBy=started_by, overrides=overrides ) def update_rule(self, cluster, rule, task_definition): target = self.events.list_targets_by_rule(Rule=rule)['Targets'][0] target['Arn'] = task_definition.arn.partition('task-definition')[0] + 'cluster/' + cluster target['EcsParameters']['TaskDefinitionArn'] = task_definition.arn self.events.put_targets(Rule=rule, Targets=[target]) return target['Id'] class EcsService(dict): def __init__(self, cluster, service_definition=None, **kwargs): self._cluster = cluster super(EcsService, self).__init__(service_definition, **kwargs) def set_task_definition(self, task_definition): self[u'taskDefinition'] = task_definition.arn @property def cluster(self): return self._cluster @property def name(self): return self.get(u'serviceName') @property def task_definition(self): return self.get(u'taskDefinition') @property def desired_count(self): return self.get(u'desiredCount') @property def deployment_created_at(self): for deployment in self.get(u'deployments'): if deployment.get(u'status') == u'PRIMARY': return deployment.get(u'createdAt') return datetime.now() @property def deployment_updated_at(self): for deployment in self.get(u'deployments'): if deployment.get(u'status') == u'PRIMARY': return deployment.get(u'updatedAt') return datetime.now() @property def errors(self): return self.get_warnings( since=self.deployment_updated_at ) @property def older_errors(self): return self.get_warnings( since=self.deployment_created_at, until=self.deployment_updated_at ) def get_warnings(self, since=None, until=None): since = since or self.deployment_created_at until = until or datetime.now(tz=tzlocal()) errors = {} for event in self.get(u'events'): if u'unable' not in event[u'message']: continue if since < event[u'createdAt'] < until: errors[event[u'createdAt']] = event[u'message'] return errors class EcsTaskDefinition(object): def __init__(self, containerDefinitions, volumes, family, revision, status, taskDefinitionArn, requiresAttributes=None, taskRoleArn=None, executionRoleArn=None, compatibilities=None, tags=None, **kwargs): self.containers = containerDefinitions self.volumes = volumes self.family = family self.revision = revision self.status = status self.arn = taskDefinitionArn self.requires_attributes = requiresAttributes or {} self.role_arn = taskRoleArn or '' self.execution_role_arn = executionRoleArn or '' self.tags = tags self.additional_properties = kwargs self._diff = [] # the compatibilities parameter is returned from the ECS API, when # describing a task, but may not be included, when registering a new # task definition. Just storing it for now. self.compatibilities = compatibilities @property def container_names(self): for container in self.containers: yield container['name'] @property def images(self): for container in self.containers: yield container['name'], container['image'] @property def family_revision(self): return f'{self.family}:{self.revision}' @property def updated(self) -> bool: return self._diff != [] @property def diff(self): return self._diff def show_diff(self, show_diff: bool = False): if show_diff: click.secho('Task definition modified:') for d in self._diff: click.secho(f' {str(d)}', fg='blue') click.secho('') def diff_raw(self, task_b): containers_a = {c['name']: c for c in self.containers} containers_b = {c['name']: c for c in task_b.containers} requirements_a = sorted([r['name'] for r in self.requires_attributes]) requirements_b = sorted([r['name'] for r in task_b.requires_attributes]) for container in containers_a: containers_a[container]['environment'] = {e['name']: e['value'] for e in containers_a[container].get('environment', {})} for container in containers_b: containers_b[container]['environment'] = {e['name']: e['value'] for e in containers_b[container].get('environment', {})} for container in containers_a: containers_a[container]['secrets'] = {e['name']: e['valueFrom'] for e in containers_a[container].get('secrets', {})} for container in containers_b: containers_b[container]['secrets'] = {e['name']: e['valueFrom'] for e in containers_b[container].get('secrets', {})} composite_a = { 'containers': containers_a, 'volumes': self.volumes, 'requires_attributes': requirements_a, 'role_arn': self.role_arn, 'execution_role_arn': self.execution_role_arn, 'compatibilities': self.compatibilities, 'additional_properties': self.additional_properties, } composite_b = { 'containers': containers_b, 'volumes': task_b.volumes, 'requires_attributes': requirements_b, 'role_arn': task_b.role_arn, 'execution_role_arn': task_b.execution_role_arn, 'compatibilities': task_b.compatibilities, 'additional_properties': task_b.additional_properties, } return list(diff(composite_a, composite_b)) def get_overrides(self): override = dict() overrides = [] for diff in self.diff: if override.get('name') != diff.container: override = dict(name=diff.container) overrides.append(override) if diff.field == 'command': override['command'] = self.get_overrides_command(diff.value) elif diff.field == 'environment': override['environment'] = self.get_overrides_env(diff.value) elif diff.field == 'secrets': override['secrets'] = self.get_overrides_secrets(diff.value) return overrides @staticmethod def parse_command(command): if re.match(JSON_LIST_REGEX, command): try: return json.loads(command) except JSONDecodeError as e: raise EcsTaskDefinitionCommandError( f"command should be valid JSON list. Got following command: {command} resulting in error: {str(e)}" ) return command.split() @staticmethod def get_overrides_command(command): return EcsTaskDefinition.parse_command(command) @staticmethod def get_overrides_env(env): return [{"name": e, "value": env[e]} for e in env] @staticmethod def get_overrides_secrets(secrets): return [{"name": s, "valueFrom": secrets[s]} for s in secrets] def get_tag(self, key): for tag in self.tags: if tag['key'] == key: return tag['value'] return None def set_tag(self, key: str, value: str): if key and value: done = False for tag in self.tags: if tag['key'] == key: if tag['value'] != value: diff = EcsTaskDefinitionDiff( container=None, field=f"tags['{key}']", value=value, old_value=tag['value'] ) self._diff.append(diff) tag['value'] = value done = True break if not done: diff = EcsTaskDefinitionDiff(container=None, field=f"tags['{key}']", value=value, old_value=None) self._diff.append(diff) self.tags.append({'key': key, 'value': value}) def set_images(self, tag=None, **images): self.validate_container_options(**images) for container in self.containers: if container['name'] in images: new_image = images[container['name']] diff = EcsTaskDefinitionDiff( container=container['name'], field='image', value=new_image, old_value=container['image'] ) self._diff.append(diff) container['image'] = new_image elif tag: image_definition = container['image'].rsplit(':', 1) new_image = f'{image_definition[0]}:{tag.strip()}' # check if tag changes if new_image != container['image']: diff = EcsTaskDefinitionDiff( container=container['name'], field='image', value=new_image, old_value=container['image'] ) self._diff.append(diff) container['image'] = new_image def set_commands(self, **commands): self.validate_container_options(**commands) for container in self.containers: if container['name'] in commands: new_command = commands[container['name']] diff = EcsTaskDefinitionDiff( container=container['name'], field='command', value=new_command, old_value=container.get('command') ) self._diff.append(diff) container['command'] = self.parse_command(new_command) def set_environment(self, environment_list, exclusive=False, env_file=((None, None),)): environment = {} if None not in env_file[0]: for env in env_file: line = read_env_file(env[0], env[1]) environment_list = line + environment_list for env in environment_list: environment.setdefault(env[0], {}) environment[env[0]][env[1]] = env[2] self.validate_container_options(**environment) for container in self.containers: if container['name'] in environment: self.apply_container_environment( container=container, new_environment=environment[container['name']], exclusive=exclusive, ) elif exclusive is True: self.apply_container_environment( container=container, new_environment={}, exclusive=exclusive, ) def apply_container_environment(self, container, new_environment, exclusive=False): environment = container.get('environment', {}) old_environment = {env['name']: env['value'] for env in environment} if exclusive is True: merged = new_environment else: merged = old_environment.copy() merged.update(new_environment) if old_environment == merged: return diff = EcsTaskDefinitionDiff( container=container['name'], field='environment', value=merged, old_value=old_environment ) self._diff.append(diff) container['environment'] = [ {"name": e, "value": merged[e]} for e in merged ] def set_secrets(self, secrets_list, exclusive=False): secrets = {} for secret in secrets_list: secrets.setdefault(secret[0], {}) secrets[secret[0]][secret[1]] = secret[2] self.validate_container_options(**secrets) for container in self.containers: if container['name'] in secrets: self.apply_container_secrets( container=container, new_secrets=secrets[container['name']], exclusive=exclusive, ) elif exclusive is True: self.apply_container_secrets( container=container, new_secrets={}, exclusive=exclusive, ) def apply_container_secrets(self, container, new_secrets, exclusive=False): secrets = container.get('secrets', {}) old_secrets = {secret['name']: secret['valueFrom'] for secret in secrets} if exclusive is True: merged = new_secrets else: merged = old_secrets.copy() merged.update(new_secrets) if old_secrets == merged: return diff = EcsTaskDefinitionDiff( container=container['name'], field='secrets', value=merged, old_value=old_secrets ) self._diff.append(diff) container['secrets'] = [ {"name": s, "valueFrom": merged[s]} for s in merged ] def validate_container_options(self, **container_options): for container_name in container_options: if container_name not in self.container_names: raise UnknownContainerError(f'Unknown container: {container_name}') def set_role_arn(self, role_arn): if role_arn: diff = EcsTaskDefinitionDiff( container=None, field='role_arn', value=role_arn, old_value=self.role_arn ) self.role_arn = role_arn self._diff.append(diff) def set_execution_role_arn(self, execution_role_arn): if execution_role_arn: diff = EcsTaskDefinitionDiff( container=None, field='execution_role_arn', value=execution_role_arn, old_value=self.execution_role_arn ) self.execution_role_arn = execution_role_arn self._diff.append(diff) class EcsTaskDefinitionDiff(object): def __init__(self, container, field, value, old_value): self.container = container self.field = field self.value = value self.old_value = old_value def __repr__(self): if self.field == 'environment': return '\n'.join(self._get_environment_diffs( self.container, self.value, self.old_value, )) elif self.field == 'secrets': return '\n'.join(self._get_secrets_diffs( self.container, self.value, self.old_value, )) elif self.container: return f'Changed {self.field} of container "{self.container}" to: "{self.value}" (was: "{self.old_value}")' else: return f'Changed {self.field} to: "{self.value}" (was: "{self.old_value}")' @staticmethod def _get_environment_diffs(container, env, old_env): diffs = [] for name, value in env.items(): old_value = old_env.get(name) if value != old_value or value and not old_value: message = f'Changed environment "{name}" of container "{container}" to: "{value}"' diffs.append(message) for old_name in old_env.keys(): if old_name not in env.keys(): message = f'Removed environment "{old_name}" of container "{container}"' diffs.append(message) return diffs @staticmethod def _get_secrets_diffs(container, secrets, old_secrets): diffs = [] for name, value in secrets.items(): old_value = old_secrets.get(name) if value != old_value or not old_value: message = f'Changed secret "{name}" of container "{container}" to: "{value}"' diffs.append(message) for old_name in old_secrets.keys(): if old_name not in secrets.keys(): message = f'Removed secret "{old_name}" of container "{container}"' diffs.append(message) return diffs class EcsAction(object): def __init__(self, client: EcsClient, cluster_name: str, service_name: str): self._client = client self._cluster_name = cluster_name self._service_name = service_name try: if service_name: self._service = self.get_service() except IndexError: raise EcsConnectionError( u'An error occurred when calling the DescribeServices ' u'operation: Service not found.' ) except ClientError as e: raise EcsConnectionError(str(e)) except NoCredentialsError: raise EcsConnectionError( u'Unable to locate credentials. Configure credentials ' u'by running "aws configure".' ) def get_service(self): services_definition = self._client.describe_services( cluster_name=self._cluster_name, service_name=self._service_name ) return EcsService( cluster=self._cluster_name, service_definition=services_definition[u'services'][0] ) def get_current_task_definition(self, service): return self.get_task_definition(service.task_definition) def get_task_definition(self, task_definition): task_definition_payload = self._client.describe_task_definition( task_definition_arn=task_definition ) task_definition = EcsTaskDefinition( tags=task_definition_payload.get('tags', None), **task_definition_payload[u'taskDefinition'] ) return task_definition def update_task_definition(self, task_definition): response = self._client.register_task_definition( family=task_definition.family, containers=task_definition.containers, volumes=task_definition.volumes, role_arn=task_definition.role_arn, execution_role_arn=task_definition.execution_role_arn, tags=task_definition.tags, additional_properties=task_definition.additional_properties ) new_task_definition = EcsTaskDefinition(**response[u'taskDefinition']) return new_task_definition def deregister_task_definition(self, task_definition): self._client.deregister_task_definition(task_definition.arn) def update_service(self, service, desired_count=None): response = self._client.update_service( cluster=service.cluster, service=service.name, desired_count=desired_count, task_definition=service.task_definition ) return EcsService(self._cluster_name, response[u'service']) def is_deployed(self, service): if len(service[u'deployments']) != 1: return False running_tasks = self._client.list_tasks( cluster_name=service.cluster, service_name=service.name ) if not running_tasks[u'taskArns']: return service.desired_count == 0 running_count = self.get_running_tasks_count( service=service, task_arns=running_tasks[u'taskArns'] ) return service.desired_count == running_count def get_running_tasks_count(self, service, task_arns): running_count = 0 tasks_details = self._client.describe_tasks( cluster_name=self._cluster_name, task_arns=task_arns ) for task in tasks_details[u'tasks']: arn = task[u'taskDefinitionArn'] status = task[u'lastStatus'] if arn == service.task_definition and status == u'RUNNING': running_count += 1 return running_count @property def client(self): return self._client @property def service(self): return self._service @property def cluster_name(self): return self._cluster_name @property def service_name(self): return self._service_name class DeployAction(EcsAction): def deploy(self, task_definition): try: self._service.set_task_definition(task_definition) return self.update_service(self._service) except ClientError as e: raise EcsError(str(e)) class ScaleAction(EcsAction): def scale(self, desired_count): try: return self.update_service(self._service, desired_count) except ClientError as e: raise EcsError(str(e)) class RunAction(EcsAction): def __init__(self, client, cluster_name): super(RunAction, self).__init__(client, cluster_name, None) self._client = client self._cluster_name = cluster_name self.started_tasks = [] def run(self, task_definition, count, started_by, launchtype, subnets, security_groups, public_ip, platform_version): try: result = self._client.run_task( cluster=self._cluster_name, task_definition=task_definition.family_revision, count=count, started_by=started_by, overrides=dict(containerOverrides=task_definition.get_overrides()), launchtype=launchtype, subnets=subnets, security_groups=security_groups, public_ip=public_ip, platform_version=platform_version, ) self.started_tasks = result['tasks'] return True except ClientError as e: raise EcsError(str(e)) class UpdateAction(EcsAction): def __init__(self, client): super(UpdateAction, self).__init__(client, None, None) class DiffAction(EcsAction): def __init__(self, client): super(DiffAction, self).__init__(client, None, None) class EcsError(Exception): pass class EcsConnectionError(EcsError): pass class UnknownContainerError(EcsError): pass class TaskPlacementError(EcsError): pass class UnknownTaskDefinitionError(EcsError): pass class EcsTaskDefinitionCommandError(EcsError): pass
2.046875
2
sbm.py
emmaling27/networks-research
0
4214
<reponame>emmaling27/networks-research import networkx as nx from scipy.special import comb import attr @attr.s class Count(object): """Count class with monochromatic and bichromatic counts""" n = attr.ib() monochromatic = attr.ib(default=0) bichromatic = attr.ib(default=0) def count_edge(self, u, v): if (u < self.n / 2) != (v < self.n / 2): self.bichromatic += 1 else: self.monochromatic += 1 class SBM(): """SBM class with predicted numbers of wedges and local bridges and actual counts""" def __init__(self, n, p, q, seed=0): self.n = n self.p = p self.q = q self.g = nx.generators.community.stochastic_block_model( [int(self.n / 2), int(self.n / 2)], [[p, q], [q, p]], seed=seed) def is_bichromatic(self, u, v): return (u < self.n / 2) != (v < self.n / 2) def get_bichromatic_fraction(self): bichromatic = 0 for (x, y) in self.g.edges(): if self.is_bichromatic(x, y): bichromatic += 1 return bichromatic / len(self.g.edges()) def is_local_bridge(self, u, v): return not set(self.g.neighbors(u)).intersection(set(self.g.neighbors(v))) def count_local_bridges(self): monochromatic, bichromatic = 0, 0 for (u, v) in self.g.edges(): if self.is_local_bridge(u, v): if self.is_bichromatic(u, v): bichromatic += 1 else: monochromatic += 1 return monochromatic, bichromatic def _count_possible_edges(self, local_bridge): count = Count(self.n) for u in range(self.n): for v in range(u+1, self.n): if not self.g.has_edge(u, v) and \ (self.is_local_bridge(u, v) == local_bridge): count.count_edge(u, v) return count def count_possible_local_bridges(self): return self._count_possible_edges(local_bridge=True) def count_possible_closures(self): return self._count_possible_edges(local_bridge=False) def count_wedges(self): count = Count(self.n) for v in self.g.nodes(): sorted_neighbors = sorted(self.g.neighbors(v)) for i in range(len(sorted_neighbors)): for j in range(i + 1, len(sorted_neighbors)): if not self.g.has_edge(sorted_neighbors[i], sorted_neighbors[j]): count.count_edge(sorted_neighbors[i], sorted_neighbors[j]) return count def predicted_wedges(self): return Count( self.n, monochromatic=3 * 2 * comb(self.n/2, 3) * self.p**2 * (1-self.p) \ + self.n * comb(self.n/2, 2) * self.q**2 * (1-self.p), bichromatic=2 * self.n * comb(self.n/2, 2) * self.p * self.q * (1-self.q) ) def predicted_local_bridges(self): return Count( self.n, monochromatic=2 * (1-self.p) * comb(self.n/2, 2) * (1-self.p**2)**(self.n/2-2) * (1-self.q**2)**(self.n/2), bichromatic=(1-self.q) * (self.n/2) ** 2 * (1-self.p*self.q)**(self.n-2) ) def predicted_possible_closures(self): return Count( self.n, monochromatic=2 * (1-self.p) * comb(self.n/2, 2) * (1 - (1-self.p**2)**(self.n/2-2) * (1-self.q**2)**(self.n/2)), bichromatic=(1-self.q) * (self.n/2) ** 2 * (1 - (1-self.p*self.q)**(self.n-2)) ) def predicted_possible_edges(self): return Count( self.n, monochromatic=2 * (1-self.p) * comb(self.n/2, 2), bichromatic=(1-self.q) * (self.n/2) ** 2 )
2.828125
3
src/data/graph/ops/anagram_transform_op.py
PhilHarnish/forge
2
4215
from typing import Callable, Collection, Iterable, List, Union from data.anagram import anagram_iter from data.graph import _op_mixin, bloom_mask, bloom_node, bloom_node_reducer Transformer = Callable[['bloom_node.BloomNode'], 'bloom_node.BloomNode'] _SPACE_MASK = bloom_mask.for_alpha(' ') def merge_fn( host: 'bloom_node.BloomNode', sources: List['bloom_node.BloomNode'], extra: list, whitelist: Collection = None, blacklist: Collection = None, **kwargs) -> None: del kwargs assert len(sources) == 1 exit_node = sources[0] assert len(extra) == 1 state = _normalize_state(exit_node, extra[0]) children = list(state) # TODO: Need a cleaner way to inject and rerun these nodes. if len(children) == 1: host.op = _op_mixin.Op(_op_mixin.OP_IDENTITY, children) else: host.op = _op_mixin.Op(_op_mixin.OP_ADD, children) # HACK: This duplicates BloomNode._expand, essentially. for key, reduced in bloom_node_reducer.reduce( host, whitelist=whitelist, blacklist=blacklist): host.link(key, reduced) class _AnagramTransformIndex(object): """Singleton object used during anagram traversal.""" def __init__( self, exit_node: 'bloom_node.BloomNode', root: anagram_iter.AnagramIter) -> None: self._exit_node = exit_node reference = bloom_node.BloomNode() reference.distance(0) reference.weight(1, True) reference_choice_paths = {} for choice, _ in root.available(): reference_choice_paths[choice] = choice(reference) self._reference_choice_paths = reference_choice_paths self._child_cache = {} def iter( self, anagrams: anagram_iter.AnagramIter, ) -> Iterable['bloom_node.BloomNode']: for child_choice, child_anagrams in anagrams.items(): key = (child_choice, child_anagrams) if key not in self._child_cache: self._child_cache[key] = self._make_child(child_choice, child_anagrams) yield self._child_cache[key] def _make_child( self, choice: Transformer, anagrams: anagram_iter.AnagramIter) -> 'bloom_node.BloomNode': children = list(anagrams.available()) if not children: return choice(self._exit_node) elif len(children) == 1: child_choice, child_duplicates = children[0] node = self._exit_node while child_duplicates: node = child_choice(node) child_duplicates -= 1 return choice(node) # Compute requirements from exits. node = self._exit_node // _AnagramState(self, anagrams) node.provide_mask = self._exit_node.provide_mask node.require_mask = self._exit_node.require_mask node.lengths_mask = self._exit_node.lengths_mask node.annotate({'anagrams': anagrams}) node.max_weight = self._exit_node.max_weight nodes_with_spaces = [] for child_choice, child_duplicates in children: path = self._reference_choice_paths[child_choice] if path.require_mask and path.require_mask & _SPACE_MASK: nodes_with_spaces.append(path) node.provide_mask |= path.provide_mask node.require_mask |= path.require_mask node.lengths_mask = bloom_mask.lengths_product( node.lengths_mask, path.lengths_mask, duplicates=child_duplicates) if nodes_with_spaces: # Distance and provide masks should be correct. Reset required values. # Any route to any of the spaces is now okay but 1+ must be taken. node.require_mask = bloom_mask.REQUIRE_NOTHING for node_with_spaces in nodes_with_spaces: # Only require what all node_with_spaces require. node.require_mask &= node_with_spaces.require_mask return choice(node) class _AnagramState(object): def __init__( self, index: _AnagramTransformIndex, anagrams: anagram_iter.AnagramIter): self._index = index self._anagrams = anagrams def __iter__(self) -> Iterable['bloom_node.BloomNode']: yield from self._index.iter(self._anagrams) def __repr__(self) -> str: return '_AnagramState(%s)' % self._anagrams __str__ = __repr__ def _normalize_state( exit_node: 'bloom_node.BloomNode', index: Union[Iterable, anagram_iter.AnagramIter]) -> _AnagramState: if isinstance(index, _AnagramState): return index # `index` is an iterable list of ???, one-by-one these will be taken as a # route to the `exit_node`. initial_anagrams = anagram_iter.from_choices(index) index = _AnagramTransformIndex(exit_node, initial_anagrams) return _AnagramState(index, initial_anagrams)
2.171875
2
gogapi/api.py
tikki/pygogapi
23
4216
<gh_stars>10-100 import json import re import logging import html.parser import zlib import requests from gogapi import urls from gogapi.base import NotAuthorizedError, logger from gogapi.product import Product, Series from gogapi.search import SearchResult DEBUG_JSON = False GOGDATA_RE = re.compile(r"gogData\.?(.*?) = (.+);") CLIENT_VERSION = "1.2.17.9" # Just for their statistics USER_AGENT = "GOGGalaxyClient/{} pygogapi/0.1".format(CLIENT_VERSION) REQUEST_RETRIES = 3 PRODUCT_EXPANDABLE = [ "downloads", "expanded_dlcs", "description", "screenshots", "videos", "related_products", "changelog" ] USER_EXPANDABLE = ["friendStatus", "wishlistStatus", "blockedStatus"] LOCALE_CODES = ["de-DE", "en-US", "fr-FR", "pt-BR", "pl-PL", "ru-RU", "zh-Hans"] CURRENCY_CODES = [ "USD", "EUR", "GBP", "AUD", "RUB", "PLN", "CAD", "CHF", "NOK", "SEK", "DKK" ] def find_scripts(site): parser = ScriptParser() parser.feed(site) return parser.scripts class ScriptParser(html.parser.HTMLParser): def __init__(self): super().__init__() self.last_tag = None self.scripts = [] def handle_starttag(self, tag, attrs): self.last_tag = tag def handle_data(self, data): if self.last_tag == "script": self.scripts.append(data) class GogApi: def __init__(self, token=None): self.token = token self.locale = (None, None, None) # TODO: replace tuple self.session = requests.Session() self.session.headers["User-Agent"] = USER_AGENT self.force_authorize = False # Helpers def request(self, method, url, authorized=True, allow_redirects=False, **kwargs): """ Wrapper around requests.request that also handles authorization, retries and logging """ if authorized or self.force_authorize: if self.token is None: raise NotAuthorizedError() if self.token.expired(): self.token.refresh() self.session.headers["Authorization"] = \ "Bearer " + self.token.access_token else: self.session.headers.pop("Authorization", None) # Retries retries = REQUEST_RETRIES while retries > 0: resp = self.session.request( method, url, allow_redirects=allow_redirects, **kwargs) if resp.status_code < 400: return resp elif 400 <= resp.status_code < 500: break else: retries -= 1 resp.raise_for_status() def get(self, *args, **kwargs): """ Wrapper around requests.get """ return self.request("GET", *args, **kwargs) def post(self, *args, **kwargs): """ Wrapper around requests.post """ return self.request("POST", *args, **kwargs) def request_json(self, *args, compressed=False, **kwargs): """ Wrapper around GogApi.request that automatically parses the JSON response. Also does zlib decompression because GOG decided to reinvent the wheel instead of using HTTP gzip encoding for their content system V2. """ resp = self.request(*args, **kwargs) if not compressed: if DEBUG_JSON: print(resp.text) return resp.json() else: json_comp = resp.content json_text = zlib.decompress(json_comp, 15).decode("utf-8") if DEBUG_JSON: print(json_text) return json.loads(json_text) def get_json(self, *args, **kwargs): """ Wrapper around GogApi.get with JSON parsing """ return self.request_json("GET", *args, **kwargs) def get_gogdata(self, url, *args, **kwargs): """ Downloads a page and returns the embedded JavaScript gogData variable. """ resp = self.get(url, *args, **kwargs) gogdata = {} for script in find_scripts(resp.text): matches = GOGDATA_RE.finditer(resp.text) for match in matches: subkey = match.group(1) value = match.group(2) value_parsed = json.loads(value) if subkey: data = {subkey: value_parsed} else: data = value_parsed gogdata.update(data) return gogdata def set_locale(self, country, currency, locale): """ country: ISO 3166 Alpha-2 currency: ISO 4217 locale: ISO 639 + ISO 3166 like language[_territory] """ if len(country) != 2: return AttributeError("Invalid country code {}".format(country)) elif currency not in CURRENCY_CODES: return AttributeError("Invalid currency code {}".format(locale)) elif locale not in LOCALE_CODES: return AttributeError("Invalid locale code {}".format(locale)) self.locale = (country, currency, locale) self.session.cookies["gog_lc"] = "_".join(self.locale) # Web APIs def web_game_gogdata(self, slug): return self.get_gogdata(urls.web("game", slug), authorized=False) def web_games_gogdata(self): return self.get_gogdata(urls.web("account.games")) def web_movies_gogdata(self): return self.get_gogdata(urls.web("account.movies")) def web_wishlist_gogdata(self): return self.get_gogdata(urls.web("account.wishlist")) def web_friends_gogdata(self): return self.get_gogdata(urls.web("account.friends")) def web_chat_gogdata(self): return self.get_gogdata(urls.web("account.chat")) def web_wallet_gogdata(self): return self.get_gogdata(urls.web("wallet")) def web_orders_gogdata(self): return self.get_gogdata(urls.web("settings.orders")) def web_account_gamedetails(self, game_id): return self.get_json(urls.web("account.gamedetails", game_id)) def web_account_search(self, **query): """ Allowed query keys: category: Genre feature: Feature hiddenFlag: Show hidden games language: Language mediaType: Game or movie page: Page number search: Search string sortBy: Sort order system: OS tags: Tags totalPages: Total Pages """ return self.get_json(urls.web("account.get_filtered"), params=query) def web_search(self, **query): """ Allowed query keys: category: Genre devpub: Developer or Published feature: Features language: Language mediaType: Game or movie page: Page number price: Price range release: Release timeframe search: Search string sort: Sort order system: OS limit: Max results """ return self.get_json( urls.web("search.filtering"), params=query, authorized=False) def web_user_data(self): return self.get_json(urls.web("user.data")) def web_user_games(self): return self.get_json(urls.web("user.games")) def web_user_wishlist(self): return self.get_json(urls.web("user.wishlist")) def web_user_wishlist_add(self, game_id): """Returns new wishlist""" return self.get_json(urls.web("user.wishlist.add", game_id)) def web_user_wishlist_remove(self, game_id): """Returns new wishlist""" return self.get_json(urls.web("user.wishlist.remove", game_id)) def web_user_ratings(self): return self.get_json(urls.web("user.ratings")) def web_user_review_votes(self): return self.get_json(urls.web("user.review_votes")) def web_user_change_currency(self, currency): return self.get_json(urls.web("user.change_currency", currency)) def web_user_change_language(self, lang): return self.get_json(urls.web("user.change_language", lang)) def web_user_set_redirect_url(self, url): """Set redirect url after login. Only know valid url: checkout""" return self.get(urls.web("user.set_redirect_url", params={"url": url})) def web_user_review_guidelines(self): return self.get_json(urls.web("user.review_guidelines")) def web_user_public_info(self, user_id, expand=None): if not expand: params = None elif expand == True: params = {"expand": ",".join(USER_EXPANDABLE)} else: params = {"expand": ",".join(expand)} return self.get_json( urls.web("user.public.info", user_id, params=params)) def web_user_public_block(self, user_id): return self.get_json(urls.web("user.public.block", user_id)) def web_user_public_unblock(self, user_id): return self.get_json(urls.web("user.public.unblock", user_id)) def web_friends_remove(self, user_id): return self.get_json(urls.web("friends.remove", user_id)) def web_friends_invite(self, user_id): return self.get_json(urls.web("friends.invite", user_id)) def web_friends_accept(self, user_id): return self.get_json(urls.web("friends.accept", user_id)) def web_friends_decline(self, user_id): return self.get_json(urls.web("friends.decline", user_id)) def web_cart_get(self): return self.get_json(urls.web("cart.get")) def web_cart_add(self, game_id): return self.get_json(urls.web("cart.add", game_id)) def web_cart_add_series(self, series_id): return self.get_json(urls.web("cart.add_series", series_id)) def web_cart_remove(self, game_id): return self.get_json(urls.web("cart.remove", game_id)) def web_reviews_search(self, game_id): return self.get_json(urls.web("reviews.search", game_id)) def web_reviews_vote(self, game_id): return self.get_json(urls.web("reviews.vote", game_id)) def web_reviews_report(self, game_id): return self.get_json(urls.web("reviews.report", game_id)) def web_reviews_rate(self, game_id): return self.get_json(urls.web("reviews.rate", game_id)) def web_reviews_add(self, game_id): return self.get_json(urls.web("reviews.add", game_id)) def web_order_change_currency(self, order_id, currency): return self.get_json( urls.web("order.change_currency", order_id, currency)) def web_order_add(self, order_id, game_id): return self.get_json(urls.web("order.add", order_id, game_id)) def web_order_remove(self, order_id, game_id): return self.get_json(urls.web("order.remove", order_id, game_id)) def web_order_enable_store_credit(self, order_id): return self.get_json(urls.web("order.enable_store_credit", order_id)) def web_order_disable_store_credit(self, order_id): return self.get_json(urls.web("order.disable_store_credit", order_id)) def web_order_set_as_gift(self, order_id): return self.get_json(urls.web("order.set_as_gift", order_id)) def web_order_set_as_not_gift(self, order_id): return self.get_json(urls.web("order.set_as_non_gift", order_id)) def web_order_process_order(self, order_id): return self.get_json(urls.web("order.process_order", order_id)) def web_order_payment_status(self, order_id): return self.get_json(urls.web("order.payment_status", order_id)) def web_order_check_status(self, order_id): return self.get_json(urls.web("order.check_status", order_id)) def web_checkout(self, order_id=None): if order_id is None: return self.get_json(urls.web("checkout")) else: return self.get_json(urls.web("checkout_id", order_id)) def web_checkout_manual(self, order_id): return self.get_json(urls.web("checkout_manual", order_id)) # Galaxy APIs def galaxy_file(self, game_id, dl_url): dl_url = dl_url.lstrip("/") return self.get_json(urls.galaxy("file", game_id, dl_url)) def galaxy_user(self, user_id=None): if user_id is None: user_id = self.token.user_id return self.get_json(urls.galaxy("user", user_id)) def galaxy_friends(self, user_id=None): if user_id is None: user_id = self.token.user_id return self.get_json(urls.galaxy("friends", user_id)) def galaxy_invitations(self, user_id=None): if user_id is None: user_id = self.token.user_id return self.get_json(urls.galaxy("invitations", user_id)) def galaxy_status(self, user_id=None): if user_id is None: user_id = self.token.user_id reqdata = {"version": CLIENT_VERSION} self.post(urls.galaxy("status", user_id), data=reqdata) def galaxy_statuses(self, user_ids): user_ids_str = ",".join(user_ids) params = {"user_id": user_ids_str} #self.request("OPTIONS", urls.galaxy("statuses"), params=params) return self.get_json(urls.galaxy("statuses"), params=params) def galaxy_achievements(self, game_id, user_id=None): if user_id is None: user_id = self.token.user_id return self.get_json(urls.galaxy("achievements", game_id, user_id)) def galaxy_sessions(self, game_id, user_id=None): if user_id is None: user_id = self.token.user_id return self.get_json(urls.galaxy("sessions", game_id, user_id)) def galaxy_friends_achievements(self, game_id, user_id=None): if user_id is None: user_id = self.token.user_id return self.get_json( urls.galaxy("friends.achievements", game_id, user_id)) def galaxy_friends_sessions(self, game_id, user_id=None): if user_id is None: user_id = self.token.user_id return self.get_json(urls.galaxy("friends.sessions", game_id, user_id)) def galaxy_product(self, game_id, expand=None): if not expand: params = {} elif expand is True: params = {"expand": ",".join(PRODUCT_EXPANDABLE)} else: params = {"expand": ",".join(expand)} if self.locale[2]: params["locale"] = self.locale[2] return self.get_json( urls.galaxy("product", game_id), params=params, authorized=False) def galaxy_products(self, game_ids, expand=None): if not expand: params = {} elif expand is True: params = {"expand": ",".join(PRODUCT_EXPANDABLE)} else: params = {"expand": ",".join(expand)} if self.locale[2]: params["locale"] = self.locale[2] ids_string = ",".join(str(game_id) for game_id in game_ids) params["ids"] = ids_string return self.get_json( urls.galaxy("products"), params=params, authorized=False) def galaxy_secure_link(self, game_id, path, generation): return self.get_json( urls.galaxy("cs.securelink", game_id), params={"path": path, "generation": generation}) def galaxy_builds(self, game_id, system): return self.get_json( urls.galaxy("cs.builds", game_id, system), authorized=False) def galaxy_cs_meta(self, meta_id): return self.get_json( urls.galaxy("cs.meta", meta_id[0:2], meta_id[2:4], meta_id), compressed=True, authorized=False) def galaxy_client_config(): return self.get_json(urls.galaxy("client-config"), authorized=False) def product(self, product_id, slug=None): return Product(self, product_id, slug) def search(self, **query): search_data = self.web_search(**query) return SearchResult(self, query, search_data)
2.21875
2
setup.py
gibsonMatt/stacks-pairwise
0
4217
import pathlib import os from setuptools import setup # The directory containing this file HERE = pathlib.Path(__file__).parent # The text of the README file README = (HERE / "README.md").read_text() # specify requirements of your package here REQUIREMENTS = ['biopython', 'numpy', 'pandas'] setup(name='stacksPairwise', version='0.0.0', description='Calculate pairwise divergence (pairwise pi) from Stacks `samples.fa` output fle', long_description=README, long_description_content_type="text/markdown", url='https://github.com/gibsonmatt/stacks-pairwise', author='<NAME>', author_email='<EMAIL>', license='MIT', packages=['stacksPairwise'], install_requires=REQUIREMENTS, entry_points={ "console_scripts": [ "stacksPairwise=stacksPairwise.__main__:main" ] }, keywords='genetics genotyping sequencing Stacks' )
1.5
2
csv_experiment.py
komax/spanningtree-crossingnumber
2
4218
<gh_stars>1-10 #! /usr/bin/env python import os import sys args = sys.argv[1:] os.system('python -O -m spanningtree.csv_experiment_statistics ' + ' '.join(args))
1.609375
2
projects/tutorials/object_nav_ithor_dagger_then_ppo_one_object.py
klemenkotar/dcrl
18
4219
<reponame>klemenkotar/dcrl<filename>projects/tutorials/object_nav_ithor_dagger_then_ppo_one_object.py<gh_stars>10-100 import torch import torch.optim as optim from torch.optim.lr_scheduler import LambdaLR from allenact.algorithms.onpolicy_sync.losses import PPO from allenact.algorithms.onpolicy_sync.losses.imitation import Imitation from allenact.algorithms.onpolicy_sync.losses.ppo import PPOConfig from allenact.utils.experiment_utils import ( Builder, PipelineStage, TrainingPipeline, LinearDecay, ) from projects.tutorials.object_nav_ithor_ppo_one_object import ( ObjectNavThorPPOExperimentConfig, ) class ObjectNavThorDaggerThenPPOExperimentConfig(ObjectNavThorPPOExperimentConfig): """A simple object navigation experiment in THOR. Training with DAgger and then PPO. """ @classmethod def tag(cls): return "ObjectNavThorDaggerThenPPO" @classmethod def training_pipeline(cls, **kwargs): dagger_steos = int(1e4) ppo_steps = int(1e6) lr = 2.5e-4 num_mini_batch = 2 if not torch.cuda.is_available() else 6 update_repeats = 4 num_steps = 128 metric_accumulate_interval = cls.MAX_STEPS * 10 # Log every 10 max length tasks save_interval = 10000 gamma = 0.99 use_gae = True gae_lambda = 1.0 max_grad_norm = 0.5 return TrainingPipeline( save_interval=save_interval, metric_accumulate_interval=metric_accumulate_interval, optimizer_builder=Builder(optim.Adam, dict(lr=lr)), num_mini_batch=num_mini_batch, update_repeats=update_repeats, max_grad_norm=max_grad_norm, num_steps=num_steps, named_losses={ "ppo_loss": PPO(clip_decay=LinearDecay(ppo_steps), **PPOConfig), "imitation_loss": Imitation(), # We add an imitation loss. }, gamma=gamma, use_gae=use_gae, gae_lambda=gae_lambda, advance_scene_rollout_period=cls.ADVANCE_SCENE_ROLLOUT_PERIOD, pipeline_stages=[ PipelineStage( loss_names=["imitation_loss"], teacher_forcing=LinearDecay( startp=1.0, endp=0.0, steps=dagger_steos, ), max_stage_steps=dagger_steos, ), PipelineStage(loss_names=["ppo_loss"], max_stage_steps=ppo_steps,), ], lr_scheduler_builder=Builder( LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)} ), )
1.984375
2
BioCAT/src/Calculating_scores.py
DanilKrivonos/BioCAT-nrp-BIOsynthesis-Caluster-Analyzing-Tool
4
4220
from numpy import array from pickle import load from pandas import read_csv import os from BioCAT.src.Combinatorics import multi_thread_shuffling, multi_thread_calculating_scores, make_combine, get_score, get_max_aminochain, skipper # Importing random forest model modelpath = os.path.dirname(os.path.abspath(__file__)) + '/RFC.dump' Rf = load(open(modelpath, 'rb')) # The function generate list of shuflled matrix def make_shuffle_matrix(matrix, cpu, iterat): """ The functuion generate massive of shuffled matrix. Parameters ---------- matrix : pandas DataFrame PSSM profile. cpu : int Number of tred used. iterat : int Number of iterations of shuffling. Returns ------- module_shuffling_matrix : list List of matrix, shuffled by module. substrate_shuffling_matrix : list List of matrix, shuffled by substrate. """ module_shuffling_matrix = multi_thread_shuffling(matrix, ShufflingType='module', iterations=iterat, threads=cpu) substrate_shuffling_matrix = multi_thread_shuffling(matrix, ShufflingType='substrate', iterations=iterat, threads=cpu) return module_shuffling_matrix, substrate_shuffling_matrix # The fujnction finds suquence with maximum possible value, results from alignment def get_MaxSeq(matrix, variant_seq): """ The functuion parallel calculation of scores for shuffled matrix. Parameters ---------- matrix : pandas DataFrame PSSM profile. variant_seq : list Variant of core peptide chain. Returns ------- shuffled_scores : list List of scores for shuffled matrix. """ MaxSeq = [] subs = matrix.keys()[1: ] # Find sequence, wich have maximum alignment score for idx in matrix.index: MAX_value = max(list(matrix.iloc[idx][1:])) for key in subs: if matrix[key][idx] == MAX_value: MaxSeq.append(key) # If two smonomer have same value break # Making two variants of MaxSeq MaxSeq_full = MaxSeq.copy() MaxSeq_nan = MaxSeq.copy() for max_sub_idx in range(len(MaxSeq)): if variant_seq[max_sub_idx] == 'nan': MaxSeq_nan[max_sub_idx] = 'nan' # Adding nan to MaxSeq return MaxSeq_full, MaxSeq_nan # The function gives an information about clusters def get_cluster_info(table, BGC_ID, target_file): """ The functuion return information about cluster. Parameters ---------- table : pandas DataFrame Table with meta inforamtion about NRPS clusters. BGC_ID : str PSSM cluster ID. target_file : pandas DataFrame PSSM profile. Returns ------- Name : str Cluster ID. Coord_cluster : str Coordinate of cluster. strand : str Strand of cluster. """ for ind in table[table['ID'].str.contains(BGC_ID)].index: Name = table[table['ID'].str.contains(target_file.split('.')[0].split('_A_')[1])]['Name'][ind] Coord_cluster = table['Coordinates of cluster'][ind] strand = table['Gen strand'][ind] break return Name, Coord_cluster, strand # Calculate scores def calculate_scores(variant_seq, matrix, substrate_shuffling_matrix, module_shuffling_matrix, cpu, iterat): """ Calculating scores. Parameters ---------- variant_seq : list Variant of core peptide chain. matrix : pandas DataFrame PSSM profile. substrate_shuffling_matrix : list List of matrix, shuffled by substrate. module_shuffling_matrix : list List of matrix, shuffled by module. cpu : int Number of threads used. iterat : int Number of iterations of shuffling. Returns ------- Sln_score : float Mln_score : float Slt_score : float Mlt_score : float Sdn_score : float Mdn_score : float Sdt_score : float Mdt_score : float Scores, which calculated with shuffling matrix by different variants. M - module shuffling S - substrate shuffling l - logarithmic transformation of score d - raw score n - MaxSeq with nan replacement t - MaxSeq without nan replacement Relative_score : float Relative score (Probability of target class) Binary : float Binary score of cluster matching. """ # Finding suquence with maximum possible value, results from alignment MaxSeq_full, MaxSeq_nan = get_MaxSeq(matrix, variant_seq) # Calculating shuffled scores Sln_shuffled_score = array(multi_thread_calculating_scores(MaxSeq_nan, substrate_shuffling_matrix, type_value='log', iterations=iterat, threads=cpu)) Mln_shuffled_score = array(multi_thread_calculating_scores(MaxSeq_nan, module_shuffling_matrix, type_value='log', iterations=iterat, threads=cpu)) Slt_shuffled_score = array(multi_thread_calculating_scores(MaxSeq_full, substrate_shuffling_matrix, type_value='log', iterations=iterat, threads=cpu)) Mlt_shuffled_score = array(multi_thread_calculating_scores(MaxSeq_full, module_shuffling_matrix, type_value='log', iterations=iterat, threads=cpu)) Sdn_shuffled_score = array(multi_thread_calculating_scores(MaxSeq_nan, substrate_shuffling_matrix, type_value=None, iterations=iterat, threads=cpu)) Mdn_shuffled_score = array(multi_thread_calculating_scores(MaxSeq_nan, module_shuffling_matrix, type_value=None, iterations=iterat, threads=cpu)) Sdt_shuffled_score = array(multi_thread_calculating_scores(MaxSeq_full, substrate_shuffling_matrix, type_value=None, iterations=iterat, threads=cpu)) Mdt_shuffled_score = array(multi_thread_calculating_scores(MaxSeq_full, module_shuffling_matrix, type_value=None, iterations=iterat, threads=cpu)) # Calculating scores for target sequence log_target_score = get_score(variant_seq, matrix, type_value='log') non_log_target_score = get_score(variant_seq, matrix, type_value=None) # Calculating features scores Sln_score = len(Sln_shuffled_score[Sln_shuffled_score < log_target_score])/len(Sln_shuffled_score) Mln_score = len(Mln_shuffled_score[Mln_shuffled_score < log_target_score])/len(Mln_shuffled_score) Slt_score = len(Slt_shuffled_score[Slt_shuffled_score < log_target_score])/len(Slt_shuffled_score) Mlt_score = len(Mlt_shuffled_score[Mlt_shuffled_score < log_target_score])/len(Mlt_shuffled_score) Sdn_score = len(Sdn_shuffled_score[Sdn_shuffled_score < non_log_target_score])/len(Sdn_shuffled_score) Mdn_score = len(Mdn_shuffled_score[Mdn_shuffled_score < non_log_target_score])/len(Mdn_shuffled_score) Sdt_score = len(Sdt_shuffled_score[Sdt_shuffled_score < non_log_target_score])/len(Sdt_shuffled_score) Mdt_score = len(Mdt_shuffled_score[Mdt_shuffled_score < non_log_target_score])/len(Mdt_shuffled_score) # Calculating Relative score Relative_score = round(Rf.predict_proba([[Sln_score, Mln_score, Sdn_score, Mdn_score, Sdt_score, Mdt_score, Slt_score, Mlt_score ]])[0][1], 3) Binary = Rf.predict([[Sln_score, Mln_score, Sdn_score, Mdn_score, Sdt_score, Mdt_score, Slt_score, Mlt_score ]])[0] return Sln_score, Mln_score, Slt_score, Mlt_score, Sdn_score, Mdn_score, Sdt_score, Mdt_score, Relative_score, Binary def give_results(tsv_out, folder, files, table, ID, PeptideSeq, skip, cpu, iterat): """ The functuion return information about cluster. Parameters ---------- tsv_out : dict Empty dictionary for adding results. folder : str Path to PSSMs. files : list List of PSSMs. table : pandas DataFrame Table with meta inforamtion about NRPS clusters. ID : str Name of substance. PeptideSeq : dict Core peptide chains for different biosynthesis types (e.g. A, B, or C). kip : int Number of presumptive skip. cpu : int Number of threads used. iterat : int Number of iterations of shuffling. Returns ------- tsv_out : dict Full dictionary for adding results. """ for target_file in files: try: BGC_ID = target_file.split('.')[0].split('_A_')[1] except: continue if '_A_' not in target_file: continue Name, Coord_cluster, strand = get_cluster_info(table, BGC_ID, target_file) # Getting information about cluster BGC = read_csv(folder + target_file, sep='\t') # Skipping mode if skip == 0: BGC = [BGC] else: BGC == skipper(BGC, skip) for matrix in BGC: # Check quality of matrix if len(matrix) == 1: continue check = 0 values = matrix.drop(matrix.columns[0], axis=1).values for i in values: if all(i) == 0: check += 1 if check == len(values): # If thes condition is True, the matrix of unrecognized monomers continue # Generating shuffling matrix module_shuffling_matrix, substrate_shuffling_matrix = make_shuffle_matrix(matrix, cpu, iterat) for BS_type in PeptideSeq:# For every biosynthesis profile pathways if PeptideSeq[BS_type] == None: # If in sequence only nan monomers continue if len(PeptideSeq[BS_type]) == 0: # If have not the variant continue # Check correctness of PeptideSeq length_max= get_max_aminochain(PeptideSeq[BS_type]) EPs = make_combine(PeptideSeq[BS_type], length_max, matrix, delta=3) if EPs is None: # If length sequnce can't be scaled to cluster size continue for variant_seq in EPs: Sln_score, Mln_score, Slt_score, Mlt_score, Sdn_score, Mdn_score, Sdt_score, Mdt_score, Relative_score, Binary = calculate_scores(variant_seq, matrix, substrate_shuffling_matrix, module_shuffling_matrix, cpu, iterat) #Recordind dictionary tsv_out['Chromosome ID'].append(Name) tsv_out['Coordinates of cluster'].append(Coord_cluster) tsv_out['Strand'].append(strand) tsv_out['Substance'].append(ID) tsv_out['BGC ID'].append(BGC_ID) tsv_out['Putative linearized NRP sequence'].append('--'.join(variant_seq)) tsv_out['Biosynthesis profile'].append('Type {}'.format(BS_type)) tsv_out['Sln score'].append(Sln_score) #shaffling substrates in matrix with log score and nan in maximally possible sequence tsv_out['Mln score'].append(Mln_score) #shaffling modules matrix with log score and nan in maximally possible sequence tsv_out['Sdn score'].append(Sdn_score) #shaffling substrates matrix without log score and nan in maximally possible sequence tsv_out['Mdn score'].append(Mdn_score) #shaffling modules matrix without log score and nan in maximally possible sequence tsv_out['Sdt score'].append(Sdt_score) #shaffling substrates matrix without log score in maximally possible sequence tsv_out['Mdt score'].append(Mdt_score) #shaffling modules matrix without log score in maximally possible sequence tsv_out['Slt score'].append(Slt_score) #shaffling substrates matrix with log score in maximally possible sequence tsv_out['Mlt score'].append(Mlt_score) #shaffling modules matrix with log score in maximally possible sequence tsv_out['Relative score'].append(Relative_score) #Final score tsv_out['Binary'].append(Binary) #Binary value return tsv_out
2.75
3
deal/linter/_extractors/returns.py
m4ta1l/deal
1
4221
<reponame>m4ta1l/deal # built-in from typing import Optional # app from .common import TOKENS, Extractor, Token, traverse from .value import UNKNOWN, get_value get_returns = Extractor() inner_extractor = Extractor() def has_returns(body: list) -> bool: for expr in traverse(body=body): if isinstance(expr, TOKENS.RETURN + TOKENS.YIELD): return True return False @get_returns.register(*TOKENS.RETURN) def handle_return(expr) -> Optional[Token]: value = get_value(expr=expr.value) if value is UNKNOWN: return None return Token(value=value, line=expr.lineno, col=expr.value.col_offset) @get_returns.register(*TOKENS.YIELD) def handle_yield(expr) -> Optional[Token]: value = get_value(expr=expr.value) if value is UNKNOWN: return None return Token(value=value, line=expr.lineno, col=expr.value.col_offset)
2.140625
2
qubiter/device_specific/chip_couplings_ibm.py
yourball/qubiter
3
4222
<reponame>yourball/qubiter def aaa(): # trick sphinx to build link in doc pass # retired ibmqx2_c_to_tars =\ { 0: [1, 2], 1: [2], 2: [], 3: [2, 4], 4: [2] } # 6 edges # retired ibmqx4_c_to_tars =\ { 0: [], 1: [0], 2: [0, 1, 4], 3: [2, 4], 4: [] } # 6 edges # retired ibmq16Rus_c_to_tars = \ { 0: [], 1: [0, 2], 2: [3], 3: [4, 14], 4: [], 5: [4], 6: [5, 7, 11], 7: [10], 8: [7], 9: [8, 10], 10: [], 11: [10], 12: [5, 11, 13], 13: [4, 14], 14: [], 15: [0, 2, 14] } # 22 edges ibm20AustinTokyo_c_to_tars = \ { 0: [1, 5], 1: [0, 2, 6, 7], 2: [1, 3, 6, 7], 3: [2, 4, 8, 9], 4: [3, 8, 9], 5: [0, 6, 10, 11], 6: [1, 2, 5, 7, 10, 11], 7: [1, 2, 6, 8, 12, 13], 8: [3, 4, 7, 9, 12, 13], 9: [3, 4, 8, 14], 10: [5, 6, 11, 15], 11: [5, 6, 10, 12, 16, 17], 12: [7, 8, 11, 13, 16, 17], 13: [7, 8, 12, 14, 18, 19], 14: [9, 13, 18, 19], 15: [10, 16], 16: [11, 12, 15, 17], 17: [11, 12, 16, 18], 18: [13, 14, 17, 19], 19: [13, 14, 18] } # 86 edges ibmq5YorktownTenerife_c_to_tars = \ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 4], 3: [2, 4], 4: [2, 3] } # 12 edges ibmq14Melb_c_to_tars = \ { 0: [1], 1: [0, 2, 13], 2: [1, 3, 12], 3: [2, 4, 11], 4: [3, 5, 10], 5: [4, 6, 9], 6: [5, 8], 7: [8], 8: [6, 7, 9], 9: [5, 8, 10], 10: [4, 9, 11], 11: [3, 10, 12], 12: [2, 11, 13], 13: [1, 12] } # 36 edges
1.703125
2
Template.py
rainshen49/citadel-trading-comp
2
4223
import signal import requests import time from math import floor shutdown = False MAIN_TAKER = 0.0065 MAIN_MAKER = 0.002 ALT_TAKER = 0.005 ALT_MAKER = 0.0035 TAKER = (MAIN_TAKER + ALT_TAKER)*2 MAKER = MAIN_MAKER + ALT_MAKER TAKEMAIN = MAIN_TAKER - ALT_MAKER TAKEALT = ALT_TAKER - MAIN_MAKER BUFFER = 0.01 NaN = float('nan') class ApiException(Exception): pass class Book(object): def __init__(self, sym, json): global NaN self.sym = sym self.json = json # could be cached self.bids = self.json['bids'] self.asks = self.json['asks'] self.ask_price = 1 self.asks_quantity_left = 0 self.bid_price = 1 self.bids_quantity_left = 0 if self.bids: self.bid_price = self.bids[0]['price'] if self.asks: self.ask_price = self.asks[0]['price'] def bids_room(self): if self.bids: quantity = sum([b['quantity'] for b in self.bids if b['price'] == self.bid_price]) filled = sum([b['quantity_filled'] for b in self.bids if b['price'] == self.bid_price]) return quantity - filled else: return 0 def asks_room(self): if self.asks: quantity = sum([b['quantity'] for b in self.asks if b['price'] == self.ask_price]) filled = sum([b['quantity_filled'] for b in self.asks if b['price'] == self.ask_price]) return quantity - filled else: return 0 class Limits(dict): def __init__(self, json): self.update(json) self.gross_limit = int(json['gross_limit']) self.net_limit = int(json['net_limit']) self.gross = int(json['gross']) self.net = int(json['net']) class OHLC(dict): def __init__(self, sym, json): self.sym = sym self.update(json) self.tick = json['tick'] self.open = json['open'] self.high = json['high'] self.low = json['low'] self.close = json['close'] class Shock(dict): def __init__(self, news, currtick): self.ticker = news['ticker'] self.elapsed = currtick - news['tick'] headline = news['headline'] try: self.amount = float(headline[-6:].replace('$', '')) except: self.amount = 0 class Session(object): def __init__(self, url, key): self.url = url self.key = key self.tick = -1 def __enter__(self): self.session = requests.Session() self.session.headers.update({'X-API-Key': self.key}) return self def __exit__(self, type, value, traceback): self.session.close() def get_tick(self): while True: resp = self.session.get(self.url + '/v1/case', params=None) if not resp.ok: raise ApiException('could not get tick: ' + str(resp)) json = resp.json() if json['status'] == 'STOPPED' or shutdown: return False if json['tick'] != self.tick: self.tick = json['tick'] print('.', self.tick) return True # this timer is unnecessary, network latency should be enough time.sleep(0.1) def get_book(self, sym): resp = self.session.get( self.url + '/v1/securities/book', params={'ticker': sym}) if not resp.ok: raise ApiException('could not get book: ' + str(resp)) return Book(sym, resp.json()) def send_order(self, sym, side, price, size): resp = self.session.post(self.url + '/v1/orders', params={ 'ticker': sym, 'type': 'LIMIT', 'action': side, 'quantity': size, 'price': price}) if resp.ok: print('sent order', side, sym, size, '@', price) else: print('failed to send order', side, sym, size, '@', price, ':', resp.text) def getLimit(self): resp = self.session.get(self.url+'/v1/limits') if not resp.ok: raise ApiException('could not get limit: '+str(resp)) return Limits(resp.json()[0]) def getSecurities(self, sym=None): if sym is None: resp = self.session.get(self.url+'/v1/securities') else: resp = self.session.get( self.url+'/v1/securities', params={'ticker': sym}) if not resp.ok: raise ApiException('could not get position: '+str(resp)) json = resp.json() return {sec['ticker']: {k: sec[k] for k in [ "position", "vwap", "nlv", "last", "bid", "bid_size", "ask", "ask_size", "unrealized", "realized" ]} for sec in json} def get_OHLC(self, sym, ticks=50): resp = self.session.get( self.url + '/v1/securities/history', params={'ticker': sym,'limit':ticks}) if not resp.ok: raise ApiException('could not get OHLC: ' + str(resp)) return [OHLC(sym, ohlc) for ohlc in resp.json()] def buy(self, sym, price, size): self.send_order(sym, 'BUY', price, size) def sell(self, sym, price, size): self.send_order(sym, 'SELL', price, size) def send_market(self, sym, side, size): resp = self.session.post(self.url + '/v1/orders', params={ 'ticker': sym, 'type': 'MARKET', 'action': side, 'quantity': size}) if resp.ok: json = resp.json() print('market order', side, sym, size, '@', json['vwap']) return json['vwap'] else: print('failed to send order', side, sym, size, '@Market:', resp.text) return 0 def buyM(self, sym, size): return self.send_market(sym, 'BUY', size) def sellM(self, sym, size): return self.send_market(sym, 'SELL', size) def getNews(self): resp = self.session.get(self.url + '/v1/news', params={'limit': 10}) if not resp.ok: raise ApiException('failed to get news', resp.text) else: json = resp.json() # only care about recent news return [Shock(news, self.tick) for news in json if news['tick'] > self.tick-4] def getTrader(self): resp = self.session.get(self.url + '/v1/trader') if not resp.ok: raise ApiException('failed to get trader info', resp.text) else: json = resp.json() return json def main(): # price does change in every tick # check position # plain arbitradge # index arbitrage # shock handling # wave riding # pairTickers = [('WMT-M', 'WMT-A'), ('CAT-M', 'CAT-A'), ('MMM-M', 'MMM-A')] with Session('http://localhost:9998', 'VHK3DEDE') as session: while session.get_tick(): try: shock_runner(session) exchange_arbitrage(session, "WMT-M", "WMT-A") exchange_arbitrage(session, "CAT-M", "CAT-A") exchange_arbitrage(session, "MMM-M", "MMM-A") index_arbitrage(session, ['WMT', 'MMM', 'CAT']) except Exception as ex: print("error", str(ex)) # trader = session.getTrader() # print(trader['nlv']) # TODO: position cleaner: try to reduce gross position loss-free # TODO: implement range runner for the last x ticks def avg(arr): return sum(arr)/float(len(arr)) def window_trend(left,right): leftavg = avg(left) rightavg = avg(right) if rightavg > leftavg: return 1 elif rightavg < leftavg: return -1 else: return 0 def splitarr(arr): n = len(arr) left = arr[:n//2] right = arr[n//2:] return left,right def wwindow_trend(prices): left, right = splitarr(prices) trend = window_trend(left,right) lleft, lright = splitarr(left) rleft, rright = splitarr(right) trendl = window_trend(lleft,lright) trendr = window_trend(rleft,rright) return trend + trendl + trendr def trend_runner(session, ticker): if session.tick<20: return # short term trend prices = session.get_OHLC(ticker, 20) highs = [price.high for price in prices] lows = [price.low for price in prices] highTrend = wwindow_trend(highs) lowTrend = wwindow_trend(lows) if highTrend+lowTrend < -4: # volatile, but no trend session.buyM(ticker,1000) if highTrend+lowTrend > 4: session.sellM(ticker,1000) print(ticker,"short hightrend",highTrend,"lowtrend",lowTrend) if session.tick<100: return prices = session.get_OHLC(ticker, 100) highs = [price.high for price in prices] lows = [price.low for price in prices] highTrend = wwindow_trend(highs) lowTrend = wwindow_trend(lows) # grown too much if highTrend+lowTrend < -4: # volatile, but no trend session.sellM(ticker,1000) # dropped too much if highTrend+lowTrend > 4: session.buyM(ticker,1000) print(ticker,"long hightrend",highTrend,"lowtrend",lowTrend) def shock_runner(session): shocks = session.getNews() quantity = 50000 for shock in sorted(shocks, key=lambda s: s.elapsed): Mticker = shock.ticker+"-M" Aticker = shock.ticker+"-A" if shock.elapsed < 2: if shock.amount > MAIN_TAKER + BUFFER*2: session.buyM(Mticker, quantity) session.buyM(Aticker, quantity) elif - shock.amount > MAIN_TAKER + BUFFER*2: session.sellM(Mticker, quantity) session.sellM(Aticker, quantity) print('shock', shock.ticker, shock.amount) if shock.elapsed == 2: if shock.amount > MAIN_TAKER + BUFFER*2: session.sellM(Mticker, quantity) session.sellM(Aticker, quantity) elif - shock.amount > MAIN_TAKER + BUFFER*2: session.buyM(Mticker, quantity) session.buyM(Aticker, quantity) print('post shock', shock.ticker, shock.amount) TAKER4 = MAIN_TAKER * 5 def index_arbitrage(session, tickers): secs = session.getSecurities() ETF = secs['ETF'] etfBid = ETF['bid'] etfAsk = ETF['ask'] bestBids = {} bestBidsQ = {} bestAsks = {} bestAsksQ = {} for ticker in tickers: tickerM = ticker+"-M" tickerA = ticker+"-A" Mticker = secs[tickerM] Aticker = secs[tickerA] Mbid = Mticker['bid'] Abid = Aticker['bid'] Mask = Mticker['ask'] Aask = Aticker['ask'] if Mbid >= Abid: bestBids[tickerM] = Mbid bestBidsQ[tickerM] = Mticker['bid_size'] else: bestBids[tickerA] = Abid bestBidsQ[tickerA] = Aticker['bid_size'] if Mask <= Aask: bestAsks[tickerM] = Mask bestAsksQ[tickerM] = Mticker['ask_size'] else: bestAsks[tickerA] = Aask bestAsksQ[tickerA] = Aticker['ask_size'] compositBid = sum(bestBids.values()) compositBidQ = min(bestBidsQ.values()) compositAsk = sum(bestAsks.values()) compositAskQ = min(bestAsksQ.values()) boughtprice = 0 soldprice = 0 if etfBid - compositAsk > TAKER4+BUFFER: quantity = ETF['bid_size'] if ETF['bid_size'] < compositAskQ else compositAskQ if quantity == 0: return quantity = min([quantity, 50000]) soldprice = session.sellM('ETF', quantity) for ticker in bestAsks: boughtprice += session.buyM(ticker, quantity) print('Plan ETF', etfBid, 'Stocks', compositAsk) print('Actual ETF', soldprice, 'Stocks', boughtprice) elif compositBid - etfAsk > TAKER4+BUFFER: quantity = ETF['ask_size'] if ETF['ask_size'] < compositBidQ else compositBidQ if quantity == 0: return quantity = min([quantity, 50000]) for ticker in bestBids: soldprice += session.sellM(ticker, quantity) boughtprice = session.buyM('ETF', quantity) print('Plan Stocks', compositBid, 'ETF', etfAsk) print('Actual Stocks', soldprice, 'ETF', boughtprice) # TODO: send limit orders and use market to cover unfilled ones after def exchange_arbitrage(session, mticker, aticker): global NaN mbook = session.get_book(mticker) masks_room = mbook.asks_room() mbids_room = mbook.bids_room() abook = session.get_book(aticker) aasks_room = abook.asks_room() abids_room = abook.bids_room() # a lot of room, make market orders if mbook.bid_price - abook.ask_price > TAKER+BUFFER*2: quantity = aasks_room if aasks_room < mbids_room else mbids_room quantity = min([quantity, 50000]) session.sellM(mbook.sym, quantity) session.buyM(abook.sym, quantity) elif abook.bid_price - mbook.ask_price > TAKER+BUFFER*2: quantity = aasks_room if aasks_room < mbids_room else mbids_room quantity = min([quantity, 50000]) session.sellM(abook.sym, quantity) session.buyM(mbook.sym, quantity) # only a little room, make limit orders if mbook.bid_price - abook.ask_price > BUFFER: quantity = aasks_room if aasks_room < mbids_room else mbids_room quantity = min([quantity, 50000]) session.sell(mbook.sym, mbook.bid_price, quantity) session.buy(abook.sym, abook.ask_price, quantity) elif abook.bid_price - mbook.ask_price > BUFFER: quantity = aasks_room if aasks_room < mbids_room else mbids_room quantity = min([quantity, 50000]) session.sell(abook.sym, abook.bid_price, quantity) session.buy(mbook.sym, mbook.ask_price, quantity) def sigint(signum, frame): global shutdown signal.signal(signal.SIGINT, signal.SIG_DFL) shutdown = True if __name__ == '__main__': signal.signal(signal.SIGINT, sigint) main()
2.71875
3
examples/basic/wire_feedthrough.py
souviksaha97/spydrnet-physical
0
4224
""" ========================================== Genrating feedthrough from single instance ========================================== This example demostrates how to generate a feedthrough wire connection for a given scalar or vector wires. **Initial Design** .. hdl-diagram:: ../../../examples/basic/_initial_design.v :type: netlistsvg :align: center :module: top **Output1** ``wire0`` feedthough from ``inst_2_1`` .. hdl-diagram:: ../../../examples/basic/_output_wire.v :type: netlistsvg :align: center :module: top **Output2** ``bus_in`` feedthrough from ``inst_1_0`` .. hdl-diagram:: ../../../examples/basic/_output_bus.v :type: netlistsvg :align: center :module: top """ from os import path import spydrnet as sdn import spydrnet_physical as sdnphy netlist = sdnphy.load_netlist_by_name('basic_hierarchy') top = netlist.top_instance.reference cable0 = next(top.get_cables("wire0")) inst2 = next(top.get_instances("inst_2_0")) sdn.compose(netlist, '_initial_design.v', skip_constraints=True) top.create_feedthrough(inst2, cable0) top.create_unconn_wires() sdn.compose(netlist, '_output_wire.v', skip_constraints=True) netlist = sdnphy.load_netlist_by_name('basic_hierarchy') top = netlist.top_instance.reference bus_in = next(top.get_cables("bus_in")) inst1 = next(top.get_instances("inst_1_0")) cables = top.create_feedthrough(inst1, bus_in) top.create_unconn_wires() sdn.compose(netlist, '_output_bus.v', skip_constraints=True)
2.53125
3
workflows/workflow.py
sunnyfloyd/panderyx
0
4225
from __future__ import annotations from typing import Optional, Union from tools import tools from exceptions import workflow_exceptions class Workflow: """A class to represent a workflow. Workflow class provides set of methods to manage state of the workflow. It allows for tool insertions, removals and modifications. When workflow is run data flow is built and each tool linked to the workflow instance is executed in determined order. Tool outputs are then consolidated in a JSON format. """ TOOL_CHOICES = { "generic": tools.GenericTool, "large_generic": tools.LargeGenericTool, "input": tools.InputTool, } def __init__(self) -> None: """Initializes Workflow class with root tool. Workflow class is initialized with root tool with tool ID `0`. `_root` points to root tool directly. """ self._root = tools.RootTool(id=0) self._tools = {0: self._root} self._used_ids = {0} def insert_tool( self, tool_choice: str, input_ids: Optional[Union[list[int], int]] = None, output_ids: Optional[Union[list[int], int]] = None, coordinates: Optional[tuple[int, int]] = None, ) -> tools.Tool: """Inserts a new tool to the current workflow. Args: tool_choice (str): determines what tool is created (based on the available choices defined within the Workflow class). input_ids (list[int], int]): starting input or inputs for the tool identified by their IDs. Defaults to None. output_ids (list[int], int): starting output or outputs for the tool identified by their IDs. Defaults to None. coordinates (tuple[int, int]): coordinates for the tool on canvas. Defaults to None. Raises: workflow_exceptions.ToolNotAvailable: indicates that provided string does not refer to an available tool from the Workflow class. Returns: tools.Tool: instance of a Tool's class. """ try: tool_class = self.TOOL_CHOICES[tool_choice] except KeyError: raise workflow_exceptions.ToolNotAvailable next_id = self._get_next_tool_id() tool = tool_class(id=next_id) self._tools[next_id] = tool self._add_tool_id(next_id) if input_ids is not None: self.add_tool_input(tool_id=tool.id, input_ids=input_ids) if output_ids is not None: output_ids = self._clean_tool_ids(output_ids) for output_id in output_ids: self.add_tool_input(tool_id=output_id, input_ids=tool.id) if coordinates is not None: self.set_tool_coordinates(tool_id=tool.id, coordinates=coordinates) return tool def remove_tool(self, tool_ids: Union[list[int], int]) -> None: """Removes existing tool from the current workflow. Removes the tool from the workflow and updates inputs and outputs of the linked tool instances. Args: tool_ids (list[int], int): tool ID or IDs that ought to be removed. Raises: workflow_exceptions.RootCannotBeDeleted: indicates that selected tool for removal is a root which cannot be deleted. """ tool_ids = self._clean_tool_ids(tool_ids) for tool_id in tool_ids: tool = self._get_tool_by_id(tool_id) if tool.is_root: raise workflow_exceptions.RootCannotBeDeleted # remove tool from linked tools' inputs tool_outputs = tool.outputs for output_id in tool_outputs: self.remove_tool_input(tool_id=output_id, input_ids=tool.id) # remove tool from linked tools' outputs tool_inputs = tool.inputs for input_id in tool_inputs: self.remove_tool_input(tool_id=tool.id, input_ids=input_id) del self._tools[tool_id] def add_tool_input( self, tool_id: int, input_ids: Union[list[int], int] ) -> tools.Tool: """Adds new input(s) for the tool existing in the current workflow. Args: tool_id (int): tool ID to which input(s) should be added. input_ids (list[int], int]): input(s) to be added to the tool identified by their IDs. Returns: tools.Tool: instance of a Tool's class. """ tool = self._get_tool_by_id(tool_id) input_ids = self._clean_tool_ids(input_ids) for input_id in input_ids: tool.add_input(input_id) self._tools[input_id].add_output(tool_id) return tool def remove_tool_input( self, tool_id: int, input_ids: Union[list[int], int] ) -> tools.Tool: """Removes input(s) from the tool existing in the current workflow. Args: tool_id (int): tool ID from which input(s) should be removed. input_ids (list[int], int]): input(s) to be removed from the tool identified by their IDs. Returns: tools.Tool: instance of a Tool's class. """ tool = self._get_tool_by_id(tool_id) input_ids = self._clean_tool_ids(input_ids) for input_id in input_ids: tool.remove_input(input_id) self._tools[input_id].remove_output(tool_id) return tool def set_tool_config(self, tool_id: int, data: dict) -> tools.Tool: """Sets tool's config to passed data dict. Args: tool_id (int): tool ID for which config should be set. data (dict): dict of parameters for given tool. Returns: tools.Tool: instance of a Tool's class. """ tool = self._get_tool_by_id(tool_id) tool.config = data return tool def set_tool_coordinates( self, tool_id: int, coordinates: Optional[tuple[int, int]] = None ) -> tools.Tool: """Sets (x, y) coordinates for the tool existing in the current workflow. If no coordinates are passed to this method, default coordinates will be calculated using `_get_default_coordinates()` internal method. Args: tool_id (int): tool ID for which coordinates are to be set. coordinates (tuple[int, int]): tuple of (x, y) coordinates. Defaults to None. Returns: tools.Tool: instance of a Tool's class. """ # I need to decide where to put a check if coordinates will fit a canvas tool = self._get_tool_by_id(tool_id) coordinates = ( coordinates if coordinates is not None else self._get_default_coordinates() ) tool.coordinates = coordinates return tool def _get_default_coordinates(self) -> tuple[int, int]: # might require more sophisticated logic in the future return (0, 0) def _get_tool_by_id(self, tool_id: int) -> tools.Tool: """Returns an instance of a Tool class selected by its ID. Args: tool_id (int): tool ID. Raises: workflow_exceptions.ToolDoesNotExist: indicates that for provided ID there is no tool in this workflow. Returns: tools.Tool: instance of a Tool's class. """ try: tool = self._tools[tool_id] except KeyError: raise workflow_exceptions.ToolDoesNotExist return tool def _clean_tool_ids(self, tool_ids: Union[list[int], int]) -> list[int]: """Returns a validated list of tool ID(s). Checks whether passed tool ID(s) exist in the current workflow and returns the list of tool IDs. If at least one of the provided tool IDs is not found, it raises an exception. Args: tool_ids (list[int], int): tool ID(s) to be cleaned. Raises: workflow_exceptions.ToolDoesNotExist: indicates that at least one of the provided tool IDs is not present in the current workflow. Returns: list[int]: list of checked tool IDs. """ cleaned_tool_ids = ( list(set(tool_ids)) if isinstance(tool_ids, list) else [tool_ids] ) if any(tool_id not in self._tools for tool_id in cleaned_tool_ids): raise workflow_exceptions.ToolDoesNotExist return cleaned_tool_ids def _add_tool_id(self, tool_id: int) -> None: """Adds an ID to the used ID pool. Args: tool_id (int): ID to be added to the used ID pool. """ self._used_ids.add(tool_id) def _get_next_tool_id(self) -> int: """Returns a next available ID to be used for a tool instance. Returns: int: next available tool ID. """ return max(self._used_ids) + 1 def _build_flow(self) -> None: NotImplementedError def __len__(self) -> int: return len(self._tools) - 1
3.078125
3
team_fundraising/text.py
namtel-hp/fundraising-website
5
4226
class Donation_text: # Shown as a message across the top of the page on return from a donation # used in views.py:new_donation() thank_you = ( "Thank you for your donation. " "You may need to refresh this page to see the donation." ) confirmation_email_subject = ( 'Thank you for donating to the Triple Crown for Heart! ' ) # Start of the email sent confirming the paypal payment has gone through # used in paypal.py:process_paypal() confirmation_email_opening = ( 'Thank you for your donation of ' ) # Closing of the email sent confirming the paypal payment has gone through # used in paypal.py:process_paypal() confirmation_email_closing = ( '.\n\nFor all donations over $20, you will receive a tax receipt for ' 'the 2019 tax year.' '\nYour PayPal receipt should arrive in a separate email.\n' ) notification_email_subject = ( "You got a donation!" ) notification_email_opening = ( "Great news! You've just received a donation of " ) notification_email_closing = ( "\n\nAwesome work! They would probably appreciate " "a quick thank you email.\n\n" "-- Triple Crown for Heart\n" ) class Fundraiser_text: # Subject of the email sent on signup signup_email_subject = ( "Welcome to fundraising for the Triple Crown for Heart!" ) # Start of the email sent when someone signs up # used in views.py:signup() signup_email_opening = ( "Thanks for signing up to fundraise with us!\n" "Your fundraising page can be found at:\n" ) # Closing of the email sent when someone signs up # used in views.py:signup() signup_email_closing = ( '\n\nYou can change your information by using the "Login" link at the ' 'top of that page.' '\n\nThe easiest way to start fundraising is to post the above link ' 'on social media or write a short email to your friends telling them ' 'about your ride.' '\nDon\'t forget to include the link to your page!\n' ) # Message show at the top of the fundraiser page after signing up # used in views.py:signup() signup_return_message = ( "Thank you for signing up. Sharing your fundraiser page on social " "media or over email is the best way to get donations." ) signup_wrong_password_existing_user = ( "The username already exists, but the password entered is incorrect. " "If you were already a fundraiser for a previous campaign, please " "enter your previous password or use " "<a href='/team_fundraising/accounts/password_reset/'>" "Forgot your password</a>. If this is your first campaign, " "please choose a different username." )
2.765625
3
tests/wagtail_live/test_apps.py
wagtail/wagtail-live
22
4227
from django.apps import apps from django.test import override_settings from wagtail_live.signals import live_page_update def test_live_page_update_signal_receivers(): assert len(live_page_update.receivers) == 0 @override_settings( WAGTAIL_LIVE_PUBLISHER="tests.testapp.publishers.DummyWebsocketPublisher" ) def test_live_page_update_signal_receivers_websocket(): app_config = apps.get_app_config("wagtail_live") app_config.ready() try: # Receiver should be connected, no IndexError receiver = live_page_update.receivers[0] finally: live_page_update.disconnect(receiver)
1.710938
2
PLM/options.py
vtta2008/pipelineTool
7
4228
# -*- coding: utf-8 -*- """ Script Name: Author: <NAME>/Jimmy - 3D artist. Description: """ # ------------------------------------------------------------------------------------------------------------- """ Import """ import os from PySide2.QtWidgets import (QFrame, QStyle, QAbstractItemView, QSizePolicy, QLineEdit, QPlainTextEdit, QGraphicsItem, QGraphicsView, QGraphicsScene, QRubberBand, QCalendarWidget, ) from PySide2.QtCore import QEvent, QSettings, QSize, Qt, QDateTime from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor SingleSelection = QCalendarWidget.SingleSelection NoSelection = QCalendarWidget.NoSelection SingleLetterDay = QCalendarWidget.SingleLetterDayNames ShortDay = QCalendarWidget.ShortDayNames LongDay = QCalendarWidget.LongDayNames NoHoriHeader = QCalendarWidget.NoHorizontalHeader NoVertHeader = QCalendarWidget.NoVerticalHeader IsoWeekNum = QCalendarWidget.ISOWeekNumbers SelectMode = QCalendarWidget.SelectionMode HoriHeaderFm = QCalendarWidget.HorizontalHeaderFormat VertHeaderFm = QCalendarWidget.VerticalHeaderFormat DayOfWeek = Qt.DayOfWeek Sunday = Qt.Sunday Monday = Qt.Monday Tuesday = Qt.Tuesday Wednesday = Qt.Wednesday Thursday = Qt.Thursday Friday = Qt.Friday Saturday = Qt.Saturday ICONSIZE = 32 ICONBUFFER = -1 BTNTAGSIZE = QSize(87, 20) TAGBTNSIZE = QSize(87-1, 20-1) BTNICONSIZE = QSize(ICONSIZE, ICONSIZE) ICONBTNSIZE = QSize(ICONSIZE+ICONBUFFER, ICONSIZE+ICONBUFFER) DAMG_LOGO_COLOR = QColor(0, 114, 188, 255) # Basic color GlobalColor = Qt.GlobalColor WHITE = QColor(Qt.white) LIGHTGRAY = QColor(Qt.lightGray) GRAY = QColor(Qt.gray) DARKGRAY = QColor(Qt.darkGray) BLACK = QColor(Qt.black) RED = QColor(Qt.red) GREEN = QColor(Qt.green) BLUE = QColor(Qt.blue) DARKRED = QColor(Qt.darkRed) DARKGREEN = QColor(Qt.darkGreen) DARKBLUE = QColor(Qt.darkBlue) CYAN = QColor(Qt.cyan) MAGENTA = QColor(Qt.magenta) YELLOW = QColor(Qt.yellow) DARKCYAN = QColor(Qt.darkCyan) DARKMAGENTA = QColor(Qt.darkMagenta) DARKYELLOW = QColor(Qt.darkYellow) # Dark Palette color Color_BACKGROUND_LIGHT = QColor('#505F69') COLOR_BACKGROUND_NORMAL = QColor('#32414B') COLOR_BACKGROUND_DARK = QColor('#19232D') COLOR_FOREGROUND_LIGHT = QColor('#F0F0F0') COLOR_FOREGROUND_NORMAL = QColor('#AAAAAA') COLOR_FOREGROUND_DARK = QColor('#787878') COLOR_SELECTION_LIGHT = QColor('#148CD2') COLOR_SELECTION_NORMAL = QColor('#1464A0') COLOR_SELECTION_DARK = QColor('#14506E') # Nice color blush = QColor(246, 202, 203, 255) petal = QColor(247, 170, 189, 255) petunia = QColor(231, 62, 151, 255) deep_pink = QColor(229, 2, 120, 255) melon = QColor(241, 118, 110, 255) pomegranate = QColor(178, 27, 32, 255) poppy_red = QColor(236, 51, 39, 255) orange_red = QColor(240, 101, 53, 255) olive = QColor(174, 188, 43, 255) spring = QColor(227, 229, 121, 255) yellow = QColor(255, 240, 29, 255) mango = QColor(254, 209, 26, 255) cantaloupe = QColor(250, 176, 98, 255) tangelo = QColor(247, 151, 47, 255) burnt_orange = QColor(236, 137, 36, 255) bright_orange = QColor(242, 124, 53, 255) moss = QColor(176, 186, 39, 255) sage = QColor(212, 219, 145, 255) apple = QColor(178, 215, 140, 255) grass = QColor(111, 178, 68, 255) forest = QColor(69, 149, 62, 255) peacock = QColor(21, 140, 167, 255) teal = QColor(24, 157, 193, 255) aqua = QColor(153, 214, 218, 255) violet = QColor(55, 52, 144, 255) deep_blue = QColor(15, 86, 163, 255) hydrangea = QColor(150, 191, 229, 255) sky = QColor(139, 210, 244, 255) dusk = QColor(16, 102, 162, 255) midnight = QColor(14, 90, 131, 255) seaside = QColor(87, 154, 188, 255) poolside = QColor(137, 203, 225, 255) eggplant = QColor(86, 5, 79, 255) lilac = QColor(222, 192, 219, 255) chocolate = QColor(87, 43, 3, 255) blackout = QColor(19, 17, 15, 255) stone = QColor(125, 127, 130, 255) gravel = QColor(181, 182, 185, 255) pebble = QColor(217, 212, 206, 255) sand = QColor(185, 172, 151, 255) ignoreARM = Qt.IgnoreAspectRatio scrollAsNeed = Qt.ScrollBarAsNeeded scrollOff = Qt.ScrollBarAlwaysOff scrollOn = Qt.ScrollBarAlwaysOn SiPoMin = QSizePolicy.Minimum # Size policy SiPoMax = QSizePolicy.Maximum SiPoExp = QSizePolicy.Expanding SiPoPre = QSizePolicy.Preferred SiPoIgn = QSizePolicy.Ignored frameStyle = QFrame.Sunken | QFrame.Panel center = Qt.AlignCenter # Alignment right = Qt.AlignRight left = Qt.AlignLeft top = Qt.AlignTop bottom = Qt.AlignBottom hori = Qt.Horizontal vert = Qt.Vertical dockL = Qt.LeftDockWidgetArea # Docking area dockR = Qt.RightDockWidgetArea dockT = Qt.TopDockWidgetArea dockB = Qt.BottomDockWidgetArea dockAll = Qt.AllDockWidgetAreas datetTimeStamp = QDateTime.currentDateTime().toString("hh:mm - dd MMMM yy") # datestamp PRS = dict(password = QLineEdit.Password, center = center , left = left , right = right, spmax = SiPoMax , sppre = SiPoPre, spexp = SiPoExp, spign = SiPoIgn, expanding = QSizePolicy.Expanding, spmin = SiPoMin,) # ------------------------------------------------------------------------------------------------------------- """ Event """ NO_WRAP = QPlainTextEdit.NoWrap NO_FRAME = QPlainTextEdit.NoFrame ELIDE_RIGHT = Qt.ElideRight ELIDE_NONE = Qt.ElideNone # ------------------------------------------------------------------------------------------------------------- """ Window state """ StateNormal = Qt.WindowNoState StateMax = Qt.WindowMaximized StateMin = Qt.WindowMinimized State_Selected = QStyle.State_Selected # ------------------------------------------------------------------------------------------------------------- """ Nodegraph setting variables """ ASPEC_RATIO = Qt.KeepAspectRatio SMOOTH_TRANS = Qt.SmoothTransformation SCROLLBAROFF = Qt.ScrollBarAlwaysOff # Scrollbar SCROLLBARON = Qt.ScrollBarAlwaysOn SCROLLBARNEED = Qt.ScrollBarAsNeeded WORD_WRAP = Qt.TextWordWrap INTERSECT_ITEM_SHAPE = Qt.IntersectsItemShape CONTAIN_ITEM_SHAPE = Qt.ContainsItemShape MATCH_EXACTLY = Qt.MatchExactly DRAG_ONLY = QAbstractItemView.DragOnly # ------------------------------------------------------------------------------------------------------------- """ UI flags """ ITEMENABLE = Qt.ItemIsEnabled ITEMMOVEABLE = QGraphicsItem.ItemIsMovable ITEMSENDGEOCHANGE = QGraphicsItem.ItemSendsGeometryChanges ITEMSCALECHANGE = QGraphicsItem.ItemScaleChange ITEMPOSCHANGE = QGraphicsItem.ItemPositionChange DEVICECACHE = QGraphicsItem.DeviceCoordinateCache SELECTABLE = QGraphicsItem.ItemIsSelectable MOVEABLE = QGraphicsItem.ItemIsMovable FOCUSABLE = QGraphicsItem.ItemIsFocusable PANEL = QGraphicsItem.ItemIsPanel NOINDEX = QGraphicsScene.NoIndex # Scene RUBBER_DRAG = QGraphicsView.RubberBandDrag # Viewer RUBBER_REC = QRubberBand.Rectangle POS_CHANGE = QGraphicsItem.ItemPositionChange NODRAG = QGraphicsView.NoDrag NOFRAME = QGraphicsView.NoFrame ANCHOR_NO = QGraphicsView.NoAnchor ANCHOR_UNDERMICE = QGraphicsView.AnchorUnderMouse ANCHOR_CENTER = QGraphicsView.AnchorViewCenter CACHE_BG = QGraphicsView.CacheBackground UPDATE_VIEWRECT = QGraphicsView.BoundingRectViewportUpdate UPDATE_FULLVIEW = QGraphicsView.FullViewportUpdate UPDATE_SMARTVIEW = QGraphicsView.SmartViewportUpdate UPDATE_BOUNDINGVIEW = QGraphicsView.BoundingRectViewportUpdate UPDATE_MINIMALVIEW = QGraphicsView.MinimalViewportUpdate STAY_ON_TOP = Qt.WindowStaysOnTopHint STRONG_FOCUS = Qt.StrongFocus SPLASHSCREEN = Qt.SplashScreen FRAMELESS = Qt.FramelessWindowHint CUSTOMIZE = Qt.CustomizeWindowHint CLOSEBTN = Qt.WindowCloseButtonHint MINIMIZEBTN = Qt.WindowMinimizeButtonHint AUTO_COLOR = Qt.AutoColor # ------------------------------------------------------------------------------------------------------------- """ Drawing """ ANTIALIAS = QPainter.Antialiasing # Painter ANTIALIAS_TEXT = QPainter.TextAntialiasing ANTIALIAS_HIGH_QUALITY = QPainter.HighQualityAntialiasing SMOOTH_PIXMAP_TRANSFORM = QPainter.SmoothPixmapTransform NON_COSMETIC_PEN = QPainter.NonCosmeticDefaultPen NO_BRUSH = Qt.NoBrush # Brush NO_PEN = Qt.NoPen # Pen ROUND_CAP = Qt.RoundCap ROUND_JOIN = Qt.RoundJoin PATTERN_SOLID = Qt.SolidPattern # Pattern LINE_SOLID = Qt.SolidLine # Line LINE_DASH = Qt.DashLine LINE_DOT = Qt.DotLine LINE_DASH_DOT = Qt.DashDotDotLine TRANSPARENT = Qt.transparent TRANSPARENT_MODE = Qt.TransparentMode # ------------------------------------------------------------------------------------------------------------- """ Meta Object """ QUEUEDCONNECTION = Qt.QueuedConnection # ------------------------------------------------------------------------------------------------------------- """ Keyboard and cursor """ TEXT_BOLD = QFont.Bold TEXT_NORMAL = QFont.Normal MONO_SPACE = QFont.Monospace TEXT_MENEOMIC = Qt.TextShowMnemonic KEY_PRESS = QEvent.KeyPress KEY_RELEASE = QEvent.KeyRelease KEY_ALT = Qt.Key_Alt KEY_DEL = Qt.Key_Delete KEY_TAB = Qt.Key_Tab KEY_SHIFT = Qt.Key_Shift KEY_CTRL = Qt.Key_Control KEY_BACKSPACE = Qt.Key_Backspace KEY_ENTER = Qt.Key_Enter KEY_RETURN = Qt.Key_Return KEY_F = Qt.Key_F KEY_S = Qt.Key_S ALT_MODIFIER = Qt.AltModifier CTRL_MODIFIER = Qt.ControlModifier SHIFT_MODIFIER = Qt.ShiftModifier NO_MODIFIER = Qt.NoModifier CLOSE_HAND_CUSOR = Qt.ClosedHandCursor SIZEF_CURSOR = Qt.SizeFDiagCursor windows = os.name = 'nt' DMK = Qt.AltModifier if windows else CTRL_MODIFIER MOUSE_LEFT = Qt.LeftButton MOUSE_RIGHT = Qt.RightButton MOUSE_MIDDLE = Qt.MiddleButton NO_BUTTON = Qt.NoButton ARROW_NONE = Qt.NoArrow # Cursor CURSOR_ARROW = Qt.ArrowCursor CURSOR_SIZEALL = Qt.SizeAllCursor MOVE_OPERATION = QTextCursor.MoveOperation MOVE_ANCHOR = QTextCursor.MoveMode.MoveAnchor KEEP_ANCHOR = QTextCursor.MoveMode.KeepAnchor ACTION_MOVE = Qt.MoveAction # Action ignoreARM = Qt.IgnoreAspectRatio # ------------------------------------------------------------------------------------------------------------- """ Set number """ RELATIVE_SIZE = Qt.RelativeSize # Size INI = QSettings.IniFormat NATIVE = QSettings.NativeFormat INVALID = QSettings.InvalidFormat SYS_SCOPE = QSettings.SystemScope USER_SCOPE = QSettings.UserScope # ------------------------------------------------------------------------------------------------------------- # Created by <NAME> on 5/6/2020 - 3:13 AM # © 2017 - 2020 DAMGteam. All rights reserved
1.640625
2
Crawling/ssafyCrawling.py
Nyapy/FMTG
0
4229
from selenium import webdriver from selenium.webdriver.chrome.options import Options import sys import time import urllib.request import os sys.stdin = open('idpwd.txt') site = input() id = input() pwd = input() # selenium에서 사용할 웹 드라이버 절대 경로 정보 chromedriver = 'C:\Webdriver\chromedriver.exe' # selenum의 webdriver에 앞서 설치한 chromedirver를 연동한다. driver = webdriver.Chrome(chromedriver) # driver로 특정 페이지를 크롤링한다. driver.get(site) driver.find_element_by_name('userId').send_keys(id) driver.find_element_by_name('userPwd').send_keys(<PASSWORD>) driver.find_element_by_class_name('form-btn').click() driver.set_window_size(1600, 800) driver.find_element_by_xpath("//a[@href='/edu/lectureroom/openlearning/openLearningList.do']/span").click() # driver.find_element_by_id('searchContNm').send_keys('aps') # # driver.find_element_by_xpath("//button[@onclick='fnSearch();']").click() driver.find_elements_by_xpath("//*[contains(text(), '5기_B반_Java(1)')]")[0].click() driver.find_element_by_xpath("//span[@class='file-name']").click() driver.switch_to.window(driver.window_handles[1]) print(driver.find_elements_by_xpath("//button[@title='다음 페이지']")[0].get_attribute('disabled')) # driver.find_elements_by_xpath("//button[@title='마지막 페이지']")[0].click() # print(driver.find_elements_by_xpath("//button[@title='다음 페이지']")[0].get_attribute('disabled')) # url 가져오기 + find 함수 연습 # pre = driver.current_url # find = pre.find('/index.html') # url = pre[:find] # src = driver.find_element_by_class_name("background").get_attribute('src') # print(src) ## 다음페이지 넘기기 # for i in driver.find_elements_by_xpath("//button[@title='다음 페이지']"): # print(i) cnt = 1 # url = driver.find_elements_by_class_name("background")[-1].get_attribute('src') # print(url) # urllib.request.urlretrieve(url, '123.jpg') # os.system("curl " + url + " > test.jpg") time.sleep(2) driver.get_screenshot_as_file("hi.png") # for i in driver.find_elements_by_class_name("background"): # time.sleep(2) # print(i.get_attribute('style')) # i.screenshot(str(cnt)+'.png') # cnt += 1 while 1: time.sleep(0.4) driver.save_screenshot('APS/C/'+str(cnt)+'.png') # print(driver.find_element_by_class_name("background").get_attribute('src')) # driver.find_element_by_class_name("background").screenshot(str(cnt)+'.png') driver.find_elements_by_xpath("//button[@title='다음 페이지']")[0].click() cnt += 1 if driver.find_elements_by_xpath("//button[@title='다음 페이지']")[0].get_attribute('disabled') == 'disabled': break
3.171875
3
100days/day95/StringIO_demo.py
chainren/python-learn
0
4230
<reponame>chainren/python-learn<gh_stars>0 from io import StringIO # 定义一个 StringIO 对象,写入并读取其在内存中的内容 f = StringIO() f.write('Python-100') str = f.getvalue() # 读取写入的内容 print('写入内存中的字符串为:%s' %str) f.write('\n') # 追加内容 f.write('坚持100天') f.close() # 关闭 f1 = StringIO('Python-100' + '\n' + '坚持100天') # 读取内容 print(f1.read()) f1.close() # 假设的爬虫数据输出函数 outputData() def outputData(): dataOne = '我是 1 号爬虫数据\n' dataTwo = '我是 2 号爬虫数据\n' dataThree = '我是 3 号爬虫数据' data = dataOne + dataTwo + dataThree return data # dataStr 为爬虫数据字符串 dataStr = outputData() # 1. 将 outputData() 函数返回的内容写入内存中 dataIO = StringIO(dataStr) # 假设的爬虫数据输出函数 outputData() def outputData(): dataOne = '我是 1 号爬虫数据\n' dataTwo = '我是 2 号爬虫数据\n' dataThree = '我是 3 号爬虫数据' data = dataOne + dataTwo + dataThree return data # dataStr 为爬虫数据字符串 dataStr = outputData() # 1. 将 outputData() 函数返回的内容写入内存中 dataIO = StringIO(dataStr) # 1.1 输出 StringIO 在内存中写入的数据 print('1.1内存中写入的数据为:\n%s' %dataIO.getvalue()) # 1.2 按行输出写入的数据方式一 print('1.2按行输出写入的数据方式一:') for data in dataIO.readlines(): print(data.strip('\n')) # 去掉每行数据末尾的换行符 # 1.2 按行输出写入的数据方式一 print('1.2按行输出写入的数据方式一:') for data in dataIO.readlines(): print(data.strip('\n')) # 去掉每行数据末尾的换行符 # 1.3 按行输出写入的数据方式二 # 由于上一步的操作,此时文件指针指向数据末尾(32),我们需要将指针指向起始位置 print('由于上一步操作的输出,此时文件指针位置为:%d' %dataIO.tell()) # 将文件指针指向起始位置,方便下面的演示 dataIO.seek(0) print('1.3按行输出写入的数据方式二:') for data in dataIO: print(data.strip('\n'))
3.234375
3
tests/test_cli.py
Nate1729/FinPack
1
4231
"""Contains tests for finpack/core/cli.py """ __copyright__ = "Copyright (C) 2021 <NAME>" import os import unittest from importlib import metadata from docopt import docopt from finpack.core import cli class TestCli(unittest.TestCase): @classmethod def setUpClass(cls): cls.DATA_DIR = "temp" os.mkdir(cls.DATA_DIR) @classmethod def tearDownClass(cls): os.rmdir(cls.DATA_DIR) def test_version_option(self): argv = ["--version"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["--version"]) def test_init_no_options(self): argv = ["init"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["init"]) def test_init_with_filepath_option(self): argv = ["init", "--filepath=temp/data.csv"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["init"]) self.assertEqual(args["--filepath"], "temp/data.csv") def test_init_with_sample_dataset_option(self): argv = ["init", "--sample-dataset"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["init"]) self.assertTrue(args["--sample-dataset"]) def test_init_with_overwrite_option(self): argv = ["init", "--overwrite"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["init"]) self.assertTrue(args["--overwrite"]) def test_balsheet_no_option(self): argv = ["balsheet"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["balsheet"]) def test_balsheet_with_filepath_option(self): argv = ["balsheet", "--filepath=temp/data2.csv"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["balsheet"]) self.assertEqual(args["--filepath"], "temp/data2.csv") def test_balsheet_with_levels_default(self): argv = ["balsheet"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["balsheet"]) self.assertEqual(args["--levels"], "3") def test_balsheet_with_levels_option(self): argv = ["balsheet", "--levels=2"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["balsheet"]) self.assertEqual(args["--levels"], "2") def test_balsheet_with_date_default(self): argv = ["balsheet"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["balsheet"]) self.assertEqual(args["--date"], "today") def test_balsheet_with_date_option(self): argv = ["balsheet", "--date=2021-12-01"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["balsheet"]) self.assertEqual(args["--date"], "2021-12-01")
2.421875
2
python/Patterns/inheritance/main.py
zinderud/ysa
0
4232
class Yaratik(object): def move_left(self): print('Moving left...') def move_right(self): print('Moving left...') class Ejderha(Yaratik): def Ates_puskurtme(self): print('ates puskurtum!') class Zombie(Yaratik): def Isirmak(self): print('Isirdim simdi!') enemy = Yaratik() enemy.move_left() # ejderha also includes all functions from parent class (yaratik) ejderha = Ejderha() ejderha.move_left() ejderha.Ates_puskurtme() # Zombie is called the (child class), inherits from Yaratik (parent class) zombie = Zombie() zombie.move_right() zombie.Isirmak()
3.546875
4
clustering/graph_utils.py
perathambkk/ml-techniques
0
4233
""" Author: <NAME> """ import numpy as np import pandas as pd from sklearn.neighbors import NearestNeighbors def affinity_graph(X): ''' This function returns a numpy array. ''' ni, nd = X.shape A = np.zeros((ni, ni)) for i in range(ni): for j in range(i+1, ni): dist = ((X[i] - X[j])**2).sum() # compute L2 distance A[i][j] = dist A[j][i] = dist # by symmetry return A def knn_graph(X, knn=4): ''' This function returns a numpy array. ''' ni, nd = X.shape nbrs = NearestNeighbors(n_neighbors=(knn+1), algorithm='ball_tree').fit(X) distances, indices = nbrs.kneighbors(X) A = np.zeros((ni, ni)) for dist, ind in zip(distances, indices): i0 = ind[0] for i in range(1,knn+1): d = dist[i] A[i0, i] = d A[i, i0] = d # by symmetry return A def sparse_affinity_graph(X): ''' TODO: This function returns a numpy sparse matrix. ''' ni, nd = X.shape A = np.zeros((ni, ni)) for i in range(ni): for j in range(i+1, ni): dist = ((X[i] - X[j])**2).sum() # compute L2 distance A[i][j] = dist A[j][i] = dist # by symmetry return A def laplacian_graph(X, mode='affinity', knn=3, eta=0.01, sigma=2.5): ''' The unnormalized graph Laplacian, L = D − W. ''' if mode == 'affinity': W = affinity_graph(X) W[abs(W) > eta] = 0 elif mode == 'nearestneighbor': W = knn_graph(X, knn=knn) elif mode == 'gaussian': W = affinity_graph(X) bandwidth = 2.0*(sigma**2) W = np.exp(W) / bandwidth else: pass D = np.diag(W.sum(axis=1)) L = D - W return L
3.375
3
recipe_engine/internal/commands/__init__.py
Acidburn0zzz/luci
1
4234
<gh_stars>1-10 # Copyright 2019 The LUCI Authors. All rights reserved. # Use of this source code is governed under the Apache License, Version 2.0 # that can be found in the LICENSE file. """This package houses all subcommands for the recipe engine. See implementation_details.md for the expectations of the modules in this directory. """ import argparse import errno import logging import os import pkgutil import sys if sys.version_info >= (3, 5): # we're running python > 3.5 OS_WALK = os.walk else: # From vpython from scandir import walk as OS_WALK # pylint: disable=wrong-import-position from .. import simple_cfg from ..recipe_deps import RecipeDeps from ..recipe_module_importer import RecipeModuleImporter LOG = logging.getLogger(__name__) # This incantation finds all loadable submodules of ourself. The # `prefix=__name__` bit is so that these modules get loaded with the correct # import names, i.e. # # recipe_engine.internal.commands.<submodule> # # If omitted, then these submodules can get double loaded as both: # # <submodule> AND # recipe_engine.internal.commands.<submodule> # # Which can both interfere with the global python module namespace, and lead to # strange errors when doing type assertions (since all data in these modules # will be loaded under two different names; classes will fail isinstance checks # even though they are "the same"). _COMMANDS = [ loader.find_module(module_name).load_module(module_name) for (loader, module_name, _) in pkgutil.walk_packages( __path__, prefix=__name__+'.') if '.' not in module_name[len(__name__)+1:] ] # Order all commands by an optional __cmd_priority__ field, and then by module # name. _COMMANDS.sort( key=lambda mod: ( not hasattr(mod, '__cmd_priority__'), # modules defining priority first getattr(mod, '__cmd_priority__', None), # actual priority mod.__name__ # name )) # Now actually set these commands on ourself so that 'mock' works correctly. # # This is needed to allow some tests (though it may be worth adjusting these # tests later to not need this. Just delete this function and see which tests # fail to find the dependencies on this behavior). def _patch_our_attrs(): self = sys.modules[__name__] self.__all__ = [mod.__name__[len(__name__)+1:] for mod in _COMMANDS] for modname, mod in zip(self.__all__, _COMMANDS): setattr(self, modname, mod) _patch_our_attrs() def _check_recipes_cfg_consistency(recipe_deps): """Checks all recipe.cfg files for the loaded recipe_deps and logs inconsistent dependencies. Args: recipe_deps (RecipeDeps) - The loaded+fetched recipe deps for the current run. """ actual = recipe_deps.main_repo.simple_cfg.deps # For every repo we loaded for repo_name in actual: required_deps = recipe_deps.repos[repo_name].simple_cfg.deps for req_repo_name, req_spec in required_deps.iteritems(): # If this depends on something we didn't load, log an error. if req_repo_name not in actual: LOG.error( '%r depends on %r, but your recipes.cfg is missing an ' 'entry for this.', repo_name, req_repo_name) continue actual_spec = actual[req_repo_name] if req_spec.revision == actual_spec.revision: # They match, it's all good. continue LOG.warn( 'recipes.cfg depends on %r @ %s, but %r depends on version %s.', req_repo_name, actual_spec.revision, repo_name, req_spec.revision) def _cleanup_pyc(recipe_deps): """Removes any .pyc files from the recipes/recipe_module directories. Args: * recipe_deps (RecipeDeps) - The loaded recipe dependencies. """ for repo in recipe_deps.repos.itervalues(): for to_walk in (repo.recipes_dir, repo.modules_dir): for root, _dirs, files in OS_WALK(to_walk): for fname in files: if not fname.endswith('.pyc'): continue try: to_clean = os.path.join(root, fname) LOG.info('cleaning %r', to_clean) os.unlink(to_clean) except OSError as ex: # If multiple things are cleaning pyc's at the same time this can # race. Fortunately we only care that SOMETHING deleted the pyc :) if ex.errno != errno.ENOENT: raise def _common_post_process(args): # TODO(iannucci): We should always do logging.basicConfig() (probably with # logging.WARNING), even if no verbose is passed. However we need to be # careful as this could cause issues with spurious/unexpected output. # Once the recipe engine is on native build.proto, this should be safe to # do. if args.verbose > 0: logging.basicConfig() logging.getLogger().setLevel(logging.INFO) if args.verbose > 1: logging.getLogger().setLevel(logging.DEBUG) else: # Prevent spurious "No handlers could be found for ..." stderr messages. # Once we always set a basicConfig (per TODO above), this can go away as # well. logging.root.manager.emittedNoHandlerWarning = True if args.pid_file: try: with open(args.pid_file, 'w') as pid_file: pid_file.write('%d\n' % os.getpid()) except Exception: logging.exception("unable to write pidfile") args.recipe_deps = RecipeDeps.create( args.main_repo_path, args.repo_override, args.proto_override, ) _check_recipes_cfg_consistency(args.recipe_deps) # Allows: # import RECIPE_MODULES.repo_name.module_name.submodule sys.meta_path = [RecipeModuleImporter(args.recipe_deps)] + sys.meta_path _cleanup_pyc(args.recipe_deps) # Remove flags that subcommands shouldn't use; everything from this point on # should ONLY use args.recipe_deps. del args.main_repo_path del args.verbose del args.repo_override def _add_common_args(parser): class _RepoOverrideAction(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): tokens = values.split('=', 2) if len(tokens) != 2: raise ValueError('Override must have the form: repo=path') repo_name, path = tokens override_dict = getattr(namespace, self.dest) if repo_name in override_dict: raise ValueError('An override is already defined for [%s] (%s)' % ( repo_name, override_dict[repo_name])) path = os.path.abspath(os.path.expanduser(path)) if not os.path.isdir(path): raise ValueError('Override path [%s] is not a directory' % (path,)) override_dict[repo_name] = path def _package_to_main_repo(value): try: value = os.path.abspath(value) except Exception as ex: # pylint: disable=broad-except parser.error( '--package %r could not be converted to absolute path: %r' % ( value, ex,)) recipes_cfg_rel = simple_cfg.RECIPES_CFG_LOCATION_REL if not value.endswith(recipes_cfg_rel): parser.error('--package must end with %r.' % (recipes_cfg_rel,)) # We know the arg ends with 'infra/config/recipes.cfg', so chop those # elements off the path to get the path to the recipe repo root. for _ in simple_cfg.RECIPES_CFG_LOCATION_TOKS: value = os.path.dirname(value) return value # TODO(iannucci): change --package to --repo-path and avoid having recipes.py # pass the path to the recipes.cfg. This is preferable because the location of # recipes.cfg MUST be discovered for recipe dependencies; the RepoSpec # protobuf doesn't specify where the recipes.cfg is in the dependency repos # (nor can it, even if it was dynamic; this would be a nightmare to maintain, # and the autoroller would need to discover it automatically ANYWAY. If we # allow it to be relocatable, the engine needs to be able to discover it, in # which case the minimal information is still 'repo root'). parser.add_argument( '--package', dest='main_repo_path', type=_package_to_main_repo, required=True, help='Path to recipes.cfg of the recipe repo to operate on.') parser.add_argument( '--verbose', '-v', action='count', help='Increase logging verboisty') parser.add_argument('-O', '--repo-override', metavar='ID=PATH', action=_RepoOverrideAction, default={}, help='Override a repo repository path with a local one.') parser.add_argument('--pid-file', metavar='PATH', help=( 'Absolute path to a file where the engine should write its pid. ' 'Path must be absolute and not exist.')) def _proto_override_abspath(value): try: value = os.path.abspath(value) except Exception as ex: # pylint: disable=broad-except parser.error( '--proto-override %r could not be converted to absolute path: %r' % ( value, ex,)) return value # Override the location of the folder containing the `PB` module. This should # only be used for recipe bundles, so we don't bother giving it a shortform # option, and suppress the option's help to avoid confusing users. parser.add_argument( '--proto-override', type=_proto_override_abspath, help=argparse.SUPPRESS) parser.set_defaults( postprocess_func=lambda error, args: None, ) def parse_and_run(): """Parses the command line and runs the chosen subcommand. Returns the command's return value (either int or None, suitable as input to `os._exit`). """ parser = argparse.ArgumentParser( description='Interact with the recipe system.') _add_common_args(parser) subp = parser.add_subparsers(dest='command') for module in _COMMANDS: description = module.__doc__ helplines = [] for line in description.splitlines(): line = line.strip() if not line: break helplines.append(line) module.add_arguments(subp.add_parser( module.__name__.split('.')[-1], # use module's short name formatter_class=argparse.RawDescriptionHelpFormatter, help=' '.join(helplines), description=description, )) args = parser.parse_args() _common_post_process(args) args.postprocess_func(parser.error, args) return args.func(args)
1.976563
2
openfl/pipelines/stc_pipeline.py
sarthakpati/openfl
0
4235
<filename>openfl/pipelines/stc_pipeline.py # Copyright (C) 2020-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 """STCPipelinemodule.""" import numpy as np import gzip as gz from .pipeline import TransformationPipeline, Transformer class SparsityTransformer(Transformer): """A transformer class to sparsify input data.""" def __init__(self, p=0.01): """Initialize. Args: p (float): sparsity ratio (Default=0.01) """ self.lossy = True self.p = p def forward(self, data, **kwargs): """Sparsify data and pass over only non-sparsified elements by reducing the array size. Args: data: an numpy array from the model tensor_dict Returns: condensed_data: an numpy array being sparsified. metadata: dictionary to store a list of meta information. """ metadata = {'int_list': list(data.shape)} # sparsification data = data.astype(np.float32) flatten_data = data.flatten() n_elements = flatten_data.shape[0] k_op = int(np.ceil(n_elements * self.p)) topk, topk_indices = self._topk_func(flatten_data, k_op) # condensed_data = topk sparse_data = np.zeros(flatten_data.shape) sparse_data[topk_indices] = topk nonzero_element_bool_indices = sparse_data != 0.0 metadata['bool_list'] = list(nonzero_element_bool_indices) return condensed_data, metadata # return sparse_data, metadata def backward(self, data, metadata, **kwargs): """Recover data array with the right shape and numerical type. Args: data: an numpy array with non-zero values. metadata: dictionary to contain information for recovering back to original data array. Returns: recovered_data: an numpy array with original shape. """ data = data.astype(np.float32) data_shape = metadata['int_list'] nonzero_element_bool_indices = list(metadata['bool_list']) recovered_data = np.zeros(data_shape).reshape(-1).astype(np.float32) recovered_data[nonzero_element_bool_indices] = data recovered_data = recovered_data.reshape(data_shape) return recovered_data @staticmethod def _topk_func(x, k): """Select top k values. Args: x: an numpy array to be sorted out for top-k components. k: k most maximum values. Returns: topk_mag: components with top-k values. indices: indices of the top-k components. """ # quick sort as default on magnitude idx = np.argsort(np.abs(x)) # sorted order, the right most is the largest magnitude length = x.shape[0] start_idx = length - k # get the top k magnitude topk_mag = np.asarray(x[idx[start_idx:]]) indices = np.asarray(idx[start_idx:]) if min(topk_mag) - 0 < 10e-8: # avoid zeros topk_mag = topk_mag + 10e-8 return topk_mag, indices class TernaryTransformer(Transformer): """A transformer class to ternerize input data.""" def __init__(self): """Initialize.""" self.lossy = True def forward(self, data, **kwargs): """Ternerize data into positive mean value, negative mean value and zero value. Args: data: an flattened numpy array Returns: int_data: an numpy array being terneraized. metadata: dictionary to store a list of meta information. """ # ternarization, data is sparse and flattened mean_topk = np.mean(np.abs(data)) out_ = np.where(data > 0.0, mean_topk, 0.0) out = np.where(data < 0.0, -mean_topk, out_) int_array, int2float_map = self._float_to_int(out) metadata = {'int_to_float': int2float_map} return int_array, metadata def backward(self, data, metadata, **kwargs): """Recover data array back to the original numerical type. Args: data: an numpy array with non-zero values. Returns: metadata: dictionary to contain information for recovering back to original data array. data (return): an numpy array with original numerical type. """ # TODO import copy data = copy.deepcopy(data) int2float_map = metadata['int_to_float'] for key in int2float_map: indices = data == key data[indices] = int2float_map[key] return data @staticmethod def _float_to_int(np_array): """Create look-up table for conversion between floating and integer types. Args: np_array: Returns: int_array: int_to_float_map: """ flatten_array = np_array.reshape(-1) unique_value_array = np.unique(flatten_array) int_array = np.zeros(flatten_array.shape, dtype=np.int) int_to_float_map = {} float_to_int_map = {} # create table for idx, u_value in enumerate(unique_value_array): int_to_float_map.update({idx: u_value}) float_to_int_map.update({u_value: idx}) # assign to the integer array indices = np.where(flatten_array == u_value) int_array[indices] = idx int_array = int_array.reshape(np_array.shape) return int_array, int_to_float_map class GZIPTransformer(Transformer): """A transformer class to losslessly compress data.""" def __init__(self): """Initialize.""" self.lossy = False def forward(self, data, **kwargs): """Compress data into numpy of float32. Args: data: an numpy array with non-zero values Returns: compressed_bytes : metadata: dictionary to contain information for recovering back to original data array """ bytes_ = data.astype(np.float32).tobytes() compressed_bytes = gz.compress(bytes_) metadata = {} return compressed_bytes, metadata def backward(self, data, metadata, **kwargs): """Decompress data into numpy of float32. Args: data: an numpy array with non-zero values metadata: dictionary to contain information for recovering back to original data array Returns: data: """ decompressed_bytes_ = gz.decompress(data) data = np.frombuffer(decompressed_bytes_, dtype=np.float32) return data class STCPipeline(TransformationPipeline): """A pipeline class to compress data lossly using sparsity and ternerization methods.""" def __init__(self, p_sparsity=0.01, n_clusters=6, **kwargs): """Initialize a pipeline of transformers. Args: p_sparsity (float): Sparsity factor (Default=0.01) n_cluster (int): Number of K-Means clusters (Default=6) Returns: Data compression transformer pipeline object """ # instantiate each transformer self.p = p_sparsity transformers = [SparsityTransformer(self.p), TernaryTransformer(), GZIPTransformer()] super(STCPipeline, self).__init__(transformers=transformers, **kwargs)
2.328125
2
tests/component/test_grid_mixin.py
csdms/pymt
38
4236
import numpy as np import pytest from pytest import approx from pymt.component.grid import GridMixIn class Port: def __init__(self, name, uses=None, provides=None): self._name = name self._uses = uses or [] self._provides = provides or [] def get_component_name(self): return self._name def get_input_item_count(self): return len(self._uses) def get_input_item_list(self): return self._uses def get_output_item_count(self): return len(self._provides) def get_output_item_list(self): return self._provides def test_exchange_items(): class Component(GridMixIn): def __init__(self): self._port = Port("test", uses=["invar"], provides=["outvar"]) super().__init__() c = Component() assert c.input_items == ["invar"] assert c.output_items == ["outvar"] def test_no_exchange_items(): class Component(GridMixIn): def __init__(self): self._port = Port("test") super().__init__() c = Component() assert c.input_items == [] assert c.output_items == [] def test_raster_1d(): class RasterPort(Port): def get_grid_shape(self, grid_id): return (3,) def get_grid_spacing(self, grid_id): return (2.0,) def get_grid_origin(self, grid_id): return (3.0,) class Component(GridMixIn): def __init__(self): self._port = RasterPort("test", uses=["invar"]) super().__init__() c = Component() assert c.get_x("invar") == approx(np.array([3.0, 5.0, 7.0])) def test_raster_2d(): class RasterPort(Port): def get_grid_shape(self, grid_id): return (2, 3) def get_grid_spacing(self, grid_id): return (2.0, 1.0) def get_grid_origin(self, grid_id): return (0.0, 0.0) class Component(GridMixIn): def __init__(self): self._port = RasterPort("test-2d", uses=["invar"], provides=["outvar"]) super().__init__() c = Component() assert c.name == "test-2d" assert c.get_grid_type(0) == "RASTER" assert c.get_x(0) == approx(np.array([[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]])) assert c.get_y(0) == approx(np.array([[0.0, 0.0, 0.0], [2.0, 2.0, 2.0]])) assert np.all(c.get_connectivity(0) == np.array([0, 1, 4, 3, 1, 2, 5, 4])) assert np.all(c.get_offset(0) == np.array([4, 8])) def test_raster_3d(): class RasterPort(Port): def get_grid_shape(self, grid_id): return (2, 2, 3) def get_grid_spacing(self, grid_id): return (1.0, 2.0, 1.0) def get_grid_origin(self, grid_id): return (0.0, 0.0, 0.0) class Component(GridMixIn): def __init__(self): self._port = RasterPort("test-3d", uses=["invar"]) super().__init__() c = Component() assert c.get_x(0) == approx( np.array( [[[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]], [[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]]] ) ) assert c.get_y(0) == approx( np.array( [[[0.0, 0.0, 0.0], [2.0, 2.0, 2.0]], [[0.0, 0.0, 0.0], [2.0, 2.0, 2.0]]] ) ) assert c.get_z(0) == approx( np.array( [[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]] ) ) def test_rectilinear(): class RectilinearPort(Port): def get_grid_shape(self, grid_id): return (2, 3) def get_grid_x(self, grid_id): return (0.0, 3.0, 4) def get_grid_y(self, grid_id): return (2.0, 7.0) class Component(GridMixIn): def __init__(self): self._port = RectilinearPort("test", uses=["invar"]) super().__init__() c = Component() assert c.get_grid_type(0) == "RECTILINEAR" assert c.get_x(0) == approx(np.array([[0.0, 3.0, 4.0], [0.0, 3.0, 4.0]])) assert c.get_y(0) == approx(np.array([[2.0, 2.0, 2.0], [7.0, 7.0, 7.0]])) def test_structured(): class StructuredPort(Port): def get_grid_shape(self, grid_id): return (2, 3) def get_grid_x(self, grid_id): return np.array([0.0, 1.0, 2.0, 0.0, 1.0, 2.0]) def get_grid_y(self, grid_id): return np.array([0.0, 1.0, 2.0, 1.0, 2.0, 3.0]) class Component(GridMixIn): def __init__(self): self._port = StructuredPort("test", uses=["invar"]) super().__init__() c = Component() assert c.get_grid_type(0) == "STRUCTURED" assert c.get_x(0) == approx(np.array([0.0, 1.0, 2.0, 0.0, 1.0, 2.0])) assert c.get_y(0) == approx(np.array([0.0, 1.0, 2.0, 1.0, 2.0, 3.0])) def test_unstructured(): class UnstructuredPort(Port): def get_grid_x(self, grid_id): return np.array([0.0, 1.0, 0.0, 1.0, 2.0]) def get_grid_y(self, grid_id): return np.array([0.0, 0.0, 1.0, 1.0, 0.0]) def get_grid_connectivity(self, grid_id): return np.array([0, 1, 3, 2, 4, 3, 1]) def get_grid_offset(self, grid_id): return np.array([4, 7]) class Component(GridMixIn): def __init__(self): self._port = UnstructuredPort("test", uses=["invar"]) super().__init__() c = Component() assert c.get_grid_type(0) == "UNSTRUCTURED" assert c.get_x(0) == approx(np.array([0.0, 1.0, 0.0, 1.0, 2.0])) assert c.get_y(0) == approx(np.array([0.0, 0.0, 1.0, 1.0, 0.0])) def test_get_grid_shape_is_none(): class UnstructuredPort(Port): def get_grid_shape(self, grid_id): return None def get_grid_x(self, grid_id): return np.array([0.0, 1.0, 2.0]) class Component(GridMixIn): def __init__(self): self._port = UnstructuredPort("test", uses=["invar"]) super().__init__() c = Component() assert c.get_grid_type(0) == "UNSTRUCTURED" def test_get_grid_shape_raises(): class UnstructuredPort(Port): def get_grid_shape(self, grid_id): raise NotImplementedError("get_grid_shape") def get_grid_x(self, grid_id): return np.array([0.0, 1.0, 2.0]) class Component(GridMixIn): def __init__(self): self._port = UnstructuredPort("test", uses=["invar"]) super().__init__() c = Component() assert c.get_grid_type(0) == "UNSTRUCTURED" def test_structured_1d(): class RectilinearPort(Port): def get_grid_shape(self, grid_id): return (2, 3) def get_grid_x(self, grid_id): return np.array([0.0, 1.0, 2.0]) def get_grid_y(self, grid_id): raise NotImplementedError("get_grid_y") def get_grid_z(self, grid_id): raise NotImplementedError("get_grid_z") class Component(GridMixIn): def __init__(self): self._port = RectilinearPort("test", uses=["invar"]) super().__init__() c = Component() assert c.get_grid_type(0) == "RECTILINEAR" with pytest.raises(IndexError): c.get_z(0)
2.125
2
scripts/compare.py
SnoozeTime/nes
1
4237
import sys def load_log_sp(filename): data = [] with open(filename) as f: for line in f.readlines(): tokens = line.split(" ") spidx = line.find("SP:") endidx = line.find(' ', spidx) data.append((line[0:4], line[spidx+3:endidx])) return data if __name__ == "__main__": mylog = sys.argv[1] correctlog = sys.argv[2] mylog_sp = load_log_sp(mylog) correctlog_sp = load_log_sp(correctlog) for (i, ((nb1, sp1), (nb2, sp2))) in enumerate(zip(mylog_sp, correctlog_sp)): print('{} {} - {} vs {}'.format( nb1, nb2, sp1, sp2)) if sp1.lower() != sp2.lower() or int(nb1.lower(),16) != int(nb2.lower(), 16): break
2.796875
3
tercer_modelo.py
nahuelalmeira/deepLearning
0
4238
"""Exercise 1 Usage: $ CUDA_VISIBLE_DEVICES=2 python practico_1_train_petfinder.py --dataset_dir ../ --epochs 30 --dropout 0.1 0.1 --hidden_layer_sizes 200 100 To know which GPU to use, you can check it with the command $ nvidia-smi """ import argparse import os import mlflow import pickle import numpy as np import pandas as pd import tensorflow as tf from sklearn.model_selection import train_test_split from tensorflow.keras import layers, models import warnings warnings.filterwarnings("ignore") from auxiliary import process_features, load_dataset, build_columns, log_dir_name TARGET_COL = 'AdoptionSpeed' def read_args(): parser = argparse.ArgumentParser( description='Training a MLP on the petfinder dataset') # Here you have some examples of classifier parameters. You can add # more arguments or change these if you need to. parser.add_argument('--experiment_name', type=str, default='Base model', help='Name of the experiment, used in mlflow.') parser.add_argument('--dataset_dir', default='../petfinder_dataset', type=str, help='Directory with the training and test files.') parser.add_argument('--hidden_layer_sizes', nargs='+', default=[100], type=int, help='Number of hidden units of each hidden layer.') parser.add_argument('--epochs', default=50, type=int, help='Number of epochs to train.') parser.add_argument('--dropout', nargs='+', default=[0.5], type=float, help='Dropout ratio for every layer.') parser.add_argument('--batch_size', type=int, default=32, help='Number of instances in each batch.') parser.add_argument('--learning_rate', default=1e-3, type=float, help='Learning rate.') args = parser.parse_args() assert len(args.hidden_layer_sizes) == len(args.dropout) return args def print_args(args): print('-------------------------------------------') print('PARAMS ------------------------------------') print('-------------------------------------------') print('--experiment_name ', args.experiment_name) print('--dataset_dir ', args.dataset_dir) print('--epochs ', args.epochs) print('--hidden_layer_sizes', args.hidden_layer_sizes) print('--dropout ', args.dropout) print('--batch_size ', args.batch_size) print('--learning_rate ', args.learning_rate) print('-------------------------------------------') def main(): args = read_args() print_args(args) experiment_name = args.experiment_name batch_size = args.batch_size learning_rate = args.learning_rate hidden_layer_sizes = args.hidden_layer_sizes dropout = args.dropout epochs = args.epochs ### Output directory dir_name = log_dir_name(args) print() print(dir_name) print() output_dir = os.path.join('experiments', experiment_name, dir_name) if not os.path.exists(output_dir): os.makedirs(output_dir) dataset, dev_dataset, test_dataset = load_dataset(args.dataset_dir) nlabels = dataset[TARGET_COL].unique().shape[0] columns = [ 'Gender', 'Color1', 'Vaccinated', 'Dewormed', 'Breed1', 'Age', 'Fee', 'Quantity'] one_hot_columns, embedded_columns, numeric_columns = build_columns(dataset, columns) # TODO (optional) put these three types of columns in the same dictionary with "column types" X_train, y_train = process_features(dataset, one_hot_columns, numeric_columns, embedded_columns) direct_features_input_shape = (X_train['direct_features'].shape[1],) X_dev, y_dev = process_features(dev_dataset, one_hot_columns, numeric_columns, embedded_columns) ########################################################################################################### ### TODO: Shuffle train dataset - Done ########################################################################################################### shuffle_len = X_train['direct_features'].shape[0] train_ds = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(shuffle_len).batch(batch_size) ########################################################################################################### dev_ds = tf.data.Dataset.from_tensor_slices((X_dev, y_dev)).batch(batch_size) test_ds = tf.data.Dataset.from_tensor_slices(process_features( test_dataset, one_hot_columns, numeric_columns, embedded_columns, test=True)[0]).batch(batch_size) ########################################################################################################### ### TODO: Build the Keras model - Done ########################################################################################################### tf.keras.backend.clear_session() # Add one input and one embedding for each embedded column embedding_layers = [] inputs = [] for embedded_col, max_value in embedded_columns.items(): input_layer = layers.Input(shape=(1,), name=embedded_col) inputs.append(input_layer) # Define the embedding layer embedding_size = int(max_value / 4) embedding_layers.append( tf.squeeze(layers.Embedding(input_dim=max_value, output_dim=embedding_size)(input_layer), axis=-2)) print('Adding embedding of size {} for layer {}'.format(embedding_size, embedded_col)) # Add the direct features already calculated direct_features_input = layers.Input(shape=direct_features_input_shape, name='direct_features') inputs.append(direct_features_input) # Concatenate everything together features = layers.concatenate(embedding_layers + [direct_features_input]) denses = [] dense1 = layers.Dense(hidden_layer_sizes[0], activation='relu')(features) denses.append(dense1) if len(hidden_layer_sizes) > 1: for hidden_layer_size in hidden_layer_sizes[1:]: dense = layers.Dense(hidden_layer_size, activation='relu')(denses[-1]) denses.append(dense) output_layer = layers.Dense(nlabels, activation='softmax')(dense1) model = models.Model(inputs=inputs, outputs=output_layer) ########################################################################################################### ########################################################################################################### ### TODO: Fit the model - Done ########################################################################################################### mlflow.set_experiment(experiment_name) optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) logdir = "logs/scalars/" + dir_name tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir) with mlflow.start_run(nested=True): # Log model hiperparameters first mlflow.log_param('hidden_layer_size', hidden_layer_sizes) mlflow.log_param('dropout', dropout) mlflow.log_param('embedded_columns', embedded_columns) mlflow.log_param('one_hot_columns', one_hot_columns) mlflow.log_param('numeric_columns', numeric_columns) # Not using these yet mlflow.log_param('epochs', epochs) mlflow.log_param('batch_size', batch_size) mlflow.log_param('learning_rate', learning_rate) # Train history = model.fit(train_ds, epochs=epochs, validation_data=dev_ds, callbacks=[tensorboard_callback]) ####################################################################################################### ### TODO: analyze history to see if model converges/overfits ####################################################################################################### output_csv = os.path.join(output_dir, 'history.pickle') with open(output_csv, 'bw') as f: pickle.dump(history.history, f) ####################################################################################################### ####################################################################################################### ### TODO: Evaluate the model, calculating the metrics. - Done ####################################################################################################### loss, accuracy = model.evaluate(dev_ds) print("*** Dev loss: {} - accuracy: {}".format(loss, accuracy)) mlflow.log_metric('loss', loss) mlflow.log_metric('accuracy', accuracy) predictions = model.predict(test_ds) ####################################################################################################### ####################################################################################################### ### TODO: Convert predictions to classes - Done ####################################################################################################### prediction_classes = np.argmax(predictions, axis=1) ####################################################################################################### ####################################################################################################### ### TODO: Save the results for submission - Done ####################################################################################################### output_csv = os.path.join(output_dir, 'submit.csv') submissions = pd.DataFrame(prediction_classes, columns=[TARGET_COL], index=test_dataset.PID) submissions.to_csv(output_csv) ####################################################################################################### ########################################################################################################### print('All operations completed') if __name__ == '__main__': main()
2.828125
3
catpy/applications/export.py
catmaid/catpy
5
4239
# -*- coding: utf-8 -*- from __future__ import absolute_import from pkg_resources import parse_version from warnings import warn from copy import deepcopy import networkx as nx from networkx.readwrite import json_graph from catpy.applications.base import CatmaidClientApplication NX_VERSION_INFO = parse_version(nx.__version__)._key[1] err_msg = ( "Tried to treat the edge's source/target fields as indices into the list of nodes, but failed. " "See issue #26 [1]. " "Has CATMAID upgraded to networkx 2.x? [2]\n\n" "[1]: https://github.com/catmaid/catpy/issues/26\n" "[2]: https://github.com/catmaid/CATMAID/blob/master/django/requirements.txt" ) def convert_nodelink_data(jso): """NetworkX serialises graphs differently in v1.x and v2.x. This converts v1-style data (as emitted by CATMAID) to v2-style data. See issue #26 https://github.com/catmaid/catpy/issues/26 Parameters ---------- jso : dict Returns ------- dict """ if NX_VERSION_INFO < (2, 0): warn( "You are converting networkx v1-style JSON (emitted by CATMAID) to v2-style JSON," " but you are using networkx v1" ) out = deepcopy(jso) for edge in out["links"]: for label in ["source", "target"]: try: edge[label] = out["nodes"][edge[label]]["id"] except (KeyError, IndexError): raise RuntimeError(err_msg) return out class ExportWidget(CatmaidClientApplication): def get_swc(self, skeleton_id, linearize_ids=False): """ Get a single skeleton in SWC format. Parameters ---------- skeleton_id : int or str linearize_ids : bool Returns ------- str """ return self.get( (self.project_id, "skeleton", skeleton_id, "swc"), {"linearize_ids": "true" if linearize_ids else "false"}, ) def get_connector_archive(self, *args, **kwargs): """Not implemented: requires an async job""" raise NotImplementedError("Requires an async job") def get_treenode_archive(self, *args, **kwargs): """Not implemented: requires an async job""" raise NotImplementedError("Requires an async job") def get_networkx_dict(self, *skeleton_ids): """ Get the data for a networkx graph of the given skeletons in node-link format. In networkx 1.x, as used by CATMAID and therefore returned by this method, "source" and "target" in the dicts in "links" refer to nodes by their indices in the "nodes" array. See ``convert_nodelink_data`` function to convert into networkx 2.x-compatible format. https://networkx.readthedocs.io/en/networkx-1.11/reference/generated/networkx.readwrite.json_graph.node_link_data.html Parameters ---------- skeleton_ids : array-like of (int or str) Returns ------- dict """ return self.post( (self.project_id, "graphexport", "json"), data={"skeleton_list": list(skeleton_ids)}, ) def get_networkx(self, *skeleton_ids): """ Get a networkx MultiDiGraph of the given skeletons. Parameters ---------- skeleton_ids : array-like of (int or str) Returns ------- networkx.MultiDiGraph """ data = self.get_networkx_dict(*skeleton_ids) if NX_VERSION_INFO >= (2, 0): data = convert_nodelink_data(data) return json_graph.node_link_graph(data, directed=True) def get_neuroml(self, skeleton_ids, skeleton_inputs=tuple()): """ Get NeuroML v1.8.1 (level 3, NetworkML) for the given skeletons, possibly with their input synapses constrained to another set of skeletons. N.B. If len(skeleton_ids) > 1, skeleton_inputs will be ignored and only synapses within the first skeleton set will be used in the model. Parameters ---------- skeleton_ids : array-like Skeletons whose NeuroML to return skeleton_inputs : array-like, optional If specified, only input synapses from these skeletons will be added to the NeuroML Returns ------- str NeuroML output string """ data = {"skids": list(skeleton_ids)} if skeleton_inputs: if len(skeleton_ids) > 1: warn( "More than one skeleton ID was selected: ignoring skeleton input constraints" ) else: data["inputs"] = list(skeleton_inputs) return self.post((self.project_id, "neuroml", "neuroml_level3_v181"), data=data) def get_treenode_and_connector_geometry(self, *skeleton_ids): """ Get the treenode and connector information for the given skeletons. The returned dictionary will be of the form { "skeletons": { skeleton_id1: { "treenodes": { treenode_id1: { "location": [x, y, z], "parent_id": id_of_parent_treenode }, treenode_id2: ... }, "connectors": { connector_id1: { "location": [x, y, z], "presynaptic_to": [list, of, treenode, ids], "postsynaptic_to": [list, of, treenode, ids] }, connector_id2: ... } }, skeleton_id2: ... } } Parameters ---------- skeleton_ids : array-like of (int or str) Returns ------- dict """ # todo: factor API call into MorphologyFetcher skeletons = dict() warnings = set() relation_names = {0: "presnaptic_to", 1: "postsynaptic_to"} for skeleton_id in skeleton_ids: data = self.get( "{}/{}/1/0/compact-skeleton".format(self.project_id, skeleton_id) ) skeleton = {"treenodes": dict(), "connectors": dict()} for treenode in data[0]: skeleton["treenodes"][int(treenode[0])] = { "location": treenode[3:6], "parent_id": None if treenode[1] is None else int(treenode[1]), } for connector in data[1]: # NOT the database relation ID # {pre: 0, post: 1, gj: 2} relation_number = connector[2] if relation_number not in relation_names: continue conn_id = int(connector[1]) if conn_id not in skeleton["connectors"]: skeleton["connectors"][conn_id] = { rn: [] for rn in relation_names.values() } skeleton["connectors"][conn_id]["location"] = connector[3:6] skeleton["connectors"][conn_id][relation_names[relation_number]].append( connector[0] ) skeletons[int(skeleton_id)] = skeleton warn( "Skeleton representations contained some unknown treenode->connector relation IDs:\n\t" "\n\t".join(sorted(warnings)) ) return {"skeletons": skeletons}
2.25
2
packages/watchmen-data-kernel/src/watchmen_data_kernel/meta/external_writer_service.py
Indexical-Metrics-Measure-Advisory/watchmen
0
4240
from typing import Optional from watchmen_auth import PrincipalService from watchmen_data_kernel.cache import CacheService from watchmen_data_kernel.common import DataKernelException from watchmen_data_kernel.external_writer import find_external_writer_create, register_external_writer_creator from watchmen_meta.common import ask_meta_storage, ask_snowflake_generator from watchmen_meta.system import ExternalWriterService as ExternalWriterStorageService from watchmen_model.common import ExternalWriterId from watchmen_model.system import ExternalWriter def register_external_writer(external_writer: ExternalWriter) -> None: create = find_external_writer_create(external_writer.type) if create is None: raise DataKernelException(f'Creator not found for external writer[{external_writer.dict()}].') register_external_writer_creator(external_writer.writerCode, create()) class ExternalWriterService: def __init__(self, principal_service: PrincipalService): self.principalService = principal_service def find_by_id(self, writer_id: ExternalWriterId) -> Optional[ExternalWriter]: external_writer = CacheService.external_writer().get(writer_id) if external_writer is not None: if external_writer.tenantId != self.principalService.get_tenant_id(): raise DataKernelException( f'External writer[id={writer_id}] not belongs to ' f'current tenant[id={self.principalService.get_tenant_id()}].') register_external_writer(external_writer) return external_writer storage_service = ExternalWriterStorageService( ask_meta_storage(), ask_snowflake_generator(), self.principalService) storage_service.begin_transaction() try: # noinspection PyTypeChecker external_writer: ExternalWriter = storage_service.find_by_id(writer_id) if external_writer is None: return None CacheService.external_writer().put(external_writer) register_external_writer(external_writer) return external_writer finally: storage_service.close_transaction()
1.875
2
udemy-python/mediaponderada.py
AlbertoAlfredo/exercicios-cursos
1
4241
<reponame>AlbertoAlfredo/exercicios-cursos nota1 = float(input('Digite a nota da primeira nota ')) peso1 = float(input('Digite o peso da primeira nota ')) nota2 = float(input('Digite a nota da seugundo nota ')) peso2 = float(input('Digite o peso da segundo nota ')) media = (nota1/peso1+nota2/peso2)/2 print('A média das duas notas é:', media)
3.6875
4
scrywarden/module.py
chasebrewsky/scrywarden
1
4242
<reponame>chasebrewsky/scrywarden from importlib import import_module from typing import Any def import_string(path: str) -> Any: """Imports a dotted path name and returns the class/attribute. Parameters ---------- path: str Dotted module path to retrieve. Returns ------- Class/attribute at the given import path. Raises ------ ImportError If the path does not exist. """ try: module_path, class_name = path.rsplit('.', 1) except ValueError as error: raise ImportError( f"{path} does not look like a module path", ) from error module = import_module(module_path) try: return getattr(module, class_name) except AttributeError as error: raise ImportError( f"Module '{module_path}' does not define a '{class_name}' " "attribute/class", ) from error
2.65625
3
release/scripts/modules/bl_i18n_utils/utils_spell_check.py
dvgd/blender
0
4243
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # <pep8 compliant> import enchant import os import pickle import re class SpellChecker: """ A basic spell checker. """ # These must be all lower case for comparisons uimsgs = { # OK words "adaptively", "adaptivity", "aren", # aren't "betweens", # yuck! in-betweens! "boolean", "booleans", "chamfer", "couldn", # couldn't "decrement", "derivate", "deterministically", "doesn", # doesn't "duplications", "effector", "equi", # equi-angular, etc. "fader", "globbing", "hasn", # hasn't "hetero", "hoc", # ad-hoc "incompressible", "indices", "instantiation", "iridas", "isn", # isn't "iterable", "kyrgyz", "latin", "merchantability", "mplayer", "ons", # add-ons "pong", # ping pong "scalable", "shadeless", "shouldn", # shouldn't "smoothen", "spacings", "teleport", "teleporting", "vertices", "wasn", # wasn't # Merged words "antialiasing", "antialias", "arcsine", "arccosine", "arctangent", "autoclip", "autocomplete", "autoexec", "autoexecution", "autogenerated", "autolock", "automasking", "autoname", "autopack", "autosave", "autoscale", "autosmooth", "autosplit", "backface", "backfacing", "backimage", "backscattered", "bandnoise", "bindcode", "bitdepth", "bitflag", "bitflags", "bitrate", "blackbody", "blendfile", "blendin", "bonesize", "boundbox", "boxpack", "buffersize", "builtin", "builtins", "bytecode", "chunksize", "customdata", "dataset", "datasets", "de", "deadzone", "deconstruct", "defocus", "denoise", "denoised", "denoising", "denoiser", "deselect", "deselecting", "deselection", "despill", "despilling", "dirtree", "editcurve", "editmesh", "filebrowser", "filelist", "filename", "filenames", "filepath", "filepaths", "forcefield", "forcefields", "fulldome", "fulldomes", "fullscreen", "gridline", "hardlight", "hemi", "hostname", "inbetween", "inscatter", "inscattering", "libdata", "lightprobe", "lightprobes", "lightless", "lineset", "linestyle", "linestyles", "localview", "lookup", "lookups", "mathutils", "micropolygon", "midlevel", "midground", "mixdown", "multi", "multifractal", "multiframe", "multilayer", "multipaint", "multires", "multiresolution", "multisampling", "multiscatter", "multitexture", "multithreaded", "multiuser", "multiview", "namespace", "nodetree", "nodetrees", "keyconfig", "offscreen", "online", "playhead", "popup", "popups", "pre", "precache", "precaching", "precalculate", "precomputing", "prefetch", "premultiply", "premultiplied", "prepass", "prepend", "preprocess", "preprocessing", "preseek", "promillage", "pushdown", "raytree", "readonly", "realtime", "reinject", "reinjected", "rekey", "remesh", "reprojection", "reproject", "reprojecting", "resize", "restpose", "retarget", "retargets", "retargeting", "retargeted", "retiming", "rigidbody", "ringnoise", "rolloff", "runtime", "scanline", "screenshot", "screenshots", "seekability", "selfcollision", "shadowbuffer", "shadowbuffers", "singletexture", "spellcheck", "spellchecking", "startup", "stateful", "starfield", "studiolight", "subflare", "subflares", "subframe", "subframes", "subclass", "subclasses", "subclassing", "subdirectory", "subdirectories", "subdir", "subdirs", "subitem", "submode", "submodule", "submodules", "subpath", "subsize", "substep", "substeps", "targetless", "textbox", "textboxes", "tilemode", "timestamp", "timestamps", "timestep", "timesteps", "todo", "tradeoff", "un", "unassociate", "unassociated", "unbake", "unclosed", "uncomment", "unculled", "undeformed", "undistort", "undistorted", "undistortion", "ungroup", "ungrouped", "unhide", "unindent", "unkeyed", "unlink", "unlinked", "unmute", "unphysical", "unpremultiply", "unprojected", "unprotect", "unreacted", "unreferenced", "unregister", "unselect", "unselected", "unselectable", "unsets", "unshadowed", "unspill", "unstitchable", "unstitch", "unsubdivided", "unsubdivide", "untrusted", "vectorscope", "whitespace", "whitespaces", "worldspace", "workflow", "workspace", "workspaces", # Neologisms, slangs "affectable", "animatable", "automagic", "automagically", "blobby", "blockiness", "blocky", "collider", "colliders", "deformer", "deformers", "determinator", "editability", "effectors", "expander", "instancer", "keyer", "lacunarity", "linkable", "numerics", "occluder", "occluders", "overridable", "passepartout", "perspectively", "pixelate", "pointiness", "polycount", "polygonization", "polygonalization", # yuck! "scalings", "selectable", "selectability", "shaper", "smoothen", "smoothening", "spherize", "spherized", "stitchable", "symmetrize", "trackability", "transmissivity", "rasterized", "rasterization", "rasterizer", "renderer", "renderers", "renderable", "renderability", # Really bad!!! "convertor", "fullscr", # Abbreviations "aero", "amb", "anim", "aov", "app", "bbox", "bboxes", "bksp", # Backspace "bool", "calc", "cfl", "config", "configs", "const", "coord", "coords", "degr", "diff", "dof", "dupli", "duplis", "eg", "esc", "expr", "fac", "fra", "fract", "frs", "grless", "http", "init", "irr", # Irradiance "kbit", "kb", "lang", "langs", "lclick", "rclick", "lensdist", "loc", "rot", "pos", "lorem", "luma", "mbs", # mouse button 'select'. "mem", "multicam", "num", "ok", "orco", "ortho", "pano", "persp", "pref", "prefs", "prev", "param", "premul", "quad", "quads", "quat", "quats", "recalc", "recalcs", "refl", "sce", "sel", "spec", "struct", "structs", "subdiv", "sys", "tex", "texcoord", "tmr", # timer "tri", "tris", "udim", "udims", "upres", # Upresolution "usd", "uv", "uvs", "uvw", "uw", "uvmap", "ve", "vec", "vel", # velocity! "vert", "verts", "vis", "vram", "xor", "xyz", "xzy", "yxz", "yzx", "zxy", "zyx", "xy", "xz", "yx", "yz", "zx", "zy", # General computer/science terms "affine", "albedo", "anamorphic", "anisotropic", "anisotropy", "bitangent", "boid", "boids", "ceil", "compressibility", "curvilinear", "equiangular", "equisolid", "euler", "eulers", "fribidi", "gettext", "hashable", "hotspot", "interocular", "intrinsics", "irradiance", "isosurface", "jitter", "jittering", "jittered", "keymap", "keymaps", "lambertian", "laplacian", "metadata", "msgfmt", "nand", "xnor", "normals", "numpad", "octahedral", "octree", "omnidirectional", "opengl", "openmp", "parametrization", "photoreceptor", "poly", "polyline", "polylines", "probabilistically", "pulldown", "pulldowns", "quantized", "quartic", "quaternion", "quaternions", "quintic", "samplerate", "sawtooth", "scrollback", "scrollbar", "scroller", "searchable", "spacebar", "subtractive", "superellipse", "tooltip", "tooltips", "trackpad", "tuple", "unicode", "viewport", "viewports", "viscoelastic", "vorticity", "waveform", "waveforms", "wildcard", "wildcards", "wintab", # Some Windows tablet API # General computer graphics terms "anaglyph", "bezier", "beziers", "bicubic", "bilinear", "bindpose", "binormal", "blackpoint", "whitepoint", "blinn", "bokeh", "catadioptric", "centroid", "chroma", "chrominance", "clearcoat", "codec", "codecs", "collada", "compositing", "crossfade", "cubemap", "cubemaps", "cuda", "deinterlace", "dropoff", "duotone", "dv", "eigenvectors", "emissive", "equirectangular", "fisheye", "framerate", "gimbal", "grayscale", "icosphere", "inpaint", "kerning", "lightmap", "linearlight", "lossless", "lossy", "luminance", "mantaflow", "matcap", "midtones", "mipmap", "mipmaps", "mip", "ngon", "ngons", "ntsc", "nurb", "nurbs", "perlin", "phong", "pinlight", "qi", "radiosity", "raycasting", "raytrace", "raytracing", "raytraced", "refractions", "remesher", "remeshing", "remesh", "renderfarm", "scanfill", "shader", "shaders", "shadowmap", "shadowmaps", "softlight", "specular", "specularity", "spillmap", "sobel", "stereoscopy", "texel", "timecode", "tonemap", "toon", "transmissive", "vividlight", "volumetrics", "voronoi", "voxel", "voxels", "vsync", "wireframe", "zmask", "ztransp", # Blender terms "audaspace", "azone", # action zone "backwire", "bbone", "bendy", # bones "bmesh", "breakdowner", "bspline", "bweight", "colorband", "datablock", "datablocks", "despeckle", "depsgraph", "dopesheet", "dupliface", "duplifaces", "dupliframe", "dupliframes", "dupliobject", "dupliob", "dupligroup", "duplivert", "dyntopo", "editbone", "editmode", "eevee", "fcurve", "fcurves", "fedge", "fedges", "filmic", "fluidsim", "freestyle", "enum", "enums", "gizmogroup", "gons", # N-Gons "gpencil", "idcol", "keyframe", "keyframes", "keyframing", "keyframed", "lookdev", "luminocity", "mathvis", "metaball", "metaballs", "mball", "metaelement", "metaelements", "metastrip", "metastrips", "movieclip", "mpoly", "mtex", "nabla", "navmesh", "outliner", "overscan", "paintmap", "paintmaps", "polygroup", "polygroups", "poselib", "pushpull", "pyconstraint", "pyconstraints", "qe", # keys... "shaderfx", "shaderfxs", "shapekey", "shapekeys", "shrinkfatten", "shrinkwrap", "softbody", "stucci", "subdiv", "subtype", "sunsky", "tessface", "tessfaces", "texface", "timeline", "timelines", "tosphere", "uilist", "userpref", "vcol", "vcols", "vgroup", "vgroups", "vinterlace", "vse", "wasd", "wasdqe", # keys... "wetmap", "wetmaps", "wpaint", "uvwarp", # UOC (Ugly Operator Categories) "cachefile", "paintcurve", "ptcache", "dpaint", # Algorithm/library names "ashikhmin", # Ashikhmin-Shirley "arsloe", # Texel-Marsen-Arsloe "beckmann", "blackman", # Blackman-Harris "blosc", "burley", # Christensen-Burley "catmull", "catrom", "chebychev", "courant", "cryptomatte", "crypto", "embree", "hosek", "kutta", "lennard", "marsen", # Texel-Marsen-Arsloe "mikktspace", "minkowski", "minnaert", "moskowitz", # Pierson-Moskowitz "musgrave", "nayar", "netravali", "nishita", "ogawa", "oren", "peucker", # Ramer-Douglas-Peucker "pierson", # Pierson-Moskowitz "preetham", "prewitt", "ramer", # Ramer-Douglas-Peucker "runge", "sobol", "verlet", "wilkie", "worley", # Acronyms "aa", "msaa", "ao", "api", "asc", "cdl", "ascii", "atrac", "avx", "bsdf", "bssrdf", "bw", "ccd", "cmd", "cmos", "cpus", "ctrl", "cw", "ccw", "dev", "djv", "dpi", "dvar", "dx", "eo", "fh", "fk", "fov", "fft", "futura", "fx", "gfx", "ggx", "gl", "glsl", "gpl", "gpu", "gpus", "hc", "hdc", "hdr", "hdri", "hdris", "hh", "mm", "ss", "ff", # hh:mm:ss:ff timecode "hsv", "hsva", "hsl", "id", "ies", "ior", "itu", "jonswap", "lhs", "lmb", "mmb", "rmb", "kb", "mocap", "msgid", "msgids", "mux", "ndof", "ppc", "precisa", "px", "qmc", "rdp", "rgb", "rgba", "rhs", "rv", "sdl", "sl", "smpte", "ssao", "ssr", "svn", "tma", "ui", "unix", "vbo", "vbos", "vr", "wxyz", "xr", "ycc", "ycca", "yrgb", "yuv", "yuva", # Blender acronyms "bli", "bpy", "bvh", "dbvt", "dop", # BLI K-Dop BVH "ik", "nla", "py", "qbvh", "rna", "rvo", "simd", "sph", "svbvh", # Files types/formats "avi", "attrac", "autocad", "autodesk", "bmp", "btx", "cineon", "dpx", "dwaa", "dwab", "dxf", "eps", "exr", "fbx", "fbxnode", "ffmpeg", "flac", "gltf", "gzip", "ico", "jpg", "jpeg", "jpegs", "json", "matroska", "mdd", "mkv", "mpeg", "mjpeg", "mtl", "ogg", "openjpeg", "osl", "oso", "piz", "png", "pngs", "po", "quicktime", "rle", "sgi", "stl", "svg", "targa", "tga", "tiff", "theora", "vorbis", "vp9", "wav", "webm", "xiph", "xml", "xna", "xvid", } _valid_before = "(?<=[\\s*'\"`])|(?<=[a-zA-Z][/-])|(?<=^)" _valid_after = "(?=[\\s'\"`.!?,;:])|(?=[/-]\\s*[a-zA-Z])|(?=$)" _valid_words = "(?:{})(?:(?:[A-Z]+[a-z]*)|[A-Z]*|[a-z]*)(?:{})".format(_valid_before, _valid_after) _split_words = re.compile(_valid_words).findall @classmethod def split_words(cls, text): return [w for w in cls._split_words(text) if w] def __init__(self, settings, lang="en_US"): self.settings = settings self.dict_spelling = enchant.Dict(lang) self.cache = set(self.uimsgs) cache = self.settings.SPELL_CACHE if cache and os.path.exists(cache): with open(cache, 'rb') as f: self.cache |= set(pickle.load(f)) def __del__(self): cache = self.settings.SPELL_CACHE if cache and os.path.exists(cache): with open(cache, 'wb') as f: pickle.dump(self.cache, f) def check(self, txt): ret = [] if txt in self.cache: return ret for w in self.split_words(txt): w_lower = w.lower() if w_lower in self.cache: continue if not self.dict_spelling.check(w): ret.append((w, self.dict_spelling.suggest(w))) else: self.cache.add(w_lower) if not ret: self.cache.add(txt) return ret
2.171875
2
naslib/predictors/mlp.py
gmeyerlee/NASLib
0
4244
<gh_stars>0 import numpy as np import os import json import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset from naslib.utils.utils import AverageMeterGroup from naslib.predictors.utils.encodings import encode from naslib.predictors import Predictor # NOTE: faster on CPU device = torch.device("cpu") print("device:", device) def accuracy_mse(prediction, target, scale=100.0): prediction = prediction.detach() * scale target = (target) * scale return F.mse_loss(prediction, target) class FeedforwardNet(nn.Module): def __init__( self, input_dims: int = 5, num_layers: int = 3, layer_width: list = [10, 10, 10], output_dims: int = 1, activation="relu", ): super(FeedforwardNet, self).__init__() assert ( len(layer_width) == num_layers ), "number of widths should be \ equal to the number of layers" self.activation = eval("F." + activation) all_units = [input_dims] + layer_width self.layers = nn.ModuleList( [nn.Linear(all_units[i], all_units[i + 1]) for i in range(num_layers)] ) self.out = nn.Linear(all_units[-1], 1) # make the init similar to the tf.keras version for l in self.layers: torch.nn.init.xavier_uniform_(l.weight) torch.nn.init.zeros_(l.bias) torch.nn.init.xavier_uniform_(self.out.weight) torch.nn.init.zeros_(self.out.bias) def forward(self, x): for layer in self.layers: x = self.activation(layer(x)) return self.out(x) def basis_funcs(self, x): for layer in self.layers: x = self.activation(layer(x)) return x class MLPPredictor(Predictor): def __init__( self, encoding_type="adjacency_one_hot", ss_type="nasbench201", hpo_wrapper=False, hparams_from_file=False ): self.encoding_type = encoding_type self.ss_type = ss_type self.hpo_wrapper = hpo_wrapper self.default_hyperparams = { "num_layers": 20, "layer_width": 20, "batch_size": 32, "lr": 0.001, "regularization": 0.2, } self.hyperparams = None self.hparams_from_file = hparams_from_file def get_model(self, **kwargs): predictor = FeedforwardNet(**kwargs) return predictor def fit(self, xtrain, ytrain, train_info=None, epochs=500, loss="mae", verbose=0): if self.hparams_from_file and self.hparams_from_file not in ['False', 'None'] \ and os.path.exists(self.hparams_from_file): self.hyperparams = json.load(open(self.hparams_from_file, 'rb'))['mlp'] print('loaded hyperparams from', self.hparams_from_file) elif self.hyperparams is None: self.hyperparams = self.default_hyperparams.copy() num_layers = self.hyperparams["num_layers"] layer_width = self.hyperparams["layer_width"] batch_size = self.hyperparams["batch_size"] lr = self.hyperparams["lr"] regularization = self.hyperparams["regularization"] self.mean = np.mean(ytrain) self.std = np.std(ytrain) if self.encoding_type is not None: _xtrain = np.array( [ encode(arch, encoding_type=self.encoding_type, ss_type=self.ss_type) for arch in xtrain ] ) else: _xtrain = xtrain _ytrain = np.array(ytrain) X_tensor = torch.FloatTensor(_xtrain).to(device) y_tensor = torch.FloatTensor(_ytrain).to(device) train_data = TensorDataset(X_tensor, y_tensor) data_loader = DataLoader( train_data, batch_size=batch_size, shuffle=True, drop_last=False, pin_memory=False, ) self.model = self.get_model( input_dims=_xtrain.shape[1], num_layers=num_layers, layer_width=num_layers * [layer_width], ) self.model.to(device) optimizer = optim.Adam(self.model.parameters(), lr=lr, betas=(0.9, 0.99)) if loss == "mse": criterion = nn.MSELoss().to(device) elif loss == "mae": criterion = nn.L1Loss().to(device) self.model.train() for e in range(epochs): meters = AverageMeterGroup() for b, batch in enumerate(data_loader): optimizer.zero_grad() input = batch[0].to(device) target = batch[1].to(device) prediction = self.model(input).view(-1) loss_fn = criterion(prediction, target) # add L1 regularization params = torch.cat( [ x[1].view(-1) for x in self.model.named_parameters() if x[0] == "out.weight" ] ) loss_fn += regularization * torch.norm(params, 1) loss_fn.backward() optimizer.step() mse = accuracy_mse(prediction, target) meters.update( {"loss": loss_fn.item(), "mse": mse.item()}, n=target.size(0) ) if verbose and e % 100 == 0: print("Epoch {}, {}, {}".format(e, meters["loss"], meters["mse"])) train_pred = np.squeeze(self.query(xtrain)) train_error = np.mean(abs(train_pred - ytrain)) return train_error def query(self, xtest, info=None, eval_batch_size=None): if self.encoding_type is not None: xtest = np.array( [ encode(arch, encoding_type=self.encoding_type, ss_type=self.ss_type) for arch in xtest ] ) X_tensor = torch.FloatTensor(xtest).to(device) test_data = TensorDataset(X_tensor) eval_batch_size = len(xtest) if eval_batch_size is None else eval_batch_size test_data_loader = DataLoader( test_data, batch_size=eval_batch_size, pin_memory=False ) self.model.eval() pred = [] with torch.no_grad(): for _, batch in enumerate(test_data_loader): prediction = self.model(batch[0].to(device)).view(-1) pred.append(prediction.cpu().numpy()) pred = np.concatenate(pred) return np.squeeze(pred) def set_random_hyperparams(self): if self.hyperparams is None: params = self.default_hyperparams.copy() else: params = { "num_layers": int(np.random.choice(range(5, 25))), "layer_width": int(np.random.choice(range(5, 25))), "batch_size": 32, "lr": np.random.choice([0.1, 0.01, 0.005, 0.001, 0.0001]), "regularization": 0.2, } self.hyperparams = params return params
2.390625
2
pythonforandroid/recipes/libx264/__init__.py
Joreshic/python-for-android
1
4245
from pythonforandroid.toolchain import Recipe, shprint, current_directory, ArchARM from os.path import exists, join, realpath from os import uname import glob import sh class LibX264Recipe(Recipe): version = 'x264-snapshot-20170608-2245-stable' # using mirror url since can't use ftp url = 'http://mirror.yandex.ru/mirrors/ftp.videolan.org/x264/snapshots/{version}.tar.bz2' md5sum = 'adf3b87f759b5cc9f100f8cf99276f77' def should_build(self, arch): build_dir = self.get_build_dir(arch.arch) return not exists(join(build_dir, 'lib', 'libx264.a')) def build_arch(self, arch): with current_directory(self.get_build_dir(arch.arch)): env = self.get_recipe_env(arch) configure = sh.Command('./configure') shprint(configure, '--cross-prefix=arm-linux-androideabi-', '--host=arm-linux', '--disable-asm', '--disable-cli', '--enable-pic', '--disable-shared', '--enable-static', '--prefix={}'.format(realpath('.')), _env=env) shprint(sh.make, '-j4', _env=env) shprint(sh.make, 'install', _env=env) recipe = LibX264Recipe()
1.976563
2
Win/reg.py
QGB/QPSU
6
4246
#coding=utf-8 try: if __name__.startswith('qgb.Win'): from .. import py else: import py except Exception as ei: raise ei raise EnvironmentError(__name__) if py.is2(): import _winreg as winreg from _winreg import * else: import winreg from winreg import * def get(skey,name,root=HKEY_CURRENT_USER,returnType=True): ''' from qgb.Win import reg reg.get(r'Software\Microsoft\Windows\CurrentVersion\Internet Settings','ProxyEnable') reg.get(r'HKLM\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters\Size' ) There are seven predefined root keys, traditionally named according to their constant handles defined in the Win32 API skey不能包含 name,否则 FileNotFoundError: [WinError 2] 系统找不到指定的文件。 ''' r = OpenKey(root,skey) r = QueryValueEx(r,name) if returnType:return r[0],'{} : {}'.format(REG_TYPE[r[1]],r[1]) else :return r[0] def set(skey,name,value,root=HKEY_CURRENT_USER,type='auto,or REG_TYPE int',returnType=True): r = OpenKey(root,skey,0,KEY_SET_VALUE) if not py.isint(type): if py.isint(value):type=4 if py.istr(value):type=1 if py.isbyte(value):type=3 #TODO test,and add more rule SetValueEx(r,'ProxyEnable',0,type,value) if get(skey,name,root=root,returnType=False)==value: return 'reg.set [{}] {}={} sucess!'.format(skey[-55:],name,value) else: return 'reg.set [{}] {}={} Failed !'.format(skey,name,value) REG_TYPE={ 0 : 'REG_NONE', 1 : 'REG_SZ', 2 : 'REG_EXPAND_SZ', 3 : 'REG_BINARY', 4 : 'REG_DWORD', 5 : 'REG_DWORD_BIG_ENDIAN', 6 : 'REG_LINK', 7 : 'REG_MULTI_SZ', 8 : 'REG_RESOURCE_LIST', 9 : 'REG_FULL_RESOURCE_DESCRIPTOR', 10: 'REG_RESOURCE_REQUIREMENTS_LIST', 11: 'REG_QWORD'}
2.203125
2
tests/test_handler.py
CJSoldier/webssh
13
4247
<filename>tests/test_handler.py import unittest import paramiko from tornado.httputil import HTTPServerRequest from tests.utils import read_file, make_tests_data_path from webssh.handler import MixinHandler, IndexHandler, InvalidValueError class TestMixinHandler(unittest.TestCase): def test_get_real_client_addr(self): handler = MixinHandler() handler.request = HTTPServerRequest(uri='/') self.assertIsNone(handler.get_real_client_addr()) ip = '127.0.0.1' handler.request.headers.add('X-Real-Ip', ip) self.assertEqual(handler.get_real_client_addr(), False) handler.request.headers.add('X-Real-Port', '12345x') self.assertEqual(handler.get_real_client_addr(), False) handler.request.headers.update({'X-Real-Port': '12345'}) self.assertEqual(handler.get_real_client_addr(), (ip, 12345)) handler.request.headers.update({'X-Real-ip': None}) self.assertEqual(handler.get_real_client_addr(), False) handler.request.headers.update({'X-Real-Port': '12345x'}) self.assertEqual(handler.get_real_client_addr(), False) class TestIndexHandler(unittest.TestCase): def test_get_specific_pkey_with_plain_key(self): fname = 'test_rsa.key' cls = paramiko.RSAKey key = read_file(make_tests_data_path(fname)) pkey = IndexHandler.get_specific_pkey(cls, key, None) self.assertIsInstance(pkey, cls) pkey = IndexHandler.get_specific_pkey(cls, key, 'iginored') self.assertIsInstance(pkey, cls) pkey = IndexHandler.get_specific_pkey(cls, 'x'+key, None) self.assertIsNone(pkey) def test_get_specific_pkey_with_encrypted_key(self): fname = 'test_rsa_password.key' cls = paramiko.RSAKey password = '<PASSWORD>' key = read_file(make_tests_data_path(fname)) pkey = IndexHandler.get_specific_pkey(cls, key, password) self.assertIsInstance(pkey, cls) pkey = IndexHandler.get_specific_pkey(cls, 'x'+key, None) self.assertIsNone(pkey) with self.assertRaises(paramiko.PasswordRequiredException): pkey = IndexHandler.get_specific_pkey(cls, key, None) def test_get_pkey_obj_with_plain_key(self): fname = 'test_ed25519.key' cls = paramiko.Ed25519Key key = read_file(make_tests_data_path(fname)) pkey = IndexHandler.get_pkey_obj(key, None, fname) self.assertIsInstance(pkey, cls) pkey = IndexHandler.get_pkey_obj(key, 'iginored', fname) self.assertIsInstance(pkey, cls) with self.assertRaises(InvalidValueError) as exc: pkey = IndexHandler.get_pkey_obj('x'+key, None, fname) self.assertIn('Invalid private key', str(exc)) def test_get_pkey_obj_with_encrypted_key(self): fname = 'test_ed25519_password.key' password = '<PASSWORD>' cls = paramiko.Ed25519Key key = read_file(make_tests_data_path(fname)) pkey = IndexHandler.get_pkey_obj(key, password, fname) self.assertIsInstance(pkey, cls) with self.assertRaises(InvalidValueError) as exc: pkey = IndexHandler.get_pkey_obj(key, 'wrongpass', fname) self.assertIn('Wrong password', str(exc)) with self.assertRaises(InvalidValueError) as exc: pkey = IndexHandler.get_pkey_obj('x'+key, password, fname) self.assertIn('Invalid private key', str(exc)) with self.assertRaises(paramiko.PasswordRequiredException): pkey = IndexHandler.get_pkey_obj(key, '', fname)
2.359375
2
apps/notifications/tests/test_views.py
SCiO-systems/qcat
0
4248
<gh_stars>0 import logging from unittest import mock from unittest.mock import call from django.conf import settings from django.contrib.auth import get_user_model from django.core.signing import Signer from django.urls import reverse from django.http import Http404 from django.test import RequestFactory from braces.views import LoginRequiredMixin from django.test import override_settings from model_mommy import mommy from apps.notifications.models import Log, StatusUpdate, MemberUpdate, ReadLog, \ ActionContextQuerySet from apps.notifications.views import LogListView, LogCountView, ReadLogUpdateView, \ LogQuestionnairesListView, LogInformationUpdateCreateView, \ LogSubscriptionPreferencesView, SignedLogSubscriptionPreferencesView from apps.qcat.tests import TestCase class LogListViewTest(TestCase): def setUp(self): self.view = LogListView() self.url_path = reverse('notification_partial_list') self.request = RequestFactory().get(self.url_path) self.user = {} self.request.user = self.user self.view_instance = self.setup_view( view=self.view, request=self.request ) member_add_log = mommy.make( _model=Log, id=8, action=settings.NOTIFICATIONS_ADD_MEMBER ) self.change_log = mommy.make( _model=Log, id=42, action=settings.NOTIFICATIONS_CHANGE_STATUS ) mommy.make(_model=StatusUpdate, log=self.change_log) mommy.make(_model=MemberUpdate, log=member_add_log) def get_view_with_get_querystring(self, param): request = RequestFactory().get( '{url}?{param}'.format(url=self.url_path, param=param) ) request.user = self.user return self.setup_view(view=self.view, request=request) def test_force_login(self): self.assertIsInstance(self.view_instance, LoginRequiredMixin) def test_queryset_method(self): self.assertEqual( self.view_instance.queryset_method, 'user_log_list' ) def test_queryset_method_pending(self): self.assertEqual( self.get_view_with_get_querystring('is_pending').queryset_method, 'user_pending_list' ) def test_get_paginate_by(self): self.assertEqual( self.view_instance.get_paginate_by(None), settings.NOTIFICATIONS_LIST_PAGINATE_BY ) def test_get_paginate_by_teaser(self): self.assertEqual( self.get_view_with_get_querystring('is_teaser').get_paginate_by(None), settings.NOTIFICATIONS_TEASER_PAGINATE_BY ) @mock.patch('apps.notifications.views.Log.actions.user_log_list') def test_get_queryset(self, mock_actions): self.view_instance.get_queryset() mock_actions.assert_called_once_with(user={}) @mock.patch('apps.notifications.views.Log.actions.user_pending_list') def test_get_queryset_pending(self, mock_actions): self.get_view_with_get_querystring('is_pending').get_queryset() mock_actions.assert_called_once_with(user={}) @mock.patch.object(LogListView, 'add_user_aware_data') def test_get_context_data_logs(self, mock_add_user_aware_data): self.view_instance.object_list = 'foo' self.view_instance.get_context_data() mock_add_user_aware_data.assert_called_once_with('foo') def _test_add_user_aware_data(self): # for faster tests, mock all the elements. elements are created here # as this makes the tests more readable. pth = 'apps.notifications.views.Log.actions' with mock.patch('{}.read_id_list'.format(pth)) as read_id_list: read_id_list.return_value = [42] with mock.patch('{}.user_pending_list'.format(pth)) as pending: pending.values_list.return_value = [8, 42] logs = Log.objects.all() return list(self.view_instance.add_user_aware_data(logs)) def test_add_user_aware_data_keys(self): data_keys = self._test_add_user_aware_data()[0].keys() for key in ['id', 'created', 'text', 'is_read', 'is_todo', 'edit_url']: self.assertTrue(key in data_keys) def test_add_user_aware_data_is_read(self): data = self._test_add_user_aware_data() # logs are ordered by creation date - 42 is the newer one self.assertTrue(data[0]['is_read']) def test_add_user_aware_data_is_not_read(self): data = self._test_add_user_aware_data() self.assertFalse(data[1]['is_read']) #def test_add_user_aware_data_is_todo(self): # data = self._test_add_user_aware_data() # self.assertTrue(data[1]['is_todo']) def test_add_user_aware_data_is_not_todo(self): data = self._test_add_user_aware_data() self.assertFalse(data[0]['is_todo']) @override_settings(NOTIFICATIONS_ACTIONS={'foo': 'bar', 'result': '42'}) def test_statuses_in_context(self): self.view_instance.object_list = [] context = self.view_instance.get_context_data() self.assertDictEqual( context['statuses'], {'foo': 'bar', 'result': '42'} ) @mock.patch('apps.notifications.views.Log.actions.user_log_list') def test_status_filter_queryset(self, mock_user_log_list): mock_user_log_list.return_value = [] self.assertEqual( [], self.view_instance.get_queryset() ) @mock.patch('apps.notifications.views.Log.actions.user_log_list') def test_status_filter_queryset_for_status(self, mock_user_log_list): mock_user_log_list.return_value = Log.objects.filter() view = self.view view.get_statuses = mock.MagicMock(return_value=[3]) view_instance = self.setup_view( view=view, request=self.request ) self.assertQuerysetEqual( view_instance.get_queryset(), [self.change_log.id], transform=lambda item: item.id ) def test_get_status_invalid(self): request = RequestFactory().get('{}?statuses=foo'.format(self.url_path)) view = self.setup_view(self.view, request) self.assertEqual(view.get_statuses(), []) @override_settings(NOTIFICATIONS_ACTIONS={'2': 'bar'}) def test_get_status_invalid_config(self): request = RequestFactory().get('{}?statuses=1'.format(self.url_path)) view = self.setup_view(self.view, request) self.assertEqual(view.get_statuses(), []) def test_get_status_valid(self): request = RequestFactory().get('{}?statuses=1,2,3'.format(self.url_path)) view = self.setup_view(self.view, request) self.assertEqual(view.get_statuses(), [1, 2, 3]) class ReadLogUpdateViewTest(TestCase): def setUp(self): self.view = ReadLogUpdateView() self.request = RequestFactory().post( reverse('notification_read'), data={'user': 123, 'log': 'log', 'checked': 'true'} ) self.user = mock.MagicMock(id=123) self.request.user = self.user self.view_instance = self.setup_view(view=self.view, request=self.request) def test_validate_data_all_keys(self): self.assertFalse( self.view_instance.validate_data() ) def test_validate_data_id_type(self): self.assertFalse( self.view_instance.validate_data(checked='1', log='1', user='foo') ) def test_validate_data_invalid_user(self): self.assertFalse( self.view_instance.validate_data(checked='456', log='1', user='456') ) def test_validate_data_valid(self): self.assertTrue( self.view_instance.validate_data(checked='1', log='1', user='123') ) @mock.patch('apps.notifications.views.ReadLog.objects.update_or_create') def test_post_valid_checked(self, mock_get_or_create): self.view_instance.post(request=self.request) mock_get_or_create.assert_called_once_with( user_id='123', log_id='log', defaults={'is_read': True} ) @mock.patch('apps.notifications.views.ReadLog.objects.update_or_create') def test_post_valid_unchecked(self, mock_get_or_create): request = RequestFactory().post( reverse('notification_read'), data={'user': 123, 'log': 'log', 'checked': 'false'} ) self.view_instance.post(request=request) mock_get_or_create.assert_called_once_with( user_id='123', log_id='log', defaults={'is_read': False} ) @mock.patch.object(ReadLogUpdateView, 'validate_data') def test_post_invalid(self, mock_validate_data): logging.disable(logging.CRITICAL) mock_validate_data.return_value = False with self.assertRaises(Http404): self.view_instance.post(request=self.request) class LogCountViewTest(TestCase): def setUp(self): super().setUp() self.request = RequestFactory().get(reverse('notification_new_count')) self.request.user = mommy.make(_model=get_user_model()) self.view = self.setup_view(view=LogCountView(), request=self.request) mommy.make( _model=Log, catalyst=self.request.user, action=settings.NOTIFICATIONS_CHANGE_STATUS, _quantity=4 ) mommy.make( _model=Log, catalyst=self.request.user, action=settings.NOTIFICATIONS_EDIT_CONTENT, _quantity=2 ) @mock.patch('apps.notifications.views.Log.actions.only_unread_logs') def test_get_unread_only(self, mock_only_unread_logs): self.view.get(request=self.request) mock_only_unread_logs.assert_called_once_with( user=self.request.user ) def test_log_count(self): response = self.view.get(request=self.request) self.assertEqual(response.content, b'4') def test_log_count_one_read(self): mommy.make( _model=ReadLog, log=Log.objects.filter(action=settings.NOTIFICATIONS_CHANGE_STATUS).first(), user=self.request.user, is_read=True ) response = self.view.get(request=self.request) self.assertEqual(response.content, b'3') class LogQuestionnairesListViewTest(TestCase): def setUp(self): super().setUp() self.request = RequestFactory().get(reverse('notification_questionnaire_logs')) self.request.user = 'foo' self.view = self.setup_view(view=LogQuestionnairesListView(), request=self.request) @mock.patch.object(ActionContextQuerySet, 'user_log_list') def test_get_questionnaire_logs(self, mock_user_log_list): self.view.get_questionnaire_logs('foo') mock_user_log_list.assert_called_once_with(user='foo') @mock.patch.object(LogQuestionnairesListView, 'get_questionnaire_logs') def test_get(self, mock_get_questionnaire_logs): mock_get_questionnaire_logs.return_value = ['foo_1', 'foo_2', 'bar_3'] response = self.view.get(self.request) self.assertEqual( response.content, b'{"questionnaires": ["bar_3", "foo_1", "foo_2"]}' ) class LogInformationUpdateCreateViewTest(TestCase): def setUp(self): super().setUp() self.url = reverse('notification_inform_compiler') self.view = LogInformationUpdateCreateView() self.request = RequestFactory().get(self.url) self.request.user = 'foo' self.view = self.setup_view(view=self.view, request=self.request) def test_get_compiler_query(self): questionnaire = mock.MagicMock() self.view.get_compiler(questionnaire) self.assertEqual( questionnaire.method_calls[0], call.questionnairemembership_set.get(role='compiler') ) def test_get_compiler(self): sentinel = mock.sentinel questionnaire = mock.MagicMock() questionnaire.questionnairemembership_set.get.return_value = sentinel self.assertEqual( self.view.get_compiler(questionnaire), sentinel.user ) @mock.patch('apps.notifications.views.query_questionnaire') def test_get_questionnaire(self, mock_query_questionnaire): one_questionnaire = mock.MagicMock() one_questionnaire.first = lambda : 'foo' mock_query_questionnaire.return_value = one_questionnaire self.assertEqual( self.view.get_questionnaire('foo'), 'foo' ) @mock.patch('apps.notifications.views.query_questionnaire') def test_get_questionnaire_raises(self, mock_query_questionnaire): not_exists = mock.MagicMock() not_exists.exists = lambda : False mock_query_questionnaire.return_value = not_exists with self.assertRaises(Http404): self.view.get_questionnaire('foo') @mock.patch('apps.notifications.views.query_questionnaire') def test_get_questionnaire_calls_filter(self, mock_query_questionnaire): self.view.get_questionnaire('foo') mock_query_questionnaire.assert_called_once_with( identifier='foo', request=self.request ) @override_settings(NOTIFICATIONS_FINISH_EDITING='setting') @mock.patch.object(LogInformationUpdateCreateView, 'get_questionnaire') @mock.patch.object(LogInformationUpdateCreateView, 'get_compiler') def test_post(self, mock_get_compiler, mock_get_questionnaire): compiler = mock.MagicMock() mock_get_questionnaire.return_value = mock.sentinel.questionnaire mock_get_compiler.return_value = compiler request = RequestFactory().post(self.url, data={ 'identifier': 'foo', 'message': 'bar' }) with mock.patch('apps.notifications.views.InformationLog') as mock_create: self.setup_view(view=self.view, request=self.request).post(request) mock_create.assert_called_once_with( action='setting', questionnaire=mock.sentinel.questionnaire, receiver=compiler, sender='foo' ) class LogSubscriptionPreferencesMixinTest(TestCase): def setUp(self): self.url = reverse('notification_preferences') self.view = LogSubscriptionPreferencesView() self.request = RequestFactory().get(self.url) self.user = mommy.make(_model=get_user_model()) self.obj = self.user.mailpreferences self.request.user = self.user self.request._messages = mock.MagicMock() self.view = self.setup_view(view=self.view, request=self.request) self.view.object = self.obj def test_get_initial(self): self.obj.wanted_actions = 'some,thing,yay' self.assertEqual( ['some', 'thing', 'yay'], self.view.get_initial()['wanted_actions'] ) def test_get_form_valid_changed_language(self): self.view.object = mock.MagicMock() self.view.object.has_changed_language = False form = mock.MagicMock() form.changed_data = ['language'] self.view.form_valid(form) self.assertTrue(self.view.object.has_changed_language) def test_get_form_valid_message(self): self.view.form_valid(mock.MagicMock()) self.assertTrue(self.request._messages.method_calls) class SignedLogSubscriptionPreferencesViewTest(TestCase): def setUp(self): self.user = mommy.make(_model=get_user_model()) self.obj = self.user.mailpreferences self.view = SignedLogSubscriptionPreferencesView() self.request = RequestFactory().get(str(self.obj.get_signed_url())) self.request._messages = mock.MagicMock() self.view = self.setup_view(view=self.view, request=self.request) self.view.object = self.obj def test_get_success_url_signed(self): mock_user = mock.MagicMock(return_value=self.user) mock_user.is_authenticated = False mock_user.id = self.user.id self.request.user = mock_user self.assertEqual( self.view.get_success_url(), self.obj.get_signed_url() ) def test_get_success_url_user(self): self.request.user = self.user self.assertEqual( self.view.get_success_url(), reverse('notification_preferences') ) def test_get_object_user(self): self.request.user = self.user self.assertEqual( self.view.get_object(), self.obj ) def test_get_signed_object(self): mock_user = mock.MagicMock(return_value=self.user) mock_user.is_authenticated = False mock_user.id=self.user.id self.request.user = mock_user self.view.kwargs['token'] = mock.MagicMock() with mock.patch.object(Signer, 'unsign') as mock_unsign: mock_unsign.return_value = self.obj.id self.assertEqual( self.view.get_object(), self.obj ) mock_unsign.assert_called_with(self.view.kwargs['token']) def test_get_signed_object_404(self): mock_user = mock.MagicMock(return_value=self.user) mock_user.is_authenticated = False mock_user.id = self.user.id self.request.user = mock_user self.view.kwargs['token'] = mock.MagicMock() with self.assertRaises(Http404): self.view.get_object()
2.140625
2
examples/resources.py
willvousden/clint
1,230
4249
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import sys import os sys.path.insert(0, os.path.abspath('..')) from clint import resources resources.init('kennethreitz', 'clint') lorem = 'Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.' print('%s created.' % resources.user.path) resources.user.write('lorem.txt', lorem) print('lorem.txt created') assert resources.user.read('lorem.txt') == lorem print('lorem.txt has correct contents') resources.user.delete('lorem.txt') print('lorem.txt deleted') assert resources.user.read('lorem.txt') == None print('lorem.txt deletion confirmed')
2.21875
2
photos/urls.py
charlesmugambi/Instagram
0
4250
from django.conf.urls import url from django.conf import settings from django.conf.urls.static import static from . import views urlpatterns = [ url(r'^$', views.index, name='index'), url(r'^image/$', views.add_image, name='upload_image'), url(r'^profile/$', views.profile_info, name='profile'), url(r'^update/$', views.profile_update, name='update'), url(r'^comment/(?P<image_id>\d+)', views.comment, name='comment'), url(r'^search/', views.search_results, name = 'search_results'), url(r'^follow/(?P<user_id>\d+)', views.follow, name = 'follow'), url(r'^unfollow/(?P<user_id>\d+)', views.unfollow, name='unfollow'), url(r'^likes/(\d+)/$', views.like_images,name='likes') ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
1.90625
2
bread.py
vgfang/breadbot
0
4251
<reponame>vgfang/breadbot import random import math from fractions import Fraction from datetime import datetime from jinja2 import Template # empty class for passing to template engine class Recipe: def __init__(self): return # returns flour percent using flour type def get_special_flour_percent(flourType: str, breadFlourPercent:int) -> int: if flourType == 'Hard Red Whole Wheat' or flourType == 'Hard White Wheat': percentages = [0,25,30,35,40,45,50] percentages = list(filter(lambda x: 100-breadFlourPercent >= x, percentages)) return random.choice(percentages) elif flourType == 'Rye' and breadFlourPercent >= 75: percentages = [0,10,15,20] percentages = list(filter(lambda x: 100-breadFlourPercent >= x, percentages)) return random.choice(percentages) else: percentages = [0,10,15,20,25.30] percentages = list(filter(lambda x: 100-breadFlourPercent >= x, percentages)) return random.choice(percentages) # returns multiplied spoon units from teaspoon fraction input, 3 tsp = 1 tbsp def spoon_mult(tsp: Fraction(), multiplier: float) -> str: tsp *= Fraction(multiplier) spoonString = "" if tsp >= 3: # use tablespoons tablespoons = int(tsp // 3) remainder = (tsp % 3) / 3 if tablespoons != 0: spoonString += f"{tablespoons} " if remainder.numerator != 0: spoonString += f"{remainder.numerator}/{remainder.denominator} " return f"{spoonString}tbsp" else: teaspoons = int(tsp // 1) remainder = tsp % 1 if teaspoons != 0: spoonString += f"{teaspoons} " if remainder.numerator != 0: spoonString += f"{remainder.numerator}/{remainder.denominator} " return f"{spoonString}tsp" # returns amount given the type of flavoring(spices) def get_flavor_amount(flavor: str, flourAmount: int) -> str: colorsDict = {} scale = 4 # floors to the 500g/scale for clean fractional multiplication multiplier = math.floor(flourAmount/500*scale) / scale # flavors in category red = ('Cardamom', 'Nutmeg','Hazelnut','Almond','Lemon Extract','Peppermint') blue = ('Cinnamon', 'Allspice') green = ('Vanilla', 'Instant Coffee') purple = ('Orange Zest', 'Lime Zest', 'Lemon Zest', 'Ginger') orange = ('Lavender', 'Hojicha', 'Matcha', 'Earl Grey', 'Oolong') # default possible teaspoon values list for flour = 500, 3 tsp = 1 tbsp redAmt = list(map(Fraction, [1/4, 1/2])) blueAmt = list(map(Fraction, [1/4, 1/2, 1])) greenAmt = list(map(Fraction, [1/2, 1, 3/2])) purpleAmt = list(map(Fraction, [2, 3, 9/2])) orangeAmt = list(map(Fraction, [9])) # random tablespoons colorsDict[red] = list(map(lambda x: spoon_mult(x, multiplier), redAmt)) colorsDict[blue] = list(map(lambda x: spoon_mult(x, multiplier), blueAmt)) colorsDict[green] = list(map(lambda x: spoon_mult(x, multiplier), greenAmt)) colorsDict[purple] = list(map(lambda x: spoon_mult(x, multiplier), purpleAmt)) colorsDict[orange] = list(map(lambda x: spoon_mult(x, multiplier), orangeAmt)) for color in colorsDict.keys(): if flavor in color: return random.choice(colorsDict[color]) # print("Error in Flavor Input: " + flavor) return "get_flavor_amount wrong input" # returns list of spices using number of spices def get_spices(spicesNum: int) -> [str]: spicesList = ['Cinnamon', 'Allspice', 'Cardamom', 'Nutmeg'] if spicesNum > len(spicesList): print("WARNING: spicesNum exceeds spices of num") return spicesList if spicesNum == 1: return random.sample(['Cinnamon', 'Cardamom'], 1) return random.sample(spicesList, spicesNum) # check if extract is nut def is_nut(extract: str) -> bool: nuts = ['Hazelnut','Almond'] return extract in nuts # checks if extract1 and extract2 are both allowed based on zest/extract same flavor def zest_extract_same_flavor(extract1: str, extract2: str) -> bool: if extract1 == extract2: return False e1 = extract1.split(" ") # may need to change if new types are added e2 = extract2.split(" ") if len(e1) != 2 or len(e2) != 2: return False if e1[0]==e2[0] and 'Zest' in [e1[1],e2[1]] and 'Extract' in [e1[1],e2[1]]: return True return False # return list of extracts using number of extracts def get_extracts(extractsNum: int) -> [str]: if extractsNum == 0: return [] allowedExtracts = ['Vanilla', 'Hazelnut', 'Almond', 'Lemon Extract', 'Peppermint', 'Orange Zest', 'Lime Zest', 'Lemon Zest', 'Ginger'] # if more than one, vanilla must be included currentExtracts = ['Vanilla'] allowedExtracts.remove('Vanilla') extractsLeft = extractsNum-1 while extractsLeft > 0: if len(allowedExtracts) <= 0: print("Incorrecnt number of extracts") return "Incorrecnt number of extracts" newExtract = random.choice(allowedExtracts) # one nut at a time if True in map(is_nut, currentExtracts) and is_nut(newExtract): allowedExtracts.remove(newExtract) continue # skips decrement, try again # no zest + extract comibination of the same flavor for currentExtract in currentExtracts: exit = False if zest_extract_same_flavor(currentExtract, newExtract): allowedExtracts.remove(newExtract) exit = True # skips decrement, try again if exit: continue # passed restraints, remove it from allowed currentExtracts.append(newExtract) if newExtract in allowedExtracts: allowedExtracts.remove(newExtract) extractsLeft -= 1 return currentExtracts # return percentage of enrichment def get_enrichment_percent(enrichment: str) -> int: if enrichment == 'Cream Cheese': return 10 return 5 # return liquid percent from liquid tpye def get_liquid_percent(liquidType: str) -> int: if liquidType in ['Heavy Cream', 'Coconut Milk']: return 13 elif liquidType in ['Cow Milk']: return 63 # print("Error in liquidType input.") return -1 # return fruit puree fruit choice(s), omitted fruit chance weighting for now def get_fruit_purees() -> [str]: fruitPureesNum = random.randint(1,2) fruitPureesChoices = ['Banana','Apple','Cherry','Strawberry','Fig','Mango'] return random.sample(fruitPureesChoices, fruitPureesNum) # retrun fruit puree percent from 0-2 fruitPurees using random generation def get_fruit_purees_percent(fruitPurees) -> [float]: totalFruitPureePercent = random.choice([25,30,35,40,45,50]) fruitPureeNum = len(fruitPurees) if fruitPureeNum == 1: return [totalFruitPureePercent] elif fruitPureeNum == 2: firstPercent = random.randint(0,totalFruitPureePercent) return [firstPercent, totalFruitPureePercent - firstPercent] return [0] # returns rounded ml conversion from percent, used in template def to_g(flourMl, percent) -> int: return round(flourMl * percent/100) # takes filename and writes an html recipe file def generate_recipe(breadname: str, filename: str, flourGramInput: int) -> str: # ALL NUMBERICAL VALUES REPRESENT PERCENTAGES r = Recipe() r.breadname = breadname r.totalFlourGrams = flourGramInput r.totalLiquidPercent = 63 r.preferment = random.choice(['Poolish', 'None']) r.breadFlourPercent = random.choice([75, 50]) # FLOUR STYLE r.breadShape = random.choice(['Pullman', 'Regular']) # FLOUR TYPES r.specialFlour = random.choice([ 'Einkorn', 'Khorasan', 'Spelt', 'Emmer', 'Semolina (Durum)', 'Hard Red Whole Wheat', 'Regular Whole Wheat', 'Hard White Wheat', 'Rye' ]) r.specialFlourPercent = get_special_flour_percent(r.specialFlour, r.breadFlourPercent) r.whiteFlourPercent = 100 - r.breadFlourPercent - r.specialFlourPercent # SPICES/FLAVORING spicesNum = random.randint(0,4) r.spices = get_spices(spicesNum) extractsNum = random.randint(0,3) r.extracts = get_extracts(extractsNum) teaList = ['Lavender', 'Hojicha', 'Matcha', 'Earl Grey', 'Oolong', 'Instant Coffee'] r.tea = random.choice(teaList) # illegal with fruit purees and all extracts but ginger, almond, and hazelnut # BASIC INGREDIENTS r.sugar = random.choice(['Brown Sugar','White Sugar','Honey','Molasses']) r.sugarPercent = random.choice([5,10,15]) r.salt = 'Table Salt' r.saltPercent = random.choice([1,1.5,2]) r.yeast = random.choice(['Instant Yeast','Active Yeast']) r.yeastPercent = 0.62 # ENRICHMENTS – All 5% , only one chosen enrichmentList = ['Olive Oil','Butter','Cream Cheese','Coconut oil'] if r.tea == 'Instant Coffee': enrichmentList.remove('Olive Oil') r.enrichment = random.choice(enrichmentList) r.enrichmentPercent = get_enrichment_percent(r.enrichment) if r.enrichment == 'Cream Cheese': r.totalLiquidPercent -= 5 # LIQUIDS # cap total liquid at 60% when these sugars are used if r.sugar in ['Honey', 'Molasses']: r.totalLiquidPercent = 60 # cow milk only if there is no preferemnt viableLiquids = ['Heavy Cream', 'Coconut Milk', 'Cow Milk'] if r.preferment != 'None': viableLiquids.remove('Cow Milk') r.liquid = random.choice(viableLiquids) r.liquidPercent = get_liquid_percent(r.liquid) ## LIQUIDS - FRUIT PUREE r.fruitPurees = [] r.fruitPureesPercent = [] if r.preferment != 'Poolish': # 50 percent chance to include # sugar reduction by 5 percent r.sugarPercent -= 5 r.fruitPurees = get_fruit_purees() r.fruitPureesPercent = get_fruit_purees_percent(r.fruitPurees) # account for cow milk r.liquidPercent = min(r.liquidPercent, r.totalLiquidPercent - sum(r.fruitPureesPercent)) r.waterPercent = max(0, r.totalLiquidPercent - sum(r.fruitPureesPercent) - r.liquidPercent) # BICOLOR ROLL r.isBicolorRoll = False if len(r.fruitPureesPercent) > 0 or r.tea in ['Lavender', 'Hojicha', 'Matcha', 'Earl Grey', 'Oolong']: r.isBicolorRoll = random.choice([True,False]) # COCOA POWDER r.cocoaPowderPercent = 0 cocoaPowderAllowedExtracts = ['Ginger', 'Almond', 'Hazelnut'] if r.fruitPurees == [] and any(not x in cocoaPowderAllowedExtracts for x in r.extracts): # allowed if random.randint(0,2) == 0: r.tea = '' # removes tea r.cocoaPowderPercent = round(random.choice([5,10])/100 * r.whiteFlourPercent,1) r.whiteFlourPercent = round(r.whiteFlourPercent - r.cocoaPowderPercent,1) # WRITE FORMAT time = datetime.now() r.datetime = time.strftime('%A, %b %d %Y') templateFile = open("./template.html") templateString = templateFile.read() ## Conversion to ml for percentages r.totalLiquidGrams = to_g(r.totalFlourGrams, r.totalLiquidPercent) r.breadFlourGrams = to_g(r.totalFlourGrams, r.breadFlourPercent) r.specialFlourGrams = to_g(r.totalFlourGrams, r.specialFlourPercent) r.whiteFlourGrams = to_g(r.totalFlourGrams, r.whiteFlourPercent) r.sugarGrams = to_g(r.totalFlourGrams, r.sugarPercent) r.saltGrams = to_g(r.totalFlourGrams, r.saltPercent) r.yeastGrams = to_g(r.totalFlourGrams, r.yeastPercent) r.spicesAmt = list(map(lambda x: get_flavor_amount(x, r.totalFlourGrams), r.spices)) r.extractsAmt = list(map(lambda x: get_flavor_amount(x, r.totalFlourGrams), r.extracts)) r.teaAmt = get_flavor_amount(r.tea, r.totalFlourGrams) r.enrichmentGrams = to_g(r.totalFlourGrams, r.enrichmentPercent) r.waterGrams = to_g(r.totalFlourGrams, r.waterPercent) r.liquidGrams = to_g(r.totalFlourGrams, r.liquidPercent) r.fruitPureesGrams = list(map(lambda x: to_g(r.totalFlourGrams,x), r.fruitPureesPercent)) r.cocoaPowderGrams = round(r.cocoaPowderPercent/100 * r.totalFlourGrams) template = Template(templateString) htmlString = template.render(r = r) outfile = open(f'{filename}', 'w') outfile.write(htmlString) outfile.close() templateFile.close() return htmlString
3.1875
3
posthog/api/test/test_organization_domain.py
msnitish/posthog
0
4252
import datetime from unittest.mock import patch import dns.resolver import dns.rrset import pytest import pytz from django.utils import timezone from freezegun import freeze_time from rest_framework import status from posthog.models import Organization, OrganizationDomain, OrganizationMembership, Team from posthog.test.base import APIBaseTest, BaseTest class FakeAnswer(object): def __init__(self, answer): self.answer = answer class FakeDNSResponse(object): def __init__(self, answer): self.response = FakeAnswer(answer) class TestOrganizationDomains(BaseTest): def test_continuous_verification_task(self): """ Tests the task that re-verifies domains to ensure ownership is maintained. """ pass class TestOrganizationDomainsAPI(APIBaseTest): domain: OrganizationDomain = None # type: ignore another_domain: OrganizationDomain = None # type: ignore another_org: Organization = None # type: ignore @classmethod def setUpTestData(cls): super().setUpTestData() cls.domain = OrganizationDomain.objects.create(organization=cls.organization, domain="myposthog.com") cls.another_org = Organization.objects.create(name="Another Org") Team.objects.create(organization=cls.another_org) cls.another_domain = OrganizationDomain.objects.create(organization=cls.another_org, domain="org.posthog.net") # List & retrieve domains def test_can_list_and_retrieve_domains(self): response = self.client.get("/api/organizations/@current/domains") self.assertEqual(response.status_code, status.HTTP_200_OK) response_data = response.json() self.assertEqual(response_data["count"], 1) item = response_data["results"][0] self.assertEqual(item["domain"], "myposthog.com") self.assertEqual(item["verified_at"], None) self.assertEqual(item["is_verified"], False) self.assertEqual(item["jit_provisioning_enabled"], False) self.assertEqual(item["sso_enforcement"], "") self.assertRegex(item["verification_challenge"], r"[0-9A-Za-z_-]{32}") retrieve_response = self.client.get(f"/api/organizations/{self.organization.id}/domains/{self.domain.id}") self.assertEqual(retrieve_response.status_code, status.HTTP_200_OK) self.assertEqual(retrieve_response.json(), response_data["results"][0]) def test_cannot_list_or_retrieve_domains_for_other_org(self): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() response = self.client.get(f"/api/organizations/@current/domains/{self.another_domain.id}") self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) self.assertEqual(response.json(), self.not_found_response()) response = self.client.get(f"/api/organizations/{self.another_org.id}/domains/{self.another_domain.id}") self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) self.assertEqual(response.json(), self.permission_denied_response()) # Create domains def test_create_domain(self): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() with self.settings(MULTI_TENANCY=True): response = self.client.post( "/api/organizations/@current/domains/", { "domain": "the.posthog.com", "verified_at": "2022-01-01T14:25:25.000Z", # ignore me "verification_challenge": "123", # ignore me "jit_provisioning_enabled": True, # ignore me "sso_enforcement": "saml", # ignore me }, ) self.assertEqual(response.status_code, status.HTTP_201_CREATED) response_data = response.json() self.assertEqual(response_data["domain"], "the.posthog.com") self.assertEqual(response_data["verified_at"], None) self.assertEqual(response_data["jit_provisioning_enabled"], False) self.assertRegex(response_data["verification_challenge"], r"[0-9A-Za-z_-]{32}") instance = OrganizationDomain.objects.get(id=response_data["id"]) self.assertEqual(instance.domain, "the.posthog.com") self.assertEqual(instance.verified_at, None) self.assertEqual(instance.last_verification_retry, None) self.assertEqual(instance.sso_enforcement, "") @pytest.mark.skip_on_multitenancy def test_creating_domain_on_self_hosted_is_automatically_verified(self): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() with freeze_time("2021-08-08T20:20:08Z"): response = self.client.post( "/api/organizations/@current/domains/", { "domain": "the.posthog.com", "verified_at": "2022-01-01T14:25:25.000Z", # ignore me "verification_challenge": "123", # ignore me "jit_provisioning_enabled": True, # ignore me "sso_enforcement": "saml", # ignore me }, ) self.assertEqual(response.status_code, status.HTTP_201_CREATED) response_data = response.json() self.assertEqual(response_data["domain"], "the.posthog.com") self.assertEqual( response_data["verified_at"], "2021-08-08T20:20:08Z", ) self.assertEqual(response_data["jit_provisioning_enabled"], False) self.assertRegex(response_data["verification_challenge"], r"[0-9A-Za-z_-]{32}") instance = OrganizationDomain.objects.get(id=response_data["id"]) self.assertEqual(instance.domain, "the.posthog.com") self.assertEqual( instance.verified_at, datetime.datetime(2021, 8, 8, 20, 20, 8, tzinfo=pytz.UTC), ) self.assertEqual(instance.last_verification_retry, None) self.assertEqual(instance.sso_enforcement, "") def test_cannot_create_duplicate_domain(self): OrganizationDomain.objects.create(domain="i-registered-first.com", organization=self.another_org) count = OrganizationDomain.objects.count() self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() response = self.client.post("/api/organizations/@current/domains/", {"domain": "i-registered-first.com"},) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual( response.json(), { "type": "validation_error", "code": "unique", "detail": "domain with this domain already exists.", "attr": "domain", }, ) self.assertEqual(OrganizationDomain.objects.count(), count) def test_cannot_create_invalid_domain(self): count = OrganizationDomain.objects.count() self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() invalid_domains = ["<EMAIL>", "🦔🦔🦔.com", "one.two.c", "--alpha.com", "javascript: alert(1)"] for _domain in invalid_domains: response = self.client.post("/api/organizations/@current/domains/", {"domain": _domain,},) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual( response.json(), { "type": "validation_error", "code": "invalid_input", "detail": "Please enter a valid domain or subdomain name.", "attr": "domain", }, ) self.assertEqual(OrganizationDomain.objects.count(), count) @patch("posthog.models.organization_domain.dns.resolver.resolve") def test_can_request_verification_for_unverified_domains(self, mock_dns_query): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() mock_dns_query.return_value = FakeDNSResponse( [ dns.rrset.from_text( "_posthog-challenge.myposthog.com.", 3600, "IN", "TXT", self.domain.verification_challenge, ) ], ) with freeze_time("2021-08-08T20:20:08Z"): response = self.client.post(f"/api/organizations/@current/domains/{self.domain.id}/verify") self.assertEqual(response.status_code, status.HTTP_200_OK) response_data = response.json() self.domain.refresh_from_db() self.assertEqual(response_data["domain"], "myposthog.com") self.assertEqual( response_data["verified_at"], self.domain.verified_at.strftime("%Y-%m-%dT%H:%M:%SZ"), ) self.assertEqual(response_data["is_verified"], True) self.assertEqual( self.domain.verified_at, datetime.datetime(2021, 8, 8, 20, 20, 8, tzinfo=pytz.UTC), ) self.assertEqual(self.domain.is_verified, True) @patch("posthog.models.organization_domain.dns.resolver.resolve") def test_domain_is_not_verified_with_missing_challenge(self, mock_dns_query): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() mock_dns_query.side_effect = dns.resolver.NoAnswer() with freeze_time("2021-10-10T10:10:10Z"): with self.settings(MULTI_TENANCY=True): response = self.client.post(f"/api/organizations/@current/domains/{self.domain.id}/verify") self.assertEqual(response.status_code, status.HTTP_200_OK) response_data = response.json() self.domain.refresh_from_db() self.assertEqual(response_data["domain"], "myposthog.com") self.assertEqual(response_data["verified_at"], None) self.assertEqual(self.domain.verified_at, None) self.assertEqual( self.domain.last_verification_retry, datetime.datetime(2021, 10, 10, 10, 10, 10, tzinfo=pytz.UTC), ) @patch("posthog.models.organization_domain.dns.resolver.resolve") def test_domain_is_not_verified_with_incorrect_challenge(self, mock_dns_query): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() mock_dns_query.return_value = FakeDNSResponse( [dns.rrset.from_text("_posthog-challenge.myposthog.com.", 3600, "IN", "TXT", "incorrect_challenge",)], ) with freeze_time("2021-10-10T10:10:10Z"): with self.settings(MULTI_TENANCY=True): response = self.client.post(f"/api/organizations/@current/domains/{self.domain.id}/verify") self.assertEqual(response.status_code, status.HTTP_200_OK) response_data = response.json() self.domain.refresh_from_db() self.assertEqual(response_data["domain"], "myposthog.com") self.assertEqual(response_data["verified_at"], None) self.assertEqual(self.domain.verified_at, None) self.assertEqual( self.domain.last_verification_retry, datetime.datetime(2021, 10, 10, 10, 10, 10, tzinfo=pytz.UTC), ) def test_cannot_request_verification_for_verified_domains(self): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() self.domain.verified_at = timezone.now() self.domain.save() response = self.client.post(f"/api/organizations/@current/domains/{self.domain.id}/verify") self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual( response.json(), { "type": "validation_error", "code": "already_verified", "detail": "This domain has already been verified.", "attr": None, }, ) def test_only_admin_can_create_verified_domains(self): count = OrganizationDomain.objects.count() response = self.client.post("/api/organizations/@current/domains/", {"domain": "evil.posthog.com"}) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) self.assertEqual( response.json(), self.permission_denied_response("Your organization access level is insufficient."), ) self.assertEqual(OrganizationDomain.objects.count(), count) def test_only_admin_can_request_verification(self): response = self.client.post(f"/api/organizations/@current/domains/{self.domain.id}/verify") self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) self.assertEqual( response.json(), self.permission_denied_response("Your organization access level is insufficient."), ) self.domain.refresh_from_db() self.assertEqual(self.domain.verified_at, None) # Update domains def test_can_update_jit_provisioning_and_sso_enforcement(self): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() self.domain.verified_at = timezone.now() self.domain.save() response = self.client.patch( f"/api/organizations/@current/domains/{self.domain.id}/", {"sso_enforcement": "google-oauth2", "jit_provisioning_enabled": True}, ) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.json()["sso_enforcement"], "google-oauth2") self.assertEqual(response.json()["jit_provisioning_enabled"], True) self.domain.refresh_from_db() self.assertEqual(self.domain.sso_enforcement, "google-oauth2") self.assertEqual(self.domain.jit_provisioning_enabled, True) def test_cannot_enforce_sso_or_enable_jit_provisioning_on_unverified_domain(self): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() # SSO Enforcement response = self.client.patch( f"/api/organizations/@current/domains/{self.domain.id}/", {"sso_enforcement": "google-oauth2"}, ) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual( response.json(), { "type": "validation_error", "code": "verification_required", "detail": "This attribute cannot be updated until the domain is verified.", "attr": "sso_enforcement", }, ) self.domain.refresh_from_db() self.assertEqual(self.domain.sso_enforcement, "") # JIT Provisioning response = self.client.patch( f"/api/organizations/@current/domains/{self.domain.id}/", {"jit_provisioning_enabled": True}, ) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual( response.json(), { "type": "validation_error", "code": "verification_required", "detail": "This attribute cannot be updated until the domain is verified.", "attr": "jit_provisioning_enabled", }, ) self.domain.refresh_from_db() self.assertEqual(self.domain.jit_provisioning_enabled, False) def test_only_allowed_parameters_can_be_updated(self): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() response = self.client.patch( f"/api/organizations/@current/domains/{self.domain.id}/", {"verified_at": "2020-01-01T12:12:12Z", "verification_challenge": "123"}, ) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.json()["verified_at"], None) self.assertRegex(response.json()["verification_challenge"], r"[0-9A-Za-z_-]{32}") def test_only_admin_can_update_domain(self): self.domain.verified_at = timezone.now() self.domain.save() response = self.client.patch( f"/api/organizations/{self.organization.id}/domains/{self.domain.id}/", {"sso_enforcement": "google-oauth2", "jit_provisioning_enabled": True}, ) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) self.assertEqual( response.json(), self.permission_denied_response("Your organization access level is insufficient."), ) self.domain.refresh_from_db() self.assertEqual(self.domain.jit_provisioning_enabled, False) self.assertEqual(self.domain.sso_enforcement, "") def test_cannot_update_domain_for_another_org(self): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() self.another_domain.verified_at = timezone.now() self.another_domain.save() response = self.client.patch( f"/api/organizations/{self.another_org.id}/domains/{self.another_domain.id}/", {"sso_enforcement": "google-oauth2", "jit_provisioning_enabled": True}, ) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) self.assertEqual(response.json(), self.permission_denied_response()) self.another_domain.refresh_from_db() self.assertEqual(self.another_domain.jit_provisioning_enabled, False) self.assertEqual(self.another_domain.sso_enforcement, "") # Delete domains def test_admin_can_delete_domain(self): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() response = self.client.delete(f"/api/organizations/@current/domains/{self.domain.id}") self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT) self.assertEqual(response.content, b"") self.assertFalse(OrganizationDomain.objects.filter(id=self.domain.id).exists()) def test_only_admin_can_delete_domain(self): response = self.client.delete(f"/api/organizations/@current/domains/{self.domain.id}") self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) self.assertEqual( response.json(), self.permission_denied_response("Your organization access level is insufficient."), ) self.domain.refresh_from_db() def test_cannot_delete_domain_for_another_org(self): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() response = self.client.delete(f"/api/organizations/{self.another_org.id}/domains/{self.another_domain.id}") self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) self.assertEqual(response.json(), self.permission_denied_response()) self.another_domain.refresh_from_db()
2.28125
2
tutorial/test input.py
nataliapryakhina/FA_group3
0
4253
import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt from os import listdir from tensorflow.keras.callbacks import ModelCheckpoint dataDir = "./data/trainSmallFA/" files = listdir(dataDir) files.sort() totalLength = len(files) inputs = np.empty((len(files), 3, 64, 64)) targets = np.empty((len(files), 3, 64, 64)) for i, file in enumerate(files): npfile = np.load(dataDir + file) d = npfile['a'] inputs[i] = d[0:3] # inx, iny, mask targets[i] = d[3:6] # p, velx, vely # print("inputs shape = ", inputs.shape) print(np.shape(targets[:, 1, :, :].flatten())) maxvel = np.amax(np.sqrt(targets[:, 1, :, :]* targets[:, 1, :, :] + targets[:, 2, :, :]* targets[:, 2, :, :])) print(maxvel) targets[:, 1:3, :, :] /= maxvel targets[:, 0, :, :] /= np.amax(targets[:, 0, :, :]) for input in inputs: plt.figure(num=None, figsize=(20, 10), dpi=80, facecolor='w', edgecolor='k') # predicted data plt.subplot(331) plt.title('x vel') plt.imshow(input[0, :, :], cmap='jet') # vmin=-100,vmax=100, cmap='jet') plt.colorbar() plt.subplot(332) plt.title('y vel') plt.imshow(input[1, :, :], cmap='jet') plt.colorbar() plt.show()
2.328125
2
pepper/responder/brain.py
cltl/pepper
29
4254
<filename>pepper/responder/brain.py<gh_stars>10-100 from pepper.framework import * from pepper import logger from pepper.language import Utterance from pepper.language.generation.thoughts_phrasing import phrase_thoughts from pepper.language.generation.reply import reply_to_question from .responder import Responder, ResponderType from pepper.language import UtteranceType from pepper.knowledge import sentences, animations from random import choice import re from typing import Optional, Union, Tuple, Callable class BrainResponder(Responder): def __init__(self): self._log = logger.getChild(self.__class__.__name__) @property def type(self): return ResponderType.Brain @property def requirements(self): return [TextToSpeechComponent, BrainComponent] def respond(self, utterance, app): # type: (Utterance, Union[TextToSpeechComponent, BrainComponent]) -> Optional[Tuple[float, Callable]] try: utterance.analyze() self._log.debug("TRIPLE: {}".format(utterance.triple)) if utterance.triple is not None: brain_response_statement = [] brain_response_question = [] if utterance.type == UtteranceType.QUESTION: brain_response_question = app.brain.query_brain(utterance) reply = reply_to_question(brain_response_question) self._log.info("REPLY to question: {}".format(reply)) else: brain_response_statement = app.brain.update(utterance, reason_types=True) # Searches for types in dbpedia reply = phrase_thoughts(brain_response_statement, True, True, True) self._log.info("REPLY to statement: {}".format(reply)) if (isinstance(reply, str) or isinstance(reply, unicode)) and reply != "": # Return Score and Response # Make sure to not execute the response here, but just to return the response function return 1.0, lambda: app.say(re.sub(r"[\s+_]", " ", reply)) elif brain_response_statement: # Thank Human for the Data! return 1.0, lambda: app.say("{} {}".format(choice([choice(sentences.THANK), choice(sentences.HAPPY)]), choice(sentences.PARSED_KNOWLEDGE)), animations.HAPPY) elif brain_response_question: # Apologize to human for not knowing return 1.0, lambda: app.say("{} {}".format(choice(sentences.SORRY), choice(sentences.NO_ANSWER)), animations.ASHAMED) except Exception as e: self._log.error(e)
2.5
2
fedora_college/modules/content/views.py
fedora-infra/fedora-college
2
4255
<filename>fedora_college/modules/content/views.py # -*- coding: utf-8 -*- import re from unicodedata import normalize from flask import Blueprint, render_template, current_app from flask import redirect, url_for, g, abort from sqlalchemy import desc from fedora_college.core.database import db from fedora_college.modules.content.forms import * # noqa from fedora_college.core.models import * # noqa from fedora_college.fedmsgshim import publish from flask_fas_openid import fas_login_required bundle = Blueprint('content', __name__, template_folder='templates') from fedora_college.modules.content.media import * # noqa _punct_re = re.compile(r'[\t !"#$%&\'()*\-/<=>?@\[\\\]^_`{|},.]+') # Verify if user is authenticated def authenticated(): return hasattr(g, 'fas_user') and g.fas_user # generate url slug def slugify(text, delim=u'-'): """Generates an slightly worse ASCII-only slug.""" result = [] for word in _punct_re.split(text.lower()): word = normalize('NFKD', word).encode('ascii', 'ignore') if word: result.append(word) return unicode(delim.join(result)) # attach tags to a content entry def attach_tags(tags, content): rem = TagsMap.query.filter_by(content_id=content.content_id).all() for r in rem: db.session.delete(r) db.session.commit() for tag in tags: tag_db = Tags.query.filter_by(tag_text=tag).first() if tag_db is None: tag_db = Tags(tag) db.session.add(tag_db) db.session.commit() Map = TagsMap(tag_db.tag_id, content.content_id) db.session.add(Map) db.session.commit() # delete content @bundle.route('/content/delete/<posturl>', methods=['GET', 'POST']) @bundle.route('/content/delete/<posturl>/', methods=['GET', 'POST']) @fas_login_required def delete_content(posturl=None): if posturl is not None: db.session.rollback() content = Content.query.filter_by(slug=posturl).first_or_404() rem = TagsMap.query.filter_by( content_id=content.content_id).all() '''delete mapped tags''' for r in rem: db.session.delete(r) comments = Comments.query.filter_by( content_id=content.content_id).all() '''delete comments with foriegn keys''' for r in comments: db.session.delete(r) db.session.delete(content) db.session.commit() return redirect(url_for('profile.user', nickname=g.fas_user['username'])) abort(404) # add / edit more content @bundle.route('/content/add/', methods=['GET', 'POST']) @bundle.route('/content/add', methods=['GET', 'POST']) @bundle.route('/content/edit/<posturl>/', methods=['GET', 'POST']) @bundle.route('/content/edit/<posturl>', methods=['GET', 'POST']) @fas_login_required def addcontent(posturl=None): if authenticated(): form = CreateContent() form_action = url_for('content.addcontent') media = Media.query.order_by(desc(Media.timestamp)).limit(10).all() if posturl is not None: content = Content.query.filter_by(slug=posturl).first_or_404() form = CreateContent(obj=content) if form.validate_on_submit(): form.populate_obj(content) tags = str(form.tags.data).split(',') attach_tags(tags, content) content.rehtml() db.session.commit() '''Publish the message''' msg = content.getdata() msg['title'] = content.title msg['link'] = current_app.config[ 'EXTERNAL_URL'] + content.slug publish( topic=current_app.config['CONTENT_EDIT_TOPIC'], msg=msg ) if content.type_content == "blog": print url_for('content.blog', slug=posturl) return redirect(url_for('content.blog', slug=posturl)) return redirect(url_for('home.content', slug=posturl)) else: if form.validate_on_submit(): url_name = slugify(form.title.data) content = Content(form.title.data, url_name, form.description.data, form.active.data, form.tags.data, g.fas_user['username'], form.type_content.data ) tags = str(form.tags.data).split(',') try: db.session.add(content) db.session.commit() attach_tags(tags, content) '''Publish the message''' msg = content.getdata() msg['title'] = content.title msg['link'] = current_app.config[ 'EXTERNAL_URL'] + url_name publish( topic=current_app.config['CONTENT_CREATE_TOPIC'], msg=msg ) if content.type_content == "blog": return redirect(url_for('content.blog', slug=posturl)) return redirect(url_for('home.content', slug=url_name)) # Duplicate entry except Exception as e: return str(e) db.session.rollback() pass tags = Tags.query.all() return render_template('content/edit_content.html', form=form, form_action=form_action, title="Create Content", media=media[0:5], tags=tags) abort(404) # View Blog post @bundle.route('/blog', methods=['GET', 'POST']) @bundle.route('/blog/', methods=['GET', 'POST']) @bundle.route('/blog/<slug>/', methods=['GET', 'POST']) @bundle.route('/blog/<slug>', methods=['GET', 'POST']) @bundle.route('/blog/page/<id>', methods=['GET', 'POST']) @bundle.route('/blog/page/<id>', methods=['GET', 'POST']) def blog(slug=None, id=0): id = int(id) screen = Content.query. \ filter_by( type_content="lecture", active=True ).limit(10).all() if slug is not None: try: posts = Content.query. \ filter_by(slug=slug).all() except: posts = "No such posts in database." else: try: posts = Content.query. \ filter_by(type_content="blog").all() if id > 0: posts = posts[id - 1:id + 5] else: posts = posts[0:5] except: posts = [] return render_template('blog/index.html', title='Blog', content=posts, screen=screen, id=id, slug=slug )
2.0625
2
tests/components/airthings/test_config_flow.py
MrDelik/core
30,023
4256
<reponame>MrDelik/core<filename>tests/components/airthings/test_config_flow.py """Test the Airthings config flow.""" from unittest.mock import patch import airthings from homeassistant import config_entries from homeassistant.components.airthings.const import CONF_ID, CONF_SECRET, DOMAIN from homeassistant.core import HomeAssistant from homeassistant.data_entry_flow import RESULT_TYPE_CREATE_ENTRY, RESULT_TYPE_FORM from tests.common import MockConfigEntry TEST_DATA = { CONF_ID: "client_id", CONF_SECRET: "secret", } async def test_form(hass: HomeAssistant) -> None: """Test we get the form.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == RESULT_TYPE_FORM assert result["errors"] is None with patch("airthings.get_token", return_value="test_token",), patch( "homeassistant.components.airthings.async_setup_entry", return_value=True, ) as mock_setup_entry: result2 = await hass.config_entries.flow.async_configure( result["flow_id"], TEST_DATA, ) await hass.async_block_till_done() assert result2["type"] == RESULT_TYPE_CREATE_ENTRY assert result2["title"] == "Airthings" assert result2["data"] == TEST_DATA assert len(mock_setup_entry.mock_calls) == 1 async def test_form_invalid_auth(hass: HomeAssistant) -> None: """Test we handle invalid auth.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) with patch( "airthings.get_token", side_effect=airthings.AirthingsAuthError, ): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], TEST_DATA, ) assert result2["type"] == RESULT_TYPE_FORM assert result2["errors"] == {"base": "invalid_auth"} async def test_form_cannot_connect(hass: HomeAssistant) -> None: """Test we handle cannot connect error.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) with patch( "airthings.get_token", side_effect=airthings.AirthingsConnectionError, ): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], TEST_DATA, ) assert result2["type"] == RESULT_TYPE_FORM assert result2["errors"] == {"base": "cannot_connect"} async def test_form_unknown_error(hass: HomeAssistant) -> None: """Test we handle unknown error.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) with patch( "airthings.get_token", side_effect=Exception, ): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], TEST_DATA, ) assert result2["type"] == RESULT_TYPE_FORM assert result2["errors"] == {"base": "unknown"} async def test_flow_entry_already_exists(hass: HomeAssistant) -> None: """Test user input for config_entry that already exists.""" first_entry = MockConfigEntry( domain="airthings", data=TEST_DATA, unique_id=TEST_DATA[CONF_ID], ) first_entry.add_to_hass(hass) with patch("airthings.get_token", return_value="token"): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER}, data=TEST_DATA ) assert result["type"] == "abort" assert result["reason"] == "already_configured"
2.34375
2
utils/utils.py
scomup/StereoNet-ActiveStereoNet
0
4257
<reponame>scomup/StereoNet-ActiveStereoNet # ------------------------------------------------------------------------------ # Copyright (c) NKU # Licensed under the MIT License. # Written by <NAME> (<EMAIL>) # ------------------------------------------------------------------------------ import os import torch import torch.nn.functional as F #import cv2 as cv import numpy as np def GERF_loss(GT, pred, args): # mask = (GT < args.maxdisp) & (GT >= 0) mask = GT > 0 mask.detach_() # print(mask.size(), GT.size(), pred.size()) count = len(torch.nonzero(mask)) # print(count) if count == 0: count = 1 return torch.sum(torch.sqrt(torch.pow(GT[mask] - pred[mask], 2) + 4) /2 - 1) / count def smooth_L1_loss(GT, pred, args): mask = GT < args.maxdisp mask.detach_() # loss = F.smooth_l1_loss(pred[mask], GT[mask], size_average=True) loss = (pred[mask] - GT[mask]).abs().mean() return loss if __name__ == '__main__': pass # import matplotlib.pyplot as plt # image = cv.imread('/media/lxy/sdd1/ActiveStereoNet/StereoNet_pytorch/results/forvideo/iter-122.jpg') #im_gray = cv.imread('/media/lxy/sdd1/ActiveStereoNet/StereoNet_pytorch/results/forvideo/iter-133.jpg', cv.IMREAD_GRAYSCALE) # print(im_gray.shape) #im_color = cv.applyColorMap(im_gray*2, cv.COLORMAP_JET) # cv.imshow('test', im_color) # cv.waitKey(0) #cv.imwrite('test.png',im_color) # print(image.shape) # plt.figure('Image') # sc =plt.imshow(image) # sc.set_cmap('hsv') # plt.colorbar() # plt.axis('off') # plt.show() # print('end') # image[:,:,0].save('/media/lxy/sdd1/ActiveStereoNet/StereoNet_pytorch/results/pretrained_StereoNet_single/it1er-151.jpg')
2.15625
2
worker/main.py
Devalent/facial-recognition-service
0
4258
<reponame>Devalent/facial-recognition-service from aiohttp import web import base64 import io import face_recognition async def encode(request): request_data = await request.json() # Read base64 encoded image url = request_data['image'].split(',')[1] image = io.BytesIO(base64.b64decode(url)) # Load image data np_array = face_recognition.load_image_file(image) # Find face locations locations = face_recognition.face_locations(np_array) # Create face encodings encodings = face_recognition.face_encodings(np_array, locations) results = [] for i in range(len(locations)): top, right, bottom, left = locations[i] result = { 'x': left, 'y': top, 'width': right - left, 'height': bottom - top, 'encodings': encodings[i].tolist() } results.append(result) return web.json_response(results) def main(): app = web.Application() app.router.add_post('/encode', encode) web.run_app(app, host='0.0.0.0', port='3000') main()
2.71875
3
rblod/setup.py
TiKeil/Two-scale-RBLOD
0
4259
# ~~~ # This file is part of the paper: # # " An Online Efficient Two-Scale Reduced Basis Approach # for the Localized Orthogonal Decomposition " # # https://github.com/TiKeil/Two-scale-RBLOD.git # # Copyright 2019-2021 all developers. All rights reserved. # License: Licensed as BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause) # Authors: # <NAME> # <NAME> # ~~~ from setuptools import setup setup(name='rblod', version='2021.1', description='Pymor support for RBLOD', author='<NAME>', author_email='<EMAIL>', license='MIT', packages=['rblod'])
1.382813
1
bin/euclid_fine_plot_job_array.py
ndeporzio/cosmicfish
0
4260
import os import shutil import numpy as np import pandas as pd import seaborn as sns import cosmicfish as cf import matplotlib.pyplot as plt import dill # Instruct pyplot to use seaborn sns.set() # Set project, data, CLASS directories projectdir = os.environ['STORAGE_DIR'] datastore = os.environ['DATASTORE_DIR'] classpath = os.environ['CLASS_DIR'] fidx = int(os.environ['FORECAST_INDEX']) # Generate output paths fp_resultsdir = projectdir cf.makedirectory(fp_resultsdir) # Specify resolution of numerical integrals derivative_step = 0.008 # How much to vary parameter to calculate numerical derivative g_derivative_step = 0.1 mu_integral_step = 0.05 # For calculating numerical integral wrt mu between -1 and 1 # Linda Fiducial Cosmology fp_fid = { "A_s" : 2.2321e-9, "n_s" : 0.967, "omega_b" : 0.02226, "omega_cdm" : 0.1127, "tau_reio" : 0.0598, "h" : 0.701, "T_cmb" : 2.726, # Units [K] "N_ncdm" : 4., "deg_ncdm" : 1.0, "T_ncdm" : (0.79/2.726), # Units [T_cmb]. "m_ncdm" : 0.01, # Units [eV] "b0" : 1.0, "beta0" : 1.7, "beta1" : 1.0, "alphak2" : 1.0, "sigma_fog_0" : 250000, #Units [m s^-2] "N_eff" : 0.0064, #We allow relativistic neutrinos in addition to our DM relic "relic_vary" : "N_ncdm", # Fix T_ncdm or m_ncdm "m_nu" : 0.02 } # EUCLID values z_table = np.array([0.65, 0.75, 0.85, 0.95, 1.05, 1.15, 1.25, 1.35, 1.45, 1.55, 1.65, 1.75, 1.85, 1.95]) dNdz = np.array([2434.280, 4364.812, 4728.559, 4825.798, 4728.797, 4507.625, 4269.851, 3720.657, 3104.309, 2308.975, 1514.831, 1474.707, 893.716, 497.613]) skycover = 0.3636 # Run Fisher Forecast full_masses = np.geomspace(0.01, 10., 21) full_temps = np.array([0.79, 0.91, 0.94, 1.08]) mass_index=(fidx % 21) temp_index=(fidx // 21) masses = np.array([full_masses[mass_index]]) temps = np.array([full_temps[temp_index]]) omegacdm_set = np.array([ fp_fid['omega_cdm'] - ((masses/cf.NEUTRINO_SCALE_FACTOR)* np.power(tval / 1.95, 3.)) for tidx, tval in enumerate(temps)]) fp_fiducialset = [[ dict(fp_fid, **{ 'm_ncdm' : masses[midx], 'omega_cdm' : omegacdm_set[tidx, midx], 'T_ncdm' : temps[tidx]/2.726}) for midx, mval in enumerate(masses)] for tidx, tval in enumerate(temps)] fp_forecastset = [[cf.forecast( classpath, datastore, '2relic', fidval, z_table, "EUCLID", dNdz, fsky=skycover, dstep=derivative_step, gstep=g_derivative_step, RSD=True, FOG=True, AP=True, COV=True) for fididx, fidval in enumerate(fidrowvals)] for fidrowidx, fidrowvals in enumerate(fp_fiducialset)] #dill.load_session('') for frowidx, frowval in enumerate(fp_forecastset): for fidx, fcst in enumerate(frowval): if type(fcst.fisher)==type(None): fcst.gen_pm() fcst.gen_fisher( fisher_order=[ 'omega_b', 'omega_cdm', 'n_s', 'A_s', 'tau_reio', 'h', 'N_ncdm', 'M_ncdm', 'sigma_fog', 'beta0', 'beta1', 'alpha_k2'], mu_step=mu_integral_step, skipgen=False) print("Relic Forecast ", fidx, " complete...") dill.dump_session(os.path.join(fp_resultsdir, 'fp_'+str(temp_index)+'_'+str(mass_index)+'.db')) else: print('Fisher matrix already generated!')
2.296875
2
project4/test/test_arm.py
XDZhelheim/CS205_C_CPP_Lab
3
4261
<reponame>XDZhelheim/CS205_C_CPP_Lab import os if __name__ == "__main__": dims = ["32", "64", "128", "256", "512", "1024", "2048"] for dim in dims: os.system( f"perf stat -e r11 -x, -r 10 ../matmul.out ../data/mat-A-{dim}.txt ../data/mat-B-{dim}.txt ./out/out-{dim}.txt 2>>res_arm.csv" ) print(f"Finished {dim}") print("Finished.")
2.0625
2
src/oci/apm_traces/models/query_result_row_type_summary.py
Manny27nyc/oci-python-sdk
249
4262
<reponame>Manny27nyc/oci-python-sdk<filename>src/oci/apm_traces/models/query_result_row_type_summary.py # coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class QueryResultRowTypeSummary(object): """ A summary of the datatype, unit and related metadata of an individual row element of a query result row that is returned. """ def __init__(self, **kwargs): """ Initializes a new QueryResultRowTypeSummary object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param data_type: The value to assign to the data_type property of this QueryResultRowTypeSummary. :type data_type: str :param unit: The value to assign to the unit property of this QueryResultRowTypeSummary. :type unit: str :param display_name: The value to assign to the display_name property of this QueryResultRowTypeSummary. :type display_name: str :param expression: The value to assign to the expression property of this QueryResultRowTypeSummary. :type expression: str :param query_result_row_type_summaries: The value to assign to the query_result_row_type_summaries property of this QueryResultRowTypeSummary. :type query_result_row_type_summaries: list[oci.apm_traces.models.QueryResultRowTypeSummary] """ self.swagger_types = { 'data_type': 'str', 'unit': 'str', 'display_name': 'str', 'expression': 'str', 'query_result_row_type_summaries': 'list[QueryResultRowTypeSummary]' } self.attribute_map = { 'data_type': 'dataType', 'unit': 'unit', 'display_name': 'displayName', 'expression': 'expression', 'query_result_row_type_summaries': 'queryResultRowTypeSummaries' } self._data_type = None self._unit = None self._display_name = None self._expression = None self._query_result_row_type_summaries = None @property def data_type(self): """ Gets the data_type of this QueryResultRowTypeSummary. Datatype of the query result row element. :return: The data_type of this QueryResultRowTypeSummary. :rtype: str """ return self._data_type @data_type.setter def data_type(self, data_type): """ Sets the data_type of this QueryResultRowTypeSummary. Datatype of the query result row element. :param data_type: The data_type of this QueryResultRowTypeSummary. :type: str """ self._data_type = data_type @property def unit(self): """ Gets the unit of this QueryResultRowTypeSummary. Granular unit in which the query result row element's data is represented. :return: The unit of this QueryResultRowTypeSummary. :rtype: str """ return self._unit @unit.setter def unit(self, unit): """ Sets the unit of this QueryResultRowTypeSummary. Granular unit in which the query result row element's data is represented. :param unit: The unit of this QueryResultRowTypeSummary. :type: str """ self._unit = unit @property def display_name(self): """ Gets the display_name of this QueryResultRowTypeSummary. Alias name if an alias is used for the query result row element or an assigned display name from the query language in some default cases. :return: The display_name of this QueryResultRowTypeSummary. :rtype: str """ return self._display_name @display_name.setter def display_name(self, display_name): """ Sets the display_name of this QueryResultRowTypeSummary. Alias name if an alias is used for the query result row element or an assigned display name from the query language in some default cases. :param display_name: The display_name of this QueryResultRowTypeSummary. :type: str """ self._display_name = display_name @property def expression(self): """ Gets the expression of this QueryResultRowTypeSummary. Actual show expression in the user typed query that produced this column. :return: The expression of this QueryResultRowTypeSummary. :rtype: str """ return self._expression @expression.setter def expression(self, expression): """ Sets the expression of this QueryResultRowTypeSummary. Actual show expression in the user typed query that produced this column. :param expression: The expression of this QueryResultRowTypeSummary. :type: str """ self._expression = expression @property def query_result_row_type_summaries(self): """ Gets the query_result_row_type_summaries of this QueryResultRowTypeSummary. A query result row type summary object that represents a nested table structure. :return: The query_result_row_type_summaries of this QueryResultRowTypeSummary. :rtype: list[oci.apm_traces.models.QueryResultRowTypeSummary] """ return self._query_result_row_type_summaries @query_result_row_type_summaries.setter def query_result_row_type_summaries(self, query_result_row_type_summaries): """ Sets the query_result_row_type_summaries of this QueryResultRowTypeSummary. A query result row type summary object that represents a nested table structure. :param query_result_row_type_summaries: The query_result_row_type_summaries of this QueryResultRowTypeSummary. :type: list[oci.apm_traces.models.QueryResultRowTypeSummary] """ self._query_result_row_type_summaries = query_result_row_type_summaries def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
2.15625
2
jaxformer/hf/sample.py
salesforce/CodeGen
105
4263
<gh_stars>100-1000 # Copyright (c) 2022, salesforce.com, inc. # All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause import os import re import time import random import argparse import torch from transformers import GPT2TokenizerFast from jaxformer.hf.codegen.modeling_codegen import CodeGenForCausalLM ######################################################################## # util class print_time: def __init__(self, desc): self.desc = desc def __enter__(self): print(self.desc) self.t = time.time() def __exit__(self, type, value, traceback): print(f'{self.desc} took {time.time()-self.t:.02f}s') def set_env(): os.environ['TOKENIZERS_PARALLELISM'] = 'false' def set_seed(seed, deterministic=True): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = deterministic torch.backends.cudnn.benchmark = not deterministic # torch.use_deterministic_algorithms(deterministic) def cast(model, fp16=True): if fp16: model.half() return model ######################################################################## # model def create_model(ckpt, fp16=True): if fp16: return CodeGenForCausalLM.from_pretrained(ckpt, revision='float16', torch_dtype=torch.float16, low_cpu_mem_usage=True) else: return CodeGenForCausalLM.from_pretrained(ckpt) def create_tokenizer(): t = GPT2TokenizerFast.from_pretrained('gpt2') t.max_model_input_sizes['gpt2'] = 1e20 return t def include_whitespace(t, n_min=2, n_max=20, as_special_tokens=False): t.add_tokens([' ' * n for n in reversed(range(n_min, n_max))], special_tokens=as_special_tokens) return t def include_tabs(t, n_min=2, n_max=20, as_special_tokens=False): t.add_tokens(['\t' * n for n in reversed(range(n_min, n_max))], special_tokens=as_special_tokens) return t def create_custom_gpt2_tokenizer(): t = create_tokenizer() t = include_whitespace(t=t, n_min=2, n_max=32, as_special_tokens=False) t = include_tabs(t=t, n_min=2, n_max=10, as_special_tokens=False) return t ######################################################################## # sample def sample( device, model, tokenizer, context, pad_token_id, num_return_sequences=1, temp=0.2, top_p=0.95, max_length_sample=128, max_length=2048 ): input_ids = tokenizer( context, truncation=True, padding=True, max_length=max_length, return_tensors='pt', ).input_ids input_ids_len = input_ids.shape[1] assert input_ids_len < max_length with torch.no_grad(): input_ids = input_ids.to(device) tokens = model.generate( input_ids, do_sample=True, num_return_sequences=num_return_sequences, temperature=temp, max_length=input_ids_len + max_length_sample, top_p=top_p, pad_token_id=pad_token_id, use_cache=True, ) text = tokenizer.batch_decode(tokens[:, input_ids_len:, ...]) return text def truncate(completion): def find_re(string, pattern, start_pos): m = pattern.search(string, start_pos) return m.start() if m else -1 terminals = [ re.compile(r, re.MULTILINE) for r in [ '^#', re.escape('<|endoftext|>'), "^'''", '^"""', '\n\n\n' ] ] prints = list(re.finditer('^print', completion, re.MULTILINE)) if len(prints) > 1: completion = completion[:prints[1].start()] defs = list(re.finditer('^def', completion, re.MULTILINE)) if len(defs) > 1: completion = completion[:defs[1].start()] start_pos = 0 terminals_pos = [pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1] if len(terminals_pos) > 0: return completion[:min(terminals_pos)] else: return completion def test_truncate(): assert truncate('\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#') == '\nif len_a > len_b:\n result = a\nelse:\n result = b' ######################################################################## # main def main(): # (0) constants models_nl = ['codegen-350M-nl', 'codegen-2B-nl', 'codegen-6B-nl', 'codegen-16B-nl'] models_pl = ['codegen-350M-multi', 'codegen-2B-multi', 'codegen-6B-multi', 'codegen-16B-multi', 'codegen-350M-mono', 'codegen-2B-mono', 'codegen-6B-mono', 'codegen-16B-mono'] models = models_nl + models_pl # (1) params parser = argparse.ArgumentParser() parser.add_argument('--model', type=str, choices=models, default='codegen-350M-mono') parser.add_argument('--device', type=str, default='cuda:0') parser.add_argument('--rng-seed', type=int, default=42) parser.add_argument('--rng-deterministic', type=bool, default=True) parser.add_argument('--p', type=float, default=0.95) parser.add_argument('--t', type=float, default=0.2) parser.add_argument('--max-length', type=int, default=128) parser.add_argument('--batch-size', type=int, default=1) parser.add_argument('--no-fp16', action="store_false") parser.add_argument('--pad', type=int, default=50256) parser.add_argument('--context', type=str, default='def helloworld():') args = parser.parse_args() # (2) preamble set_env() set_seed(args.rng_seed, deterministic=args.rng_deterministic) device = torch.device(args.device) if device.type == "cpu": args.no_fp16 = False if args.model.startswith("codegen-16B"): args.no_fp16 = True ckpt = f'./checkpoints/{args.model}' # (3) load with print_time('loading parameters'): model = create_model(ckpt=ckpt, fp16=args.no_fp16).to(device) with print_time('loading tokenizer'): if args.model in models_pl: tokenizer = create_custom_gpt2_tokenizer() else: tokenizer = create_tokenizer() tokenizer.padding_side = 'left' tokenizer.pad_token = args.pad # (4) sample with print_time('sampling'): completion = sample(device=device, model=model, tokenizer=tokenizer, context=args.context, pad_token_id=args.pad, num_return_sequences=args.batch_size, temp=args.t, top_p=args.p, max_length_sample=args.max_length)[0] truncation = truncate(completion) print('=' * 100) print(completion) print('=' * 100) print(args.context+truncation) print('=' * 100) if __name__ == '__main__': test_truncate() main() print('done.')
2
2
tests/services/test_rover_runner_service.py
dev-11/mars-rover-challenge
0
4264
<reponame>dev-11/mars-rover-challenge import unittest from services import RoverRunnerService from tests.test_environment.marses import small_mars_with_one_rover_empty_commands from tests.test_environment import mocks as m from data_objects import Rover class TestRoverRunnerService(unittest.TestCase): def test_rover_runner_moves_rover_forward(self): grid = small_mars_with_one_rover_empty_commands.grid rover = small_mars_with_one_rover_empty_commands.rover_setups[0].rover tss = m.get_mocked_turn_command_selector_turn_left_from_north_command_only() mss = m.get_mocked_move_command_selector_north_command_only() rrs = RoverRunnerService(grid, rover, mss, tss) final_pos = rrs.run(['M']) self.assertEqual(Rover(0, 1, 'N'), final_pos) def test_rover_runner_turns_rover_left(self): grid = small_mars_with_one_rover_empty_commands.grid rover = small_mars_with_one_rover_empty_commands.rover_setups[0].rover tss = m.get_mocked_turn_command_selector_turn_left_from_north_command_only() mss = m.get_mocked_move_command_selector_north_command_only() rrs = RoverRunnerService(grid, rover, mss, tss) final_pos = rrs.run(['L']) self.assertEqual(Rover(0, 0, 'W'), final_pos) def test_rover_runner_turns_rover_right(self): grid = small_mars_with_one_rover_empty_commands.grid rover = small_mars_with_one_rover_empty_commands.rover_setups[0].rover tss = m.get_mocked_turn_command_selector_turn_right_from_north_command_only() mss = m.get_mocked_move_command_selector_north_command_only() rrs = RoverRunnerService(grid, rover, mss, tss) final_pos = rrs.run(['R']) self.assertEqual(Rover(0, 0, 'E'), final_pos) def test_rover_runner_goes_off_gird_east(self): grid = small_mars_with_one_rover_empty_commands.grid rover = Rover(1, 1, "E") tss = m.get_mocked_turn_command_selector_turn_right_from_north_command_only() mss = m.get_mocked_move_command_selector_east_command_only() rrs = RoverRunnerService(grid, rover, mss, tss) self.assertRaises(ValueError, rrs.run, ['M']) def test_rover_runner_goes_off_gird_north(self): grid = small_mars_with_one_rover_empty_commands.grid rover = Rover(1, 1, "N") tss = m.get_mocked_turn_command_selector_turn_right_from_north_command_only() mss = m.get_mocked_move_command_selector_north_command_only() rrs = RoverRunnerService(grid, rover, mss, tss) self.assertRaises(ValueError, rrs.run, ['M']) def test_rover_runner_goes_off_gird_west(self): grid = small_mars_with_one_rover_empty_commands.grid rover = Rover(0, 1, "W") tss = m.get_mocked_turn_command_selector_turn_right_from_north_command_only() mss = m.get_mocked_move_command_selector_west_command_only() rrs = RoverRunnerService(grid, rover, mss, tss) self.assertRaises(ValueError, rrs.run, ['M']) def test_rover_runner_goes_off_gird_south(self): grid = small_mars_with_one_rover_empty_commands.grid rover = Rover(0, 0, "S") tss = m.get_mocked_turn_command_selector_turn_right_from_north_command_only() mss = m.get_mocked_move_command_selector_south_command_only() rrs = RoverRunnerService(grid, rover, mss, tss) self.assertRaises(ValueError, rrs.run, ['M']) def test_rover_runner_does_nothing_empty_command(self): grid = small_mars_with_one_rover_empty_commands.grid rover = small_mars_with_one_rover_empty_commands.rover_setups[0].rover tss = m.get_mocked_turn_command_selector_turn_left_from_north_command_only() mss = m.get_mocked_move_command_selector_north_command_only() rrs = RoverRunnerService(grid, rover, mss, tss) final_pos = rrs.run([]) self.assertEqual(rover, final_pos) def test_rover_runner_raises_error_for_None_command(self): grid = small_mars_with_one_rover_empty_commands.grid rover = small_mars_with_one_rover_empty_commands.rover_setups[0].rover tss = m.get_mocked_turn_command_selector_turn_left_from_north_command_only() mss = m.get_mocked_move_command_selector_north_command_only() rrs = RoverRunnerService(grid, rover, mss, tss) self.assertRaises(TypeError, rrs.run, None)
2.609375
3
retrain_with_rotnet.py
ericdaat/self-label
440
4265
import argparse import warnings warnings.simplefilter("ignore", UserWarning) import files from tensorboardX import SummaryWriter import os import numpy as np import time import torch import torch.optim import torch.nn as nn import torch.utils.data import torchvision import torchvision.transforms as tfs from data import DataSet,return_model_loader from util import weight_init, write_conv, setup_runtime, AverageMeter, MovingAverage def RotationDataLoader(image_dir, is_validation=False, batch_size=256, crop_size=224, num_workers=4,shuffle=True): normalize = tfs.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transforms = tfs.Compose([ tfs.RandomResizedCrop(crop_size), tfs.RandomGrayscale(p=0.2), tfs.ColorJitter(0.4, 0.4, 0.4, 0.4), tfs.RandomHorizontalFlip(), tfs.Lambda(lambda img: torch.stack([normalize(tfs.ToTensor()( tfs.functional.rotate(img, angle))) for angle in [0, 90, 180, 270]] )) ]) if is_validation: dataset = DataSet(torchvision.datasets.ImageFolder(image_dir + '/val', transforms)) else: dataset = DataSet(torchvision.datasets.ImageFolder(image_dir + '/train', transforms)) loader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=True, drop_last=False ) return loader class Optimizer: def __init__(self): self.num_epochs = 30 self.lr = 0.05 self.lr_schedule = lambda epoch: (self.lr * (0.1 ** (epoch//args.lrdrop)))*(epoch<80) + (epoch>=80)*self.lr*(0.1**3) self.momentum = 0.9 self.weight_decay = 10**(-5) self.resume = True self.checkpoint_dir = None self.writer = None self.K = args.ncl self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.val_loader = RotationDataLoader(args.imagenet_path, is_validation=True, batch_size=args.batch_size, num_workers=args.workers,shuffle=True) def optimize_epoch(self, model, optimizer, loader, epoch, validation=False): print(f"Starting epoch {epoch}, validation: {validation} " + "="*30) loss_value = AverageMeter() rotacc_value = AverageMeter() # house keeping if not validation: model.train() lr = self.lr_schedule(epoch) for pg in optimizer.param_groups: pg['lr'] = lr else: model.eval() XE = torch.nn.CrossEntropyLoss().to(self.dev) l_dl = 0 # len(loader) now = time.time() batch_time = MovingAverage(intertia=0.9) for iter, (data, label, selected) in enumerate(loader): now = time.time() if not validation: niter = epoch * len(loader.dataset) + iter*args.batch_size data = data.to(self.dev) mass = data.size(0) where = np.arange(mass,dtype=int) * 4 data = data.view(mass * 4, 3, data.size(3), data.size(4)) rotlabel = torch.tensor(range(4)).view(-1, 1).repeat(mass, 1).view(-1).to(self.dev) #################### train CNN ########################################### if not validation: final = model(data) if args.onlyrot: loss = torch.Tensor([0]).to(self.dev) else: if args.hc == 1: loss = XE(final[0][where], self.L[selected]) else: loss = torch.mean(torch.stack([XE(final[k][where], self.L[k, selected]) for k in range(args.hc)])) rotloss = XE(final[-1], rotlabel) pred = torch.argmax(final[-1], 1) total_loss = loss + rotloss optimizer.zero_grad() total_loss.backward() optimizer.step() correct = (pred == rotlabel).to(torch.float) rotacc = correct.sum() / float(mass) else: final = model(data) pred = torch.argmax(final[-1], 1) correct = (pred == rotlabel.cuda()).to(torch.float) rotacc = correct.sum() / float(mass) total_loss = torch.Tensor([0]) loss = torch.Tensor([0]) rotloss = torch.Tensor([0]) rotacc_value.update(rotacc.item(), mass) loss_value.update(total_loss.item(), mass) batch_time.update(time.time() - now) now = time.time() print( f"Loss: {loss_value.avg:03.3f}, RotAcc: {rotacc_value.avg:03.3f} | {epoch: 3}/{iter:05}/{l_dl:05} Freq: {mass / batch_time.avg:04.1f}Hz:", end='\r', flush=True) # every few iter logging if (iter % args.logiter == 0): if not validation: print(niter, " Loss: {0:.3f}".format(loss.item()), flush=True) with torch.no_grad(): if not args.onlyrot: pred = torch.argmax(final[0][where], dim=1) pseudoloss = XE(final[0][where], pred) if not args.onlyrot: self.writer.add_scalar('Pseudoloss', pseudoloss.item(), niter) self.writer.add_scalar('lr', self.lr_schedule(epoch), niter) self.writer.add_scalar('Loss', loss.item(), niter) self.writer.add_scalar('RotLoss', rotloss.item(), niter) self.writer.add_scalar('RotAcc', rotacc.item(), niter) if iter > 0: self.writer.add_scalar('Freq(Hz)', mass/(time.time() - now), niter) # end of epoch logging if self.writer and (epoch % self.log_interval == 0): write_conv(self.writer, model, epoch) if validation: print('val Rot-Acc: ', rotacc_value.avg) self.writer.add_scalar('val Rot-Acc', rotacc_value.avg, epoch) files.save_checkpoint_all(self.checkpoint_dir, model, args.arch, optimizer, self.L, epoch,lowest=False) return {'loss': loss_value.avg} def optimize(self, model, train_loader): """Perform full optimization.""" first_epoch = 0 model = model.to(self.dev) self.optimize_times = [0] optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), weight_decay=self.weight_decay, momentum=self.momentum, lr=self.lr) if self.checkpoint_dir is not None and self.resume: self.L, first_epoch = files.load_checkpoint_all(self.checkpoint_dir, model=None, opt=None) print('loaded from: ', self.checkpoint_dir,flush=True) print('first five entries of L: ', self.L[:5], flush=True) print('found first epoch to be', first_epoch, flush=True) first_epoch = 0 self.optimize_times = [0] self.L = self.L.cuda() print("model.headcount ", model.headcount, flush=True) ##################################################################################### # Perform optmization ############################################################### lowest_loss = 1e9 epoch = first_epoch while epoch < (self.num_epochs+1): if not args.val_only: m = self.optimize_epoch(model, optimizer, train_loader, epoch, validation=False) if m['loss'] < lowest_loss: lowest_loss = m['loss'] files.save_checkpoint_all(self.checkpoint_dir, model, args.arch, optimizer, self.L, epoch, lowest=True) else: print('='*30 +' doing only validation ' + "="*30) epoch = self.num_epochs m = self.optimize_epoch(model, optimizer, self.val_loader, epoch, validation=True) epoch += 1 print(f"Model optimization completed. Saving final model to {os.path.join(self.checkpoint_dir, 'model_final.pth.tar')}") torch.save(model, os.path.join(self.checkpoint_dir, 'model_final.pth.tar')) return model def get_parser(): parser = argparse.ArgumentParser(description='Retrain with given labels combined with RotNet loss') # optimizer parser.add_argument('--epochs', default=90, type=int, metavar='N', help='number of epochs') parser.add_argument('--batch-size', default=64, type=int, metavar='BS', help='batch size') parser.add_argument('--lr', default=0.05, type=float, metavar='FLOAT', help='initial learning rate') parser.add_argument('--lrdrop', default=30, type=int, metavar='INT', help='multiply LR by 0.1 every') # architecture parser.add_argument('--arch', default='alexnet', type=str, help='alexnet or resnet') parser.add_argument('--archspec', default='big', type=str, help='big or small for alexnet ') parser.add_argument('--ncl', default=1000, type=int, metavar='INT', help='number of clusters') parser.add_argument('--hc', default=1, type=int, metavar='INT', help='number of heads') parser.add_argument('--init', default=False, action='store_true', help='initialization of network to PyTorch 0.4') # what we do in this code parser.add_argument('--val-only', default=False, action='store_true', help='if we run only validation set') parser.add_argument('--onlyrot', default=False, action='store_true', help='if train only RotNet') # housekeeping parser.add_argument('--data', default="Imagenet", type=str) parser.add_argument('--device', default="0", type=str, metavar='N', help='GPU device') parser.add_argument('--exp', default='./rot-retrain', metavar='DIR', help='path to result dirs') parser.add_argument('--workers', default=6, type=int, metavar='N', help='number workers (default: 6)') parser.add_argument('--imagenet-path', default='/home/ubuntu/data/imagenet', type=str, help='') parser.add_argument('--comment', default='rot-retrain', type=str, help='comment for tensorboardX') parser.add_argument('--log-interval', default=1, type=int, metavar='INT', help='save stuff every x epochs') parser.add_argument('--logiter', default=200, type=int, metavar='INT', help='log every x-th batch') return parser if __name__ == "__main__": args = get_parser().parse_args() name = "%s" % args.comment.replace('/', '_') try: args.device = [int(item) for item in args.device.split(',')] except AttributeError: args.device = [int(args.device)] setup_runtime(seed=42, cuda_dev_id=args.device) print(args, flush=True) print() print(name,flush=True) writer = SummaryWriter('./runs/%s/%s'%(args.data,name)) writer.add_text('args', " \n".join(['%s %s' % (arg, getattr(args, arg)) for arg in vars(args)])) # Setup model and train_loader print('Commencing!', flush=True) model, train_loader = return_model_loader(args) train_loader = RotationDataLoader(args.imagenet_path, is_validation=False, crop_size=224, batch_size=args.batch_size, num_workers=args.workers, shuffle=True) # add additional head to the network for RotNet loss. if args.arch == 'alexnet': if args.hc == 1: model.__setattr__("top_layer0", nn.Linear(4096, args.ncl)) model.top_layer = None model.headcount = args.hc+1 model.__setattr__("top_layer%s" % args.hc, nn.Linear(4096, 4)) else: if args.hc == 1: model.__setattr__("top_layer0", nn.Linear(2048*int(args.archspec), args.ncl)) model.top_layer = None model.headcount = args.hc+1 model.__setattr__("top_layer%s" % args.hc, nn.Linear(2048*int(args.archspec), 4)) if args.init: for mod in model.modules(): mod.apply(weight_init) # Setup optimizer o = Optimizer() o.writer = writer o.lr = args.lr o.num_epochs = args.epochs o.resume = True o.log_interval = args.log_interval o.checkpoint_dir = os.path.join(args.exp, 'checkpoints') # Optimize o.optimize(model, train_loader)
2.109375
2
tests/vie.py
Jinwithyoo/han
0
4266
# -*- coding: utf-8 -*- from tests import HangulizeTestCase from hangulize.langs.vie import Vietnamese class VietnameseTestCase(HangulizeTestCase): """ http://korean.go.kr/09_new/dic/rule/rule_foreign_0218.jsp """ lang = Vietnamese() def test_1st(self): """제1항 nh는 이어지는 모음과 합쳐서 한 음절로 적는다. 어말이나 자음 앞에서는 받침 ‘ㄴ' 으로 적되, 그 앞의 모음이 a인 경우에는 a와 합쳐 ‘아인'으로 적는다. """ self.assert_examples({ # u'Nha Trang': u'냐짱', # u'<NAME>': u'호찌민', # u'Thanh Hoa': u'타인호아', # u'Đông Khanh': u'동카인', }) def test_2nd(self): """제2항 qu는 이어지는 모음이 a일 경우에는 합쳐서 ‘꽈'로 적는다. """ self.assert_examples({ 'Quang': '꽝', # u'hat quan ho': u'핫꽌호', 'Quôc': '꾸옥', 'Quyên': '꾸옌', }) def test_3rd(self): """제3항 y는 뒤따르는 모음과 합쳐서 한 음절로 적는다. """ self.assert_examples({ 'yên': '옌', 'Nguyên': '응우옌', }) def test_4th(self): """제4항 어중의 l이 모음 앞에 올 때에는 ‘ㄹㄹ'로 적는다. 다만, 인명의 성과 이름은 별개의 단어로 보아 이 규칙을 적용하지 않는다. """ self.assert_examples({ # u'klông put': u'끌롱쁫', 'Pleiku': '쁠래이꾸', # u'Ha Long': u'할롱', # u'My Lay': u'밀라이', })
2.59375
3
tests/test_functions/test_trig.py
jackromo/mathLibPy
1
4267
from mathlibpy.functions import * import unittest class SinTester(unittest.TestCase): def setUp(self): self.sin = Sin() def test_call(self): self.assertEqual(self.sin(0), 0) def test_eq(self): self.assertEqual(self.sin, Sin()) def test_get_derivative_call(self): self.assertEqual(self.sin.get_derivative()(0), 1) class CosTester(unittest.TestCase): def setUp(self): self.cos = Cos() def test_call(self): self.assertEqual(self.cos(0), 1) def test_eq(self): self.assertEqual(self.cos, Cos()) def test_get_derivative_call(self): self.assertEqual(self.cos.get_derivative()(math.pi/2), -1) class TanTester(unittest.TestCase): def setUp(self): self.tan = Tan() def test_call(self): self.assertEqual(self.tan(0), 0) def test_eq(self): self.assertEqual(self.tan, Tan()) def test_get_derivative(self): self.assertEqual(self.tan.get_derivative()(0), 1) if __name__ == "__main__": unittest.main()
3.40625
3
src/smallestLetter/target.py
rajitbanerjee/leetcode
0
4268
class Solution: def nextGreatestLetter(self, letters: list, target: str) -> str: if target < letters[0] or target >= letters[-1]: return letters[0] left, right = 0, len(letters) - 1 while left < right: mid = left + (right - left) // 2 if letters[mid] > target: right = mid else: left = mid + 1 return letters[right] if __name__ == '__main__': letters = ["c", "f", "j"] target = "a" print(f"Input: letters = {letters}, target = {target}") print(f"Output: {Solution().nextGreatestLetter(letters, target)}")
3.546875
4
anti_cpdaily/command.py
hyx0329/nonebot_plugin_anti_cpdaily
2
4269
<reponame>hyx0329/nonebot_plugin_anti_cpdaily import nonebot from nonebot import on_command from nonebot.rule import to_me from nonebot.typing import T_State from nonebot.adapters import Bot, Event from nonebot.log import logger from .config import global_config from .schedule import anti_cpdaily_check_routine cpdaily = on_command('cpdaily') scheduler = nonebot.require("nonebot_plugin_apscheduler").scheduler async def one_shot_routine(): scheduler.remove_job('anti_cpdaily_oneshot') await anti_cpdaily_check_routine() @cpdaily.handle() async def handle_command(bot: Bot, event: Event, state: T_State): """ Manually activate the routine in 1 min """ if event.get_user_id() in bot.config.superusers: logger.debug('manually activate the cpdaily routine') # await anti_cpdaily_check_routine() scheduler.add_job(one_shot_routine, trigger='interval', minutes=1, id='anti_cpdaily_oneshot', replace_existing=True) logger.debug('manual process end') await cpdaily.finish('启动今日校园打卡程序ing')
2.015625
2
matplotlib/gallery_python/pyplots/dollar_ticks.py
gottaegbert/penter
13
4270
<reponame>gottaegbert/penter """ ============ Dollar Ticks ============ Use a `~.ticker.FormatStrFormatter` to prepend dollar signs on y axis labels. """ import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker # Fixing random state for reproducibility np.random.seed(19680801) fig, ax = plt.subplots() ax.plot(100*np.random.rand(20)) formatter = ticker.FormatStrFormatter('$%1.2f') ax.yaxis.set_major_formatter(formatter) for tick in ax.yaxis.get_major_ticks(): tick.label1.set_visible(False) tick.label2.set_visible(True) tick.label2.set_color('green') plt.show() ############################################################################# # # ------------ # # References # """""""""" # # The use of the following functions, methods, classes and modules is shown # in this example: import matplotlib matplotlib.ticker matplotlib.ticker.FormatStrFormatter matplotlib.axis.Axis.set_major_formatter matplotlib.axis.Axis.get_major_ticks matplotlib.axis.Tick
3.21875
3
Chibrary/utils.py
chiro2001/chibrary
0
4271
<reponame>chiro2001/chibrary import json import re from flask import request, abort, jsonify from Chibrary import config from Chibrary.config import logger from Chibrary.exceptions import * from functools import wraps from urllib import parse from Chibrary.server import db def parse_url_query(url: str) -> dict: if not url.lower().startswith('http://') \ and not url.lower().startswith('https://'): return {} query = url[url.rindex('/') + 1:] if '?' not in query: return {} query = query[query.index('?') + 1:] lines = query.split('&') result = {} for line in lines: if line.count('=') != 1: continue key, val = line.split('=') # 注意这里的类型转化处理 if val == 'undefined': val = None else: try: val = int(val) except ValueError: try: val = float(val) except ValueError: pass if val is not None: if type(val) is str: result[key] = parse.unquote(val) else: result[key] = val return result def form_url_query(url: str, data: dict): # if not url.lower().startswith('http://') \ # and not url.lower().startswith('https://'): # logger.warning('Provided wrong url %s !' % url) # return url # if len(data) == 0: # return url # query = '?' # for key in data: # # 特事特办(?) # if type(data[key]) is str and '/' in data[key]: # query = query + parse.urlencode({key: data[key]}) + '&' # else: # query = query + key + '=' + parse.quote(str(data[key])) + '&' # query = query[:-1] # return url + query # 这里是+和%20的坑 return url + '?' + parse.urlencode(data).replace('+', '%20') def remove_ids_dfs(data: dict): if '_id' in data: del data['_id'] for key in data: if type(data[key]) is dict: data[key] = remove_ids_dfs(data[key]) return data """ 返回值格式: { code: ..., message: ..., data: ..., } """ def make_result(code: int, message=None, data=None): result = { 'code': code, } # 根据code选message if message is None: try: result['message'] = config.code[str(code)] except ValueError: logger.warning('Error code %s not found!' % code) result['message'] = config.code['0'] else: result['message'] = message if data is not None: # 一定要删除所有_id元素 data = remove_ids_dfs(data) result['data'] = data return result def make_error_result(error): return make_result(1, message=str(error)) def dump(data): return json.dumps(data) def check_args(args: dict, requirements: list): for r in requirements: if r not in args: return False return True def format_file_size(size_by_bytes: int) -> str: units = ['B', 'KB', 'MB', 'GB', 'TB'] # 最终数值应该在1~999之间 index = 0 unit = units[index] while size_by_bytes > 1000: index = index + 1 unit = units[index] size_by_bytes = size_by_bytes / 1000 if index == len(units): break if size_by_bytes > 20: return "%.0f%s" % (size_by_bytes, unit) return "%.2f%s" % (size_by_bytes, unit) # 用户在header里面加上Authorization: {token} def login_check(f): @wraps(f) def decorated(*args, **kwargs): headers = dict(request.headers) if 'Authorization' not in headers: return make_result(3) # login error token = headers['Authorization'] if db.token_find_by_token(token) is None: return make_result(3) # login error return f(*args, **kwargs) return decorated # 用户在header里面加上Authorization: {token} def admin_check(f): @wraps(f) def decorated(*args, **kwargs): headers = dict(request.headers) if 'Authorization' not in headers: return make_result(3) # login error token = headers['Authorization'] token_data = db.token_find_by_token(token) if token_data is None: return make_result(3) # login error # 用户level大于等于10表示有管理员效力 user = db.user_find(username=token_data['username']) if user is None: return make_result(3) # login error,不会有效 if user['info']['level'] < 10: return make_result(10) # No permission return f(*args, **kwargs) return decorated # 必须在request过程中调用,获取不到直接打断 def get_user_from_headers(): headers = dict(request.headers) if 'Authorization' not in headers: abort(jsonify(make_result(3))) # login error token = headers['Authorization'] token_data = db.token_find_by_token(token) if token_data is None: abort(jsonify(make_result(3))) # login error # 用户level大于等于10表示有管理员效力 user = db.user_find(username=token_data['username']) if user is None: abort(jsonify(make_result(3))) # login error,不会有效 return user def check_admin_abort(): headers = dict(request.headers) if 'Authorization' not in headers: abort(jsonify(make_result(3))) # login error token = headers['Authorization'] token_data = db.token_find_by_token(token) if token_data is None: abort(jsonify(make_result(3))) # login error # 用户level大于等于10表示有管理员效力 user = db.user_find(username=token_data['username']) if user is None: abort(jsonify(make_result(3))) # login error,不会有效 if user['info']['level'] < 10: abort(jsonify(make_result(10))) # No permission def is_number(s): try: float(s) return True except ValueError: pass # try: # import unicodedata # unicodedata.numeric(s) # return True # except (TypeError, ValueError): # pass return False # def url_check(url: str): # url = url.lower() # reg = "^(https|http|ftp|rtsp|mms)\\://?([a-zA-Z0-9\\.\\-]+(\\:[a-zA-Z0-9\\.&%\\$\\-]+)*@)?((25[0-5]|2" \ # "[0-4][0-9]|[0-1]{1}[0-9]{2}|[1-9]{1}[0-9]{1}|[1-9])\\.(25[0-5]|2[0-4][0-9]|[0-1]{1}[0-9]{2}|[1-9]" \ # "{1}[0-9]{1}|[1-9]|0)\\.(25[0-5]|2[0-4][0-9]|[0-1]{1}[0-9]{2}|[1-9]{1}[0-9]{1}|[1-9]|0)\\.(25[0-5]|" \ # "2[0-4][0-9]|[0-1]{1}[0-9]{2}|[1-9]{1}[0-9]{1}|[0-9])|([a-zA-Z0-9\\-]+\\.)*[a-zA-Z0-9\\-]+\\.[a-zA-Z]" \ # "{2,4})(\\:[0-9]+)?(/[^/][a-zA-Z0-9\\.\\,\\?\\'\\\\/\\+&%\\$\\=~_\\-@]*)*$" # print(re.search(url, reg)) if __name__ == '__main__': print(parse_url_query('http://blog.com/sss/ssss/s?wd=dsfa&a=fdsa&a=1&b=1.1&a=s')) print(format_file_size(20250000)) # print(url_check('http://www.bilibili.com/'))
2.671875
3
tests/inputs/loops/51-arrays-in-loop.py
helq/pytropos
4
4272
import numpy as np from something import Top i = 0 while i < 10: a = np.ndarray((10,4)) b = np.ones((10, Top)) i += 1 del Top # show_store()
2.71875
3
tests/mappers/fields/test_float_field.py
Arfey/aiohttp_admin2
12
4273
from aiohttp_admin2.mappers import Mapper from aiohttp_admin2.mappers import fields class FloatMapper(Mapper): field = fields.FloatField() def test_correct_float_type(): """ In this test we check success convert to float type. """ mapper = FloatMapper({"field": 1}) mapper.is_valid() assert mapper.data["field"] == 1.0 mapper = FloatMapper({"field": 2}) mapper.is_valid() assert mapper.data["field"] == 2.0 mapper = FloatMapper({"field": -3}) mapper.is_valid() assert mapper.data["field"] == -3.0 mapper = FloatMapper({"field": 0}) mapper.is_valid() assert mapper.data["field"] == 0.0 def test_wrong_float_type(): """ In this test we check error when we received wrong float type. """ assert FloatMapper({"field": "string"}).is_valid() is False assert FloatMapper({"field": []}).is_valid() is False
3.21875
3
autotest/t038_test.py
jdlarsen-UA/flopy
2
4274
<gh_stars>1-10 """ Try to load all of the MODFLOW-USG examples in ../examples/data/mfusg_test. These are the examples that are distributed with MODFLOW-USG. """ import os import flopy # make the working directory tpth = os.path.join("temp", "t038") if not os.path.isdir(tpth): os.makedirs(tpth) # build list of name files to try and load usgpth = os.path.join("..", "examples", "data", "mfusg_test") usg_files = [] for path, subdirs, files in os.walk(usgpth): for name in files: if name.endswith(".nam"): usg_files.append(os.path.join(path, name)) # def test_load_usg(): for fusg in usg_files: d, f = os.path.split(fusg) yield load_model, f, d # function to load a MODFLOW-USG model and then write it back out def load_model(namfile, model_ws): m = flopy.modflow.Modflow.load( namfile, model_ws=model_ws, version="mfusg", verbose=True, check=False ) assert m, f"Could not load namefile {namfile}" assert m.load_fail is False m.change_model_ws(tpth) m.write_input() return if __name__ == "__main__": for fusg in usg_files: d, f = os.path.split(fusg) load_model(f, d)
2.328125
2
botlib/cli.py
relikd/botlib
0
4275
#!/usr/bin/env python3 import os from argparse import ArgumentParser, ArgumentTypeError, FileType, Namespace from typing import Any def DirType(string: str) -> str: if os.path.isdir(string): return string raise ArgumentTypeError( 'Directory does not exist: "{}"'.format(os.path.abspath(string))) class Cli(ArgumentParser): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) def arg(self, *args: Any, **kwargs: Any) -> None: self.add_argument(*args, **kwargs) def arg_bool(self, *args: Any, **kwargs: Any) -> None: self.add_argument(*args, **kwargs, action='store_true') def arg_dir(self, *args: Any, **kwargs: Any) -> None: self.add_argument(*args, **kwargs, type=DirType) def arg_file(self, *args: Any, mode: str = 'r', **kwargs: Any) -> None: self.add_argument(*args, **kwargs, type=FileType(mode)) def parse(self) -> Namespace: return self.parse_args()
3.046875
3
pyhanko_certvalidator/asn1_types.py
MatthiasValvekens/certvalidator
4
4276
<filename>pyhanko_certvalidator/asn1_types.py from typing import Optional from asn1crypto import core, x509, cms __all__ = [ 'Target', 'TargetCert', 'Targets', 'SequenceOfTargets', 'AttrSpec', 'AAControls' ] class TargetCert(core.Sequence): _fields = [ ('target_certificate', cms.IssuerSerial), ('target_name', x509.GeneralName, {'optional': True}), ('cert_digest_info', cms.ObjectDigestInfo, {'optional': True}) ] class Target(core.Choice): _alternatives = [ ('target_name', x509.GeneralName, {'explicit': 0}), ('target_group', x509.GeneralName, {'explicit': 1}), ('target_cert', TargetCert, {'explicit': 2}) ] class Targets(core.SequenceOf): _child_spec = Target # Blame X.509... class SequenceOfTargets(core.SequenceOf): _child_spec = Targets class AttrSpec(core.SequenceOf): _child_spec = cms.AttCertAttributeType class AAControls(core.Sequence): _fields = [ ('path_len_constraint', core.Integer, {'optional': True}), ('permitted_attrs', AttrSpec, {'optional': True, 'implicit': 0}), ('excluded_attrs', AttrSpec, {'optional': True, 'implicit': 1}), ('permit_unspecified', core.Boolean, {'default': True}) ] def accept(self, attr_id: cms.AttCertAttributeType) -> bool: attr_id_str = attr_id.native excluded = self['excluded_attrs'].native if excluded is not None: excluded = frozenset(excluded) if excluded is not None and attr_id_str in excluded: return False permitted = self['permitted_attrs'].native if permitted is not None: permitted = frozenset(permitted) if permitted is not None and attr_id_str in permitted: return True return bool(self['permit_unspecified']) @classmethod def read_extension_value(cls, cert: x509.Certificate) \ -> Optional['AAControls']: # handle AA controls (not natively supported by asn1crypto, so # not available as an attribute). try: return next( ext['extn_value'].parsed for ext in cert['tbs_certificate']['extensions'] if ext['extn_id'].native == 'aa_controls' ) except StopIteration: return None def _make_tag_explicit(field_decl): tag_dict = field_decl[2] if 'explicit' in tag_dict: return tag_dict['explicit'] = tag_dict['implicit'] del tag_dict['implicit'] def _make_tag_implicit(field_decl): tag_dict = field_decl[2] if 'implicit' in tag_dict: return tag_dict['implicit'] = tag_dict['explicit'] del tag_dict['explicit'] # Deal with wbond/asn1crypto#218 _make_tag_explicit(cms.RoleSyntax._fields[1]) _make_tag_explicit(cms.SecurityCategory._fields[1]) # Deal with wbond/asn1crypto#220 _make_tag_implicit(cms.AttCertIssuer._alternatives[1]) # patch in attribute certificate extensions # Note: unlike in Certomancer, we don't do this one conditionally, since # we need the actual Python types to agree with what we export ext_map = x509.ExtensionId._map ext_specs = x509.Extension._oid_specs ext_map['172.16.17.325'] = 'target_information' ext_specs['target_information'] = SequenceOfTargets ext_map['2.5.29.56'] = 'no_rev_avail' ext_specs['no_rev_avail'] = core.Null ext_map['1.3.6.1.5.5.7.1.6'] = 'aa_controls' ext_specs['aa_controls'] = AAControls ext_map['1.3.6.1.5.5.7.1.4'] = 'audit_identity' ext_specs['audit_identity'] = core.OctetString
2.109375
2
test/test_delete_group.py
ruslankl9/ironpython_training
0
4277
<filename>test/test_delete_group.py from model.group import Group import random def test_delete_some_group(app): if len(app.group.get_group_list()) <= 1: app.group.add_new_group(Group(name='test')) old_list = app.group.get_group_list() index = random.randrange(len(old_list)) app.group.delete_group_by_index(index) new_list = app.group.get_group_list() assert len(old_list) - 1 == len(new_list) del old_list[index] assert old_list == new_list
2.734375
3
Evaluation/batch_detection.py
gurkirt/actNet-inAct
27
4278
<filename>Evaluation/batch_detection.py ''' Autor: <NAME> Start data: 15th May 2016 purpose: of this file is read frame level predictions and process them to produce a label per video ''' from sklearn.svm import LinearSVC from sklearn.ensemble import RandomForestClassifier import numpy as np import pickle import os import time,json import pylab as plt from eval_detection import ANETdetection import scipy.io as sio #######baseDir = "/mnt/sun-alpha/actnet/"; baseDir = "/data/shared/solar-machines/actnet/"; #baseDir = "/mnt/solar-machines/actnet/"; ########imgDir = "/mnt/sun-alpha/actnet/rgb-images/"; ######## imgDir = "/mnt/DATADISK2/ss-workspace/actnet/rgb-images/"; annotPklFile = "../Evaluation/data/actNet200-V1-3.pkl" def getscore(ground_truth_filename, prediction_filename, tiou_thr=0.5,subset='validation', verbose=True, check_status=True): anet_detection = ANETdetection(ground_truth_filename, prediction_filename, subset=subset, tiou_thr=tiou_thr, verbose=verbose, check_status=True) ap = anet_detection.evaluate() return ap def saveAPs(): K = 5; subset = 'validation';#,'testing']: featType = 'IMS-MBH' # savename = '{}data/predictions-{}-{}.pkl'.format(baseDir,subset,featType) # with open(savename,'r') as f: # data = pickle.load(f) outfilename = '{}results/classification/{}-{}-{}.json'.format(baseDir,subset,featType,str(K).zfill(3)) gtfiile = 'data/activity_net.v1-3.min.json' ap = getscore(gtfiile,outfilename,top_k=1) print ap print np.mean(ap) savename = '{}data/weightAP-{}.pkl'.format(baseDir,featType) print 'Results saved in ',savename with open(savename,'w') as f: pickle.dump(ap,f) def plotAPs(): K = 1; subset = 'validation';#,'testing']: aps = []; count = 0; colors = ['red','green','blue'] for featType in ['IMS-MBH','IMS','MBH']: savename = '{}data/weightAP-{}.pkl'.format(baseDir,featType) print 'Results saved in ',savename with open(savename,'r') as f: ap = pickle.load(f) ind = np.arange(count,600+count,3) plt.bar(ind,ap,width=0.5,color=colors[count]) count += 1 plt.show() def evalAll(): K = 10; subset = 'validation';#,'testing']: gtfiile = 'data/activity_net.v1-3.min.json' result = []; count = 0; featType = 'C3D-BIN-BOOST-LONG' # outfilename = '{}results/detection/{}-{}-K-{}-{}.json'.format(baseDir,subset,featType,str(K).zfill(3),'alpha-001') for alpha in [1,3,5,]: outfilename = '{}results/detection/{}-{}-K-{}-{}.json'.format(baseDir,subset,featType,str(K).zfill(3),'alpha-{}'.format(str(int(alpha*10)).zfill(3))) print 'Evaluating results from ',outfilename for tioth in [0.5,0.4,0.3,0.2,0.1]: ap = getscore(gtfiile,outfilename,tiou_thr=tioth) result.append([alpha,tioth,np.mean(ap)]) result = np.aaarray(result) sio.savemat('result-{}.mat'.format(featType),mdict={'ap':ap}) if __name__=="__main__": #processOnePredictions() # saveAps() # plotmAPs() evalALL()
2.375
2
python/csv/csv_dict_writer.py
y2ghost/study
0
4279
<filename>python/csv/csv_dict_writer.py import csv def csv_dict_writer(path, headers, data): with open(path, 'w', newline='') as csvfile: writer = csv.DictWriter(csvfile, delimiter=',', fieldnames=headers) writer.writeheader() for record in data: writer.writerow(record) if __name__ == '__main__': data = '''book_title,author,publisher,pub_date,isbn Python 101,<NAME>, <NAME>,2020,123456789 wxPython Recipes,<NAME>,Apress,2018,978-1-4842-3237-8 Python Interviews,<NAME>,Packt Publishing,2018,9781788399081''' records = [] for line in data.splitlines(): records.append(line.strip().split(',')) headers = records.pop(0) list_of_dicts = [] for row in records: my_dict = dict(zip(headers, row)) list_of_dicts.append(my_dict) csv_dict_writer('output_dict.csv', headers, list_of_dicts)
3.890625
4
src/decisionengine/framework/modules/tests/test_module_decorators.py
moibenko/decisionengine
9
4280
<gh_stars>1-10 # SPDX-FileCopyrightText: 2017 Fermi Research Alliance, LLC # SPDX-License-Identifier: Apache-2.0 import pytest from decisionengine.framework.modules import Publisher, Source from decisionengine.framework.modules.Module import verify_products from decisionengine.framework.modules.Source import Parameter def test_multiple_consumes_declarations(): with pytest.raises(Exception, match="@consumes has already been called"): @Publisher.consumes(a=int) @Publisher.consumes(b=float) class _(Publisher.Publisher): pass def test_multiple_produces_declarations(): with pytest.raises(Exception, match="@produces has already been called"): @Source.produces(c=str) @Source.produces(d=bool) class _(Source.Source): pass def test_wrong_product_names(): @Source.produces(a=str) class BMaker(Source.Source): def __init__(self, config): super().__init__(config) def acquire(self): return {"b": ""} maker = BMaker({"channel_name": "test"}) expected_err_msg = ( "The following products were not produced:\n" + " - 'a' of type 'str'\n\n" + "The following products were not declared:\n" + " - 'b' of type 'str'" ) with pytest.raises(Exception, match=expected_err_msg): verify_products(maker, maker.acquire()) def test_wrong_product_types(): @Source.produces(a=str, b=int) class AMaker(Source.Source): def __init__(self, config): super().__init__(config) def acquire(self): return {"a": 42, "b": 17} maker = AMaker({"channel_name": "test"}) expected_err_msg = "The following products have the wrong types:\n" + r" - 'a' \(expected 'str', got 'int'\)" with pytest.raises(Exception, match=expected_err_msg): verify_products(maker, maker.acquire()) def test_supports_config(): expected_err_msg = ( "An error occurred while processing the parameter 'conflicting_types':\n" + "The specified type 'int' conflicts with the type of the default value " + r"'hello' \(type 'str'\)" ) with pytest.raises(Exception, match=expected_err_msg): @Source.supports_config(Parameter("conflicting_types", type=int, default="hello")) class _(Source.Source): pass
2.046875
2
models/cnn_layer.py
RobinRojowiec/intent-recognition-in-doctor-patient-interviews
0
4281
import torch import torch.nn as nn from torch.nn.functional import max_pool1d from utility.model_parameter import Configuration, ModelParameter class CNNLayer(nn.Module): def __init__(self, config: Configuration, vocab_size=30000, use_embeddings=True, embed_dim=-1, **kwargs): super(CNNLayer, self).__init__() # set parameters self.max_seq_length = config.get_int(ModelParameter.MAX_LENGTH) self.use_gpu = torch.cuda.is_available() if embed_dim == -1: self.embedding_dim = config.get_int(ModelParameter.EMBEDDING_SIZE) else: self.embedding_dim = embed_dim self.max_length = config.get_int(ModelParameter.MAX_LENGTH) self.use_embeddings = use_embeddings self.conv_out_channels = config.get_int(ModelParameter.CHANNELS) self.filter_sizes = [2] # create and initialize layers self.embedding = nn.Embedding(vocab_size, self.embedding_dim) self.relu = nn.ReLU() self.convolutions = nn.ModuleList( [nn.Conv2d(1, self.conv_out_channels, (K, self.embedding_dim)) for K in self.filter_sizes]) self.dropout = nn.Dropout(0.3) def get_output_length(self): return len(self.filter_sizes) * self.conv_out_channels def forward(self, samples, **kwargs): encoded_samples = self.encode(samples) return encoded_samples def encode(self, samples): x = self.embedding(samples) x = x.unsqueeze(1) x = [self.relu(conv(x)).squeeze(3) for conv in self.convolutions] x = [max_pool1d(i, i.size(2)).squeeze(2) for i in x] x = self.dropout(torch.cat(x, 1)) return x
2.6875
3
musicscore/musicxml/types/complextypes/backup.py
alexgorji/music_score
2
4282
''' <xs:complexType name="backup"> <xs:annotation> <xs:documentation></xs:documentation> </xs:annotation> <xs:sequence> <xs:group ref="duration"/> <xs:group ref="editorial"/> </xs:sequence> </xs:complexType> ''' from musicscore.dtd.dtd import Sequence, GroupReference, Element from musicscore.musicxml.groups.common import Editorial from musicscore.musicxml.elements.note import Duration from musicscore.musicxml.types.complextypes.complextype import ComplexType class ComplexTypeBackup(ComplexType): """ The backup and forward elements are required to coordinate multiple voices in one part, including music on multiple staves. The backup type is generally used to move between voices and staves. Thus the backup element does not include voice or staff elements. Duration values should always be positive, and should not cross measure boundaries or mid-measure changes in the divisions value. """ _DTD = Sequence( Element(Duration), GroupReference(Editorial) ) def __init__(self, tag, *args, **kwargs): super().__init__(tag=tag, *args, **kwargs)
2.078125
2
NLP programmes in Python/9.Text Clustering/kmeans.py
AlexandrosPlessias/NLP-Greek-Presentations
0
4283
<filename>NLP programmes in Python/9.Text Clustering/kmeans.py import nltk import re import csv import string import collections import numpy as np from nltk.corpus import wordnet from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk.tokenize import WordPunctTokenizer from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix """"Pre - Processing: tokenization, stopwords removal, remove words(with size 1), lower capitalization & lemmatization""" def preprocessing(text): # text = text.decode("utf8") # remove punctuation text = punctuation(text) # remove extra spaces text = re.sub(' +', ' ', text) # tokenize into words tokens = text.split(" ") # remove number tokens = [word for word in tokens if word.isalpha()] # remove stopwords stop = stopwords.words('english') tokens = [token for token in tokens if token not in stop] # remove words less than three letters tokens = [word for word in tokens if len(word) >= 3] # lower capitalization tokens = [word.lower() for word in tokens] # keep only real words tokens = KeepRealWords(tokens) # lemmatize lmtzr = WordNetLemmatizer() tokens = [lmtzr.lemmatize(word) for word in tokens] # return only tokens with size over 1 if len(tokens) > 0: preprocessed_text = " ".join(tokens) return preprocessed_text return None def KeepRealWords(text): wpt = WordPunctTokenizer() only_recognized_words = [] for s in text: tokens = wpt.tokenize(s) if tokens: # check if empty string for t in tokens: if wordnet.synsets(t): only_recognized_words.append(t) # only keep recognized words return only_recognized_words def punctuation(text): translator = str.maketrans(string.punctuation, ' '*len(string.punctuation)) # map punctuation to space return (text.translate(translator)) """"Read Data""" # Open sms corpus. sms_file = open('SMSSpamCollection.txt', encoding="utf8") # Check the structure of this file! sms_data = [] sms_labels = [] # CSV Reader LABEL & DATA are separated by TAB. csv_reader = csv.reader(sms_file,delimiter='\t') # Store labels and data. for line in csv_reader: sms_text = preprocessing(line[1]) if ( sms_text != None): # adding the sms_id sms_labels.append( line[0]) # adding the cleaned text We are calling preprocessing method sms_data.append(sms_text) sms_file.close() """Sampling steps (70:30)""" trainset_size = int(round(len(sms_data)*0.70)) # I chose this threshold for 70:30 train and test split. print('The training set size for this classifier is ' + str(trainset_size) + '\n') x_train = np.array([''.join(el) for el in sms_data[0:trainset_size]]) # train sms_data (70%). y_train = np.array([el for el in sms_labels[0:trainset_size]]) # train sms_labels (70%). x_test = np.array([''.join(el) for el in sms_data[trainset_size+1:len(sms_data)]]) # test sms_data (30%). y_test = np.array([el for el in sms_labels[trainset_size+1:len(sms_labels)]]) # test sms_labels (30%). """We are building a TFIDF vectorizer here""" from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer(min_df=2, ngram_range=(1, 2), stop_words='english', strip_accents='unicode', norm='l2') X_train = vectorizer.fit_transform(x_train) X_test = vectorizer.transform(x_test) """Text Clustering - K Means""" from sklearn.cluster import KMeans, MiniBatchKMeans print('--> Text Clustering - K Means') true_k = 5 km = KMeans(n_clusters=true_k, init='k-means++', max_iter=100, n_init=1) kmini = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1, init_size=1000, batch_size=1000, verbose=False) #verbose=opts.verbose # we are using the same test,train data in TFIDF form as we did in text classification km_model = km.fit(X_train) print("For K-mean clustering ") clustering = collections.defaultdict(list) for idx, label in enumerate(km_model.labels_): clustering[label].append(idx) print(clustering) kmini_model = kmini.fit(X_train) print("For K-mean Mini batch clustering ") clustering = collections.defaultdict(list) for idx, label in enumerate(kmini_model.labels_): clustering[label].append(idx) print(clustering)
3.59375
4
common/utils.py
paTRICK-swk/P-STMO
8
4284
import torch import numpy as np import hashlib from torch.autograd import Variable import os def deterministic_random(min_value, max_value, data): digest = hashlib.sha256(data.encode()).digest() raw_value = int.from_bytes(digest[:4], byteorder='little', signed=False) return int(raw_value / (2 ** 32 - 1) * (max_value - min_value)) + min_value def mpjpe_cal(predicted, target): assert predicted.shape == target.shape return torch.mean(torch.norm(predicted - target, dim=len(target.shape) - 1)) def test_calculation(predicted, target, action, error_sum, data_type, subject, MAE=False): error_sum = mpjpe_by_action_p1(predicted, target, action, error_sum) if not MAE: error_sum = mpjpe_by_action_p2(predicted, target, action, error_sum) return error_sum def mpjpe_by_action_p1(predicted, target, action, action_error_sum): assert predicted.shape == target.shape batch_num = predicted.size(0) frame_num = predicted.size(1) dist = torch.mean(torch.norm(predicted - target, dim=len(target.shape) - 1), dim=len(target.shape) - 2) if len(set(list(action))) == 1: end_index = action[0].find(' ') if end_index != -1: action_name = action[0][:end_index] else: action_name = action[0] action_error_sum[action_name]['p1'].update(torch.mean(dist).item()*batch_num*frame_num, batch_num*frame_num) else: for i in range(batch_num): end_index = action[i].find(' ') if end_index != -1: action_name = action[i][:end_index] else: action_name = action[i] action_error_sum[action_name]['p1'].update(torch.mean(dist[i]).item()*frame_num, frame_num) return action_error_sum def mpjpe_by_action_p2(predicted, target, action, action_error_sum): assert predicted.shape == target.shape num = predicted.size(0) pred = predicted.detach().cpu().numpy().reshape(-1, predicted.shape[-2], predicted.shape[-1]) gt = target.detach().cpu().numpy().reshape(-1, target.shape[-2], target.shape[-1]) dist = p_mpjpe(pred, gt) if len(set(list(action))) == 1: end_index = action[0].find(' ') if end_index != -1: action_name = action[0][:end_index] else: action_name = action[0] action_error_sum[action_name]['p2'].update(np.mean(dist) * num, num) else: for i in range(num): end_index = action[i].find(' ') if end_index != -1: action_name = action[i][:end_index] else: action_name = action[i] action_error_sum[action_name]['p2'].update(np.mean(dist), 1) return action_error_sum def p_mpjpe(predicted, target): assert predicted.shape == target.shape muX = np.mean(target, axis=1, keepdims=True) muY = np.mean(predicted, axis=1, keepdims=True) X0 = target - muX Y0 = predicted - muY normX = np.sqrt(np.sum(X0 ** 2, axis=(1, 2), keepdims=True)) normY = np.sqrt(np.sum(Y0 ** 2, axis=(1, 2), keepdims=True)) X0 /= normX Y0 /= normY H = np.matmul(X0.transpose(0, 2, 1), Y0) U, s, Vt = np.linalg.svd(H) V = Vt.transpose(0, 2, 1) R = np.matmul(V, U.transpose(0, 2, 1)) sign_detR = np.sign(np.expand_dims(np.linalg.det(R), axis=1)) V[:, :, -1] *= sign_detR s[:, -1] *= sign_detR.flatten() R = np.matmul(V, U.transpose(0, 2, 1)) tr = np.expand_dims(np.sum(s, axis=1, keepdims=True), axis=2) a = tr * normX / normY t = muX - a * np.matmul(muY, R) predicted_aligned = a * np.matmul(predicted, R) + t return np.mean(np.linalg.norm(predicted_aligned - target, axis=len(target.shape) - 1), axis=len(target.shape) - 2) def define_actions( action ): actions = ["Directions","Discussion","Eating","Greeting", "Phoning","Photo","Posing","Purchases", "Sitting","SittingDown","Smoking","Waiting", "WalkDog","Walking","WalkTogether"] if action == "All" or action == "all" or action == '*': return actions if not action in actions: raise( ValueError, "Unrecognized action: %s" % action ) return [action] def define_error_list(actions): error_sum = {} error_sum.update({actions[i]: {'p1':AccumLoss(), 'p2':AccumLoss()} for i in range(len(actions))}) return error_sum class AccumLoss(object): def __init__(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val self.count += n self.avg = self.sum / self.count def get_varialbe(split, target): num = len(target) var = [] if split == 'train': for i in range(num): temp = Variable(target[i], requires_grad=False).contiguous().type(torch.cuda.FloatTensor) var.append(temp) else: for i in range(num): temp = Variable(target[i]).contiguous().cuda().type(torch.cuda.FloatTensor) var.append(temp) return var def print_error(data_type, action_error_sum, is_train): mean_error_p1, mean_error_p2 = print_error_action(action_error_sum, is_train) return mean_error_p1, mean_error_p2 def print_error_action(action_error_sum, is_train): mean_error_each = {'p1': 0.0, 'p2': 0.0} mean_error_all = {'p1': AccumLoss(), 'p2': AccumLoss()} if is_train == 0: print("{0:=^12} {1:=^10} {2:=^8}".format("Action", "p#1 mm", "p#2 mm")) for action, value in action_error_sum.items(): if is_train == 0: print("{0:<12} ".format(action), end="") mean_error_each['p1'] = action_error_sum[action]['p1'].avg * 1000.0 mean_error_all['p1'].update(mean_error_each['p1'], 1) mean_error_each['p2'] = action_error_sum[action]['p2'].avg * 1000.0 mean_error_all['p2'].update(mean_error_each['p2'], 1) if is_train == 0: print("{0:>6.2f} {1:>10.2f}".format(mean_error_each['p1'], mean_error_each['p2'])) if is_train == 0: print("{0:<12} {1:>6.2f} {2:>10.2f}".format("Average", mean_error_all['p1'].avg, \ mean_error_all['p2'].avg)) return mean_error_all['p1'].avg, mean_error_all['p2'].avg def save_model(previous_name, save_dir,epoch, data_threshold, model, model_name): # if os.path.exists(previous_name): # os.remove(previous_name) torch.save(model.state_dict(), '%s/%s_%d_%d.pth' % (save_dir, model_name, epoch, data_threshold * 100)) previous_name = '%s/%s_%d_%d.pth' % (save_dir, model_name, epoch, data_threshold * 100) return previous_name def save_model_new(save_dir,epoch, data_threshold, lr, optimizer, model, model_name): # if os.path.exists(previous_name): # os.remove(previous_name) # torch.save(model.state_dict(), # '%s/%s_%d_%d.pth' % (save_dir, model_name, epoch, data_threshold * 100)) torch.save({ 'epoch': epoch, 'lr': lr, 'optimizer': optimizer.state_dict(), 'model_pos': model.state_dict(), }, '%s/%s_%d_%d.pth' % (save_dir, model_name, epoch, data_threshold * 100))
2.125
2
personal_ad/advice/converter.py
Sailer43/CSE5914Project
0
4285
<gh_stars>0 from ibm_watson import TextToSpeechV1, SpeechToTextV1, DetailedResponse from os import system from json import loads class Converter: k_s2t_api_key = "<KEY>" k_t2s_api_key = "<KEY>" k_s2t_url = "https://stream.watsonplatform.net/speech-to-text/api" k_t2s_url = "https://gateway-wdc.watsonplatform.net/text-to-speech/api" k_t2s_voice = "en-US_AllisonVoice" k_t2s_format = "audio/webm" k_st2_model = "en-US_NarrowbandModel" def __init__(self): self.s2t = SpeechToTextV1(iam_apikey=self.k_s2t_api_key, url=self.k_s2t_url) self.t2s = TextToSpeechV1(iam_apikey=self.k_t2s_api_key, url=self.k_t2s_url) def read(self, string: str): return self.t2s.synthesize( string, voice=self.k_t2s_voice, accept=self.k_t2s_format ).get_result().content def listen(self, audio_input): try: result = self.s2t.recognize(audio_input, model=self.k_st2_model) result = loads(str(result)) result = result["result"]["results"][0]["alternatives"][0]['transcript'] except Exception: return False, "I don't understand what you are saying." return True, str(result) def main(): pass if __name__ == '__main__': main()
3.109375
3
warg_client/client/apis/controller/attack_controller.py
neel4os/warg-client
0
4286
<gh_stars>0 from subprocess import run def perform_shutdown(body): arg = "" if body["reboot"]: _is_reboot = arg + "-r" else: _is_reboot = arg + "-h" time_to_shutdown = str(body['timeToShutdown']) result = run(["/sbin/shutdown", _is_reboot, time_to_shutdown]) return body
2.640625
3
torrents/migrations/0011_auto_20190223_2345.py
2600box/harvest
9
4287
<reponame>2600box/harvest<filename>torrents/migrations/0011_auto_20190223_2345.py # Generated by Django 2.1.7 on 2019-02-23 23:45 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('torrents', '0010_auto_20190223_0326'), ] operations = [ migrations.AlterModelOptions( name='realm', options={'ordering': ('name',)}, ), ]
1.40625
1
common/__init__.py
whyh/FavourDemo
1
4288
<filename>common/__init__.py from . import (emoji as emj, keyboards as kb, telegram as tg, phrases as phr, finance as fin, utils, glossary, bots, gcp, sed, db)
1.242188
1
questions/serializers.py
aneumeier/questions
0
4289
<filename>questions/serializers.py #!/usr/bin/env python # -*- coding: utf-8 """ :mod:`question.serializers` -- serializers """ from rest_framework import serializers from .models import Question, PossibleAnswer from category.models import Category class PossibleAnswerSerializer(serializers.ModelSerializer): class Meta: model = PossibleAnswer fields = ( 'id', 'possible_answer', ) class QuestionSerializer(serializers.ModelSerializer): category = serializers.StringRelatedField() possible_answer = serializers.StringRelatedField(many=True) class Meta: model = Question fields = ( 'id', 'question', 'category', 'possible_answer', 'male_answer_count', 'female_answer_count', 'all_answer_count', ) class CategorySerializer(serializers.ModelSerializer): def count(self): """ {{ category.question_set.count }} """ return self.question_set.count() class Meta: model = Category fields = ( 'id', 'title', )
2.609375
3
widgets/ui_ShowResultDialog.py
JaySon-Huang/SecertPhotos
0
4290
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'src/ui_ShowResultDialog.ui' # # Created: Sat May 16 17:05:43 2015 # by: PyQt5 UI code generator 5.4 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Dialog(object): def setupUi(self, Dialog): Dialog.setObjectName("Dialog") Dialog.resize(400, 300) self.verticalLayout = QtWidgets.QVBoxLayout(Dialog) self.verticalLayout.setObjectName("verticalLayout") self.lb_image = ImageLabel(Dialog) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lb_image.sizePolicy().hasHeightForWidth()) self.lb_image.setSizePolicy(sizePolicy) self.lb_image.setMinimumSize(QtCore.QSize(100, 100)) self.lb_image.setAlignment(QtCore.Qt.AlignCenter) self.lb_image.setObjectName("lb_image") self.verticalLayout.addWidget(self.lb_image) self.hLayout = QtWidgets.QHBoxLayout() self.hLayout.setObjectName("hLayout") spacerItem = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.hLayout.addItem(spacerItem) self.btn_save = QtWidgets.QPushButton(Dialog) self.btn_save.setObjectName("btn_save") self.hLayout.addWidget(self.btn_save) spacerItem1 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.hLayout.addItem(spacerItem1) self.verticalLayout.addLayout(self.hLayout) self.retranslateUi(Dialog) QtCore.QMetaObject.connectSlotsByName(Dialog) def retranslateUi(self, Dialog): _translate = QtCore.QCoreApplication.translate Dialog.setWindowTitle(_translate("Dialog", "Dialog")) self.lb_image.setText(_translate("Dialog", "Image Label")) self.btn_save.setText(_translate("Dialog", "Save it")) from widgets.ImageLabel import ImageLabel
1.664063
2
mixcoatl/admin/api_key.py
zomGreg/mixcoatl
0
4291
<gh_stars>0 """ mixcoatl.admin.api_key ---------------------- Implements access to the DCM ApiKey API """ from mixcoatl.resource import Resource from mixcoatl.decorators.lazy import lazy_property from mixcoatl.decorators.validations import required_attrs from mixcoatl.utils import uncamel, camelize, camel_keys, uncamel_keys import json class ApiKey(Resource): """An API key is an access key and secret key that provide API access into DCM.""" PATH = 'admin/ApiKey' COLLECTION_NAME = 'apiKeys' PRIMARY_KEY = 'access_key' def __init__(self, access_key=None, endpoint=None, *args, **kwargs): Resource.__init__(self, endpoint=endpoint) self.__access_key = access_key @property def access_key(self): """The primary identifier of the `ApiKey`. Same as `DCM_ACCESS_KEY`""" return self.__access_key @lazy_property def account(self): """`dict` - The account with which this API key is associated.""" return self.__account @lazy_property def activation(self): """`str` - The date and time when this key was activated.""" return self.__activation @lazy_property def expiration(self): """`str` - The date and time when this API key should automatically be made inactivate.""" return self.__expiration @expiration.setter def expiration(self, e): self.__expiration = e @lazy_property def customer(self): """`dict` - The customer to whom this API key belongs.""" return self.__customer @lazy_property def customer_management_key(self): """`bool` - Identifies whether or not this key can be used across all customer accounts.""" return self.__customer_management_key @lazy_property def description(self): """`str` - A user-friendly description of this API key.""" return self.__description @description.setter def description(self, d): self.__description = d @lazy_property def name(self): """`str` - The user-friendly name used to identify the key.""" return self.__name @name.setter def name(self, n): self.__name = n @lazy_property def secret_key(self): """`str` - The secret part of this API key.""" return self.__secret_key @lazy_property def state(self): """`str` - The status of the key *(i.e. `ACTIVE`)*""" return self.__state @lazy_property def system_management_key(self): """`bool` - Identifies if the key can be used for DCM system management functions""" return self.__system_management_key @lazy_property def user(self): """`dict` - The user associated with this API key. Account-level keys return `{'user_id': -1}`""" return self.__user @required_attrs(['description', 'name']) def create(self): """Call the API to generate an API key from the current instance of `ApiKey`""" payload = { 'generateApiKey': [{'description': self.description, 'name': self.name}]} s = self.post(data=json.dumps(payload)) if self.last_error is None: self.__access_key = s['apiKeys'][0]['accessKey'] self.load() else: raise ApiKeyGenerationException(self.last_error) def invalidate(self, reason='key deleted via mixcoatl'): """Call the API to invalidate the current instance of `ApiKey` This is the same as deleting the api key :param reason: the reason for invalidating the key :type reason: str. :returns: True :raises: :class:`ApiKeyInvalidationException` """ params = {'reason': reason} self.delete(params=params) if self.last_error is None: return True else: raise ApiKeyInvalidationException(self.last_error) @classmethod def generate_api_key(cls, key_name, description, expiration=None): """Generates a new API key >>> ApiKey.generate_api_key('my-api-key', 'this is my api key') {'access_key':'<KEY>':....} :param key_name: the name for the key :type key_name: str. :param description: the description for the key :type description: str. :param expiration: *unused for now* :type expiration: str. :returns: :class:`ApiKey` :raises: :class:`ApiKeyGenerationException` """ a = cls() a.name = key_name a.description = description a.create() return a @classmethod def all(cls, keys_only=False, endpoint=None, **kwargs): """Get all api keys .. note:: The keys used to make the request determine results visibility :param keys_only: Only return `access_key` instead of `ApiKey` objects :type keys_only: bool. :param detail: The level of detail to return - `basic` or `extended` :type detail: str. :param account_id: Display all system keys belonging to `account_id` :type account_id: int. :param user_id: Display all keys belonging to `user_id` :type user_id: int. :returns: `list` - of :class:`ApiKey` or :attr:`access_key` """ if 'access_key' in kwargs: r = Resource(cls.PATH + "/" + kwargs['access_key'], endpoint=endpoint) params = {} else: r = Resource(cls.PATH, endpoint=endpoint) if 'detail' in kwargs: r.request_details = kwargs['detail'] else: r.request_details = 'basic' if 'account_id' in kwargs: params = {'accountId': kwargs['account_id']} elif 'user_id' in kwargs: params = {'userId': kwargs['user_id']} else: params = {} x = r.get(params=params) if r.last_error is None: if keys_only is True: return [i[camelize(cls.PRIMARY_KEY)] for i in x[cls.COLLECTION_NAME]] else: return [type(cls.__name__, (object,), i) for i in uncamel_keys(x)[uncamel(cls.COLLECTION_NAME)]] else: raise ApiKeyException(r.last_error) class ApiKeyException(BaseException): pass class ApiKeyGenerationException(ApiKeyException): pass class ApiKeyInvalidationException(ApiKeyException): pass
2.140625
2
Python tests/dictionaries.py
Johnny-QA/Python_training
0
4292
<reponame>Johnny-QA/Python_training<filename>Python tests/dictionaries.py my_set = {1, 3, 5} my_dict = {'name': 'Jose', 'age': 90} another_dict = {1: 15, 2: 75, 3: 150} lottery_players = [ { 'name': 'Rolf', 'numbers': (13, 45, 66, 23, 22) }, { 'name': 'John', 'numbers': (14, 56, 80, 23, 22) } ] universities = [ { 'name': 'Oxford', 'location': 'UK' }, { 'name': 'MIT', 'location': 'US' } ]
3.09375
3
psdaq/psdaq/control_gui/QWTable.py
ZhenghengLi/lcls2
16
4293
<reponame>ZhenghengLi/lcls2 """Class :py:class:`QWTable` is a QTableView->QWidget for tree model ====================================================================== Usage :: # Run test: python lcls2/psdaq/psdaq/control_gui/QWTable.py from psdaq.control_gui.QWTable import QWTable w = QWTable() Created on 2019-03-28 by <NAME> Re-designed after copy psana/graphqt/QWTable.py -> psdaq/control_gui/ """ import logging logger = logging.getLogger(__name__) from PyQt5.QtWidgets import QTableView, QVBoxLayout, QAbstractItemView, QSizePolicy from PyQt5.QtGui import QStandardItemModel, QStandardItem from PyQt5.QtCore import Qt, QModelIndex from psdaq.control_gui.QWIcons import icon class QWTable(QTableView): def __init__(self, **kwargs): parent = kwargs.get('parent', None) QTableView.__init__(self, parent) self._name = self.__class__.__name__ icon.set_icons() self.is_connected_item_changed = False self._si_model = QStandardItemModel() self.set_selection_mode() self.fill_table_model(**kwargs) # defines self._si_model self.setModel(self._si_model) self.connect_control() self.set_style() def connect_control(self): self.connect_item_selected_to(self.on_item_selected) self.clicked.connect(self.on_click) self.doubleClicked.connect(self.on_double_click) self.connect_item_changed_to(self.on_item_changed) #def __del__(self): # QTableView.__del__(self) - it does not have __del__ def set_selection_mode(self, smode=QAbstractItemView.ExtendedSelection): logger.debug('Set selection mode: %s'%smode) self.setSelectionMode(smode) def connect_item_changed_to(self, recipient): self._si_model.itemChanged.connect(recipient) self.is_connected_item_changed = True def disconnect_item_changed_from(self, recipient): if self.is_connected_item_changed: self._si_model.itemChanged.disconnect(recipient) self.is_connected_item_changed = False def connect_item_selected_to(self, recipient): self.selectionModel().currentChanged[QModelIndex, QModelIndex].connect(recipient) def disconnect_item_selected_from(self, recipient): #self.selectionModel().selectionChanged[QModelIndex, QModelIndex].disconnect(recipient) self.selectionModel().currentChanged[QModelIndex, QModelIndex].disconnect(recipient) def set_style(self): self.setStyleSheet("QTableView::item:hover{background-color:#00FFAA;}") #self.setSizePolicy(QSizePolicy::Preferred,QSizePolicy::Fixed) self.set_exact_widget_size() def set_exact_widget_size(self): """set window size exactly matching actual size of QTableView. """ self.setSizePolicy(QSizePolicy.Minimum, QSizePolicy.Minimum) self.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff) self.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff) self.resizeColumnsToContents() self.setFixedSize(self.horizontalHeader().length()+self.verticalHeader().width(),\ self.verticalHeader().length()+self.horizontalHeader().height()) def fill_table_model(self, **kwargs): self.clear_model() self._si_model.setHorizontalHeaderLabels(['col0', 'col1', 'col2', 'col3', 'col4']) self._si_model.setVerticalHeaderLabels(['row0', 'row1', 'row2', 'row3']) for row in range(0, 4): for col in range(0, 6): item = QStandardItem("itemA %d %d"%(row,col)) item.setIcon(icon.icon_table) item.setCheckable(True) self._si_model.setItem(row,col,item) if col==2: item.setIcon(icon.icon_folder_closed) if col==3: item.setText('Some text') #self._si_model.appendRow(item) def clear_model(self): rows,cols = self._si_model.rowCount(), self._si_model.columnCount() self._si_model.removeRows(0, rows) self._si_model.removeColumns(0, cols) def selected_indexes(self): return self.selectedIndexes() def selected_items(self): indexes = self.selectedIndexes() return [self._si_model.itemFromIndex(i) for i in self.selectedIndexes()] def getFullNameFromItem(self, item): #item = self._si_model.itemFromIndex(ind) ind = self._si_model.indexFromItem(item) return self.getFullNameFromIndex(ind) def getFullNameFromIndex(self, ind): item = self._si_model.itemFromIndex(ind) if item is None: return None self._full_name = item.text() self._getFullName(ind) return self._full_name def _getFullName(self, ind): ind_par = self._si_model.parent(ind) if(ind_par.column() == -1): item = self._si_model.itemFromIndex(ind) self.full_name = '/' + self._full_name #logger.debug('Item full name:' + self._full_name) return self._full_name else: item_par = self._si_model.itemFromIndex(ind_par) self._full_name = item_par.text() + '/' + self._full_name self._getFullName(ind_par) # def resizeEvent(self, e): # logger.debug('resizeEvent') # QTableView.resizeEvent(self, e) def closeEvent(self, event): # if the x is clicked logger.debug('closeEvent') QTableView.closeEvent(self, event) def on_click(self, index): item = self._si_model.itemFromIndex(index) msg = 'on_click: item in row:%02d text: %s' % (index.row(), item.text()) logger.debug(msg) def on_double_click(self, index): item = self._si_model.itemFromIndex(index) msg = 'on_double_click: item in row:%02d text: %s' % (index.row(), item.text()) logger.debug(msg) def on_item_selected(self, ind_sel, ind_desel): #logger.debug("ind selected: ", ind_sel.row(), ind_sel.column()) #logger.debug("ind deselected: ", ind_desel.row(),ind_desel.column()) item = self._si_model.itemFromIndex(ind_sel) logger.debug('on_item_selected: "%s" is selected' % (item.text() if item is not None else None)) #logger.debug('on_item_selected: %s' % self.getFullNameFromItem(item)) def on_item_changed(self, item): state = ['UNCHECKED', 'TRISTATE', 'CHECKED'][item.checkState()] logger.debug('abstract on_item_changed: "%s" at state %s' % (self.getFullNameFromItem(item), state)) def process_selected_items(self): selitems = self.selected_items() msg = '%d Selected items:' % len(selitems) for i in selitems: msg += '\n %s' % i.text() logger.info(msg) if __name__ == '__main__': def keyPressEvent(self, e): logger.info('keyPressEvent, key=%s' % e.key()) if e.key() == Qt.Key_Escape: self.close() elif e.key() == Qt.Key_S: self.process_selected_items() else: logger.info('Keys:'\ '\n ESC - exit'\ '\n S - show selected items'\ '\n') if __name__ == '__main__': import sys from PyQt5.QtWidgets import QApplication logging.basicConfig(format='%(asctime)s %(name)s %(levelname)s: %(message)s', datefmt='%H:%M:%S', level=logging.DEBUG) app = QApplication(sys.argv) w = QWTable() #w.setGeometry(100, 100, 700, 300) w.setWindowTitle('QWTable') w.move(100,50) w.show() app.exec_() del w del app # EOF
2.171875
2
src/grailbase/mtloader.py
vadmium/grailbrowser
9
4294
"""Extension loader for filetype handlers. The extension objects provided by MIMEExtensionLoader objects have four attributes: parse, embed, add_options, and update_options. The first two are used as handlers for supporting the MIME type as primary and embeded resources. The last two are (currently) only used for printing. """ __version__ = '$Revision: 2.4 $' from . import extloader import string class MIMEExtensionLoader(extloader.ExtensionLoader): def find(self, name): new_name = string.replace(name, "-", "_") major, minor = tuple(string.split(new_name, "/")) if minor: modname = "%s_%s" % (major, minor) else: modname = major mod = self.find_module(modname) ext = None if not mod and modname != major: ext = self.get(major + "/") elif mod: ext = MIMETypeExtension(name, mod, modname) return ext class MIMETypeExtension: def __init__(self, type, mod, modname): self.type = type self.__load_attr(mod, "parse_" + modname, "parse") self.__load_attr(mod, "embed_" + modname, "embed") self.__load_attr(mod, "add_options") self.__load_attr(mod, "update_settings") def __repr__(self): classname = self.__class__.__name__ modulename = self.__class__.__module__ if self.parse and self.embed: flags = " [displayable, embeddable]" elif self.embed: flags = " [embeddable]" elif self.parse: flags = " [displayable]" else: # not very useful, now is it? flags = "" return "<%s.%s for %s%s>" % (modulename, classname, self.type, flags) def __load_attr(self, mod, name, load_as=None): load_as = load_as or name if hasattr(mod, name): v = getattr(mod, name) else: v = None setattr(self, load_as, v)
2.484375
2
eventstreams_sdk/adminrest_v1.py
IBM/eventstreams-python-sdk
2
4295
<gh_stars>1-10 # coding: utf-8 # (C) Copyright IBM Corp. 2021. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # IBM OpenAPI SDK Code Generator Version: 3.25.0-2b3f843a-20210115-164628 """ The administration REST API for IBM Event Streams on Cloud. """ from typing import Dict, List import json from ibm_cloud_sdk_core import BaseService, DetailedResponse from ibm_cloud_sdk_core.authenticators.authenticator import Authenticator from ibm_cloud_sdk_core.get_authenticator import get_authenticator_from_environment from ibm_cloud_sdk_core.utils import convert_model from .common import get_sdk_headers ############################################################################## # Service ############################################################################## class AdminrestV1(BaseService): """The adminrest V1 service.""" DEFAULT_SERVICE_URL = 'https://adminrest.cloud.ibm.com' DEFAULT_SERVICE_NAME = 'adminrest' @classmethod def new_instance(cls, service_name: str = DEFAULT_SERVICE_NAME, ) -> 'AdminrestV1': """ Return a new client for the adminrest service using the specified parameters and external configuration. """ authenticator = get_authenticator_from_environment(service_name) service = cls( authenticator ) service.configure_service(service_name) return service def __init__(self, authenticator: Authenticator = None, ) -> None: """ Construct a new client for the adminrest service. :param Authenticator authenticator: The authenticator specifies the authentication mechanism. Get up to date information from https://github.com/IBM/python-sdk-core/blob/master/README.md about initializing the authenticator of your choice. """ BaseService.__init__(self, service_url=self.DEFAULT_SERVICE_URL, authenticator=authenticator) ######################### # default ######################### def create_topic(self, *, name: str = None, partitions: int = None, partition_count: int = None, configs: List['ConfigCreate'] = None, **kwargs ) -> DetailedResponse: """ Create a new topic. Create a new topic. :param str name: (optional) The name of topic to be created. :param int partitions: (optional) The number of partitions. :param int partition_count: (optional) The number of partitions, this field takes precedence over 'partitions'. Default value is 1 if not specified. :param List[ConfigCreate] configs: (optional) The config properties to be set for the new topic. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse """ if configs is not None: configs = [convert_model(x) for x in configs] headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='create_topic') headers.update(sdk_headers) data = { 'name': name, 'partitions': partitions, 'partition_count': partition_count, 'configs': configs } data = {k: v for (k, v) in data.items() if v is not None} data = json.dumps(data) headers['content-type'] = 'application/json' if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' url = '/admin/topics' request = self.prepare_request(method='POST', url=url, headers=headers, data=data) response = self.send(request) return response def list_topics(self, *, topic_filter: str = None, per_page: int = None, page: int = None, **kwargs ) -> DetailedResponse: """ Get a list of topics. Returns a list containing information about all of the Kafka topics that are defined for an instance of the Event Streams service. If there are currently no topics defined then an empty list is returned. :param str topic_filter: (optional) A filter to be applied to the topic names. A simple filter can be specified as a string with asterisk (`*`) wildcards representing 0 or more characters, e.g. `topic-name*` will filter all topic names that begin with the string `topic-name` followed by any character sequence. A more complex filter pattern can be used by surrounding a regular expression in forward slash (`/`) delimiters, e.g. `/topic-name.* /`. :param int per_page: (optional) The number of topic names to be returns. :param int page: (optional) The page number to be returned. The number 1 represents the first page. The default value is 1. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `List[TopicDetail]` result """ headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='list_topics') headers.update(sdk_headers) params = { 'topic_filter': topic_filter, 'per_page': per_page, 'page': page } if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' url = '/admin/topics' request = self.prepare_request(method='GET', url=url, headers=headers, params=params) response = self.send(request) return response def get_topic(self, topic_name: str, **kwargs ) -> DetailedResponse: """ Get detailed information on a topic. Get detailed information on a topic. :param str topic_name: The topic name for the topic to be listed. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `dict` result representing a `TopicDetail` object """ if topic_name is None: raise ValueError('topic_name must be provided') headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='get_topic') headers.update(sdk_headers) if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' path_param_keys = ['topic_name'] path_param_values = self.encode_path_vars(topic_name) path_param_dict = dict(zip(path_param_keys, path_param_values)) url = '/admin/topics/{topic_name}'.format(**path_param_dict) request = self.prepare_request(method='GET', url=url, headers=headers) response = self.send(request) return response def delete_topic(self, topic_name: str, **kwargs ) -> DetailedResponse: """ Delete a topic. Delete a topic. :param str topic_name: The topic name for the topic to be listed. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse """ if topic_name is None: raise ValueError('topic_name must be provided') headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='delete_topic') headers.update(sdk_headers) if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' path_param_keys = ['topic_name'] path_param_values = self.encode_path_vars(topic_name) path_param_dict = dict(zip(path_param_keys, path_param_values)) url = '/admin/topics/{topic_name}'.format(**path_param_dict) request = self.prepare_request(method='DELETE', url=url, headers=headers) response = self.send(request) return response def update_topic(self, topic_name: str, *, new_total_partition_count: int = None, configs: List['ConfigUpdate'] = None, **kwargs ) -> DetailedResponse: """ Increase the number of partitions and/or update one or more topic configuration parameters. Increase the number of partitions and/or update one or more topic configuration parameters. :param str topic_name: The topic name for the topic to be listed. :param int new_total_partition_count: (optional) The new partition number to be increased. :param List[ConfigUpdate] configs: (optional) The config properties to be updated for the topic. Valid config keys are 'cleanup.policy', 'retention.ms', 'retention.bytes', 'segment.bytes', 'segment.ms', 'segment.index.bytes'. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse """ if topic_name is None: raise ValueError('topic_name must be provided') if configs is not None: configs = [convert_model(x) for x in configs] headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='update_topic') headers.update(sdk_headers) data = { 'new_total_partition_count': new_total_partition_count, 'configs': configs } data = {k: v for (k, v) in data.items() if v is not None} data = json.dumps(data) headers['content-type'] = 'application/json' if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' path_param_keys = ['topic_name'] path_param_values = self.encode_path_vars(topic_name) path_param_dict = dict(zip(path_param_keys, path_param_values)) url = '/admin/topics/{topic_name}'.format(**path_param_dict) request = self.prepare_request(method='PATCH', url=url, headers=headers, data=data) response = self.send(request) return response def get_mirroring_topic_selection(self, **kwargs ) -> DetailedResponse: """ Get current topic selection for mirroring. Get current topic selection for mirroring. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `dict` result representing a `MirroringTopicSelection` object """ headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='get_mirroring_topic_selection') headers.update(sdk_headers) if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' url = '/admin/mirroring/topic-selection' request = self.prepare_request(method='GET', url=url, headers=headers) response = self.send(request) return response def replace_mirroring_topic_selection(self, *, includes: List[str] = None, **kwargs ) -> DetailedResponse: """ Replace topic selection for mirroring. Replace topic selection for mirroring. This operation replaces the complete set of mirroring topic selections. :param List[str] includes: (optional) :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `dict` result representing a `MirroringTopicSelection` object """ headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='replace_mirroring_topic_selection') headers.update(sdk_headers) data = { 'includes': includes } data = {k: v for (k, v) in data.items() if v is not None} data = json.dumps(data) headers['content-type'] = 'application/json' if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' url = '/admin/mirroring/topic-selection' request = self.prepare_request(method='POST', url=url, headers=headers, data=data) response = self.send(request) return response def get_mirroring_active_topics(self, **kwargs ) -> DetailedResponse: """ Get topics that are being actively mirrored. Get topics that are being actively mirrored. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse with `dict` result representing a `MirroringActiveTopics` object """ headers = {} sdk_headers = get_sdk_headers(service_name=self.DEFAULT_SERVICE_NAME, service_version='V1', operation_id='get_mirroring_active_topics') headers.update(sdk_headers) if 'headers' in kwargs: headers.update(kwargs.get('headers')) headers['Accept'] = 'application/json' url = '/admin/mirroring/active-topics' request = self.prepare_request(method='GET', url=url, headers=headers) response = self.send(request) return response ############################################################################## # Models ############################################################################## class ReplicaAssignmentBrokers(): """ ReplicaAssignmentBrokers. :attr List[int] replicas: (optional) """ def __init__(self, *, replicas: List[int] = None) -> None: """ Initialize a ReplicaAssignmentBrokers object. :param List[int] replicas: (optional) """ self.replicas = replicas @classmethod def from_dict(cls, _dict: Dict) -> 'ReplicaAssignmentBrokers': """Initialize a ReplicaAssignmentBrokers object from a json dictionary.""" args = {} if 'replicas' in _dict: args['replicas'] = _dict.get('replicas') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ReplicaAssignmentBrokers object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'replicas') and self.replicas is not None: _dict['replicas'] = self.replicas return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ReplicaAssignmentBrokers object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'ReplicaAssignmentBrokers') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ReplicaAssignmentBrokers') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class ConfigCreate(): """ ConfigCreate. :attr str name: (optional) The name of the config property. :attr str value: (optional) The value for a config property. """ def __init__(self, *, name: str = None, value: str = None) -> None: """ Initialize a ConfigCreate object. :param str name: (optional) The name of the config property. :param str value: (optional) The value for a config property. """ self.name = name self.value = value @classmethod def from_dict(cls, _dict: Dict) -> 'ConfigCreate': """Initialize a ConfigCreate object from a json dictionary.""" args = {} if 'name' in _dict: args['name'] = _dict.get('name') if 'value' in _dict: args['value'] = _dict.get('value') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ConfigCreate object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'name') and self.name is not None: _dict['name'] = self.name if hasattr(self, 'value') and self.value is not None: _dict['value'] = self.value return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ConfigCreate object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'ConfigCreate') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ConfigCreate') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class ConfigUpdate(): """ ConfigUpdate. :attr str name: (optional) The name of the config property. :attr str value: (optional) The value for a config property. :attr bool reset_to_default: (optional) When true, the value of the config property is reset to its default value. """ def __init__(self, *, name: str = None, value: str = None, reset_to_default: bool = None) -> None: """ Initialize a ConfigUpdate object. :param str name: (optional) The name of the config property. :param str value: (optional) The value for a config property. :param bool reset_to_default: (optional) When true, the value of the config property is reset to its default value. """ self.name = name self.value = value self.reset_to_default = reset_to_default @classmethod def from_dict(cls, _dict: Dict) -> 'ConfigUpdate': """Initialize a ConfigUpdate object from a json dictionary.""" args = {} if 'name' in _dict: args['name'] = _dict.get('name') if 'value' in _dict: args['value'] = _dict.get('value') if 'reset_to_default' in _dict: args['reset_to_default'] = _dict.get('reset_to_default') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ConfigUpdate object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'name') and self.name is not None: _dict['name'] = self.name if hasattr(self, 'value') and self.value is not None: _dict['value'] = self.value if hasattr(self, 'reset_to_default') and self.reset_to_default is not None: _dict['reset_to_default'] = self.reset_to_default return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ConfigUpdate object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'ConfigUpdate') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ConfigUpdate') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class MirroringActiveTopics(): """ Topics that are being actively mirrored. :attr List[str] active_topics: (optional) """ def __init__(self, *, active_topics: List[str] = None) -> None: """ Initialize a MirroringActiveTopics object. :param List[str] active_topics: (optional) """ self.active_topics = active_topics @classmethod def from_dict(cls, _dict: Dict) -> 'MirroringActiveTopics': """Initialize a MirroringActiveTopics object from a json dictionary.""" args = {} if 'active_topics' in _dict: args['active_topics'] = _dict.get('active_topics') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a MirroringActiveTopics object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'active_topics') and self.active_topics is not None: _dict['active_topics'] = self.active_topics return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this MirroringActiveTopics object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'MirroringActiveTopics') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'MirroringActiveTopics') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class MirroringTopicSelection(): """ Mirroring topic selection payload. :attr List[str] includes: (optional) """ def __init__(self, *, includes: List[str] = None) -> None: """ Initialize a MirroringTopicSelection object. :param List[str] includes: (optional) """ self.includes = includes @classmethod def from_dict(cls, _dict: Dict) -> 'MirroringTopicSelection': """Initialize a MirroringTopicSelection object from a json dictionary.""" args = {} if 'includes' in _dict: args['includes'] = _dict.get('includes') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a MirroringTopicSelection object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'includes') and self.includes is not None: _dict['includes'] = self.includes return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this MirroringTopicSelection object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'MirroringTopicSelection') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'MirroringTopicSelection') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class ReplicaAssignment(): """ ReplicaAssignment. :attr int id: (optional) The ID of the partition. :attr ReplicaAssignmentBrokers brokers: (optional) """ def __init__(self, *, id: int = None, brokers: 'ReplicaAssignmentBrokers' = None) -> None: """ Initialize a ReplicaAssignment object. :param int id: (optional) The ID of the partition. :param ReplicaAssignmentBrokers brokers: (optional) """ self.id = id self.brokers = brokers @classmethod def from_dict(cls, _dict: Dict) -> 'ReplicaAssignment': """Initialize a ReplicaAssignment object from a json dictionary.""" args = {} if 'id' in _dict: args['id'] = _dict.get('id') if 'brokers' in _dict: args['brokers'] = ReplicaAssignmentBrokers.from_dict(_dict.get('brokers')) return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a ReplicaAssignment object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'id') and self.id is not None: _dict['id'] = self.id if hasattr(self, 'brokers') and self.brokers is not None: _dict['brokers'] = self.brokers.to_dict() return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this ReplicaAssignment object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'ReplicaAssignment') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'ReplicaAssignment') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class TopicConfigs(): """ TopicConfigs. :attr str cleanup_policy: (optional) The value of config property 'cleanup.policy'. :attr str min_insync_replicas: (optional) The value of config property 'min.insync.replicas'. :attr str retention_bytes: (optional) The value of config property 'retention.bytes'. :attr str retention_ms: (optional) The value of config property 'retention.ms'. :attr str segment_bytes: (optional) The value of config property 'segment.bytes'. :attr str segment_index_bytes: (optional) The value of config property 'segment.index.bytes'. :attr str segment_ms: (optional) The value of config property 'segment.ms'. """ def __init__(self, *, cleanup_policy: str = None, min_insync_replicas: str = None, retention_bytes: str = None, retention_ms: str = None, segment_bytes: str = None, segment_index_bytes: str = None, segment_ms: str = None) -> None: """ Initialize a TopicConfigs object. :param str cleanup_policy: (optional) The value of config property 'cleanup.policy'. :param str min_insync_replicas: (optional) The value of config property 'min.insync.replicas'. :param str retention_bytes: (optional) The value of config property 'retention.bytes'. :param str retention_ms: (optional) The value of config property 'retention.ms'. :param str segment_bytes: (optional) The value of config property 'segment.bytes'. :param str segment_index_bytes: (optional) The value of config property 'segment.index.bytes'. :param str segment_ms: (optional) The value of config property 'segment.ms'. """ self.cleanup_policy = cleanup_policy self.min_insync_replicas = min_insync_replicas self.retention_bytes = retention_bytes self.retention_ms = retention_ms self.segment_bytes = segment_bytes self.segment_index_bytes = segment_index_bytes self.segment_ms = segment_ms @classmethod def from_dict(cls, _dict: Dict) -> 'TopicConfigs': """Initialize a TopicConfigs object from a json dictionary.""" args = {} if 'cleanup.policy' in _dict: args['cleanup_policy'] = _dict.get('cleanup.policy') if 'min.insync.replicas' in _dict: args['min_insync_replicas'] = _dict.get('min.insync.replicas') if 'retention.bytes' in _dict: args['retention_bytes'] = _dict.get('retention.bytes') if 'retention.ms' in _dict: args['retention_ms'] = _dict.get('retention.ms') if 'segment.bytes' in _dict: args['segment_bytes'] = _dict.get('segment.bytes') if 'segment.index.bytes' in _dict: args['segment_index_bytes'] = _dict.get('segment.index.bytes') if 'segment.ms' in _dict: args['segment_ms'] = _dict.get('segment.ms') return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a TopicConfigs object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'cleanup_policy') and self.cleanup_policy is not None: _dict['cleanup.policy'] = self.cleanup_policy if hasattr(self, 'min_insync_replicas') and self.min_insync_replicas is not None: _dict['min.insync.replicas'] = self.min_insync_replicas if hasattr(self, 'retention_bytes') and self.retention_bytes is not None: _dict['retention.bytes'] = self.retention_bytes if hasattr(self, 'retention_ms') and self.retention_ms is not None: _dict['retention.ms'] = self.retention_ms if hasattr(self, 'segment_bytes') and self.segment_bytes is not None: _dict['segment.bytes'] = self.segment_bytes if hasattr(self, 'segment_index_bytes') and self.segment_index_bytes is not None: _dict['segment.index.bytes'] = self.segment_index_bytes if hasattr(self, 'segment_ms') and self.segment_ms is not None: _dict['segment.ms'] = self.segment_ms return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this TopicConfigs object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'TopicConfigs') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'TopicConfigs') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other class TopicDetail(): """ TopicDetail. :attr str name: (optional) The name of the topic. :attr int partitions: (optional) The number of partitions. :attr int replication_factor: (optional) The number of replication factor. :attr int retention_ms: (optional) The value of config property 'retention.ms'. :attr str cleanup_policy: (optional) The value of config property 'cleanup.policy'. :attr TopicConfigs configs: (optional) :attr List[ReplicaAssignment] replica_assignments: (optional) The replia assignment of the topic. """ def __init__(self, *, name: str = None, partitions: int = None, replication_factor: int = None, retention_ms: int = None, cleanup_policy: str = None, configs: 'TopicConfigs' = None, replica_assignments: List['ReplicaAssignment'] = None) -> None: """ Initialize a TopicDetail object. :param str name: (optional) The name of the topic. :param int partitions: (optional) The number of partitions. :param int replication_factor: (optional) The number of replication factor. :param int retention_ms: (optional) The value of config property 'retention.ms'. :param str cleanup_policy: (optional) The value of config property 'cleanup.policy'. :param TopicConfigs configs: (optional) :param List[ReplicaAssignment] replica_assignments: (optional) The replia assignment of the topic. """ self.name = name self.partitions = partitions self.replication_factor = replication_factor self.retention_ms = retention_ms self.cleanup_policy = cleanup_policy self.configs = configs self.replica_assignments = replica_assignments @classmethod def from_dict(cls, _dict: Dict) -> 'TopicDetail': """Initialize a TopicDetail object from a json dictionary.""" args = {} if 'name' in _dict: args['name'] = _dict.get('name') if 'partitions' in _dict: args['partitions'] = _dict.get('partitions') if 'replicationFactor' in _dict: args['replication_factor'] = _dict.get('replicationFactor') if 'retentionMs' in _dict: args['retention_ms'] = _dict.get('retentionMs') if 'cleanupPolicy' in _dict: args['cleanup_policy'] = _dict.get('cleanupPolicy') if 'configs' in _dict: args['configs'] = TopicConfigs.from_dict(_dict.get('configs')) if 'replicaAssignments' in _dict: args['replica_assignments'] = [ReplicaAssignment.from_dict(x) for x in _dict.get('replicaAssignments')] return cls(**args) @classmethod def _from_dict(cls, _dict): """Initialize a TopicDetail object from a json dictionary.""" return cls.from_dict(_dict) def to_dict(self) -> Dict: """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'name') and self.name is not None: _dict['name'] = self.name if hasattr(self, 'partitions') and self.partitions is not None: _dict['partitions'] = self.partitions if hasattr(self, 'replication_factor') and self.replication_factor is not None: _dict['replicationFactor'] = self.replication_factor if hasattr(self, 'retention_ms') and self.retention_ms is not None: _dict['retentionMs'] = self.retention_ms if hasattr(self, 'cleanup_policy') and self.cleanup_policy is not None: _dict['cleanupPolicy'] = self.cleanup_policy if hasattr(self, 'configs') and self.configs is not None: _dict['configs'] = self.configs.to_dict() if hasattr(self, 'replica_assignments') and self.replica_assignments is not None: _dict['replicaAssignments'] = [x.to_dict() for x in self.replica_assignments] return _dict def _to_dict(self): """Return a json dictionary representing this model.""" return self.to_dict() def __str__(self) -> str: """Return a `str` version of this TopicDetail object.""" return json.dumps(self.to_dict(), indent=2) def __eq__(self, other: 'TopicDetail') -> bool: """Return `true` when self and other are equal, false otherwise.""" if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other: 'TopicDetail') -> bool: """Return `true` when self and other are not equal, false otherwise.""" return not self == other
1.679688
2
3-functions/pytest-exercises/test_functions.py
BaseCampCoding/python-fundamentals
0
4296
<filename>3-functions/pytest-exercises/test_functions.py import functions from pytest import approx from bcca.test import should_print def test_add_em_up(): assert functions.add_em_up(1, 2, 3) == 6 assert functions.add_em_up(4, 5, 6) == 15 def test_sub_sub_hubbub(): assert functions.sub_sub_hubbub(1, 2, 3) == -4 def test_square_area(): assert functions.square_area(5, 5) == 25 assert functions.square_area(3, 5) == 15 assert functions.square_area(2, 2) == 4 def test_circle_area(): assert functions.circle_area(1) == approx(3.14) assert functions.circle_area(5) == approx(78.5) def test_kilometers_to_miles(): assert functions.kilometers_to_miles(1) == approx(0.6214) assert functions.kilometers_to_miles(.5) == approx(0.3107) assert functions.kilometers_to_miles(0) == approx(0.0) assert functions.kilometers_to_miles(40) == approx(24.855999999999998) @should_print def test_sales_tax_1(output): functions.sales_tax(1) assert output == """ Purchase Amount: 1 State Sales Tax: 0.04 County Sales Tax: 0.02 Total Sales Tax: 0.06 Total Cost: 1.06 """ @should_print def test_sales_tax_99_99(output): functions.sales_tax(99.99) assert output == """ Purchase Amount: 99.99 State Sales Tax: 3.9996 County Sales Tax: 1.9998 Total Sales Tax: 5.9994 Total Cost: 105.98939999999999 """ @should_print def test_sales_tax_5_95(output): functions.sales_tax(5.95) assert output == """ Purchase Amount: 5.95 State Sales Tax: 0.23800000000000002 County Sales Tax: 0.11900000000000001 Total Sales Tax: 0.35700000000000004 Total Cost: 6.307 """ def test_min_insurance(): assert functions.min_insurance(100000) == approx(80000.0) assert functions.min_insurance(123456789) == approx(98765431.2) assert functions.min_insurance(0) == approx(0.0) assert functions.min_insurance(-54317890) == approx(-43454312.0) @should_print def test_property_tax_10000(output): functions.property_tax(10000) assert output == ''' Assessment Value: 6000.0 Property Tax: 38.4 ''' @should_print def test_property_tax_99999_95(output): functions.property_tax(99999.95) assert output == ''' Assessment Value: 59999.969999999994 Property Tax: 383.999808 ''' def test_bmi(): assert functions.bmi(160, 67) == approx(25.05680552) assert functions.bmi(200, 72) == approx(27.12191358) assert functions.bmi(120, 60) == approx(23.43333333) def test_calories(): assert functions.calories(5, 20) == 125 assert functions.calories(1, 1) == 13 def test_earnings(): assert functions.earnings(100, 100, 100) == 3600 assert functions.earnings(50, 75, 100) == 2550 assert functions.earnings(0, 1000, 79) == 12711 @should_print def test_paint_job_estimator(output): functions.paint_job_estimator(50, 10) assert output == ''' Gallons of paint required: 0.43478260869565216 Hours of labor required: 3.4782608695652173 Cost of paint: 4.3478260869565215 Cost of labor: 69.56521739130434 Total Cost: 73.91304347826086 ''' @should_print def test_paint_job_estimator_2(output): functions.paint_job_estimator(750, 15.95) assert output == ''' Gallons of paint required: 6.521739130434782 Hours of labor required: 52.17391304347826 Cost of paint: 104.02173913043477 Cost of labor: 1043.4782608695652 Total Cost: 1147.5 ''' @should_print def test_monthly_sales_tax(output): functions.monthly_sales_tax(123456.79) assert output == ''' Monthly sales: 123456.79 State sales tax: 4938.2716 County sales tax: 2469.1358 Total sales tax: 7407.4074 ''' @should_print def test_monthly_sales_tax_2(output): functions.monthly_sales_tax(4321567.21) assert output == ''' Monthly sales: 4321567.21 State sales tax: 172862.6884 County sales tax: 86431.3442 Total sales tax: 259294.03260000004 '''
3.46875
3
src/products/admin.py
apabaad/django_ecommerce
0
4297
<reponame>apabaad/django_ecommerce from django.contrib import admin from .models import Product admin.site.register(Product)
1.203125
1
cio/plugins/txt.py
beshrkayali/content-io
6
4298
<reponame>beshrkayali/content-io # coding=utf-8 from __future__ import unicode_literals from .base import BasePlugin class TextPlugin(BasePlugin): ext = 'txt'
1.234375
1
ml-scripts/dump-data-to-learn.py
thejoeejoee/SUI-MIT-VUT-2020-2021
0
4299
#!/usr/bin/env python3 # Project: VUT FIT SUI Project - Dice Wars # Authors: # - <NAME> <<EMAIL>> # - <NAME> <<EMAIL>> # - <NAME> <<EMAIL>> # - <NAME> <<EMAIL>> # Year: 2020 # Description: Generates game configurations. import random import sys from argparse import ArgumentParser import time from signal import signal, SIGCHLD from utils import run_ai_only_game, BoardDefinition parser = ArgumentParser(prog='Dice_Wars') parser.add_argument('-p', '--port', help="Server port", type=int, default=5005) parser.add_argument('-a', '--address', help="Server address", default='127.0.0.1') procs = [] def signal_handler(): """ Handler for SIGCHLD signal that terminates server and clients. """ for p in procs: try: p.kill() except ProcessLookupError: pass PLAYING_AIs = [ 'xkolar71_orig', 'xkolar71_2', 'xkolar71_3', 'xkolar71_4', ] def board_definitions(): while True: random.seed(int(time.time())) yield BoardDefinition(random.randint(1, 10 ** 10), random.randint(1, 10 ** 10), random.randint(1, 10 ** 10)) def main(): args = parser.parse_args() signal(SIGCHLD, signal_handler) boards_played = 0 try: for board_definition in board_definitions(): boards_played += 1 run_ai_only_game( args.port, args.address, procs, PLAYING_AIs, board_definition, fixed=random.randint(1, 10 ** 10), client_seed=random.randint(1, 10 ** 10), debug=True, logdir='logs', ) print(f'Played {boards_played} games.', file=sys.stderr) except (Exception, KeyboardInterrupt) as e: sys.stderr.write("Breaking the tournament because of {}\n".format(repr(e))) for p in procs: p.kill() raise if __name__ == '__main__': main()
2.40625
2