max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
27. Remove Element/solution2.py
sunshot/LeetCode
0
3600
<gh_stars>0 from typing import List class Solution: def removeElement(self, nums: List[int], val: int) -> int: if not nums: return 0 curr = 0 n = len(nums) while curr < n: if nums[curr] == val: nums[curr] = nums[n-1] n -= 1 else: curr += 1 return n if __name__== '__main__': solution = Solution() nums = [3,2,2,3] val = 3 ans = solution.removeElement(nums, val) # print(ans) print(nums[:ans])
3.71875
4
platformio/commands/home/run.py
Granjow/platformio-core
4,744
3601
# Copyright (c) 2014-present PlatformIO <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from urllib.parse import urlparse import click import uvicorn from starlette.applications import Starlette from starlette.middleware import Middleware from starlette.responses import PlainTextResponse from starlette.routing import Mount, Route, WebSocketRoute from starlette.staticfiles import StaticFiles from starlette.status import HTTP_403_FORBIDDEN from platformio.commands.home.rpc.handlers.account import AccountRPC from platformio.commands.home.rpc.handlers.app import AppRPC from platformio.commands.home.rpc.handlers.ide import IDERPC from platformio.commands.home.rpc.handlers.misc import MiscRPC from platformio.commands.home.rpc.handlers.os import OSRPC from platformio.commands.home.rpc.handlers.piocore import PIOCoreRPC from platformio.commands.home.rpc.handlers.project import ProjectRPC from platformio.commands.home.rpc.server import WebSocketJSONRPCServerFactory from platformio.compat import aio_get_running_loop from platformio.exception import PlatformioException from platformio.package.manager.core import get_core_package_dir from platformio.proc import force_exit class ShutdownMiddleware: def __init__(self, app): self.app = app async def __call__(self, scope, receive, send): if scope["type"] == "http" and b"__shutdown__" in scope.get("query_string", {}): await shutdown_server() await self.app(scope, receive, send) async def shutdown_server(_=None): aio_get_running_loop().call_later(0.5, force_exit) return PlainTextResponse("Server has been shutdown!") async def protected_page(_): return PlainTextResponse( "Protected PlatformIO Home session", status_code=HTTP_403_FORBIDDEN ) def run_server(host, port, no_open, shutdown_timeout, home_url): contrib_dir = get_core_package_dir("contrib-piohome") if not os.path.isdir(contrib_dir): raise PlatformioException("Invalid path to PIO Home Contrib") ws_rpc_factory = WebSocketJSONRPCServerFactory(shutdown_timeout) ws_rpc_factory.addObjectHandler(AccountRPC(), namespace="account") ws_rpc_factory.addObjectHandler(AppRPC(), namespace="app") ws_rpc_factory.addObjectHandler(IDERPC(), namespace="ide") ws_rpc_factory.addObjectHandler(MiscRPC(), namespace="misc") ws_rpc_factory.addObjectHandler(OSRPC(), namespace="os") ws_rpc_factory.addObjectHandler(PIOCoreRPC(), namespace="core") ws_rpc_factory.addObjectHandler(ProjectRPC(), namespace="project") path = urlparse(home_url).path routes = [ WebSocketRoute(path + "wsrpc", ws_rpc_factory, name="wsrpc"), Route(path + "__shutdown__", shutdown_server, methods=["POST"]), Mount(path, StaticFiles(directory=contrib_dir, html=True), name="static"), ] if path != "/": routes.append(Route("/", protected_page)) uvicorn.run( Starlette( middleware=[Middleware(ShutdownMiddleware)], routes=routes, on_startup=[ lambda: click.echo( "PIO Home has been started. Press Ctrl+C to shutdown." ), lambda: None if no_open else click.launch(home_url), ], ), host=host, port=port, log_level="warning", )
1.523438
2
appengine/components/components/machine_provider/rpc_messages.py
stefb965/luci-py
1
3602
# Copyright 2015 The LUCI Authors. All rights reserved. # Use of this source code is governed under the Apache License, Version 2.0 # that can be found in the LICENSE file. """Messages for the Machine Provider API.""" # pylint: disable=unused-wildcard-import, wildcard-import from protorpc import messages from components.machine_provider.dimensions import * from components.machine_provider.instructions import * from components.machine_provider.policies import * class CatalogMachineRetrievalRequest(messages.Message): """Represents a request to retrieve a machine from the catalog.""" # Hostname of the machine to retrieve. hostname = messages.StringField(1, required=True) # Backend which added the machine. backend = messages.EnumField(Backend, 2) class CatalogMachineRetrievalResponse(messages.Message): """Represents a response to a catalog machine retrieval request.""" # Dimensions instance specifying what sort of machine this is. dimensions = messages.MessageField(Dimensions, 1) # Policies governing this machine. policies = messages.MessageField(Policies, 2) # State of the CatalogMachineEntry. state = messages.StringField(3) # Cloud Pub/Sub subscription the machine must listen to for instructions. pubsub_subscription = messages.StringField(4) # Project the Cloud Pub/Sub subscription exists in. pubsub_subscription_project = messages.StringField(5) # Cloud Pub/Sub topic the machine must be subscribed to. pubsub_topic = messages.StringField(6) # Project the Cloud Pub/Sub topic exists in. pubsub_topic_project = messages.StringField(7) # Timestamp indicating lease expiration seconds from epoch in UTC. lease_expiration_ts = messages.IntegerField(8) class CatalogMachineAdditionRequest(messages.Message): """Represents a request to add a machine to the catalog. dimensions.backend must be specified. dimensions.hostname must be unique per backend. """ # Dimensions instance specifying what sort of machine this is. dimensions = messages.MessageField(Dimensions, 1, required=True) # Policies instance specifying machine-specific configuration. policies = messages.MessageField(Policies, 2, required=True) class CatalogMachineBatchAdditionRequest(messages.Message): """Represents a batched set of CatalogMachineAdditionRequests. dimensions.backend must be specified in each CatalogMachineAdditionRequest. dimensions.hostname must be unique per backend. """ # CatalogMachineAdditionRequest instances to batch together. requests = messages.MessageField( CatalogMachineAdditionRequest, 1, repeated=True) class CatalogMachineDeletionRequest(messages.Message): """Represents a request to delete a machine in the catalog.""" # Dimensions instance specifying what sort of machine this is. dimensions = messages.MessageField(Dimensions, 1, required=True) class CatalogManipulationRequestError(messages.Enum): """Represents an error in a catalog manipulation request.""" # Per backend, hostnames must be unique in the catalog. HOSTNAME_REUSE = 1 # Tried to lookup an entry that didn't exist. ENTRY_NOT_FOUND = 2 # Didn't specify a backend. UNSPECIFIED_BACKEND = 3 # Specified backend didn't match the backend originating the request. MISMATCHED_BACKEND = 4 # Didn't specify a hostname. UNSPECIFIED_HOSTNAME = 5 # Proposed Cloud Pub/Sub topic was invalid. INVALID_TOPIC = 6 # Proposed Cloud Pub/Sub project was invalid. INVALID_PROJECT = 7 # Didn't specify a Cloud Pub/Sub topic. UNSPECIFIED_TOPIC = 8 # Attempted to delete a leased machine. LEASED = 9 class CatalogManipulationResponse(messages.Message): """Represents a response to a catalog manipulation request.""" # CatalogManipulationRequestError instance indicating an error with the # request, or None if there is no error. error = messages.EnumField(CatalogManipulationRequestError, 1) # CatalogMachineAdditionRequest this response is in reference to. machine_addition_request = messages.MessageField( CatalogMachineAdditionRequest, 2) # CatalogMachineDeletionRequest this response is in reference to. machine_deletion_request = messages.MessageField( CatalogMachineDeletionRequest, 3) class CatalogBatchManipulationResponse(messages.Message): """Represents a response to a batched catalog manipulation request.""" responses = messages.MessageField( CatalogManipulationResponse, 1, repeated=True) class LeaseRequest(messages.Message): """Represents a request for a lease on a machine.""" # Per-user unique ID used to deduplicate requests. request_id = messages.StringField(1, required=True) # Dimensions instance specifying what sort of machine to lease. dimensions = messages.MessageField(Dimensions, 2, required=True) # Desired length of the lease in seconds. duration = messages.IntegerField(3) # Cloud Pub/Sub topic name to communicate on regarding this request. pubsub_topic = messages.StringField(4) # Cloud Pub/Sub project name to communicate on regarding this request. pubsub_project = messages.StringField(5) # Instructions to give the machine once it's been leased. on_lease = messages.MessageField(Instruction, 6) # UTC seconds from epoch when lease should expire. lease_expiration_ts = messages.IntegerField(7) class BatchedLeaseRequest(messages.Message): """Represents a batched set of LeaseRequests.""" # LeaseRequest instances to batch together. requests = messages.MessageField(LeaseRequest, 1, repeated=True) class LeaseRequestError(messages.Enum): """Represents an error in a LeaseRequest.""" # Request IDs are intended to be unique. # Reusing a request ID in a different request is an error. REQUEST_ID_REUSE = 1 # Proposed Cloud Pub/Sub topic was invalid. INVALID_TOPIC = 2 # Proposed Cloud Pub/Sub project was invalid. INVALID_PROJECT = 3 # Didn't specify a Cloud Pub/Sub topic. UNSPECIFIED_TOPIC = 4 # Request couldn't be processed in time. DEADLINE_EXCEEDED = 5 # Miscellaneous transient error. TRANSIENT_ERROR = 6 # Mutually exclusive duration and lease_expiration_ts both specified. MUTUAL_EXCLUSION_ERROR = 7 # Proposed duration was zero or negative. NONPOSITIVE_DEADLINE = 8 # Proposed expiration time is not in the future. LEASE_EXPIRATION_TS_ERROR = 9 # Neither duration nor lease_expiration_ts were specified. LEASE_LENGTH_UNSPECIFIED = 10 # Requested lease duration is too long. LEASE_TOO_LONG = 11 class LeaseRequestState(messages.Enum): """Represents the state of a LeaseRequest.""" # LeaseRequest has been received, but not processed yet. UNTRIAGED = 0 # LeaseRequest is pending provisioning of additional capacity. PENDING = 1 # LeaseRequest has been fulfilled. FULFILLED = 2 # LeaseRequest has been denied. DENIED = 3 class LeaseResponse(messages.Message): """Represents a response to a LeaseRequest.""" # SHA-1 identifying the LeaseRequest this response refers to. request_hash = messages.StringField(1) # LeaseRequestError instance indicating an error with the request, or None # if there is no error. error = messages.EnumField(LeaseRequestError, 2) # Request ID used by the client to generate the LeaseRequest. client_request_id = messages.StringField(3, required=True) # State of the LeaseRequest. state = messages.EnumField(LeaseRequestState, 4) # Hostname of the machine available for this request. hostname = messages.StringField(5) # Timestamp indicating lease expiration seconds from epoch in UTC. lease_expiration_ts = messages.IntegerField(6) class BatchedLeaseResponse(messages.Message): """Represents a response to a batched lease request.""" responses = messages.MessageField(LeaseResponse, 1, repeated=True) class LeaseReleaseRequest(messages.Message): """Represents a request to voluntarily cancel a LeaseRequest.""" # Per-user unique ID used to identify the LeaseRequest. request_id = messages.StringField(1, required=True) class BatchedLeaseReleaseRequest(messages.Message): """Represents a batched set of lease release requests.""" requests = messages.MessageField(LeaseReleaseRequest, 1, repeated=True) class LeaseReleaseRequestError(messages.Enum): """Represents an error in a LeaseReleaseRequest.""" # Request ID referred to non-existent request for this user. NOT_FOUND = 1 # Request ID referred to an unfulfilled request. NOT_FULFILLED = 2 # Request ID referred to a fulfilled request whose machine was # already reclaimed. ALREADY_RECLAIMED = 3 # Request couldn't be processed in time. DEADLINE_EXCEEDED = 4 # Miscellaneous transient error. TRANSIENT_ERROR = 5 class LeaseReleaseResponse(messages.Message): """Represents a response to a LeaseReleaseRequest.""" # SHA-1 identifying the LeaseRequest this response refers to. request_hash = messages.StringField(1) # LeaseReleaseRequestError indicating an error with the request, or None # if there is no error. error = messages.EnumField(LeaseReleaseRequestError, 2) # Request ID used by the client to generate the LeaseRequest # referred to by the LeaseReleaseRequest. client_request_id = messages.StringField(3, required=True) class BatchedLeaseReleaseResponse(messages.Message): """Represents responses to a batched set of lease release requests.""" responses = messages.MessageField(LeaseReleaseResponse, 1, repeated=True) class MachineInstructionRequest(messages.Message): """Represents a request to send an instruction to a leased machine.""" # Request ID for the fulfilled LeaseRequest whose machine should be # instructed. request_id = messages.StringField(1, required=True) # Instruction to send the leased machine. instruction = messages.MessageField(Instruction, 2) class MachineInstructionError(messages.Enum): """Represents an error in a MachineInstructionRequest.""" # Request ID referred to an unfulfilled request. NOT_FULFILLED = 1 # Request ID referred to a fulfilled request whose machine was # already reclaimed. ALREADY_RECLAIMED = 2 # Invalid instruction for the machine. INVALID_INSTRUCTION = 3 class MachineInstructionResponse(messages.Message): """Represents a response to a MachineInstructionRequest.""" # Request ID used by the client to generate the LeaseRequest for the # machine being instructed. client_request_id = messages.StringField(1, required=True) # MachineInstructionError indicating an error with the request, or None # if there is no error. error = messages.EnumField(MachineInstructionError, 2) class PollRequest(messages.Message): """Represents a request to poll for instructions given to a machine.""" # Hostname of the machine whose instructions to retrieve. hostname = messages.StringField(1, required=True) # Backend the machine belongs to. Generally required. backend = messages.EnumField(Backend, 2) class PollResponse(messages.Message): """Represents a response to a request for instructions given to a machine.""" # Instruction given to the machine. instruction = messages.MessageField(Instruction, 1) # State of the instruction. state = messages.StringField(2) class AckRequest(messages.Message): """Represents a request to ack an instruction received by a machine.""" # Hostname of the machine whose instruction to ack. hostname = messages.StringField(1, required=True) # Backend the machine belongs to. backend = messages.EnumField(Backend, 2)
1.90625
2
webscraping.py
carvalho-fdec/DesafioDSA
0
3603
<reponame>carvalho-fdec/DesafioDSA # webscraping test import urllib.request from bs4 import BeautifulSoup with urllib.request.urlopen('http://www.netvasco.com.br') as url: page = url.read() #print(page) print(url.geturl()) print(url.info()) print(url.getcode()) # Analise o html na variável 'page' e armazene-o no formato Beautiful Soup soup = BeautifulSoup(page, 'html.parser') #print(soup.prettify()) print(soup.title) print(soup.title.string) print(soup.title.name) soup_a = soup.find_all('a')[:10] for a in soup_a: print(a.get('href')) print(a.get_text())
3.296875
3
tensorboard/backend/event_processing/data_provider_test.py
hongxu-jia/tensorboard
1
3604
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Unit tests for `tensorboard.backend.event_processing.data_provider`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import six from six.moves import xrange # pylint: disable=redefined-builtin import numpy as np from tensorboard import context from tensorboard.backend.event_processing import data_provider from tensorboard.backend.event_processing import ( plugin_event_multiplexer as event_multiplexer, ) from tensorboard.compat.proto import summary_pb2 from tensorboard.data import provider as base_provider from tensorboard.plugins.graph import metadata as graph_metadata from tensorboard.plugins.histogram import metadata as histogram_metadata from tensorboard.plugins.histogram import summary_v2 as histogram_summary from tensorboard.plugins.scalar import metadata as scalar_metadata from tensorboard.plugins.scalar import summary_v2 as scalar_summary from tensorboard.plugins.image import metadata as image_metadata from tensorboard.plugins.image import summary_v2 as image_summary from tensorboard.util import tensor_util import tensorflow.compat.v1 as tf1 import tensorflow.compat.v2 as tf tf1.enable_eager_execution() class MultiplexerDataProviderTest(tf.test.TestCase): def setUp(self): super(MultiplexerDataProviderTest, self).setUp() self.logdir = self.get_temp_dir() self.ctx = context.RequestContext() logdir = os.path.join(self.logdir, "polynomials") with tf.summary.create_file_writer(logdir).as_default(): for i in xrange(10): scalar_summary.scalar( "square", i ** 2, step=2 * i, description="boxen" ) scalar_summary.scalar("cube", i ** 3, step=3 * i) logdir = os.path.join(self.logdir, "waves") with tf.summary.create_file_writer(logdir).as_default(): for i in xrange(10): scalar_summary.scalar("sine", tf.sin(float(i)), step=i) scalar_summary.scalar( "square", tf.sign(tf.sin(float(i))), step=i ) # Summary with rank-0 data but not owned by the scalars plugin. metadata = summary_pb2.SummaryMetadata() metadata.plugin_data.plugin_name = "marigraphs" metadata.data_class = summary_pb2.DATA_CLASS_SCALAR tf.summary.write( "high_tide", tensor=i, step=i, metadata=metadata ) # Summary with rank-1 data of scalar data class (bad!). metadata = summary_pb2.SummaryMetadata() metadata.plugin_data.plugin_name = "greetings" metadata.data_class = summary_pb2.DATA_CLASS_SCALAR tf.summary.write( "bad", tensor=[i, i], step=i, metadata=metadata ) logdir = os.path.join(self.logdir, "lebesgue") with tf.summary.create_file_writer(logdir).as_default(): data = [ ("very smooth", (0.0, 0.25, 0.5, 0.75, 1.0), "uniform"), ("very smoothn't", (0.0, 0.01, 0.99, 1.0), "bimodal"), ] for (description, distribution, name) in data: tensor = tf.constant([distribution], dtype=tf.float64) for i in xrange(1, 11): histogram_summary.histogram( name, tensor * i, step=i, description=description ) logdir = os.path.join(self.logdir, "mondrian") with tf.summary.create_file_writer(logdir).as_default(): data = [ ("red", (221, 28, 38), "top-right"), ("blue", (1, 91, 158), "bottom-left"), ("yellow", (239, 220, 111), "bottom-right"), ] for (name, color, description) in data: image_1x1 = tf.constant([[[color]]], dtype=tf.uint8) for i in xrange(1, 11): # Use a non-monotonic sequence of sample sizes to # test `max_length` calculation. k = 6 - abs(6 - i) # 1, .., 6, .., 2 # a `k`-sample image summary of `i`-by-`i` images image = tf.tile(image_1x1, [k, i, i, 1]) image_summary.image( name, image, step=i, description=description, max_outputs=99, ) def create_multiplexer(self): multiplexer = event_multiplexer.EventMultiplexer() multiplexer.AddRunsFromDirectory(self.logdir) multiplexer.Reload() return multiplexer def create_provider(self): multiplexer = self.create_multiplexer() return data_provider.MultiplexerDataProvider(multiplexer, self.logdir) def test_data_location(self): provider = self.create_provider() result = provider.data_location(self.ctx, experiment_id="unused") self.assertEqual(result, self.logdir) def test_list_plugins_with_no_graph(self): provider = self.create_provider() result = provider.list_plugins(self.ctx, experiment_id="unused") self.assertItemsEqual( result, [ "greetings", "marigraphs", histogram_metadata.PLUGIN_NAME, image_metadata.PLUGIN_NAME, scalar_metadata.PLUGIN_NAME, ], ) def test_list_plugins_with_graph(self): with tf.compat.v1.Graph().as_default() as graph: writer = tf.compat.v1.summary.FileWriter(self.logdir) writer.add_graph(graph) writer.flush() provider = self.create_provider() result = provider.list_plugins(self.ctx, experiment_id="unused") self.assertItemsEqual( result, [ "greetings", "marigraphs", graph_metadata.PLUGIN_NAME, histogram_metadata.PLUGIN_NAME, image_metadata.PLUGIN_NAME, scalar_metadata.PLUGIN_NAME, ], ) def test_list_runs(self): # We can't control the timestamps of events written to disk (without # manually reading the tfrecords, modifying the data, and writing # them back out), so we provide a fake multiplexer instead. start_times = { "second_2": 2.0, "first": 1.5, "no_time": None, "second_1": 2.0, } class FakeMultiplexer(object): def Runs(multiplexer): result = ["second_2", "first", "no_time", "second_1"] self.assertItemsEqual(result, start_times) return result def FirstEventTimestamp(multiplexer, run): self.assertIn(run, start_times) result = start_times[run] if result is None: raise ValueError("No event timestep could be found") else: return result multiplexer = FakeMultiplexer() provider = data_provider.MultiplexerDataProvider( multiplexer, "fake_logdir" ) result = provider.list_runs(self.ctx, experiment_id="unused") self.assertItemsEqual( result, [ base_provider.Run( run_id=run, run_name=run, start_time=start_time ) for (run, start_time) in six.iteritems(start_times) ], ) def test_list_scalars_all(self): provider = self.create_provider() result = provider.list_scalars( self.ctx, experiment_id="unused", plugin_name=scalar_metadata.PLUGIN_NAME, run_tag_filter=None, ) self.assertItemsEqual(result.keys(), ["polynomials", "waves"]) self.assertItemsEqual(result["polynomials"].keys(), ["square", "cube"]) self.assertItemsEqual(result["waves"].keys(), ["square", "sine"]) sample = result["polynomials"]["square"] self.assertIsInstance(sample, base_provider.ScalarTimeSeries) self.assertEqual(sample.max_step, 18) # nothing to test for wall time, as it can't be mocked out self.assertEqual(sample.plugin_content, b"") self.assertEqual( sample.display_name, "" ) # not written by V2 summary ops self.assertEqual(sample.description, "boxen") def test_list_scalars_filters(self): provider = self.create_provider() result = provider.list_scalars( self.ctx, experiment_id="unused", plugin_name=scalar_metadata.PLUGIN_NAME, run_tag_filter=base_provider.RunTagFilter(["waves"], ["square"]), ) self.assertItemsEqual(result.keys(), ["waves"]) self.assertItemsEqual(result["waves"].keys(), ["square"]) result = provider.list_scalars( self.ctx, experiment_id="unused", plugin_name=scalar_metadata.PLUGIN_NAME, run_tag_filter=base_provider.RunTagFilter( tags=["square", "quartic"] ), ) self.assertItemsEqual(result.keys(), ["polynomials", "waves"]) self.assertItemsEqual(result["polynomials"].keys(), ["square"]) self.assertItemsEqual(result["waves"].keys(), ["square"]) result = provider.list_scalars( self.ctx, experiment_id="unused", plugin_name=scalar_metadata.PLUGIN_NAME, run_tag_filter=base_provider.RunTagFilter(runs=["waves", "hugs"]), ) self.assertItemsEqual(result.keys(), ["waves"]) self.assertItemsEqual(result["waves"].keys(), ["sine", "square"]) result = provider.list_scalars( self.ctx, experiment_id="unused", plugin_name=scalar_metadata.PLUGIN_NAME, run_tag_filter=base_provider.RunTagFilter(["un"], ["likely"]), ) self.assertEqual(result, {}) def test_read_scalars(self): multiplexer = self.create_multiplexer() provider = data_provider.MultiplexerDataProvider( multiplexer, self.logdir ) run_tag_filter = base_provider.RunTagFilter( runs=["waves", "polynomials", "unicorns"], tags=["sine", "square", "cube", "iridescence"], ) result = provider.read_scalars( self.ctx, experiment_id="unused", plugin_name=scalar_metadata.PLUGIN_NAME, run_tag_filter=run_tag_filter, downsample=100, ) self.assertItemsEqual(result.keys(), ["polynomials", "waves"]) self.assertItemsEqual(result["polynomials"].keys(), ["square", "cube"]) self.assertItemsEqual(result["waves"].keys(), ["square", "sine"]) for run in result: for tag in result[run]: tensor_events = multiplexer.Tensors(run, tag) self.assertLen(result[run][tag], len(tensor_events)) for (datum, event) in zip(result[run][tag], tensor_events): self.assertEqual(datum.step, event.step) self.assertEqual(datum.wall_time, event.wall_time) self.assertEqual( datum.value, tensor_util.make_ndarray(event.tensor_proto).item(), ) def test_read_scalars_downsamples(self): # TODO(@wchargin): Verify that this always includes the most # recent datum, as specified by the interface. multiplexer = self.create_multiplexer() provider = data_provider.MultiplexerDataProvider( multiplexer, self.logdir ) result = provider.read_scalars( self.ctx, experiment_id="unused", plugin_name=scalar_metadata.PLUGIN_NAME, downsample=3, ) self.assertLen(result["waves"]["sine"], 3) def test_read_scalars_but_not_rank_0(self): provider = self.create_provider() run_tag_filter = base_provider.RunTagFilter(["waves"], ["bad"]) # No explicit checks yet. with six.assertRaisesRegex( self, ValueError, "can only convert an array of size 1 to a Python scalar", ): provider.read_scalars( self.ctx, experiment_id="unused", plugin_name="greetings", run_tag_filter=run_tag_filter, downsample=100, ) def test_list_tensors_all(self): provider = self.create_provider() result = provider.list_tensors( self.ctx, experiment_id="unused", plugin_name=histogram_metadata.PLUGIN_NAME, run_tag_filter=None, ) self.assertItemsEqual(result.keys(), ["lebesgue"]) self.assertItemsEqual(result["lebesgue"].keys(), ["uniform", "bimodal"]) sample = result["lebesgue"]["uniform"] self.assertIsInstance(sample, base_provider.TensorTimeSeries) self.assertEqual(sample.max_step, 10) # nothing to test for wall time, as it can't be mocked out self.assertEqual(sample.plugin_content, b"") self.assertEqual( sample.display_name, "" ) # not written by V2 summary ops self.assertEqual(sample.description, "very smooth") def test_list_tensors_filters(self): provider = self.create_provider() # Quick check only, as scalars and tensors use the same underlying # filtering implementation. result = provider.list_tensors( self.ctx, experiment_id="unused", plugin_name=histogram_metadata.PLUGIN_NAME, run_tag_filter=base_provider.RunTagFilter( ["lebesgue"], ["uniform"] ), ) self.assertItemsEqual(result.keys(), ["lebesgue"]) self.assertItemsEqual(result["lebesgue"].keys(), ["uniform"]) def test_read_tensors(self): multiplexer = self.create_multiplexer() provider = data_provider.MultiplexerDataProvider( multiplexer, self.logdir ) run_tag_filter = base_provider.RunTagFilter( runs=["lebesgue"], tags=["uniform", "bimodal"], ) result = provider.read_tensors( self.ctx, experiment_id="unused", plugin_name=histogram_metadata.PLUGIN_NAME, run_tag_filter=run_tag_filter, downsample=100, ) self.assertItemsEqual(result.keys(), ["lebesgue"]) self.assertItemsEqual(result["lebesgue"].keys(), ["uniform", "bimodal"]) for run in result: for tag in result[run]: tensor_events = multiplexer.Tensors(run, tag) self.assertLen(result[run][tag], len(tensor_events)) for (datum, event) in zip(result[run][tag], tensor_events): self.assertEqual(datum.step, event.step) self.assertEqual(datum.wall_time, event.wall_time) np.testing.assert_equal( datum.numpy, tensor_util.make_ndarray(event.tensor_proto), ) def test_read_tensors_downsamples(self): multiplexer = self.create_multiplexer() provider = data_provider.MultiplexerDataProvider( multiplexer, self.logdir ) result = provider.read_tensors( self.ctx, experiment_id="unused", plugin_name=histogram_metadata.PLUGIN_NAME, downsample=3, ) self.assertLen(result["lebesgue"]["uniform"], 3) def test_list_blob_sequences(self): provider = self.create_provider() with self.subTest("finds all time series for a plugin"): result = provider.list_blob_sequences( self.ctx, experiment_id="unused", plugin_name=image_metadata.PLUGIN_NAME, ) self.assertItemsEqual(result.keys(), ["mondrian"]) self.assertItemsEqual( result["mondrian"].keys(), ["red", "blue", "yellow"] ) sample = result["mondrian"]["blue"] self.assertIsInstance(sample, base_provider.BlobSequenceTimeSeries) self.assertEqual(sample.max_step, 10) # nothing to test for wall time, as it can't be mocked out self.assertEqual(sample.plugin_content, b"") self.assertEqual(sample.max_length, 6 + 2) self.assertEqual(sample.description, "bottom-left") self.assertEqual(sample.display_name, "") with self.subTest("filters by run/tag"): result = provider.list_blob_sequences( self.ctx, experiment_id="unused", plugin_name=image_metadata.PLUGIN_NAME, run_tag_filter=base_provider.RunTagFilter( runs=["mondrian", "picasso"], tags=["yellow", "green't"] ), ) self.assertItemsEqual(result.keys(), ["mondrian"]) self.assertItemsEqual(result["mondrian"].keys(), ["yellow"]) self.assertIsInstance( result["mondrian"]["yellow"], base_provider.BlobSequenceTimeSeries, ) def test_read_blob_sequences_and_read_blob(self): provider = self.create_provider() with self.subTest("reads all time series for a plugin"): result = provider.read_blob_sequences( self.ctx, experiment_id="unused", plugin_name=image_metadata.PLUGIN_NAME, downsample=4, ) self.assertItemsEqual(result.keys(), ["mondrian"]) self.assertItemsEqual( result["mondrian"].keys(), ["red", "blue", "yellow"] ) sample = result["mondrian"]["blue"] self.assertLen(sample, 4) # downsampled from 10 last = sample[-1] self.assertIsInstance(last, base_provider.BlobSequenceDatum) self.assertEqual(last.step, 10) self.assertLen(last.values, 2 + 2) blobs = [ provider.read_blob(self.ctx, blob_key=v.blob_key) for v in last.values ] self.assertEqual(blobs[0], b"10") self.assertEqual(blobs[1], b"10") self.assertStartsWith(blobs[2], b"\x89PNG") self.assertStartsWith(blobs[3], b"\x89PNG") blue1 = blobs[2] blue2 = blobs[3] red1 = provider.read_blob( self.ctx, blob_key=result["mondrian"]["red"][-1].values[2].blob_key, ) self.assertEqual(blue1, blue2) self.assertNotEqual(blue1, red1) with self.subTest("filters by run/tag"): result = provider.read_blob_sequences( self.ctx, experiment_id="unused", plugin_name=image_metadata.PLUGIN_NAME, run_tag_filter=base_provider.RunTagFilter( runs=["mondrian", "picasso"], tags=["yellow", "green't"] ), downsample=1, ) self.assertItemsEqual(result.keys(), ["mondrian"]) self.assertItemsEqual(result["mondrian"].keys(), ["yellow"]) self.assertIsInstance( result["mondrian"]["yellow"][0], base_provider.BlobSequenceDatum, ) class DownsampleTest(tf.test.TestCase): """Tests for the `_downsample` private helper function.""" def test_deterministic(self): xs = "abcdefg" expected = data_provider._downsample(xs, k=4) for _ in range(100): actual = data_provider._downsample(xs, k=4) self.assertEqual(actual, expected) def test_underlong_ok(self): xs = list("abcdefg") actual = data_provider._downsample(xs, k=10) expected = list("abcdefg") self.assertIsNot(actual, xs) self.assertEqual(actual, expected) def test_inorder(self): xs = list(range(10000)) actual = data_provider._downsample(xs, k=100) self.assertEqual(actual, sorted(actual)) def test_zero(self): xs = "abcdefg" actual = data_provider._downsample(xs, k=0) self.assertEqual(actual, []) if __name__ == "__main__": tf.test.main()
1.421875
1
extras/amld/cloud/quickdraw_rnn/task.py
luyang1210/tensorflow
1
3605
<filename>extras/amld/cloud/quickdraw_rnn/task.py """Experiment wrapper for training on Cloud ML.""" import argparse, glob, os import tensorflow as tf # From this package. import model def generate_experiment_fn(data_dir, train_batch_size, eval_batch_size, train_steps, eval_steps, cell_size, hidden, **experiment_args): """Returns experiment_fn for a RNN classifier. Args: data_dir: Where {train,eval}-* tf.train.Example datasets can be found. train_batch_size: Batch size during training. train_batch_size: Batch size during evaluation. train_steps: Number of training steps. eval_steps: Number of evaluation steps. cell_size: LSTM cell size. hidden: Number of units in hidden layers (note that None means "use default" wich is equivalent to [] -- see code in model). experiment_args: Additional arguments when `tf.contrib.learn.Experiment` is instantiated. """ classes = tf.gfile.Open('%s/labels.txt' % data_dir).read().splitlines() n_classes = len(classes) params = tf.contrib.training.HParams( cell_size=cell_size, hidden=hidden or None, # Default is empty list. ) config = tf.contrib.learn.RunConfig() def _experiment_fn(output_dir): return tf.contrib.learn.Experiment( model.build_estimator(output_dir, n_classes, params, config), train_input_fn=model.make_input_fn_stroke( files_pattern=os.path.join(data_dir, 'train-*'), batch_size=train_batch_size), eval_input_fn=model.make_input_fn_stroke( files_pattern=os.path.join(data_dir, 'eval-*'), batch_size=eval_batch_size), export_strategies=[ tf.contrib.learn.utils.saved_model_export_utils.make_export_strategy( model.serving_input_fn, exports_to_keep=1) ], train_steps=train_steps, eval_steps=eval_steps, **experiment_args ) return _experiment_fn if __name__ == '__main__': tf.logging.set_verbosity(tf.logging.INFO) parser = argparse.ArgumentParser() parser.add_argument( '--data_dir', help='GCS or local path to training data', required=True ) parser.add_argument( '--train_batch_size', help='Batch size for training steps', type=int, default=100 ) parser.add_argument( '--eval_batch_size', help='Batch size for evaluation steps', type=int, default=100 ) parser.add_argument( '--train_steps', help='Steps to run the training job for.', type=int, default=10000 ) parser.add_argument( '--eval_steps', help='Number of steps to run evalution for at each checkpoint', default=100, type=int ) parser.add_argument( '--output_dir', help='GCS location to write checkpoints and export models', required=True ) parser.add_argument( '--job-dir', help='this model ignores this field, but it is required by gcloud', default='junk' ) parser.add_argument( '--eval_delay_secs', help='How long to wait before running first evaluation', default=10, type=int ) parser.add_argument( '--min_eval_frequency', help='Minimum number of training steps between evaluations', default=1, type=int ) # Hyper parameters. parser.add_argument( '--cell_size', help='LSTM cell size.', default=256, type=int ) parser.add_argument( '--hidden', help='Units in hidden layers.', default=(), nargs='+', type=int ) args = parser.parse_args() arguments = args.__dict__ # unused args provided by service arguments.pop('job_dir', None) arguments.pop('job-dir', None) output_dir = arguments.pop('output_dir') # Run the training job tf.contrib.learn.learn_runner.run( generate_experiment_fn(**arguments), output_dir)
2.484375
2
A/116A.py
johnggo/Codeforces-Solutions
1
3606
<filename>A/116A.py # Time: 310 ms # Memory: 1664 KB n = int(input()) e = 0 s = 0 for i in range(n): s =s- eval(input().replace(' ', '-')) e = max(e, s) print(e)
2.890625
3
tests/test_serialize.py
aferrall/redner
1,146
3607
import pyredner import numpy as np import torch cam = pyredner.Camera(position = torch.tensor([0.0, 0.0, -5.0]), look_at = torch.tensor([0.0, 0.0, 0.0]), up = torch.tensor([0.0, 1.0, 0.0]), fov = torch.tensor([45.0]), # in degree clip_near = 1e-2, # needs to > 0 resolution = (256, 256), fisheye = False) mat_grey = pyredner.Material(\ diffuse_reflectance = \ torch.tensor([0.5, 0.5, 0.5], device = pyredner.get_device())) materials = [mat_grey] shape_triangle = pyredner.Shape(\ vertices = torch.tensor([[-1.7, 1.0, 0.0], [1.0, 1.0, 0.0], [-0.5, -1.0, 0.0]], device = pyredner.get_device()), indices = torch.tensor([[0, 1, 2]], dtype = torch.int32, device = pyredner.get_device()), uvs = None, normals = None, material_id = 0) shape_light = pyredner.Shape(\ vertices = torch.tensor([[-1.0, -1.0, -7.0], [ 1.0, -1.0, -7.0], [-1.0, 1.0, -7.0], [ 1.0, 1.0, -7.0]], device = pyredner.get_device()), indices = torch.tensor([[0, 1, 2],[1, 3, 2]], dtype = torch.int32, device = pyredner.get_device()), uvs = None, normals = None, material_id = 0) shapes = [shape_triangle, shape_light] light = pyredner.AreaLight(shape_id = 1, intensity = torch.tensor([20.0,20.0,20.0])) area_lights = [light] scene = pyredner.Scene(cam, shapes, materials, area_lights) scene_state_dict = scene.state_dict() scene = pyredner.Scene.load_state_dict(scene_state_dict) scene_args = pyredner.RenderFunction.serialize_scene(\ scene = scene, num_samples = 16, max_bounces = 1) render = pyredner.RenderFunction.apply img = render(0, *scene_args) pyredner.imwrite(img.cpu(), 'results/test_serialize/img.exr')
1.953125
2
src/zope/publisher/tests/test_requestdataproperty.py
Shoobx/zope.publisher
3
3608
<reponame>Shoobx/zope.publisher ############################################################################## # # Copyright (c) 2001, 2002 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Request Data-Property Tests """ from unittest import TestCase, makeSuite from zope.interface.common.tests.basemapping \ import testIEnumerableMapping, testIReadMapping from zope.publisher.base \ import RequestDataProperty, RequestDataGetter, RequestDataMapper class TestDataGettr(RequestDataGetter): _gettrname = 'getSomething' class TestDataMapper(RequestDataMapper): _mapname = '_data' _marker = object() class Data(object): def getSomething(self, name, default=_marker): if name.startswith('Z'): return "something %s" % name if default is not _marker: return default raise KeyError(name) something = RequestDataProperty(TestDataGettr) somedata = RequestDataProperty(TestDataMapper) class Test(TestCase): def testRequestDataGettr(self): testIReadMapping(self, Data().something, {"Zope": "something Zope"}, ["spam"]) def testRequestDataMapper(self): data = Data() sample = {'foo': 'Foo', 'bar': 'Bar'} data._data = sample inst = data.somedata testIReadMapping(self, inst, sample, ["spam"]) testIEnumerableMapping(self, inst, sample) def testNoAssign(self): data = Data() try: data.something = {} except AttributeError: pass else: raise AssertionError("Shouldn't be able to assign") try: data.somedata = {} except AttributeError: pass else: raise AssertionError("Shouldn't be able to assign") def test_suite(): return makeSuite(Test)
2.125
2
tools/scoring/dimensions/__init__.py
ahemphill/digitalbuildings
0
3609
<reponame>ahemphill/digitalbuildings """ Enable import """ from os import path import sys sys.path.append( path.abspath(path.join('tools', 'validators', 'instance_validator')))
1.117188
1
src/thornfield/caches/cache_compression_decorator.py
drorvinkler/thornfield
2
3610
from typing import Callable, AnyStr, Optional from zlib import compress as default_compress, decompress as default_decompress from .cache import Cache from ..constants import NOT_FOUND class CacheCompressionDecorator(Cache): def __init__( self, cache: Cache, compress: Optional[Callable[[str], AnyStr]] = ..., decompress: Optional[Callable[[AnyStr], str]] = ..., ) -> None: super().__init__() self._cache = cache if compress is None: self._compress = self._noop elif compress is ...: self._compress = self._default_compress else: self._compress = compress if decompress is None: self._decompress = self._noop elif decompress is ...: self._decompress = self._default_decompress else: self._decompress = decompress def get(self, key): value = self._cache.get(key) return value if value is NOT_FOUND else self._decompress(value) def set(self, key, value, expiration: int) -> None: self._cache.set(key, self._compress(value), expiration) @staticmethod def _noop(x): return x @staticmethod def _default_compress(obj: str) -> bytes: return default_compress(obj.encode("UTF-8")) @staticmethod def _default_decompress(data: bytes) -> str: return default_decompress(data).decode("UTF-8")
2.609375
3
manim/mobject/vector_field.py
kdkasad/manim
2
3611
"""Mobjects representing vector fields.""" __all__ = [ "VectorField", "ArrowVectorField", "StreamLines", ] import itertools as it import random from math import ceil, floor from typing import Callable, Iterable, Optional, Sequence, Tuple, Type import numpy as np from colour import Color from PIL import Image from .. import config from ..animation.composition import AnimationGroup, Succession from ..animation.creation import Create from ..animation.indication import ShowPassingFlash from ..animation.update import UpdateFromAlphaFunc from ..constants import OUT, RIGHT, UP from ..mobject.geometry import Vector from ..mobject.mobject import Mobject from ..mobject.types.vectorized_mobject import VGroup, VMobject from ..utils.bezier import interpolate, inverse_interpolate from ..utils.color import BLUE_E, GREEN, RED, YELLOW, color_to_rgb, rgb_to_color from ..utils.deprecation import deprecated_params from ..utils.rate_functions import ease_out_sine, linear from ..utils.simple_functions import sigmoid from .types.opengl_vectorized_mobject import OpenGLVMobject DEFAULT_SCALAR_FIELD_COLORS: list = [BLUE_E, GREEN, YELLOW, RED] class VectorField(VGroup): """A vector field. Vector fields are based on a function defining a vector at every position. This class does by default not include any visible elements but provides methods to move other :class:`~.Mobject` s along the vector field. Parameters ---------- func The function defining the rate of change at every position of the `VectorField`. color The color of the vector field. If set, position-specific coloring is disabled. color_scheme A function mapping a vector to a single value. This value gives the position in the color gradient defined using `min_color_scheme_value`, `max_color_scheme_value` and `colors`. min_color_scheme_value The value of the color_scheme function to be mapped to the first color in `colors`. Lower values also result in the first color of the gradient. max_color_scheme_value The value of the color_scheme function to be mapped to the last color in `colors`. Higher values also result in the last color of the gradient. colors The colors defining the color gradient of the vector field. kwargs : Any Additional arguments to be passed to the :class:`~.VGroup` constructor """ def __init__( self, func: Callable[[np.ndarray], np.ndarray], color: Optional[Color] = None, color_scheme: Optional[Callable[[np.ndarray], float]] = None, min_color_scheme_value: float = 0, max_color_scheme_value: float = 2, colors: Sequence[Color] = DEFAULT_SCALAR_FIELD_COLORS, **kwargs ): super().__init__(**kwargs) self.func = func if color is None: self.single_color = False if color_scheme is None: def color_scheme(p): return np.linalg.norm(p) self.color_scheme = color_scheme # TODO maybe other default for direction? self.rgbs = np.array(list(map(color_to_rgb, colors))) def pos_to_rgb(pos: np.ndarray) -> Tuple[float, float, float, float]: vec = self.func(pos) color_value = np.clip( self.color_scheme(vec), min_color_scheme_value, max_color_scheme_value, ) alpha = inverse_interpolate( min_color_scheme_value, max_color_scheme_value, color_value, ) alpha *= len(self.rgbs) - 1 c1 = self.rgbs[int(alpha)] c2 = self.rgbs[min(int(alpha + 1), len(self.rgbs) - 1)] alpha %= 1 return interpolate(c1, c2, alpha) self.pos_to_rgb = pos_to_rgb self.pos_to_color = lambda pos: rgb_to_color(self.pos_to_rgb(pos)) else: self.single_color = True self.color = color self.submob_movement_updater = None @staticmethod def shift_func( func: Callable[[np.ndarray], np.ndarray], shift_vector: np.ndarray, ) -> Callable[[np.ndarray], np.ndarray]: """Shift a vector field function. Parameters ---------- func The function defining a vector field. shift_vector The shift to be applied to the vector field. Returns ------- `Callable[[np.ndarray], np.ndarray]` The shifted vector field function. """ return lambda p: func(p - shift_vector) @staticmethod def scale_func( func: Callable[[np.ndarray], np.ndarray], scalar: float, ) -> Callable[[np.ndarray], np.ndarray]: """Scale a vector field function. Parameters ---------- func The function defining a vector field. shift_vector The scalar to be applied to the vector field. Examples -------- .. manim:: ScaleVectorFieldFunction class ScaleVectorFieldFunction(Scene): def construct(self): func = lambda pos: np.sin(pos[1]) * RIGHT + np.cos(pos[0]) * UP vector_field = ArrowVectorField(func) self.add(vector_field) self.wait() func = VectorField.scale_func(func, 0.5) self.play(vector_field.animate.become(ArrowVectorField(func))) self.wait() Returns ------- `Callable[[np.ndarray], np.ndarray]` The scaled vector field function. """ return lambda p: func(p * scalar) def nudge( self, mob: Mobject, dt: float = 1, substeps: int = 1, pointwise: bool = False, ) -> "VectorField": """Nudge a :class:`~.Mobject` along the vector field. Parameters ---------- mob The mobject to move along the vector field dt A scalar to the amount the mobject is moved along the vector field. The actual distance is based on the magnitude of the vector field. substeps The amount of steps the whole nudge is divided into. Higher values give more accurate approximations. pointwise Whether to move the mobject along the vector field. If `False` the vector field takes effect on the center of the given :class:`~.Mobject`. If `True` the vector field takes effect on the points of the individual points of the :class:`~.Mobject`, potentially distorting it. Returns ------- VectorField This vector field. Examples -------- .. manim:: Nudging class Nudging(Scene): def construct(self): func = lambda pos: np.sin(pos[1] / 2) * RIGHT + np.cos(pos[0] / 2) * UP vector_field = ArrowVectorField( func, x_range=[-7, 7, 1], y_range=[-4, 4, 1], length_func=lambda x: x / 2 ) self.add(vector_field) circle = Circle(radius=2).shift(LEFT) self.add(circle.copy().set_color(GRAY)) dot = Dot().move_to(circle) vector_field.nudge(circle, -2, 60, True) vector_field.nudge(dot, -2, 60) circle.add_updater(vector_field.get_nudge_updater(pointwise=True)) dot.add_updater(vector_field.get_nudge_updater()) self.add(circle, dot) self.wait(6) """ def runge_kutta(self, p: Sequence[float], step_size: float) -> float: """Returns the change in position of a point along a vector field. Parameters ---------- p The position of each point being moved along the vector field. step_size A scalar that is used to determine how much a point is shifted in a single step. Returns ------- float How much the point is shifted. """ k_1 = self.func(p) k_2 = self.func(p + step_size * (k_1 * 0.5)) k_3 = self.func(p + step_size * (k_2 * 0.5)) k_4 = self.func(p + step_size * k_3) return step_size / 6.0 * (k_1 + 2.0 * k_2 + 2.0 * k_3 + k_4) step_size = dt / substeps for _ in range(substeps): if pointwise: mob.apply_function(lambda p: p + runge_kutta(self, p, step_size)) else: mob.shift(runge_kutta(self, mob.get_center(), step_size)) return self def nudge_submobjects( self, dt: float = 1, substeps: int = 1, pointwise: bool = False, ) -> "VectorField": """Apply a nudge along the vector field to all submobjects. Parameters ---------- dt A scalar to the amount the mobject is moved along the vector field. The actual distance is based on the magnitude of the vector field. substeps The amount of steps the whole nudge is divided into. Higher values give more accurate approximations. pointwise Whether to move the mobject along the vector field. See :meth:`nudge` for details. Returns ------- VectorField This vector field. """ for mob in self.submobjects: self.nudge(mob, dt, substeps, pointwise) return self def get_nudge_updater( self, speed: float = 1, pointwise: bool = False, ) -> Callable[[Mobject, float], Mobject]: """Get an update function to move a :class:`~.Mobject` along the vector field. When used with :meth:`~.Mobject.add_updater`, the mobject will move along the vector field, where its speed is determined by the magnitude of the vector field. Parameters ---------- speed At `speed=1` the distance a mobject moves per second is equal to the magnitude of the vector field along its path. The speed value scales the speed of such a mobject. pointwise Whether to move the mobject along the vector field. See :meth:`nudge` for details. Returns ------- Callable[[Mobject, float], Mobject] The update function. """ return lambda mob, dt: self.nudge(mob, dt * speed, pointwise=pointwise) def start_submobject_movement( self, speed: float = 1, pointwise: bool = False, ) -> "VectorField": """Start continuously moving all submobjects along the vector field. Calling this method multiple times will result in removing the previous updater created by this method. Parameters ---------- speed The speed at which to move the submobjects. See :meth:`get_nudge_updater` for details. pointwise Whether to move the mobject along the vector field. See :meth:`nudge` for details. Returns ------- VectorField This vector field. """ self.stop_submobject_movement() self.submob_movement_updater = lambda mob, dt: mob.nudge_submobjects( dt * speed, pointwise=pointwise, ) self.add_updater(self.submob_movement_updater) return self def stop_submobject_movement(self) -> "VectorField": """Stops the continuous movement started using :meth:`start_submobject_movement`. Returns ------- VectorField This vector field. """ self.remove_updater(self.submob_movement_updater) self.submob_movement_updater = None return self def get_colored_background_image(self, sampling_rate: int = 5) -> Image.Image: """Generate an image that displays the vector field. The color at each position is calculated by passing the positing through a series of steps: Calculate the vector field function at that position, map that vector to a single value using `self.color_scheme` and finally generate a color from that value using the color gradient. Parameters ---------- sampling_rate The stepsize at which pixels get included in the image. Lower values give more accurate results, but may take a long time to compute. Returns ------- Image.Imgae The vector field image. """ if self.single_color: raise ValueError( "There is no point in generating an image if the vector field uses a single color.", ) ph = int(config["pixel_height"] / sampling_rate) pw = int(config["pixel_width"] / sampling_rate) fw = config["frame_width"] fh = config["frame_height"] points_array = np.zeros((ph, pw, 3)) x_array = np.linspace(-fw / 2, fw / 2, pw) y_array = np.linspace(fh / 2, -fh / 2, ph) x_array = x_array.reshape((1, len(x_array))) y_array = y_array.reshape((len(y_array), 1)) x_array = x_array.repeat(ph, axis=0) y_array.repeat(pw, axis=1) # TODO why not y_array = y_array.repeat(...)? points_array[:, :, 0] = x_array points_array[:, :, 1] = y_array rgbs = np.apply_along_axis(self.pos_to_rgb, 2, points_array) return Image.fromarray((rgbs * 255).astype("uint8")) def get_vectorized_rgba_gradient_function( self, start: float, end: float, colors: Iterable, ): """ Generates a gradient of rgbas as a numpy array Parameters ---------- start start value used for inverse interpolation at :func:`~.inverse_interpolate` end end value used for inverse interpolation at :func:`~.inverse_interpolate` colors list of colors to generate the gradient Returns ------- function to generate the gradients as numpy arrays representing rgba values """ rgbs = np.array([color_to_rgb(c) for c in colors]) def func(values, opacity=1): alphas = inverse_interpolate(start, end, np.array(values)) alphas = np.clip(alphas, 0, 1) scaled_alphas = alphas * (len(rgbs) - 1) indices = scaled_alphas.astype(int) next_indices = np.clip(indices + 1, 0, len(rgbs) - 1) inter_alphas = scaled_alphas % 1 inter_alphas = inter_alphas.repeat(3).reshape((len(indices), 3)) result = interpolate(rgbs[indices], rgbs[next_indices], inter_alphas) result = np.concatenate( (result, np.full([len(result), 1], opacity)), axis=1, ) return result return func class ArrowVectorField(VectorField): """A :class:`VectorField` represented by a set of change vectors. Vector fields are always based on a function defining the :class:`~.Vector` at every position. The values of this functions is displayed as a grid of vectors. By default the color of each vector is determined by it's magnitude. Other color schemes can be used however. Parameters ---------- func The function defining the rate of change at every position of the vector field. color The color of the vector field. If set, position-specific coloring is disabled. color_scheme A function mapping a vector to a single value. This value gives the position in the color gradient defined using `min_color_scheme_value`, `max_color_scheme_value` and `colors`. min_color_scheme_value The value of the color_scheme function to be mapped to the first color in `colors`. Lower values also result in the first color of the gradient. max_color_scheme_value The value of the color_scheme function to be mapped to the last color in `colors`. Higher values also result in the last color of the gradient. colors The colors defining the color gradient of the vector field. x_range A sequence of x_min, x_max, delta_x y_range A sequence of y_min, y_max, delta_y z_range A sequence of z_min, z_max, delta_z three_dimensions Enables three_dimensions. Default set to False, automatically turns True if z_range is not None. length_func The function determining the displayed size of the vectors. The actual size of the vector is passed, the returned value will be used as display size for the vector. By default this is used to cap the displayed size of vectors to reduce the clutter. opacity The opacity of the arrows. vector_config Additional arguments to be passed to the :class:`~.Vector` constructor kwargs : Any Additional arguments to be passed to the :class:`~.VGroup` constructor Examples -------- .. manim:: BasicUsage :save_last_frame: class BasicUsage(Scene): def construct(self): func = lambda pos: ((pos[0] * UR + pos[1] * LEFT) - pos) / 3 self.add(ArrowVectorField(func)) .. manim:: SizingAndSpacing class SizingAndSpacing(Scene): def construct(self): func = lambda pos: np.sin(pos[0] / 2) * UR + np.cos(pos[1] / 2) * LEFT vf = ArrowVectorField(func, x_range=[-7, 7, 1]) self.add(vf) self.wait() length_func = lambda x: x / 3 vf2 = ArrowVectorField(func, x_range=[-7, 7, 1], length_func=length_func) self.play(vf.animate.become(vf2)) self.wait() .. manim:: Coloring :save_last_frame: class Coloring(Scene): def construct(self): func = lambda pos: pos - LEFT * 5 colors = [RED, YELLOW, BLUE, DARK_GRAY] min_radius = Circle(radius=2, color=colors[0]).shift(LEFT * 5) max_radius = Circle(radius=10, color=colors[-1]).shift(LEFT * 5) vf = ArrowVectorField( func, min_color_scheme_value=2, max_color_scheme_value=10, colors=colors ) self.add(vf, min_radius, max_radius) """ def __init__( self, func: Callable[[np.ndarray], np.ndarray], color: Optional[Color] = None, color_scheme: Optional[Callable[[np.ndarray], float]] = None, min_color_scheme_value: float = 0, max_color_scheme_value: float = 2, colors: Sequence[Color] = DEFAULT_SCALAR_FIELD_COLORS, # Determining Vector positions: x_range: Sequence[float] = None, y_range: Sequence[float] = None, z_range: Sequence[float] = None, three_dimensions: bool = False, # Automatically True if z_range is set # Takes in actual norm, spits out displayed norm length_func: Callable[[float], float] = lambda norm: 0.45 * sigmoid(norm), opacity: float = 1.0, vector_config: Optional[dict] = None, **kwargs ): self.x_range = x_range or [ floor(-config["frame_width"] / 2), ceil(config["frame_width"] / 2), ] self.y_range = y_range or [ floor(-config["frame_height"] / 2), ceil(config["frame_height"] / 2), ] self.ranges = [self.x_range, self.y_range] if three_dimensions or z_range: self.z_range = z_range or self.y_range.copy() self.ranges += [self.z_range] else: self.ranges += [[0, 0]] for i in range(len(self.ranges)): if len(self.ranges[i]) == 2: self.ranges[i] += [0.5] self.ranges[i][1] += self.ranges[i][2] self.x_range, self.y_range, self.z_range = self.ranges super().__init__( func, color, color_scheme, min_color_scheme_value, max_color_scheme_value, colors, **kwargs, ) self.length_func = length_func self.opacity = opacity if vector_config is None: vector_config = {} self.vector_config = vector_config self.func = func x_range = np.arange(*self.x_range) y_range = np.arange(*self.y_range) z_range = np.arange(*self.z_range) for x, y, z in it.product(x_range, y_range, z_range): self.add(self.get_vector(x * RIGHT + y * UP + z * OUT)) self.set_opacity(self.opacity) def get_vector(self, point: np.ndarray): """Creates a vector in the vector field. The created vector is based on the function of the vector field and is rooted in the given point. Color and length fit the specifications of this vector field. Parameters ---------- point The root point of the vector. kwargs : Any Additional arguments to be passed to the :class:`~.Vector` constructor """ output = np.array(self.func(point)) norm = np.linalg.norm(output) if norm != 0: output *= self.length_func(norm) / norm vect = Vector(output, **self.vector_config) vect.shift(point) if self.single_color: vect.set_color(self.color) else: vect.set_color(self.pos_to_color(point)) return vect class StreamLines(VectorField): """StreamLines represent the flow of a :class:`VectorField` using the trace of moving agents. Vector fields are always based on a function defining the vector at every position. The values of this functions is displayed by moving many agents along the vector field and showing their trace. Parameters ---------- func The function defining the rate of change at every position of the vector field. color The color of the vector field. If set, position-specific coloring is disabled. color_scheme A function mapping a vector to a single value. This value gives the position in the color gradient defined using `min_color_scheme_value`, `max_color_scheme_value` and `colors`. min_color_scheme_value The value of the color_scheme function to be mapped to the first color in `colors`. Lower values also result in the first color of the gradient. max_color_scheme_value The value of the color_scheme function to be mapped to the last color in `colors`. Higher values also result in the last color of the gradient. colors The colors defining the color gradient of the vector field. x_range A sequence of x_min, x_max, delta_x y_range A sequence of y_min, y_max, delta_y z_range A sequence of z_min, z_max, delta_z three_dimensions Enables three_dimensions. Default set to False, automatically turns True if z_range is not None. noise_factor The amount by which the starting position of each agent is altered along each axis. Defaults to :code:`delta_y / 2` if not defined. n_repeats The number of agents generated at each starting point. dt The factor by which the distance an agent moves per step is stretched. Lower values result in a better approximation of the trajectories in the vector field. virtual_time The time the agents get to move in the vector field. Higher values therefore result in longer stream lines. However, this whole time gets simulated upon creation. max_anchors_per_line The maximum number of anchors per line. Lines with more anchors get reduced in complexity, not in length. padding The distance agents can move out of the generation area before being terminated. stroke_width The stroke with of the stream lines. opacity The opacity of the stream lines. Examples -------- .. manim:: BasicUsage :save_last_frame: class BasicUsage(Scene): def construct(self): func = lambda pos: ((pos[0] * UR + pos[1] * LEFT) - pos) / 3 self.add(StreamLines(func)) .. manim:: SpawningAndFlowingArea :save_last_frame: class SpawningAndFlowingArea(Scene): def construct(self): func = lambda pos: np.sin(pos[0]) * UR + np.cos(pos[1]) * LEFT + pos / 5 stream_lines = StreamLines( func, x_range=[-3, 3, 0.2], y_range=[-2, 2, 0.2], padding=1 ) spawning_area = Rectangle(width=6, height=4) flowing_area = Rectangle(width=8, height=6) labels = [Tex("Spawning Area"), Tex("Flowing Area").shift(DOWN * 2.5)] for lbl in labels: lbl.add_background_rectangle(opacity=0.6, buff=0.05) self.add(stream_lines, spawning_area, flowing_area, *labels) """ def __init__( self, func: Callable[[np.ndarray], np.ndarray], color: Optional[Color] = None, color_scheme: Optional[Callable[[np.ndarray], float]] = None, min_color_scheme_value: float = 0, max_color_scheme_value: float = 2, colors: Sequence[Color] = DEFAULT_SCALAR_FIELD_COLORS, # Determining stream line starting positions: x_range: Sequence[float] = None, y_range: Sequence[float] = None, z_range: Sequence[float] = None, three_dimensions: bool = False, noise_factor: Optional[float] = None, n_repeats=1, # Determining how lines are drawn dt=0.05, virtual_time=3, max_anchors_per_line=100, padding=3, # Determining stream line appearance: stroke_width=1, opacity=1, **kwargs ): self.x_range = x_range or [ floor(-config["frame_width"] / 2), ceil(config["frame_width"] / 2), ] self.y_range = y_range or [ floor(-config["frame_height"] / 2), ceil(config["frame_height"] / 2), ] self.ranges = [self.x_range, self.y_range] if three_dimensions or z_range: self.z_range = z_range or self.y_range.copy() self.ranges += [self.z_range] else: self.ranges += [[0, 0]] for i in range(len(self.ranges)): if len(self.ranges[i]) == 2: self.ranges[i] += [0.5] self.ranges[i][1] += self.ranges[i][2] self.x_range, self.y_range, self.z_range = self.ranges super().__init__( func, color, color_scheme, min_color_scheme_value, max_color_scheme_value, colors, **kwargs, ) self.noise_factor = ( noise_factor if noise_factor is not None else self.y_range[2] / 2 ) self.n_repeats = n_repeats self.virtual_time = virtual_time self.max_anchors_per_line = max_anchors_per_line self.padding = padding self.stroke_width = stroke_width half_noise = self.noise_factor / 2 np.random.seed(0) start_points = np.array( [ (x - half_noise) * RIGHT + (y - half_noise) * UP + (z - half_noise) * OUT + self.noise_factor * np.random.random(3) for n in range(self.n_repeats) for x in np.arange(*self.x_range) for y in np.arange(*self.y_range) for z in np.arange(*self.z_range) ], ) def outside_box(p): return ( p[0] < self.x_range[0] - self.padding or p[0] > self.x_range[1] + self.padding - self.x_range[2] or p[1] < self.y_range[0] - self.padding or p[1] > self.y_range[1] + self.padding - self.y_range[2] or p[2] < self.z_range[0] - self.padding or p[2] > self.z_range[1] + self.padding - self.z_range[2] ) max_steps = ceil(virtual_time / dt) + 1 if not self.single_color: self.background_img = self.get_colored_background_image() if config["renderer"] == "opengl": self.values_to_rgbas = self.get_vectorized_rgba_gradient_function( min_color_scheme_value, max_color_scheme_value, colors, ) for point in start_points: points = [point] for _ in range(max_steps): last_point = points[-1] new_point = last_point + dt * func(last_point) if outside_box(new_point): break points.append(new_point) step = max_steps if not step: continue if config["renderer"] == "opengl": line = OpenGLVMobject() else: line = VMobject() line.duration = step * dt step = max(1, int(len(points) / self.max_anchors_per_line)) line.set_points_smoothly(points[::step]) if self.single_color: line.set_stroke(self.color) else: if config["renderer"] == "opengl": # scaled for compatibility with cairo line.set_stroke(width=self.stroke_width / 4.0) norms = np.array( [np.linalg.norm(self.func(point)) for point in line.points], ) line.set_rgba_array_direct( self.values_to_rgbas(norms, opacity), name="stroke_rgba", ) else: if np.any(self.z_range != np.array([0, 0.5, 0.5])): line.set_stroke( [self.pos_to_color(p) for p in line.get_anchors()], ) else: line.color_using_background_image(self.background_img) line.set_stroke(width=self.stroke_width, opacity=opacity) self.add(line) self.stream_lines = [*self.submobjects] def create( self, lag_ratio: Optional[float] = None, run_time: Optional[Callable[[float], float]] = None, **kwargs ) -> AnimationGroup: """The creation animation of the stream lines. The stream lines appear in random order. Parameters ---------- lag_ratio The lag ratio of the animation. If undefined, it will be selected so that the total animation length is 1.5 times the run time of each stream line creation. run_time The run time of every single stream line creation. The runtime of the whole animation might be longer due to the `lag_ratio`. If undefined, the virtual time of the stream lines is used as run time. Returns ------- :class:`~.AnimationGroup` The creation animation of the stream lines. Examples -------- .. manim:: StreamLineCreation class StreamLineCreation(Scene): def construct(self): func = lambda pos: (pos[0] * UR + pos[1] * LEFT) - pos stream_lines = StreamLines( func, color=YELLOW, x_range=[-7, 7, 1], y_range=[-4, 4, 1], stroke_width=3, virtual_time=1, # use shorter lines max_anchors_per_line=5, # better performance with fewer anchors ) self.play(stream_lines.create()) # uses virtual_time as run_time self.wait() """ if run_time is None: run_time = self.virtual_time if lag_ratio is None: lag_ratio = run_time / 2 / len(self.submobjects) animations = [ Create(line, run_time=run_time, **kwargs) for line in self.stream_lines ] random.shuffle(animations) return AnimationGroup(*animations, lag_ratio=lag_ratio) def start_animation( self, warm_up=True, flow_speed: float = 1, time_width: float = 0.3, rate_func: Callable[[float], float] = linear, line_animation_class: Type[ShowPassingFlash] = ShowPassingFlash, **kwargs ) -> None: """Animates the stream lines using an updater. The stream lines will continuously flow Parameters ---------- warm_up : bool, optional If `True` the animation is initialized line by line. Otherwise it starts with all lines shown. flow_speed At `flow_speed=1` the distance the flow moves per second is equal to the magnitude of the vector field along its path. The speed value scales the speed of this flow. time_width The proportion of the stream line shown while being animated rate_func The rate function of each stream line flashing line_animation_class The animation class being used Examples -------- .. manim:: ContinuousMotion class ContinuousMotion(Scene): def construct(self): func = lambda pos: np.sin(pos[0] / 2) * UR + np.cos(pos[1] / 2) * LEFT stream_lines = StreamLines(func, stroke_width=3, max_anchors_per_line=30) self.add(stream_lines) stream_lines.start_animation(warm_up=False, flow_speed=1.5) self.wait(stream_lines.virtual_time / stream_lines.flow_speed) """ for line in self.stream_lines: run_time = line.duration / flow_speed line.anim = line_animation_class( line, run_time=run_time, rate_func=rate_func, time_width=time_width, **kwargs, ) line.anim.begin() line.time = random.random() * self.virtual_time if warm_up: line.time *= -1 self.add(line.anim.mobject) def updater(mob, dt): for line in mob.stream_lines: line.time += dt * flow_speed if line.time >= self.virtual_time: line.time -= self.virtual_time line.anim.interpolate(np.clip(line.time / line.anim.run_time, 0, 1)) self.add_updater(updater) self.flow_animation = updater self.flow_speed = flow_speed self.time_width = time_width def end_animation(self) -> AnimationGroup: """End the stream line animation smoothly. Returns an animation resulting in fully displayed stream lines without a noticeable cut. Returns ------- :class:`~.AnimationGroup` The animation fading out the running stream animation. Raises ------ ValueError if no stream line animation is running Examples -------- .. manim:: EndAnimation class EndAnimation(Scene): def construct(self): func = lambda pos: np.sin(pos[0] / 2) * UR + np.cos(pos[1] / 2) * LEFT stream_lines = StreamLines( func, stroke_width=3, max_anchors_per_line=5, virtual_time=1, color=BLUE ) self.add(stream_lines) stream_lines.start_animation(warm_up=False, flow_speed=1.5, time_width=0.5) self.wait(1) self.play(stream_lines.end_animation()) """ if self.flow_animation is None: raise ValueError("You have to start the animation before fading it out.") def hide_and_wait(mob, alpha): if alpha == 0: mob.set_stroke(opacity=0) elif alpha == 1: mob.set_stroke(opacity=1) def finish_updater_cycle(line, alpha): line.time += dt * self.flow_speed line.anim.interpolate(min(line.time / line.anim.run_time, 1)) if alpha == 1: self.remove(line.anim.mobject) line.anim.finish() max_run_time = self.virtual_time / self.flow_speed creation_rate_func = ease_out_sine creation_staring_speed = creation_rate_func(0.001) * 1000 creation_run_time = ( max_run_time / (1 + self.time_width) * creation_staring_speed ) # creation_run_time is calculated so that the creation animation starts at the same speed # as the regular line flash animation but eases out. dt = 1 / config["frame_rate"] animations = [] self.remove_updater(self.flow_animation) self.flow_animation = None for line in self.stream_lines: create = Create( line, run_time=creation_run_time, rate_func=creation_rate_func, ) if line.time <= 0: animations.append( Succession( UpdateFromAlphaFunc( line, hide_and_wait, run_time=-line.time / self.flow_speed, ), create, ), ) self.remove(line.anim.mobject) line.anim.finish() else: remaining_time = max_run_time - line.time / self.flow_speed animations.append( Succession( UpdateFromAlphaFunc( line, finish_updater_cycle, run_time=remaining_time, ), create, ), ) return AnimationGroup(*animations) # TODO: Variant of StreamLines that is able to respond to changes in the vector field function
3.03125
3
marshmallow_dataclass/__init__.py
dan-starkware/marshmallow_dataclass
0
3612
""" This library allows the conversion of python 3.7's :mod:`dataclasses` to :mod:`marshmallow` schemas. It takes a python class, and generates a marshmallow schema for it. Simple example:: from marshmallow import Schema from marshmallow_dataclass import dataclass @dataclass class Point: x:float y:float point = Point(x=0, y=0) point_json = Point.Schema().dumps(point) Full example:: from marshmallow import Schema from dataclasses import field from marshmallow_dataclass import dataclass import datetime @dataclass class User: birth: datetime.date = field(metadata= { "required": True # A parameter to pass to marshmallow's field }) website:str = field(metadata = { "marshmallow_field": marshmallow.fields.Url() # Custom marshmallow field }) Schema: ClassVar[Type[Schema]] = Schema # For the type checker """ import inspect from enum import EnumMeta from functools import lru_cache from typing import ( Any, Callable, Dict, List, Mapping, Optional, Set, Tuple, Type, TypeVar, Union, cast, overload, ) import dataclasses import marshmallow import typing_inspect __all__ = ["dataclass", "add_schema", "class_schema", "field_for_schema", "NewType"] NoneType = type(None) _U = TypeVar("_U") # Whitelist of dataclass members that will be copied to generated schema. MEMBERS_WHITELIST: Set[str] = {"Meta"} # Max number of generated schemas that class_schema keeps of generated schemas. Removes duplicates. MAX_CLASS_SCHEMA_CACHE_SIZE = 1024 # _cls should never be specified by keyword, so start it with an # underscore. The presence of _cls is used to detect if this # decorator is being called with parameters or not. def dataclass( _cls: Type[_U] = None, *, repr: bool = True, eq: bool = True, order: bool = False, unsafe_hash: bool = False, frozen: bool = False, base_schema: Optional[Type[marshmallow.Schema]] = None, ): """ This decorator does the same as dataclasses.dataclass, but also applies :func:`add_schema`. It adds a `.Schema` attribute to the class object :param base_schema: marshmallow schema used as a base class when deriving dataclass schema >>> @dataclass ... class Artist: ... name: str >>> Artist.Schema <class 'marshmallow.schema.Artist'> >>> from typing import ClassVar >>> from marshmallow import Schema >>> @dataclass(order=True) # preserve field order ... class Point: ... x:float ... y:float ... Schema: ClassVar[Type[Schema]] = Schema # For the type checker ... >>> Point.Schema().load({'x':0, 'y':0}) # This line can be statically type checked Point(x=0.0, y=0.0) """ # dataclass's typing doesn't expect it to be called as a function, so ignore type check dc = dataclasses.dataclass( # type: ignore _cls, repr=repr, eq=eq, order=order, unsafe_hash=unsafe_hash, frozen=frozen ) if _cls is None: return lambda cls: add_schema(dc(cls), base_schema) return add_schema(dc, base_schema) @overload def add_schema(_cls: Type[_U]) -> Type[_U]: ... @overload def add_schema( base_schema: Type[marshmallow.Schema] = None, ) -> Callable[[Type[_U]], Type[_U]]: ... @overload def add_schema( _cls: Type[_U], base_schema: Type[marshmallow.Schema] = None ) -> Type[_U]: ... def add_schema(_cls=None, base_schema=None): """ This decorator adds a marshmallow schema as the 'Schema' attribute in a dataclass. It uses :func:`class_schema` internally. :param type cls: The dataclass to which a Schema should be added :param base_schema: marshmallow schema used as a base class when deriving dataclass schema >>> class BaseSchema(marshmallow.Schema): ... def on_bind_field(self, field_name, field_obj): ... field_obj.data_key = (field_obj.data_key or field_name).upper() >>> @add_schema(base_schema=BaseSchema) ... @dataclasses.dataclass ... class Artist: ... names: Tuple[str, str] >>> artist = Artist.Schema().loads('{"NAMES": ["Martin", "Ramirez"]}') >>> artist Artist(names=('Martin', 'Ramirez')) """ def decorator(clazz: Type[_U]) -> Type[_U]: clazz.Schema = class_schema(clazz, base_schema) # type: ignore return clazz return decorator(_cls) if _cls else decorator def class_schema( clazz: type, base_schema: Optional[Type[marshmallow.Schema]] = None ) -> Type[marshmallow.Schema]: """ Convert a class to a marshmallow schema :param clazz: A python class (may be a dataclass) :param base_schema: marshmallow schema used as a base class when deriving dataclass schema :return: A marshmallow Schema corresponding to the dataclass .. note:: All the arguments supported by marshmallow field classes can be passed in the `metadata` dictionary of a field. If you want to use a custom marshmallow field (one that has no equivalent python type), you can pass it as the ``marshmallow_field`` key in the metadata dictionary. >>> import typing >>> Meters = typing.NewType('Meters', float) >>> @dataclasses.dataclass() ... class Building: ... height: Optional[Meters] ... name: str = dataclasses.field(default="anonymous") ... class Meta: ... ordered = True ... >>> class_schema(Building) # Returns a marshmallow schema class (not an instance) <class 'marshmallow.schema.Building'> >>> @dataclasses.dataclass() ... class City: ... name: str = dataclasses.field(metadata={'required':True}) ... best_building: Building # Reference to another dataclasses. A schema will be created for it too. ... other_buildings: List[Building] = dataclasses.field(default_factory=lambda: []) ... >>> citySchema = class_schema(City)() >>> city = citySchema.load({"name":"Paris", "best_building": {"name": "Eiffel Tower"}}) >>> city City(name='Paris', best_building=Building(height=None, name='Eiffel Tower'), other_buildings=[]) >>> citySchema.load({"name":"Paris"}) Traceback (most recent call last): ... marshmallow.exceptions.ValidationError: {'best_building': ['Missing data for required field.']} >>> city_json = citySchema.dump(city) >>> city_json['best_building'] # We get an OrderedDict because we specified order = True in the Meta class OrderedDict([('height', None), ('name', 'Eiffel Tower')]) >>> @dataclasses.dataclass() ... class Person: ... name: str = dataclasses.field(default="Anonymous") ... friends: List['Person'] = dataclasses.field(default_factory=lambda:[]) # Recursive field ... >>> person = class_schema(Person)().load({ ... "friends": [{"name": "<NAME>"}] ... }) >>> person Person(name='Anonymous', friends=[Person(name='<NAME>', friends=[])]) >>> @dataclasses.dataclass() ... class C: ... important: int = dataclasses.field(init=True, default=0) ... # Only fields that are in the __init__ method will be added: ... unimportant: int = dataclasses.field(init=False, default=0) ... >>> c = class_schema(C)().load({ ... "important": 9, # This field will be imported ... "unimportant": 9 # This field will NOT be imported ... }, unknown=marshmallow.EXCLUDE) >>> c C(important=9, unimportant=0) >>> @dataclasses.dataclass ... class Website: ... url:str = dataclasses.field(metadata = { ... "marshmallow_field": marshmallow.fields.Url() # Custom marshmallow field ... }) ... >>> class_schema(Website)().load({"url": "I am not a good URL !"}) Traceback (most recent call last): ... marshmallow.exceptions.ValidationError: {'url': ['Not a valid URL.']} >>> @dataclasses.dataclass ... class NeverValid: ... @marshmallow.validates_schema ... def validate(self, data, **_): ... raise marshmallow.ValidationError('never valid') ... >>> class_schema(NeverValid)().load({}) Traceback (most recent call last): ... marshmallow.exceptions.ValidationError: {'_schema': ['never valid']} >>> # noinspection PyTypeChecker >>> class_schema(None) # unsupported type Traceback (most recent call last): ... TypeError: None is not a dataclass and cannot be turned into one. >>> @dataclasses.dataclass ... class Anything: ... name: str ... @marshmallow.validates('name') ... def validates(self, value): ... if len(value) > 5: raise marshmallow.ValidationError("Name too long") >>> class_schema(Anything)().load({"name": "aaaaaargh"}) Traceback (most recent call last): ... marshmallow.exceptions.ValidationError: {'name': ['Name too long']} """ return _proxied_class_schema(clazz, base_schema) @lru_cache(maxsize=MAX_CLASS_SCHEMA_CACHE_SIZE) def _proxied_class_schema( clazz: type, base_schema: Optional[Type[marshmallow.Schema]] = None ) -> Type[marshmallow.Schema]: try: # noinspection PyDataclass fields: Tuple[dataclasses.Field, ...] = dataclasses.fields(clazz) except TypeError: # Not a dataclass try: return class_schema(dataclasses.dataclass(clazz), base_schema) except Exception: raise TypeError( f"{getattr(clazz, '__name__', repr(clazz))} is not a dataclass and cannot be turned into one." ) # Copy all marshmallow hooks and whitelisted members of the dataclass to the schema. attributes = { k: v for k, v in inspect.getmembers(clazz) if hasattr(v, "__marshmallow_hook__") or k in MEMBERS_WHITELIST } # Update the schema members to contain marshmallow fields instead of dataclass fields attributes.update( ( field.name, field_for_schema( field.type, _get_field_default(field), field.metadata, base_schema ), ) for field in fields if field.init ) schema_class = type(clazz.__name__, (_base_schema(clazz, base_schema),), attributes) return cast(Type[marshmallow.Schema], schema_class) def _field_by_type( typ: Union[type, Any], base_schema: Optional[Type[marshmallow.Schema]] ) -> Optional[Type[marshmallow.fields.Field]]: return ( base_schema and base_schema.TYPE_MAPPING.get(typ) ) or marshmallow.Schema.TYPE_MAPPING.get(typ) def _field_by_supertype( typ: Type, default: marshmallow.missing, newtype_supertype: Type, metadata: dict, base_schema: Optional[Type[marshmallow.Schema]], ) -> marshmallow.fields.Field: """ Return a new field for fields based on a super field. (Usually spawned from NewType) """ # Add the information coming our custom NewType implementation typ_args = getattr(typ, "_marshmallow_args", {}) # Handle multiple validators from both `typ` and `metadata`. # See https://github.com/lovasoa/marshmallow_dataclass/issues/91 new_validators: List[Callable] = [] for meta_dict in (typ_args, metadata): if "validate" in meta_dict: if marshmallow.utils.is_iterable_but_not_string(meta_dict["validate"]): new_validators.extend(meta_dict["validate"]) elif callable(meta_dict["validate"]): new_validators.append(meta_dict["validate"]) metadata["validate"] = new_validators if new_validators else None metadata = {"description": typ.__name__, **typ_args, **metadata} field = getattr(typ, "_marshmallow_field", None) if field: return field(**metadata) else: return field_for_schema( newtype_supertype, metadata=metadata, default=default, base_schema=base_schema, ) def field_for_schema( typ: type, default=marshmallow.missing, metadata: Mapping[str, Any] = None, base_schema: Optional[Type[marshmallow.Schema]] = None, ) -> marshmallow.fields.Field: """ Get a marshmallow Field corresponding to the given python type. The metadata of the dataclass field is used as arguments to the marshmallow Field. :param typ: The type for which a field should be generated :param default: value to use for (de)serialization when the field is missing :param metadata: Additional parameters to pass to the marshmallow field constructor :param base_schema: marshmallow schema used as a base class when deriving dataclass schema >>> int_field = field_for_schema(int, default=9, metadata=dict(required=True)) >>> int_field.__class__ <class 'marshmallow.fields.Integer'> >>> int_field.default 9 >>> field_for_schema(str, metadata={"marshmallow_field": marshmallow.fields.Url()}).__class__ <class 'marshmallow.fields.Url'> """ metadata = {} if metadata is None else dict(metadata) if default is not marshmallow.missing: metadata.setdefault("default", default) # 'missing' must not be set for required fields. if not metadata.get("required"): metadata.setdefault("missing", default) else: metadata.setdefault("required", True) # If the field was already defined by the user predefined_field = metadata.get("marshmallow_field") if predefined_field: return predefined_field # Generic types specified without type arguments if typ is list: typ = List[Any] elif typ is dict: typ = Dict[Any, Any] # Base types field = _field_by_type(typ, base_schema) if field: return field(**metadata) if typ is Any: metadata.setdefault("allow_none", True) return marshmallow.fields.Raw(**metadata) # Generic types origin = typing_inspect.get_origin(typ) if origin: arguments = typing_inspect.get_args(typ, True) # Override base_schema.TYPE_MAPPING to change the class used for generic types below type_mapping = base_schema.TYPE_MAPPING if base_schema else {} if origin in (list, List): child_type = field_for_schema(arguments[0], base_schema=base_schema) list_type = type_mapping.get(List, marshmallow.fields.List) return list_type(child_type, **metadata) if origin in (tuple, Tuple): children = tuple( field_for_schema(arg, base_schema=base_schema) for arg in arguments ) tuple_type = type_mapping.get(Tuple, marshmallow.fields.Tuple) return tuple_type(children, **metadata) elif origin in (dict, Dict): dict_type = type_mapping.get(Dict, marshmallow.fields.Dict) return dict_type( keys=field_for_schema(arguments[0], base_schema=base_schema), values=field_for_schema(arguments[1], base_schema=base_schema), **metadata, ) elif typing_inspect.is_optional_type(typ): subtyp = next(t for t in arguments if t is not NoneType) # type: ignore # Treat optional types as types with a None default metadata["default"] = metadata.get("default", None) metadata["missing"] = metadata.get("missing", None) metadata["required"] = False return field_for_schema(subtyp, metadata=metadata, base_schema=base_schema) elif typing_inspect.is_union_type(typ): from . import union_field return union_field.Union( [ ( subtyp, field_for_schema( subtyp, metadata=metadata, base_schema=base_schema ), ) for subtyp in arguments ], **metadata, ) # typing.NewType returns a function with a __supertype__ attribute newtype_supertype = getattr(typ, "__supertype__", None) if newtype_supertype and inspect.isfunction(typ): return _field_by_supertype( typ=typ, default=default, newtype_supertype=newtype_supertype, metadata=metadata, base_schema=base_schema, ) # enumerations if isinstance(typ, EnumMeta): import marshmallow_enum return marshmallow_enum.EnumField(typ, **metadata) # Nested marshmallow dataclass nested_schema = getattr(typ, "Schema", None) # Nested dataclasses forward_reference = getattr(typ, "__forward_arg__", None) nested = ( nested_schema or forward_reference or class_schema(typ, base_schema=base_schema) ) return marshmallow.fields.Nested(nested, **metadata) def _base_schema( clazz: type, base_schema: Optional[Type[marshmallow.Schema]] = None ) -> Type[marshmallow.Schema]: """ Base schema factory that creates a schema for `clazz` derived either from `base_schema` or `BaseSchema` """ # Remove `type: ignore` when mypy handles dynamic base classes # https://github.com/python/mypy/issues/2813 class BaseSchema(base_schema or marshmallow.Schema): # type: ignore def load(self, data: Mapping, *, many: bool = None, **kwargs): all_loaded = super().load(data, many=many, **kwargs) many = self.many if many is None else bool(many) if many: return [clazz(**loaded) for loaded in all_loaded] else: return clazz(**all_loaded) return BaseSchema def _get_field_default(field: dataclasses.Field): """ Return a marshmallow default value given a dataclass default value >>> _get_field_default(dataclasses.field()) <marshmallow.missing> """ # Remove `type: ignore` when https://github.com/python/mypy/issues/6910 is fixed default_factory = field.default_factory # type: ignore if default_factory is not dataclasses.MISSING: return default_factory elif field.default is dataclasses.MISSING: return marshmallow.missing return field.default def NewType( name: str, typ: Type[_U], field: Optional[Type[marshmallow.fields.Field]] = None, **kwargs, ) -> Callable[[_U], _U]: """NewType creates simple unique types to which you can attach custom marshmallow attributes. All the keyword arguments passed to this function will be transmitted to the marshmallow field constructor. >>> import marshmallow.validate >>> IPv4 = NewType('IPv4', str, validate=marshmallow.validate.Regexp(r'^([0-9]{1,3}\\.){3}[0-9]{1,3}$')) >>> @dataclass ... class MyIps: ... ips: List[IPv4] >>> MyIps.Schema().load({"ips": ["0.0.0.0", "grumble grumble"]}) Traceback (most recent call last): ... marshmallow.exceptions.ValidationError: {'ips': {1: ['String does not match expected pattern.']}} >>> MyIps.Schema().load({"ips": ["127.0.0.1"]}) MyIps(ips=['127.0.0.1']) >>> Email = NewType('Email', str, field=marshmallow.fields.Email) >>> @dataclass ... class ContactInfo: ... mail: Email = dataclasses.field(default="<EMAIL>") >>> ContactInfo.Schema().load({}) ContactInfo(mail='<EMAIL>') >>> ContactInfo.Schema().load({"mail": "grumble grumble"}) Traceback (most recent call last): ... marshmallow.exceptions.ValidationError: {'mail': ['Not a valid email address.']} """ def new_type(x: _U): return x new_type.__name__ = name new_type.__supertype__ = typ # type: ignore new_type._marshmallow_field = field # type: ignore new_type._marshmallow_args = kwargs # type: ignore return new_type if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
3.09375
3
electrum_trc/scripts/txradar.py
TheSin-/electrum-trc
1
3613
<reponame>TheSin-/electrum-trc #!/usr/bin/env python3 import sys import asyncio from electrum_trc.network import filter_protocol, Network from electrum_trc.util import create_and_start_event_loop, log_exceptions try: txid = sys.argv[1] except: print("usage: txradar txid") sys.exit(1) loop, stopping_fut, loop_thread = create_and_start_event_loop() network = Network() network.start() @log_exceptions async def f(): try: peers = await network.get_peers() peers = filter_protocol(peers, 's') results = await network.send_multiple_requests(peers, 'blockchain.transaction.get', [txid]) r1, r2 = [], [] for k, v in results.items(): (r1 if not isinstance(v, Exception) else r2).append(k) print(f"Received {len(results)} answers") try: propagation = len(r1) * 100. / (len(r1) + len(r2)) except ZeroDivisionError: propagation = 0 print(f"Propagation rate: {propagation:.1f} percent") finally: stopping_fut.set_result(1) asyncio.run_coroutine_threadsafe(f(), loop)
2.1875
2
jp.atcoder/dp/dp_g/24586988.py
kagemeka/atcoder-submissions
1
3614
import sys import typing import numpy as np def solve( n: int, g: np.array, ) -> typing.NoReturn: indeg = np.zeros( n, dtype=np.int64, ) for v in g[:, 1]: indeg[v] += 1 g = g[g[:, 0].argsort()] i = np.searchsorted( g[:, 0], np.arange(n + 1) ) q = [ v for v in range(n) if not indeg[v] ] dist = np.zeros( n, dtype=np.int64, ) for u in q: for j in range( i[u], i[u + 1], ): v = g[j, 1] indeg[v] -= 1 dist[v] = max( dist[v], dist[u] + 1, ) if indeg[v]: continue q.append(v) print(dist.max()) def main() -> typing.NoReturn: n, m = map( int, input().split(), ) g = np.array( sys.stdin.read().split(), dtype=np.int64, ).reshape(m, 2) - 1 solve(n, g) OJ = 'ONLINE_JUDGE' if sys.argv[-1] == OJ: from numba import i8, njit from numba.pycc import CC cc = CC('my_module') fn = solve signature = (i8, i8[:, :]) cc.export( fn.__name__, signature, )(fn) cc.compile() exit(0) from my_module import solve main()
2.34375
2
starteMessung.py
jkerpe/TroubleBubble
0
3615
<filename>starteMessung.py from datetime import datetime from pypylon import pylon import nimmAuf import smbus2 import os import argparse import bestimmeVolumen from threading import Thread import time programmstart = time.time() # Argumente parsen (bei Aufruf im Terminal z.B. 'starteMessung.py -n 100' eingeben) ap = argparse.ArgumentParser(description="""Skript zum Aufnehmen von Bildern der Teststrecke und der Volumenbestimmung von Luftblasen""") ap.add_argument("-n", "--number", default=400, type=int, help="Anzahl an Frames die aufgenommen werden sollen. Default: 400 Bilder") ap.add_argument("-fr", "--framerate", default=100, type=int, help="Framerate in fps. Richtwerte: <Flow 3 ml/s:50 fps, 3-6ml/s:100 fps, >6ml/s:200 fps; Default: 100 fps") args = vars(ap.parse_args()) # Argumente des Parsers extrahieren numberOfImagesToGrab = args['number'] framerate = args['framerate'] if __name__ == '__main__': startzeit = time.time() #Test ob Kamera angeschlossen ist devices = pylon.TlFactory.GetInstance().EnumerateDevices() if len(devices) == 0: print("Keine Kamera angeschlossen oder Kamera woanders geöffnet.") return False # Test ob Drucksensor angeschlossen ist try: bus = smbus2.SMBus(0) bus.read_i2c_block_data(0x40, 0, 2) # 2 Bytes empfangen except OSError: print("Kein Drucksensor angeschlossen") exit() # Aus der aktuellen Zeit und den Parametern einen individuellen Ordnernamen generieren dirname = f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}' os.mkdir(dirname) # Ordner erstellen print(f"Ordnername: {dirname}") beginn = time.time()-programmstart # Threads zum Aufnehmen und Verarbeiten starten t_aufnahme = Thread(target=nimmAuf.starte, args=(dirname, numberOfImagesToGrab, framerate, startzeit)) t_tracke = Thread(target=bestimmeVolumen.tracke, args=(dirname, numberOfImagesToGrab)) t_aufnahme.start() t_tracke.start() t_aufnahme.join() t_tracke.join()
2.625
3
application/services/decart.py
Sapfir0/web-premier-eye
0
3616
import os import tempfile def hasOnePointInside(bigRect, minRect): # хотя бы одна точка лежит внутри minY, minX, maxY, maxX = bigRect y1, x1, y2, x2 = minRect a = (minY <= y1 <= maxY) b = (minX <= x1 <= maxX) c = (minY <= y2 <= maxY) d = (minX <= x2 <= maxX) return a or b or c or d def isCompletelyInside(bigRect, minRect): # объект полностью внутри прямоугольника y1, x1, y2, x2 = bigRect minX = x1 minY = y1 # вроде верно maxX = x2 maxY = y2 y1, x1, y2, x2 = minRect a = (minY <= y1 <= maxY) b = (minX <= x1 <= maxX) c = (minY <= y2 <= maxY) d = (minX <= x2 <= maxX) return a and b and c and d # если тру, то объект полностью внутри большого прямоугольника def isPartiallyInside(bigRect, minRect, innerPercent=0.5): # объект частично внутри прямоугольника bigLUy, bigLUx, bigRDy, bigRDx = bigRect minLUy, minLUx, minRDy, minRDx = minRect fullSquare = (minLUy - minRDy) * (minRDx - minLUx) # не уверен что правильно # Не уверен в ифах if bigLUy < minLUy: minLUy = bigLUy if bigRDy < minRDy: minRDy = bigRDy if bigLUx > minLUx: minLUx = bigLUx if bigRDx > minRDx: minRDx = bigRDx inObjSquare = (minLUy - minRDy) * (minRDx - minLUx) return inObjSquare / fullSquare >= innerPercent def createGraphic(imagePath: str, searchRect: list, objectsListRect: list): import matplotlib.pyplot as plt from PIL import Image import numpy as np import matplotlib.patches as patches im = np.array(Image.open(imagePath), dtype=np.uint8) fig, ax = plt.subplots(1) ax.imshow(im) bigRect = Rectangle(searchRect) minRects = [Rectangle(i) for i in objectsListRect] rect = patches.Rectangle(*bigRect.getMTparam(), linewidth=1, edgecolor='g', facecolor='None') ax.add_patch(rect) for i in minRects: rect = patches.Rectangle(*i.getMTparam(), linewidth=1, edgecolor='r', facecolor='none') ax.add_patch(rect) temp = tempfile.NamedTemporaryFile() path = os.path.join(os.getcwd(), temp.name) plt.savefig(path) return os.path.split(temp.name + ".png") class Rectangle: LDx = 0 LDy = 0 RUx = 0 RUy = 0 def __init__(self, coordinates: list): if len(coordinates) != 4: raise ValueError("Нужно подавать координаты(х,у) двух противоложных вершин") if coordinates[0] >= coordinates[2] or coordinates[1] >= coordinates[3]: raise ValueError( "Неверно заданы вершины, сначала подаются 2 координаты нижнего левого угла, потом верхнего правого") self.LDx, self.LDy, self.RUx, self.RUy = coordinates def getWidth(self): return self.RUx - self.LDx def getHeight(self): return self.RUy - self.LDy def getLUx(self): return self.LDx def getLUy(self): return self.RUy def getMTparam(self): return ((self.getLUy(), self.getLUx()), # почему -? я не знаю -self.getHeight(), self.getWidth()) # все абсолютно в другом порядке, чем должно быть? что ха дринся def getCenterOfDown(self): return [(self.LDx + self.RUx) / 2, self.LDy]
2.875
3
goopylib/objects/_BBox.py
BhavyeMathur/goopylib
25
3617
from goopylib.objects.GraphicsObject import GraphicsObject from goopylib.styles import * class BBox(GraphicsObject): # Internal base class for objects represented by bounding box # (opposite corners) Line segment is a degenerate case. resizing_objects = [] def __init__(self, p1, p2, bounds=None, fill=None, outline=None, outline_width=None, cursor="arrow", layer=0, tag=None): self.p1 = p1 self.p2 = p2 # These make sure that the p2 is 'after' p1, ie the x & y value of p2 is greater than that of p1 if self.p1[0] > self.p2[0]: # Checking if p1's x value is greater than p2's. If so, then swap the values self.p1[0], self.p2[0] = self.p2[0], self.p1[0] if self.p1[1] > self.p2[1]: # Checking if p1's y value is greater than p2's. If so, then swap the values self.p1[1], self.p2[1] = self.p2[1], self.p1[1] self.anchor = [(self.p1[0] + self.p2[0]) // 2, (self.p1[1] + self.p2[1]) // 2] GraphicsObject.__init__(self, options=(), cursor=cursor, layer=layer, bounds=bounds, tag=tag) # abs(p2[0] - p1[0]) is not required because the p2 value is always greater than or equal to the p1 value self.width = self.p2[0] - self.p1[0] self.height = self.p2[1] - self.p1[1] self.min_width = None self.min_height = None self.max_width = None self.max_height = None self.resizing_bounds = {} self.is_resizing = {} self.bounds_thickness = 0 if fill is None: self.fill = STYLES["default"]["fill"] elif isinstance(fill, Colour): # Checking if the option is a colour self.fill = fill else: # If not, raise an error raise GraphicsError(f"\n\nGraphicsError: The Rectangle fill must be a Colour object , not {fill}") if outline is None: self.outline = STYLES["default"]["outline"] elif isinstance(outline, Colour): # Checking if the option is a colour self.outline = outline else: # If not, raise an error raise GraphicsError(f"\n\nGraphicsError: The rectangle outline must be a Colour object , not {outline}") if outline_width is None: self.outline_width = STYLES["default"]["width"] elif isinstance(outline_width, int): # Checking if the option is an integer self.outline_width = outline_width else: # If not, raise an error raise GraphicsError(f"\n\nGraphicsError: The rectangle outline width must be an integer, not {outline_width}") def __repr__(self): return "_BBox" def _set_resizable(self, resizables, top_bounds=None, bottom_bounds=None, left_bounds=None, right_bounds=None, thickness=10): """Override in subclasses""" pass def _move(self, dx, dy): self.p1[0] += dx self.p1[1] += dy self.p2[0] += dx self.p2[1] += dy self.anchor[0] += dx self.anchor[1] += dy def is_clicked(self, mouse_pos): if self.bounds is None: if mouse_pos is None: return False else: if (self.p1[0] < mouse_pos[0] < self.p2[0] or self.p1[0] > mouse_pos[0] > self.p2[0]) and \ (self.p1[1] < mouse_pos[1] < self.p2[1] or self.p1[1] > mouse_pos[1] > self.p2[1]): return True else: return False else: return self.bounds.is_clicked(mouse_pos) def get_p1(self): return self.p1.copy() def get_p2(self): return self.p2.copy() def get_top_right(self): return self.p1.copy() def get_top_left(self): return [self.p2[0], self.p1[1]] def get_bottom_left(self): return [self.p1[0], self.p2[1]] def get_bottom_right(self): return self.p2.copy() def get_top(self): return [(self.p2[0] + self.p1[0]) / 2, self.p1[1]] def get_bottom(self): return [(self.p2[0] + self.p1[0]) / 2, self.p2[1]] def get_left(self): return [self.p1[0], (self.p1[1] + self.p2[1]) / 2] def get_right(self): return [self.p2[0], (self.p1[1] + self.p2[1]) / 2] def get_width(self): return self.width def get_height(self): return self.height def get_fill(self): return self.fill def get_outline(self): return self.outline def get_outline_width(self): return self.outline_width def get_anchor(self): return self.anchor def set_dimensions(self, width, height, horizontal_align="center", vertical_align="center"): self.set_width(width, horizontal_align) self.set_height(height, vertical_align) return self def set_resizable(self, top=False, left=False, bottom=False, right=False, min_width=40, min_height=40, bounds_width=10, top_bounds=None, bottom_bounds=None, left_bounds=None, right_bounds=None): if min_width < 1 or min_height < 1: raise GraphicsError(f"\n\nGraphicsError: Minimum height and width of resizable object must be greater than " f"or equal to 1. Right now, min_width={min_width} & min_height={min_height}") self.min_width = min_width self.min_height = min_height self.is_resizing = {"top": top, "left": left, "bottom": bottom, "right": right} self._set_resizable([top, bottom, left, right], top_bounds=top_bounds, bottom_bounds=bottom_bounds, left_bounds=left_bounds, right_bounds=right_bounds, thickness=bounds_width) if top is False and bottom is False and left is False and right is False: if self in GraphicsObject.resizing_objects: GraphicsObject.resizing_objects.remove(self) elif self not in GraphicsObject.resizing_objects: GraphicsObject.resizing_objects.add(self) self.bounds_thickness = bounds_width return self def set_coords(self, p1, p2): self.p1 = p1.copy() self.p2 = p2.copy() # These make sure that the p2 is 'after' p1, ie the x & y value of p2 is greater than that of p1 if self.p1[0] > self.p2[0]: # Checking if p1's x value is greater than p2's. If so, then swap the values self.p1[0], self.p2[0] = self.p2[0], self.p1[0] if self.p1[1] > self.p2[1]: # Checking if p1's y value is greater than p2's. If so, then swap the values self.p1[1], self.p2[1] = self.p2[1], self.p1[1] # abs(p2[0] - p1[0]) is not required because the p2 value is always greater than or equal to the p1 value self.width = self.p2[0] - self.p1[0] self.height = self.p2[1] - self.p1[1] width_scale = (p2[0] - p1[0]) / self.width height_scale = (p2[1] - p1[1]) / self.height # abs(p2[0] - p1[0]) is not required because the p2 value is always greater than or equal to the p1 value self.width = p2[0] - p1[0] self.height = p2[1] - p1[1] self.anchor = [(self.p1[0] + self.p2[0]) // 2, (self.p1[1] + self.p2[1]) // 2] self._update_layer() return self def set_width(self, width, center="center"): if center not in {"center", "right", "left"}: raise GraphicsError( "\n\nThe center argument for resizing the object (set_outline_width) needs to be one of " f'{["center", "right", "left"]}') if center == "left": self.set_coords(self.p1, self.p2.add_x(width - self.width)) elif center == "right": self.set_coords(self.p1.add_x(-(width - self.width)), self.p2) else: self.set_coords(self.p1.add_x(-(width / 2 - self.width)), self.p2.add_x(width / 2 - self.width)) return self def set_height(self, height, center="center"): if center not in {"center", "top", "bottom"}: raise GraphicsError( "\n\nThe center argument for resizing the object (set_height) needs to be one of " f'{["center", "top", "bottom"]}') if center == "top": self.set_coords(self.p1, self.p2.add_y(height - self.height)) elif center == "bottom": self.set_coords(self.p1.add_y(-(height - self.height)), self.p2) else: self.set_coords(self.p1.add_y(-(height / 2 - self.height)), self.p2.add_y(height / 2 - self.height)) return self def set_fill(self, fill): if fill is None: self.fill = STYLES["default"]["fill"] elif isinstance(fill, Colour): # Checking if the option is a colour self.fill = fill else: # If not, raise an error raise GraphicsError(f"\n\nGraphicsError: The Rectangle fill must be a Colour object , not {fill}") self._update_layer() return self def set_outline(self, outline): if outline is None: self.outline = STYLES["default"]["outline"] elif isinstance(outline, Colour): # Checking if the option is a colour self.outline = outline else: # If not, raise an error raise GraphicsError(f"\n\nGraphicsError: The rectangle outline must be a Colour object , not {outline}") self._update_layer() return self def set_outline_width(self, outline_width): if outline_width is None: self.outline_width = STYLES["default"]["width"] elif isinstance(outline_width, int): # Checking if the option is an integer self.outline_width = outline_width else: # If not, raise an error raise GraphicsError( f"\n\nGraphicsError: The rectangle outline width must be an integer, not {outline_width}") self._update_layer() return self
2.8125
3
Graph/DFS&BFS.py
Mayner0220/Programmers
1
3618
# https://www.acmicpc.net/problem/1260 n, m, v = map(int, input().split()) graph = [[0] * (n+1) for _ in range(n+1)] visit = [False] * (n+1) for _ in range(m): R, C = map(int, input().split()) graph[R][C] = 1 graph[C][R] = 1 def dfs(v): visit[v] = True print(v, end=" ") for i in range(1, n+1): if not visit[i] and graph[v][i]==1: dfs(i) def bfs(v): queue = [v] visit[v] = False while queue: v = queue.pop(0) print(v, end=" ") for i in range(1, n+1): if visit[i] and graph[v][i]==1: queue.append(i) visit[i] = False dfs(v) print() bfs(v)
3.171875
3
coding_intereview/1576. Replace All ?'s to Avoid Consecutive Repeating Characters.py
Jahidul007/Python-Bootcamp
2
3619
class Solution: def modifyString(self, s: str) -> str: s = list(s) for i in range(len(s)): if s[i] == "?": for c in "abc": if (i == 0 or s[i-1] != c) and (i+1 == len(s) or s[i+1] != c): s[i] = c break return "".join(s)
3.4375
3
pysteps/tests/helpers.py
Fangyh09/pysteps
6
3620
<reponame>Fangyh09/pysteps """ Testing helper functions ======================= Collection of helper functions for the testing suite. """ from datetime import datetime import numpy as np import pytest import pysteps as stp from pysteps import io, rcparams def get_precipitation_fields(num_prev_files=0): """Get a precipitation field from the archive to be used as reference.""" # Selected case date = datetime.strptime("201505151630", "%Y%m%d%H%M") data_source = rcparams.data_sources["mch"] root_path = data_source["root_path"] path_fmt = data_source["path_fmt"] fn_pattern = data_source["fn_pattern"] fn_ext = data_source["fn_ext"] importer_name = data_source["importer"] importer_kwargs = data_source["importer_kwargs"] # Find the input files from the archive fns = io.archive.find_by_date(date, root_path, path_fmt, fn_pattern, fn_ext, timestep=5, num_prev_files=num_prev_files) # Read the radar composites importer = io.get_method(importer_name, "importer") reference_field, quality, metadata = io.read_timeseries(fns, importer, **importer_kwargs) del quality # Not used if num_prev_files == 0: reference_field = np.squeeze(reference_field) # Remove time dimension # Convert to mm/h reference_field, metadata = stp.utils.to_rainrate(reference_field, metadata) # Mask invalid values reference_field = np.ma.masked_invalid(reference_field) # Log-transform the data [dBR] reference_field, metadata = stp.utils.dB_transform(reference_field, metadata, threshold=0.1, zerovalue=-15.0) return reference_field def smart_assert(actual_value, expected, tolerance=None): """ Assert by equality for non-numeric values, or by approximation otherwise. If the precision keyword is None, assert by equality. When the precision is not None, assert that two numeric values (or two sets of numbers) are equal to each other within the tolerance. """ if tolerance is None: assert actual_value == expected else: # Compare numbers up to a certain precision assert actual_value == pytest.approx(expected, 1e-6)
2.25
2
modules/courses/courses.py
ehiller/mobilecsp-v18
0
3621
<reponame>ehiller/mobilecsp-v18<filename>modules/courses/courses.py # Copyright 2012 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Courses module.""" __author__ = '<NAME> (<EMAIL>)' from common import resource from controllers import assessments from controllers import lessons from controllers import utils from models import content from models import resources_display from models import custom_modules from models import roles from tools import verify All_LOCALES_PERMISSION = 'can_pick_all_locales' All_LOCALES_DESCRIPTION = 'Can pick all locales, including unavailable ones.' SEE_DRAFTS_PERMISSION = 'can_see_draft_content' SEE_DRAFTS_DESCRIPTION = 'Can see lessons and assessments with draft status.' custom_module = None def can_pick_all_locales(app_context): return roles.Roles.is_user_allowed( app_context, custom_module, All_LOCALES_PERMISSION) def can_see_drafts(app_context): return roles.Roles.is_user_allowed( app_context, custom_module, SEE_DRAFTS_PERMISSION) def register_module(): """Registers this module in the registry.""" def on_module_enabled(): roles.Roles.register_permissions(custom_module, permissions_callback) resource.Registry.register(resources_display.ResourceCourseSettings) resource.Registry.register(resources_display.ResourceUnit) resource.Registry.register(resources_display.ResourceAssessment) resource.Registry.register(resources_display.ResourceLink) resource.Registry.register(resources_display.ResourceLesson) resource.Registry.register(utils.ResourceHtmlHook) def permissions_callback(unused_app_context): return [ roles.Permission(All_LOCALES_PERMISSION, All_LOCALES_DESCRIPTION), roles.Permission(SEE_DRAFTS_PERMISSION, SEE_DRAFTS_DESCRIPTION) ] # provide parser to verify verify.parse_content = content.parse_string_in_scope # setup routes courses_routes = [ ('/', lessons.CourseHandler), ('/activity', lessons.UnitHandler), ('/answer', assessments.AnswerHandler), ('/assessment', lessons.AssessmentHandler), ('/course', lessons.CourseHandler), ('/forum', utils.ForumHandler), ('/preview', utils.PreviewHandler), ('/register', utils.RegisterHandler), ('/resources', utils.ResourcesHandler), ('/rest/locale', utils.StudentLocaleRESTHandler), ('/review', lessons.ReviewHandler), ('/reviewdashboard', lessons.ReviewDashboardHandler), ('/student/editstudent', utils.StudentEditStudentHandler), ('/student/settracks', utils.StudentSetTracksHandler), ('/student/home', utils.StudentProfileHandler), ('/student/unenroll', utils.StudentUnenrollHandler), ('/unit', lessons.UnitHandler)] global custom_module # pylint: disable=global-statement custom_module = custom_modules.Module( 'Course', 'A set of pages for delivering an online course.', [], courses_routes, notify_module_enabled=on_module_enabled) return custom_module
1.78125
2
packages/merlin/protocols/PrefixLayout.py
pyre/pyre
25
3622
<gh_stars>10-100 # -*- coding: utf-8 -*- # # <NAME> <<EMAIL>> # (c) 1998-2021 all rights reserved # support import merlin # the manager of intermediate and final build products class PrefixLayout(merlin.protocol, family="merlin.layouts.prefix"): """ The manager of the all build products, both final and intermediate disposables """ # required state bin = merlin.properties.path() bin.doc = "the location of executables" config = merlin.properties.path() config.doc = "global package configuration files" doc = merlin.properties.path() doc.doc = "package documentation" etc = merlin.properties.path() etc.doc = "host specific files" include = merlin.properties.path() include.doc = "library header files" lib = merlin.properties.path() lib.doc = "libraries" libexec = merlin.properties.path() libexec.doc = "binaries that are meant to be used by other packages" share = merlin.properties.path() share.doc = "architecture independent package files" var = merlin.properties.path() var.doc = "runtime files" # framework hooks @classmethod def pyre_default(cls, **kwds): """ Specify the default implementation """ # choose the default implementer return merlin.components.fhs # end of file
1.921875
2
test/IECoreMaya/ImageConverterTest.py
bradleyhenke/cortex
386
3623
<reponame>bradleyhenke/cortex ########################################################################## # # Copyright (c) 2011, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import maya.cmds import IECore import IECoreImage import IECoreMaya class ImageConverterTest( IECoreMaya.TestCase ) : def test( self ) : imageA = IECore.Reader.create( "test/IECoreImage/data/exr/colorBarsWithAlpha.exr" ).read() toMaya = IECoreMaya.ToMayaImageConverter( imageA ) mImage = maya.OpenMaya.MImage() toMaya.convert( mImage ) fromMaya = IECoreMaya.FromMayaImageConverter( mImage ) imageB = fromMaya.convert() self.assertFalse( IECoreImage.ImageDiffOp()( imageA=imageA, imageB=imageB, maxError=1.0/256 ).value ) if __name__ == "__main__": IECoreMaya.TestProgram()
0.96875
1
tests/core_ptl/check_for_ranks.py
PatrykNeubauer/NeMo
2
3624
<filename>tests/core_ptl/check_for_ranks.py # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import torch from omegaconf import OmegaConf from pytorch_lightning import Trainer from pytorch_lightning.utilities.distributed import rank_zero_only from nemo.core import ModelPT from nemo.utils import logging from nemo.utils.exp_manager import ExpManagerConfig, exp_manager class OnesDataset(torch.utils.data.Dataset): def __init__(self, dataset_len): super().__init__() self.__dataset_len = dataset_len def __getitem__(self, *args): return torch.ones(2) def __len__(self): return self.__dataset_len class ExampleModel(ModelPT): def __init__(self, *args, **kwargs): cfg = OmegaConf.structured({}) super().__init__(cfg, trainer=kwargs.get('trainer', None)) # dummy parameter in order to allow DDP to execute self.l1 = torch.nn.modules.Linear(in_features=2, out_features=1) def train_dataloader(self): return None def val_dataloader(self): return None def predict_dataloader(self): dataset = OnesDataset(2) return torch.utils.data.DataLoader(dataset, batch_size=2) def forward(self, batch): return batch.mean() def validation_step(self, batch, batch_idx): return self(batch) def training_step(self, batch, batch_idx): return self(batch) def list_available_models(self): pass def setup_training_data(self): pass def setup_validation_data(self): pass def validation_epoch_end(self, loss): self.log("val_loss", torch.stack(loss).mean()) def instantiate_multinode_ddp_if_possible(): num_gpus = torch.cuda.device_count() trainer = Trainer(gpus=num_gpus, accelerator='ddp', logger=None, checkpoint_callback=None) exp_manager_cfg = ExpManagerConfig(exp_dir='./ddp_check/', use_datetime_version=False, version="") exp_manager(trainer, cfg=OmegaConf.structured(exp_manager_cfg)) return trainer def setup_model(trainer: Trainer): model = ExampleModel(trainer=trainer) logging.info(f"M.Global Rank:{model.global_rank}") logging.info(f"M.Local Rank:{model.local_rank}") logging.info(f"M.World Size:{model.trainer.world_size}") trainer.predict(model) return model def get_rank_info(texts: list, rank_key: str) -> int: for line in texts: if rank_key in line: rank_value = line.split(":")[-1] rank_value = int(rank_value) return rank_value print("Could not find the correct rank key !") exit(1) @rank_zero_only def check_model_ranks(model: ExampleModel): basedir = os.path.join('./ddp_check/', 'default', 'version_0') file_template = "nemo_log_globalrank-{rank}_localrank-{rank}.txt" world_size = torch.cuda.device_count() for rank in range(world_size): filename = file_template.format(rank=rank) filepath = os.path.join(basedir, filename) with open(filepath, 'r') as f: texts = f.readlines() texts = [t.replace("\n", "") for t in texts] log_global_rank = get_rank_info(texts, rank_key='M.Global Rank') log_world_size = get_rank_info(texts, rank_key='M.World Size') if log_global_rank != rank: print("Logged global rank is not equal to trainer.global_rank !") exit(1) if log_world_size != world_size: print("Logged world size if not equal to trainer.world_size !") exit(1) @rank_zero_only def cleanup(): if os.path.exists('./ddp_check'): shutil.rmtree('./ddp_check', ignore_errors=True) def run_checks(): cleanup() trainer = instantiate_multinode_ddp_if_possible() model = setup_model(trainer) check_model_ranks(model) print("DDP checks passed !") cleanup() if __name__ == '__main__': run_checks()
2.15625
2
helpers/json_manager.py
Lofi-Lemonade/Python-Discord-Bot-Template
0
3625
<gh_stars>0 """" Copyright © Krypton 2022 - https://github.com/kkrypt0nn (https://krypton.ninja) Description: This is a template to create your own discord bot in python. Version: 4.1 """ import json def add_user_to_blacklist(user_id: int) -> None: """ This function will add a user based on its ID in the blacklist.json file. :param user_id: The ID of the user that should be added into the blacklist.json file. """ with open("blacklist.json", "r+") as file: file_data = json.load(file) file_data["ids"].append(user_id) with open("blacklist.json", "w") as file: file.seek(0) json.dump(file_data, file, indent=4) def remove_user_from_blacklist(user_id: int) -> None: """ This function will remove a user based on its ID from the blacklist.json file. :param user_id: The ID of the user that should be removed from the blacklist.json file. """ with open("blacklist.json", "r") as file: file_data = json.load(file) file_data["ids"].remove(user_id) with open("blacklist.json", "w") as file: file.seek(0) json.dump(file_data, file, indent=4)
3.0625
3
tests/test_common.py
ColinKennedy/ways
2
3626
#!/usr/bin/env python # -*- coding: utf-8 -*- '''Make sure that generic functions work exactly as we expect.''' # IMPORT STANDARD LIBRARIES import unittest # IMPORT WAYS LIBRARIES from ways import common class ParseTestCase(unittest.TestCase): '''Test generic parsing-related functions.''' def test_working_0001(self): '''Test that correct input for expand_string works as expected.''' pattern = '/jobs/{JOB}/some_kind/{THING}/real_folders' text = '/jobs/some_job_here/some_kind/of/real_folders' expected_output = {'JOB': 'some_job_here', 'THING': 'of'} self.assertEqual(expected_output, common.expand_string(pattern, text)) def test_working_0002(self): '''Test that correct input for expand_string works as expected.''' shot = 'NAME_010' format_string = '{SHOT}_{ID}' expected_output = {'SHOT': 'NAME', 'ID': '010'} self.assertEqual(expected_output, common.expand_string(format_string, shot)) def test_expand_string_failure_0001(self): '''Force expand_string fails to prevent a bad match from occurring.''' text = '/jobs/some_job/some_kind/of/real_folders' pattern = '/jobs/{JOB}/some_kind/of/real_folders/inner' self.assertFalse(common.expand_string(pattern, text)) def test_expand_string_failure_0002(self): '''Force expand_string fails to prevent a bad match from occurring.''' text = '/jobs/some_job/some_kind/of/real_folders' pattern = '/jobs/{JOB}/some_kind/{SHOTNAME}/real_folders/inner' self.assertFalse(common.expand_string(pattern, text))
2.96875
3
setup.py
glibin/natasha
1
3627
<reponame>glibin/natasha<gh_stars>1-10 from setuptools import setup, find_packages setup( name='natasha', version='0.2.0', description='Named-entity recognition for russian language', url='https://github.com/bureaucratic-labs/natasha', author='<NAME>', author_email='<EMAIL>', license='MIT', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', ], keywords='natural language processing, russian morphology, named entity recognition, tomita', packages=find_packages(), install_requires=[ 'yargy==0.3.0' ], extras_require={ 'web': [ 'ujson', 'aiohttp', ], }, )
1.25
1
GeneratePassword/generate_password_v2.py
OneScreenfulOfPython/screenfuls
2
3628
import os, sys import random import string try: # Make Python2 work like Python3 input = raw_input except NameError: # On Python3; already using input pass letters = string.ascii_letters numbers = string.digits punctuation = string.punctuation def generate(password_length, at_least_one_letter, at_least_one_number, at_least_one_punctuation): """Generate a password by include enough random characters to meet the password length restriction. In addition, the user can specify that at least one of the each of the classes of character be used. """ # # Any combination of characters is valid # valid_characters = "" if at_least_one_letter: valid_characters += letters if at_least_one_number: valid_characters += numbers if at_least_one_punctuation: valid_characters += punctuation # # Start with a blank password and then go round enough # times to make a password of the required length. # password = "" for i in range(password_length): # # Each time around, ensure that one of each of the selected # groups is chosen, and then just choose randomly from all # groups. # if at_least_one_letter: character = random.choice(letters) at_least_one_letter = False elif at_least_one_number: character = random.choice(numbers) at_least_one_number = False elif at_least_one_punctuation: character = random.choice(punctuation) at_least_one_punctuation = False else: character = random.choice(valid_characters) password += character # # Finally, shuffle the password so we don't always get a # letter at the beginning, with a number after and some # punctuation. # characters = list(password) # # random.shuffle shuffles a list *in place* # random.shuffle(characters) # # X.join(...) means: return all the strings in (...) joined by X # ", ".join(['Eggs', 'Bacon', 'Beans']) => "Eggs, Bacon, Beans" # But if you want to generate *real* .csv files, use the csv module # because there are lots of corner-cases. # password = "".join(characters) return password if __name__ == '__main__': password_length = int(input("How many letters? ")) at_least_one_letter = "Y" == (input("At least one letter [Y/n]? ").upper() or "Y") at_least_one_number = "Y" == (input("At least one number [Y/n]? ").upper() or "Y") at_least_one_punctuation = "Y" == (input("At least one punctuation [Y/n]? ").upper() or "Y") password = generate(password_length, at_least_one_letter, at_least_one_number, at_least_one_punctuation) print("Your password is: {}".format(password))
4.15625
4
bot/jobs/thorchain_node_jobs.py
block42-blockchain-company/thornode-telegram-bot
15
3629
<reponame>block42-blockchain-company/thornode-telegram-bot from constants.messages import get_node_health_warning_message, get_node_healthy_again_message from handlers.chat_helpers import try_message_with_home_menu, try_message_to_all_users from packaging import version from service.utils import * def check_thornodes(context): chat_id = context.job.context['chat_id'] chat_data = context.job.context['chat_data'] inactive_nodes = [] for node_address, local_node in chat_data.get('nodes', {}).items(): try: remote_node = get_thornode_object_or_none(address=node_address) except HTTPError as e: logger.exception(e) continue if remote_node is None: text = 'THORNode ' + local_node['alias'] + ' is not active anymore! 💀' + '\n' + \ 'Address: ' + node_address + '\n\n' + \ 'Please enter another THORNode address.' inactive_nodes.append(node_address) try_message_with_home_menu(context=context, chat_id=chat_id, text=text) continue is_not_blocked = float(local_node['last_notification_timestamp']) < \ datetime.timestamp( datetime.now() - timedelta(seconds=local_node['notification_timeout_in_seconds'])) if is_not_blocked: message = build_notification_message_for_active_node(local_node, remote_node, context) if message: # Update data local_node['status'] = remote_node['status'] local_node['bond'] = remote_node['bond'] local_node['slash_points'] = remote_node['slash_points'] local_node['ip_address'] = remote_node['ip_address'] local_node['last_notification_timestamp'] = datetime.timestamp(datetime.now()) local_node['notification_timeout_in_seconds'] *= NOTIFICATION_TIMEOUT_MULTIPLIER try_message_with_home_menu(context=context, chat_id=chat_id, text=message) else: local_node['notification_timeout_in_seconds'] = INITIAL_NOTIFICATION_TIMEOUT if local_node['status'].upper() in MONITORED_STATUSES and is_thornode_healthy(context, node_address): check_thorchain_block_height(context, node_address=node_address) check_thorchain_catch_up_status(context, node_address=node_address) check_thorchain_midgard_api(context, node_address=node_address) for node_address in inactive_nodes: del chat_data['nodes'][node_address] def build_notification_message_for_active_node(local_node, remote_node, context) -> [str, None]: changed_fields = [ field for field in ['status', 'bond', 'slash_points'] if local_node[field] != remote_node[field] ] threshold = get_slash_points_threshold(context) slash_point_change = abs(int(local_node['slash_points']) - int(remote_node['slash_points'])) if (len(changed_fields) <= 1) and ('slash_points' in changed_fields) and (slash_point_change <= threshold): return None if len(changed_fields) > 0: text = f"THORNode: {local_node['alias']}\n" \ f"Address: {local_node['node_address']}\n" \ f"Status: {local_node['status'].capitalize()}" if 'status' in changed_fields: text += f' ➡️ {remote_node["status"].capitalize()}' text += f"\nBond: {tor_to_rune(int(local_node['bond']))}" if 'bond' in changed_fields: text += f" ➡️ {tor_to_rune(int(remote_node['bond']))}" text += '\nSlash Points: ' + '{:,}'.format(int(local_node['slash_points'])) if 'slash_points' in changed_fields: text += ' ➡️ ' + '{:,}'.format(int(remote_node['slash_points'])) return text else: return None def check_versions_status(context): chat_data = context.job.context['chat_data'] try: node_accounts = get_node_accounts() except Exception as e: logger.exception(e) logger.error("I couldn't get the node accounts while checking version status.") return highest_version = max(map(lambda n: n['version'], node_accounts), key=lambda v: version.parse(v)) last_newest_version = chat_data.get('newest_software_version', None) if last_newest_version is None or version.parse( highest_version) > version.parse(last_newest_version): chat_data['newest_software_version'] = highest_version for node in chat_data.get('nodes', {}).values(): if version.parse(node['version']) < version.parse(highest_version): message = f"Consider updating the software on your node: *{node['alias']}* ‼️\n" \ f"Your software version is *{node['version']}* " \ f"but one of the nodes already runs on *{highest_version}*" try_message_with_home_menu( context, chat_id=context.job.context['chat_id'], text=message) def check_churning(context): try: validators = get_node_accounts() except Exception as e: logger.exception(e) logger.error("I couldn't get the node accounts while checking if churning occurred.") return if 'node_statuses' not in context.bot_data: context.bot_data['node_statuses'] = {} for validator in validators: context.bot_data['node_statuses'][ validator['node_address']] = validator['status'] return local_node_statuses = context.bot_data['node_statuses'] churned_in = [] churned_out = [] highest_churn_status_since = 0 for validator in validators: if did_churn_happen(validator, local_node_statuses, highest_churn_status_since): highest_churn_status_since = int(validator['status_since']) for validator in validators: remote_status = validator['status'] local_status = local_node_statuses[ validator['node_address']] if validator[ 'node_address'] in local_node_statuses else "unknown" if remote_status != local_status: if 'active' == remote_status: churned_in.append({ "address": validator['node_address'], "bond": validator['bond'] }) elif 'active' == local_status: churned_out.append({ "address": validator['node_address'], "bond": validator['bond'] }) if len(churned_in) or len(churned_out): text = "🔄 CHURN SUMMARY\n" \ "THORChain has successfully churned:\n\n" text += "Nodes Added:\n" if len(churned_in) else "" for node in churned_in: text += f"*{node['address']}*\nBond: *{tor_to_rune(node['bond'])}*\n" text += "\nNodes Removed:\n" if len(churned_out) else "" for node in churned_out: text += f"*{node['address']}*\nBond: *{tor_to_rune(node['bond'])}*\n" text += "\nSystem:\n" try: network = get_network_data() text += f"📡 Network Security: *{network_security_ratio_to_string(get_network_security_ratio(network))}*\n\n" \ f"💚 Total Active Bond: *{tor_to_rune(network['bondMetrics']['totalActiveBond'])}* (total)\n\n" \ "⚖️ Bonded/Staked Ratio: *" + '{:.2f}'.format( int(get_network_security_ratio(network) * 100)) + " %*\n\n" \ "↩️ Bonding ROI: *" + '{:.2f}'.format( float(network['bondingAPY']) * 100) + " %* APY\n\n" \ "↩️ Liquidity ROI: *" + '{:.2f}'.format( float(network['liquidityAPY']) * 100) + " %* APY" context.bot_data.setdefault("vault_addresses", {}) current_chains = get_pool_addresses_from_any_node() for chain in current_chains: if chain['chain'] in context.bot_data['vault_addresses']: if chain['address'] != context.bot_data['vault_addresses'][chain['chain']]: text += f"\n\n🔐 Vault Addresses:" if "Vault Addresses" not in text else "" text += f"\n*{chain['chain']}*: \n" \ f"Old Vault address: {context.bot_data['vault_addresses'][chain['chain']]}\n"\ f"⬇️\n" \ f"New Vault address: {chain['address']}\n" else: text += "\n\n⚠️ 🚨 CHURNING BUT THE VAULT ADDRESSES DID NOT CHANGE 🚨\n" context.bot_data['vault_addresses'][chain['chain']] = chain['address'] except Exception as e: logger.exception(e) try_message_to_all_users(context, text=text) for validator in validators: context.bot_data['node_statuses'][ validator['node_address']] = validator['status'] def did_churn_happen(validator, local_node_statuses, highest_churn_status_since) -> bool: remote_status = validator['status'] local_status = local_node_statuses[validator['node_address']] if validator[ 'node_address'] in local_node_statuses else "unknown" if int(validator['status_since']) > highest_churn_status_since and \ ((local_status == 'ready' and remote_status == 'active') or ( local_status == 'active' and remote_status == 'standby')): return True return False def is_thornode_healthy(context, node_address) -> bool: chat_id = context.job.context['chat_id'] node_data = context.job.context['chat_data']['nodes'][node_address] # If not initialized assuming node was healhty. if "healthy" not in context.job.context['chat_data']['nodes'][node_address]: context.job.context['chat_data']['nodes'][node_address]["healthy"] = True was_healthy = node_data["healthy"] try: # Check whether node answers. If it doesn't we get an Exception. get_latest_block_height(node_data['ip_address']) if not was_healthy: try_message_with_home_menu(context=context, chat_id=chat_id, text=get_node_healthy_again_message(node_data)) context.job.context['chat_data']['nodes'][node_address]["healthy"] = True return True except (Timeout, ConnectionError, BadStatusException, Exception): if was_healthy: try_message_with_home_menu(context=context, chat_id=chat_id, text=get_node_health_warning_message(node_data)) context.job.context['chat_data']['nodes'][node_address]["healthy"] = False return False def check_thorchain_block_height(context, node_address): chat_id = context.job.context['chat_id'] node_data = context.job.context['chat_data']['nodes'][node_address] try: block_height = get_latest_block_height(node_data['ip_address']) except (Timeout, ConnectionError): logger.warning(f"Timeout or Connection error with {node_data['ip_address']}") return is_stuck = block_height <= node_data.setdefault('block_height', 0) block_height_stuck_count = node_data.setdefault("block_height_stuck_count", 0) if is_stuck: block_height_stuck_count += 1 if block_height_stuck_count == 1: text = 'Block height is not increasing anymore! 💀' + '\n' + \ 'IP: ' + node_data['ip_address'] + '\n' + \ 'THORNode: ' + node_data['alias'] + '\n' + \ 'Node address: ' + node_address + '\n' + \ 'Block height stuck at: ' + block_height + '\n\n' + \ 'Please check your Thornode immediately!' try_message_with_home_menu(context=context, chat_id=chat_id, text=text) else: if block_height_stuck_count >= 1: text = f"Block height is increasing again! 👌\n" + \ f"IP: {node_data['ip_address']}\n" + \ f"THORNode: {node_data['alias']}\n" + \ f"Node address: {node_address}\n" + \ f"Block height now at: {block_height}\n" try_message_with_home_menu(context=context, chat_id=chat_id, text=text) block_height_stuck_count = 0 node_data['block_height'] = block_height node_data["block_height_stuck_count"] = block_height_stuck_count def check_solvency_job(context): message = check_solvency(context) if message: try_message_to_all_users(context, text=message) def check_solvency(context) -> [str, None]: try: asgard_solvency = asgard_solvency_check() yggdrasil_solvency = yggdrasil_solvency_check() except (Timeout, ConnectionError): logger.warning(f"Timeout or Connection error while querying Asgard and Yggdrasil.") return None except Exception as e: logger.exception(e) return None is_solvent = asgard_solvency['is_solvent'] and yggdrasil_solvency['is_solvent'] insolvency_count = context.bot_data.setdefault("insolvency_count", 0) message = None if not is_solvent: insolvency_count += 1 if insolvency_count == MISSING_FUNDS_THRESHOLD: message = 'THORChain is *missing funds*! 💀\n\n' message += get_insolvent_balances_message(asgard_solvency, yggdrasil_solvency) else: if insolvency_count >= MISSING_FUNDS_THRESHOLD: message = 'THORChain is *100% solvent* again! 👌\n' insolvency_count = 0 context.bot_data["insolvency_count"] = insolvency_count return message def check_thorchain_catch_up_status(context, node_address): """ Check if node is some blocks behind with catch up status """ chat_id = context.job.context['chat_id'] node_data = context.job.context['chat_data']['nodes'][node_address] if 'is_catching_up' not in node_data: node_data['is_catching_up'] = False try: is_currently_catching_up = is_thorchain_catching_up( node_data['ip_address']) except (Timeout, ConnectionError): logger.warning(f"Timeout or Connection error with {node_data['ip_address']}") return if node_data['is_catching_up'] != is_currently_catching_up: try: block_height = get_latest_block_height(node_data['ip_address']) except (Timeout, ConnectionError): logger.warning(f"Timeout or Connection error with {node_data['ip_address']}") block_height = "currently unavailable" if is_currently_catching_up: node_data['is_catching_up'] = True text = 'The Node is behind the latest block height and catching up! 💀 ' + '\n' + \ 'IP: ' + node_data['ip_address'] + '\n' + \ 'THORNode: ' + node_data['alias'] + '\n' + \ 'Node address: ' + node_address + '\n' + \ 'Current block height: ' + block_height + '\n\n' + \ 'Please check your Thornode immediately!' else: node_data['is_catching_up'] = False text = 'The node caught up to the latest block height again! 👌' + '\n' + \ 'IP: ' + node_data['ip_address'] + '\n' + \ 'THORNode: ' + node_data['alias'] + '\n' + \ 'Node address: ' + node_address + '\n' + \ 'Current block height: ' + block_height try_message_with_home_menu(context=context, chat_id=chat_id, text=text) def check_thorchain_midgard_api(context, node_address): """ Check that Midgard API is ok """ chat_id = context.job.context['chat_id'] node_data = context.job.context['chat_data']['nodes'][node_address] was_healthy = node_data.setdefault('is_midgard_healthy', True) is_midgard_healthy = is_midgard_api_healthy(node_data['ip_address']) if was_healthy != is_midgard_healthy: if is_midgard_healthy: text = 'Midgard API is healthy again! 👌' + '\n' + \ 'IP: ' + node_data['ip_address'] + '\n' + \ 'THORNode: ' + node_data['alias'] + '\n' + \ 'Node address: ' + node_address try_message_with_home_menu(context, chat_id=chat_id, text=text) else: text = 'Midgard API is not healthy anymore! 💀' + '\n' + \ 'IP: ' + node_data['ip_address'] + '\n' + \ 'THORNode: ' + node_data['alias'] + '\n' + \ 'Node address: ' + node_address + '\n\n' + \ 'Please check your Thornode immediately!' try_message_with_home_menu(context, chat_id=chat_id, text=text) node_data['is_midgard_healthy'] = is_midgard_healthy
2.296875
2
hard-gists/7578539/snippet.py
jjhenkel/dockerizeme
21
3630
from pylab import * from numpy import * from numpy.linalg import solve from scipy.integrate import odeint from scipy.stats import norm, uniform, beta from scipy.special import jacobi a = 0.0 b = 3.0 theta=1.0 sigma=sqrt(theta/(2*(a+b+2))) tscale = 0.05 invariant_distribution = poly1d( [-1 for x in range(int(a))], True)*poly1d( [1 for x in range(int(b))], True) def eigenvalue(n): return theta*n*(n+a+b+1)/(a+b+2) gaussian_var = norm() def dW(dt): return norm.rvs() / sqrt(dt) def random_walk(y0, tmax, dt, times = None): dt = dt * tscale def rhs(y,t): return -theta*(y-(a-b)/(a+b+2)) + sqrt(2*theta*(1-y*y)/(a+b+2))*dW(dt/tscale) if (times is None): times = arange(0,tmax,dt) y = zeros(shape=times.shape, dtype=float) y[0] = y0 for i in range(1,y.shape[0]): y[i] = y[i-1] + rhs(y[i-1], times[i])*dt if abs(y[i]) > 1: y[i] = y[i] / abs(y[i]) return (times, y) def beta_prior(s, f): return poly1d(ones(shape=(s,)), True)*poly1d(-1*ones(shape=(f,)), True) def poly_to_jacobi(x): """x is a poly1d object""" xc = x.coeffs N = x.order+1 matrix = zeros(shape=(N,N), dtype=float) for i in range(N): matrix[N-i-1:N, i] = jacobi(i,a,b).coeffs return solve(matrix, xc) def jacobi_to_poly(x): result = poly1d([0]) for i in range(x.shape[0]): result = result + (jacobi(i,a,b)*invariant_distribution)*x[i] return result def jacobi_to_poly_no_invariant(x): result = poly1d([0]) for i in range(x.shape[0]): result = result + jacobi(i,a,b)*x[i] return result def propagate_jacobi(pc, t): """Takes jacobi coefficients and propagates them""" n = arange(pc.shape[0], dtype=float) l = theta*n*(n+a+b+1.0)/(a+b+2.0)*tscale return exp(-l*t)*pc def truncate_unnecessary_jacobi(p): p_normalized = p / (abs(p).sum()) cs = cumsum(abs(p_normalized[::-1]))[::-1] return p_normalized[where(abs(cs) > 1e-4)] def pde_solve(prior, t): result = zeros(shape=(t.shape[0], prior.shape[0]), dtype=float) result[0,:] = prior for i in range(1,t.shape[0]): result[i,:] = propagate_jacobi(result[i-1,:], t[i]-t[i-1]) return result def transform_to_x(pdf, x): result = zeros(shape=(pdf.shape[0], x.shape[0]), dtype=float) for i in range(0, pdf.shape[0]): p = jacobi_to_poly(pdf[i,:]) result[i,:] = p(x) result[i,:] /= result[i,:].sum() return result tmax = 4 prior = beta_prior(40, 20) prior_in_jacobi = poly_to_jacobi(prior) dt = 0.1 times = arange(0,tmax,dt) x = arange(-1,1,0.01) rw_dt = 0.01 t, y = random_walk(0.35*2-1, tmax, rw_dt) solution_as_x = zeros(shape=(times.size, x.size), dtype=float) solution_as_jacobi = None empirical_ctr = zeros(shape=(4,), dtype=float) for i in range(0,4): nt = int(1.0/dt) prior = prior_in_jacobi rnd = uniform(0,1) if (i > 0): nsamples = 40 r = rnd.rvs(nsamples) ctr = (y[i/rw_dt]+1)/2.0 print "CTR: " + str(ctr) success = (r < ctr).sum() print "Empirical: " + str(success / float(nsamples)) evidence = beta_prior( nsamples - success, success) prior = None j = truncate_unnecessary_jacobi(solution_as_jacobi[int(1/dt)-1]) prior = poly_to_jacobi(evidence * jacobi_to_poly_no_invariant(j)) empirical_ctr[i] = success / float(nsamples) solution_as_jacobi = pde_solve(prior, times[i*nt:(i+1)*nt]) solution_as_x[i*nt:(i+1)*nt] = transform_to_x(solution_as_jacobi, x) plot(arange(0,4), empirical_ctr, 'go') plot(t, (y+1)/2.0, 'k') imshow(solution_as_x.transpose(), origin='lower', extent=[0,tmax,0,1]) xlabel("time") ylabel("CTR") title("Bayesian Estimate of CTR") colorbar() show()
2.453125
2
forms.py
lennykioko/Flask-social-network
1
3631
# forms are not just about display, instead they are more of validation # wtf forms protect our site against csrf attacks from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, TextAreaField from wtforms.validators import (DataRequired, Regexp, ValidationError, Email, Length, EqualTo) from models import User def name_exists(form, field): if User.select().where(User.username == field.data).exists(): raise ValidationError('User with this name already exists.') def email_exists(form, field): if User.select().where(User.email == field.data).exists(): raise ValidationError('User with this email already exists.') class RegisterForm(FlaskForm): username = StringField( 'Username', # is the label validators=[ DataRequired(), Regexp( r'^[a-zA-Z0-9_]+$', message = ("Username should be one word, letters, numbers and underscores only.") ), name_exists ]) email = StringField( 'Email', validators=[ DataRequired(), Email(), email_exists ]) password = PasswordField( 'Password', validators=[ DataRequired(), Length(min=8), EqualTo('<PASSWORD>', message = 'Passwords must match') ]) password2 = PasswordField( '<PASSWORD>', validators=[DataRequired() ]) class LoginForm(FlaskForm): email = StringField('Email', validators=[DataRequired(), Email()]) password = PasswordField('Password', validators=[DataRequired()]) class PostForm(FlaskForm): content = TextAreaField("What's Up?", validators = [DataRequired()])
3.34375
3
pantam_cli/utils/messages.py
flmnt/pantam
2
3632
<reponame>flmnt/pantam from sys import stderr, stdout from enum import Enum from colored import fg, attr PANTAM: str = fg("yellow") + attr("bold") + "PANTAM" + attr("reset") colour_msg = lambda msg, colour: fg(colour) + attr("bold") + msg + attr("reset") info_msg = lambda msg: colour_msg(msg, "blue") success_msg = lambda msg: colour_msg(msg, "green") error_msg = lambda msg: colour_msg(msg, "red") class NewLine(Enum): before = 1 after = 2 both = 3 def write_msg(msg: str, spacing: NewLine = None) -> None: """Write message to stdout""" prefix: str = "\n" if spacing in (NewLine.before, NewLine.both) else "" suffix: str = "\n" if spacing in (NewLine.after, NewLine.both) else "" stdout.write("%s%s%s" % (prefix, msg, suffix)) def write_error(msg: str) -> None: """Write message to stderr""" stderr.write("\n%s\n" % msg) welcome_msg = ( lambda: PANTAM + """ The microframework for microservices. Let's build your app... """ ) name_index_file_msg = lambda: "What is the name of your main script?" name_actions_folder_msg = lambda: "What is the name of your actions folder?" def create_actions_file_msg(second_run: bool): """Actions File Message""" article = "another" if second_run else "an" return "Do you want to create %s action file?" % article name_actions_file_msg = lambda: "What is the name of your actions file?" confirm_structure_msg = ( lambda structure: """Your application will look like this: %s Happy to proceed?""" % structure )
2.640625
3
tests/manage/test_remove_mon_from_cluster.py
zmc/ocs-ci
0
3633
""" A Testcase to remove mon from when I/O's are happening. Polarion-ID- OCS-355 """ import logging import pytest from ocs_ci.ocs import ocp, constants from ocs_ci.framework.testlib import tier4, ManageTest from ocs_ci.framework import config from ocs_ci.ocs.resources import pod from tests.helpers import run_io_with_rados_bench, delete_cephblockpool from ocs_ci.ocs.cluster import CephCluster from ocs_ci.utility.retry import retry from ocs_ci.ocs.exceptions import CephHealthException log = logging.getLogger(__name__) @retry(CephHealthException, 8, 3, 1) def verify_mon_pod_up(ceph_cluster, pods): """ Verify mon pods are in Running state. Returns: bool: True for wait for the resource, False otherwise """ log.info(f"Verifying all mons pods are up and Running") ceph_cluster.cluster_health_check(timeout=3) ret = pods.wait_for_resource( condition=constants.STATUS_RUNNING, selector='app=rook-ceph-mon', resource_count=3, timeout=700) log.info(f"waited for all mon pod to come up and running {ret}") return ret def run_io_on_pool(): """ Runs the I/O on the pool and delete the pool Returns: A thread of I/O """ tools_pod = pod.get_ceph_tools_pod() tools_pod.add_role(role='client') return run_io_with_rados_bench( ceph_pods=[tools_pod], config={'time': 45, 'cleanup': False, 'pool': 'test-pool' } ) @tier4 @pytest.mark.polarion_id("OCS-355") class TestRemoveMonFromCluster(ManageTest): def test_remove_mon_pod_from_cluster(self): """ To remove mon pod from the cluster after the I/O is performed on the pool and waiting for the operator to create a new mon pod on its own """ ceph_cluster = CephCluster() pods = ocp.OCP( kind=constants.POD, namespace=config.ENV_DATA['cluster_namespace'] ) list_mons = ceph_cluster.get_mons_from_cluster() assert len(list_mons) > 1, pytest.skip( "INVALID: Mon count should be more than one to delete." ) assert run_io_on_pool(), 'Failed to run I/O on the pool' assert delete_cephblockpool('test-pool'), 'Failed to delete pool' ceph_cluster.cluster_health_check(timeout=0) ceph_cluster.remove_mon_from_cluster() assert verify_mon_pod_up(ceph_cluster, pods), f"Mon pods are not up and running state" ceph_cluster.cluster_health_check(timeout=60)
2.015625
2
smartystreets_python_sdk/us_autocomplete_pro/client.py
Caaz/smartystreets-python-sdk
0
3634
<reponame>Caaz/smartystreets-python-sdk<filename>smartystreets_python_sdk/us_autocomplete_pro/client.py from smartystreets_python_sdk import Request from smartystreets_python_sdk.exceptions import SmartyException from smartystreets_python_sdk.us_autocomplete_pro import Suggestion, geolocation_type class Client: def __init__(self, sender, serializer): """ It is recommended to instantiate this class using ClientBuilder.build_us_autocomplete_pro_api_client() """ self.sender = sender self.serializer = serializer def send(self, lookup): """ Sends a Lookup object to the US Autocomplete Pro API and stores the result in the Lookup's result field. """ if not lookup or not lookup.search: raise SmartyException('Send() must be passed a Lookup with the search field set.') request = self.build_request(lookup) response = self.sender.send(request) if response.error: raise response.error result = self.serializer.deserialize(response.payload) suggestions = self.convert_suggestions(result.get('suggestions') or []) lookup.result = suggestions return suggestions def build_request(self, lookup): request = Request() self.add_parameter(request, 'search', lookup.search) self.add_parameter(request, 'max_results', lookup.max_results) self.add_parameter(request, 'include_only_cities', self.build_filter_string(lookup.city_filter)) self.add_parameter(request, 'include_only_states', self.build_filter_string(lookup.state_filter)) self.add_parameter(request, 'include_only_zip_codes', self.build_filter_string(lookup.zip_filter)) self.add_parameter(request, 'exclude_states', self.build_filter_string(lookup.exclude)) self.add_parameter(request, 'prefer_cities', self.build_filter_string(lookup.prefer_cities)) self.add_parameter(request, 'prefer_states', self.build_filter_string(lookup.prefer_states)) self.add_parameter(request, 'prefer_zip_codes', self.build_filter_string(lookup.prefer_zips)) self.add_parameter(request, 'prefer_ratio', lookup.prefer_ratio) self.add_parameter(request, 'prefer_geolocation', lookup.prefer_geo) self.add_parameter(request, 'selected', lookup.selected) return request @staticmethod def build_filter_string(filter_list): return ','.join(filter_list or []) or None @staticmethod def convert_suggestions(suggestion_dictionaries): return [Suggestion(suggestion) for suggestion in suggestion_dictionaries] @staticmethod def add_parameter(request, key, value): if value and value != 'none': request.parameters[key] = value
2.3125
2
mssqlvc.py
Saritasa/mssqlvc
2
3635
<reponame>Saritasa/mssqlvc<filename>mssqlvc.py # -*- coding: utf-8 -*- """ mssqlvc ~~~~~~~ Database version control utility for Microsoft SQL Server. See README.md for more information. Licensed under the BSD license. See LICENSE file in the project root for full license information. """ import argparse import datetime import io import logging import os import re import sys import urlparse try: import clr except ImportError: print('Cannot import crl module, make sure you run this script using IronPython') exit(2) import System clr.AddReference('Microsoft.SqlServer.Smo') clr.AddReference('Microsoft.SqlServer.SqlEnum') clr.AddReference('Microsoft.SqlServer.ConnectionInfo') import Microsoft.SqlServer.Management.Smo as Smo import Microsoft.SqlServer.Management.Common as Common __author__ = '<NAME>' __copyright__ = 'Copyright (c) 2015-2016, Saritasa' __license__ = 'BSD' __version__ = '1.4.5' __all__ = ['MsSqlVersion'] class ScriptExecutionError(Exception): pass class MsSqlVersion(object): """ SQL Server patch migration class. """ class bcolors: OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' def __init__(self, connection_string, patch_dir='.', exclude_pattern=None, logger=None, stop_on_error=False, noexecute=False, case_insensitive=False, record_files_only=False): """ Initialize instance with connection and database objects. :param connection_string: Connection string in rfc1738 url format :param patch_dir: Patch directory with .sql files :param exclude_pattern: String with regular expression the patch files should match :param logger: Logger that is used for logging :param stop_on_error: Stop execution on error, default behavior is to continue :param case_insensitive: Use case insensitive to compare patch files :param record_files_only: Only file names will be stored to patch table without folder paths """ url = urlparse.urlparse(connection_string) is_local_login = not url.username self.connection = Common.ServerConnection(LoginSecure=is_local_login, ServerInstance=url.hostname, DatabaseName=url.path.replace('/', '')) if not is_local_login: self.connection.Login = url.username self.connection.Password = <PASSWORD> self.server = Smo.Server(self.connection) self.database = self.server.Databases[self.connection.DatabaseName] self.server.ConnectionContext.ConnectTimeout = 90 self.exclude_pattern = exclude_pattern self.patch_dir = patch_dir self.stop_on_error = stop_on_error self.case_insensitive = case_insensitive self.record_files_only = record_files_only self.executed_count = 0 self.logger = logging.NullHandler() if not logger else logger if not os.path.exists(patch_dir): raise Exception('Patch folder does not exist') if 'mssql' not in connection_string: raise Exception('Wrong connection string, it should contain mssql word') exists = self._create_patch_table_if_not_exists(self.database) if not exists: self.logger.info('[%s] created _patch_history table' % (self.database.Name,)) def __del__(self): if self.server: self.server.ConnectionContext.Disconnect() def update(self): """Executes database update process""" patches = self.get_pending_patches() self.logger.debug('Files to execute %s' % (patches,)) for patch in patches: success = self.execute_file(patch) if success: self.executed_count += 1 self.put_patch(patch) if not success and self.stop_on_error: self.logger.critical(MsSqlVersion.bcolors.WARNING + 'Execution stopped. Please fix errors and try again.' + MsSqlVersion.bcolors.ENDC) raise ScriptExecutionError() self.logger.info('[%s] Executed %d patch(-es)' % (self.database.Name, self.executed_count)) def fill(self): """Skip scripts execution but add them to patches table""" patches = self.get_pending_patches() for patch in patches: self.logger.info('Add file %s' % (patch,)) self.put_patch(patch) def get_pending_patches(self): applied_patches = self.get_applied_patches() if self.record_files_only: applied_patches = [os.path.basename(f) for f in applied_patches] patches = self._get_sql_files_from_dir(applied_patches) patches.sort() return patches def execute_file(self, file): """Executes file against database in transaction, returns True if success""" ret = True try: full_name = os.path.join(os.path.normpath(self.patch_dir), file) with io.open(full_name, 'r', encoding='utf8') as sql_file: sql = sql_file.read() self.logger.info('[%s] Executing %s...' % (self.database.Name, file)) self.connection.BeginTransaction() self.database.ExecuteNonQuery(sql) self.connection.CommitTransaction() except Exception as e: self.connection.RollBackTransaction() self.logger.error('Exception on %s' % (file,)) message = e.message or e if e.clsException.InnerException is not None and e.clsException.InnerException.InnerException is not None: message += ' ' + e.clsException.InnerException.InnerException.Message self.logger.error('[%s] %s (%s)' % (self.database.Name, full_name, message)) ret = False return ret def put_patch(self, file): """Write record that file has been executed""" now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') if self.record_files_only: file = os.path.basename(file) sql = 'insert [_patch_history] (name, applied_at) values(\'%s\', \'%s\');' % (file, now) self.database.ExecuteNonQuery(sql) def get_applied_patches(self): rows = self.database.ExecuteWithResults('select name from [_patch_history];').Tables[0].Rows return set([row['name'] for row in rows]) def _get_sql_files_from_dir(self, exclude_list=[]): """Get all script files from directory""" _exclude_list = set(exclude_list) if not self.case_insensitive else [f.lower() for f in exclude_list] prevdir = os.getcwd() os.chdir(self.patch_dir) sql_files = [] for root, dirs, files in os.walk('.'): for file in files: file = os.path.normpath(os.path.join(root, file)) _file = file if self.case_insensitive: _file = _file.lower() if self.record_files_only: _file = os.path.basename(_file) if (_file in _exclude_list or not _file.lower().endswith('.sql') or (self.exclude_pattern and re.search(self.exclude_pattern, file))): continue sql_files.append(file) os.chdir(prevdir) return sql_files @staticmethod def _create_patch_table_if_not_exists(database): """Create patch table in database if not exists""" sql = 'select * from sys.objects where object_id = object_id(\'_patch_history\') AND type in (\'U\');' exists = database.ExecuteWithResults(sql).Tables[0].Rows.Count > 0 if not exists: sql = """ create table [_patch_history] (id int not null identity(1, 1), name varchar(100) not null, applied_at datetime not null); alter table [_patch_history] add constraint _patch_history_PK primary key clustered (id); """ database.ExecuteNonQuery(sql) return exists def get_cmd_line_parser(): """Get initialized argparse.ArgumentParser object""" parser = argparse.ArgumentParser( description='MSSQL database patch history tool', formatter_class=argparse.RawDescriptionHelpFormatter, epilog='''Example: %(prog)s -c "mssql://sa:123@host\instance/database" -d "D:/1/project/patch"''') parser.add_argument('--connection', '-c', required=True, dest='connection', action='store', help='connection string in rfc1738 url format, required') parser.add_argument('--directory', '-d', dest='directory', action='store', default='.', help='directory with patch files') parser.add_argument('--log', '-l', dest='log', action='store', help='log file') parser.add_argument('--noexecute', '-n', action='store_true', dest='noexecute', default=False, help='displays pending script files with no execution') parser.add_argument('--noexecute-fill', '-nf', action='store_true', dest='noexecute_fill', default=False, help='displays pending script files with no execution and fills patch table') parser.add_argument('--stop-on-error', '-soe', action='store_true', dest='stop_on_error', default=False, help='stops execution if any script fails') parser.add_argument('--exclude-pattern', '-ep', dest='exclude_pattern', help='skips files match to regular expression') parser.add_argument('--record-files-only', '-rfo', action='store_true', dest='record_files_only', default=False, help='only file names will be stored to patch table without folder paths') parser.add_argument('--case-insensitive', '-ci', action='store_true', dest='case_insensitive', default=False, help='use case insensitive to compare patch files so "PatchName.sql" and "patchname.sql" is the same') parser.add_argument('--debug', action='store_true', dest='debug', default=False, help='enables debug output') parser.add_argument('--version', '-v', action='version', version='%(prog)s ' + __version__) return parser if __name__ == '__main__': # parser parser = get_cmd_line_parser() parser_args = parser.parse_args() if parser_args.connection is None or parser_args.directory is None: parser.print_help() exit(1) # logging logger = logging.getLogger('mssql') if parser_args.log: fh = logging.FileHandler(parser_args.log) fh.setFormatter(logging.Formatter('%(asctime)s [%(levelname)s] %(message)s')) logger.addHandler(fh) ch = logging.StreamHandler() ch.setFormatter(logging.Formatter('%(asctime)s [%(levelname)s] %(message)s')) logger.setLevel(logging.DEBUG if parser_args.debug else logging.INFO) logger.addHandler(ch) # database handle sqlvc = MsSqlVersion(parser_args.connection, parser_args.directory, exclude_pattern=parser_args.exclude_pattern, stop_on_error=parser_args.stop_on_error, case_insensitive=parser_args.case_insensitive, record_files_only=parser_args.record_files_only, logger=logger) if parser_args.noexecute: for patch in sqlvc.get_pending_patches(): logger.info(' ' + patch) elif parser_args.noexecute_fill: sqlvc.fill() else: sqlvc.update()
1.617188
2
lib/python3.6/site-packages/statsmodels/iolib/tests/test_table_econpy.py
KshitizSharmaV/Quant_Platform_Python
1
3636
''' Unit tests table.py. :see: http://docs.python.org/lib/minimal-example.html for an intro to unittest :see: http://agiletesting.blogspot.com/2005/01/python-unit-testing-part-1-unittest.html :see: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/305292 ''' from __future__ import absolute_import from statsmodels.compat.python import zip import numpy as np from numpy.testing import assert_equal __docformat__ = "restructuredtext en" from statsmodels.iolib.table import Cell, SimpleTable from statsmodels.iolib.table import default_latex_fmt from statsmodels.iolib.table import default_html_fmt ltx_fmt1 = default_latex_fmt.copy() html_fmt1 = default_html_fmt.copy() txt_fmt1 = dict( data_fmts = ['%0.2f', '%d'], empty_cell = ' ', colwidths = 1, colsep=' * ', row_pre = '* ', row_post = ' *', table_dec_above='*', table_dec_below='*', header_dec_below='*', header_fmt = '%s', stub_fmt = '%s', title_align='r', header_align = 'r', data_aligns = "r", stubs_align = "l", fmt = 'txt' ) cell0data = 0.0000 cell1data = 1 row0data = [cell0data, cell1data] row1data = [2, 3.333] table1data = [ row0data, row1data ] test1stubs = ('stub1', 'stub2') test1header = ('header1', 'header2') #test1header = ('header1\nheader1a', 'header2\nheader2a') tbl = SimpleTable(table1data, test1header, test1stubs, txt_fmt=txt_fmt1, ltx_fmt=ltx_fmt1, html_fmt=html_fmt1) def custom_labeller(cell): if cell.data is np.nan: return 'missing' class TestCell(object): def test_celldata(self): celldata = cell0data, cell1data, row1data[0], row1data[1] cells = [Cell(datum, datatype=i % 2) for i, datum in enumerate(celldata)] for cell, datum in zip(cells, celldata): assert_equal(cell.data, datum) class TestSimpleTable(object): def test_txt_fmt1(self): # Limited test of custom txt_fmt desired = """ ***************************** * * header1 * header2 * ***************************** * stub1 * 0.00 * 1 * * stub2 * 2.00 * 3 * ***************************** """ actual = '\n%s\n' % tbl.as_text() #print('actual') #print(actual) #print('desired') #print(desired) assert_equal(actual, desired) def test_ltx_fmt1(self): # Limited test of custom ltx_fmt desired = r""" \begin{center} \begin{tabular}{lcc} \toprule & \textbf{header1} & \textbf{header2} \\ \midrule \textbf{stub1} & 0.0 & 1 \\ \textbf{stub2} & 2 & 3.333 \\ \bottomrule \end{tabular} \end{center} """ actual = '\n%s\n' % tbl.as_latex_tabular() #print(actual) #print(desired) assert_equal(actual, desired) def test_html_fmt1(self): # Limited test of custom html_fmt desired = """ <table class="simpletable"> <tr> <td></td> <th>header1</th> <th>header2</th> </tr> <tr> <th>stub1</th> <td>0.0</td> <td>1</td> </tr> <tr> <th>stub2</th> <td>2</td> <td>3.333</td> </tr> </table> """ #the previous has significant trailing whitespace that got removed #desired = '''\n<table class="simpletable">\n<tr>\n <td></td> <th>header1</th> <th>header2</th>\n</tr>\n<tr>\n <th>stub1</th> <td>0.0</td> <td>1</td> \n</tr>\n<tr>\n <th>stub2</th> <td>2</td> <td>3.333</td> \n</tr>\n</table>\n''' actual = '\n%s\n' % tbl.as_html() actual = '\n'.join((line.rstrip() for line in actual.split('\n'))) #print(actual) #print(desired) #print len(actual), len(desired) assert_equal(actual, desired) def test_customlabel(self): # Limited test of custom custom labeling tbl = SimpleTable(table1data, test1header, test1stubs, txt_fmt=txt_fmt1) tbl[1][1].data = np.nan tbl.label_cells(custom_labeller) #print([[c.datatype for c in row] for row in tbl]) desired = """ ***************************** * * header1 * header2 * ***************************** * stub1 * -- * 1 * * stub2 * 2.00 * 3 * ***************************** """ actual = '\n%s\n' % tbl.as_text(missing='--') assert_equal(actual, desired)
2.578125
3
homeassistant/components/todoist/types.py
MrDelik/core
30,023
3637
<gh_stars>1000+ """Types for the Todoist component.""" from __future__ import annotations from typing import TypedDict class DueDate(TypedDict): """Dict representing a due date in a todoist api response.""" date: str is_recurring: bool lang: str string: str timezone: str | None
2.109375
2
src/c/c_pyzstd.py
corneliusroemer/pyzstd
29
3638
<filename>src/c/c_pyzstd.py from collections import namedtuple from enum import IntEnum from ._zstd import * from . import _zstd __all__ = (# From this file 'compressionLevel_values', 'get_frame_info', 'CParameter', 'DParameter', 'Strategy', # From _zstd 'ZstdCompressor', 'RichMemZstdCompressor', 'ZstdDecompressor', 'EndlessZstdDecompressor', 'ZstdDict', 'ZstdError', 'decompress', 'get_frame_size', 'compress_stream', 'decompress_stream', 'zstd_version', 'zstd_version_info', 'zstd_support_multithread') # Used in __init__.py _ZSTD_DStreamInSize = _zstd._ZSTD_DStreamInSize _train_dict = _zstd._train_dict _finalize_dict = _zstd._finalize_dict # compressionLevel_values _nt_values = namedtuple('values', ['default', 'min', 'max']) compressionLevel_values = _nt_values(_zstd._ZSTD_defaultCLevel, _zstd._ZSTD_minCLevel, _zstd._ZSTD_maxCLevel) _nt_frame_info = namedtuple('frame_info', ['decompressed_size', 'dictionary_id']) def get_frame_info(frame_buffer): """Get zstd frame infomation from a frame header. Argument frame_buffer: A bytes-like object. It should starts from the beginning of a frame, and needs to include at least the frame header (6 to 18 bytes). Return a two-items namedtuple: (decompressed_size, dictionary_id) If decompressed_size is None, decompressed size is unknown. dictionary_id is a 32-bit unsigned integer value. 0 means dictionary ID was not recorded in the frame header, the frame may or may not need a dictionary to be decoded, and the ID of such a dictionary is not specified. It's possible to append more items to the namedtuple in the future.""" ret_tuple = _zstd._get_frame_info(frame_buffer) return _nt_frame_info(*ret_tuple) class CParameter(IntEnum): """Compression parameters""" compressionLevel = _zstd._ZSTD_c_compressionLevel windowLog = _zstd._ZSTD_c_windowLog hashLog = _zstd._ZSTD_c_hashLog chainLog = _zstd._ZSTD_c_chainLog searchLog = _zstd._ZSTD_c_searchLog minMatch = _zstd._ZSTD_c_minMatch targetLength = _zstd._ZSTD_c_targetLength strategy = _zstd._ZSTD_c_strategy enableLongDistanceMatching = _zstd._ZSTD_c_enableLongDistanceMatching ldmHashLog = _zstd._ZSTD_c_ldmHashLog ldmMinMatch = _zstd._ZSTD_c_ldmMinMatch ldmBucketSizeLog = _zstd._ZSTD_c_ldmBucketSizeLog ldmHashRateLog = _zstd._ZSTD_c_ldmHashRateLog contentSizeFlag = _zstd._ZSTD_c_contentSizeFlag checksumFlag = _zstd._ZSTD_c_checksumFlag dictIDFlag = _zstd._ZSTD_c_dictIDFlag nbWorkers = _zstd._ZSTD_c_nbWorkers jobSize = _zstd._ZSTD_c_jobSize overlapLog = _zstd._ZSTD_c_overlapLog def bounds(self): """Return lower and upper bounds of a parameter, both inclusive.""" # 1 means compression parameter return _zstd._get_param_bounds(1, self.value) class DParameter(IntEnum): """Decompression parameters""" windowLogMax = _zstd._ZSTD_d_windowLogMax def bounds(self): """Return lower and upper bounds of a parameter, both inclusive.""" # 0 means decompression parameter return _zstd._get_param_bounds(0, self.value) class Strategy(IntEnum): """Compression strategies, listed from fastest to strongest. Note : new strategies _might_ be added in the future, only the order (from fast to strong) is guaranteed. """ fast = _zstd._ZSTD_fast dfast = _zstd._ZSTD_dfast greedy = _zstd._ZSTD_greedy lazy = _zstd._ZSTD_lazy lazy2 = _zstd._ZSTD_lazy2 btlazy2 = _zstd._ZSTD_btlazy2 btopt = _zstd._ZSTD_btopt btultra = _zstd._ZSTD_btultra btultra2 = _zstd._ZSTD_btultra2 # Set CParameter/DParameter types for validity check _zstd._set_parameter_types(CParameter, DParameter)
2.125
2
test/unit/data/model/mapping/common.py
quacksawbones/galaxy-1
1,085
3639
from abc import ABC, abstractmethod from contextlib import contextmanager from uuid import uuid4 import pytest from sqlalchemy import ( delete, select, UniqueConstraint, ) class AbstractBaseTest(ABC): @pytest.fixture def cls_(self): """ Return class under test. Assumptions: if the class under test is Foo, then the class grouping the tests should be a subclass of BaseTest, named TestFoo. """ prefix = len("Test") class_name = self.__class__.__name__[prefix:] return getattr(self.get_model(), class_name) @abstractmethod def get_model(self): pass def dbcleanup_wrapper(session, obj, where_clause=None): with dbcleanup(session, obj, where_clause): yield obj @contextmanager def dbcleanup(session, obj, where_clause=None): """ Use the session to store obj in database; delete from database on exit, bypassing the session. If obj does not have an id field, a SQLAlchemy WHERE clause should be provided to construct a custom select statement. """ return_id = where_clause is None try: obj_id = persist(session, obj, return_id) yield obj_id finally: table = obj.__table__ if where_clause is None: where_clause = _get_default_where_clause(type(obj), obj_id) stmt = delete(table).where(where_clause) session.execute(stmt) def persist(session, obj, return_id=True): """ Use the session to store obj in database, then remove obj from session, so that on a subsequent load from the database we get a clean instance. """ session.add(obj) session.flush() obj_id = obj.id if return_id else None # save this before obj is expunged session.expunge(obj) return obj_id def delete_from_database(session, objects): """ Delete each object in objects from database. May be called at the end of a test if use of a context manager is impractical. (Assume all objects have the id field as their primary key.) """ # Ensure we have a list of objects (check for list explicitly: a model can be iterable) if not isinstance(objects, list): objects = [objects] for obj in objects: table = obj.__table__ stmt = delete(table).where(table.c.id == obj.id) session.execute(stmt) def get_stored_obj(session, cls, obj_id=None, where_clause=None, unique=False): # Either obj_id or where_clause must be provided, but not both assert bool(obj_id) ^ (where_clause is not None) if where_clause is None: where_clause = _get_default_where_clause(cls, obj_id) stmt = select(cls).where(where_clause) result = session.execute(stmt) # unique() is required if result contains joint eager loads against collections # https://gerrit.sqlalchemy.org/c/sqlalchemy/sqlalchemy/+/2253 if unique: result = result.unique() return result.scalar_one() def has_unique_constraint(table, fields): for constraint in table.constraints: if isinstance(constraint, UniqueConstraint): col_names = {c.name for c in constraint.columns} if set(fields) == col_names: return True def has_index(table, fields): for index in table.indexes: col_names = {c.name for c in index.columns} if set(fields) == col_names: return True def collection_consists_of_objects(collection, *objects): """ Returns True iff list(collection) == list(objects), where object equality is determined by primary key equality: object1.id == object2.id. """ if len(collection) != len(objects): # False if lengths are different return False if not collection: # True if both are empty return True # Sort, then compare each member by its 'id' attribute, which must be its primary key. collection.sort(key=lambda item: item.id) objects_l = list(objects) objects_l.sort(key=lambda item: item.id) for item1, item2 in zip(collection, objects_l): if item1.id is None or item2.id is None or item1.id != item2.id: return False return True def get_unique_value(): """Generate unique values to accommodate unique constraints.""" return uuid4().hex def _get_default_where_clause(cls, obj_id): where_clause = cls.__table__.c.id == obj_id return where_clause
2.828125
3
django_events/users/management/commands/create_default_su.py
chrisBrookes93/django-events-management
0
3640
<reponame>chrisBrookes93/django-events-management from django.core.management.base import BaseCommand from django.contrib.auth import get_user_model class Command(BaseCommand): help = "Creates a default super user if one doesn't already exist. " \ "This is designed to be used in the docker-compose.yml to create an initial super user on deployment." def handle(self, *args, **kwargs): """ Checks whether any super users exist and creates a default one if not :param args: Unused :param kwargs: Unused """ super_users = get_user_model().objects.filter(is_superuser=True) if super_users.exists(): self.stdout.write('A superuser already exists, not creating one') else: get_user_model().objects.create_superuser(email="<EMAIL>", password="<PASSWORD>") self.stdout.write('Created default superuser "<EMAIL>"') self.stdout.write('Make sure you change the password immediately!')
2.421875
2
antlir/bzl/image_layer.bzl
zeroxoneb/antlir
28
3641
<gh_stars>10-100 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ An `image.layer` is a set of `feature` with some additional parameters. Its purpose to materialize those `feature`s as a btrfs subvolume in the per-repo `buck-image/out/volume/targets`. We call the subvolume a "layer" because it can be built on top of a snapshot of its `parent_layer`, and thus can be represented as a btrfs send-stream for more efficient storage & distribution. The Buck output of an `image.layer` target is a JSON file with information on how to find the resulting layer in the per-repo `buck-image/out/volume/targets`. See `SubvolumeOnDisk.to_json_file`. ## Implementation notes The implementation of this converter deliberately minimizes the amount of business logic in its command. The converter must include **only** our interactions with the buck target graph. Everything else should be delegated to subcommands. ### Command In composing the `bash` command, our core maxim is: make it a hermetic function of the converter's inputs -- do not read data from disk, do not insert disk paths into the command, do not do anything that might cause the bytes of the command to vary between machines or between runs. To achieve this, we use Buck macros to resolve all paths, including those to helper scripts. We rely on environment variables or pipes to pass data between the helper scripts. Another reason to keep this converter minimal is that `buck test` cannot make assertions about targets that fail to build. Since we only have the ability to test the "good" targets, it behooves us to put most logic in external scripts, so that we can unit-test its successes **and** failures thoroughly. ### Output We mark `image.layer` uncacheable, because there's no easy way to teach Buck to serialize a btrfs subvolume (for that, we have `package.new`). That said, we should still follow best practices to avoid problems if e.g. the user renames their repo, or similar. These practices include: - The output JSON must store no absolute paths. - Store Buck target paths instead of paths into the output directory. ### Dependency resolution An `image.layer` consumes a set of `feature` outputs to decide what to put into the btrfs subvolume. These outputs are actually just JSON files that reference other targets, and do not contain the data to be written into the image. Therefore, `image.layer` has to explicitly tell buck that it needs all direct dependencies of its `feature`s to be present on disk -- see our `attrfilter` queries below. Without this, Buck would merrily fetch the just the `feature` JSONs from its cache, and not provide us with any of the buid artifacts that comprise the image. We do NOT need the direct dependencies of the parent layer's features, because we treat the parent layer as a black box -- whatever it has laid down in the image, that's what it provides (and we don't care about how). The consequences of this information hiding are: - Better Buck cache efficiency -- we don't have to download the dependencies of the ancestor layers' features. Doing that would be wasteful, since those bits are redundant with what's in the parent. - Ability to use genrule image layers / apply non-pure post-processing to a layer. In terms of engineering, both of these non-pure approaches are a terrible idea and a maintainability headache, but they do provide a useful bridge for transitioning to Buck image builds from legacy imperative systems. - The image compiler needs a litte extra code to walk the parent layer and determine what it provides. - We cannot have "unobservable" dependencies between features. Since feature dependencies are expected to routinely cross layer boundaries, feature implementations are forced only to depend on data that can be inferred from the filesystem -- since this is all that the parent layer implementation can do. NB: This is easy to relax in the future by writing a manifest with additional metadata into each layer, and using that metadata during compilation. """ load(":compile_image_features.bzl", "compile_image_features") load(":image_layer_utils.bzl", "image_layer_utils") load(":image_utils.bzl", "image_utils") def image_layer( name, parent_layer = None, features = None, flavor = None, flavor_config_override = None, antlir_rule = "user-internal", **image_layer_kwargs): """ Arguments - `parent_layer`: The name of another `image_layer` target, on top of which the current layer will install its features. - `features`: List of `feature` target paths and/or nameless structs from `feature.new`. - `flavor`: Picks default build options for the layer, including `build_appliance`, RPM installer, and others. See `flavor_helpers.bzl` for details. - `flavor_config_override`: A struct that can override the default values fetched from `REPO_CFG[flavor].flavor_to_config`. - `mount_config`: Specifies how this layer is mounted in the `mounts` field of a `feature` of a parent layer. See the field in `_image_layer_impl` in `image_layer_utils.bzl` - `runtime`: A list of desired helper buck targets to be emitted. `container` is always included in the list by default. See the field in `_image_layer_impl` in `image_layer_utils.bzl` and the [docs](/docs/tutorials/helper-buck-targets#imagelayer) for the list of possible helpers, their respective behaviours, and how to invoke them. """ image_layer_utils.image_layer_impl( _rule_type = "image_layer", _layer_name = name, # Build a new layer. It may be empty. _make_subvol_cmd = compile_image_features( name = name, current_target = image_utils.current_target(name), parent_layer = parent_layer, features = features, flavor = flavor, flavor_config_override = flavor_config_override, ), antlir_rule = antlir_rule, **image_layer_kwargs )
2.03125
2
python/testData/debug/test_ignore_lib.py
jnthn/intellij-community
2
3642
from calendar import setfirstweekday stopped_in_user_file = True setfirstweekday(15)
1.296875
1
promt_tr/__main__.py
ffreemt/promt-tr-free
0
3643
<filename>promt_tr/__main__.py ''' __main__, to run: python -m promt_tr ''' import sys from random import randint from promt_tr import promt_tr, LANG_CODES # pragma: no cover def main(): '''main''' from_lang = 'auto' to_lang = 'zh' text = 'test ' + str(randint(0, 10000)) if not sys.argv[1:]: print('Provide some English text, with an optional to_lang') print('E.g., python -m promt_tr test this and that de') print('Testing with some random text\n') else: argv = sys.argv[1:] len_ = len(argv) if len_ == 1: if argv[0] in LANG_CODES: to_lang = argv[0] else: text = argv[0] elif argv[-1] in LANG_CODES: to_lang = argv[-1] text = ' '.join(argv[:-1]) else: text = ' '.join(argv) for to_lang in ['zh', 'de', 'fr', 'it', 'es']: resu = promt_tr(text, from_lang, to_lang) print(f'[{text}] translated to [{to_lang}]: [{resu}]') if __name__ == '__main__': main()
3.3125
3
src/features/v3/proc_v3_n1_calc_distance.py
askoki/nfl_dpi_prediction
0
3644
import os import sys import pandas as pd from datetime import datetime from settings import RAW_DATA_DIR, DataV3, DATA_V3_SUBVERSION from src.features.helpers.processing import add_missing_timestamp_values from src.features.helpers.processing_v3 import get_closest_players, get_players_and_ball_indices, calculate_distance, \ normalize_according_to_play_direction, check_group_event from src.features.helpers.processing_v4 import home_has_possession, calculate_team_sitation week_num = int(sys.argv[1]) data_v3 = DataV3(DATA_V3_SUBVERSION) save_file_path = data_v3.get_step1_checkpoint_path(week_num) try: clean_df = pd.read_csv(save_file_path) save_file_exists = True except FileNotFoundError: save_file_exists = False if not save_file_exists: print("Started loading data") play_df = pd.read_csv(os.path.join(RAW_DATA_DIR, 'plays.csv')) games_df = pd.read_csv(os.path.join(RAW_DATA_DIR, 'games.csv')) week_and_games = games_df[games_df.week == week_num] tracking_df = pd.read_csv(os.path.join(RAW_DATA_DIR, f'week{week_num}.csv')) print("Data loaded. Start processing timestamps") tracking_df = add_missing_timestamp_values(tracking_df) games_n_plays_df = play_df.merge(week_and_games, how='inner', on='gameId') m_grouped = games_n_plays_df.groupby(['gameId', 'playId']) df_t = tracking_df.merge(games_n_plays_df, how='left', on=['gameId', 'playId']) # Remove all events without 'pass_forward' df_t_grouped = df_t.groupby(['gameId', 'playId']) df_t_v3 = df_t.copy().sort_index() for name, group in df_t_grouped: game_id, play_id = name # if group does not contain pass forward, drop it if all(group.event != 'pass_forward'): df_t_v3 = df_t_v3[(df_t_v3.gameId != game_id) | (df_t_v3.playId != play_id)] df_t_v3_s = df_t_v3.sort_values(by=['gameId', 'playId', 'time', 'event']) df_t_v3_s = df_t_v3_s.reset_index(drop=True) df_t_grouped = df_t_v3_s.groupby(['gameId', 'playId']) # remove all values before 'pass_forward' print("Removing all values before pass forward event...") for name, group in df_t_grouped: game_id, play_id = name pass_forward_frame_id = group[group.event == 'pass_forward'].index.min() - 1 remove_start = group.index.min() df_t_v3_s = df_t_v3_s.drop(df_t_v3_s.loc[remove_start:pass_forward_frame_id].index) pd.options.mode.chained_assignment = None gb = df_t_v3_s.groupby(['gameId', 'playId']) print('Getting closest players...') keep_indices = [] for name, group in gb: game_id, play_id = name try: event_3rd = group.event.unique()[2] except IndexError: print('Number of events is < 3, skipping...') continue situation_df = group[group.event == event_3rd] # convert dataframe into series ball_row = situation_df[situation_df.team == 'football'].head(1) # remove ball player_situation_df = situation_df[situation_df.team != 'football'] try: p1, p2 = get_closest_players(player_situation_df, ball_row.x.item(), ball_row.y.item()) except ValueError: print('Value Error raised. This group will be skipped.') continue p_n_b_indices = get_players_and_ball_indices(group, p1, p2) if p_n_b_indices: keep_indices.extend(p_n_b_indices) clean_df = df_t_v3_s[df_t_v3_s.index.isin(keep_indices)] clean_df.to_csv( save_file_path, index=False ) print('Normalize...') clean_df = normalize_according_to_play_direction(clean_df) clean_df['homeHasPossession'] = clean_df.apply( lambda row: home_has_possession(row), axis=1 ) clean_df['teamSituation'] = clean_df.apply( lambda row: calculate_team_sitation(row), axis=1 ) print('Creating features...') min_df = clean_df[[ 'time', 'x', 'y', 's', 'o', 'dir', 'event', 'team', 'gameId', 'playId', 'frameId', 'isDefensivePI' ]] gb_2 = clean_df.groupby(['gameId', 'playId', 'frameId']) # ball direction and orientation are NaN calc_df = pd.DataFrame( columns=[ 'time', 'att_def_d', 'att_ball_d', 'def_ball_d', 'att_s', 'def_s', 'ball_s', 'att_o', 'def_o', 'att_dir', 'def_dir', 'event', 'gameId', 'playId', 'frameId', 'isDefensivePI' ] ) GROUP_SIZE_MINIMUM = 3 for name, group in gb_2: game_id, play_id, frameId = name if len(group) < GROUP_SIZE_MINIMUM: continue ball = group[group.teamSituation == 'football'].head(1).squeeze() p_att = group[group.teamSituation == 'attacking'].head(1).squeeze() p_def = group[group.teamSituation == 'defending'].head(1).squeeze() group_row = group.head(1).squeeze() group_events = group.event.unique().tolist() dict_to_append = { 'time': group_row.time, 'att_def_d': calculate_distance(p_att.x, p_att.y, p_def.x, p_def.y), 'att_ball_d': calculate_distance(p_att.x, p_att.y, ball.x, ball.y), 'def_ball_d': calculate_distance(p_def.x, p_def.y, ball.x, ball.y), 'att_s': p_att.s, 'def_s': p_def.s, 'ball_s': ball.s, 'att_a': p_att.a, 'def_a': p_def.a, 'ball_a': ball.a, 'att_o': p_att.o, 'def_o': p_def.o, 'att_dir': p_att.dir, 'def_dir': p_def.dir, 'event': group_row.event, 'pass_arrived': check_group_event(group_events, 'pass_arrived'), 'pass_outcome_caught': check_group_event(group_events, 'pass_outcome_caught'), 'tackle': check_group_event(group_events, 'tackle'), 'first_contact': check_group_event(group_events, 'first_contact'), 'pass_outcome_incomplete': check_group_event(group_events, 'pass_outcome_incomplete'), 'out_of_bounds': check_group_event(group_events, 'out_of_bounds'), 'week': week_num, 'gameId': group_row.gameId, 'playId': group_row.playId, 'frameId': group_row.frameId, 'isDefensivePI': group_row.isDefensivePI } calc_df = calc_df.append( dict_to_append, ignore_index=True ) print("Saving data...") calc_df.to_csv( data_v3.get_step1_end_path(week_num), index=False ) print(f'End time: {datetime.now().strftime("%H:%M:%S")}')
2.515625
3
annotate-preprocessed.py
Rajpratik71/devel-scripts
0
3645
#!/usr/bin/python """Annotates -E preprocessed source input with line numbers. Read std input, then annotate each line with line number based on previous expanded line directives from -E output. Useful in the context of compiler debugging. """ import getopt import os import re import sys import script_utils as u flag_reverse = True def usage(msgarg): """Print usage and exit.""" if msgarg: sys.stderr.write("error: %s\n" % msgarg) print """\ usage: %s [options] < input > output options: -d increase debug msg verbosity level """ % os.path.basename(sys.argv[0]) sys.exit(1) def parse_args(): """Command line argument parsing.""" global flag_reverse try: optlist, _ = getopt.getopt(sys.argv[1:], "dr") except getopt.GetoptError as err: # unrecognized option usage(str(err)) for opt, _ in optlist: if opt == "-d": u.increment_verbosity() elif opt == "-r": flag_reverse = False # Setup u.setdeflanglocale() parse_args() # Read lines = sys.stdin.readlines() lnum = -1 matcher = re.compile(r"^\#\s+(\d+)\s+\"(\S+)\".*$") for line in lines: m = matcher.match(line) if m: lnum = int(m.group(1)) afile = m.group(2) print "<%s:%d>" % (afile, lnum) continue print "%d:%s" % (lnum, line.strip()) lnum += 1
2.984375
3
pages/lstm.py
tekeburak/dam-occupancy-model
8
3646
import streamlit as st import tensorflow as tf import numpy from utils.get_owm_data import get_open_weather_map_data from utils.get_date import get_date_list_for_gmt import plotly.graph_objects as go from plotly import tools import plotly.offline as py import plotly.express as px def app(): st.title("LSTM Model") st.subheader('What does LSTM model do?') st.markdown("""<p style='text-align: justify;'>LSTM networks are an extension of recurrent neural networks (RNNs) mainly introduced to handle situations where RNNs fail. It has been so designed that thevanishing gradient problem is almost completely removed, while the training model is left unaltered. Long-time lags in certain problems are bridged using LSTMs where they also handle noise, distributed representations, and continuous values.</p>""", unsafe_allow_html=True) st.subheader('Why we chose LSTM?') st.markdown("""<p style='text-align: justify;'>LSTM is well-suited to classify, process and predict time series given time lags of unknown duration. Relative insensitivity to gap length gives an advantage to LSTM over alternative RNNs, hidden Markov models and other sequence learningmethods. In addition, LSTM works great because LSTM cells have a memory that can store previous timestep information and this is how it learns.</p>""", unsafe_allow_html=True) st.subheader('LSTM model input and output') st.markdown("Model input is 7 days daily weather data from [OpenWeatherAPI](https://openweathermap.org/api). Model input features are *Rain*, *MaxTemp*, *MinTemp*, *AvgWind*, *AvgHumidity* and *AvgPressure*. Model predicts 7 days dam occupancy rate of İstanbul using these features.", unsafe_allow_html=True) LSTM_model_name = 'models/LSTM_model.h5' model_lstm = tf.keras.models.load_model(LSTM_model_name) features = get_open_weather_map_data() prediction_lstm = model_lstm.predict(features) * 100 prediction_lstm = prediction_lstm.ravel() date_list = get_date_list_for_gmt() data = [] layout = go.Layout( title= "<b>LSTM Dam Occupancy Forecasting Plot</b>",paper_bgcolor = 'rgb(248, 248, 255)',plot_bgcolor = 'rgb(248, 248, 255)',barmode = "stack", xaxis = dict(title="Time", linecolor="#BCCCDC",showspikes=True,spikethickness=2,spikedash="dot",spikecolor= "#ffffff",spikemode="across",), yaxis= dict(title="Dam Occupancy Rate (%)",linecolor="#021C1E")) line_chart= go.Scatter(x=date_list, y=prediction_lstm, marker_color='rgb(0, 200, 200)' ) data.append(line_chart) fig= go.Figure(data=data, layout=layout) st.plotly_chart(fig)
3.15625
3
fst_web/demo_settings.py
kamidev/autobuild_fst
0
3647
# -*- coding: utf-8 -*- import os ROOT = os.path.abspath(os.path.dirname(__file__)) path = lambda *args: os.path.join(ROOT, *args) """ Template for local settings of the FST webservice (fst_web) Please edit this file and replace all generic values with values suitable to your particular installation. """ # NOTE! Always set this to False before deploying DEBUG = True # NOTE! Before deploying on a public, uncomment ALLOWED_HOSTS # and add IP address and/or domain of your site ALLOWED_HOSTS = ['localhost', '127.0.0.1', 'fst.magokoro.nu'] # Look for instance-specific settings try: from .instance_settings import * except ImportError: from .default_instance_settings import * DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': path('database/fst_demo.db') } } LOG_LEVEL = "DEBUG" # Enable this to override global DB Debug setting # DB_DEBUG_LEVEL = "DEBUG" # Setup mail server for sending email notifications. # You can use any mail server you want. # But a very simple way to get started is to use a gmail account. EMAIL_USE_TLS = True EMAIL_HOST = 'smtp.gmail.com' EMAIL_PORT = 587 # EMAIL_HOST_USER = 'your email' # EMAIL_HOST_PASSWORD = '<PASSWORD>' # Admins specified here receive email notifications on critical errors. ADMINS = () MANAGERS = ADMINS # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = os.path.join("/dokument/") # Site and port for hosting FST service (do not add ending '/'). FST_SITE_URL = "http://127.0.0.1:8000" # TODO - Check if FST_INSTANCE_PREFIX can be removed # Site and port of specific FST instance (do not add ending '/'). FST_INSTANCE_URL = os.path.join( "http://127.0.0.1:8000", FST_INSTANCE_PREFIX)
1.75
2
BookingScraper-joao_v2/BookingScraper/airbnb.py
joaocamargo/estudos-python
1
3648
<gh_stars>1-10 #! /usr/bin/env python3.6 import argparse import argcomplete from argcomplete.completers import ChoicesCompleter from argcomplete.completers import EnvironCompleter import requests from bthread import BookingThread from bs4 import BeautifulSoup from file_writer import FileWriter hotels = [] def get_countries(): with open("europa2020.txt", "r") as f: countries = f.read().splitlines() return countries def get_booking_page(session, offset, rooms, country, dest_id, DayIni, DayFim): print('get_booking_page(session, offset, rooms, country, dest_id, DayIni, DayFim):') print(session, offset, rooms, country, dest_id, DayIni, DayFim) diaInicial = str(int(DayIni[0:2])) mesInicial = str(int(DayIni[3:5])) anoInicial = str(int(DayIni[6:10])) diaFinal = str(int(DayFim[0:2])) mesFinal = str(int(DayFim[3:5])) anoFinal = str(int(DayFim[6:10])) ''' Make request to airbnb page and parse html :param offset: :return: html page ''' url = 'https://www.airbnb.com.br/s/Londres/'\ 'homes?refinement_paths%5B%5D=%2Fhomes&current_tab_id=home_tab&selected_tab_id=home_tab&source=mc_search_bar&search_type=unknown'\ '&click_referer=t%3ASEE_ALL%7Csid%3A874f16ee-6196-4289-9717-17dec73e1e5c%7Cst%3AMAGAZINE_HOMES&screen_size=large&hide_dates_and_guests_filters=false'\ '&ne_lat=51.80546533345978&ne_lng=0.4969575708007312&sw_lat=51.17528882051496&sw_lng=-0.8200285131836154&zoom=10&search_by_map=false&checkin={anoInicial}-{mesInicial}-{diaInicial}'\ '&checkout={anoFinal}-{mesFinal}-{diaFinal}&adults={rooms}&property_type_id%5B%5D=1&property_type_id%5B%5D=43&property_type_id%5B%5D=47'\ '&place_id=ChIJdd4hrwug2EcRmSrV3Vo6llI&room_types%5B%5D=Entire%20home%2Fapt'\ '&section_offset=6&items_offset=18'.format(rooms=rooms, country=country.replace(' ', '+'),anoFinal=anoFinal,mesFinal=mesFinal,diaInicial=diaInicial,mesInicial=mesInicial,anoInicial=anoInicial,diaFinal=diaFinal,dest_id=dest_id) + str(offset) r = requests.get(url, headers= {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:47.0)' ' Gecko/20100101 Firefox/48.0'}) html = r.content print(url) parsed_html = BeautifulSoup(html, 'lxml') return parsed_html def process_hotels(session, offset, rooms, country, dest_id, DayIni, DayFim): parsed_html = get_booking_page(session, offset, rooms, country, dest_id,DayIni, DayFim) hotel = parsed_html.find_all('div', {'class': 'sr_item'}) for ho in hotel: #print("ho.find('a', {'class': 'jq_tooltip'})") #print(ho.find('a', {'class': 'jq_tooltip'})) #name = ho.find('a', {'class': 'jq_tooltip'})['data-title'] print("ho.find('span', {'class': 'sr-hotel__name'})") #print(ho.find('span', {'class': 'sr-hotel__name'})) if ho.find('span', {'class': 'sr-hotel__name'}) is not None: name = str(ho.find('span', {'class': 'sr-hotel__name'}).text.encode('utf-8')).replace('\\n','').replace("b","").replace("'","").replace('\\','') else: name = '-1' if ho.find('div', {'class': 'bui-price-display__value prco-inline-block-maker-helper'}) is not None: price = ho.find('div', {'class': 'bui-price-display__value prco-inline-block-maker-helper'}).text.replace('\n','').replace("b","").replace("'","") else: price = '-1' if ho.find('span', {'class': '_ky9opu0'}) is not None: nota = str(ho.find('span', {'class': '_ky9opu0'}).text.replace('\n','').replace("b","").replace("'","")) else : nota = '-1' if ho.find('span', {'title': 'This is the straight-line distance on the map. Actual travel distance may vary.'}) is not None: distance = str(ho.find('span', {'title': 'This is the straight-line distance on the map. Actual travel distance may vary.'}).text.encode('utf-8')).replace('\\n','').replace("b","").replace("'","").replace('\\','') else : distance = '-1' # if ho.find('a', {'class': 'bui-link'}) is not None : # result = [str(item) for item in ho.find_all('span', attrs={'data-bui-component' : 'Tooltip'})] # print('TAMANHO TOOLTIP', str(len(result))) # for i in result: # print(i) # for i in result: # if i in 'km': # distance = str(i) # else: # distance = '----' # else: # distance = '----' # if len(result) ==1: # if result[0] in 'km': # distance = result # else: # distance = 'aaaaa' + str(len(result)) # else: # distance = '---' hotels.append(DayIni+';'+DayFim+';'+name + ';' + price + ';' + nota + ';' + distance) #hotels.append(str(len(hotels) + 1) + ' : ' + name + ' : ' + price) def prep_data(rooms=1, country='Macedonia', dest_id='-1', DayIni='01/01/2019', DayFim='02/01/2019', out_format=None): ''' Prepare data for saving :return: hotels: set() ''' offset = 1 session = requests.Session() parsed_html = get_booking_page(session, offset, rooms, country, dest_id, DayIni,DayFim) all_offset = parsed_html.find_all('li', {'class': 'sr_pagination_item'})[-1].get_text().splitlines()[-1] threads = [] for i in range(int(all_offset)): offset += 1 t = BookingThread(session, offset, rooms, country,dest_id,DayIni, DayFim, process_hotels) threads.append(t) for t in threads: t.start() for t in threads: t.join() hotels2 = hotels return hotels2 def get_data(rooms=1, country='Macedonia', dest_id='-1',DayIni='01/01/2019',DayFim='02/01/2019', out_format=None): ''' Get all accomodations in Macedonia and save them in file :return: hotels-in-macedonia.{txt/csv/xlsx} file ''' print('Procurando por',country) hotels_list = prep_data(rooms, country,dest_id, DayIni, DayFim, out_format) save_data(hotels_list , out_format=out_format, country=country) def save_data(data, out_format, country): ''' Saves hotels list in file :param data: hotels list :param out_format: json, csv or excel :return: ''' writer = FileWriter(data, out_format, country) file = writer.output_file() print('All accommodations are saved.') print('You can find them in', file, 'file') if __name__ == "__main__": parser = argparse.ArgumentParser() countries = get_countries() parser.add_argument("--rooms", help='Add the number of rooms to the booking request.', default=1, type=int, nargs='?') parser.add_argument("--country", help='Add the country to the booking request.', default='Macedonia', nargs='?').completer = ChoicesCompleter(countries) parser.add_argument("--dest_id", help='Add the country to the booking request.', default='0', nargs='?') parser.add_argument("--DayIni", help='Data inicial', default='01/01/2019', nargs='?') parser.add_argument("--DayFim", help='Data inicial', default='02/01/2019', nargs='?') parser.add_argument("--out_format", help='Add the format for the output file. Add excel, json or csv.', default='json', choices=['json', 'excel', 'csv'], nargs='?').completer = EnvironCompleter argcomplete.autocomplete(parser) args = parser.parse_args() localidades = [{ 'Pais': 'London', 'dest_id': '-2601889' }, { 'Pais': 'Utrecht', 'dest_id': '-2154382' }, { 'Pais': 'Buzios', 'dest_id': '-626254' }, { 'Pais': '', 'dest_id': '' }] countryAux = [d['Pais'] for d in localidades if args.dest_id in d['dest_id']] if len(countryAux)>0: country = countryAux[0] print('Parametros') print(args.rooms, country,args.dest_id,args.DayIni,args.DayFim, args.out_format) get_data(args.rooms, country,args.dest_id,args.DayIni,args.DayFim, args.out_format) else: country = 'Nao Identificado' locais = [d['Pais'] + ':' + d['dest_id'] for d in localidades if d['Pais'] != ''] print('----------') print('Utilize uma das seguintes localizações') for i in locais: print(i) print('----------')
2.53125
3
main.py
valurhrafn/chromium-sync
4
3649
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from google.appengine.api import users import webapp2 # For datastore import cgi import urllib from google.appengine.ext import ndb class UserId(ndb.Model): content = ndb.StringProperty() date = ndb.DateTimeProperty(auto_now_add=True) @classmethod def query_user(cls, ancestor_key): return cls.query(ancestor=ancestor_key).order(-cls.date) # ************** MainHandler ************* # class MainHandler(webapp2.RequestHandler): def get(self): self.response.write('Hello world!') # ************** GetUser ************* # class GetUser(webapp2.RequestHandler): def get(self): self.response.out.write('<html><body>') client_id = self.request.get('client_id') ancestor_key = ndb.Key("ID", client_id or "*no_id*") userids = UserId.query_user(ancestor_key).fetch(20) self.response.out.write('her er eitthvad') for userid in userids: self.response.out.write('<blockquote>%s</blockquote>' % cgi.escape(userid.content)) # Checks for active Google account session # user = users.get_current_user() # if user: # self.response.headers['Content-Type'] = 'text/plain' # self.response.write('Hello, ' + user.nickname()) # else: # self.redirect(users.create_login_url(self.request.uri)) self.response.out.write('</body></html>') def post(self): pass # ************** HasData ************* # class HasData(webapp2.RequestHandler): def get(self): pass #TODO does user have data class PostData(webapp2.RequestHandler): def post(self): client_id = self.request.get('client_id') chrome_user = UserId(parent=ndb.Key("ID", client_id or "*no_id*"), content = self.request.get('client_id')) chrome_user.put() #TODO recieve data from client class GetSyncData(object): """docstring for GetSyncData""" def __init__(self, arg): super(GetSyncData, self).__init__() self.arg = arg #implement get data for user # property user.email() or user.user_id() app = webapp2.WSGIApplication([ ('/', MainHandler), ('/GetUser/', GetUser), ('/HasData/', HasData), ('/chrome-sync/command/', PostData), ('/GetSyncData/', GetSyncData) ], debug=True)
2.34375
2
comet/service/subscriber.py
dneise/Comet
15
3650
# Comet VOEvent Broker. from twisted.application.internet import ClientService from comet.protocol.subscriber import VOEventSubscriberFactory __all__ = ["makeSubscriberService"] def makeSubscriberService(endpoint, local_ivo, validators, handlers, filters): """Create a reconnecting VOEvent subscriber service. Parameters ---------- endpoint : implements `twisted.internet.interfaces.IStreamClientEndpoint` The endpoint to which the service will connect. local_ivo : `str` or `None` IVOA identifier for the subscriber. validators : `list` of implementers of `~comet.icomet.IValidator`. Validators which will be applied to incoming events. Events which fail validation will be rejected. handlers : `list` of implementers of `~comet.icomet.IHandler`. Handlers to which events which pass validation will be passed. filters : `list` of `str` XPath filters. Will be passed to upstream as a request to filter the alerts being sent. Notes ----- Upstream brokes may not provide support for XPath filtering; in this case, the filters suppplied will be ignored. Reconnection is handled according to the default policies of `twisted.application.internet.ClientService`. """ factory = VOEventSubscriberFactory(local_ivo, validators, handlers, filters) service = ClientService(endpoint, factory) return service
2.265625
2
scripts/master/cros_try_job_git.py
bopopescu/build
0
3651
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import base64 import json import os import re import shutil import zlib from StringIO import StringIO try: # Create a block to work around evil sys.modules manipulation in # email/__init__.py that triggers pylint false positives. # pylint: disable=E0611,F0401 from email.Message import Message from email.Utils import formatdate except ImportError: raise from buildbot.process.properties import Properties from buildbot.schedulers.trysched import TryBase from twisted.internet import defer, reactor, utils from twisted.mail.smtp import SMTPSenderFactory from twisted.python import log from common.twisted_util.response import StringResponse from master import gitiles_poller from master.try_job_base import BadJobfile class CbuildbotConfigs(object): # Valid 'etc' builder targets. Specifically, this ensures: # - The build name doesn't begin with a flag ('--') # - The build name doesn't contain spaces (to spill into extra args). _ETC_TARGET_RE = re.compile(r'^[a-zA-Z][\w-]+\w$') def __init__(self, configs, etc_builder=None): """Holds base state of the master's try job related configuration. configs (dict): A dictionary of all known CrOS configs. This will be as up-to-date as the Chromite pin. etc_builder (str): If not None, the name of the etc builder. """ self.configs = configs self.etc_builder = etc_builder def AddBuildBucketHooks(self, c): """Build mutation hook called via BuildBucket when scheduling builds. The cbuildbot config is specified in the `cbb_config` property. The callback transforms that property to an actual waterfall builder name by mapping it based on its config. If an 'etc' builder is configured and the config name is unknown, it will be mapped to the 'etc' builder if possible. A tryserver BuildBucket build takes the form: - Empty `builder_name` parameter. If one is supplied, it will be ignored. - BuildBot changes can be added by including one or more BuildBucket `changes` parameters: [{'author': {'email': '<EMAIL>'}}]. - `cbb_config` property must be set to the build's cbuildbot config target. - `extra_args` property (optional) may be a JSON list of additional parameters to pass to the tryjob. - `slaves_request` property (optional) may be a JSON list of slaves on which this build may run. - Additional BuildBot properties may be added. NOTE: Internally, all of these parameters are converted to BuildBot properties and referenced as such in other areas of code. The Git poller also constructs the same property set, so code paths converge. """ def params_hook(params, _build): # Map `cbb_config` to a builder name. properties = params.get('properties', {}) config_name = properties.get('cbb_config') if not config_name: raise ValueError('Missing required `cbb_config` property.') params['builder_name'] = self.GetBuilderForConfig(config_name) # Validate other fields. if not isinstance(properties.get('extra_args', []), list): raise ValueError('`extra_args` property is not a list.') if not isinstance(properties.get('slaves_request', []), list): raise ValueError('`slaves_request` is not a list.') # Add mandatory properties to build. params['properties'] = properties c['buildbucket_params_hook'] = params_hook def GetBuilderForConfig(self, config_name): config = self.configs.get(config_name) if config: return config['_template'] or config_name self.ValidateEtcBuild(config_name) return self.etc_builder def ValidateEtcBuild(self, config_name): """Tests whether a specified build config_name is candidate for etc build. Raises a ValueError if an etc build cannot be dispatched. """ if not self.etc_builder: raise ValueError('etc builder is not configured.') if not config_name: raise ValueError('Empty config name') if not self._ETC_TARGET_RE.match(config_name): raise ValueError('invalid etc config name (%s).' % (config_name,)) def translate_v1_to_v2(parsed_job): """Translate tryjob desc from V1 to V2.""" parsed_job.setdefault('extra_args', []).append('--remote-trybot') parsed_job['version'] = 2 def translate_v2_to_v3(parsed_job): """Translate tryjob desc from V2 to V3.""" # V3 --remote-patches format is not backwards compatible. if any(a.startswith('--remote-patches') for a in parsed_job.get('extra_args', ())): raise BadJobfile('Cannot translate --remote-patches from tryjob v.2 to ' 'v.3. Please run repo sync.') parsed_job['version'] = 3 class CrOSTryJobGit(TryBase): """Poll a Git server to grab patches to try.""" # Name of property source for generated properties. _PROPERTY_SOURCE = 'Try Job' # The version of tryjob that the master is expecting. _TRYJOB_FORMAT_VERSION = 3 # Functions that translate from one tryjob version to another. _TRANSLATION_FUNCS = { 1 : translate_v1_to_v2, 2 : translate_v2_to_v3, } # Template path URL component to retrieve the Base64 contents of a file from # Gitiles. _GITILES_PATH_TMPL = '%(repo)s/+/%(revision)s/%(path)s?format=text' @classmethod def updateJobDesc(cls, parsed_job): """Ensure job description is in the format we expect.""" while parsed_job['version'] < cls._TRYJOB_FORMAT_VERSION: prev_ver = parsed_job['version'] translation_func = cls._TRANSLATION_FUNCS[parsed_job['version']] translation_func(parsed_job) if parsed_job['version'] <= prev_ver: raise AssertionError('translation function %s not incrementing version!' % str(translation_func)) def __init__(self, name, pollers, smtp_host, from_addr, reply_to, email_footer, cbuildbot_configs, properties=None): """Initialize the class. Arguments: name: See TryBase.__init__(). pollers: A list of job repo git pit pollers. smtp_host: The smtp host for sending out error emails. from_addr: The email address to display as being sent from. reply_to: The email address to put in the 'Reply-To' email header field. email_footer: The footer to append to any emails sent out. cbuildbot_configs: (CbuildbotConfigs) A configuration set instance. Any 'bot' request outside of this list will go to an 'etc' builder, if available. properties: See TryBase.__init__() """ TryBase.__init__(self, name, [], properties or {}) self.pollers = pollers self.smtp_host = smtp_host self.from_addr = from_addr self.reply_to = reply_to self.email_footer = email_footer self.cbb = cbuildbot_configs def startService(self): TryBase.startService(self) self.startConsumingChanges() @staticmethod def load_job(data): try: return json.loads(data) except ValueError as e: raise BadJobfile("Failed to parse job JSON: %s" % (e.message,)) def validate_job(self, parsed_job): # A list of field description tuples of the format: # (name, type, required). fields = [('name', basestring, True), ('user', basestring, True), ('email', list, True), ('bot', list, True), ('extra_args', list, False), ('version', int, True), ('slaves_request', list, False), ] error_msgs = [] for name, f_type, required in fields: val = parsed_job.get(name) if val is None: if required: error_msgs.append('Option %s missing!' % name) elif not isinstance(val, f_type): error_msgs.append('Option %s of wrong type!' % name) # If we're an 'etc' job, we must have bots defined to execute. for bot in parsed_job['bot']: if bot in self.cbb.configs: continue # Assert that this is a valid 'etc' build. try: self.cbb.ValidateEtcBuild(bot) except ValueError as e: error_msgs.append("Invalid 'etc' build (%s): %s" % (bot, e.message)) if error_msgs: raise BadJobfile('\n'.join(error_msgs)) def get_props(self, config, options): """Overriding base class method.""" props = Properties() props.setProperty('slaves_request', options.get('slaves_request', []), self._PROPERTY_SOURCE) props.setProperty('cbb_config', config, self._PROPERTY_SOURCE) extra_args = options.get('extra_args') if extra_args: # This field can be quite large, and exceed BuildBot property limits. # Compress it, Base64 encode it, and prefix it with "z:" so the consumer # knows its size. extra_args = 'z:' + base64.b64encode(zlib.compress(json.dumps( extra_args))) props.setProperty('cbb_extra_args', extra_args, self._PROPERTY_SOURCE) return props def create_buildset(self, ssid, parsed_job): """Overriding base class method.""" dlist = [] buildset_name = '%s:%s' % (parsed_job['user'], parsed_job['name']) for bot in parsed_job['bot']: builder_name = self.cbb.GetBuilderForConfig(bot) log.msg("Creating '%s' try job(s) %s for %s" % (builder_name, ssid, bot)) dlist.append(self.addBuildsetForSourceStamp(ssid=ssid, reason=buildset_name, external_idstring=buildset_name, builderNames=[builder_name], properties=self.get_props(bot, parsed_job))) return defer.DeferredList(dlist) def send_validation_fail_email(self, name, emails, error): """Notify the user via email about the tryjob error.""" html_content = [] html_content.append('<html><body>') body = """ Your tryjob with name '%(name)s' failed the validation step. This is most likely because <br>you are running an older version of cbuildbot. Please run <br><code>repo sync chromiumos/chromite</code> and try again. If you still see<br>this message please contact <EMAIL>.<br> """ html_content.append(body % {'name': name}) html_content.append("Extra error information:") html_content.append(error.replace('\n', '<br>\n')) html_content.append(self.email_footer) m = Message() m.set_payload('<br><br>'.join(html_content), 'utf8') m.set_type("text/html") m['Date'] = formatdate(localtime=True) m['Subject'] = 'Tryjob failed validation' m['From'] = self.from_addr m['Reply-To'] = self.reply_to result = defer.Deferred() sender_factory = SMTPSenderFactory(self.from_addr, emails, StringIO(m.as_string()), result) reactor.connectTCP(self.smtp_host, 25, sender_factory) @defer.inlineCallbacks def gotChange(self, change, important): try: yield self._gotChangeImpl(change, important) except Exception as e: log.msg('Exception in try job scheduler: %s' % (e,)) import traceback traceback.print_exc() @defer.inlineCallbacks def _gotChangeImpl(self, change, _important): """Process the received data and send the queue buildset.""" # Find poller that this change came from. for poller in self.pollers: if not isinstance(poller, gitiles_poller.GitilesPoller): continue if poller.repo_url == change.repository: break else: raise BadJobfile( 'Received tryjob from unsupported repository %s' % change.repository) # pylint: disable=W0631 file_contents = yield self.loadGitilesChangeFile(poller, change) parsed = {} try: parsed = self.load_job(file_contents) self.validate_job(parsed) self.updateJobDesc(parsed) except BadJobfile as e: self.send_validation_fail_email(parsed.setdefault('name', ''), parsed['email'], str(e)) raise # The sourcestamp/buildsets created will be merge-able. ssid = yield self.master.db.sourcestamps.addSourceStamp( branch=change.branch, revision=change.revision, project=change.project, repository=change.repository, changeids=[change.number]) yield self.create_buildset(ssid, parsed) @defer.inlineCallbacks def loadGitilesChangeFile(self, poller, change): if len(change.files) != 1: # We only accept changes with 1 diff file. raise BadJobfile( 'Try job with too many files %s' % (','.join(change.files))) # Load the contents of the modified file. path = self._GITILES_PATH_TMPL % { 'repo': poller.repo_path, 'revision': change.revision, 'path': change.files[0], } contents_b64 = yield poller.agent.request('GET', path, retry=5, protocol=StringResponse.Get) defer.returnValue(base64.b64decode(contents_b64))
1.734375
2
Medium/515.py
Hellofafar/Leetcode
6
3652
# ------------------------------ # 515. Find Largest Value in Each Tree Row # # Description: # You need to find the largest value in each row of a binary tree. # Example: # Input: # 1 # / \ # 3 2 # / \ \ # 5 3 9 # Output: [1, 3, 9] # # Version: 1.0 # 12/22/18 by Jianfa # ------------------------------ # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def largestValues(self, root): """ :type root: TreeNode :rtype: List[int] """ if not root: return [] children = [root] res = [] while children: temp = [] # Node of next row largest = -sys.maxsize # Largest number of this row for i in range(len(children)): node = children[i] largest = max(node.val, largest) if node.left: temp.append(node.left) if node.right: temp.append(node.right) res.append(largest) children = temp return res # Used for testing if __name__ == "__main__": test = Solution() # ------------------------------ # Summary: # BFS solution.
4.21875
4
opsmop/meta/docs/exparser.py
lachmanfrantisek/opsmop
0
3653
# Copyright 2018 <NAME> LLC, <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os class Example(object): def __init__(self): # things we'll figure out as we scan an example self.name = "" self.see_files = [] self.description = [] self.code = [] class Record(object): def __init__(self): # things which we'll figure out as we scan the example self.name = "" self.purpose = "" self.provider_names = [] self.related_modules = [] self.category = "" self.description = [] self.examples = [] self.current_example = Example() self.phase = 'module' self.count = 0 def set_phase(self, phase): self.phase = phase print("---------------------------------------------------------") print("%s phase | %s" % (self.count, self.phase)) print("---------------------------------------------------------") @classmethod def from_file(cls, filename): r = cls() r.name = os.path.basename(filename).replace(".py","") print("=========================================================") print("%s M | %s" % ('0', r.name)) data = open(filename).read().splitlines() for line in data: if not r.handle_line(line): break return r def load_command(self, line): if "DESCRIPTION" in line or '----' in line or '====' in line: pass elif not ":" in line: # commands must contain a colon unless they are blocks or DESCRIPTION starters return (False, None, None) if not line.startswith("#"): # commands must be in comments return (False, None, None) if ":" in line: tokens = line.split(":") if tokens[0].upper() != tokens[0]: # commands must be in all caps. This is done # so we don't get confused by colons in URLs and so on. print("REJECT: %s" % tokens[0]) return (False, None, None) # at this point we are sure it is a command if '#------------' in line.replace(" ",""): return (True, 'start_block', None) if '#============' in line.replace(" ",""): return (True, 'end_block', None) # throw away the leading comment line = line.replace("#","",1).strip() if line.startswith("DESCRIPTION"): return (True, 'description', None) tokens = line.split(':', 1) command = tokens[0].replace("#","").strip().lower() rest = tokens[1].strip() return (True, command, rest) def handle_line(self, line): self.count = self.count + 1 (is_command, command, rest) = self.load_command(line) print("%s line | %s" % (self.count, line)) #if command == 'policy': # return False if is_command: #if command not in [ 'start_block', 'end_block' ]: # print("keyword: %s => %s" % (command, rest)) self.handle_command(command, rest) return True #print("PHASE=%s" % self.phase) #print("LINE=%s" % line) if self.phase == 'module': if not line.startswith("#") or line.replace("#","").strip(): raise Exception("the module phase should be all commands") elif self.phase == 'description': # module description lines must be comments self.handle_module_description(line) elif self.phase == 'example': if not line.startswith("#") or line.replace("#","").strip(): raise Exception("the example phase should be all commands") elif self.phase == 'example_description': self.handle_example_description(self.current_example, line) elif self.phase == 'example_code': self.handle_example_code(self.current_example, line) elif self.phase == 'limbo': #print("ignoring line while in limbo: %s" % line) pass elif self.phase == 'done': #print("ignoring line while done: %s" % line) pass else: raise Exception("unknown phase: %s" % self.phase) return True # continue def handle_command(self, command, rest): #print("<PHASE: %s, COMMAND: %s, REST: %s>" % (self.phase, command, rest)) if self.phase == 'done': return False if self.phase == 'module': # from module mode the only state transition is into module_description mode # when we find the description command if command not in ['start_block', 'end_block']: print("%s set | %-20s | %s" % (self.count, command, rest)) if command == 'module': pass elif command == 'start_block': pass elif command == 'category': self.category = rest elif command == 'purpose': self.purpose = rest elif command == 'related': self.related_modules = [ x.strip() for x in rest.split(",") ] elif command == 'providers': self.providers = [ x.strip() for x in rest.split(",") ] elif command == 'fyi': pass elif command == 'description': print("---------------------------------------------------------") self.set_phase('description') elif command == 'end_block': raise Exception("unexpected end block without description") else: raise Exception("unknown command: %s" % command) elif self.phase == 'description': # in description phase end block moves us into limbo until we find # another example start block if command == 'end_block': self.set_phase('limbo') else: raise Exception("invalid command: %s" % command) elif self.phase == 'limbo': # in limbo, seeing a start block moves us into example phase if command == 'start_block': self.set_phase('example') else: raise Exception("invalid command: %s" % command) elif self.phase == 'example': # in example phase we can only move into example description phase # by hitting the description command if command == 'example': print("---------------------------------------------------------") print("%s exmp | %s" % (self.count, rest)) print("---------------------------------------------------------") self.current_example.name = rest elif command == 'setup': self.set_phase('done') elif command == 'description': print("MOV!") self.set_phase('example_description') elif command == 'see_files' or command == 'see_file': self.current_example.see_files = [ x.strip() for x in rest.split(",")] else: raise Exception("unknown command: %s" % command) elif self.phase == 'example_description': # in example description phase we can only move into example code phase # by hitting an end block if command == 'end_block': print("-------") self.set_phase('example_code') else: raise Exception("unknown command: %s" % command) elif self.phase == 'example_code': # in example code phase we can only move back into example phase by # hitting a start block if command == 'start_block': self.examples.append(self.current_example) self.current_example = Example() self.set_phase('example') else: raise Exception("unknown command: %s" % command) elif self.phase == 'done': return False else: raise Exception("unknown phase: %s" % self.phase) def handle_example_description(self, example, line): # could be a comment or the code example, we want to keep both if line.startswith("#"): line = line.replace("#","") line = line.strip() print("%s desc | %s" % (self.count, line)) example.description.append(line) def handle_example_code(self, example, line): line = line.rstrip() example.code.append(line) print("%s code | %s" % (self.count, line)) def handle_module_description(self, line): if line.startswith("#"): line = line.replace("#","") line = line.strip() if line: print("%s mdesc | %s" % (self.count, line)) self.description.append(line)
2.875
3
pylox/TokenType.py
sheunl/Compiler_Tests
0
3654
from enum import Enum class T(Enum): #single character Tokens LEFT_PAREN =1 RIGHT_PAREN =2 LEFT_BRACE = 3 RIGHT_BRACE = 4 COMMA = 5 DOT = 6 MINUS = 7 PLUS = 8 SEMICOLON = 9 SLASH = 10 STAR = 11 #one or two character tokens BANG = 12 BANG_EQUAL = 13 EQUAL = 14 EQUAL_EQUAL = 15 GREATER = 16 GREATER_EQUAL = 17 LESS = 18 LESS_EQUAL = 19 #Literals IDENTIFIER = 20 STRING = 21 NUMBER = 22 #keywords AND = 23 CLASS = 24 ELSE = 25 FALSE = 26 FUN = 27 FOR = 28 IF = 29 NIL =30 OR =31 PRINT =32 RETURN = 33 SUPER = 34 THIS = 35 TRUE = 36 VAR = 37 WHILE = 38 EOF= 39
3.21875
3
src/oslibs/cocos/cocos-src/tools/cocos2d-console/plugins/framework/framework_add.py
dios-game/dios-cocos
1
3655
<reponame>dios-game/dios-cocos<gh_stars>1-10 import cocos from MultiLanguage import MultiLanguage from package.helper import ProjectHelper class FrameworkAdd(cocos.CCPlugin): @staticmethod def plugin_name(): return "add-framework" @staticmethod def brief_description(): return MultiLanguage.get_string('FRAMEWORK_ADD_BRIEF') # parse arguments def parse_args(self, argv): from argparse import ArgumentParser parser = ArgumentParser(prog="cocos %s" % self.__class__.plugin_name(), description=self.__class__.brief_description()) parser.add_argument("name", metavar="NAME", help=MultiLanguage.get_string('FRAMEWORK_ADD_ARG_NAME')) return parser.parse_args(argv) def run(self, argv): args = self.parse_args(argv) name = args.name project = ProjectHelper.get_current_project() ProjectHelper.add_framework(project, name)
2.40625
2
src/utils.py
f-grimaldi/explain_ML
1
3656
from matplotlib import colors import numpy as np class SaveOutput: def __init__(self): self.outputs = [] def __call__(self, module, module_in, module_out): self.outputs.append(module_out) def clear(self): self.outputs = [] class MidpointNormalize(colors.Normalize): def __init__(self, vmin=None, vmax=None, vcenter=None, clip=False): self.vcenter = vcenter colors.Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): # I'm ignoring masked values and all kinds of edge cases to make a # simple example... x, y = [self.vmin, self.vcenter, self.vmax], [self.vmin, self.vcenter, self.vmax] return np.ma.masked_array(np.interp(value, x, y))
2.703125
3
lib/two/mongomgr.py
erkyrath/tworld
38
3657
<reponame>erkyrath/tworld """ Manage the connection to the MongoDB server. """ import tornado.gen import tornado.ioloop import motor class MongoMgr(object): def __init__(self, app): # Keep a link to the owning application. self.app = app self.log = self.app.log # This will be the Motor (MongoDB) connection. We'll open it in the # first monitor_mongo_status call. self.mongo = None self.mongoavailable = False # true if self.mongo exists and is open self.mongotimerbusy = False # true while monitor_mongo_status runs # We also manage self.app.mongodb, a MotorDatabase. This must be # non-None exactly when mongoavailable is true. def init_timers(self): ioloop = tornado.ioloop.IOLoop.instance() # The mongo status monitor. We set up one call immediately, and then # try again every three seconds. ioloop.add_callback(self.monitor_mongo_status) res = tornado.ioloop.PeriodicCallback(self.monitor_mongo_status, 3000) res.start() def close(self): """Close the connection to mongodb. (The monitor will start it right back up again, or try to.) """ if self.mongo: try: self.mongo.disconnect() except Exception as ex: self.log.error('Problem disconnecting mongo: %s', ex) self.mongo = None self.app.mongodb = None @tornado.gen.coroutine def monitor_mongo_status(self): if (self.mongotimerbusy): self.log.warning('monitor_mongo_status: already in flight; did a previous call jam?') return if (self.app.shuttingdown): self.log.warning('monitor_mongo_status: server is shutting down, never mind') return self.mongotimerbusy = True if (self.mongoavailable): try: res = yield motor.Op(self.mongo.admin.command, 'ping') if (not res): self.log.error('Mongo client not alive') self.mongoavailable = False except Exception as ex: self.log.error('Mongo client not alive: %s', ex) self.mongoavailable = False if (not self.mongoavailable): self.close() if (not self.mongoavailable): try: self.mongo = motor.MotorClient(tz_aware=True) res = yield motor.Op(self.mongo.open) ### maybe authenticate to a database? self.mongoavailable = True self.app.mongodb = self.mongo[self.app.opts.mongo_database] self.log.info('Mongo client open') self.app.queue_command({'cmd':'dbconnected'}) except Exception as ex: self.mongoavailable = False self.app.mongodb = None self.log.error('Mongo client not open: %s', ex) self.mongotimerbusy = False
2.625
3
code/examples/example_binomial_and_log_normal_abtest.py
hugopibernat/BayesianABTestAnalysis
0
3658
################################################# ####### Author: <NAME> ####### ####### Contact: <EMAIL> ####### ####### Date: April 2014 ####### ################################################# from bayesianABTest import sampleSuccessRateForBinomial, sampleMeanForLogNormal, probabilityOfABetterThanB from numpy.random import lognormal from numpy import mean, concatenate, zeros # Generate Log-Normal data A_actuals = lognormal(mean=4.10, sigma=1.0, size=100) B_actuals = lognormal(mean=4.00, sigma=1.0, size=100) # Plus some zeros A_data = concatenate([A_actuals,zeros(10000)]) B_data = concatenate([B_actuals,zeros(10000)]) # Modeling conversions with a binomial variable A_purchases = sum(A_data > 0) A_sessions = len(A_data) B_purchases = sum(B_data > 0) B_sessions = len(B_data) A_CR = sampleSuccessRateForBinomial(A_sessions,A_purchases) B_CR = sampleSuccessRateForBinomial(B_sessions,B_purchases) # Modeling the spend with a log-normal A_non_zero_data = A_data[A_data > 0] B_non_zero_data = B_data[B_data > 0] A_spend = sampleMeanForLogNormal(A_non_zero_data) B_spend = sampleMeanForLogNormal(B_non_zero_data) # Combining the two A_rps = A_CR*A_spend B_rps = B_CR*B_spend # Result: print probabilityOfABetterThanB(A_rps,B_rps)
2.21875
2
tests/models/test_documents.py
airslate-oss/python-airslate
3
3659
<filename>tests/models/test_documents.py # This file is part of the airslate. # # Copyright (c) 2021 airSlate, Inc. # # For the full copyright and license information, please view # the LICENSE file that was distributed with this source code. from airslate.models.documents import UpdateFields from airslate.entities.fields import Field def test_empty_update_fields__to_dict(): model = UpdateFields() assert model.to_dict() == {'data': []} def test_update_fields__to_dict(): model = UpdateFields(data=[Field('123'), Field('abc')]) assert model.to_dict() == {'data': [ {'id': '123', 'type': 'dictionary'}, {'id': 'abc', 'type': 'dictionary'} ]}
2.09375
2
sim/dynamicobject.py
rseed42/labyrinth
0
3660
class DynamicObject(object): def __init__(self, name, id_): self.name = name self.id = id_
3.0625
3
app/main.py
meysam81/sheypoor
0
3661
<reponame>meysam81/sheypoor from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from app import api from app.core.config import config app = FastAPI(title="Sheypoor") # Set all CORS enabled origins app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) app.include_router(api.router, prefix=config.API_URI)
1.765625
2
cdnu/ccds.py
Indy2222/mbg-codon-usage
0
3662
<filename>cdnu/ccds.py from typing import List, NamedTuple CCDS_FILE = 'CCDS.current.txt' CHROMOSOMES = ('1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', 'X', 'Y') class CdsPos(NamedTuple): ccds_id: str indexes: list """2-tuples with start (inclusive) and stop indexes (exclusive) in reference genome. Whole CDS can be constructed as concatenation of the sub-sequences.""" molecule: str """Molecule name, see :const:`CHROMOSOMES`""" def load_ccds() -> List[CdsPos]: """Load file with CDS locations within GRCh38 genome as a list of :class:`CdsPos`.""" cds = [] with open(CCDS_FILE, encoding='utf-8', newline='\n') as fp: for line in fp: if not line: # Skip empty lines continue if line.startswith('#'): # Skip comments continue parts = line.split('\t') ccds_id = parts[4] status = parts[5] if 'Public' not in status: # CDS is not yet public continue if parts[6] == '-': # CDS strand negative order = reverse-complement continue locations_str = parts[9] if locations_str == '-': # CDS location unknown continue chromosome = parts[0] assert chromosome in CHROMOSOMES, chromosome locations = [] assert locations_str.startswith('[') assert locations_str.endswith(']') for location_str in locations_str[1:-1].split(','): start_str, stop_str = location_str.split('-') start, stop = int(start_str), int(stop_str) + 1 locations.append((start, stop)) if sum(b - a for a, b in locations) % 3 != 0: # Skip CDS which are not multiple of three in length. continue cds.append(CdsPos( ccds_id=ccds_id, molecule='chr' + chromosome, indexes=locations )) return cds
3.015625
3
test/test_resolve_errors.py
ITMO-NSS-team/GEFEST
12
3663
import pytest from copy import deepcopy from gefest.core.structure.point import Point from gefest.core.structure.polygon import Polygon from gefest.core.structure.structure import Structure from gefest.core.algs.postproc.resolve_errors import * from gefest.core.algs.geom.validation import * # marking length and width for testing polygon poly_width = 10 poly_length = 20 # creating a testing polygons via corner points rectangle_points = [(-1, 40), (-1, poly_length+40), (-poly_width-10, poly_length+40), (-poly_width-10, 40)] out_bounds_rectangle_poly = Polygon('rectangle', points=[Point(*coords) for coords in rectangle_points]) triangle_points = [(1, 1), (poly_width, poly_length), (1, poly_length)] unclosed_triangle_poly = Polygon('triangle', points=[Point(*coords) for coords in triangle_points]) incorrect_points = [(5, 5), (5, poly_length), (8, poly_length), (5, 5), (5, 30)] incorrect_poly = Polygon('incorrect_poly', points=[Point(*coords) for coords in incorrect_points]) domain = Domain() def test_unclosed_poly(): input_structure = Structure([unclosed_triangle_poly]) observed_structure = postprocess(input_structure, domain) assert unclosed_poly(input_structure, domain) assert not unclosed_poly(observed_structure, domain) def test_self_intersection(): input_structure = Structure([incorrect_poly]) observed_structure = postprocess(input_structure, domain) assert self_intersection(input_structure) assert not self_intersection(observed_structure) def test_out_of_bound(): input_structure = Structure([out_bounds_rectangle_poly]) observed_structure = postprocess(input_structure, domain) assert out_of_bound(input_structure, domain) assert not out_of_bound(observed_structure, domain) def test_fixed_polys(): domain = Domain(fixed_points=[[[15, 30], [40, 30], [15, 40]]]) poly_like_fixed = Polygon('like_fixed', points=[Point(15, 30), Point(40, 30), Point(15, 40)]) input_structure = Structure([poly_like_fixed, unclosed_triangle_poly]) observed_structure = postprocess(input_structure, domain) assert all([np.isclose(len(observed_structure.polygons), 2), 'like_fixed' not in [poly.id for poly in observed_structure.polygons], 'fixed' in [poly.id for poly in observed_structure.polygons]]) def test_too_close(): same_poly = deepcopy(unclosed_triangle_poly) same_poly.id = 'same_triangle' input_structure = Structure([unclosed_triangle_poly, same_poly]) observed_structure = postprocess(input_structure, domain) print(observed_structure.polygons) assert np.isclose(len(observed_structure.polygons), 1)
2.1875
2
tests/mocks.py
davla/i3-live-tree
1
3664
from unittest.mock import MagicMock, Mock from i3ipc.aio import Con import i3_live_tree.tree_serializer # noqa: F401 class MockConSerializer(Mock, Con): """Mock a generic i3ipc.aio.Con for serialization purposes This Mock is meant to ease testing of i3ipc.aio.Con serialization methods, which are mokey patched in i3_live_tree.tree_serializer. In order to achieve this, the mock inherits all the method implementations of i3ipc.aio.Con, most importantly the serialization ones. However, whatever is needed for serialization, both properties and methods, is mocked and can be injected in the constructor, in order to ease the creation of mock instances. """ def __init__(self, *args, name=None, layout=None, focused=False, nodes=iter(()), **kwargs): Mock.__init__(self, *args, **kwargs) self.focused = focused self.layout = layout self.name = name self.nodes = nodes class MockConNavigation(MagicMock): """Mock an i3ipc.aio.Con for navigation purposes This Mock is meant to be used when testing i3ipc event handlers. It mocks all the necessary methods and properties, by returning `self` when an i3ipc.aio.Con instance is needed for the sake of simplicity. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def find_focused(self): """Return the focused window""" return self def workspace(self): """Return the containing workspace""" return self class MockI3(Mock): """Mock an i3ipc.aio.Connection""" def __init__(self, *args, tree, **kwargs): super().__init__(*args, **kwargs) self.tree = tree async def get_tree(self): """Return the i3 tree asynchronously""" return self.tree
2.90625
3
hvac/api/secrets_engines/gcp.py
nested-tech/hvac
0
3665
#!/usr/bin/env python # -*- coding: utf-8 -*- """Gcp methods module.""" from hvac import exceptions from hvac.api.vault_api_base import VaultApiBase from hvac.constants.gcp import DEFAULT_MOUNT_POINT, ALLOWED_CREDS_ENDPOINTS class Gcp(VaultApiBase): def generate_credentials(self, roleset, endpoint='key', mount_point=DEFAULT_MOUNT_POINT): if endpoint not in ALLOWED_CREDS_ENDPOINTS: error_msg = 'invalid endpoint argument provided "{arg}", supported types: "{allowed_endpoints}"' raise exceptions.ParamValidationError(error_msg.format( arg=endpoint, allowed_endpoints=', '.join(ALLOWED_CREDS_ENDPOINTS), )) api_path = '/v1/{mount_point}/{endpoint}/{roleset}'.format( mount_point=mount_point, endpoint=endpoint, roleset=roleset, ) response = self._adapter.get( url=api_path ) return response.json()
2.390625
2
ypricemagic/uniswap.py
poolpitako/ypricemagic
0
3666
import token from tokenize import tokenize from brownie import Contract, chain from brownie.exceptions import ContractNotFound from cachetools.func import ttl_cache from .utils.cache import memory from .utils.multicall2 import fetch_multicall from .interfaces.ERC20 import ERC20ABI import ypricemagic.magic import ypricemagic.utils.utils from .constants import STABLECOINS, dai, usdc, usdt, wbtc, weth, sushi # NOTE: If this is failing to pull a price for a token you need, it's likely because that token requires a special swap path. # Please add a viable swap path below to fetch price data successfully. #project.load() if chain.id == 1: FACTORIES = { "uniswap": "0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f", "sushiswap": "0xC0AEe478e3658e2610c5F7A4A2E1777cE9e4f2Ac", } ROUTERS = { "uniswap": Contract("0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D"), "sushiswap": Contract("0xD9E1CE17F2641F24AE83637AB66A2CCA9C378B9F"), } SPECIAL_PATHS = { "sushiswap": { "0xEF69B5697f2Fb0345cC680210fD39b593a2f9684": ["<KEY>","0x6B3595068778DD592e39A122f4f5a5cF09C90fE2",weth,usdc] ,"0xbf2179859fc6D5BEE9Bf9158632Dc51678a4100e": ["0xbf2179859fc6D5BEE9Bf9158632Dc51678a4100e","0xC28E27870558cF22ADD83540d2126da2e4b464c2",weth,usdc] ,"0x3166C570935a7D8554c8f4eA792ff965D2EFe1f2": ["0x3166C570935a7D8554c8f4eA792ff965D2EFe1f2","<KEY>",usdc] ,"0xE6279E1c65DD41b30bA3760DCaC3CD8bbb4420D6": ["0xE6279E1c65DD41b30bA3760DCaC3CD8bbb4420D6","0x87F5F9eBE40786D49D35E1B5997b07cCAA8ADbFF",weth,usdc] ,"0x4954Db6391F4feB5468b6B943D4935353596aEC9": ["0x4954Db6391F4feB5468b6B943D4935353596aEC9",usdc] ,"0x1E18821E69B9FAA8e6e75DFFe54E7E25754beDa0": ["0x1E18821E69B9FAA8e6e75DFFe54E7E25754beDa0","<KEY>","0x6B3595068778DD592e39A122f4f5a5cF09C90fE2",weth,usdc] ,"0xfC1E690f61EFd961294b3e1Ce3313fBD8aa4f85d": ["0xfC1E690f61EFd961294b3e1Ce3313fBD8aa4f85d","0xba100000625a3754423978a60c9317c58a424e3D",weth,usdc] ,"0xBA50933C268F567BDC86E1aC131BE072C6B0b71a": ["0xBA50933C268F567BDC86E1aC131BE072C6B0b71a",weth,usdc] ,"0x6102407f07029892eB5Ff02164ADFaFb85f4d222": ["0x6102407f07029892eB5Ff02164ADFaFb85f4d222",usdt] ,"0x85034b3b2e292493D029443455Cc62ab669573B3": ["0x85034b3b2e292493D029443455Cc62ab669573B3","0x1f9840a85d5aF5bf1D1762F925BDADdC4201F984",weth,usdc] ,"0xb220D53F7D0f52897Bcf25E47c4c3DC0bac344F8": ["0xb220D53F7D0f52897Bcf25E47c4c3DC0bac344F8", usdc] ,"0x383518188C0C6d7730D91b2c03a03C837814a899": ["0x383518188C0C6d7730D91b2c03a03C837814a899",dai] ,"0xafcE9B78D409bF74980CACF610AFB851BF02F257": ["0xafcE9B78D409bF74980CACF610AFB851BF02F257",wbtc,weth,usdc] }, "uniswap": { } } elif chain.id == 56: ROUTERS = { "pancakeswapv2": Contract("0x10ED43C718714eb63d5aA57B78B54704E256024E"), "pancakeswapv1": Contract("0x05fF2B0DB69458A0750badebc4f9e13aDd608C7F") } FACTORIES = { "pancakeswapv2": "0xcA143Ce32Fe78f1f7019d7d551a6402fC5350c73", "pancakeswapv1": "0xBCfCcbde45cE874adCB698cC183deBcF17952812" } SPECIAL_PATHS = { "pancakeswapv2": { }, "pancakeswapv1": { } } elif chain.id == 137: ROUTERS = { "quickswap": Contract("0xa5E0829CaCEd8fFDD4De3c43696c57F7D7A678ff") } FACTORIES = { "quickswap": "0x5757371414417b8C6CAad45bAeF941aBc7d3Ab32", } SPECIAL_PATHS = { "quickswap": { } } FACTORY_TO_ROUTER = {FACTORIES[name]: ROUTERS[name] for name in FACTORIES} FACTORY_TO_PROTOCOL = {FACTORIES[name]: name for name in FACTORIES} @ttl_cache(ttl=36000) def get_price(token_in, token_out=usdc, router="uniswap", block=None, paired_against=weth): """ Calculate a price based on Uniswap Router quote for selling one `token_in`. Always uses intermediate WETH pair if `[token_in,weth,token_out]` swap path available. """ if chain.id == 56 and token_out == usdc: busd = Contract("0xe9e7CEA3DedcA5984780Bafc599bD69ADd087D56") token_out = busd tokens = [str(token) for token in [token_in, token_out]] amount_in = 10 ** ypricemagic.utils.utils.get_decimals_with_override(tokens[0]) if str(token_in) in STABLECOINS: return 1 elif str(paired_against) in STABLECOINS and str(token_out) in STABLECOINS: path = [token_in, paired_against] elif weth in (token_in, token_out): path = [token_in, token_out] elif paired_against == sushi and token_out != sushi: path = [token_in,sushi,weth,token_out] elif str(token_in) in SPECIAL_PATHS[router].keys() and str(token_out) in STABLECOINS: path = SPECIAL_PATHS[router][str(token_in)] elif chain.id == 56: #bsc from .constants import cake, wbnb if wbnb in (token_in, token_out): path = [token_in, token_out] elif cake in (token_in, token_out): path = [token_in, token_out] else: path = [token_in,wbnb,token_out] elif chain.id == 137: #bsc from .constants import wmatic if wmatic in (token_in, token_out): path = [token_in, token_out] else: path = [token_in,wmatic,token_out] else: path = [token_in, weth, token_out] fees = 0.997 ** (len(path) - 1) if router in ROUTERS: router = ROUTERS[router] try: quote = router.getAmountsOut(amount_in, path, block_identifier=block) amount_out = quote[-1] / 10 ** ypricemagic.utils.utils.get_decimals_with_override(str(path[-1])) return amount_out / fees except ValueError as e: return @ttl_cache(ttl=600) def get_price_v1(asset, block=None): factory = Contract("0xc0a47dFe034B400B47bDaD5FecDa2621de6c4d95") try: exchange = Contract(factory.getExchange(asset)) eth_bought = exchange.getTokenToEthInputPrice(10 ** ypricemagic.utils.utils.get_decimals_with_override(asset), block_identifier=block) exchange = Contract(factory.getExchange(usdc)) usdc_bought = exchange.getEthToTokenInputPrice(eth_bought, block_identifier=block) / 1e6 fees = 0.997 ** 2 return usdc_bought / fees except (ContractNotFound, ValueError) as e: pass @memory.cache() def is_uniswap_pool(address): try: return Contract(address).factory() in FACTORY_TO_ROUTER except (ValueError, OverflowError, AttributeError): pass return False @ttl_cache(ttl=600) def lp_price(address, block=None): """ Get Uniswap/Sushiswap LP token price. """ def extrapolate_balance_if_needed(): nonlocal balances if balances[0] and not balances[1]: balances[1] = balances[0] if balances[1] and not balances[0]: balances[0] = balances[1] return balances pair = Contract(address) if chain.id not in [56, 137]: # No multicall2 on bsc or poly factory, token0, token1, supply, reserves = fetch_multicall( [pair, "factory"], [pair, "token0"], [pair, "token1"], [pair, "totalSupply"], [pair, "getReserves"], block=block ) else: factory = pair.factory(block_identifier = block) token0 = pair.token0(block_identifier = block) token1 = pair.token1(block_identifier = block) supply = pair.totalSupply(block_identifier = block) reserves = pair.getReserves(block_identifier = block) router = FACTORY_TO_PROTOCOL[factory] tokens = [ypricemagic.utils.utils.Contract_with_erc20_fallback(token) for token in [token0, token1]] price0 = get_price(tokens[0], paired_against=tokens[1], router=router, block=block) price1 = get_price(tokens[1], paired_against=tokens[0], router=router, block=block) prices = [price0,price1] scales = [10 ** ypricemagic.utils.utils.get_decimals_with_override(str(token)) for token in tokens] supply = supply / 1e18 try: balances = [res / scale * price for res, scale, price in zip(reserves, scales, prices)] except TypeError as e: # If can't get price via router, try to get from elsewhere if not price0: try: price0 = ypricemagic.magic.get_price(tokens[0], block) except ypricemagic.magic.PriceError: price0 is None if not price1: try: price1 = ypricemagic.magic.get_price(tokens[1], block) except ypricemagic.magic.PriceError: price1 is None prices = [price0,price1] balances = [None,None] # [res / scale * price for res, scale, price in zip(reserves, scales, prices)] if price0: balances[0] = reserves[0] / scales[0] * price0 if price1: balances[1] = reserves[1] / scales[1] * price1 balances = extrapolate_balance_if_needed() try: return sum(balances) / supply except TypeError: return
1.96875
2
configs/configuration_textrnn.py
haodingkui/semeval2020-task5-subtask1
2
3667
""" TextRNN model configuration """ class TextRNNConfig(object): def __init__( self, vocab_size=30000, pretrained_embedding=None, embedding_matrix=None, embedding_dim=300, embedding_dropout=0.3, lstm_hidden_size=128, output_dim=1, **kwargs ): self.pretrained_embedding = pretrained_embedding self.embedding_matrix = embedding_matrix self.embedding_dim = embedding_dim self.embedding_dropout = embedding_dropout self.lstm_hidden_size = lstm_hidden_size self.output_dim = output_dim
2.828125
3
settings/debug_members.py
akorzunin/telegram_auction_bot
0
3668
<gh_stars>0 DEBUG_MEMBER_LIST = [ 503131177, ]
1.046875
1
metrics/pointops/pointops_util.py
JiazeWang/SP-GAN
73
3669
from typing import Tuple import torch from torch.autograd import Function import torch.nn as nn from metrics.pointops import pointops_cuda import numpy as np class FurthestSampling(Function): @staticmethod def forward(ctx, xyz, m): """ input: xyz: (b, n, 3) and n > m, m: int32 output: idx: (b, m) """ assert xyz.is_contiguous() b, n, _ = xyz.size() idx = torch.cuda.IntTensor(b, m) temp = torch.cuda.FloatTensor(b, n).fill_(1e10) pointops_cuda.furthestsampling_cuda(b, n, m, xyz, temp, idx) return idx @staticmethod def backward(xyz, a=None): return None, None furthestsampling = FurthestSampling.apply class Gathering(Function): @staticmethod def forward(ctx, features, idx): """ input: features: (b, c, n), idx : (b, m) tensor output: (b, c, m) """ assert features.is_contiguous() assert idx.is_contiguous() b, c, n = features.size() m = idx.size(1) output = torch.cuda.FloatTensor(b, c, m) pointops_cuda.gathering_forward_cuda(b, c, n, m, features, idx, output) ctx.for_backwards = (idx, c, n) return output @staticmethod def backward(ctx, grad_out): idx, c, n = ctx.for_backwards b, m = idx.size() grad_features = torch.cuda.FloatTensor(b, c, n).zero_() grad_out_data = grad_out.data.contiguous() pointops_cuda.gathering_backward_cuda(b, c, n, m, grad_out_data, idx, grad_features.data) return grad_features, None gathering = Gathering.apply class NearestNeighbor(Function): @staticmethod def forward(ctx, unknown: torch.Tensor, known: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Find the three nearest neighbors of unknown in known input: unknown: (b, n, 3), known: (b, m, 3) output: dist2: (b, n, 3) l2 distance to the three nearest neighbors idx: (b, n, 3) index of 3 nearest neighbors """ assert unknown.is_contiguous() assert known.is_contiguous() b, n, _ = unknown.size() m = known.size(1) dist2 = torch.cuda.FloatTensor(b, n, 3) idx = torch.cuda.IntTensor(b, n, 3) pointops_cuda.nearestneighbor_cuda(b, n, m, unknown, known, dist2, idx) return torch.sqrt(dist2), idx @staticmethod def backward(ctx, a=None, b=None): return None, None nearestneighbor = NearestNeighbor.apply class Interpolation(Function): @staticmethod def forward(ctx, features: torch.Tensor, idx: torch.Tensor, weight: torch.Tensor) -> torch.Tensor: """ Performs weight linear interpolation on 3 features input: features: (b, c, m) features descriptors to be interpolated from idx: (b, n, 3) three nearest neighbors of the target features in features weight: (b, n, 3) weights output: (b, c, n) tensor of the interpolated features """ assert features.is_contiguous() assert idx.is_contiguous() assert weight.is_contiguous() b, c, m = features.size() n = idx.size(1) ctx.interpolation_for_backward = (idx, weight, m) output = torch.cuda.FloatTensor(b, c, n) pointops_cuda.interpolation_forward_cuda(b, c, m, n, features, idx, weight, output) return output @staticmethod def backward(ctx, grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ input: grad_out: (b, c, n) output: grad_features: (b, c, m), None, None """ idx, weight, m = ctx.interpolation_for_backward b, c, n = grad_out.size() grad_features = torch.cuda.FloatTensor(b, c, m).zero_() grad_out_data = grad_out.data.contiguous() pointops_cuda.interpolation_backward_cuda(b, c, n, m, grad_out_data, idx, weight, grad_features.data) return grad_features, None, None interpolation = Interpolation.apply class Grouping(Function): @staticmethod def forward(ctx, features: torch.Tensor, idx: torch.Tensor) -> torch.Tensor: """ input: features: (b, c, n), idx : (b, m, nsample) containing the indicies of features to group with output: (b, c, m, nsample) """ assert features.is_contiguous() assert idx.is_contiguous() b, c, n = features.size() _, m, nsample = idx.size() output = torch.cuda.FloatTensor(b, c, m, nsample) pointops_cuda.grouping_forward_cuda(b, c, n, m, nsample, features, idx, output) ctx.for_backwards = (idx, n) return output @staticmethod def backward(ctx, grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ input: grad_out: (b, c, m, nsample) output: (b, c, n), None """ idx, n = ctx.for_backwards b, c, m, nsample = grad_out.size() grad_features = torch.cuda.FloatTensor(b, c, n).zero_() grad_out_data = grad_out.data.contiguous() pointops_cuda.grouping_backward_cuda(b, c, n, m, nsample, grad_out_data, idx, grad_features.data) return grad_features, None grouping = Grouping.apply class GroupingInt(Function): @staticmethod def forward(ctx, features: torch.Tensor, idx: torch.Tensor) -> torch.Tensor: """ input: features: (b, c, n), idx : (b, m, nsample) containing the indicies of features to group with output: (b, c, m, nsample) """ assert features.is_contiguous() assert idx.is_contiguous() b, c, n = features.size() _, m, nsample = idx.size() output = torch.cuda.LongTensor(b, c, m, nsample) pointops_cuda.grouping_int_forward_cuda(b, c, n, m, nsample, features, idx, output) return output @staticmethod def backward(ctx, a=None): return None, None grouping_int = GroupingInt.apply class BallQuery(Function): @staticmethod def forward(ctx, radius: float, nsample: int, xyz: torch.Tensor, new_xyz: torch.Tensor) -> torch.Tensor: """ input: radius: float, radius of the balls nsample: int, maximum number of features in the balls xyz: torch.Tensor, (b, n, 3) xyz coordinates of the features new_xyz: torch.Tensor, (b, m, 3) centers of the ball query output: (b, m, nsample) tensor with the indicies of the features that form the query balls """ assert xyz.is_contiguous() assert new_xyz.is_contiguous() b, n, _ = xyz.size() m = new_xyz.size(1) idx = torch.cuda.IntTensor(b, m, nsample).zero_() pointops_cuda.ballquery_cuda(b, n, m, radius, nsample, new_xyz, xyz, idx) return idx @staticmethod def backward(ctx, a=None): return None, None, None, None ballquery = BallQuery.apply class FeatureDistribute(Function): @staticmethod def forward(ctx, max_xyz: torch.Tensor, xyz: torch.Tensor) -> torch.Tensor: """ :param ctx: :param max_xyz: (b, n, 3) :param xyz: (b, m, 3) :return: distribute_idx: (b, m) """ assert max_xyz.is_contiguous() assert xyz.is_contiguous() b, n, _ = max_xyz.size() m = xyz.size(1) distribute_idx = torch.cuda.IntTensor(b, m).zero_() pointops_cuda.featuredistribute_cuda(b, n, m, max_xyz, xyz, distribute_idx) return distribute_idx @staticmethod def backward(ctx, a=None): return None, None featuredistribute = FeatureDistribute.apply class FeatureGather(Function): @staticmethod def forward(ctx, max_feature: torch.Tensor, distribute_idx: torch.Tensor) -> torch.Tensor: ''' :param ctx: :param max_feature: (b, c, n) :param distribute_idx: (b, m) :return: distribute_feature: (b, c, m) ''' assert max_feature.is_contiguous() assert distribute_idx.is_contiguous() b, c, n = max_feature.size() m = distribute_idx.size(1) distribute_feature = torch.cuda.FloatTensor(b, c, m).zero_() pointops_cuda.featuregather_forward_cuda(b, n, m, c, max_feature, distribute_idx, distribute_feature) ctx.for_backwards = (distribute_idx, n) return distribute_feature @staticmethod def backward(ctx, grad_distribute_feature: torch.Tensor): ''' :param ctx: :param grad_distribute_feature: (b, c, m) :return: grad_max_feature: (b, c, n), None ''' distribute_idx, n = ctx.for_backwards b, c, m = grad_distribute_feature.size() grad_max_feature = torch.cuda.FloatTensor(b, c, n).zero_() grad_distribute_feature_data = grad_distribute_feature.data.contiguous() pointops_cuda.featuregather_backward_cuda(b, n, m, c, grad_distribute_feature_data, distribute_idx, grad_max_feature.data) return grad_max_feature, None featuregather = FeatureGather.apply class LabelStatBallRange(Function): @staticmethod def forward(ctx, radius: float, xyz: torch.Tensor, new_xyz: torch.Tensor, label_stat: torch.Tensor) -> torch.Tensor: ''' :param ctx: :param radius: :param xyz: (b, n, 3) :param new_xyz: (b, m, 3) :param label_stat: (b, n, nclass) :return: new_label_stat: (b, m, nclass) ''' assert xyz.is_contiguous() assert new_xyz.is_contiguous() assert label_stat.is_contiguous() b, n, nclass = label_stat.size() m = new_xyz.size(1) new_label_stat = torch.cuda.IntTensor(b, m, nclass).zero_() pointops_cuda.labelstat_ballrange_cuda(b, n, m, radius, nclass, new_xyz, xyz, label_stat, new_label_stat) return new_label_stat @staticmethod def backward(ctx, a=None): return None, None, None, None labelstat_ballrange = LabelStatBallRange.apply class LabelStatIdx(Function): @staticmethod def forward(ctx, nsample: int, label_stat: torch.Tensor, idx: torch.Tensor) -> torch.Tensor: ''' :param ctx: :param nsample: :param label_stat: (b, n, nclass) :param idx: (b, m, nsample) :return: new_label_stat: (b, m, nclass) ''' assert label_stat.is_contiguous() assert idx.is_contiguous() b, n, nclass = label_stat.size() m = idx.size(1) new_label_stat = torch.cuda.IntTensor(b, m, nclass).zero_() pointops_cuda.labelstat_idx_cuda(b, n, m, nsample, nclass, label_stat, idx, new_label_stat) return new_label_stat @staticmethod def backward(ctx, a=None): return None, None, None labelstat_idx = LabelStatIdx.apply class LabelStatAndBallQuery(Function): @staticmethod def forward(ctx, radius: float, nsample: int, xyz: torch.Tensor, new_xyz: torch.Tensor, label_stat: torch.Tensor): ''' :param ctx: :param radius: :param nsample: :param xyz: (b, n, 3) :param new_xyz: (b, m, 3) :param label_stat: (b, n, nclass) :return: new_label_stat: (b, m, nclass) idx: (b, m, nsample) ''' assert xyz.is_contiguous() assert new_xyz.is_contiguous() assert label_stat.is_contiguous() b, n, nclass = label_stat.size() m = new_xyz.size(1) new_label_stat = torch.cuda.IntTensor(b, m, nclass).zero_() idx = torch.cuda.IntTensor(b, m, nsample).zero_() pointops_cuda.labelstat_and_ballquery_cuda(b, n, m, radius, nsample, nclass, new_xyz, xyz, label_stat, idx, new_label_stat) return new_label_stat, idx @staticmethod def backward(ctx, a=None, b=None): return None, None, None, None, None labelstat_and_ballquery = LabelStatAndBallQuery.apply def pairwise_distances(x, y=None): ''' Input: x is a Nxd matrix y is an optional Mxd matirx Output: dist is a NxM matrix where dist[i,j] is the square norm between x[i,:] and y[j,:] if y is not given then use 'y=x'. i.e. dist[i,j] = ||x[i,:]-y[j,:]||^2 ''' x_norm = (x ** 2).sum(1).view(-1, 1) if y is not None: y_t = torch.transpose(y, 0, 1) y_norm = (y ** 2).sum(1).view(1, -1) else: y_t = torch.transpose(x, 0, 1) y_norm = x_norm.view(1, -1) dist = x_norm + y_norm - 2.0 * torch.mm(x, y_t) import numpy as np return torch.clamp(dist, 0.0, np.inf) class KNNQueryNaive(Function): @staticmethod def forward(ctx, nsample: int, xyz: torch.Tensor, new_xyz: torch.Tensor = None) -> Tuple[torch.Tensor]: """ KNN Indexing input: nsample: int32, Number of neighbor xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods output: idx: (b, m, nsample) """ if new_xyz is None: new_xyz = xyz b, m, _ = new_xyz.size() n = xyz.size(1) ''' idx = torch.zeros(b, m, nsample).int().cuda() for i in range(b): dist = pairwise_distances(new_xyz[i, :, :], xyz[i, :, :]) [_, idxs] = torch.sort(dist, dim=1) idx[i, :, :] = idxs[:, 0:nsample] ''' # ''' # new_xyz_repeat = new_xyz.repeat(1, 1, n).view(b, m * n, 3) # xyz_repeat = xyz.repeat(1, m, 1).view(b, m * n, 3) # dist = (new_xyz_repeat - xyz_repeat).pow(2).sum(dim=2).view(b, m, n) dist = (new_xyz.repeat(1, 1, n).view(b, m * n, 3) - xyz.repeat(1, m, 1).view(b, m * n, 3)).pow(2).sum(dim=2).view(b, m, n) [_, idxs] = torch.sort(dist, dim=2) idx = idxs[:, :, 0:nsample].int() # ''' return idx @staticmethod def backward(ctx): return None, None, None knnquery_naive = KNNQueryNaive.apply class KNNQuery(Function): @staticmethod def forward(ctx, nsample: int, xyz: torch.Tensor, new_xyz: torch.Tensor = None) -> Tuple[torch.Tensor]: """ KNN Indexing input: nsample: int32, Number of neighbor xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods output: idx: (b, m, nsample) ( dist2: (b, m, nsample) ) """ if new_xyz is None: new_xyz = xyz assert xyz.is_contiguous() assert new_xyz.is_contiguous() b, m, _ = new_xyz.size() n = xyz.size(1) idx = torch.cuda.IntTensor(b, m, nsample).zero_() dist2 = torch.cuda.FloatTensor(b, m, nsample).zero_() pointops_cuda.knnquery_cuda(b, n, m, nsample, xyz, new_xyz, idx, dist2) return idx @staticmethod def backward(ctx, a=None): return None, None, None knnquery = KNNQuery.apply class KNNQueryExclude(Function): @staticmethod def forward(ctx, nsample: int, xyz: torch.Tensor, new_xyz: torch.Tensor = None) -> Tuple[torch.Tensor]: """ KNN Indexing input: nsample: int32, Number of neighbor xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods output: new_features: (b, m, nsample) """ if new_xyz is None: new_xyz = xyz b, m, _ = new_xyz.size() n = xyz.size(1) ''' idx = torch.zeros(b, m, nsample).int().cuda() for i in range(b): dist = pairwise_distances(new_xyz[i, :, :], xyz[i, :, :]) [_, idxs] = torch.sort(dist, dim=1) idx[i, :, :] = idxs[:, 0:nsample] ''' # ''' # new_xyz_repeat = new_xyz.repeat(1, 1, n).view(b, m * n, 3) # xyz_repeat = xyz.repeat(1, m, 1).view(b, m * n, 3) # dist = (new_xyz_repeat - xyz_repeat).pow(2).sum(dim=2).view(b, m, n) dist = (new_xyz.repeat(1, 1, n).view(b, m * n, 3) - xyz.repeat(1, m, 1).view(b, m * n, 3)).pow(2).sum(dim=2).view(b, m, n) [_, idxs] = torch.sort(dist, dim=2) idx = idxs[:, :, 1:nsample+1].int() # ''' return idx @staticmethod def backward(ctx): return None, None, None knnquery_exclude = KNNQueryExclude.apply class Le_QueryAndGroup_SameSize(nn.Module): """ Groups with a ball query of radius parameters: radius: float32, Radius of ball nsample: int32, Maximum number of features to gather in the ball """ def __init__(self, radius=None, nsample=32, use_xyz=True): super(Le_QueryAndGroup_SameSize, self).__init__() self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor = None, features: torch.Tensor = None, idx: torch.Tensor = None) -> torch.Tensor: """ input: xyz: (b, n, 3) coordinates of the features new_xyz: (b, n, 3) centriods features: (b, c, n) idx: idx of neighbors # idxs: (b, n) output: new_features: (b, c+3, m, nsample) # grouped_idxs: (b, m, nsample) """ assert xyz.size() == new_xyz.size() if new_xyz is None: new_xyz = xyz if idx is None: if self.radius is not None: idx = ballquery(self.radius, self.nsample, xyz, new_xyz) else: # idx = knnquery_naive(self.nsample, xyz, new_xyz) # (b, m, nsample) idx = knnquery(self.nsample, xyz, new_xyz) # (b, m, nsample) xyz_trans = xyz.transpose(1, 2).contiguous() grouped_xyz = grouping(xyz_trans, idx) # (b, 3, m, nsample) # grouped_idxs = grouping(idxs.unsqueeze(1).float(), idx).squeeze(1).int() # (b, m, nsample) grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1) if features is not None: grouped_features = grouping(features, idx) # (b, c, m, nsample) if self.use_xyz: #new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (b, c+3, m, nsample) # le new_features = grouped_features # (b, c, m, nsample) else: new_features = grouped_features else: assert self.use_xyz, "Cannot have not features and not use xyz as a feature!" new_features = grouped_xyz return grouped_xyz, new_features class QueryAndGroup(nn.Module): """ Groups with a ball query of radius parameters: radius: float32, Radius of ball nsample: int32, Maximum number of features to gather in the ball """ def __init__(self, radius=None, nsample=32, use_xyz=True): super(QueryAndGroup, self).__init__() self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor = None, features: torch.Tensor = None, idx: torch.Tensor = None) -> torch.Tensor: """ input: xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods features: (b, c, n) idx: idx of neighbors # idxs: (b, n) output: new_features: (b, c+3, m, nsample) # grouped_idxs: (b, m, nsample) """ if new_xyz is None: new_xyz = xyz if idx is None: if self.radius is not None: idx = ballquery(self.radius, self.nsample, xyz, new_xyz) else: # idx = knnquery_naive(self.nsample, xyz, new_xyz) # (b, m, nsample) idx = knnquery(self.nsample, xyz, new_xyz) # (b, m, nsample) xyz_trans = xyz.transpose(1, 2).contiguous() grouped_xyz = grouping(xyz_trans, idx) # (b, 3, m, nsample) # grouped_idxs = grouping(idxs.unsqueeze(1).float(), idx).squeeze(1).int() # (b, m, nsample) grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1) if features is not None: grouped_features = grouping(features, idx) if self.use_xyz: new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (b, c+3, m, nsample) else: new_features = grouped_features else: assert self.use_xyz, "Cannot have not features and not use xyz as a feature!" new_features = grouped_xyz return new_features class QueryAndGroup_Dilate(nn.Module): """ Groups with a ball query of radius parameters: radius: float32, Radius of ball nsample: int32, Maximum number of features to gather in the ball """ def __init__(self, radius=None, nsample=32, use_xyz=True): super(QueryAndGroup_Dilate, self).__init__() self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor = None, features: torch.Tensor = None, idx: torch.Tensor = None) -> torch.Tensor: """ input: xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods features: (b, c, n) idx: idx of neighbors # idxs: (b, n) output: new_features: (b, c+3, m, nsample) # grouped_idxs: (b, m, nsample) """ if new_xyz is None: new_xyz = xyz if idx is None: if self.radius is not None: idx = ballquery(self.radius, 2*self.nsample, xyz, new_xyz) else: # idx = knnquery_naive(self.nsample, xyz, new_xyz) # (b, m, nsample) idx = knnquery(2*self.nsample, xyz, new_xyz) # (b, m, nsample) idx2 = np.array([i for i in range(2*self.nsample)]) np.random.shuffle(idx2) idx2 = idx2[:self.nsample] idx = idx[:, :, idx2] xyz_trans = xyz.transpose(1, 2).contiguous() grouped_xyz = grouping(xyz_trans, idx) # (b, 3, m, nsample) # grouped_idxs = grouping(idxs.unsqueeze(1).float(), idx).squeeze(1).int() # (b, m, nsample) grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1) if features is not None: grouped_features = grouping(features, idx) if self.use_xyz: new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (b, c+3, m, nsample) else: new_features = grouped_features else: assert self.use_xyz, "Cannot have not features and not use xyz as a feature!" new_features = grouped_xyz return new_features class Le_QueryAndGroup(nn.Module): """ Groups with a ball query of radius parameters: radius: float32, Radius of ball nsample: int32, Maximum number of features to gather in the ball """ def __init__(self, radius=None, nsample=32, use_xyz=True): super(Le_QueryAndGroup, self).__init__() self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor = None, features: torch.Tensor = None, idx: torch.Tensor = None) -> torch.Tensor: """ input: xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods features: (b, c, n) idx: idx of neighbors # idxs: (b, n) output: new_features: (b, c+3, m, nsample) # grouped_idxs: (b, m, nsample) """ if new_xyz is None: new_xyz = xyz if idx is None: if self.radius is not None: idx = ballquery(self.radius, self.nsample, xyz, new_xyz) else: # idx = knnquery_naive(self.nsample, xyz, new_xyz) # (b, m, nsample) idx = knnquery(self.nsample, xyz, new_xyz) # (b, m, nsample) xyz_trans = xyz.transpose(1, 2).contiguous() grouped_xyz = grouping(xyz_trans, idx) # (b, 3, m, nsample) # grouped_idxs = grouping(idxs.unsqueeze(1).float(), idx).squeeze(1).int() # (b, m, nsample) grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1) if features is not None: grouped_features = grouping(features, idx) # (b, c, m, nsample) if self.use_xyz: #new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (b, c+3, m, nsample) # le new_features = grouped_features # (b, c, m, nsample) else: new_features = grouped_features else: assert self.use_xyz, "Cannot have not features and not use xyz as a feature!" new_features = grouped_xyz return grouped_xyz, new_features class Gen_QueryAndGroupXYZ(nn.Module): """ Groups with a ball query of radius parameters: radius: float32, Radius of ball nsample: int32, Maximum number of features to gather in the ball """ def __init__(self, radius=None, nsample=32, use_xyz=True): super(Gen_QueryAndGroupXYZ, self).__init__() self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz #def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor = None, features: torch.Tensor = None, idx: torch.Tensor = None) -> torch.Tensor: def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor = None) -> torch.Tensor: """ input: xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods features: (b, c, n) idx: idx of neighbors # idxs: (b, n) output: new_features: (b, c+3, m, nsample) # grouped_idxs: (b, m, nsample) """ if new_xyz is None: new_xyz = xyz #if idx is None: if self.radius is not None: idx = ballquery(self.radius, self.nsample, xyz, new_xyz) else: idx = knnquery(self.nsample, xyz, new_xyz) # (b, m, nsample) xyz_trans = xyz.transpose(1, 2).contiguous() # BxNx3 -> Bx3xN grouped_xyz = grouping(xyz_trans, idx) # (b, 3, m, nsample) return grouped_xyz class Le_QueryAndGroup_OnlyFeature(nn.Module): """ Groups with a ball query of radius parameters: radius: float32, Radius of ball nsample: int32, Maximum number of features to gather in the ball """ def __init__(self, radius=None, nsample=32, use_xyz=True): super(Le_QueryAndGroup_OnlyFeature, self).__init__() self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor = None, features: torch.Tensor = None, idx: torch.Tensor = None) -> torch.Tensor: """ input: xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods features: (b, c, n) idx: idx of neighbors # idxs: (b, n) output: new_features: (b, c+3, m, nsample) # grouped_idxs: (b, m, nsample) """ if new_xyz is None: new_xyz = xyz if idx is None: if self.radius is not None: idx = ballquery(self.radius, self.nsample, xyz, new_xyz) else: # idx = knnquery_naive(self.nsample, xyz, new_xyz) # (b, m, nsample) idx = knnquery(self.nsample, xyz, new_xyz) # (b, m, nsample) #xyz_trans = xyz.transpose(1, 2).contiguous() #grouped_xyz = grouping(xyz_trans, idx) # (b, 3, m, nsample) # grouped_idxs = grouping(idxs.unsqueeze(1).float(), idx).squeeze(1).int() # (b, m, nsample) #grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1) if features is not None: grouped_features = grouping(features, idx) # (b, c, m, nsample) if self.use_xyz: #new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (b, c+3, m, nsample) # le new_features = grouped_features # (b, c, m, nsample) else: new_features = grouped_features else: assert self.use_xyz, "Cannot have not features and not use xyz as a feature!" new_features = grouped_xyz return new_features class GroupAll(nn.Module): """ Groups all features """ def __init__(self, use_xyz: bool = True): super(GroupAll, self).__init__() self.use_xyz = use_xyz def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor, features: torch.Tensor = None) -> Tuple[torch.Tensor]: """ input: xyz: (b, n, 3) coordinates of the features new_xyz: ignored torch features: (b, c, n) descriptors of the features output: new_features: (b, c+3, 1, N) tensor """ grouped_xyz = xyz.transpose(1, 2).unsqueeze(2) if features is not None: grouped_features = features.unsqueeze(2) if self.use_xyz: new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (b, c+3, 1, n) else: new_features = grouped_features else: new_features = grouped_xyz return new_features
2.5625
3
core/src/zeit/cms/content/caching.py
rickdg/vivi
5
3670
<reponame>rickdg/vivi from collections import defaultdict from logging import getLogger from operator import itemgetter from os import environ from time import time from zope.cachedescriptors.property import Lazy as cachedproperty from zeit.cms.content.sources import FEATURE_TOGGLES from zope.component import getUtility from zeit.connector.interfaces import IConnector from zeit.connector.filesystem import Connector log = getLogger(__name__) class ContentCache(object): @cachedproperty def cache(self): size = environ.get('CONTENT_CACHE_SIZE') check = environ.get('CONTENT_CACHE_CHECK') connector = getUtility(IConnector) if size is not None and type(connector) is Connector: self.size = int(size) self.check = int(check) if check is not None else self.size / 5 self.connector = connector self.cache = defaultdict(lambda: dict(used=0, mtimes={}, data={})) self.hits = self.misses = 0 log.info('initialized content cache (size %s)', size) return self.cache else: return None def get(self, unique_id, key, factory, suffix=''): cache = self.cache if cache is None or not FEATURE_TOGGLES.find('content_caching'): return factory() try: mtime = int(self.connector.mtime(unique_id, suffix)) except (ValueError, TypeError): mtime = None if mtime is None: return factory() obj = cache[unique_id] obj['used'] += 1 obj['last'] = time() if mtime != obj['mtimes'].get(suffix): obj['data'].clear() obj['mtimes'][suffix] = mtime cache = obj['data'] if key not in cache: cache[key] = factory() self.misses += 1 log.debug('added %s (%s)', key, mtime) if self.misses % self.check == 0: self.cleanup() else: self.hits += 1 return cache[key] def cleanup(self): cache = self.cache over = len(cache) - self.size log.info('size: %d/%d, hits: %d, misses: %d', over + self.size, self.size, self.hits, self.misses) if over > 0: log.debug('removing %d items', over) last = sorted((cache[uid]['last'], uid) for uid in cache) for _, (_, uid) in zip(range(over), last): del cache[uid] @property def usage(self): cache = self.cache stats = (dict(uid=uid, used=cache[uid]['used']) for uid in cache) return sorted(stats, key=itemgetter('used')) def info(self): cache = self.cache usage = {info['uid']: info['used'] for info in reversed(self.usage)} return dict( size=self.size, count=len(cache), hits=self.hits, misses=self.misses, usage=usage) __cache = ContentCache() get = __cache.get info = __cache.info
1.914063
2
genesis/project.py
genialis/genesis-genapi
3
3671
<reponame>genialis/genesis-genapi """Project""" from __future__ import absolute_import, division, print_function, unicode_literals class GenProject(object): """Genesais project annotation.""" def __init__(self, data, gencloud): for field in data: setattr(self, field, data[field]) self.gencloud = gencloud self.id = getattr(self, 'id', None) # pylint: disable=invalid-name self.name = getattr(self, 'name', None) def data_types(self): """Return a list of data types.""" data = self.gencloud.project_data(self.id) return sorted(set(d.type for d in data)) def data(self, **query): """Query for Data object annotation.""" data = self.gencloud.project_data(self.id) query['case_ids__contains'] = self.id ids = set(d['id'] for d in self.gencloud.api.dataid.get(**query)['objects']) return [d for d in data if d.id in ids] def find(self, filter_str): """Filter Data object annotation.""" raise NotImplementedError() def __str__(self): return self.name or 'n/a' def __repr__(self): return u"GenProject: {} - {}".format(self.id, self.name)
2.53125
3
account/views.py
KimSoungRyoul/drf_unitteset_study_project
0
3672
<reponame>KimSoungRyoul/drf_unitteset_study_project<gh_stars>0 # Create your views here. from django.db.models import QuerySet from django.utils.decorators import method_decorator from drf_yasg.utils import swagger_auto_schema from rest_framework import viewsets, status from rest_framework.permissions import IsAuthenticated, AllowAny from rest_framework.response import Response from rest_framework.viewsets import mixins from account.documents import DjangoFilterDescriptionInspector from account.models import Customer from account.serializers import CustomerInfoSerializer, SignUpFormSerializer @method_decorator(name='retrieve', decorator=swagger_auto_schema( operation_description="회원 개인정보 조회 API", filter_inspectors=[DjangoFilterDescriptionInspector], )) @method_decorator(name='create', decorator=swagger_auto_schema( operation_description="회원 가입 API", )) @method_decorator(name='update', decorator=swagger_auto_schema( operation_description="회원 정보 수정 API", )) @method_decorator(name='destroy', decorator=swagger_auto_schema( operation_description="회원 탈퇴 API", )) class CustomerAPIViewSet(mixins.CreateModelMixin, mixins.DestroyModelMixin, mixins.RetrieveModelMixin, mixins.UpdateModelMixin, viewsets.GenericViewSet): queryset: QuerySet = Customer.objects permission_classes = (IsAuthenticated,) http_method_names = ['get', 'post', 'put', 'delete'] def get_serializer_class(self): if self.request.method == 'POST': return SignUpFormSerializer elif self.request.method == 'GET': return CustomerInfoSerializer elif self.request.method == 'PUT': return SignUpFormSerializer elif self.request.method == 'DELETE': return SignUpFormSerializer def get_permissions(self): if self.request.method == 'POST': permission_classes = [AllowAny] return [permission() for permission in permission_classes] def create(self, request, *args, **kwargs): serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) self.perform_create(serializer) headers = self.get_success_headers(serializer.data) return Response({'id': serializer.data['id']}, status=status.HTTP_201_CREATED, headers=headers)
2.03125
2
src/front-door/azext_front_door/_validators.py
Mannan2812/azure-cli-extensions
207
3673
<reponame>Mannan2812/azure-cli-extensions<gh_stars>100-1000 # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import argparse def get_name_or_id_validator(dest, child_type=None, resource_type='Frontdoors', resource_namespace='Microsoft.Network', resource_name_dest='front_door_name'): def _validate_name_or_id(cmd, namespace): from azure.cli.core.commands.client_factory import get_subscription_id from msrestazure.tools import is_valid_resource_id, resource_id subscription_id = get_subscription_id(cmd.cli_ctx) resource_group = namespace.resource_group_name names_or_ids = getattr(namespace, dest) is_list = True # treat single values as a list, but convert back in the end if not isinstance(names_or_ids, list): is_list = False names_or_ids = [names_or_ids] if names_or_ids == [None] or not names_or_ids: return ids = [] for val in names_or_ids: id_params = { 'subscription': subscription_id, 'resource_group': resource_group, 'namespace': resource_namespace, 'type': resource_type, 'name': getattr(namespace, resource_name_dest) if child_type else val, 'child_type_1': child_type, 'child_name_1': val if child_type else None } if not is_valid_resource_id(val): val = resource_id(**id_params) ids.append(val) setattr(namespace, dest, ids if is_list else ids[0]) return _validate_name_or_id def validate_waf_policy(cmd, namespace): get_name_or_id_validator( dest='waf_policy', resource_type='WebApplicationFirewallPolicy' )(cmd, namespace) def validate_keyvault(cmd, namespace): get_name_or_id_validator( dest='vault', resource_type='vaults', resource_namespace='Microsoft.Keyvault' )(cmd, namespace) def validate_load_balancing_settings(cmd, namespace): get_name_or_id_validator('load_balancing_settings', 'loadBalancingSettings')(cmd, namespace) def validate_probe_settings(cmd, namespace): get_name_or_id_validator('probe_settings', 'healthProbeSettings')(cmd, namespace) def validate_frontend_endpoints(cmd, namespace): get_name_or_id_validator('frontend_endpoints', 'frontendEndpoints')(cmd, namespace) def validate_backend_pool(cmd, namespace): get_name_or_id_validator('backend_pool', 'backendPools')(cmd, namespace) def validate_rules_engine(cmd, namespace): get_name_or_id_validator('rules_engine', 'rulesEngines')(cmd, namespace) # pylint: disable=protected-access class MatchConditionAction(argparse._AppendAction): # pylint: disable=no-self-use def parse_match_condition(self, values): from azext_front_door.vendored_sdks.models import MatchCondition if not isinstance(values, list): values = values.split(' ') try: return MatchCondition( match_variable=values[0], operator=values[1], match_value=values[2:] ) except IndexError: from knack.util import CLIError raise CLIError('usage error: --match-condition VARIABLE OPERATOR [VALUE [VALUE ...]]') def __call__(self, parser, namespace, values, option_string=None): match_condition = self.parse_match_condition(values) super(MatchConditionAction, self).__call__(parser, namespace, match_condition, option_string)
1.992188
2
mimesis/data/int/development.py
DevAerial/mimesis
0
3674
<filename>mimesis/data/int/development.py """Provides all the data related to the development.""" LICENSES = [ "Apache License, 2.0 (Apache-2.0)", "The BSD 3-Clause License", "The BSD 2-Clause License", "GNU General Public License (GPL)", "General Public License (LGPL)", "MIT License (MIT)", "Mozilla Public License 2.0 (MPL-2.0)", "Common Development and Distribution License (CDDL-1.0)", "Eclipse Public License (EPL-1.0)", ] PROGRAMMING_LANGS = [ "ASP", "Assembly", "AutoIt", "Awk", "Bash", "C", "C Shell", "C#", "C++", "Caml", "Ceylon", "Clojure", "CoffeeScript", "Common Lisp", "D", "Dart", "Delphi", "Dylan", "ECMAScript", "Elixir", "Emacs Lisp", "Erlang", "F#", "Falcon", "Fortran", "GNU Octave", "Go", "Groovy", "Haskell", "haXe", "Io", "J#", "Java", "JavaScript", "Julia", "Kotlin", "Lisp", "Lua", "Mathematica", "Objective-C", "OCaml", "Perl", "PHP", "PL-I", "PL-SQL", "PowerShell", "Prolog", "Python", "R", "Racket", "Ruby", "Rust", "Scala", "Scheme", "Smalltalk", "Tcl", "Tex", "Transact-SQL", "TypeScript", "Z shell", ] OS = [ "Arch", "CentOS", "Debian", "Fedora", "FreeBSD", "Gentoo", "Kali", "Lubuntu", "Manjaro", "Mint", "OS X", "macOS", "OpenBSD", "PCLinuxOS", "Slackware", "Ubuntu", "Windows 10", "Windows 7", "Windows 8", "Windows 8.1", "Zorin", "elementaryOS", "macOS", "openSUSE", ] FOLDERS = [ "Development", "Downloads", "Documents", "Music", "Video", "Work", "Pictures", "Desktop", "Study", ] PROJECT_NAMES = [ "aardonyx", "abelisaurus", "achelousaurus", "achillobator", "acrocanthosaurus", "aegyptosaurus", "afrovenator", "agilisaurus", "alamosaurus", "albertaceratops", "albertosaurus", "alectrosaurus", "alioramus", "allosaurus", "alvarezsaurus", "amargasaurus", "ammosaurus", "ampelosaurus", "amygdalodon", "anatotitan", "anchiceratops", "anchisaurus", "ankylosaurus", "anserimimus", "antarctopelta", "antarctosaurus", "apatosaurus", "aragosaurus", "aralosaurus", "archaeoceratops", "archaeopteryx", "archaeornithomimus", "argentinosaurus", "arrhinoceratops", "atlascopcosaurus", "aucasaurus", "austrosaurus", "avaceratops", "avalonia", "avimimus", "azendohsaurus", "bactrosaurus", "bagaceratops", "bambiraptor", "barapasaurus", "barosaurus", "baryonyx", "becklespinax", "beipiaosaurus", "bellusaurus", "borogovia", "brachiosaurus", "brachyceratops", "bugenasaura", "buitreraptor", "camarasaurus", "camptosaurus", "carnotaurus", "caudipteryx", "cedarpelta", "centrosaurus", "ceratosaurus", "cetiosauriscus", "cetiosaurus", "chaoyangsaurus", "chasmosaurus", "chialingosaurus", "chindesaurus", "chinshakiangosaurus", "chirostenotes", "chubutisaurus", "chungkingosaurus", "citipati", "coelophysis", "coelurus", "coloradisaurus", "compsognathus", "conchoraptor", "confuciusornis", "corythosaurus", "cryolophosaurus", "dacentrurus", "daspletosaurus", "datousaurus", "deinocheirus", "deinonychus", "deltadromeus", "diceratops", "dicraeosaurus", "dilophosaurus", "diplodocus", "dracorex", "dravidosaurus", "dromaeosaurus", "dromiceiomimus", "dryosaurus", "dryptosaurus", "dubreuillosaurus", "edmontonia", "edmontosaurus", "einiosaurus", "elaphrosaurus", "emausaurus", "eolambia", "eoraptor", "eotyrannus", "equijubus", "erketu", "erlikosaurus", "euhelopus", "euoplocephalus", "europasaurus", "euskelosaurus", "eustreptospondylus", "fukuiraptor", "fukuisaurus", "gallimimus", "gargoyleosaurus", "garudimimus", "gasosaurus", "gasparinisaura", "gastonia", "giganotosaurus", "gilmoreosaurus", "giraffatitan", "gobisaurus", "gorgosaurus", "goyocephale", "graciliceratops", "gryposaurus", "guaibasaurus", "guanlong", "hadrosaurus", "hagryphus", "haplocanthosaurus", "harpymimus", "herrerasaurus", "hesperosaurus", "heterodontosaurus", "homalocephale", "huayangosaurus", "hylaeosaurus", "hypacrosaurus", "hypselosaurus", "hypsilophodon", "iguanodon", "indosuchus", "ingenia", "irritator", "isisaurus", "janenschia", "jaxartosaurus", "jingshanosaurus", "jinzhousaurus", "jobaria", "juravenator", "kentrosaurus", "khaan", "kotasaurus", "kritosaurus", "lamaceratops", "lambeosaurus", "lapparentosaurus", "leaellynasaura", "leptoceratops", "lesothosaurus", "lexovisaurus", "liaoceratops", "liaoxiornis", "ligabuesaurus", "liliensternus", "lophorhothon", "lophostropheus", "lufengosaurus", "lurdusaurus", "lycorhinus", "magyarosaurus", "maiasaura", "majungatholus", "malawisaurus", "mamenchisaurus", "mapusaurus", "marshosaurus", "masiakasaurus", "massospondylus", "maxakalisaurus", "megalosaurus", "melanorosaurus", "metriacanthosaurus", "microceratops", "micropachycephalosaurus", "microraptor", "minmi", "monolophosaurus", "mononykus", "mussaurus", "muttaburrasaurus", "nanotyrannus", "nanshiungosaurus", "nemegtosaurus", "neovenator", "neuquenosaurus", "nigersaurus", "nipponosaurus", "noasaurus", "nodosaurus", "nomingia", "nothronychus", "nqwebasaurus", "omeisaurus", "ornitholestes", "ornithomimus", "orodromeus", "oryctodromeus", "othnielia", "ouranosaurus", "oviraptor", "rebbachisaurus", "rhabdodon", "rhoetosaurus", "rinchenia", "riojasaurus", "rugops", "saichania", "saltasaurus", "saltopus", "sarcosaurus", "saurolophus", "sauropelta", "saurophaganax", "saurornithoides", "scelidosaurus", "scutellosaurus", "secernosaurus", "segisaurus", "segnosaurus", "seismosaurus", "shamosaurus", "shanag", "shantungosaurus", "shunosaurus", "shuvuuia", "silvisaurus", "sinocalliopteryx", "sinornithosaurus", "sinosauropteryx", "sinraptor", "sinvenator", "zalmoxes", "zephyrosaurus", "zuniceratops", "byzantine", "svengali", "accolade", "acrimony", "angst", "anomaly", "antidote", "baroque", "bona_fide", "bourgeois", "bravado", "brogue", "brusque", "cacophony", "caustic", "charisma", "cloying", "deja-vu", "dichotomy", "elan", "ennui", "epitome", "esoteric", "euphemism", "faux pas", "fiasco", "finagle", "glib", "harbinger", "hedonist", "heresy", "idyllic", "insidious", "junket", "kitsch", "litany", "lurid", "malaise", "malinger", "mantra", "maudlin", "mercenary", "misnomer", "nirvana", "oblivion", "ogle", "ostracize", "panacea", "paradox", "peevish", "propriety", "revel", "rhetoric", "spartan", "stigma", "stoic", "suave", "sycophant", "tirade", "tryst", "untenable", "vicarious", "vile", "waft", "zealous", ]
1.515625
2
docs/mathparse.py
pcmoritz/flow
16
3675
<filename>docs/mathparse.py """ A preliminary attempt at parsing an RST file's math syntax in order to make math render as inline rather than display mode. This doesn't work as of yet but might be useful. It could, however, be not useful if there's a pandoc option for converting .md to .rst that makes math inline and not display. Keeping it around, though. """ import re s = """Define .. math:: v_{des} as the desired velocity, .. math:: 1^k a vector of ones of length""" with open('/Users/nishant/Downloads/tutorialtest.rst', 'r') as myfile: s = myfile.read() print([elem[11:-2] for elem in re.findall('\n.. math:: *\S*\n\n', s)])
3.015625
3
lib/layout/primitives.py
tailhook/pyzza
2
3676
from layout import Shape, Widget from flash.text.engine import TextBlock, TextElement @package('layout') class Poly(Shape): __slots__ = ('fillcolor', 'sequence') def __init__(self, name, fillcolor, seq, states): super().__init__(name, states) self.fillcolor = fillcolor self.sequence = seq def draw(self, w, h): g = self.graphics g.clear() for line in values(self.sequence): g.beginFill(self.fillcolor) g.moveTo(int(line[0][0]*w), int(line[0][1]*h)) for idx in range(1, line.length): g.lineTo(int(line[idx][0]*w), int(line[idx][1]*h)) g.endFill() @package('layout') class RoundRect(Shape): __slots__ = ('fillcolor', 'radius') def __init__(self, name, fillcolor, radius, states): super().__init__(name, states) self.fillcolor = fillcolor self.radius = radius def draw(self, width, height): g = self.graphics g.clear() g.beginFill(self.fillcolor) g.drawRoundRect(0, 0, width, height, self.radius, self.radius) g.endFill() @package('layout') class TextLine(Widget): __slots__ = ('format', 'text', 'textline') def __init__(self, format, text, name, states): self.format = format self.text = text super().__init__(name, states) def draw(self, width, height): if self.textline: self.removeChild(self.textline) tb = TextBlock() tb.content = TextElement(self.text, self.format) self.textline = tb.createTextLine(None, width) self.addChild(self.textline) @package('layout') class CenteredLine(TextLine): def __init__(self, format, text, name, states): super().__init__(format, text, name, states) def draw(self, width, height): super().draw(width, height) self.textline.x = int((width - self.textline.width)/2) self.textline.y = int((height - self.textline.height)/2)
2.765625
3
tests/testing_server.py
ImportTaste/WebRequest
0
3677
<gh_stars>0 import traceback import uuid import socket import logging import os import base64 import zlib import gzip import time import datetime from http import cookies from http.server import BaseHTTPRequestHandler from http.server import HTTPServer from threading import Thread import WebRequest def capture_expected_headers(expected_headers, test_context, is_chromium=False, is_selenium_garbage_chromium=False, is_annoying_pjs=False, skip_header_checks=False): # print("Capturing expected headers:") # print(expected_headers) assert isinstance(expected_headers, dict), "expected_headers must be a dict. Passed a %s" & type(expected_headers) for key, val in expected_headers.items(): assert isinstance(key, str) assert isinstance(val, str) cookie_key = <KEY> log = logging.getLogger("Main.TestServer") sucuri_reqs_1 = 0 sucuri_reqs_2 = 0 sucuri_reqs_3 = 0 class MockServerRequestHandler(BaseHTTPRequestHandler): def log_message(self, format, *args): return def validate_headers(self): for key, value in expected_headers.items(): if (is_annoying_pjs or is_selenium_garbage_chromium or skip_header_checks) and key == 'Accept-Encoding': # So PhantomJS monkeys with accept-encoding headers # Just ignore that particular header, I guess. pass # Selenium is fucking retarded, and I can't override the user-agent # and other assorted parameters via their API at all. elif (is_selenium_garbage_chromium or skip_header_checks) and key == 'Accept-Language': pass elif (is_annoying_pjs or is_chromium or is_selenium_garbage_chromium or skip_header_checks) and key == 'Accept': pass elif not skip_header_checks: v1 = value.replace(" ", "") v2 = self.headers[key] if v2 is None: v2 = "" v2 = v2.replace(" ", "") test_context.assertEqual(v1, v2, msg="Mismatch in header parameter '{}' : '{}' -> '{}' ({})".format( key, value, self.headers[key], { 'is_annoying_pjs' : is_annoying_pjs, 'is_chromium' : is_chromium, 'is_selenium_garbage_chromium' : is_selenium_garbage_chromium, 'skip_header_checks' : skip_header_checks, }, ) ) def _get_handler(self): # Process an HTTP GET request and return a response with an HTTP 200 status. # print("Path: ", self.path) # print("Headers: ", self.headers) # print("Cookie(s): ", self.headers.get_all('Cookie', failobj=[])) try: self.validate_headers() except Exception: self.send_response(500) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"Headers failed validation!") raise if self.path == "/": self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"Root OK?") elif self.path == "/favicon.ico": self.send_response(404) self.end_headers() elif self.path == "/raw-txt": self.send_response(200) self.send_header('Content-type', "text/plain") self.end_headers() self.wfile.write(b"Root OK?") elif self.path == "/html-decode": self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"Root OK?") elif self.path == "/html/real": self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"<html><body>Root OK?</body></html>") elif self.path == "/compressed/deflate": self.send_response(200) self.send_header('Content-Encoding', 'deflate') self.send_header('Content-type', "text/html") self.end_headers() inb = b"Root OK?" cobj = zlib.compressobj(wbits=-zlib.MAX_WBITS) t1 = cobj.compress(inb) + cobj.flush() self.wfile.write(t1) elif self.path == "/compressed/gzip": self.send_response(200) self.send_header('Content-Encoding', 'gzip') self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(gzip.compress(b"Root OK?")) elif self.path == "/json/invalid": self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"LOLWAT") elif self.path == "/json/valid": self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b'{"oh" : "hai"}') elif self.path == "/json/no-coding": self.send_response(200) self.end_headers() self.wfile.write(b'{"oh" : "hai"}') elif self.path == "/filename/path-only.txt": self.send_response(200) self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/filename/path-only-trailing-slash/": self.send_response(200) self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/filename/content-disposition": self.send_response(200) self.send_header('Content-Disposition', "filename=lolercoaster.txt") self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/filename_mime/path-only.txt": self.send_response(200) self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/filename_mime/content-disposition": self.send_response(200) self.send_header('Content-Disposition', "filename=lolercoaster.txt") self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/filename_mime/content-disposition-html-suffix": self.send_response(200) self.send_header('Content-Disposition', "filename=lolercoaster.html") self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/filename_mime/content-disposition-quotes-1": self.send_response(200) self.send_header('Content-Disposition', "filename='lolercoaster.html'") self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/filename_mime/content-disposition-quotes-2": self.send_response(200) self.send_header('Content-Disposition', "filename=\'lolercoaster.html\'") self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/filename_mime/content-disposition-quotes-spaces-1": self.send_response(200) self.send_header('Content-Disposition', "filename='loler coaster.html'") self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/filename_mime/content-disposition-quotes-spaces-2": self.send_response(200) self.send_header('Content-Disposition', "filename=\"loler coaster.html\"") self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/filename_mime/explicit-html-mime": self.send_response(200) self.send_header('Content-Disposition', "filename=lolercoaster.html") self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/redirect/bad-1": self.send_response(302) self.end_headers() elif self.path == "/redirect/bad-2": self.send_response(302) self.send_header('location', "bad-2") self.end_headers() elif self.path == "/redirect/bad-3": self.send_response(302) self.send_header('location', "gopher://www.google.com") self.end_headers() elif self.path == "/redirect/from-1": self.send_response(302) self.send_header('location', "to-1") self.end_headers() elif self.path == "/redirect/to-1": self.send_response(200) self.end_headers() self.wfile.write(b"Redirect-To-1") elif self.path == "/redirect/from-2": self.send_response(302) self.send_header('uri', "to-2") self.end_headers() elif self.path == "/redirect/to-2": self.send_response(200) self.end_headers() self.wfile.write(b"Redirect-To-2") elif self.path == "/redirect/from-3": self.send_response(302) newurl = "http://{}:{}".format(self.server.server_address[0], self.server.server_address[1]) self.send_header('uri', newurl) self.end_headers() elif self.path == "/password/expect": # print("Password") # print(self.headers) self.send_response(200) self.end_headers() if not 'Authorization' in self.headers: self.wfile.write(b"Password not sent!!") return val = self.headers['Authorization'] passval = val.split(" ")[-1] passstr = base64.b64decode(passval) if passstr == b'lol:<PASSWORD>': self.wfile.write(b"Password Ok?") else: self.wfile.write(b"Password Bad!") elif self.path == "/content/have-title": self.send_response(200) self.end_headers() self.wfile.write(b"<html><head><title>I can haz title?</title></head><body>This page has a title!</body></html>") elif self.path == "/content/no-title": self.send_response(200) self.end_headers() self.wfile.write(b"<html><head></head><body>This page has no title. Sadface.jpg</body></html>") elif self.path == "/binary_ctnt": self.send_response(200) self.send_header('Content-type', "image/jpeg") self.end_headers() self.wfile.write(b"Binary!\x00\x01\x02\x03") elif self.path == "/binary_ctnt": self.send_response(200) self.send_header('Content-type', "image/jpeg") self.end_headers() self.wfile.write(b"Binary!\x00\x01\x02\x03") ################################################################################################################################## # Cookie stuff ################################################################################################################################## elif self.path == '/cookie_test': cook = cookies.SimpleCookie() cook['cookie_test_key'] = cookie_key cook['cookie_test_key']['path'] = "/" cook['cookie_test_key']['domain'] = "" expiration = datetime.datetime.now() + datetime.timedelta(days=30) cook['cookie_test_key']["expires"] = expiration.strftime("%a, %d-%b-%Y %H:%M:%S PST") self.send_response(200) self.send_header('Content-type', "text/html") self.send_header('Set-Cookie', cook['cookie_test_key'].OutputString()) self.end_headers() self.wfile.write(b"<html><body>CF Cookie Test</body></html>") elif self.path == '/cookie_require': if self.headers.get_all('Cookie', failobj=[]): cook = self.headers.get_all('Cookie', failobj=[])[0] cook_key, cook_value = cook.split("=", 1) if cook_key == 'cookie_test_key' and cook_value == cookie_key: self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"<html><body>Cookie forwarded properly!</body></html>") return self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"<html><body>Cookie is missing</body></html>") ################################################################################################################################## # Sucuri validation ################################################################################################################################## elif self.path == '/sucuri_shit_3': # I'd like to get this down to just 2 requests (cookie bounce, and fetch). # Doing that requires pulling html content out of chromium, though. # Annoying. nonlocal sucuri_reqs_3 sucuri_reqs_3 += 1 if sucuri_reqs_3 > 3: raise RuntimeError("Too many requests to sucuri_shit_3 (%s)!" % sucuri_reqs_3) if self.headers.get_all('Cookie', failobj=[]): cook = self.headers.get_all('Cookie', failobj=[])[0] cook_key, cook_value = cook.split("=", 1) if cook_key == 'sucuri_cloudproxy_uuid_6293e0004' and cook_value == '<KEY>': # if cook[''] self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"<html><head><title>At target preemptive Sucuri page!</title></head><body>Preemptive waf circumvented OK (p3)?</body></html>") return container_dir = os.path.dirname(__file__) fpath = os.path.join(container_dir, "waf_garbage", 'sucuri_garbage.html') with open(fpath, "rb") as fp: plain_contents = fp.read() self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(plain_contents) elif self.path == '/sucuri_shit_2': # This particular path is the one we should already have a cookie for. # As such, we expect one request only nonlocal sucuri_reqs_2 sucuri_reqs_2 += 1 if sucuri_reqs_2 > 1: raise RuntimeError("Too many requests to sucuri_shit_2 (%s)!" % sucuri_reqs_2) if self.headers.get_all('Cookie', failobj=[]): cook = self.headers.get_all('Cookie', failobj=[])[0] cook_key, cook_value = cook.split("=", 1) if cook_key == 'sucuri_cloudproxy_uuid_6293e0004' and cook_value == '04cbb56494ebedbcd19a61b2d728c478': # if cook[''] self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"<html><head><title>At target preemptive Sucuri page!</title></head><body>Preemptive waf circumvented OK (p2)?</body></html>") return container_dir = os.path.dirname(__file__) fpath = os.path.join(container_dir, "waf_garbage", 'sucuri_garbage.html') with open(fpath, "rb") as fp: plain_contents = fp.read() self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(plain_contents) elif self.path == '/sucuri_shit': nonlocal sucuri_reqs_1 sucuri_reqs_1 += 1 if sucuri_reqs_1 > 4: raise RuntimeError("Too many requests to sucuri_shit (%s)!" % sucuri_reqs_1) # print("Fetch for ", self.path) # print("Cookies:", self.headers.get_all('Cookie', failobj=[])) if self.headers.get_all('Cookie', failobj=[]): cook = self.headers.get_all('Cookie', failobj=[])[0] cook_key, cook_value = cook.split("=", 1) if cook_key == 'sucuri_cloudproxy_uuid_6293e0004' and cook_value == '<KEY>': # if cook[''] self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"<html><head><title>At target Sucuri page!</title></head><body>Sucuri Redirected OK?</body></html>") return container_dir = os.path.dirname(__file__) fpath = os.path.join(container_dir, "waf_garbage", 'sucuri_garbage.html') with open(fpath, "rb") as fp: plain_contents = fp.read() self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(plain_contents) ################################################################################################################################## # Cloudflare validation ################################################################################################################################## elif self.path == '/cloudflare_under_attack_shit_2': if self.headers.get_all('Cookie', failobj=[]): cook = self.headers.get_all('Cookie', failobj=[])[0] cook_key, cook_value = cook.split("=", 1) if cook_key == 'cloudflare_validate_key' and cook_value == cookie_key: # if cook[''] self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"<html><head><title>At target CF page!</title></head><body>CF Redirected OK?</body></html>") return container_dir = os.path.dirname(__file__) fpath = os.path.join(container_dir, "waf_garbage", 'cf_js_challenge_03_12_2018.html') with open(fpath, "rb") as fp: plain_contents = fp.read() self.server_version = "cloudflare is garbage" self.send_response(503) self.send_header('Server', "cloudflare is garbage") self.send_header('Content-type','text/html') self.end_headers() self.wfile.write(plain_contents) elif self.path == '/cloudflare_under_attack_shit': if self.headers.get_all('Cookie', failobj=[]): cook = self.headers.get_all('Cookie', failobj=[])[0] cook_key, cook_value = cook.split("=", 1) if cook_key == 'cloudflare_validate_key' and cook_value == cookie_key: # if cook[''] self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"<html><head><title>At target CF page!</title></head><body>CF Redirected OK?</body></html>") return container_dir = os.path.dirname(__file__) fpath = os.path.join(container_dir, "waf_garbage", 'cf_js_challenge_03_12_2018.html') with open(fpath, "rb") as fp: plain_contents = fp.read() self.server_version = "cloudflare is garbage" self.send_response(503) self.send_header('Server', "cloudflare is garbage") self.send_header('Content-type','text/html') self.end_headers() self.wfile.write(plain_contents) elif self.path == '/cdn-cgi/l/chk_jschl?jschl_vc=427c2b1cd4fba29608ee81b200e94bfa&pass=<PASSWORD>&jschl_answer=<PASSWORD>': cook = cookies.SimpleCookie() cook['cloudflare_validate_key'] = cookie_key cook['cloudflare_validate_key']['path'] = "/" cook['cloudflare_validate_key']['domain'] = "" expiration = datetime.datetime.now() + datetime.timedelta(days=30) cook['cloudflare_validate_key']["expires"] = expiration.strftime("%a, %d-%b-%Y %H:%M:%S PST") self.send_response(200) self.send_header('Content-type', "text/html") self.send_header('Set-Cookie', cook['cloudflare_validate_key'].OutputString()) self.end_headers() body = "<html><body>Setting cookies.<script>window.location.href='/cloudflare_under_attack_shit'</script></body></html>" self.wfile.write(body.encode("utf-8")) ################################################################################################################################## # Handle requests for an unknown path ################################################################################################################################## else: test_context.assertEqual(self.path, "This shouldn't happen!") def do_GET(self): # Process an HTTP GET request and return a response with an HTTP 200 status. log.info("Request for URL path: '%s'", self.path) # print("Headers: ", self.headers) # print("Cookie(s): ", self.headers.get_all('Cookie', failobj=[])) try: return self._get_handler() except Exception as e: log.error("Exception in handler!") for line in traceback.format_exc().split("\n"): log.error(line) raise e return MockServerRequestHandler def get_free_port(): s = socket.socket(socket.AF_INET, type=socket.SOCK_STREAM) s.bind(('localhost', 0)) address, port = s.getsockname() s.close() return port def start_server(assertion_class, from_wg, port_override = None, is_chromium = None, is_selenium_garbage_chromium = False, is_annoying_pjs = False, skip_header_checks = False ): # Configure mock server. if port_override: mock_server_port = port_override else: mock_server_port = get_free_port() expected_headers = dict(from_wg.browserHeaders) print(from_wg) print(expected_headers) assert isinstance(expected_headers, dict) captured_server = capture_expected_headers( expected_headers = expected_headers, test_context = assertion_class, is_chromium = is_chromium, is_selenium_garbage_chromium = is_selenium_garbage_chromium, is_annoying_pjs = is_annoying_pjs, skip_header_checks = skip_header_checks ) retries = 4 for x in range(retries + 1): try: mock_server = HTTPServer(('0.0.0.0', mock_server_port), captured_server) break except OSError: time.sleep(0.2) if x >= retries: raise # Start running mock server in a separate thread. # Daemon threads automatically shut down when the main process exits. mock_server_thread = Thread(target=mock_server.serve_forever) mock_server_thread.setDaemon(True) mock_server_thread.start() return mock_server_port, mock_server, mock_server_thread if __name__ == '__main__': wg = WebRequest.WebGetRobust() srv = start_server( assertion_class = None, from_wg = wg, skip_header_checks = True) print("running server on port: ", srv) while 1: time.sleep(1)
2.28125
2
calcgrades.py
qrowsxi/calcgrades
0
3678
import csv import math import numpy as np import pandas import scipy.optimize import sys import argparse def ineq_constraint_1(v): return np.array([vi for vi in v]) def ineq_constraint_2(v): return np.array([-vi + 30 for vi in v]) class WeightAverage: def __init__(self, mean, csv): self.df = pandas.read_csv(csv) self.course = self.df['name'] self.expected_mean = mean self.credits = self.df[['credits', 'grade']].query('grade == 0')[['credits']].transpose().to_numpy()[0] self.grade_initial_sol = np.array([mean for _ in range(0, len(self.credits))]) self.owned_credits = self.df[['credits', 'grade']].query('grade > 0')[['credits']].transpose().to_numpy()[0] self.owned_grades = self.df[['grade']].query('grade > 0').transpose().to_numpy()[0] self.tot_credits = sum(self.owned_credits) + sum(self.credits) def weight_average(self, v): term1 = 0 term2 = 0 for i in range(0, len(self.owned_grades)): term1 = term1 + self.owned_grades[i] * self.owned_credits[i] for i in range(0, len(v)): term2 = term2 + v[i] * self.credits[i] return (term1 + term2) / self.tot_credits def eq_constraint(self, v): return self.weight_average(v) - self.expected_mean def solve(self): cons = ( {'type': 'eq', 'fun': self.eq_constraint}, {'type': 'ineq', 'fun': ineq_constraint_1}, {'type': 'ineq', 'fun': ineq_constraint_2}) res = scipy.optimize.minimize(self.weight_average, self.grade_initial_sol, method='SLSQP', constraints=cons) if not res.success: return None return res.x def error_no_solution(): print("Mean not possible with current vote :(") exit(0) def output_result(solver, sol): avg = solver.weight_average(sol) df = solver.df print(f"Expected mean: {avg} -> {int(round(avg / 30 * 110, 0))} / 110") if sol is None: print("Not Possible with current grades :(") exit() for index, row in df.query('grade > 0').iterrows(): print(f"'{row['name']}', credits: {row['credits']}, grade {row['grade']}") i = 0 for index, row in df.query('grade == 0').iterrows(): print(f"'{row['name']}', credits: {row['credits']}, grade {int(sol[i])}") i += 1 return 0 def main(): name = "calcGrades" description = """CalcGrades is an utility which purpose is to compute the minimum grades required to get a certain weight average of the grades over the credits, given the desired output and the grades already owned.""" parser = argparse.ArgumentParser(name, description=description) parser.add_argument('mean', metavar='M', type=float, nargs='+', help='The expected mean') parser.add_argument('--file',dest='file', default='courses.csv', type=str, help='path to the csv file containing the courses (default: courses.csv)') parser.add_argument('--floor', default=False, action='store_true', help='apply floor operation instead of round to solution') parser.add_argument('--ceil', default=False, action='store_true', help='apply ceil operation instead of round to solution') args = parser.parse_args() mean = args.mean courses = args.file solver = WeightAverage(mean, courses) sol = solver.solve() if sol is None: error_no_solution() if args.ceil: sol = [math.ceil(x) for x in sol] elif args.floor: sol = [math.floor(x) for x in sol] else: sol = [round(x) for x in sol] output_result(solver, sol) return 0 if __name__ == '__main__': main()
3.03125
3
sdk/python/pulumi_google_native/testing/v1/test_matrix.py
AaronFriel/pulumi-google-native
44
3679
<reponame>AaronFriel/pulumi-google-native # coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['TestMatrixArgs', 'TestMatrix'] @pulumi.input_type class TestMatrixArgs: def __init__(__self__, *, environment_matrix: pulumi.Input['EnvironmentMatrixArgs'], result_storage: pulumi.Input['ResultStorageArgs'], test_specification: pulumi.Input['TestSpecificationArgs'], client_info: Optional[pulumi.Input['ClientInfoArgs']] = None, fail_fast: Optional[pulumi.Input[bool]] = None, flaky_test_attempts: Optional[pulumi.Input[int]] = None, project: Optional[pulumi.Input[str]] = None, request_id: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a TestMatrix resource. :param pulumi.Input['EnvironmentMatrixArgs'] environment_matrix: The devices the tests are being executed on. :param pulumi.Input['ResultStorageArgs'] result_storage: Where the results for the matrix are written. :param pulumi.Input['TestSpecificationArgs'] test_specification: How to run the test. :param pulumi.Input['ClientInfoArgs'] client_info: Information about the client which invoked the test. :param pulumi.Input[bool] fail_fast: If true, only a single attempt at most will be made to run each execution/shard in the matrix. Flaky test attempts are not affected. Normally, 2 or more attempts are made if a potential infrastructure issue is detected. This feature is for latency sensitive workloads. The incidence of execution failures may be significantly greater for fail-fast matrices and support is more limited because of that expectation. :param pulumi.Input[int] flaky_test_attempts: The number of times a TestExecution should be re-attempted if one or more of its test cases fail for any reason. The maximum number of reruns allowed is 10. Default is 0, which implies no reruns. :param pulumi.Input[str] project: The cloud project that owns the test matrix. """ pulumi.set(__self__, "environment_matrix", environment_matrix) pulumi.set(__self__, "result_storage", result_storage) pulumi.set(__self__, "test_specification", test_specification) if client_info is not None: pulumi.set(__self__, "client_info", client_info) if fail_fast is not None: pulumi.set(__self__, "fail_fast", fail_fast) if flaky_test_attempts is not None: pulumi.set(__self__, "flaky_test_attempts", flaky_test_attempts) if project is not None: pulumi.set(__self__, "project", project) if request_id is not None: pulumi.set(__self__, "request_id", request_id) @property @pulumi.getter(name="environmentMatrix") def environment_matrix(self) -> pulumi.Input['EnvironmentMatrixArgs']: """ The devices the tests are being executed on. """ return pulumi.get(self, "environment_matrix") @environment_matrix.setter def environment_matrix(self, value: pulumi.Input['EnvironmentMatrixArgs']): pulumi.set(self, "environment_matrix", value) @property @pulumi.getter(name="resultStorage") def result_storage(self) -> pulumi.Input['ResultStorageArgs']: """ Where the results for the matrix are written. """ return pulumi.get(self, "result_storage") @result_storage.setter def result_storage(self, value: pulumi.Input['ResultStorageArgs']): pulumi.set(self, "result_storage", value) @property @pulumi.getter(name="testSpecification") def test_specification(self) -> pulumi.Input['TestSpecificationArgs']: """ How to run the test. """ return pulumi.get(self, "test_specification") @test_specification.setter def test_specification(self, value: pulumi.Input['TestSpecificationArgs']): pulumi.set(self, "test_specification", value) @property @pulumi.getter(name="clientInfo") def client_info(self) -> Optional[pulumi.Input['ClientInfoArgs']]: """ Information about the client which invoked the test. """ return pulumi.get(self, "client_info") @client_info.setter def client_info(self, value: Optional[pulumi.Input['ClientInfoArgs']]): pulumi.set(self, "client_info", value) @property @pulumi.getter(name="failFast") def fail_fast(self) -> Optional[pulumi.Input[bool]]: """ If true, only a single attempt at most will be made to run each execution/shard in the matrix. Flaky test attempts are not affected. Normally, 2 or more attempts are made if a potential infrastructure issue is detected. This feature is for latency sensitive workloads. The incidence of execution failures may be significantly greater for fail-fast matrices and support is more limited because of that expectation. """ return pulumi.get(self, "fail_fast") @fail_fast.setter def fail_fast(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "fail_fast", value) @property @pulumi.getter(name="flakyTestAttempts") def flaky_test_attempts(self) -> Optional[pulumi.Input[int]]: """ The number of times a TestExecution should be re-attempted if one or more of its test cases fail for any reason. The maximum number of reruns allowed is 10. Default is 0, which implies no reruns. """ return pulumi.get(self, "flaky_test_attempts") @flaky_test_attempts.setter def flaky_test_attempts(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "flaky_test_attempts", value) @property @pulumi.getter def project(self) -> Optional[pulumi.Input[str]]: """ The cloud project that owns the test matrix. """ return pulumi.get(self, "project") @project.setter def project(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "project", value) @property @pulumi.getter(name="requestId") def request_id(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "request_id") @request_id.setter def request_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "request_id", value) class TestMatrix(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, client_info: Optional[pulumi.Input[pulumi.InputType['ClientInfoArgs']]] = None, environment_matrix: Optional[pulumi.Input[pulumi.InputType['EnvironmentMatrixArgs']]] = None, fail_fast: Optional[pulumi.Input[bool]] = None, flaky_test_attempts: Optional[pulumi.Input[int]] = None, project: Optional[pulumi.Input[str]] = None, request_id: Optional[pulumi.Input[str]] = None, result_storage: Optional[pulumi.Input[pulumi.InputType['ResultStorageArgs']]] = None, test_specification: Optional[pulumi.Input[pulumi.InputType['TestSpecificationArgs']]] = None, __props__=None): """ Creates and runs a matrix of tests according to the given specifications. Unsupported environments will be returned in the state UNSUPPORTED. A test matrix is limited to use at most 2000 devices in parallel. May return any of the following canonical error codes: - PERMISSION_DENIED - if the user is not authorized to write to project - INVALID_ARGUMENT - if the request is malformed or if the matrix tries to use too many simultaneous devices. Auto-naming is currently not supported for this resource. Note - this resource's API doesn't support deletion. When deleted, the resource will persist on Google Cloud even though it will be deleted from Pulumi state. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[pulumi.InputType['ClientInfoArgs']] client_info: Information about the client which invoked the test. :param pulumi.Input[pulumi.InputType['EnvironmentMatrixArgs']] environment_matrix: The devices the tests are being executed on. :param pulumi.Input[bool] fail_fast: If true, only a single attempt at most will be made to run each execution/shard in the matrix. Flaky test attempts are not affected. Normally, 2 or more attempts are made if a potential infrastructure issue is detected. This feature is for latency sensitive workloads. The incidence of execution failures may be significantly greater for fail-fast matrices and support is more limited because of that expectation. :param pulumi.Input[int] flaky_test_attempts: The number of times a TestExecution should be re-attempted if one or more of its test cases fail for any reason. The maximum number of reruns allowed is 10. Default is 0, which implies no reruns. :param pulumi.Input[str] project: The cloud project that owns the test matrix. :param pulumi.Input[pulumi.InputType['ResultStorageArgs']] result_storage: Where the results for the matrix are written. :param pulumi.Input[pulumi.InputType['TestSpecificationArgs']] test_specification: How to run the test. """ ... @overload def __init__(__self__, resource_name: str, args: TestMatrixArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Creates and runs a matrix of tests according to the given specifications. Unsupported environments will be returned in the state UNSUPPORTED. A test matrix is limited to use at most 2000 devices in parallel. May return any of the following canonical error codes: - PERMISSION_DENIED - if the user is not authorized to write to project - INVALID_ARGUMENT - if the request is malformed or if the matrix tries to use too many simultaneous devices. Auto-naming is currently not supported for this resource. Note - this resource's API doesn't support deletion. When deleted, the resource will persist on Google Cloud even though it will be deleted from Pulumi state. :param str resource_name: The name of the resource. :param TestMatrixArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(TestMatrixArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, client_info: Optional[pulumi.Input[pulumi.InputType['ClientInfoArgs']]] = None, environment_matrix: Optional[pulumi.Input[pulumi.InputType['EnvironmentMatrixArgs']]] = None, fail_fast: Optional[pulumi.Input[bool]] = None, flaky_test_attempts: Optional[pulumi.Input[int]] = None, project: Optional[pulumi.Input[str]] = None, request_id: Optional[pulumi.Input[str]] = None, result_storage: Optional[pulumi.Input[pulumi.InputType['ResultStorageArgs']]] = None, test_specification: Optional[pulumi.Input[pulumi.InputType['TestSpecificationArgs']]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = TestMatrixArgs.__new__(TestMatrixArgs) __props__.__dict__["client_info"] = client_info if environment_matrix is None and not opts.urn: raise TypeError("Missing required property 'environment_matrix'") __props__.__dict__["environment_matrix"] = environment_matrix __props__.__dict__["fail_fast"] = fail_fast __props__.__dict__["flaky_test_attempts"] = flaky_test_attempts __props__.__dict__["project"] = project __props__.__dict__["request_id"] = request_id if result_storage is None and not opts.urn: raise TypeError("Missing required property 'result_storage'") __props__.__dict__["result_storage"] = result_storage if test_specification is None and not opts.urn: raise TypeError("Missing required property 'test_specification'") __props__.__dict__["test_specification"] = test_specification __props__.__dict__["invalid_matrix_details"] = None __props__.__dict__["outcome_summary"] = None __props__.__dict__["state"] = None __props__.__dict__["test_executions"] = None __props__.__dict__["test_matrix_id"] = None __props__.__dict__["timestamp"] = None super(TestMatrix, __self__).__init__( 'google-native:testing/v1:TestMatrix', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'TestMatrix': """ Get an existing TestMatrix resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = TestMatrixArgs.__new__(TestMatrixArgs) __props__.__dict__["client_info"] = None __props__.__dict__["environment_matrix"] = None __props__.__dict__["fail_fast"] = None __props__.__dict__["flaky_test_attempts"] = None __props__.__dict__["invalid_matrix_details"] = None __props__.__dict__["outcome_summary"] = None __props__.__dict__["project"] = None __props__.__dict__["result_storage"] = None __props__.__dict__["state"] = None __props__.__dict__["test_executions"] = None __props__.__dict__["test_matrix_id"] = None __props__.__dict__["test_specification"] = None __props__.__dict__["timestamp"] = None return TestMatrix(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="clientInfo") def client_info(self) -> pulumi.Output['outputs.ClientInfoResponse']: """ Information about the client which invoked the test. """ return pulumi.get(self, "client_info") @property @pulumi.getter(name="environmentMatrix") def environment_matrix(self) -> pulumi.Output['outputs.EnvironmentMatrixResponse']: """ The devices the tests are being executed on. """ return pulumi.get(self, "environment_matrix") @property @pulumi.getter(name="failFast") def fail_fast(self) -> pulumi.Output[bool]: """ If true, only a single attempt at most will be made to run each execution/shard in the matrix. Flaky test attempts are not affected. Normally, 2 or more attempts are made if a potential infrastructure issue is detected. This feature is for latency sensitive workloads. The incidence of execution failures may be significantly greater for fail-fast matrices and support is more limited because of that expectation. """ return pulumi.get(self, "fail_fast") @property @pulumi.getter(name="flakyTestAttempts") def flaky_test_attempts(self) -> pulumi.Output[int]: """ The number of times a TestExecution should be re-attempted if one or more of its test cases fail for any reason. The maximum number of reruns allowed is 10. Default is 0, which implies no reruns. """ return pulumi.get(self, "flaky_test_attempts") @property @pulumi.getter(name="invalidMatrixDetails") def invalid_matrix_details(self) -> pulumi.Output[str]: """ Describes why the matrix is considered invalid. Only useful for matrices in the INVALID state. """ return pulumi.get(self, "invalid_matrix_details") @property @pulumi.getter(name="outcomeSummary") def outcome_summary(self) -> pulumi.Output[str]: """ Output Only. The overall outcome of the test. Only set when the test matrix state is FINISHED. """ return pulumi.get(self, "outcome_summary") @property @pulumi.getter def project(self) -> pulumi.Output[str]: """ The cloud project that owns the test matrix. """ return pulumi.get(self, "project") @property @pulumi.getter(name="resultStorage") def result_storage(self) -> pulumi.Output['outputs.ResultStorageResponse']: """ Where the results for the matrix are written. """ return pulumi.get(self, "result_storage") @property @pulumi.getter def state(self) -> pulumi.Output[str]: """ Indicates the current progress of the test matrix. """ return pulumi.get(self, "state") @property @pulumi.getter(name="testExecutions") def test_executions(self) -> pulumi.Output[Sequence['outputs.TestExecutionResponse']]: """ The list of test executions that the service creates for this matrix. """ return pulumi.get(self, "test_executions") @property @pulumi.getter(name="testMatrixId") def test_matrix_id(self) -> pulumi.Output[str]: """ Unique id set by the service. """ return pulumi.get(self, "test_matrix_id") @property @pulumi.getter(name="testSpecification") def test_specification(self) -> pulumi.Output['outputs.TestSpecificationResponse']: """ How to run the test. """ return pulumi.get(self, "test_specification") @property @pulumi.getter def timestamp(self) -> pulumi.Output[str]: """ The time this test matrix was initially created. """ return pulumi.get(self, "timestamp")
1.859375
2
View/View.py
MoriokaReimen/ConfigHeaderGenerator
0
3680
import tkinter as tk import tkinter.messagebox from Control import Control class View: def __init__(self, control : Control.Control): self.control = control # Init Window self.root = tk.Tk() self.root.title(u"Header File Generator") self.root.geometry("700x800") self.config_frame = tk.Frame(self.root) # Config Table lb_symbol = tk.Label(self.config_frame, width = 20) lb_symbol["text"] = "Symbol" lb_symbol.grid(row = 0, column = 0) lb_description = tk.Label(self.config_frame, width = 40) lb_description["text"] = "Detail" lb_description.grid(row = 0, column = 1) lb_enable = tk.Label(self.config_frame, width = 10) lb_enable["text"] = "Enable" lb_enable.grid(row = 0, column = 2) for i, config in enumerate(self.control.getConfigs()): symbol_entry = tk.Entry(self.config_frame, width=20) symbol_entry.insert(tk.END, config.symbol) symbol_entry.config(state = tk.DISABLED) symbol_entry.config(disabledforeground = "black", disabledbackground = "white") symbol_entry.grid(row= i + 1, column = 0) detail_entry = tk.Entry(self.config_frame, width=40) detail_entry.insert(tk.END, config.detail) detail_entry.config(state = tk.DISABLED) detail_entry.config(disabledforeground = "black", disabledbackground = "white") detail_entry.grid(row= i + 1, column = 1) bt_enable = tk.Button(self.config_frame, text="ON", width= 5) bt_enable["text"] = "ON" if config.enable else "OFF" color = "green" if config.enable else "red" bt_enable.config(bg=color, activebackground = color) bt_enable["command"] = lambda id = i, button = bt_enable : self.toggle_config_enable(id, button) bt_enable.grid(row = i + 1, column = 2) self.config_frame.pack(side=tk.TOP, anchor=tk.NW) self.value_config_frame = tk.Frame(self.root) # Config Table lb_symbol = tk.Label(self.value_config_frame, width = 20) lb_symbol["text"] = "Symbol" lb_symbol.grid(row = 0, column = 0) lb_description = tk.Label(self.value_config_frame, width = 40) lb_description["text"] = "Detail" lb_description.grid(row = 0, column = 1) lb_value = tk.Label(self.value_config_frame, width = 10) lb_value["text"] = "Value" lb_value.grid(row = 0, column = 2) lb_enable = tk.Label(self.value_config_frame, width = 10) lb_enable["text"] = "Enable" lb_enable.grid(row = 0, column = 3) for i, val_config in enumerate(self.control.getValConfigs()): symbol_entry = tk.Entry(self.value_config_frame, width=20) symbol_entry.insert(tk.END, val_config.symbol) symbol_entry.config(state = tk.DISABLED) symbol_entry.config(disabledforeground = "black", disabledbackground = "white") symbol_entry.grid(row= i + 1, column = 0) detail_entry = tk.Entry(self.value_config_frame, width=40) detail_entry.insert(tk.END, val_config.detail) detail_entry.config(state = tk.DISABLED) detail_entry.config(disabledforeground = "black", disabledbackground = "white") detail_entry.grid(row= i + 1, column = 1) value_entry = tk.Entry(self.value_config_frame, width=10) value_entry.insert(tk.END, val_config.value) value_entry.config(state = tk.DISABLED) value_entry.config(disabledforeground = "black", disabledbackground = "white") value_entry.grid(row= i + 1, column = 2) bt_enable = tk.Button(self.value_config_frame, text="ON", width= 5) bt_enable["text"] = "ON" if val_config.enable else "OFF" color = "green" if val_config.enable else "red" bt_enable.config(bg=color, activebackground = color) bt_enable["command"] = lambda id = i, button = bt_enable : self.toggle_val_config_enable(id, button) bt_enable.grid(row = i + 1, column = 3) self.value_config_frame.pack(side=tk.TOP, anchor=tk.W) # Generator Button self.bt_generate = tk.Button(self.root) self.bt_generate["text"] = "Generate Header" self.bt_generate["command"] = self.generateHeader self.bt_generate.pack(side=tk.BOTTOM, anchor=tk.SE) def start(self): self.root.mainloop() def generateHeader(self): self.control.generateHeader() tk.messagebox.showinfo("Header Generator Info", "Generated:{0}".format(self.control.header_config.path)) def update(self): pass def toggle_config_enable(self, id, button : tk.Button): config = self.control.getConfigs()[id] config.enable = not config.enable button["text"] = "ON" if config.enable else "OFF" color = "green" if config.enable else "red" button.config(bg=color, activebackground = color) def toggle_val_config_enable(self, id, button : tk.Button): val_config = self.control.getValConfigs()[id] val_config.enable = not val_config.enable button["text"] = "ON" if val_config.enable else "OFF" color = "green" if val_config.enable else "red" button.config(bg=color, activebackground = color)
2.859375
3
tests/bugs/core_3355_test.py
FirebirdSQL/firebird-qa
1
3681
<filename>tests/bugs/core_3355_test.py #coding:utf-8 # # id: bugs.core_3355 # title: Wrong comparsion of DATE and TIMESTAMP if index is used # decription: # tracker_id: CORE-3355 # min_versions: ['2.1.5'] # versions: 3.0 # qmid: None import pytest from firebird.qa import db_factory, isql_act, Action # version: 3.0 # resources: None substitutions_1 = [] init_script_1 = """create table tdate (id integer not null primary key, val date); create index tdateix1 on tdate (val); commit; insert into tdate values (0, '1997-12-31'); insert into tdate values (1, '1998-01-01'); insert into tdate values (2, '1998-01-02'); insert into tdate values (3, '1998-01-03'); insert into tdate values (4, '1998-01-04'); insert into tdate values (5, '1998-01-05'); commit; """ db_1 = db_factory(page_size=4096, sql_dialect=3, init=init_script_1) test_script_1 = """select count(*) from tdate where val >= timestamp'1998-01-04 12:00:00.0000'; select count(*) from tdate where val < timestamp'1998-01-04 12:00:00.0000'; """ act_1 = isql_act('db_1', test_script_1, substitutions=substitutions_1) expected_stdout_1 = """ COUNT ===================== 1 COUNT ===================== 5 """ @pytest.mark.version('>=3.0') def test_1(act_1: Action): act_1.expected_stdout = expected_stdout_1 act_1.execute() assert act_1.clean_stdout == act_1.clean_expected_stdout
1.84375
2
dags/download_decrypt_transfer_files.py
hms-dbmi/bch-pic-sure-airflow-dags
0
3682
<reponame>hms-dbmi/bch-pic-sure-airflow-dags """ @author: anilkdegala """ import os from airflow import DAG from airflow.operators.bash_operator import BashOperator from airflow.operators.python_operator import PythonOperator, BranchPythonOperator from datetime import date, timedelta, datetime from collections import OrderedDict from scripts.dag_pebbles import DagPebbles from airflow.configuration import conf from scripts.configurations import * from airflow.operators.dummy_operator import DummyOperator default_args = { "owner": "anilkdegala", "depends_on_past": True, "max_active_runs": 1, "start_date": datetime(2015, 6, 1), "is_active": True, "is_paused_upon_creation": False, } def begin_pipeline(**kwargs): print("begin_pipeline:") files = kwargs['dag_run'].conf.get('files') download_decrypt_arguments = '' transfer_arguments_list = [] for f in files: print("download_decrypt_transfer_files: file: ", f['name'], ', location: ', f['path']) output = f['name']+','+f['path']+','+f['final_name'] download_decrypt_arguments = download_decrypt_arguments + " " + output transfer_arguments_list.append(DATA_LOCATION + "/"+f['final_name']) transfer_arguments = ",".join(transfer_arguments_list) print("final download_decrypt_arguments: ",download_decrypt_arguments) print("final transfer_arguments: ",transfer_arguments) kwargs["ti"].xcom_push(key="download_decrypt_arguments", value=download_decrypt_arguments) kwargs["ti"].xcom_push(key="transfer_arguments", value=transfer_arguments) def pipeline_enable_check(**kwargs): dp = DagPebbles() if dp.pipeline_enable_check('DATA_LOAD'): return "pipeline_check_passed" else: return "pipeline_check_skipped" def pipeline_check_passed(**kwargs): print("pipeline_check_passed:") def end_pipeline(**kwargs): print("end_pipeline:") def pipeline_check_skipped(**kwargs): print("pipeline_check_skipped:") def cleanup(**kwargs): dp = DagPebbles() print("cleanup") def notify(**kwargs): dp = DagPebbles() print("notify") def end(**kwargs): dp = DagPebbles() print("end") with DAG( "DOWNLOAD_DECRYPT_TRANSFER", description="Download, Decrypt, Transfer files (Source: S3, Staging: EC2: Target: RDS Oracle)", default_args=default_args, schedule_interval=None, catchup=False, orientation="TB", tags=['Utils'], dagrun_timeout=timedelta(hours=240) ) as dag: t_pipeline_begin = PythonOperator( task_id="begin_pipeline", python_callable=begin_pipeline, provide_context=True, dag=dag, ) t_check_pipeline = BranchPythonOperator( task_id="check_pipeline", python_callable=pipeline_enable_check, provide_context=True, dag=dag, ) t_pipeline_check_passed = PythonOperator( task_id="pipeline_check_passed", python_callable=pipeline_check_passed, provide_context=True, dag=dag, ) t_pipeline_check_skipped = PythonOperator( task_id="pipeline_check_skipped", python_callable=pipeline_check_skipped, provide_context=True, dag=dag, ) download_files_cmd = "/opt/bitnami/airflow/airflow-data/scripts/download_files.sh "+"{{ ti.xcom_pull(key='download_decrypt_arguments')}}" t_download_files = BashOperator( task_id='download_files', bash_command=download_files_cmd, dag=dag) decrypt_files_cmd = "/opt/bitnami/airflow/airflow-data/scripts/decrypt_files.sh "+"{{ ti.xcom_pull(key='download_decrypt_arguments')}} " t_decrypt_files = BashOperator( task_id='decrypt_files', bash_command=decrypt_files_cmd, dag=dag) transfer_files_cmd = "/opt/bitnami/airflow/airflow-data/scripts/transfer_files_rds.pl "+"{{ ti.xcom_pull(key='transfer_arguments')}} " t_transfer_files = BashOperator( task_id='transfer_files', bash_command=transfer_files_cmd, dag=dag) t_end_pipeline = PythonOperator( task_id="end_pipeline", python_callable=end_pipeline, provide_context=True, trigger_rule="none_failed", dag=dag, ) t_notify = PythonOperator( task_id="send_notifications", python_callable=notify, provide_context=True, trigger_rule="none_failed", dag=dag, ) t_cleanup = PythonOperator( task_id="cleanup", python_callable=cleanup, provide_context=True, trigger_rule="none_failed", dag=dag, ) t_end = PythonOperator( task_id="end", python_callable=end, provide_context=True, trigger_rule="none_failed", dag=dag, ) t_pipeline_begin >> t_check_pipeline t_check_pipeline >> t_pipeline_check_skipped >> t_end_pipeline t_check_pipeline >> t_pipeline_check_passed >> t_download_files >> t_decrypt_files >> t_transfer_files >> t_end_pipeline t_end_pipeline >> t_cleanup >> t_notify >> t_end
2.1875
2
keystone-moon/keystone/endpoint_policy/controllers.py
hashnfv/hashnfv-moon
0
3683
<reponame>hashnfv/hashnfv-moon<gh_stars>0 # Copyright 2014 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from keystone.common import controller from keystone.common import dependency from keystone import notifications @dependency.requires('policy_api', 'catalog_api', 'endpoint_policy_api') class EndpointPolicyV3Controller(controller.V3Controller): collection_name = 'endpoints' member_name = 'endpoint' def __init__(self): super(EndpointPolicyV3Controller, self).__init__() notifications.register_event_callback( 'deleted', 'endpoint', self._on_endpoint_delete) notifications.register_event_callback( 'deleted', 'service', self._on_service_delete) notifications.register_event_callback( 'deleted', 'region', self._on_region_delete) notifications.register_event_callback( 'deleted', 'policy', self._on_policy_delete) def _on_endpoint_delete(self, service, resource_type, operation, payload): self.endpoint_policy_api.delete_association_by_endpoint( payload['resource_info']) def _on_service_delete(self, service, resource_type, operation, payload): self.endpoint_policy_api.delete_association_by_service( payload['resource_info']) def _on_region_delete(self, service, resource_type, operation, payload): self.endpoint_policy_api.delete_association_by_region( payload['resource_info']) def _on_policy_delete(self, service, resource_type, operation, payload): self.endpoint_policy_api.delete_association_by_policy( payload['resource_info']) @controller.protected() def create_policy_association_for_endpoint(self, context, policy_id, endpoint_id): """Create an association between a policy and an endpoint.""" self.policy_api.get_policy(policy_id) self.catalog_api.get_endpoint(endpoint_id) self.endpoint_policy_api.create_policy_association( policy_id, endpoint_id=endpoint_id) @controller.protected() def check_policy_association_for_endpoint(self, context, policy_id, endpoint_id): """Check an association between a policy and an endpoint.""" self.policy_api.get_policy(policy_id) self.catalog_api.get_endpoint(endpoint_id) self.endpoint_policy_api.check_policy_association( policy_id, endpoint_id=endpoint_id) @controller.protected() def delete_policy_association_for_endpoint(self, context, policy_id, endpoint_id): """Delete an association between a policy and an endpoint.""" self.policy_api.get_policy(policy_id) self.catalog_api.get_endpoint(endpoint_id) self.endpoint_policy_api.delete_policy_association( policy_id, endpoint_id=endpoint_id) @controller.protected() def create_policy_association_for_service(self, context, policy_id, service_id): """Create an association between a policy and a service.""" self.policy_api.get_policy(policy_id) self.catalog_api.get_service(service_id) self.endpoint_policy_api.create_policy_association( policy_id, service_id=service_id) @controller.protected() def check_policy_association_for_service(self, context, policy_id, service_id): """Check an association between a policy and a service.""" self.policy_api.get_policy(policy_id) self.catalog_api.get_service(service_id) self.endpoint_policy_api.check_policy_association( policy_id, service_id=service_id) @controller.protected() def delete_policy_association_for_service(self, context, policy_id, service_id): """Delete an association between a policy and a service.""" self.policy_api.get_policy(policy_id) self.catalog_api.get_service(service_id) self.endpoint_policy_api.delete_policy_association( policy_id, service_id=service_id) @controller.protected() def create_policy_association_for_region_and_service( self, context, policy_id, service_id, region_id): """Create an association between a policy and region+service.""" self.policy_api.get_policy(policy_id) self.catalog_api.get_service(service_id) self.catalog_api.get_region(region_id) self.endpoint_policy_api.create_policy_association( policy_id, service_id=service_id, region_id=region_id) @controller.protected() def check_policy_association_for_region_and_service( self, context, policy_id, service_id, region_id): """Check an association between a policy and region+service.""" self.policy_api.get_policy(policy_id) self.catalog_api.get_service(service_id) self.catalog_api.get_region(region_id) self.endpoint_policy_api.check_policy_association( policy_id, service_id=service_id, region_id=region_id) @controller.protected() def delete_policy_association_for_region_and_service( self, context, policy_id, service_id, region_id): """Delete an association between a policy and region+service.""" self.policy_api.get_policy(policy_id) self.catalog_api.get_service(service_id) self.catalog_api.get_region(region_id) self.endpoint_policy_api.delete_policy_association( policy_id, service_id=service_id, region_id=region_id) @controller.protected() def get_policy_for_endpoint(self, context, endpoint_id): """Get the effective policy for an endpoint.""" self.catalog_api.get_endpoint(endpoint_id) ref = self.endpoint_policy_api.get_policy_for_endpoint(endpoint_id) # NOTE(henry-nash): since the collection and member for this class is # set to endpoints, we have to handle wrapping this policy entity # ourselves. self._add_self_referential_link(context, ref) return {'policy': ref} # NOTE(henry-nash): As in the catalog controller, we must ensure that the # legacy_endpoint_id does not escape. @classmethod def filter_endpoint(cls, ref): if 'legacy_endpoint_id' in ref: ref.pop('legacy_endpoint_id') return ref @classmethod def wrap_member(cls, context, ref): ref = cls.filter_endpoint(ref) return super(EndpointPolicyV3Controller, cls).wrap_member(context, ref) @controller.protected() def list_endpoints_for_policy(self, context, policy_id): """List endpoints with the effective association to a policy.""" self.policy_api.get_policy(policy_id) refs = self.endpoint_policy_api.list_endpoints_for_policy(policy_id) return EndpointPolicyV3Controller.wrap_collection(context, refs)
1.6875
2
src/nibetaseries/cli/run.py
ipacheco-uy/NiBetaSeries
1
3684
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Module that contains the command line app. Why does this file exist, and why not put this in __main__? You might be tempted to import things from __main__ later, but that will cause problems: the code will get executed twice: - When you run `python -m nibetaseries` python will execute ``__main__.py`` as a script. That means there won't be any ``nibetaseries.__main__`` in ``sys.modules``. - When you import __main__ it will get executed again (as a module) because there's no ``nibetaseries.__main__`` in ``sys.modules``. Also see (1) from http://click.pocoo.org/5/setuptools/#setuptools-integration """ from __future__ import absolute_import import os import argparse from argparse import RawTextHelpFormatter from glob import glob from multiprocessing import cpu_count from nipype import config as ncfg def get_parser(): """Build parser object""" from ..__init__ import __version__ import sys verstr = 'nibs v{}'.format(__version__) parser = argparse.ArgumentParser(description='NiBetaSeries BIDS arguments', formatter_class=RawTextHelpFormatter) parser.add_argument('bids_dir', help='The directory with the input dataset ' 'formatted according to the BIDS standard.') parser.add_argument('derivatives_pipeline', help='The pipeline that contains ' 'minimally preprocessed img, brainmask, and confounds.tsv') parser.add_argument('output_dir', help='The directory where the output directory ' 'and files should be stored. If you are running group level analysis ' 'this folder should be prepopulated with the results of the' 'participant level analysis.') parser.add_argument('analysis_level', choices=['participant', 'group'], help='Level of the analysis that will be performed ' 'Multiple participant level analyses can be run independently ' '(in parallel) using the same output_dir') parser.add_argument('-v', '--version', action='version', version=verstr) # Atlas Arguments (Required Options) atlas_args = parser.add_argument_group('Required Atlas Arguments') atlas_args.add_argument('-a', '--atlas-img', action='store', required=('-l' in sys.argv or '--atlas-lut' in sys.argv), help='input atlas nifti where each voxel within a "region" ' 'is labeled with the same integer and there is a unique ' 'integer associated with each region of interest.') atlas_args.add_argument('-l', '--atlas-lut', action='store', required=('-a' in sys.argv or '--atlas-img' in sys.argv), help='atlas look up table (tsv) formatted with the columns: ' 'index, regions which correspond to the regions in the ' 'nifti file specified by --atlas-img.') # preprocessing options proc_opts = parser.add_argument_group('Options for processing') proc_opts.add_argument('--estimator', default='lss', choices=['lss', 'lsa'], help='beta series modeling method') proc_opts.add_argument('-sm', '--smoothing-kernel', action='store', type=float, default=6.0, help='select a smoothing kernel (mm)') proc_opts.add_argument('-hp', '--high-pass', action='store', type=float, default=0.0078125, help='high pass filter (Hz)') proc_opts.add_argument('-c', '--confounds', help='The confound column names ' 'that are to be included in nuisance regression. ' 'write the confounds you wish to include separated by a space', nargs="+") proc_opts.add_argument('--hrf-model', default='glover', choices=['glover', 'spm', 'fir', 'glover + derivative', 'glover + derivative + dispersion', 'spm + derivative', 'spm + derivative + dispersion'], help='convolve your regressors ' 'with one of the following hemodynamic response functions') proc_opts.add_argument('--fir-delays', default=None, nargs='+', type=int, help='FIR delays in volumes', metavar='VOL') proc_opts.add_argument('-w', '--work-dir', help='directory where temporary files ' 'are stored (i.e. non-essential files). ' 'This directory can be deleted once you are reasonably ' 'certain nibs finished as expected.') # Image Selection options image_opts = parser.add_argument_group('Options for selecting images') parser.add_argument('--participant-label', nargs="+", help='The label(s) of the participant(s) ' 'that should be analyzed. The label ' 'corresponds to sub-<participant_label> from the BIDS spec ' '(so it does not include "sub-"). If this parameter is not ' 'provided all subjects should be analyzed. Multiple ' 'participants can be specified with a space separated list.') image_opts.add_argument('--session-label', action='store', default=None, help='select a session to analyze') image_opts.add_argument('-t', '--task-label', action='store', default=None, help='select a specific task to be processed') image_opts.add_argument('--run-label', action='store', default=None, help='select a run to analyze') image_opts.add_argument('-sp', '--space-label', action='store', default='MNI152NLin2009cAsym', choices=['MNI152NLin2009cAsym'], help='select a bold derivative in a specific space to be used') image_opts.add_argument('--description-label', action='store', default=None, help='select a bold file with particular ' '`desc` label to process') image_opts.add_argument('--exclude-description-label', action='store_true', default=False, help='exclude this `desc` label from nibetaseries') # performance options g_perfm = parser.add_argument_group('Options to handle performance') g_perfm.add_argument('--nthreads', '-n-cpus', action='store', type=int, help='maximum number of threads across all processes') g_perfm.add_argument('--use-plugin', action='store', default=None, help='nipype plugin configuration file') # misc options misc = parser.add_argument_group('misc options') misc.add_argument('--graph', action='store_true', default=False, help='generates a graph png of the workflow') return parser def main(): from ..workflows.base import init_nibetaseries_participant_wf # get commandline options opts = get_parser().parse_args() # check inputs if (opts.hrf_model == 'fir') and (opts.fir_delays is None): raise ValueError('If the FIR HRF model is selected, ' 'FIR delays must be provided.') # Set up directories # TODO: set up some sort of versioning system bids_dir = os.path.abspath(opts.bids_dir) derivatives_pipeline_dir = os.path.join(bids_dir, 'derivatives', opts.derivatives_pipeline) output_dir = os.path.abspath(opts.output_dir) os.makedirs(output_dir, exist_ok=True) log_dir = os.path.join(output_dir, 'logs') os.makedirs(log_dir, exist_ok=True) if opts.work_dir: work_dir = os.path.abspath(opts.work_dir) else: work_dir = os.path.join(os.getcwd(), 'nibetaseries_work') os.makedirs(work_dir, exist_ok=True) # only for a subset of subjects if opts.participant_label: subject_list = opts.participant_label # for all subjects else: subject_dirs = glob(os.path.join(bids_dir, "sub-*")) subject_list = [subject_dir.split("-")[-1] for subject_dir in subject_dirs] # Nipype plugin configuration # Load base plugin_settings from file if --use-plugin if opts.use_plugin is not None: from yaml import load as loadyml with open(opts.use_plugin) as f: plugin_settings = loadyml(f) plugin_settings.setdefault('plugin_args', {}) else: # Defaults plugin_settings = { 'plugin': 'MultiProc', 'plugin_args': { 'raise_insufficient': False, 'maxtasksperchild': 1, } } # Resource management options # Note that we're making strong assumptions about valid plugin args # This may need to be revisited if people try to use batch plugins nthreads = plugin_settings['plugin_args'].get('n_procs') # Permit overriding plugin config with specific CLI options if nthreads is None or opts.nthreads is not None: nthreads = opts.nthreads if nthreads is None or nthreads < 1: nthreads = cpu_count() plugin_settings['plugin_args']['n_procs'] = nthreads # Nipype config (logs and execution) ncfg.update_config({ 'logging': {'log_directory': log_dir, 'log_to_file': True}, 'execution': {'crashdump_dir': log_dir, 'crashfile_format': 'txt', 'parameterize_dirs': False}, }) # running participant level if opts.analysis_level == "participant": nibetaseries_participant_wf = init_nibetaseries_participant_wf( estimator=opts.estimator, atlas_img=os.path.abspath(opts.atlas_img), atlas_lut=os.path.abspath(opts.atlas_lut), bids_dir=bids_dir, derivatives_pipeline_dir=derivatives_pipeline_dir, exclude_description_label=opts.exclude_description_label, fir_delays=opts.fir_delays, hrf_model=opts.hrf_model, high_pass=opts.high_pass, output_dir=output_dir, run_label=opts.run_label, selected_confounds=opts.confounds, session_label=opts.session_label, smoothing_kernel=opts.smoothing_kernel, space_label=opts.space_label, subject_list=subject_list, task_label=opts.task_label, description_label=opts.description_label, work_dir=work_dir, ) if opts.graph: nibetaseries_participant_wf.write_graph(graph2use='colored', format='svg', simple_form=True) try: nibetaseries_participant_wf.run(**plugin_settings) except RuntimeError as e: if "Workflow did not execute cleanly" in str(e): print("Workflow did not execute cleanly") else: raise e elif opts.analysis_level == "group": raise NotImplementedError('group analysis not currently implemented') def init(): if __name__ == "__main__": raise RuntimeError("NiBetaSeries/cli/run.py should not be run directly;\n" "Please `pip install` NiBetaSeries and use the `nibs` command") init()
1.65625
2
custom_components/senz/config_flow.py
astrandb/senz_hass
2
3685
<gh_stars>1-10 """Config flow for SENZ WiFi.""" from __future__ import annotations import logging from typing import Any import voluptuous as vol from homeassistant.components import persistent_notification from homeassistant.data_entry_flow import FlowResult from homeassistant.helpers import config_entry_oauth2_flow from .const import DOMAIN from .pysenz import PreAPI class OAuth2FlowHandler( config_entry_oauth2_flow.AbstractOAuth2FlowHandler, domain=DOMAIN ): """Config flow to handle SENZ WiFi OAuth2 authentication.""" DOMAIN = DOMAIN @property def logger(self) -> logging.Logger: """Return logger.""" return logging.getLogger(__name__) @property def extra_authorize_data(self) -> dict: """Extra data that needs to be appended to the authorize url.""" return { "scope": "restapi offline_access", } async def async_step_reauth( self, entry: dict[str, Any] | None = None ) -> FlowResult: """Perform reauth upon an API authentication error.""" self.entry = entry persistent_notification.async_create( self.hass, f"Senz integration for account {entry['auth_implementation']} needs to be re-authenticated. Please go to the [integrations page](/config/integrations) to re-configure it.", "Senz re-authentication", "senz_reauth", ) return await self.async_step_reauth_confirm() async def async_step_reauth_confirm( self, user_input: dict[str, Any] | None = None ) -> FlowResult: """Dialog that informs the user that reauth is required.""" if user_input is None: return self.async_show_form( step_id="reauth_confirm", description_placeholders={"account": self.entry["auth_implementation"]}, data_schema=vol.Schema({}), errors={}, ) persistent_notification.async_dismiss(self.hass, "senz_reauth") return await self.async_step_user() async def async_oauth_create_entry(self, data: dict) -> dict: """Create an oauth config entry or update existing entry for reauth.""" pre_api = PreAPI(self.hass) resp = await pre_api.getAccount(data["token"]["access_token"]) account = resp["userName"] existing_entry = await self.async_set_unique_id(account) if existing_entry: self.hass.config_entries.async_update_entry(existing_entry, data=data) await self.hass.config_entries.async_reload(existing_entry.entry_id) return self.async_abort(reason="reauth_successful") return self.async_create_entry(title=account, data=data)
2.296875
2
astropy_helpers/git_helpers.py
bsipocz/astropy-helpers
9
3686
<reponame>bsipocz/astropy-helpers # Licensed under a 3-clause BSD style license - see LICENSE.rst """ Utilities for retrieving revision information from a project's git repository. """ # Do not remove the following comment; it is used by # astropy_helpers.version_helpers to determine the beginning of the code in # this module # BEGIN import locale import os import subprocess import warnings def _decode_stdio(stream): try: stdio_encoding = locale.getdefaultlocale()[1] or 'utf-8' except ValueError: stdio_encoding = 'utf-8' try: text = stream.decode(stdio_encoding) except UnicodeDecodeError: # Final fallback text = stream.decode('latin1') return text def update_git_devstr(version, path=None): """ Updates the git revision string if and only if the path is being imported directly from a git working copy. This ensures that the revision number in the version string is accurate. """ try: # Quick way to determine if we're in git or not - returns '' if not devstr = get_git_devstr(sha=True, show_warning=False, path=path) except OSError: return version if not devstr: # Probably not in git so just pass silently return version if 'dev' in version: # update to the current git revision version_base = version.split('.dev', 1)[0] devstr = get_git_devstr(sha=False, show_warning=False, path=path) return version_base + '.dev' + devstr else: # otherwise it's already the true/release version return version def get_git_devstr(sha=False, show_warning=True, path=None): """ Determines the number of revisions in this repository. Parameters ---------- sha : bool If True, the full SHA1 hash will be returned. Otherwise, the total count of commits in the repository will be used as a "revision number". show_warning : bool If True, issue a warning if git returns an error code, otherwise errors pass silently. path : str or None If a string, specifies the directory to look in to find the git repository. If `None`, the current working directory is used, and must be the root of the git repository. If given a filename it uses the directory containing that file. Returns ------- devversion : str Either a string with the revision number (if `sha` is False), the SHA1 hash of the current commit (if `sha` is True), or an empty string if git version info could not be identified. """ if path is None: path = os.getcwd() if not os.path.isdir(path): path = os.path.abspath(os.path.dirname(path)) if sha: # Faster for getting just the hash of HEAD cmd = ['rev-parse', 'HEAD'] else: cmd = ['rev-list', '--count', 'HEAD'] def run_git(cmd): try: p = subprocess.Popen(['git'] + cmd, cwd=path, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) stdout, stderr = p.communicate() except OSError as e: if show_warning: warnings.warn('Error running git: ' + str(e)) return (None, b'', b'') if p.returncode == 128: if show_warning: warnings.warn('No git repository present at {0!r}! Using ' 'default dev version.'.format(path)) return (p.returncode, b'', b'') if p.returncode == 129: if show_warning: warnings.warn('Your git looks old (does it support {0}?); ' 'consider upgrading to v1.7.2 or ' 'later.'.format(cmd[0])) return (p.returncode, stdout, stderr) elif p.returncode != 0: if show_warning: warnings.warn('Git failed while determining revision ' 'count: {0}'.format(_decode_stdio(stderr))) return (p.returncode, stdout, stderr) return p.returncode, stdout, stderr returncode, stdout, stderr = run_git(cmd) if not sha and returncode == 128: # git returns 128 if the command is not run from within a git # repository tree. In this case, a warning is produced above but we # return the default dev version of '0'. return '0' elif not sha and returncode == 129: # git returns 129 if a command option failed to parse; in # particular this could happen in git versions older than 1.7.2 # where the --count option is not supported # Also use --abbrev-commit and --abbrev=0 to display the minimum # number of characters needed per-commit (rather than the full hash) cmd = ['rev-list', '--abbrev-commit', '--abbrev=0', 'HEAD'] returncode, stdout, stderr = run_git(cmd) # Fall back on the old method of getting all revisions and counting # the lines if returncode == 0: return str(stdout.count(b'\n')) else: return '' elif sha: return _decode_stdio(stdout)[:40] else: return _decode_stdio(stdout).strip() # This function is tested but it is only ever executed within a subprocess when # creating a fake package, so it doesn't get picked up by coverage metrics. def _get_repo_path(pathname, levels=None): # pragma: no cover """ Given a file or directory name, determine the root of the git repository this path is under. If given, this won't look any higher than ``levels`` (that is, if ``levels=0`` then the given path must be the root of the git repository and is returned if so. Returns `None` if the given path could not be determined to belong to a git repo. """ if os.path.isfile(pathname): current_dir = os.path.abspath(os.path.dirname(pathname)) elif os.path.isdir(pathname): current_dir = os.path.abspath(pathname) else: return None current_level = 0 while levels is None or current_level <= levels: if os.path.exists(os.path.join(current_dir, '.git')): return current_dir current_level += 1 if current_dir == os.path.dirname(current_dir): break current_dir = os.path.dirname(current_dir) return None
2.109375
2
src/sot_talos_balance/test/test_feet_admittance.py
imaroger/sot-talos-balance
0
3687
<reponame>imaroger/sot-talos-balance '''Test feet admittance control''' from sot_talos_balance.utils.run_test_utils import run_ft_calibration, run_test, runCommandClient try: # Python 2 input = raw_input # noqa except NameError: pass run_test('appli_feet_admittance.py') run_ft_calibration('robot.ftc') input("Wait before running the test") print('Set saturation value') runCommandClient('robot.admBF_dqSaturation.sin.value = [0.0, 0.0, 0.01, 0.0, 0.0, 0.0]') input("Wait before dumping the data") runCommandClient('dump_tracer(robot.tracer)')
2.046875
2
tests/test_db.py
davebryson/py-tendermint
24
3688
<reponame>davebryson/py-tendermint import os from tendermint.db import VanillaDB from tendermint.utils import home_dir def test_database(): dbfile = home_dir('temp', 'test.db') db = VanillaDB(dbfile) db.set(b'dave',b'one') result = db.get(b'dave') assert(b'one' == result) db.set(b'dave',b'two') result = db.get(b'dave') assert(b'two' == result) assert(None == db.get(b'doesntexist')) assert(db.exists(b'dave')) db.delete(b'dave') assert(db.exists(b'dave') == False) if os.path.exists(dbfile): os.remove(dbfile)
2.46875
2
auth/tests/test_views.py
asb29/Redundant
0
3689
from django.test import TestCase from django.test import Client class RegisterTestCase(TestCase): def test_register(self): c = Client() # on success redirects to / response = c.post('/accounts/register/', { 'username': 'asdas', 'password1': '<PASSWORD>', 'password2': '<PASSWORD>' }) self.assertRedirects(response, '/') # passwords don't match response = c.post('/accounts/register/', { 'username': 'asdasdasd1', 'password1': '<PASSWORD>', 'password2': '<PASSWORD>' }) self.assertEquals(response.status_code, 200) # username is empty response = c.post('/accounts/register/', { 'username': '', 'password1': '<PASSWORD>', 'password2': '<PASSWORD>' }) self.assertEquals(response.status_code, 200) # no password response = c.post('/accounts/register/', { 'username': 'asdasdasd', 'password1': '', 'password2': '' }) self.assertEquals(response.status_code, 200) # username and password are similar response = c.post('/accounts/register/', { 'username': 'asdasdasd0', 'password1': '<PASSWORD>', 'password2': '<PASSWORD>' }) self.assertEquals(response.status_code, 200)
2.875
3
projects/OneNet/onenet/head.py
iFighting/OneNet
2
3690
# # Modified by <NAME> # Contact: <EMAIL> # # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ OneNet Transformer class. Copy-paste from torch.nn.Transformer with modifications: * positional encodings are passed in MHattention * extra LN at the end of encoder is removed * decoder returns a stack of activations from all decoding layers """ import copy import math from typing import Optional, List import torch from torch import nn, Tensor import torch.nn.functional as F from detectron2.modeling.poolers import ROIPooler, cat from detectron2.structures import Boxes from .deconv import CenternetDeconv class Head(nn.Module): def __init__(self, cfg, backbone_shape=[2048, 1024, 512, 256]): super().__init__() # Build heads. num_classes = cfg.MODEL.OneNet.NUM_CLASSES d_model = cfg.MODEL.OneNet.DECONV_CHANNEL[-1] activation = cfg.MODEL.OneNet.ACTIVATION self.deconv = CenternetDeconv(cfg, backbone_shape) self.num_classes = num_classes self.d_model = d_model self.num_classes = num_classes self.activation = _get_activation_fn(activation) self.feat1 = nn.Conv2d(self.d_model, self.d_model, kernel_size=3, stride=1, padding=1) self.cls_score = nn.Conv2d(d_model, num_classes, kernel_size=3, stride=1, padding=1) self.ltrb_pred = nn.Conv2d(d_model, 4, kernel_size=3, stride=1, padding=1) # Init parameters. prior_prob = cfg.MODEL.OneNet.PRIOR_PROB self.bias_value = -math.log((1 - prior_prob) / prior_prob) self._reset_parameters() def _reset_parameters(self): # init all parameters. for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) # initialize the bias for focal loss. if p.shape[-1] == self.num_classes: nn.init.constant_(p, self.bias_value) def forward(self, features_list): features = self.deconv(features_list) locations = self.locations(features)[None] feat = self.activation(self.feat1(features)) class_logits = self.cls_score(feat) pred_ltrb = F.relu(self.ltrb_pred(feat)) pred_bboxes = self.apply_ltrb(locations, pred_ltrb) return class_logits, pred_bboxes def apply_ltrb(self, locations, pred_ltrb): """ :param locations: (1, 2, H, W) :param pred_ltrb: (N, 4, H, W) """ pred_boxes = torch.zeros_like(pred_ltrb) pred_boxes[:,0,:,:] = locations[:,0,:,:] - pred_ltrb[:,0,:,:] # x1 pred_boxes[:,1,:,:] = locations[:,1,:,:] - pred_ltrb[:,1,:,:] # y1 pred_boxes[:,2,:,:] = locations[:,0,:,:] + pred_ltrb[:,2,:,:] # x2 pred_boxes[:,3,:,:] = locations[:,1,:,:] + pred_ltrb[:,3,:,:] # y2 return pred_boxes @torch.no_grad() def locations(self, features, stride=4): """ Arguments: features: (N, C, H, W) Return: locations: (2, H, W) """ h, w = features.size()[-2:] device = features.device shifts_x = torch.arange( 0, w * stride, step=stride, dtype=torch.float32, device=device ) shifts_y = torch.arange( 0, h * stride, step=stride, dtype=torch.float32, device=device ) shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) shift_x = shift_x.reshape(-1) shift_y = shift_y.reshape(-1) locations = torch.stack((shift_x, shift_y), dim=1) + stride // 2 locations = locations.reshape(h, w, 2).permute(2, 0, 1) return locations def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
2.328125
2
mermaid/utils.py
HastingsGreer/mermaid
120
3691
<gh_stars>100-1000 """Various utility functions. .. todo:: Reorganize this package in a more meaningful way. """ from __future__ import print_function from __future__ import absolute_import # from builtins import str # from builtins import range import torch from torch.nn.parameter import Parameter from torch.autograd import Variable from .libraries.modules.stn_nd import STN_ND_BCXYZ from .data_wrapper import AdaptVal from .data_wrapper import MyTensor from . import smoother_factory as sf from .data_wrapper import USE_CUDA import numpy as np from . import finite_differences as fd import torch.nn as nn import torch.nn.init as init from . import module_parameters as pars from .spline_interpolation import SplineInterpolation_ND_BCXYZ import os try: from .libraries.functions.nn_interpolation import get_nn_interpolation except ImportError: print('WARNING: nn_interpolation could not be imported (only supported in CUDA at the moment). ' 'Some functionality may not be available.') def my_hasnan(x): """Check if any input elements are NaNs. :param x: numpy array :return: True if NaNs are present, False else """ return (x != x).any() def create_symlink_with_correct_ext(sf, tf): abs_s = os.path.abspath(sf) ext_s = os.path.splitext(abs_s)[1] abs_t = os.path.abspath(tf) root_t,ext_t = os.path.splitext(abs_t) abs_t_with_right_ext = root_t + ext_s if os.path.isfile(abs_t_with_right_ext): if os.path.samefile(abs_s,abs_t_with_right_ext): # nothing to do here, these are already the same file return else: os.remove(abs_t_with_right_ext) # now we can do the symlink os.symlink(abs_s,abs_t_with_right_ext) def combine_dict(d1,d2): """Creates a dictionary which has entries from both of them. :param d1: dictionary 1 :param d2: dictionary 2 :return: resulting dictionary """ d = d1.copy() d.update(d2) return d def get_parameter_list_from_parameter_dict(pd): """Takes a dictionary which contains key value pairs for model parameters and converts it into a list of parameters that can be used as an input to an optimizer. :param pd: parameter dictionary :return: list of parameters """ pl = [] for key in pd: pl.append(pd[key]) return pl def get_parameter_list_and_par_to_name_dict_from_parameter_dict(pd): """Same as get_parameter_list_from_parameter_dict; but also returns a dictionary which keeps track of the keys based on memory id. :param pd: parameter dictionary :return: tuple of (parameter_list, name_dictionary) """ par_to_name_dict = dict() pl = [] for key in pd: pl.append(pd[key]) par_to_name_dict[pd[key]] = key return pl, par_to_name_dict def remove_infs_from_variable(v): # 32 - bit floating point: torch.FloatTensor, torch.cuda.FloatTensor # 64 - bit floating point: torch.DoubleTensor, torch.cuda.DoubleTensor # 16 - bit floating point: torch.HalfTensor, torch.cuda.HalfTensor # todo: maybe find a cleaner way of handling this # this is to make sure that subsequent sums work (hence will be smaller than it could be, # but values of this size should not occur in practice anyway sz = v.size() reduction_factor = np.prod(np.array(sz)) condition = True if type(v.data) == torch.cuda.FloatTensor or v.data.dtype==torch.float32: return torch.clamp(v, min=(np.asscalar(np.finfo('float32').min))/reduction_factor, max=(np.asscalar(np.finfo('float32').max))/reduction_factor) elif v.data.dtype == torch.DoubleTensor or type(v.data) == torch.cuda.DoubleTensor: return torch.clamp(v, min=(np.asscalar(np.finfo('float64').min))/reduction_factor, max=(np.asscalar(np.finfo('float64').max))/reduction_factor) elif v.data.dtype == torch.HalfTensor or type(v.data) == torch.cuda.HalfTensor: return torch.clamp(v, min=(np.asscalar(np.finfo('float16').min))/reduction_factor, max=(np.asscalar(np.finfo('float16').max))/reduction_factor) else: raise ValueError('Unknown data type: ' + str( type(v.data))) def lift_to_dimension(A, dim): """Creates a view of A of dimension dim (by adding dummy dimensions if necessary). :param A: numpy array :param dim: desired dimension of view :return: returns view of A of appropriate dimension """ current_dim = len(A.shape) if current_dim > dim: raise ValueError('Can only add dimensions, but not remove them') if current_dim == dim: return A else: return A.reshape([1]*(dim-current_dim)+list(A.shape)) def get_dim_of_affine_transform(Ab): """Returns the number of dimensions corresponding to an affine transformation of the form y=Ax+b stored in a column vector. For A =[a1,a2,a3], the parameter vector is simply [a1;a2;a3;b], i.e., all columns stacked on top of each other. :param Ab: parameter vector :return: dimensionality of transform (1,2,or 3) """ nr = len(Ab) if nr==2: return 1 elif nr==6: return 2 elif nr==12: return 3 else: raise ValueError('Only supports dimensions 1, 2, and 3.') def set_affine_transform_to_identity(Ab): """Sets the affine transformation as given by the column vector Ab to the identity transform. :param Ab: Affine parameter vector (will be overwritten with the identity transform) :return: """ dim = get_dim_of_affine_transform(Ab) if dim==1: Ab.zero_() Ab[0]=1. elif dim==2: Ab.zero_() Ab[0]=1. Ab[3]=1. elif dim==3: Ab.zero_() Ab[0]=1. Ab[4]=1. Ab[8]=1. else: raise ValueError('Only supports dimensions 1, 2, and 3.') def set_affine_transform_to_identity_multiN(Ab): """Set the affine transforms to the identity (in the case of arbitrary batch size). :param Ab: Parameter vectors B x pars (batch size x param. vector); will be overwritten with identity trans. :return: """ sz = Ab.size() nr_of_images = sz[0] for nrI in range(nr_of_images): set_affine_transform_to_identity(Ab[nrI, :]) def get_inverse_affine_param(Ab): """Computes inverse of affine transformation. Formally: C(Ax+b)+d = CAx+Cb+d = x; C = inv(A), d = -Cb :param Ab: B x pars (batch size x param. vector) :return: Inverse of affine parameters """ dim =0 if Ab.shape[1] == 2: dim = 1 elif Ab.shape[1] == 6: dim = 2 elif Ab.shape[1] == 12: dim = 3 if dim not in [1, 2, 3]: raise ValueError('Only supports dimensions 1, 2, and 3.') Ab = Ab.view(Ab.shape[0], dim+1, dim).transpose(1,2) Ab_inv = torch.zeros_like(Ab) for n in range(Ab.shape[0]): tm_inv = torch.inverse(Ab[n, :, :dim]) Ab_inv[n, :, :dim] = tm_inv Ab_inv[n, :, dim] = - torch.matmul(tm_inv, Ab[n,:,dim]) inv_affine_param = Ab_inv.transpose(1, 2).contiguous().view(Ab.shape[0], -1) return inv_affine_param def update_affine_param(Ab, Cd): """Update affine parameters. Formally: C(Ax+b)+d = CAx+Cb+d :param Ab: B x pars (batch size x param. vector) :return: Updated affine parameters """ dim = 0 if Ab.shape[1]==2: dim = 1 elif Ab.shape[1]==6: dim = 2 elif Ab.shape[1]==12: dim = 3 if dim not in [1, 2, 3]: raise ValueError('Only supports dimensions 1, 2, and 3.') Ab = Ab.view(Ab.shape[0], dim+1, dim).transpose(1, 2) Cd = Cd.view(Cd.shape[0], dim+1, dim).transpose(1, 2) updated_param = torch.zeros_like(Ab) for n in range(Ab.shape[0]): tm_param = torch.matmul(Cd[n,:,:dim],Ab[n,:,:dim]) updated_param[n,:,:dim] = tm_param updated_param[n,:,dim] = torch.matmul(Cd[n,:,:dim], Ab[n,:,dim]) +Cd[n,:,dim] updated_param = updated_param.transpose(1,2).contiguous().view(Ab.shape[0],-1) return updated_param def apply_affine_transform_to_map(Ab,phi): """Applies an affine transform to a map. :param Ab: affine transform parameter column vector :param phi: map; format nrCxXxYxZ (nrC corresponds to dimension) :return: returns transformed map """ sz = phi.size() dim = len(sz) - 1 if dim not in [1,2,3]: raise ValueError('Only supports dimensions 1, 2, and 3.') phiR = MyTensor(sz).zero_().type_as(phi) if dim == 1: phiR = phi * Ab[0] + Ab[1] elif dim == 2: phiR[0, ...] = Ab[0] * phi[0, ...] + Ab[2] * phi[1, ...] + Ab[4] # a_11x+a_21y+b1 phiR[1, ...] = Ab[1] * phi[0, ...] + Ab[3] * phi[1, ...] + Ab[5] # a_12x+a_22y+b2 elif dim == 3: phiR[0, ...] = Ab[0] * phi[0, ...] + Ab[3] * phi[1, ...] + Ab[6] * phi[2, ...] + Ab[9] phiR[1, ...] = Ab[1] * phi[0, ...] + Ab[4] * phi[1, ...] + Ab[7] * phi[2, ...] + Ab[10] phiR[2, ...] = Ab[2] * phi[0, ...] + Ab[5] * phi[1, ...] + Ab[8] * phi[2, ...] + Ab[11] else: raise ValueError('Only supports dimensions 1, 2, and 3.') return phiR def apply_affine_transform_to_map_multiNC(Ab,phi): """Applies an affine transform to maps (for arbitrary batch size). :param Ab: affine transform parameter column vectors (batch size x param. vector) :param phi: maps; format batchxnrCxXxYxZ (nrC corresponds to dimension) :return: returns transformed maps """ sz = phi.size() dim = get_dim_of_affine_transform(Ab[0,:]) nr_of_images = Ab.size()[0] if nr_of_images != sz[0]: raise ValueError('Incompatible number of affine transforms') if dim != len(sz)-2: raise ValueError('Incompatible number of affine transforms') phiR = MyTensor(sz).zero_().type_as(phi) for nrI in range(nr_of_images): phiR[nrI, ...] = apply_affine_transform_to_map(Ab[nrI, :], phi[nrI, ...]) return phiR def compute_normalized_gaussian(X, mu, sig): """Computes a normalized Gaussian. :param X: map with coordinates at which to evaluate :param mu: array indicating the mean :param sig: array indicating the standard deviations for the different dimensions :return: Normalized Gaussian evaluated at coordinates in X Example:: >>> mu, sig = [1,1], [1,1] >>> X = [0,0] >>> print(compute_normalized_gaussian(X, mu, sig) """ dim = len(mu) if dim == 1: g = np.exp(-np.power(X[0, :] - mu[0], 2.)/(2*np.power(sig[0], 2.))) g = g/g.sum() return g elif dim == 2: g = np.exp(-np.power(X[0,:,:]-mu[0],2.)/(2*np.power(sig[0],2.)) - np.power(X[1,:, :] - mu[1], 2.) / (2 * np.power(sig[1], 2.))) g = g/g.sum() return g elif dim == 3: g = np.exp(-np.power(X[0,:, :, :] - mu[0], 2.) / (2 * np.power(sig[0], 2.)) -np.power(X[1,:, :, :] - mu[1], 2.) / (2 * np.power(sig[1], 2.)) -np.power(X[2,:, :, :] - mu[2], 2.) / (2 * np.power(sig[2], 2.))) g = g / g.sum() return g else: raise ValueError('Can only compute Gaussians in dimensions 1-3') def _compute_warped_image_multiNC_1d(I0, phi, spacing, spline_order, zero_boundary=False, use_01_input=True): if spline_order not in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]: raise ValueError('Currently only orders 0 to 9 are supported') if spline_order == 0: stn = STN_ND_BCXYZ(spacing, zero_boundary, use_bilinear=False, use_01_input=use_01_input) elif spline_order == 1: stn = STN_ND_BCXYZ(spacing, zero_boundary, use_bilinear=True, use_01_input=use_01_input) else: stn = SplineInterpolation_ND_BCXYZ(spacing, spline_order) I1_warped = stn(I0, phi) return I1_warped def _compute_warped_image_multiNC_2d(I0, phi, spacing, spline_order,zero_boundary=False,use_01_input=True): if spline_order not in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]: raise ValueError('Currently only orders 0 to 9 are supported') if spline_order == 0: stn = STN_ND_BCXYZ(spacing, zero_boundary, use_bilinear=False, use_01_input=use_01_input) elif spline_order == 1: stn = STN_ND_BCXYZ(spacing, zero_boundary, use_bilinear=True, use_01_input=use_01_input) else: stn = SplineInterpolation_ND_BCXYZ(spacing, spline_order) I1_warped = stn(I0, phi) return I1_warped def _compute_warped_image_multiNC_3d(I0, phi, spacing, spline_order,zero_boundary=False,use_01_input=True): if spline_order not in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]: raise ValueError('Currently only orders 0 to 9 are supported') if spline_order == 0: # return get_warped_label_map(I0,phi,spacing) stn = STN_ND_BCXYZ(spacing, zero_boundary, use_bilinear=False, use_01_input=use_01_input) elif spline_order == 1: stn = STN_ND_BCXYZ(spacing,zero_boundary, use_bilinear=True, use_01_input=use_01_input) else: stn = SplineInterpolation_ND_BCXYZ(spacing, spline_order) I1_warped = stn(I0, phi) return I1_warped def compute_warped_image(I0, phi, spacing, spline_order, zero_boundary=False, use_01_input=True): """Warps image. :param I0: image to warp, image size XxYxZ :param phi: map for the warping, size dimxXxYxZ :param spacing: image spacing [dx,dy,dz] :return: returns the warped image of size XxYxZ """ # implements this by creating a different view (effectively adding dimensions) Iw = compute_warped_image_multiNC(I0.view(torch.Size([1, 1] + list(I0.size()))), phi.view(torch.Size([1] + list(phi.size()))), spacing, spline_order, zero_boundary, use_01_input) return Iw.view(I0.size()) def compute_warped_image_multiNC(I0, phi, spacing, spline_order, zero_boundary=False, use_01_input=True): """Warps image. :param I0: image to warp, image size BxCxXxYxZ :param phi: map for the warping, size BxdimxXxYxZ :param spacing: image spacing [dx,dy,dz] :return: returns the warped image of size BxCxXxYxZ """ dim = I0.dim()-2 if dim == 1: return _compute_warped_image_multiNC_1d(I0, phi, spacing, spline_order,zero_boundary,use_01_input=use_01_input) elif dim == 2: return _compute_warped_image_multiNC_2d(I0, phi, spacing, spline_order,zero_boundary,use_01_input=use_01_input) elif dim == 3: return _compute_warped_image_multiNC_3d(I0, phi, spacing, spline_order,zero_boundary,use_01_input=use_01_input) else: raise ValueError('Images can only be warped in dimensions 1 to 3') def _get_low_res_spacing_from_spacing(spacing, sz, lowResSize): """Computes spacing for the low-res parametrization from image spacing. :param spacing: image spacing :param sz: size of image :param lowResSize: size of low re parameterization :return: returns spacing of low res parameterization """ #todo: check that this is the correct way of doing it return spacing * (np.array(sz[2::])-1) / (np.array(lowResSize[2::])-1) def _get_low_res_size_from_size(sz, factor): """Returns the corresponding low-res size from a (high-res) sz. :param sz: size (high-res) :param factor: low-res factor (needs to be <1) :return: low res size """ if (factor is None) or (factor >= 1): print('WARNING: Could not compute low_res_size as factor was ' + str(factor)) return np.array(sz) else: low_res_sz = np.array(sz) low_res_sz[2::] = (np.ceil((np.array(sz[2::]) * factor))).astype('int16') return low_res_sz def _compute_low_res_image(I, spacing, low_res_size, spline_order): import mermaid.image_sampling as IS sampler = IS.ResampleImage() low_res_image, _ = sampler.downsample_image_to_size(I, spacing, low_res_size[2::],spline_order) return low_res_image def individual_parameters_to_model_parameters(ind_pars): model_pars = dict() if type(ind_pars) == type(dict()): # should already be in the right format model_pars = ind_pars else: # if ind_pars is not a dictionary assume that they come from the optimizer # (i.e., list and each list element has a dictionary with keys 'name' and 'model_params' for par in ind_pars: model_pars[par['name']] = par['model_params'] return model_pars def compute_vector_momentum_from_scalar_momentum_multiNC(lam, I, sz, spacing): """Computes the vector momentum from the scalar momentum: :math:`m=\\lambda\\nabla I`. :param lam: scalar momentum, BxCxXxYxZ :param I: image, BxCxXxYxZ :param sz: size of image :param spacing: spacing of image :return: returns the vector momentum """ nrOfI = sz[0] # number of images m = create_ND_vector_field_variable_multiN(sz[2::], nrOfI) # attention that the second dimension here is image dim, not nrOfC nrOfC = sz[1] for c in range(nrOfC): # loop over all the channels and add the results m = m + compute_vector_momentum_from_scalar_momentum_multiN(lam[:, c, ...], I[:, c, ...], nrOfI, sz[2::], spacing) return m def compute_vector_momentum_from_scalar_momentum_multiN(lam, I, nrOfI, sz, spacing): """Computes the vector momentum from the scalar momentum: :math:`m=\\lambda\\nabla I`. :param lam: scalar momentum, batchxXxYxZ :param I: image, batchXxYxZ :param sz: size of image :param spacing: spacing of image :return: returns the vector momentum """ fdt = fd.FD_torch(spacing) dim = len(sz) m = create_ND_vector_field_variable_multiN(sz, nrOfI) if dim == 1: m[:, 0, :] = fdt.dXc(I)*lam elif dim == 2: m[:, 0, :, :] = fdt.dXc(I)*lam m[:, 1, :, :] = fdt.dYc(I)*lam elif dim == 3: m[:, 0, :, :, :] = fdt.dXc(I)*lam m[:, 1, :, :, :] = fdt.dYc(I)*lam m[:, 2, :, :, :] = fdt.dZc(I)*lam else: raise ValueError('Can only convert scalar to vector momentum in dimensions 1-3') return m def create_ND_vector_field_variable_multiN(sz, nr_of_images=1): """ Create vector field torch Variable of given size :param sz: just the spatial sizes (e.g., [5] in 1D, [5,10] in 2D, [5,10,10] in 3D) :param nrOfI: number of images :return: returns vector field of size nrOfIxdimxXxYxZ """ dim = len(sz) csz = np.array(sz) # just to make sure it is a numpy array csz = np.array([nr_of_images, dim]+list(csz)) return MyTensor(*(csz.tolist())).normal_(0., 1e-7) def create_ND_vector_field_variable(sz): """Create vector field torch Variable of given size. :param sz: just the spatial sizes (e.g., [5] in 1D, [5,10] in 2D, [5,10,10] in 3D) :return: returns vector field of size dimxXxYxZ """ dim = len(sz) csz = np.array(sz) # just to make sure it is a numpy array csz = np.array([dim]+list(csz)) return MyTensor(*(csz.tolist())).normal_(0.,1e-7) def create_vector_parameter(nr_of_elements): """Creates a vector parameters with a specified number of elements. :param nr_of_elements: number of vector elements :return: returns the parameter vector """ return Parameter(MyTensor(nr_of_elements).normal_(0., 1e-7)) def create_ND_vector_field_parameter_multiN(sz, nrOfI=1,get_field_from_external_network=False): """Create vector field torch Parameter of given size. :param sz: just the spatial sizes (e.g., [5] in 1D, [5,10] in 2D, [5,10,10] in 3D) :param nrOfI: number of images :return: returns vector field of size nrOfIxdimxXxYxZ """ dim = len(sz) csz = np.array(sz) # just to make sure it is a numpy array csz = np.array([nrOfI, dim]+list(csz)) if get_field_from_external_network: tmp = MyTensor(*(csz.tolist())).normal_(0.,1e-7) tmp.requires_grad = True else: tmp = Parameter(MyTensor(*(csz.tolist())).normal_(0.,1e-7)) return tmp def create_local_filter_weights_parameter_multiN(sz,gaussian_std_weights, nrOfI=1,sched='w_K_w',get_preweight_from_network=False): """ Create vector field torch Parameter of given size :param sz: just the spatial sizes (e.g., [5] in 1D, [5,10] in 2D, [5,10,10] in 3D) :param nrOfI: number of images :return: returns vector field of size nrOfIxdimxXxYxZ """ nr_of_mg_weights = len(gaussian_std_weights) csz = np.array(sz) # just to make sure it is a numpy array csz = np.array([nrOfI,nr_of_mg_weights]+list(csz)) weights = torch.empty(*csz) # set the default if sched =='w_K_w': gaussian_std_weights = [torch.sqrt(std_w) for std_w in gaussian_std_weights] for g in range(nr_of_mg_weights): weights[:, g, ...] = gaussian_std_weights[g] tmp = AdaptVal(weights) if get_preweight_from_network: tmp.requires_grad = True else: tmp = Parameter(tmp) return tmp def create_ND_scalar_field_parameter_multiNC(sz, nrOfI=1, nrOfC=1): """ Create vector field torch Parameter of given size :param sz: just the spatial sizes (e.g., [5] in 1D, [5,10] in 2D, [5,10,10] in 3D) :param nrOfI: number of images :param nrOfC: number of channels :return: returns vector field of size nrOfIxnrOfCxXxYxZ """ csz = np.array(sz) # just to make sure it is a numpy array csz = np.array([nrOfI,nrOfC]+list(csz)) return Parameter(MyTensor(*(csz.tolist())).normal_(0.,1e-7)) def centered_identity_map_multiN(sz, spacing, dtype='float32'): """ Create a centered identity map (shifted so it is centered around 0) :param sz: size of an image in BxCxXxYxZ format :param spacing: list with spacing information [sx,sy,sz] :param dtype: numpy data-type ('float32', 'float64', ...) :return: returns the identity map """ dim = len(sz) - 2 nrOfI = sz[0] if dim == 1: id = np.zeros([nrOfI, 1, sz[2]], dtype=dtype) elif dim == 2: id = np.zeros([nrOfI, 2, sz[2], sz[3]], dtype=dtype) elif dim == 3: id = np.zeros([nrOfI, 3, sz[2], sz[3], sz[4]], dtype=dtype) else: raise ValueError('Only dimensions 1-3 are currently supported for the identity map') for n in range(nrOfI): id[n, ...] = centered_identity_map(sz[2::], spacing,dtype=dtype) return id def identity_map_multiN(sz,spacing,dtype='float32'): """ Create an identity map :param sz: size of an image in BxCxXxYxZ format :param spacing: list with spacing information [sx,sy,sz] :param dtype: numpy data-type ('float32', 'float64', ...) :return: returns the identity map """ dim = len(sz)-2 nrOfI = int(sz[0]) if dim == 1: id = np.zeros([nrOfI,1,sz[2]],dtype=dtype) elif dim == 2: id = np.zeros([nrOfI,2,sz[2],sz[3]],dtype=dtype) elif dim == 3: id = np.zeros([nrOfI,3,sz[2],sz[3],sz[4]],dtype=dtype) else: raise ValueError('Only dimensions 1-3 are currently supported for the identity map') for n in range(nrOfI): id[n,...] = identity_map(sz[2::],spacing,dtype=dtype) return id def centered_identity_map(sz, spacing, dtype='float32'): """ Returns a centered identity map (with 0 in the middle) if the sz is odd Otherwise shifts everything by 0.5*spacing :param sz: just the spatial dimensions, i.e., XxYxZ :param spacing: list with spacing information [sx,sy,sz] :param dtype: numpy data-type ('float32', 'float64', ...) :return: returns the identity map of dimension dimxXxYxZ """ dim = len(sz) if dim == 1: id = np.mgrid[0:sz[0]] elif dim == 2: id = np.mgrid[0:sz[0], 0:sz[1]] elif dim == 3: id = np.mgrid[0:sz[0], 0:sz[1], 0:sz[2]] else: raise ValueError('Only dimensions 1-3 are currently supported for the identity map') # now get it into range [0,(sz-1)*spacing]^d id = np.array(id.astype(dtype)) if dim == 1: id = id.reshape(1, sz[0]) # add a dummy first index for d in range(dim): id[d] *= spacing[d] if sz[d]%2==0: #even id[d] -= spacing[d]*(sz[d]//2) else: #odd id[d] -= spacing[d]*((sz[d]+1)//2) # and now store it in a dim+1 array if dim == 1: idnp = np.zeros([1, sz[0]], dtype=dtype) idnp[0, :] = id[0] elif dim == 2: idnp = np.zeros([2, sz[0], sz[1]], dtype=dtype) idnp[0, :, :] = id[0] idnp[1, :, :] = id[1] elif dim == 3: idnp = np.zeros([3, sz[0], sz[1], sz[2]], dtype=dtype) idnp[0, :, :, :] = id[0] idnp[1, :, :, :] = id[1] idnp[2, :, :, :] = id[2] else: raise ValueError('Only dimensions 1-3 are currently supported for the centered identity map') return idnp # # def centered_min_normalized_identity_map(sz, spacing, dtype='float32'): # """ # Returns a centered identity map (with 0 in the middle) if the sz is odd # Otherwise shifts everything by 0.5*spacing # # :param sz: just the spatial dimensions, i.e., XxYxZ # :param spacing: list with spacing information [sx,sy,sz] # :param dtype: numpy data-type ('float32', 'float64', ...) # :return: returns the identity map of dimension dimxXxYxZ # """ # dim = len(sz) # if dim == 1: # id = np.mgrid[0:sz[0]] # elif dim == 2: # id = np.mgrid[0:sz[0], 0:sz[1]] # elif dim == 3: # id = np.mgrid[0:sz[0], 0:sz[1], 0:sz[2]] # else: # raise ValueError('Only dimensions 1-3 are currently supported for the identity map') # # min_spacing = np.min(spacing) # spacing_ratio = spacing/min_spacing # # # # now get it into range [0,(sz-1)*spacing]^d # id = np.array(id.astype(dtype)) # if dim == 1: # id = id.reshape(1, sz[0]) # add a dummy first index # # for d in range(dim): # id[d] *= spacing[d] # if sz[d]%2==0: # #even # id[d] -= spacing[d]*(sz[d]//2) # else: # #odd # id[d] -= spacing[d]*((sz[d]+1)//2) # # # and now store it in a dim+1 array and rescale by the ratio # if dim == 1: # idnp = np.zeros([1, sz[0]], dtype=dtype) # idnp[0, :] = id[0] * spacing_ratio[0] # elif dim == 2: # idnp = np.zeros([2, sz[0], sz[1]], dtype=dtype) # idnp[0, :, :] = id[0] * spacing_ratio[0] # idnp[1, :, :] = id[1] * spacing_ratio[1] # elif dim == 3: # idnp = np.zeros([3, sz[0], sz[1], sz[2]], dtype=dtype) # idnp[0, :, :, :] = id[0] * spacing_ratio[0] # idnp[1, :, :, :] = id[1] * spacing_ratio[1] # idnp[2, :, :, :] = id[2] * spacing_ratio[2] # else: # raise ValueError('Only dimensions 1-3 are currently supported for the centered identity map') # # return idnp # # def tranfrom_var_list_into_min_normalized_space(var_list,spacing,do_transform=True): # if do_transform: # min_spacing = np.min(spacing) # spacing_ratio =min_spacing/spacing # dim = spacing.size # spacing_ratio_t = AdaptVal(torch.Tensor(spacing_ratio)) # sp_sz = [1]+[dim] +[1]*dim # spacing_ratio_t = spacing_ratio_t.view(*sp_sz) # new_var_list = [var*spacing_ratio_t if var is not None else None for var in var_list] # else: # new_var_list = var_list # return new_var_list # def recover_var_list_from_min_normalized_space(var_list,spacing,do_transform=True): # if do_transform: # min_spacing = np.min(spacing) # spacing_ratio =spacing/min_spacing # dim = spacing.size # spacing_ratio_t = AdaptVal(torch.Tensor(spacing_ratio)) # sp_sz = [1]+[dim] +[1]*dim # spacing_ratio_t = spacing_ratio_t.view(*sp_sz) # new_var_list = [var*spacing_ratio_t if var is not None else None for var in var_list] # else: # new_var_list = var_list # return new_var_list # def identity_map(sz,spacing,dtype='float32'): """ Returns an identity map. :param sz: just the spatial dimensions, i.e., XxYxZ :param spacing: list with spacing information [sx,sy,sz] :param dtype: numpy data-type ('float32', 'float64', ...) :return: returns the identity map of dimension dimxXxYxZ """ dim = len(sz) if dim==1: id = np.mgrid[0:sz[0]] elif dim==2: id = np.mgrid[0:sz[0],0:sz[1]] elif dim==3: id = np.mgrid[0:sz[0],0:sz[1],0:sz[2]] else: raise ValueError('Only dimensions 1-3 are currently supported for the identity map') # now get it into range [0,(sz-1)*spacing]^d id = np.array( id.astype(dtype) ) if dim==1: id = id.reshape(1,sz[0]) # add a dummy first index for d in range(dim): id[d]*=spacing[d] #id[d]*=2./(sz[d]-1) #id[d]-=1. # and now store it in a dim+1 array if dim==1: idnp = np.zeros([1, sz[0]], dtype=dtype) idnp[0,:] = id[0] elif dim==2: idnp = np.zeros([2, sz[0], sz[1]], dtype=dtype) idnp[0,:, :] = id[0] idnp[1,:, :] = id[1] elif dim==3: idnp = np.zeros([3,sz[0], sz[1], sz[2]], dtype=dtype) idnp[0,:, :, :] = id[0] idnp[1,:, :, :] = id[1] idnp[2,:, :, :] = id[2] else: raise ValueError('Only dimensions 1-3 are currently supported for the identity map') return idnp def omt_boundary_weight_mask(img_sz,spacing,mask_range=5,mask_value=5,smoother_std =0.05): """generate a smooth weight mask for the omt """ dim = len(img_sz) mask_sz = [1,1]+ list(img_sz) mask = AdaptVal(torch.ones(*mask_sz))*mask_value if dim ==2: mask[:,:,mask_range:-mask_range,mask_range:-mask_range]=1 elif dim==3: mask[:,:,mask_range:-mask_range,mask_range:-mask_range,mask_range:-mask_range ]=1 sm = get_single_gaussian_smoother(smoother_std,img_sz,spacing) mask = sm.smooth(mask) return mask.detach() def momentum_boundary_weight_mask(img_sz,spacing,mask_range=5,smoother_std =0.05,pow=2): """generate a smooth weight mask for the omt """ dim = len(img_sz) mask_sz = [1,1]+ list(img_sz) mask = AdaptVal(torch.zeros(*mask_sz)) if dim ==2: mask[:,:,mask_range:-mask_range,mask_range:-mask_range]=1 elif dim==3: mask[:,:,mask_range:-mask_range,mask_range:-mask_range,mask_range:-mask_range ]=1 sm = get_single_gaussian_smoother(smoother_std,img_sz,spacing) mask = sm.smooth(mask) if pow ==2: mask = mask**2 if pow ==3: mask = mask*mask*mask return mask # def compute_omt_const(stds,param,dim): # omt_power = param['forward_model']['smoother']['omt_power'] # omt_weight_penalty = param['forward_model']['smoother']['omt_weight_penalty'] # min_std = torch.min(stds) # max_std = torch.max(stds) # omt_const = torch.abs(torch.log(max_std/stds))**omt_power # omt_const = omt_const/(torch.abs(torch.log(max_std / min_std)) ** omt_power) # omt_const = omt_const*omt_weight_penalty/(EV.reg_factor_in_mermaid*2) # sz = [1]+ [len(stds)] +[1]*(dim+1) # return omt_const.view(*sz) def get_single_gaussian_smoother(gaussian_std,sz,spacing): s_m_params = pars.ParameterDict() s_m_params['smoother']['type'] = 'gaussian' s_m_params['smoother']['gaussian_std'] = gaussian_std s_m = sf.SmootherFactory(sz, spacing).create_smoother(s_m_params) return s_m def get_warped_label_map(label_map, phi, spacing, sched='nn'): if sched == 'nn': warped_label_map = compute_warped_image_multiNC(label_map, phi, spacing,spline_order=0,zero_boundary=True) # check if here should be add assert assert abs(torch.sum(warped_label_map.data -warped_label_map.data.round()))< 0.1, "nn interpolation is not precise" else: raise ValueError(" the label warping method is not implemented") return warped_label_map def t2np(v): """ Takes a torch array and returns it as a numpy array on the cpu :param v: torch array :return: numpy array """ return (v.detach()).cpu().numpy() def cxyz_to_xyzc( v ): """ Takes a torch array and returns it as a numpy array on the cpu :param v: torch array :return: numpy array """ dim = len(v.shape)-2 if dim ==2: v = v.permute(0,2,3,1) if dim ==3: v = v.permute(0,2,3,4,1) return v def get_scalar(v): if isinstance(v, float): return v elif isinstance(v, np.ndarray) and v.size == 1: return float(v) def checkNan(x): """" input should be list of Variable """ return [len(np.argwhere(np.isnan(elem.detach().cpu().numpy()))) for elem in x] def noramlized_spacing_to_smallest(spacing): min_sp = np.min(spacing) spacing[spacing>min_sp]=min_sp return spacing def time_warped_function(f): def __time_warped_function(input=None): start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) start.record() output = f(input) end.record() # Waits for everything to finish running torch.cuda.synchronize() print(start.elapsed_time(end)) return output return __time_warped_function def interoplate_boundary_right(tensor): dim = len(tensor.shape)-2 if dim==1: tensor[:,:,-1]= tensor[:,:-2]+ tensor[:,:-2]-tensor[:,:-3] if dim==2: tensor[:, :, -1,:] = tensor[:, :,-2,:] + tensor[:, :,-2,:] - tensor[:, :,-3,:] tensor[:, :, :,-1] = tensor[:, :, :,-2] + tensor[:, :, :,-2] - tensor[:, :, :,-3] if dim==3: tensor[:, :,:, -1,:, :] = tensor[:, :, -2, :] + tensor[:, :, -2, :] - tensor[:, :, -3, :] tensor[:, :,:, :, -1, :] = tensor[:, :, :, -2] + tensor[:, :, :, -2] - tensor[:, :, :, -3] tensor[:, :,:, :, :, -1] = tensor[:, :, :, -2] + tensor[:, :, :, -2] - tensor[:, :, :, -3] def get_resampled_image(I, spacing, desiredSize, spline_order=1, zero_boundary=False, identity_map=None): """ :param I: B C X Y Z :param spacing: spx spy spz :param desiredSize: B C X Y Z :param spline_order: :param zero_boundary: :param identity_map: :return: """ if spacing is None: img_sz = I.shape[2:] spacing = 1. / (np.array(img_sz) - 1) if identity_map is not None: # todo will remove, currently fix for symmetric training if I.shape[0] != identity_map.shape[0]: n_batch = I.shape[0] desiredSize = desiredSize.copy() desiredSize[0] = n_batch identity_map = identity_map[:n_batch] resampled, new_spacing = resample_image(I, spacing, desiredSize, spline_order=spline_order, zero_boundary=zero_boundary, identity_map=identity_map) return resampled def resample_image(I, spacing, desiredSize, spline_order=1, zero_boundary=False, identity_map=None): """ Resample an image to a given desired size :param I: Input image (expected to be of BxCxXxYxZ format) :param spacing: array describing the spatial spacing :param desiredSize: array for the desired size (excluding B and C, i.e, 1 entry for 1D, 2 for 2D, and 3 for 3D) :return: returns a tuple: the downsampled image, the new spacing after downsampling """ desiredSize = desiredSize[2:] is_numpy = False if not isinstance(I, torch.Tensor): I = torch.Tensor(I) is_numpy = True sz = np.array(list(I.size())) # check that the batch size and the number of channels is the same nrOfI = sz[0] nrOfC = sz[1] desiredSizeNC = np.array([nrOfI, nrOfC] + list(desiredSize)) newspacing = spacing * ((sz[2::].astype('float') - 1.) / ( desiredSizeNC[2::].astype('float') - 1.)) ########################################### if identity_map is not None: idDes = identity_map else: idDes = AdaptVal(torch.from_numpy(identity_map_multiN(desiredSizeNC, newspacing))) # now use this map for resampling ID = compute_warped_image_multiNC(I, idDes, newspacing, spline_order, zero_boundary) return ID if not is_numpy else ID.numpy(), newspacing def get_res_size_from_size(sz, factor): """ Returns the corresponding low-res size from a (high-res) sz :param sz: size (high-res) :param factor: low-res factor (needs to be <1) :return: low res size """ if (factor is None): print('WARNING: Could not compute low_res_size as factor was ' + str(factor)) return sz else: lowResSize = np.array(sz) if not isinstance(factor, list): lowResSize[2::] = (np.ceil((np.array(sz[2:]) * factor))).astype('int16') else: lowResSize[2::] = (np.ceil((np.array(sz[2:]) * np.array(factor)))).astype('int16') if lowResSize[-1] % 2 != 0: lowResSize[-1] -= 1 print( '\n\nWARNING: forcing last dimension to be even: fix properly in the Fourier transform later!\n\n') return lowResSize def get_res_spacing_from_spacing(spacing, sz, lowResSize): """ Computes spacing for the low-res parameterization from image spacing :param spacing: image spacing :param sz: size of image :param lowResSize: size of low re parameterization :return: returns spacing of low res parameterization """ # todo: check that this is the correct way of doing it return spacing * (np.array(sz[2::]) - 1) / (np.array(lowResSize[2::]) - 1) ########################################## Adaptive Net ###################################################3 def space_normal(tensors, std=0.1): """ space normalize for the net kernel :param tensor: :param mean: :param std: :return: """ if isinstance(tensors, Variable): space_normal(tensors.data, std=std) return tensors for n in range(tensors.size()[0]): for c in range(tensors.size()[1]): dim = tensors[n][c].dim() sz = tensors[n][c].size() mus = np.zeros(dim) stds = std * np.ones(dim) print('WARNING: What should the spacing be here? Needed for new identity map code') raise ValueError('Double check the spacing here before running this code') spacing = np.ones(dim) centered_id = centered_identity_map(sz,spacing) g = compute_normalized_gaussian(centered_id, mus, stds) tensors[n,c] = torch.from_numpy(g) def weights_init_uniform(m): classname = m.__class__.__name__ # print(classname) if classname.find('Conv') != -1: init.uniform(m.weight.data, 0.038, 0.042) elif classname.find('Linear') != -1: init.uniform(m.weight.data, 0.0, 0.02) elif classname.find('BatchNorm2d') != -1: init.uniform(m.weight.data, 1.0, 0.02) init.constant(m.bias.data, 0.0) def weights_init_normal(m): classname = m.__class__.__name__ # print(classname) if classname.find('Conv') != -1: space_normal(m.weight.data) elif classname.find('Linear') != -1: space_normal(m.weight.data) elif classname.find('BatchNorm2d') != -1: init.uniform(m.weight.data, 1.0, 0.02) init.constant(m.bias.data, 0.0) def weights_init_rd_normal(m): classname = m.__class__.__name__ # print(classname) if classname.find('Conv') != -1: init.normal(m.weight.data) elif classname.find('Linear') != -1: init.normal(m.weight.data) elif classname.find('BatchNorm2d') != -1: init.uniform(m.weight.data, 1.0, 0.02) init.constant(m.bias.data, 0.0) def weights_init_xavier(m): classname = m.__class__.__name__ # print(classname) if classname.find('Conv') != -1: init.xavier_normal(m.weight.data, gain=1) elif classname.find('Linear') != -1: init.xavier_normal(m.weight.data, gain=1) elif classname.find('BatchNorm2d') != -1: init.uniform(m.weight.data, 1.0, 0.02) init.constant(m.bias.data, 0.0) def weights_init_kaiming(m): classname = m.__class__.__name__ # print(classname) if classname.find('Conv') != -1: init.kaiming_normal(m.weight.data, a=0, mode='fan_in') elif classname.find('Linear') != -1: init.kaiming_normal(m.weight.data, a=0, mode='fan_in') elif classname.find('BatchNorm2d') != -1: init.uniform(m.weight.data, 1.0, 0.02) init.constant(m.bias.data, 0.0) def weights_init_orthogonal(m): classname = m.__class__.__name__ print(classname) if classname.find('Conv') != -1: init.orthogonal(m.weight.data, gain=1) elif classname.find('Linear') != -1: init.orthogonal(m.weight.data, gain=1) elif classname.find('BatchNorm2d') != -1: init.uniform(m.weight.data, 1.0, 0.02) init.constant(m.bias.data, 0.0) def init_weights(net, init_type='normal'): print('initialization method [%s]' % init_type) if init_type == 'rd_normal': net.apply(weights_init_rd_normal) elif init_type == 'normal': net.apply(weights_init_normal) elif init_type == 'uniform': net.apply(weights_init_uniform) elif init_type == 'xavier': net.apply(weights_init_xavier) elif init_type == 'kaiming': net.apply(weights_init_kaiming) elif init_type == 'orthogonal': net.apply(weights_init_orthogonal) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) def organize_data(moving, target, sched='depth_concat'): if sched == 'depth_concat': input = torch.cat([moving, target], dim=1) elif sched == 'width_concat': input = torch.cat((moving, target), dim=3) elif sched == 'list_concat': input = torch.cat((moving.unsqueeze(0),target.unsqueeze(0)),dim=0) elif sched == 'difference': input = moving-target return input def bh(m,gi,go): print("Grad Input") print((torch.sum(gi[0].data), torch.sum(gi[1].data))) print("Grad Output") print(torch.sum(go[0].data)) return gi[0], gi[1], gi[2] class ConvBnRel(nn.Module): # conv + bn (optional) + relu def __init__(self, in_channels, out_channels, kernel_size, stride=1, active_unit='relu', same_padding=False, bn=False, reverse=False, bias=False): super(ConvBnRel, self).__init__() padding = int((kernel_size - 1) // 2) if same_padding else 0 if not reverse: self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=padding, bias=bias) else: self.conv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding=padding,bias=bias) #y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta #When affine=False the output of BatchNorm is equivalent to considering gamma=1 and beta=0 as constants. self.bn = nn.BatchNorm2d(out_channels, eps=0.0001, momentum=0, affine=True) if bn else None if active_unit == 'relu': self.active_unit = nn.ReLU(inplace=True) elif active_unit == 'elu': self.active_unit = nn.ELU(inplace=True) else: self.active_unit = None def forward(self, x): x = self.conv(x) if self.bn is not None: x = self.bn(x) if self.active_unit is not None: x = self.active_unit(x) return x class FcRel(nn.Module): # fc+ relu(option) def __init__(self, in_features, out_features, active_unit='relu'): super(FcRel, self).__init__() self.fc = nn.Linear(in_features, out_features) if active_unit == 'relu': self.active_unit = nn.ReLU(inplace=True) elif active_unit == 'elu': self.active_unit = nn.ELU(inplace=True) else: self.active_unit = None def forward(self, x): x = self.fc(x) if self.active_unit is not None: x = self.active_unit(x) return x class AdpSmoother(nn.Module): """ a simple conv. implementation, generate displacement field """ def __init__(self, inputs, dim, net_sched=None): # settings should include [using_bias, using bn, using elu] # inputs should be a dictionary could contain ['s'],['t'] super(AdpSmoother, self).__init__() self.dim = dim self.net_sched = 'm_only' self.s = inputs['s'].detach() self.t = inputs['t'].detach() self.mask = Parameter(torch.cat([torch.ones(inputs['s'].size())]*dim, 1), requires_grad = True) self.get_net_sched() #self.net.register_backward_hook(bh) def get_net_sched(self, debugging=True, using_bn=True, active_unit='relu', using_sigmoid=False , kernel_size=5): # return the self.net and self.net_input padding_size = (kernel_size-1)//2 if self.net_sched == 'm_only': if debugging: self.net = nn.Conv2d(2, 2, kernel_size, 1, padding=padding_size, bias=False,groups=2) else: net = \ [ConvBnRel(self.dim, 20, 5, active_unit=active_unit, same_padding=True, bn=using_bn), ConvBnRel(20,self.dim, 5, active_unit=active_unit, same_padding=True, bn=using_bn)] if using_sigmoid: net += [nn.Sigmoid()] self.net = nn.Sequential(*net) elif self.net_sched =='m_f_s': if debugging: self.net = nn.Conv2d(self.dim+1, self.dim, kernel_size, 1, padding=padding_size, bias=False) else: net = \ [ConvBnRel(self.dim +1, 20, 5, active_unit=active_unit, same_padding=True, bn=using_bn), ConvBnRel(20, self.dim, 5, active_unit=active_unit, same_padding=True, bn=using_bn)] if using_sigmoid: net += [nn.Sigmoid()] self.net = nn.Sequential(*net) elif self.net_sched == 'm_d_s': if debugging: self.net = nn.Conv2d(self.dim+1, self.dim, kernel_size, 1, padding=padding_size, bias=False) else: net = \ [ConvBnRel(self.dim + 1, 20, 5, active_unit=active_unit, same_padding=True, bn=using_bn), ConvBnRel(20, self.dim, 5, active_unit=active_unit, same_padding=True, bn=using_bn)] if using_sigmoid: net += [nn.Sigmoid()] self.net = nn.Sequential(*net) elif self.net_sched == 'm_f_s_t': if debugging: self.net = nn.Conv2d(self.dim+2, self.dim, kernel_size, 1, padding=padding_size, bias=False) else: net = \ [ConvBnRel(self.dim + 2, 20, 5, active_unit=active_unit, same_padding=True, bn=using_bn), ConvBnRel(20, self.dim, 5, active_unit=active_unit, same_padding=True, bn=using_bn)] if using_sigmoid: net += [nn.Sigmoid()] self.net = nn.Sequential(*net) elif self.net_sched == 'm_d_s_f_t': if debugging: self.net = nn.Conv2d(self.dim + 2, self.dim, kernel_size, 1, padding=padding_size, bias=False) else: net = \ [ConvBnRel(self.dim + 2, 20, 5, active_unit=active_unit, same_padding=True, bn=using_bn), ConvBnRel(20, self.dim, 5, active_unit=active_unit, same_padding=True, bn=using_bn)] if using_sigmoid: net += [nn.Sigmoid()] self.net = nn.Sequential(*net) def prepare_data(self, m, new_s): input=None if self.net_sched == 'm_only': input = m elif self.net_sched == 'm_f_s': input = organize_data(m,self.s,sched='depth_concat') elif self.net_sched == 'm_d_s': input = organize_data(m, new_s, sched='depth_concat') elif self.net_sched == 'm_f_s_t': input = organize_data(m, self.s, sched='depth_concat') input = organize_data(input, self.t, sched='depth_concat') elif self.net_sched == 'm_f_s_t': input = organize_data(m, self.s, sched='depth_concat') input = organize_data(input, self.t, sched='depth_concat') elif self.net_sched == 'm_d_s_f_t': input = organize_data(m, new_s, sched='depth_concat') input = organize_data(input, self.t, sched='depth_concat') return input def forward(self, m,new_s=None): m = m * self.mask input = self.prepare_data(m,new_s) x= input x = self.net(x) return x
1.851563
2
examples/io/plot_read_evoked.py
fmamashli/mne-python
3
3692
<filename>examples/io/plot_read_evoked.py """ ================================== Reading and writing an evoked file ================================== This script shows how to read and write evoked datasets. """ # Author: <NAME> <<EMAIL>> # # License: BSD (3-clause) from mne import read_evokeds from mne.datasets import sample print(__doc__) data_path = sample.data_path() fname = data_path + '/MEG/sample/sample_audvis-ave.fif' # Reading condition = 'Left Auditory' evoked = read_evokeds(fname, condition=condition, baseline=(None, 0), proj=True) ############################################################################### # Show result as a butterfly plot: # By using exclude=[] bad channels are not excluded and are shown in red evoked.plot(exclude=[], time_unit='s') # Show result as a 2D image (x: time, y: channels, color: amplitude) evoked.plot_image(exclude=[], time_unit='s') ############################################################################### # Use :func:`mne.Evoked.save` or :func:`mne.write_evokeds` to write the evoked # responses to a file.
2.8125
3
source/monkeyPatches/__init__.py
lukaszgo1/nvda
19
3693
<filename>source/monkeyPatches/__init__.py # A part of NonVisual Desktop Access (NVDA) # Copyright (C) 2021 NV Access Limited # This file is covered by the GNU General Public License. # See the file COPYING for more details. from . import wxMonkeyPatches applyWxMonkeyPatches = wxMonkeyPatches.apply def applyMonkeyPatches(): # Apply several monkey patches to comtypes # F401 - imported but unused: Patches are applied during import from . import comtypesMonkeyPatches # noqa: F401 # Apply patches to Enum, prevent cyclic references on ValueError during construction from . import enumPatches enumPatches.replace__new__()
1.539063
2
yt_dlp/extractor/ninenow.py
nxtreaming/yt-dlp
11
3694
<reponame>nxtreaming/yt-dlp<gh_stars>10-100 from .common import InfoExtractor from ..compat import compat_str from ..utils import ( ExtractorError, int_or_none, float_or_none, smuggle_url, str_or_none, try_get, unified_strdate, unified_timestamp, ) class NineNowIE(InfoExtractor): IE_NAME = '9now.com.au' _VALID_URL = r'https?://(?:www\.)?9now\.com\.au/(?:[^/]+/){2}(?P<id>[^/?#]+)' _GEO_COUNTRIES = ['AU'] _TESTS = [{ # clip 'url': 'https://www.9now.com.au/afl-footy-show/2016/clip-ciql02091000g0hp5oktrnytc', 'md5': '17cf47d63ec9323e562c9957a968b565', 'info_dict': { 'id': '16801', 'ext': 'mp4', 'title': '<NAME>\'s Joey Montagna on the potential for a player\'s strike', 'description': 'Is a boycott of the NAB Cup "on the table"?', 'uploader_id': '4460760524001', 'upload_date': '20160713', 'timestamp': 1468421266, }, 'skip': 'Only available in Australia', }, { # episode 'url': 'https://www.9now.com.au/afl-footy-show/2016/episode-19', 'only_matching': True, }, { # DRM protected 'url': 'https://www.9now.com.au/andrew-marrs-history-of-the-world/season-1/episode-1', 'only_matching': True, }, { # episode of series 'url': 'https://www.9now.com.au/lego-masters/season-3/episode-3', 'info_dict': { 'id': '6249614030001', 'title': 'Episode 3', 'ext': 'mp4', 'season_number': 3, 'episode_number': 3, 'description': 'In the first elimination of the competition, teams will have 10 hours to build a world inside a snow globe.', 'uploader_id': '4460760524001', 'timestamp': 1619002200, 'upload_date': '20210421', }, 'expected_warnings': ['Ignoring subtitle tracks'], 'params':{ 'skip_download': True, } }] BRIGHTCOVE_URL_TEMPLATE = 'http://players.brightcove.net/4460760524001/default_default/index.html?videoId=%s' def _real_extract(self, url): display_id = self._match_id(url) webpage = self._download_webpage(url, display_id) page_data = self._parse_json(self._search_regex( r'window\.__data\s*=\s*({.*?});', webpage, 'page data', default='{}'), display_id, fatal=False) if not page_data: page_data = self._parse_json(self._parse_json(self._search_regex( r'window\.__data\s*=\s*JSON\.parse\s*\(\s*(".+?")\s*\)\s*;', webpage, 'page data'), display_id), display_id) for kind in ('episode', 'clip'): current_key = page_data.get(kind, {}).get( 'current%sKey' % kind.capitalize()) if not current_key: continue cache = page_data.get(kind, {}).get('%sCache' % kind, {}) if not cache: continue common_data = { 'episode': (cache.get(current_key) or list(cache.values())[0])[kind], 'season': (cache.get(current_key) or list(cache.values())[0]).get('season', None) } break else: raise ExtractorError('Unable to find video data') if not self.get_param('allow_unplayable_formats') and try_get(common_data, lambda x: x['episode']['video']['drm'], bool): self.report_drm(display_id) brightcove_id = try_get( common_data, lambda x: x['episode']['video']['brightcoveId'], compat_str) or 'ref:%s' % common_data['episode']['video']['referenceId'] video_id = str_or_none(try_get(common_data, lambda x: x['episode']['video']['id'])) or brightcove_id title = try_get(common_data, lambda x: x['episode']['name'], compat_str) season_number = try_get(common_data, lambda x: x['season']['seasonNumber'], int) episode_number = try_get(common_data, lambda x: x['episode']['episodeNumber'], int) timestamp = unified_timestamp(try_get(common_data, lambda x: x['episode']['airDate'], compat_str)) release_date = unified_strdate(try_get(common_data, lambda x: x['episode']['availability'], compat_str)) thumbnails_data = try_get(common_data, lambda x: x['episode']['image']['sizes'], dict) or {} thumbnails = [{ 'id': thumbnail_id, 'url': thumbnail_url, 'width': int_or_none(thumbnail_id[1:]), } for thumbnail_id, thumbnail_url in thumbnails_data.items()] return { '_type': 'url_transparent', 'url': smuggle_url( self.BRIGHTCOVE_URL_TEMPLATE % brightcove_id, {'geo_countries': self._GEO_COUNTRIES}), 'id': video_id, 'title': title, 'description': try_get(common_data, lambda x: x['episode']['description'], compat_str), 'duration': float_or_none(try_get(common_data, lambda x: x['episode']['video']['duration'], float), 1000), 'thumbnails': thumbnails, 'ie_key': 'BrightcoveNew', 'season_number': season_number, 'episode_number': episode_number, 'timestamp': timestamp, 'release_date': release_date, }
2.0625
2
apex/fp16_utils/fused_weight_norm.py
mcarilli/apex
1
3695
<gh_stars>1-10 import torch from torch.autograd import Variable from torch.autograd.function import Function, once_differentiable import apex_C def check_contig_cuda(tensors, names): for tensor, name in zip(tensors, names): if not tensor.is_contiguous(): raise RuntimeError(name+" with size {} is not contiguous" .format(tensor.size())) if not tensor.is_cuda: raise RuntimeError(name+".is_cuda = False." "Currently, only cuda tensors are supported.") class Fused_Weight_Norm(Function): """ Custom autograd function that implements weight norm, as presented in `<https://arxiv.org/abs/1602.07868>`_, along a tensor's slowest or fastest dimension using fused kernel launches for the forward and backward passes. Accepts fp32 or fp16 input; the output type will match the input type. Within the kernels, all calculations are performed in fp32 for numerical stability, regardless of input/output precision. """ @staticmethod def forward(ctx, input, g, dim=0): """ Args: input(torch.cuda.FloatTensor or torch.cuda.HalfTensor): input tensor corresponding to **v** in the paper. ``input`` should be contiguous. g(torch.cuda.FloatTensor or torch.cuda.HalfTensor): input tensor corresponding to **g** in the paper. ``g`` should be the same type as ``input``. dim(int, optional, default=0): Dimension across which to perform weightnorm. Currently, only the first or last dimension of the input tensor is supported. Returns: Output tensor corresponding to **w** in the paper. Output type and precision will match type and precision of ``input``. """ # torch.cuda.nvtx.range_push("FusedNorm.forward, input.size() = {}" # .format(input.size())) check_contig_cuda((input,g),("input","g")) """ This is ok, new() treats a torch.Size object properly. No need to unpack with an asterisk via new(*input.size()). """ output = input.new(input.size()).contiguous() """ For output with size (slow, faster, faster, ...fastest), we want norms with size (slow, 1, 1, ...1), so that if you want retrieve norms and apply the same normalizing factors to another Tensor "t" with the same size as output, "t/norms" will broadcast each element of norms across the corresponding slowest dim of t. """ if dim == 0: norm_size = (output.size(0),) + (1,)*(output.dim() - 1) elif dim == output.dim() - 1: norm_size = (1,)*(output.dim() - 1) + (output.size(-1),) else: raise RuntimeError("Currently, Fused_Weight_Norm only supports first or last dimension.") norms = torch.cuda.FloatTensor(*norm_size).contiguous() """ Beware: If you call the following: norms = torch.cuda.FloatTensor(norm_size).contiguous() the constructor sees a tuple: FloatTensor( (output_size(0),1,1,...) ) and creates a 1D tensor with values from the tuple: [output_size(0),1,1,...]. """ apex_C.weight_norm_fwd(output, norms, input, g, dim) ctx.save_for_backward(input, g) # save_for_backward can only save input or output tensors, # use ctx state to save the norms and dimension: ctx.norms = norms ctx.dim = dim return output @staticmethod @once_differentiable def backward(ctx, grad_output): """ Args: grad_output(torch.cuda.FloatTensor or torch.cuda.HalfTensor): Gradient of loss with respect to output **w**. ``grad_output`` should be contiguous for performance. Returns: Gradient of loss with respect to ``input`` and ``g``. The precision of these gradients will match the precision of ``grad_input``. """ check_contig_cuda((grad_output), ("grad_output")) savedInput, savedg = ctx.saved_tensors savedNorms = ctx.norms # We expect that these .contiguous() calls will be no-ops. They're present for safety. grad_output_contig = grad_output.contiguous() grad_input = grad_output_contig.new(grad_output.size()).contiguous() grad_g = savedg.new(savedg.size()).contiguous() apex_C.weight_norm_bwd(grad_input, grad_g, grad_output_contig, savedInput, savedg, savedNorms, ctx.dim) return grad_input, grad_g, None
2.484375
2
bzt/modules/grinder.py
gerardorf/taurus
1
3696
""" Module holds all stuff regarding Grinder tool usage Copyright 2015 BlazeMeter Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import re import time from bzt import TaurusConfigError, ToolError from bzt.engine import ScenarioExecutor, FileLister, HavingInstallableTools, SelfDiagnosable from bzt.modules.aggregator import ConsolidatingAggregator, ResultsReader from bzt.modules.console import WidgetProvider, ExecutorWidget from bzt.modules.java import TaurusJavaHelper from bzt.requests_model import HTTPRequest from bzt.six import iteritems from bzt.utils import MirrorsManager, dehumanize_time, get_full_path, PythonGenerator, CALL_PROBLEMS from bzt.utils import unzip, RequiredTool, JavaVM, shutdown_process, TclLibrary, FileReader, RESOURCES_DIR class GrinderExecutor(ScenarioExecutor, WidgetProvider, FileLister, HavingInstallableTools, SelfDiagnosable): """ Grinder executor module """ def __init__(self): super(GrinderExecutor, self).__init__() self.script = None self.exec_id = "grinder-bzt-%s" % id(self) self.properties_file = None self.kpi_file = None self.cmd_line = None self.process = None self.end_time = None self.retcode = None self.java_helper = None def __write_base_props(self, fds): """ write base properties and base properties file contents to fds :param fds: fds :return: """ base_props_file = self.settings.get("properties-file") if base_props_file: fds.write("# Base Properies File Start: %s\n" % base_props_file) with open(base_props_file) as bpf: fds.write(bpf.read()) fds.write("# Base Properies File End: %s\n\n" % base_props_file) # base props base_props = self.settings.get("properties") if base_props: fds.write("# Base Properies Start\n") for key, val in iteritems(base_props): fds.write("%s=%s\n" % (key, val)) fds.write("# Base Properies End\n\n") def __write_scenario_props(self, fds, scenario): """ Write scenario props and scenario file props to fds :param fds: :param scenario: dict :return: """ script_props_file = scenario.get("properties-file") if script_props_file: fds.write("# Script Properies File Start: %s\n" % script_props_file) with open(script_props_file) as spf: fds.write(spf.read()) fds.write("# Script Properies File End: %s\n\n" % script_props_file) # scenario props local_props = scenario.get("properties") if local_props: fds.write("# Scenario Properies Start\n") for key, val in iteritems(local_props): fds.write("%s=%s\n" % (key, val)) fds.write("# Scenario Properies End\n\n") def __write_bzt_props(self, fds): """ Write bzt properties to fds :param fds: :return: """ fds.write("# BZT Properies Start\n") fds.write("grinder.hostID=%s\n" % self.exec_id) fds.write("grinder.script=%s\n" % self.script.replace(os.path.sep, "/")) fds.write("grinder.logDirectory=%s\n" % self.engine.artifacts_dir.replace(os.path.sep, "/")) load = self.get_load() if load.iterations or load.concurrency: fds.write("grinder.runs=%s\n" % load.iterations or 0) if load.concurrency: fds.write("grinder.threads=%s\n" % load.concurrency) if load.duration: fds.write("grinder.duration=%s\n" % int(load.duration * 1000)) fds.write("# taurus load values in case you need them\n") fds.write("taurus.concurrency=%s\n" % load.concurrency) fds.write("taurus.throughput=%s\n" % load.throughput) fds.write("taurus.ramp_up=%s\n" % load.ramp_up) fds.write("taurus.steps=%s\n" % load.steps) fds.write("taurus.hold_for=%s\n" % load.hold) fds.write("taurus.iterations=%s\n" % load.iterations) fds.write("# BZT Properies End\n") def prepare(self): self.stdout = open(self.engine.create_artifact("grinder", ".out"), "w") self.stderr = open(self.engine.create_artifact("grinder", ".err"), "w") self.install_required_tools() scenario = self.get_scenario() self.exec_id = self.label self.script = self.get_script_path() if not self.script: if "requests" in scenario: self.script = self.__scenario_from_requests() else: msg = "There must be a script file or requests for its generation " msg += "to run Grinder tool (%s)" % self.execution.get('scenario') raise TaurusConfigError(msg) self.properties_file = self.engine.create_artifact("grinder", ".properties") with open(self.properties_file, 'w') as fds: self.__write_base_props(fds) self.__write_scenario_props(fds, scenario) self.__write_bzt_props(fds) self.kpi_file = os.path.join(self.engine.artifacts_dir, self.exec_id + "-kpi.log") self.reader = DataLogReader(self.kpi_file, self.log) self.reader.report_by_url = self.settings.get("report-by-url", False) if isinstance(self.engine.aggregator, ConsolidatingAggregator): self.engine.aggregator.add_underling(self.reader) # add logback configurations used by worker processes (logback-worker.xml) self.env.add_path({"CLASSPATH": RESOURCES_DIR}, finish=True) self.env.add_path({"CLASSPATH": self.java_helper.tool_path}, finish=True) self.env.add_path({"CLASSPATH": self.settings.get("path", None)}, finish=True) self.cmd_line = ["java", "net.grinder.Grinder", self.properties_file] def startup(self): """ Should start the tool as fast as possible. """ self.env.set({"T_GRINDER_PREFIX": self.exec_id}) self.process = self.execute(self.cmd_line) def check(self): """ Checks if tool is still running. Also checks if resulting logs contains any data and throws exception otherwise. :return: bool :raise TaurusToolError: """ self.retcode = self.process.poll() if self.retcode is not None: if self.retcode != 0: raise ToolError("Gatling tool exited with non-zero code: %s" % self.retcode, self.get_error_diagnostics()) return True return False def shutdown(self): """ If tool is still running - let's stop it. """ shutdown_process(self.process, self.log) if self.start_time: self.end_time = time.time() self.log.debug("Grinder worked for %s seconds", self.end_time - self.start_time) def post_process(self): """ Collect data file artifact """ if self.kpi_file: self.engine.existing_artifact(self.kpi_file) super(GrinderExecutor, self).post_process() def __scenario_from_requests(self): """ Generate grinder scenario from requests :return: script """ script = self.engine.create_artifact("grinder_requests", ".py") builder = GrinderScriptBuilder(self.get_scenario(), self.log) builder.label = self.label builder.build_source_code() builder.save(script) return script def install_required_tools(self): grinder = self._get_tool(Grinder, config=self.settings) self.settings["path"] = grinder.tool_path self.java_helper = self._get_tool(TaurusJavaHelper) required_tools = [self._get_tool(TclLibrary), self._get_tool(JavaVM), self.java_helper, grinder] for tool in required_tools: if not tool.check_if_installed(): tool.install() def get_widget(self): if not self.widget: if self.script is not None: label = "Grinder: %s" % os.path.basename(self.script) else: label = None self.widget = ExecutorWidget(self, label) if self.get_load().ramp_up: self.widget.duration += self.get_load().ramp_up # because we have ramp-down equal to rampup return self.widget def resource_files(self): resource_files = [] script_file_path = self.get_script_path() if script_file_path: resource_files.append(script_file_path) prop_file = self.get_scenario().get("properties-file") if prop_file: resource_files.append(prop_file) return resource_files def get_error_diagnostics(self): diagnostics = [] if self.stdout is not None: with open(self.stdout.name) as fds: contents = fds.read().strip() if contents.strip(): diagnostics.append("Grinder STDOUT:\n" + contents) if self.stderr is not None: with open(self.stderr.name) as fds: contents = fds.read().strip() if contents.strip(): diagnostics.append("Grinder STDOUT:\n" + contents) return diagnostics class DataLogReader(ResultsReader): """ Class to read KPI from data log """ DELIMITER = "," DETAILS_REGEX = re.compile(r"worker\.(\S+) (.+) -> (\S+) (.+), (\d+) bytes") def __init__(self, filename, parent_logger): super(DataLogReader, self).__init__() self.report_by_url = False self.log = parent_logger.getChild(self.__class__.__name__) self.file = FileReader(filename=filename, parent_logger=self.log) self.idx = {} self.partial_buffer = "" self.start_time = 0 self.end_time = 0 self.concurrency = 0 self.test_names = {} self.known_threads = set() def _read(self, last_pass=False): """ Generator method that returns next portion of data :param last_pass: """ self.log.debug("Reading grinder results...") self.lines = list(self.file.get_lines(size=1024 * 1024, last_pass=last_pass)) lnum = None start = time.time() for lnum, line in enumerate(self.lines): if not self.idx: if not line.startswith('data.'): self.__split(line) # to capture early test name records continue line = line[line.find(' '):] header_list = line.strip().split(self.DELIMITER) for _ix, field in enumerate(header_list): self.idx[field.strip()] = _ix data_fields, worker_id = self.__split(line) if not data_fields: self.log.debug("Skipping line: %s", line.strip()) continue yield self.parse_line(data_fields, worker_id, lnum) if lnum is not None: duration = time.time() - start if duration < 0.001: duration = 0.001 self.log.debug("Log reading speed: %s lines/s", (lnum + 1) / duration) def parse_line(self, data_fields, worker_id, lnum): worker_id = worker_id.split('.')[1] t_stamp = int(int(data_fields[self.idx["Start time (ms since Epoch)"]]) / 1000.0) r_time = int(data_fields[self.idx["Test time"]]) / 1000.0 latency = int(data_fields[self.idx["Time to first byte"]]) / 1000.0 r_code = data_fields[self.idx["HTTP response code"]].strip() con_time = int(data_fields[self.idx["Time to resolve host"]]) / 1000.0 con_time += int(data_fields[self.idx["Time to establish connection"]]) / 1000.0 bytes_count = int(data_fields[self.idx["HTTP response length"]].strip()) test_id = data_fields[self.idx["Test"]].strip() thread_id = worker_id + '/' + data_fields[self.idx["Thread"]].strip() if thread_id not in self.known_threads: self.known_threads.add(thread_id) self.concurrency += 1 url, error_msg = self.__parse_prev_lines(worker_id, lnum, r_code, bytes_count) if int(data_fields[self.idx["Errors"]]) or int(data_fields[self.idx['HTTP response errors']]): if not error_msg: if r_code != '0': error_msg = "HTTP %s" % r_code else: error_msg = "Java exception calling TestRunner" else: error_msg = None # suppress errors if self.report_by_url: label = url elif test_id in self.test_names: label = self.test_names[test_id] else: label = "Test #%s" % test_id source_id = '' # maybe use worker_id somehow? return t_stamp, label, self.concurrency, r_time, con_time, latency, r_code, error_msg, source_id, bytes_count def __split(self, line): if not line.endswith("\n"): self.partial_buffer += line return None, None line = "%s%s" % (self.partial_buffer, line) self.partial_buffer = "" line = line.strip() if not line.startswith('data.'): line_parts = line.split(' ') if len(line_parts) > 1: if line_parts[1] == 'starting,': # self.concurrency += 1 pass elif line_parts[1] == 'finished': if self.concurrency > 0: self.concurrency -= 1 elif set(line_parts[1:5]) == {'Test', 'name', 'for', 'ID'}: test_id = line_parts[5][:-1] test_name = ' '.join(line_parts[6:]) self.test_names[test_id] = test_name self.log.debug("Recognized test id %s => %s", test_id, test_name) return None, None worker_id = line[:line.find(' ')] line = line[line.find(' '):] data_fields = line.split(self.DELIMITER) if not data_fields[1].strip().isdigit(): return None, None if len(data_fields) < max(self.idx.values()): return None, None return data_fields, worker_id def __parse_prev_lines(self, worker_id, lnum, r_code, bytes_count): url = '' error_msg = None for lineNo in reversed(range(max(lnum - 100, 0), lnum)): # looking max 100 lines back. TODO: parameterize? line = self.lines[lineNo].strip() matched = self.DETAILS_REGEX.match(line) if not matched: continue if worker_id == matched.group(1) and r_code == matched.group(3) and str(bytes_count) == matched.group(5): return matched.group(2), matched.group(4) return url, error_msg class Grinder(RequiredTool): # todo: take it from maven and convert to JarTool(?) VERSION = "3.11" LOCAL_PATH = "~/.bzt/grinder-taurus/lib/grinder.jar" def __init__(self, config=None, **kwargs): settings = config or {} grinder_path = settings.get("path", self.LOCAL_PATH) grinder_path = get_full_path(grinder_path) download_link = settings.get("download-link", "") super(Grinder, self).__init__(tool_path=grinder_path, download_link=download_link, **kwargs) self.version = self.VERSION self.mirror_manager = GrinderMirrorsManager(self.http_client, self.log, self.version) def check_if_installed(self): self.log.debug("Trying %s: %s", self.tool_name, self.tool_path) try: out, err = self.call(["java", "-classpath", self.tool_path, "net.grinder.Grinder"]) if err: out += err self.log.debug("%s stdout: %s", self.tool_name, out) return True except CALL_PROBLEMS as exc: self.log.warning("%s check failed: %s", self.tool_name, exc) return False def install(self): dest = get_full_path(self.tool_path, step_up=2) self.log.info("Will install %s into %s", self.tool_name, dest) grinder_dist = self._download(use_link=bool(self.download_link)) self.log.info("Unzipping %s", grinder_dist) unzip(grinder_dist, dest, 'grinder-' + self.version) os.remove(grinder_dist) self.log.info("Installed grinder successfully") if not self.check_if_installed(): raise ToolError("Unable to run %s after installation!" % self.tool_name) class GrinderMirrorsManager(MirrorsManager): MIRRORS_SOURCE = "https://sourceforge.net/settings/mirror_choices?projectname=grinder&filename=The%20Grinder" \ "%203/{version}/grinder-{version}-binary.zip&dialog=true" DOWNLOAD_LINK = "https://downloads.sourceforge.net/project/grinder/The%20Grinder%203/{version}" \ "/grinder-{version}-binary.zip?r=&ts=" + str(int(time.time())) + "&use_mirror=autoselect" def __init__(self, http_client, parent_logger, grinder_version): self.grinder_version = grinder_version base_link = self.MIRRORS_SOURCE.format(version=self.grinder_version) super(GrinderMirrorsManager, self).__init__(http_client, base_link, parent_logger) def _parse_mirrors(self): links = [] if self.page_source is not None: self.log.debug('Parsing mirrors...') base_link = "http://sourceforge.net/projects/grinder/files/The%20Grinder%203/{version}/grinder-{version}" \ "-binary.zip/download?use_mirror={mirror}" li_search_pattern = re.compile(r'<li id=".*?">') li_elements = li_search_pattern.findall(self.page_source) if li_elements: links = [base_link.format(version=self.grinder_version, mirror=link.strip('<li id="').strip('">')) for link in li_elements] default_link = self.DOWNLOAD_LINK.format(version=self.grinder_version) if default_link not in links: links.append(default_link) self.log.debug('Total mirrors: %d', len(links)) return links class GrinderScriptBuilder(PythonGenerator): IMPORTS = """ from net.grinder.script import Test from net.grinder.script.Grinder import grinder from net.grinder.plugin.http import HTTPRequest, HTTPPluginControl, HTTPUtilities from HTTPClient import NVPair """ def __init__(self, scenario, parent_logger): super(GrinderScriptBuilder, self).__init__(scenario, parent_logger) self.label = "BZT Requests" def build_source_code(self): self.log.debug("Generating Python script for Grinder") self.root.append(self.gen_comment("This script was generated by Taurus", indent=0)) self.root.append(self.add_imports()) self.root.append(self.gen_new_line()) default_address = self.scenario.get("default-address") url_arg = "url=%r" % default_address if default_address else "" self.root.append(self.gen_statement('request = HTTPRequest(%s)' % url_arg, indent=0)) self.root.append(self.gen_statement('test = Test(1, "%s")' % self.label, indent=0)) self.root.append(self.gen_statement('test.record(request)', indent=0)) self.root.append(self.gen_new_line()) self.root.append(self.gen_statement("defaults = HTTPPluginControl.getConnectionDefaults()", indent=0)) self.root.append(self.gen_statement("utilities = HTTPPluginControl.getHTTPUtilities()", indent=0)) headers = self.scenario.get_headers() if not self.scenario.get("keepalive", True): headers['Connection'] = 'close' if headers: self.root.append(self.gen_statement("defaults.setDefaultHeaders([", indent=0)) for header, value in iteritems(headers): self.root.append(self.gen_statement("NVPair(%r, %r)," % (header, value), indent=4)) self.root.append(self.gen_statement("])", indent=0)) global_timeout = dehumanize_time(self.scenario.get("timeout", None)) if global_timeout: self.root.append(self.gen_statement("defaults.setTimeout(%s)" % int(global_timeout * 1000), indent=0)) cookie_flag = int(self.scenario.get("store-cookie", True)) self.root.append(self.gen_statement("defaults.setUseCookies(%s)" % cookie_flag, indent=0)) self.root.append(self.gen_new_line()) self.root.append(self.gen_runner_class()) @staticmethod def __list_to_nvpair_list(items): return "[" + ",".join("NVPair(%r, %r)" % (header, value) for header, value in items) + "]" def gen_runner_class(self): runner_classdef = self.gen_class_definition("TestRunner", ["object"]) sleep_method = self.gen_method_definition("rampUpSleeper", ["self"]) sleep_method.append(self.gen_statement("if grinder.runNumber != 0: return")) sleep_method.append(self.gen_statement("tprops = grinder.properties.getPropertySubset('taurus.')")) sleep_method.append(self.gen_statement("inc = tprops.getDouble('ramp_up', 0)/tprops.getInt('concurrency', 1)")) sleep_method.append(self.gen_statement("sleep_time = int(1000 * grinder.threadNumber * inc)")) sleep_method.append(self.gen_statement("grinder.sleep(sleep_time, 0)")) sleep_method.append(self.gen_statement("if sleep_time: grinder.logger.info('slept for %sms' % sleep_time)")) sleep_method.append(self.gen_statement("else: grinder.logger.info('No sleep needed')")) sleep_method.append(self.gen_new_line()) runner_classdef.append(sleep_method) main_method = self.gen_method_definition("__call__", ["self"]) main_method.append(self.gen_statement("self.rampUpSleeper()")) for req in self.scenario.get_requests(): if not isinstance(req, HTTPRequest): msg = "Grinder script generator doesn't support '%s' blocks, skipping" self.log.warning(msg, req.NAME) continue method = req.method.upper() url = req.url local_headers = req.headers params = "[]" headers = self.__list_to_nvpair_list(iteritems(local_headers)) main_method.append(self.gen_statement("request.%s(%r, %s, %s)" % (method, url, params, headers))) think_time = dehumanize_time(req.priority_option('think-time')) if think_time: main_method.append(self.gen_statement("grinder.sleep(%s)" % int(think_time * 1000))) runner_classdef.append(main_method) return runner_classdef
1.578125
2
test/Fortran/fixture/myfortran_flags.py
moroten/scons
1,403
3697
<reponame>moroten/scons<gh_stars>1000+ import getopt import sys comment = ('#' + sys.argv[1]).encode() opts, args = getopt.getopt(sys.argv[2:], 'cf:o:xy') optstring = '' length = len(comment) for opt, arg in opts: if opt == '-o': out = arg elif opt not in ('-f', '-K'): optstring = optstring + ' ' + opt infile = open(args[0], 'rb') outfile = open(out, 'wb') outfile.write((optstring + "\n").encode()) for l in infile.readlines(): if l[:length] != comment: outfile.write(l) sys.exit(0)
2.5
2
zen_knit/organizer/__init__.py
Zen-Reportz/zen_knit
30
3698
<gh_stars>10-100 import io import os import base64 from pathlib import Path from nbconvert import filters from pygments.formatters.latex import LatexFormatter from zen_knit import formattor from zen_knit.data_types import ChunkOption, ExecutedData, OrganizedChunk, OrganizedData from zen_knit.formattor.html_formatter import HTMLFormatter mime_extensions = {"image/png" : "png", "image/jpg" : "jpg"} class BaseOrganizer: def __init__(self, executed_data: ExecutedData): self.format_started = False self.collected_string = "" self.fig_folder = None self.executed_data = executed_data self.formatted_doc = [] self.organized_data = OrganizedData( global_options = self.executed_data.global_options, chunks = [] ) self._create_output_folder_name() self._create_fig_folder() self._organize_doc() self._create_output_file_name() def _create_output_file_name(self): global_options = self.organized_data.global_options global_options.output.file_name = global_options.input.file_name.split(".")[0] + "."+ global_options.output.format def _create_output_folder_name(self): global_options = self.organized_data.global_options if global_options.output.dir is None: global_options.output.dir = global_options.input.dir def _create_fig_folder(self): output_folder = self.organized_data.global_options.output.dir Path(output_folder).mkdir(parents=True, exist_ok=True) fig_folder = os.path.join(output_folder, self.organized_data.global_options.output.fig_dir) self.fig_folder = fig_folder Path(fig_folder).mkdir(parents=True, exist_ok=True) def _parse_raw(self, data, output_type): if data.get("code_text_raw") is not None: if self._clean_up(data['code_text_raw']) is not None: if output_type in ("code"): t = {"type": "code", "str_data": data['code_text_raw'] } elif output_type in ("sql"): t = {"type": "sql", "str_data": data['code_text_raw'] } else: t = {"type": "markdown", "str_data": data['code_text_raw'] } self.organized_data.chunks.append(OrganizedChunk(**t)) return True else: return False def _coder_string(self, data): list_ = ["stream", "error"] if data["output_type"] is None: return False if data["output_type"] in list_: if data["output_type"] == "stream": if self._clean_up(data['text']) is not None: t = {"type": "se_data", "str_data": data['text'] } self.organized_data.chunks.append(OrganizedChunk(**t)) if data["output_type"] == "error": t = {"type": "se_data", "str_data": data["evalue"] + filters.strip_ansi("".join(data["traceback"])) } self.organized_data.chunks.append(OrganizedChunk(**t)) return True return False def _raw_string(self, data): if data["output_type"] is None: return False if data["output_type"] == "execute_result": if data.get("data") is not None: if 'matplotlib' in data["data"]["text/plain"]: # Doing nothing here return True else: if ((data["data"]["text/plain"][0] == "'") or (data["data"]["text/plain"][0] == '"')): temp = data["data"]["text/plain"][1:-1] else: temp = data["data"]["text/plain"] if "<table" in temp: t = {"type": "html_data", "str_data":temp.encode().decode() } self.organized_data.chunks.append(OrganizedChunk(**t)) return True # if "BokehJS" in temp: # t = {"type": "html_data", "str_data": "<script type='text/javascript'>" + temp.encode().decode() + "</script>" } # self.organized_data.chunks.append(OrganizedChunk(**t)) # return True if self._clean_up(temp) is not None: t = {"type": "e_data", "str_data":temp } self.organized_data.chunks.append(OrganizedChunk(**t)) return True return True return False def _raw_plots(self, data, chunk_option:ChunkOption): if data["output_type"] is None: return False if data["output_type"] == "display_data": plot_infos = self._save_plots(data, chunk_option) t = {"type": "plot", "complex_data":{"plots": plot_infos, "options": chunk_option }} self.organized_data.chunks.append(OrganizedChunk(**t)) return True return False def _save_plots(self, data, chunk_option:ChunkOption): figs = [] i = 1 for m in mime_extensions: if m in data["data"]: fig_full_path, fig_relative_path = self._build_file(mime_extensions[m], i, chunk_option.fig_caption, chunk_option.name) figs.append(fig_relative_path) bfig = base64.b64decode(data["data"][m]) with open(fig_full_path, "wb") as f: f.write(bfig) i += 1 return figs def _build_file(self, extension, index, fig_caption= None, name =None): fig_name = "" if fig_caption is not None: fig_name = fig_name + "_" + fig_caption if name is not None: fig_name = fig_name + "_" + name fig_name = fig_name + "_" + str(index) fig_name = fig_name + "." + extension return os.path.join(self.fig_folder, fig_name), os.path.join(self.fig_folder, fig_name) def _interactive_plots(self, data): if data["output_type"] is None: return False if data["output_type"] == "display_data": if "text/html" in data["data"]: print(self.executed_data.global_options.output.format) if self.executed_data.global_options.output.format != "html": raise Exception("output format is not HTML") else: t = {"type": "html_data", "str_data":data["data"]["text/html"].encode().decode() } self.organized_data.chunks.append(OrganizedChunk(**t)) return True return False def _organize_doc(self): for index, chunk in enumerate(self.executed_data.chunks): chunk_option = chunk.chunk.options if chunk_option.name: print(f"organizing {chunk_option.name}") else: print(f"organizing index {index}") results = chunk.results for result in results: data = result.data present = self._parse_raw(data, result.output_type) if present: continue present = self._coder_string(data) if present: continue present = self._raw_string(data) if present: continue present = self._interactive_plots(data) if present: continue present = self._raw_plots(data, chunk_option) if present: continue print("not supported format", data) t = [] c: OrganizedChunk for c in self.organized_data.chunks: last_chank: OrganizedChunk if len(t)> 0: last_chank = t[-1] else: last_chank = None if last_chank is None: t.append(c) else: if (c.type == last_chank.type) & (c.type != "plot"): last_chank.str_data = last_chank.str_data + "\n" + c.str_data else: t.append(c) self.organized_data.chunks = t @staticmethod def _clean_up(doc): d = doc.replace(" ", "").replace("\n", "") if len(d) != 0: return doc else: return None # markdown_file = self.executed_data.global_options.input_file_name.split(".")[0] + ".md" # markdown_file = os.path.join(self.executed_data.global_options.output_file_dir , markdown_file) # with open(markdown_file, "w") as f: # text = "\n".join(self.formatted_doc) # f.write(text)
2.109375
2
qibullet/robot_virtual.py
mcaniot/qibullet
0
3699
<filename>qibullet/robot_virtual.py #!/usr/bin/env python # coding: utf-8 import sys import pybullet from qibullet.camera import * from qibullet.link import Link from qibullet.joint import Joint IS_VERSION_PYTHON_3 = sys.version_info[0] >= 3 class RobotVirtual: """ Mother class representing a virtual robot """ def __init__(self, description_file): """ Constructor Parameters: description_file - The file giving the description of the virtual robot. For now, only URDF is handled """ self.description_file = description_file self.physics_client = 0 self.active_camera = None self.camera_dict = dict() self.joint_dict = dict() self.link_dict = dict() def loadRobot(self, translation, quaternion, physicsClientId=0): """ Loads the robot into a simulation, loads the joints and the links descriptions. The joints are set to 0 rad. Parameters: translation - List containing 3 elements, the translation [x, y, z] of the robot in the WORLD frame quaternion - List containing 4 elements, the quaternion [x, y, z, q] of the robot in the WORLD frame physicsClientId - The id of the simulated instance in which the robot is supposed to be loaded Returns: boolean - True if the method ran correctly, False otherwise """ try: self.physics_client = physicsClientId self.robot_model = pybullet.loadURDF( self.description_file, translation, quaternion, useFixedBase=False, globalScaling=1.0, physicsClientId=self.physics_client, flags=pybullet.URDF_USE_SELF_COLLISION | pybullet.URDF_USE_MATERIAL_COLORS_FROM_MTL) except pybullet.error as e: raise pybullet.error("Cannot load robot model: " + str(e)) for i in range(pybullet.getNumJoints( self.robot_model, physicsClientId=self.physics_client)): if IS_VERSION_PYTHON_3: # PYTHON 3 version needs a conversion bytes to str joint_info = pybullet.getJointInfo( self.robot_model, i, physicsClientId=self.physics_client) self.link_dict[joint_info[12].decode('utf-8')] =\ Link(joint_info) if joint_info[2] == pybullet.JOINT_PRISMATIC or\ joint_info[2] == pybullet.JOINT_REVOLUTE: self.joint_dict[joint_info[1].decode('utf-8')] =\ Joint(joint_info) else: # PYTHON 2 Version joint_info = pybullet.getJointInfo( self.robot_model, i, physicsClientId=self.physics_client) self.link_dict[joint_info[12]] = Link(joint_info) if joint_info[2] == pybullet.JOINT_PRISMATIC or\ joint_info[2] == pybullet.JOINT_REVOLUTE: self.joint_dict[joint_info[1]] = Joint(joint_info) def getRobotModel(self): """ Returns the pybullet model to which the module is associated. Returns: robot_model - The pybullet model of the robot """ return self.robot_model def getPhysicsClientId(self): """ Returns the id of the simulated instance in which the module is loaded. Returns: physics_client - The id of the simulation in which the robot (possessing the module) is spawned """ return self.physics_client def setAngles(self, joint_names, joint_values, percentage_speeds): """ Set angles on the robot's joints. Tests have to be performed by the child class to guarantee the validity of the input parameters. Parameters: joint_names - List of string containing the name of the joints to be controlled joint_values - List of values corresponding to the angles in radians to be applied percentage_speeds - Percentages of the max speed to be used for each joint, has to be strictly superior to 0 and inferior or equal to 1 """ try: assert len(joint_names) ==\ len(joint_values) ==\ len(percentage_speeds) assert all( speed >= 0.0 and speed <= 1.0 for speed in percentage_speeds) except AssertionError: raise pybullet.error("Error in the setAngles parameters") for joint_name, joint_value, percentage_speed in zip( joint_names, joint_values, percentage_speeds): joint_speed =\ self.joint_dict[joint_name].getMaxVelocity() *\ percentage_speed pybullet.setJointMotorControl2( self.robot_model, self.joint_dict[joint_name].getIndex(), pybullet.POSITION_CONTROL, targetPosition=joint_value, maxVelocity=joint_speed, force=self.joint_dict[joint_name].getMaxEffort(), physicsClientId=self.physics_client) def getAnglesPosition(self, joint_names): """ Gets the position of the robot's joints in radians. If one of the joint doesn't exist, the method will raise a KeyError. Parameters: joint_names - List of string containing the names of the joints Returns: joint_positions - List of floats containing the joint's positions """ joint_positions = list() for joint_name in joint_names: joint_positions.append(pybullet.getJointState( self.robot_model, self.joint_dict[joint_name].getIndex(), physicsClientId=self.physics_client)[0]) return joint_positions def getAnglesVelocity(self, joint_names): """ Gets the velocity of the robot's joints in rad/s. If one of the joint doesn't exist, the method will raise a KeyError. Parameters: joint_names - List of string containing the names of the joints Returns: joint_velocities - List of floats containing the joint's velocities """ joint_velocities = list() for joint_name in joint_names: joint_velocities.append(pybullet.getJointState( self.robot_model, self.joint_dict[joint_name].getIndex(), physicsClientId=self.physics_client)[1]) return joint_velocities def subscribeCamera(self, camera_id, resolution=Camera.K_QVGA): """ Subscribe to the camera holding the camera id. WARNING: at the moment, only one camera can be subscribed. Parameters: camera_id - The id of the camera to be subscribed resolution - CameraResolution object, the resolution of the camera """ try: self.active_camera = self.camera_dict[camera_id] self.active_camera.subscribe(resolution=resolution) except KeyError: print("This camera does not exist, use a valid camera id") def unsubscribeCamera(self, camera_id): """ Unsubscribe from a camera, the one holding the camera id. Parameters: camera_id - The id of the camera to be unsubscribed """ try: # If no active camera is found, nothing is unsubscribed assert self.active_camera is not None if self.active_camera.getCameraId() == camera_id: self.active_camera.unsubscribe() self.active_camera = None except KeyError: print("This camera does not exist, use a valid camera id") except AssertionError: pass def getCameraFrame(self): """ Returns a camera frame. Be advised that the subscribeCamera method needs to be called beforehand, otherwise a pybullet error will be raised. Returns: frame - The current camera frame as a formatted numpy array, directly exploitable from OpenCV """ try: assert self.active_camera is not None return self.active_camera.getFrame() except AssertionError: raise pybullet.error("No active camera, cannot retrieve any frame") def getCameraResolution(self): """ Returns the resolution of the active camera. Be advised that the subscribeCamera method needs to be called beforehand, otherwise a pybullet error will be raised. Returns: resolution - a CameraResolution object describing the resolution of the active camera """ try: assert self.active_camera is not None return self.active_camera.getResolution() except KeyError: raise pybullet.error("No active camera, resolution unavailable") def getCameraLink(self): """ Returns the link of the active camera. Be advised that the subscribeCamera method needs to be called beforehand, otherwise a pybullet error will be raised. Returns: resolution - a Link object describing the link to which the active camera is attached """ try: assert self.active_camera is not None return self.active_camera.getCameraLink() except KeyError: raise pybullet.error("No active camera, cannot retrieve any link") def getActiveCamera(self): """ Returns the active camera of the robot. Returns: active_camera - Camera (CameraRgb or CameraDepth) object, the active camera of the robot. If there is no active camera, a None is returned """ return self.active_camera def getPosition(self): """ Gets the position of the robot's base in the world frame. Returns: x - The position of the robot's base on the x axis, in meters y - The positions of the robot's base on the y axis in meters theta - The rotation of the robot's base on the z axis in meters """ position, quaternions = pybullet.getBasePositionAndOrientation( self.robot_model, physicsClientId=self.physics_client) theta = pybullet.getEulerFromQuaternion(quaternions)[2] return position[0], position[1], theta def isSelfColliding(self, link_names): """ Specifies if a link is colliding with the rest of the virtual robot. Parameters: link_names - String or list of string containing the names of the links to be checked for self collision. WARNING: only the links with corresponding meshes should be used, otherwise the link cannot self collide Returns: self_colliding - Boolean, if True at least one of the links is self colliding """ try: if type(link_names) is str: assert link_names in self.link_dict.keys() names = [link_names] else: assert set(link_names).issubset(self.link_dict.keys()) names = list(link_names) for name in names: contact_tuple = pybullet.getContactPoints( bodyA=self.robot_model, bodyB=self.robot_model, linkIndexA=self.link_dict[name].getIndex(), physicsClientId=self.physics_client) contact_tuple += pybullet.getContactPoints( bodyA=self.robot_model, bodyB=self.robot_model, linkIndexB=self.link_dict[name].getIndex(), physicsClientId=self.physics_client) if len(contact_tuple) != 0: return True return False except AssertionError: raise pybullet.error( "Unauthorized link checking for self collisions")
2.578125
3