url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
all_goals simp only [predVarOccursIn] simp only [Formula.predVarSet]
case pred_const_ P : PredName n : ℕ a✝¹ : PredName a✝ : List VarName ⊢ predVarOccursIn P n (pred_const_ a✝¹ a✝) ↔ (P, n) ∈ (pred_const_ a✝¹ a✝).predVarSet case pred_var_ P : PredName n : ℕ a✝¹ : PredName a✝ : List VarName ⊢ predVarOccursIn P n (pred_var_ a✝¹ a✝) ↔ (P, n) ∈ (pred_var_ a✝¹ a✝).predVarSet case eq_ P : PredName n : ℕ a✝¹ a✝ : VarName ⊢ predVarOccursIn P n (eq_ a✝¹ a✝) ↔ (P, n) ∈ (eq_ a✝¹ a✝).predVarSet case true_ P : PredName n : ℕ ⊢ predVarOccursIn P n true_ ↔ (P, n) ∈ true_.predVarSet case false_ P : PredName n : ℕ ⊢ predVarOccursIn P n false_ ↔ (P, n) ∈ false_.predVarSet case not_ P : PredName n : ℕ a✝ : Formula a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊢ predVarOccursIn P n a✝.not_ ↔ (P, n) ∈ a✝.not_.predVarSet case imp_ P : PredName n : ℕ a✝¹ a✝ : Formula a_ih✝¹ : predVarOccursIn P n a✝¹ ↔ (P, n) ∈ a✝¹.predVarSet a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊢ predVarOccursIn P n (a✝¹.imp_ a✝) ↔ (P, n) ∈ (a✝¹.imp_ a✝).predVarSet case and_ P : PredName n : ℕ a✝¹ a✝ : Formula a_ih✝¹ : predVarOccursIn P n a✝¹ ↔ (P, n) ∈ a✝¹.predVarSet a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊢ predVarOccursIn P n (a✝¹.and_ a✝) ↔ (P, n) ∈ (a✝¹.and_ a✝).predVarSet case or_ P : PredName n : ℕ a✝¹ a✝ : Formula a_ih✝¹ : predVarOccursIn P n a✝¹ ↔ (P, n) ∈ a✝¹.predVarSet a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊢ predVarOccursIn P n (a✝¹.or_ a✝) ↔ (P, n) ∈ (a✝¹.or_ a✝).predVarSet case iff_ P : PredName n : ℕ a✝¹ a✝ : Formula a_ih✝¹ : predVarOccursIn P n a✝¹ ↔ (P, n) ∈ a✝¹.predVarSet a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊢ predVarOccursIn P n (a✝¹.iff_ a✝) ↔ (P, n) ∈ (a✝¹.iff_ a✝).predVarSet case forall_ P : PredName n : ℕ a✝¹ : VarName a✝ : Formula a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊢ predVarOccursIn P n (forall_ a✝¹ a✝) ↔ (P, n) ∈ (forall_ a✝¹ a✝).predVarSet case exists_ P : PredName n : ℕ a✝¹ : VarName a✝ : Formula a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊢ predVarOccursIn P n (exists_ a✝¹ a✝) ↔ (P, n) ∈ (exists_ a✝¹ a✝).predVarSet case def_ P : PredName n : ℕ a✝¹ : DefName a✝ : List VarName ⊢ predVarOccursIn P n (def_ a✝¹ a✝) ↔ (P, n) ∈ (def_ a✝¹ a✝).predVarSet
case pred_const_ P : PredName n : ℕ a✝¹ : PredName a✝ : List VarName ⊢ False ↔ (P, n) ∈ ∅ case pred_var_ P : PredName n : ℕ a✝¹ : PredName a✝ : List VarName ⊢ P = a✝¹ ∧ n = a✝.length ↔ (P, n) ∈ {(a✝¹, a✝.length)} case eq_ P : PredName n : ℕ a✝¹ a✝ : VarName ⊢ False ↔ (P, n) ∈ ∅ case true_ P : PredName n : ℕ ⊢ False ↔ (P, n) ∈ ∅ case false_ P : PredName n : ℕ ⊢ False ↔ (P, n) ∈ ∅ case not_ P : PredName n : ℕ a✝ : Formula a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊢ predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet case imp_ P : PredName n : ℕ a✝¹ a✝ : Formula a_ih✝¹ : predVarOccursIn P n a✝¹ ↔ (P, n) ∈ a✝¹.predVarSet a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊢ predVarOccursIn P n a✝¹ ∨ predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝¹.predVarSet ∪ a✝.predVarSet case and_ P : PredName n : ℕ a✝¹ a✝ : Formula a_ih✝¹ : predVarOccursIn P n a✝¹ ↔ (P, n) ∈ a✝¹.predVarSet a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊢ predVarOccursIn P n a✝¹ ∨ predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝¹.predVarSet ∪ a✝.predVarSet case or_ P : PredName n : ℕ a✝¹ a✝ : Formula a_ih✝¹ : predVarOccursIn P n a✝¹ ↔ (P, n) ∈ a✝¹.predVarSet a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊢ predVarOccursIn P n a✝¹ ∨ predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝¹.predVarSet ∪ a✝.predVarSet case iff_ P : PredName n : ℕ a✝¹ a✝ : Formula a_ih✝¹ : predVarOccursIn P n a✝¹ ↔ (P, n) ∈ a✝¹.predVarSet a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊢ predVarOccursIn P n a✝¹ ∨ predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝¹.predVarSet ∪ a✝.predVarSet case forall_ P : PredName n : ℕ a✝¹ : VarName a✝ : Formula a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊢ predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet case exists_ P : PredName n : ℕ a✝¹ : VarName a✝ : Formula a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊢ predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet case def_ P : PredName n : ℕ a✝¹ : DefName a✝ : List VarName ⊢ False ↔ (P, n) ∈ ∅
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
case pred_const_ X xs | pred_var_ X xs | def_ X xs => simp
P : PredName n : ℕ X : DefName xs : List VarName ⊢ False ↔ (P, n) ∈ ∅
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
case eq_ x y => simp
P : PredName n : ℕ x y : VarName ⊢ False ↔ (P, n) ∈ ∅
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
case true_ | false_ => tauto
P : PredName n : ℕ ⊢ False ↔ (P, n) ∈ ∅
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
case not_ phi phi_ih => tauto
P : PredName n : ℕ phi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet ⊢ predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
case imp_ phi psi phi_ih psi_ih | and_ phi psi phi_ih psi_ih | or_ phi psi phi_ih psi_ih | iff_ phi psi phi_ih psi_ih => simp tauto
P : PredName n : ℕ phi psi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet psi_ih : predVarOccursIn P n psi ↔ (P, n) ∈ psi.predVarSet ⊢ predVarOccursIn P n phi ∨ predVarOccursIn P n psi ↔ (P, n) ∈ phi.predVarSet ∪ psi.predVarSet
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
case forall_ x phi phi_ih | exists_ x phi phi_ih => tauto
P : PredName n : ℕ x : VarName phi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet ⊢ predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
simp only [predVarOccursIn]
case def_ P : PredName n : ℕ a✝¹ : DefName a✝ : List VarName ⊢ predVarOccursIn P n (def_ a✝¹ a✝) ↔ (P, n) ∈ (def_ a✝¹ a✝).predVarSet
case def_ P : PredName n : ℕ a✝¹ : DefName a✝ : List VarName ⊢ False ↔ (P, n) ∈ (def_ a✝¹ a✝).predVarSet
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
simp only [Formula.predVarSet]
case def_ P : PredName n : ℕ a✝¹ : DefName a✝ : List VarName ⊢ False ↔ (P, n) ∈ (def_ a✝¹ a✝).predVarSet
case def_ P : PredName n : ℕ a✝¹ : DefName a✝ : List VarName ⊢ False ↔ (P, n) ∈ ∅
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
simp
P : PredName n : ℕ X : DefName xs : List VarName ⊢ False ↔ (P, n) ∈ ∅
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
simp
P : PredName n : ℕ x y : VarName ⊢ False ↔ (P, n) ∈ ∅
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
tauto
P : PredName n : ℕ ⊢ False ↔ (P, n) ∈ ∅
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
tauto
P : PredName n : ℕ phi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet ⊢ predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
simp
P : PredName n : ℕ phi psi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet psi_ih : predVarOccursIn P n psi ↔ (P, n) ∈ psi.predVarSet ⊢ predVarOccursIn P n phi ∨ predVarOccursIn P n psi ↔ (P, n) ∈ phi.predVarSet ∪ psi.predVarSet
P : PredName n : ℕ phi psi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet psi_ih : predVarOccursIn P n psi ↔ (P, n) ∈ psi.predVarSet ⊢ predVarOccursIn P n phi ∨ predVarOccursIn P n psi ↔ (P, n) ∈ phi.predVarSet ∨ (P, n) ∈ psi.predVarSet
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
tauto
P : PredName n : ℕ phi psi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet psi_ih : predVarOccursIn P n psi ↔ (P, n) ∈ psi.predVarSet ⊢ predVarOccursIn P n phi ∨ predVarOccursIn P n psi ↔ (P, n) ∈ phi.predVarSet ∨ (P, n) ∈ psi.predVarSet
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
tauto
P : PredName n : ℕ x : VarName phi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet ⊢ predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isBoundIn_imp_occursIn
[467, 1]
[478, 10]
induction F
v : VarName F : Formula h1 : isBoundIn v F ⊢ occursIn v F
case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : isBoundIn v (pred_const_ a✝¹ a✝) ⊢ occursIn v (pred_const_ a✝¹ a✝) case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : isBoundIn v (pred_var_ a✝¹ a✝) ⊢ occursIn v (pred_var_ a✝¹ a✝) case eq_ v a✝¹ a✝ : VarName h1 : isBoundIn v (eq_ a✝¹ a✝) ⊢ occursIn v (eq_ a✝¹ a✝) case true_ v : VarName h1 : isBoundIn v true_ ⊢ occursIn v true_ case false_ v : VarName h1 : isBoundIn v false_ ⊢ occursIn v false_ case not_ v : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v a✝.not_ ⊢ occursIn v a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v (a✝¹.imp_ a✝) ⊢ occursIn v (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v (a✝¹.and_ a✝) ⊢ occursIn v (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v (a✝¹.or_ a✝) ⊢ occursIn v (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v (a✝¹.iff_ a✝) ⊢ occursIn v (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v (forall_ a✝¹ a✝) ⊢ occursIn v (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v (exists_ a✝¹ a✝) ⊢ occursIn v (exists_ a✝¹ a✝) case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : isBoundIn v (def_ a✝¹ a✝) ⊢ occursIn v (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isBoundIn_imp_occursIn
[467, 1]
[478, 10]
all_goals simp only [isBoundIn] at h1
case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : isBoundIn v (pred_const_ a✝¹ a✝) ⊢ occursIn v (pred_const_ a✝¹ a✝) case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : isBoundIn v (pred_var_ a✝¹ a✝) ⊢ occursIn v (pred_var_ a✝¹ a✝) case eq_ v a✝¹ a✝ : VarName h1 : isBoundIn v (eq_ a✝¹ a✝) ⊢ occursIn v (eq_ a✝¹ a✝) case true_ v : VarName h1 : isBoundIn v true_ ⊢ occursIn v true_ case false_ v : VarName h1 : isBoundIn v false_ ⊢ occursIn v false_ case not_ v : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v a✝.not_ ⊢ occursIn v a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v (a✝¹.imp_ a✝) ⊢ occursIn v (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v (a✝¹.and_ a✝) ⊢ occursIn v (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v (a✝¹.or_ a✝) ⊢ occursIn v (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v (a✝¹.iff_ a✝) ⊢ occursIn v (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v (forall_ a✝¹ a✝) ⊢ occursIn v (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v (exists_ a✝¹ a✝) ⊢ occursIn v (exists_ a✝¹ a✝) case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : isBoundIn v (def_ a✝¹ a✝) ⊢ occursIn v (def_ a✝¹ a✝)
case not_ v : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v a✝ ⊢ occursIn v a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v a✝¹ ∨ isBoundIn v a✝ ⊢ occursIn v (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v a✝¹ ∨ isBoundIn v a✝ ⊢ occursIn v (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v a✝¹ ∨ isBoundIn v a✝ ⊢ occursIn v (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v a✝¹ ∨ isBoundIn v a✝ ⊢ occursIn v (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : v = a✝¹ ∨ isBoundIn v a✝ ⊢ occursIn v (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : v = a✝¹ ∨ isBoundIn v a✝ ⊢ occursIn v (exists_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isBoundIn_imp_occursIn
[467, 1]
[478, 10]
all_goals simp only [occursIn] tauto
case not_ v : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v a✝ ⊢ occursIn v a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v a✝¹ ∨ isBoundIn v a✝ ⊢ occursIn v (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v a✝¹ ∨ isBoundIn v a✝ ⊢ occursIn v (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v a✝¹ ∨ isBoundIn v a✝ ⊢ occursIn v (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : isBoundIn v a✝¹ ∨ isBoundIn v a✝ ⊢ occursIn v (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : v = a✝¹ ∨ isBoundIn v a✝ ⊢ occursIn v (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : v = a✝¹ ∨ isBoundIn v a✝ ⊢ occursIn v (exists_ a✝¹ a✝)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isBoundIn_imp_occursIn
[467, 1]
[478, 10]
simp only [isBoundIn] at h1
case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : isBoundIn v (def_ a✝¹ a✝) ⊢ occursIn v (def_ a✝¹ a✝)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isBoundIn_imp_occursIn
[467, 1]
[478, 10]
simp only [occursIn]
case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : v = a✝¹ ∨ isBoundIn v a✝ ⊢ occursIn v (exists_ a✝¹ a✝)
case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : v = a✝¹ ∨ isBoundIn v a✝ ⊢ v = a✝¹ ∨ occursIn v a✝
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isBoundIn_imp_occursIn
[467, 1]
[478, 10]
tauto
case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ → occursIn v a✝ h1 : v = a✝¹ ∨ isBoundIn v a✝ ⊢ v = a✝¹ ∨ occursIn v a✝
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isFreeIn_imp_occursIn
[481, 1]
[492, 10]
induction F
v : VarName F : Formula h1 : isFreeIn v F ⊢ occursIn v F
case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : isFreeIn v (pred_const_ a✝¹ a✝) ⊢ occursIn v (pred_const_ a✝¹ a✝) case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : isFreeIn v (pred_var_ a✝¹ a✝) ⊢ occursIn v (pred_var_ a✝¹ a✝) case eq_ v a✝¹ a✝ : VarName h1 : isFreeIn v (eq_ a✝¹ a✝) ⊢ occursIn v (eq_ a✝¹ a✝) case true_ v : VarName h1 : isFreeIn v true_ ⊢ occursIn v true_ case false_ v : VarName h1 : isFreeIn v false_ ⊢ occursIn v false_ case not_ v : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v a✝.not_ ⊢ occursIn v a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v (a✝¹.imp_ a✝) ⊢ occursIn v (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v (a✝¹.and_ a✝) ⊢ occursIn v (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v (a✝¹.or_ a✝) ⊢ occursIn v (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v (a✝¹.iff_ a✝) ⊢ occursIn v (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v (forall_ a✝¹ a✝) ⊢ occursIn v (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v (exists_ a✝¹ a✝) ⊢ occursIn v (exists_ a✝¹ a✝) case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : isFreeIn v (def_ a✝¹ a✝) ⊢ occursIn v (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isFreeIn_imp_occursIn
[481, 1]
[492, 10]
all_goals simp only [isFreeIn] at h1
case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : isFreeIn v (pred_const_ a✝¹ a✝) ⊢ occursIn v (pred_const_ a✝¹ a✝) case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : isFreeIn v (pred_var_ a✝¹ a✝) ⊢ occursIn v (pred_var_ a✝¹ a✝) case eq_ v a✝¹ a✝ : VarName h1 : isFreeIn v (eq_ a✝¹ a✝) ⊢ occursIn v (eq_ a✝¹ a✝) case true_ v : VarName h1 : isFreeIn v true_ ⊢ occursIn v true_ case false_ v : VarName h1 : isFreeIn v false_ ⊢ occursIn v false_ case not_ v : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v a✝.not_ ⊢ occursIn v a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v (a✝¹.imp_ a✝) ⊢ occursIn v (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v (a✝¹.and_ a✝) ⊢ occursIn v (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v (a✝¹.or_ a✝) ⊢ occursIn v (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v (a✝¹.iff_ a✝) ⊢ occursIn v (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v (forall_ a✝¹ a✝) ⊢ occursIn v (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v (exists_ a✝¹ a✝) ⊢ occursIn v (exists_ a✝¹ a✝) case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : isFreeIn v (def_ a✝¹ a✝) ⊢ occursIn v (def_ a✝¹ a✝)
case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : v ∈ a✝ ⊢ occursIn v (pred_const_ a✝¹ a✝) case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : v ∈ a✝ ⊢ occursIn v (pred_var_ a✝¹ a✝) case eq_ v a✝¹ a✝ : VarName h1 : v = a✝¹ ∨ v = a✝ ⊢ occursIn v (eq_ a✝¹ a✝) case not_ v : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v a✝ ⊢ occursIn v a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊢ occursIn v (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊢ occursIn v (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊢ occursIn v (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊢ occursIn v (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : ¬v = a✝¹ ∧ isFreeIn v a✝ ⊢ occursIn v (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : ¬v = a✝¹ ∧ isFreeIn v a✝ ⊢ occursIn v (exists_ a✝¹ a✝) case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : v ∈ a✝ ⊢ occursIn v (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isFreeIn_imp_occursIn
[481, 1]
[492, 10]
all_goals simp only [occursIn] tauto
case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : v ∈ a✝ ⊢ occursIn v (pred_const_ a✝¹ a✝) case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : v ∈ a✝ ⊢ occursIn v (pred_var_ a✝¹ a✝) case eq_ v a✝¹ a✝ : VarName h1 : v = a✝¹ ∨ v = a✝ ⊢ occursIn v (eq_ a✝¹ a✝) case not_ v : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v a✝ ⊢ occursIn v a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊢ occursIn v (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊢ occursIn v (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊢ occursIn v (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ → occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊢ occursIn v (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : ¬v = a✝¹ ∧ isFreeIn v a✝ ⊢ occursIn v (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ → occursIn v a✝ h1 : ¬v = a✝¹ ∧ isFreeIn v a✝ ⊢ occursIn v (exists_ a✝¹ a✝) case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : v ∈ a✝ ⊢ occursIn v (def_ a✝¹ a✝)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isFreeIn_imp_occursIn
[481, 1]
[492, 10]
simp only [isFreeIn] at h1
case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : isFreeIn v (def_ a✝¹ a✝) ⊢ occursIn v (def_ a✝¹ a✝)
case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : v ∈ a✝ ⊢ occursIn v (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isFreeIn_imp_occursIn
[481, 1]
[492, 10]
simp only [occursIn]
case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : v ∈ a✝ ⊢ occursIn v (def_ a✝¹ a✝)
case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : v ∈ a✝ ⊢ v ∈ a✝
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isFreeIn_imp_occursIn
[481, 1]
[492, 10]
tauto
case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : v ∈ a✝ ⊢ v ∈ a✝
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
induction F generalizing binders V
D : Type I : Interpretation D V V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula binders : Finset VarName F : Formula h1 : admitsAux τ binders F h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E F ↔ Holds D I V E (replace τ F)
case pred_const_ D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula a✝¹ : PredName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (pred_const_ a✝¹ a✝) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_const_ a✝¹ a✝) ↔ Holds D I V E (replace τ (pred_const_ a✝¹ a✝)) case pred_var_ D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula a✝¹ : PredName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (pred_var_ a✝¹ a✝) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ a✝¹ a✝) ↔ Holds D I V E (replace τ (pred_var_ a✝¹ a✝)) case eq_ D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula a✝¹ a✝ : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (eq_ a✝¹ a✝) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (eq_ a✝¹ a✝) ↔ Holds D I V E (replace τ (eq_ a✝¹ a✝)) case true_ D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders true_ h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E true_ ↔ Holds D I V E (replace τ true_) case false_ D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders false_ h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E false_ ↔ Holds D I V E (replace τ false_) case not_ D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders a✝ → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E a✝ ↔ Holds D I V E (replace τ a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders a✝.not_ h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E a✝.not_ ↔ Holds D I V E (replace τ a✝.not_) case imp_ D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders a✝¹ → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E a✝¹ ↔ Holds D I V E (replace τ a✝¹)) a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders a✝ → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E a✝ ↔ Holds D I V E (replace τ a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (a✝¹.imp_ a✝) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (a✝¹.imp_ a✝) ↔ Holds D I V E (replace τ (a✝¹.imp_ a✝)) case and_ D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders a✝¹ → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E a✝¹ ↔ Holds D I V E (replace τ a✝¹)) a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders a✝ → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E a✝ ↔ Holds D I V E (replace τ a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (a✝¹.and_ a✝) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (a✝¹.and_ a✝) ↔ Holds D I V E (replace τ (a✝¹.and_ a✝)) case or_ D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders a✝¹ → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E a✝¹ ↔ Holds D I V E (replace τ a✝¹)) a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders a✝ → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E a✝ ↔ Holds D I V E (replace τ a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (a✝¹.or_ a✝) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (a✝¹.or_ a✝) ↔ Holds D I V E (replace τ (a✝¹.or_ a✝)) case iff_ D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders a✝¹ → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E a✝¹ ↔ Holds D I V E (replace τ a✝¹)) a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders a✝ → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E a✝ ↔ Holds D I V E (replace τ a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (a✝¹.iff_ a✝) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (a✝¹.iff_ a✝) ↔ Holds D I V E (replace τ (a✝¹.iff_ a✝)) case forall_ D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders a✝ → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E a✝ ↔ Holds D I V E (replace τ a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (forall_ a✝¹ a✝) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (forall_ a✝¹ a✝) ↔ Holds D I V E (replace τ (forall_ a✝¹ a✝)) case exists_ D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders a✝ → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E a✝ ↔ Holds D I V E (replace τ a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (exists_ a✝¹ a✝) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (exists_ a✝¹ a✝) ↔ Holds D I V E (replace τ (exists_ a✝¹ a✝)) case def_ D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula a✝¹ : DefName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (def_ a✝¹ a✝) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (def_ a✝¹ a✝) ↔ Holds D I V E (replace τ (def_ a✝¹ a✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
case pred_const_ X xs => simp only [replace] simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (pred_const_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_const_ X xs) ↔ Holds D I V E (replace τ (pred_const_ X xs))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
case eq_ x y => simp only [replace] simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (eq_ x y) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (eq_ x y) ↔ Holds D I V E (replace τ (eq_ x y))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
case true_ | false_ => simp only [replace] simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders false_ h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E false_ ↔ Holds D I V E (replace τ false_)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
case not_ phi phi_ih => simp only [admitsAux] at h1 simp only [replace] simp only [Holds] congr! 1 exact phi_ih V binders h1 h2
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders phi.not_ h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace τ phi.not_)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
case forall_ x phi phi_ih | exists_ x phi phi_ih => simp only [admitsAux] at h1 simp only [replace] simp only [Holds] first | apply forall_congr' | apply exists_congr intro d apply phi_ih (Function.updateITE V x d) (binders ∪ {x}) h1 intro v a1 simp only [Function.updateITE] simp at a1 push_neg at a1 cases a1 case h.intro a1_left a1_right => simp only [if_neg a1_right] exact h2 v a1_left
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (exists_ x phi) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (replace τ (exists_ x phi))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (pred_const_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_const_ X xs) ↔ Holds D I V E (replace τ (pred_const_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (pred_const_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_const_ X xs) ↔ Holds D I V E (pred_const_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (pred_const_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_const_ X xs) ↔ Holds D I V E (pred_const_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [admitsAux] at h1
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (pred_var_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace τ (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 ∧ (∀ x ∈ binders, ¬(isFreeIn x (τ X xs.length).2 ∧ x ∉ (τ X xs.length).1)) ∧ xs.length = (τ X xs.length).1.length h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace τ (pred_var_ X xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp at h1
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 ∧ (∀ x ∈ binders, ¬(isFreeIn x (τ X xs.length).2 ∧ x ∉ (τ X xs.length).1)) ∧ xs.length = (τ X xs.length).1.length h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace τ (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1 : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 ∧ (∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1) ∧ xs.length = (τ X xs.length).1.length ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace τ (pred_var_ X xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
cases h1
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1 : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 ∧ (∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1) ∧ xs.length = (τ X xs.length).1.length ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace τ (pred_var_ X xs))
case intro D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x left✝ : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 right✝ : (∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1) ∧ xs.length = (τ X xs.length).1.length ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace τ (pred_var_ X xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
cases h1_right
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right : (∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1) ∧ xs.length = (τ X xs.length).1.length ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace τ (pred_var_ X xs))
case intro D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 left✝ : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 right✝ : xs.length = (τ X xs.length).1.length ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace τ (pred_var_ X xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
obtain s1 := Sub.Var.All.Rec.substitution_theorem D I V E (Function.updateListITE id (τ X xs.length).fst xs) (τ X xs.length).snd h1_left
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace τ (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (V ∘ Function.updateListITE id (τ X xs.length).1 xs) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace τ (pred_var_ X xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [Function.updateListITE_comp] at s1
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (V ∘ Function.updateListITE id (τ X xs.length).1 xs) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace τ (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE (V ∘ id) (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace τ (pred_var_ X xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp at s1
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE (V ∘ id) (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace τ (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace τ (pred_var_ X xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [s2] at s1
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) s2 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I (Function.updateListITE V' (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace τ (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s2 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I (Function.updateListITE V' (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 s1 : Holds D I (Function.updateListITE V' (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace τ (pred_var_ X xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
clear s2
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s2 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I (Function.updateListITE V' (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 s1 : Holds D I (Function.updateListITE V' (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace τ (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace τ (pred_var_ X xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace τ (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) ⊢ (if (List.map V xs).length = (τ X (List.map V xs).length).1.length then Holds D I (Function.updateListITE V' (τ X (List.map V xs).length).1 (List.map V xs)) E (τ X (List.map V xs).length).2 else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E (replace τ (pred_var_ X xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) ⊢ (if (List.map V xs).length = (τ X (List.map V xs).length).1.length then Holds D I (Function.updateListITE V' (τ X (List.map V xs).length).1 (List.map V xs)) E (τ X (List.map V xs).length).2 else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E (replace τ (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) ⊢ (if (List.map V xs).length = (τ X (List.map V xs).length).1.length then Holds D I (Function.updateListITE V' (τ X (List.map V xs).length).1 (List.map V xs)) E (τ X (List.map V xs).length).2 else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E (if xs.length = (τ X xs.length).1.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 else pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) ⊢ (if (List.map V xs).length = (τ X (List.map V xs).length).1.length then Holds D I (Function.updateListITE V' (τ X (List.map V xs).length).1 (List.map V xs)) E (τ X (List.map V xs).length).2 else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E (if xs.length = (τ X xs.length).1.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 else pred_var_ X xs)
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) ⊢ (if xs.length = (τ X xs.length).1.length then Holds D I (Function.updateListITE V' (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E (if xs.length = (τ X xs.length).1.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 else pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [if_pos h1_right_right]
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) ⊢ (if xs.length = (τ X xs.length).1.length then Holds D I (Function.updateListITE V' (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E (if xs.length = (τ X xs.length).1.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 else pred_var_ X xs)
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) ⊢ Holds D I (Function.updateListITE V' (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
exact s1
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) ⊢ Holds D I (Function.updateListITE V' (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
apply Holds_coincide_Var
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) ⊢ Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I (Function.updateListITE V' (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2
case h1 D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) ⊢ ∀ (v : VarName), isFreeIn v (τ X xs.length).2 → Function.updateListITE V (τ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (τ X xs.length).1 (List.map V xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
intro v a1
case h1 D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) ⊢ ∀ (v : VarName), isFreeIn v (τ X xs.length).2 → Function.updateListITE V (τ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (τ X xs.length).1 (List.map V xs) v
case h1 D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 ⊢ Function.updateListITE V (τ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (τ X xs.length).1 (List.map V xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
by_cases c1 : v ∈ (τ X xs.length).fst
case h1 D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 ⊢ Function.updateListITE V (τ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (τ X xs.length).1 (List.map V xs) v
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 c1 : v ∈ (τ X xs.length).1 ⊢ Function.updateListITE V (τ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (τ X xs.length).1 (List.map V xs) v case neg D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 c1 : v ∉ (τ X xs.length).1 ⊢ Function.updateListITE V (τ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (τ X xs.length).1 (List.map V xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
apply Function.updateListITE_mem_eq_len V V' v (τ X xs.length).fst (List.map V xs) c1
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 c1 : v ∈ (τ X xs.length).1 ⊢ Function.updateListITE V (τ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (τ X xs.length).1 (List.map V xs) v
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 c1 : v ∈ (τ X xs.length).1 ⊢ (τ X xs.length).1.length = (List.map V xs).length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 c1 : v ∈ (τ X xs.length).1 ⊢ (τ X xs.length).1.length = (List.map V xs).length
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 c1 : v ∈ (τ X xs.length).1 ⊢ (τ X xs.length).1.length = xs.length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
symm
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 c1 : v ∈ (τ X xs.length).1 ⊢ (τ X xs.length).1.length = xs.length
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 c1 : v ∈ (τ X xs.length).1 ⊢ xs.length = (τ X xs.length).1.length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
exact h1_right_right
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 c1 : v ∈ (τ X xs.length).1 ⊢ xs.length = (τ X xs.length).1.length
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
by_cases c2 : v ∈ binders
case neg D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 c1 : v ∉ (τ X xs.length).1 ⊢ Function.updateListITE V (τ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (τ X xs.length).1 (List.map V xs) v
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 c1 : v ∉ (τ X xs.length).1 c2 : v ∈ binders ⊢ Function.updateListITE V (τ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (τ X xs.length).1 (List.map V xs) v case neg D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 c1 : v ∉ (τ X xs.length).1 c2 : v ∉ binders ⊢ Function.updateListITE V (τ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (τ X xs.length).1 (List.map V xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
specialize h1_right_left v c2 a1
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 c1 : v ∉ (τ X xs.length).1 c2 : v ∈ binders ⊢ Function.updateListITE V (τ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (τ X xs.length).1 (List.map V xs) v
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 c1 : v ∉ (τ X xs.length).1 c2 : v ∈ binders h1_right_left : v ∈ (τ X xs.length).1 ⊢ Function.updateListITE V (τ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (τ X xs.length).1 (List.map V xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
contradiction
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 c1 : v ∉ (τ X xs.length).1 c2 : v ∈ binders h1_right_left : v ∈ (τ X xs.length).1 ⊢ Function.updateListITE V (τ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (τ X xs.length).1 (List.map V xs) v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
specialize h2 v c2
case neg D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 c1 : v ∉ (τ X xs.length).1 c2 : v ∉ binders ⊢ Function.updateListITE V (τ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (τ X xs.length).1 (List.map V xs) v
case neg D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 c1 : v ∉ (τ X xs.length).1 c2 : v ∉ binders h2 : V v = V' v ⊢ Function.updateListITE V (τ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (τ X xs.length).1 (List.map V xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
apply Function.updateListITE_mem'
case neg D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 c1 : v ∉ (τ X xs.length).1 c2 : v ∉ binders h2 : V v = V' v ⊢ Function.updateListITE V (τ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (τ X xs.length).1 (List.map V xs) v
case neg.h1 D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 c1 : v ∉ (τ X xs.length).1 c2 : v ∉ binders h2 : V v = V' v ⊢ V v = V' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
exact h2
case neg.h1 D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1_left : Var.All.Rec.admits (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2 h1_right_left : ∀ x ∈ binders, isFreeIn x (τ X xs.length).2 → x ∈ (τ X xs.length).1 h1_right_right : xs.length = (τ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (τ X xs.length).1 (List.map V xs)) E (τ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (τ X xs.length).1 xs) (τ X xs.length).2) v : VarName a1 : isFreeIn v (τ X xs.length).2 c1 : v ∉ (τ X xs.length).1 c2 : v ∉ binders h2 : V v = V' v ⊢ V v = V' v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (eq_ x y) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (eq_ x y) ↔ Holds D I V E (replace τ (eq_ x y))
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (eq_ x y) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (eq_ x y) ↔ Holds D I V E (eq_ x y)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (eq_ x y) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (eq_ x y) ↔ Holds D I V E (eq_ x y)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders false_ h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E false_ ↔ Holds D I V E (replace τ false_)
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders false_ h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E false_ ↔ Holds D I V E false_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders false_ h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E false_ ↔ Holds D I V E false_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [admitsAux] at h1
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders phi.not_ h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace τ phi.not_)
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders phi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace τ phi.not_)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders phi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace τ phi.not_)
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders phi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace τ phi).not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders phi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace τ phi).not_
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders phi h2 : ∀ x ∉ binders, V x = V' x ⊢ ¬Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ ¬Holds D I V E (replace τ phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
congr! 1
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders phi h2 : ∀ x ∉ binders, V x = V' x ⊢ ¬Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ ¬Holds D I V E (replace τ phi)
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders phi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
exact phi_ih V binders h1 h2
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders phi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [admitsAux] at h1
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace τ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (phi.iff_ psi) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E (replace τ (phi.iff_ psi))
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace τ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders phi ∧ admitsAux τ binders psi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E (replace τ (phi.iff_ psi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace τ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders phi ∧ admitsAux τ binders psi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E (replace τ (phi.iff_ psi))
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace τ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders phi ∧ admitsAux τ binders psi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E ((replace τ phi).iff_ (replace τ psi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace τ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders phi ∧ admitsAux τ binders psi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E ((replace τ phi).iff_ (replace τ psi))
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace τ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders phi ∧ admitsAux τ binders psi h2 : ∀ x ∉ binders, V x = V' x ⊢ (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E psi) ↔ (Holds D I V E (replace τ phi) ↔ Holds D I V E (replace τ psi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
cases h1
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace τ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders phi ∧ admitsAux τ binders psi h2 : ∀ x ∉ binders, V x = V' x ⊢ (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E psi) ↔ (Holds D I V E (replace τ phi) ↔ Holds D I V E (replace τ psi))
case intro D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace τ psi)) V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x left✝ : admitsAux τ binders phi right✝ : admitsAux τ binders psi ⊢ (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E psi) ↔ (Holds D I V E (replace τ phi) ↔ Holds D I V E (replace τ psi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
congr! 1
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace τ psi)) V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : admitsAux τ binders phi h1_right : admitsAux τ binders psi ⊢ (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E psi) ↔ (Holds D I V E (replace τ phi) ↔ Holds D I V E (replace τ psi))
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace τ psi)) V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : admitsAux τ binders phi h1_right : admitsAux τ binders psi ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi) case a.h.e'_2.a D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace τ psi)) V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : admitsAux τ binders phi h1_right : admitsAux τ binders psi ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace τ psi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
exact phi_ih V binders h1_left h2
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace τ psi)) V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : admitsAux τ binders phi h1_right : admitsAux τ binders psi ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
exact psi_ih V binders h1_right h2
case a.h.e'_2.a D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace τ psi)) V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : admitsAux τ binders phi h1_right : admitsAux τ binders psi ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace τ psi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [admitsAux] at h1
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (exists_ x phi) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (replace τ (exists_ x phi))
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (replace τ (exists_ x phi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (replace τ (exists_ x phi))
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (exists_ x (replace τ phi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (exists_ x (replace τ phi))
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ (∃ d, Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ ∃ d, Holds D I (Function.updateITE V x d) E (replace τ phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
first | apply forall_congr' | apply exists_congr
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ (∃ d, Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ ∃ d, Holds D I (Function.updateITE V x d) E (replace τ phi)
case h D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ ∀ (a : D), Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V x a) E (replace τ phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
intro d
case h D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ ∀ (a : D), Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V x a) E (replace τ phi)
case h D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x d) E phi ↔ Holds D I (Function.updateITE V x d) E (replace τ phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
apply phi_ih (Function.updateITE V x d) (binders ∪ {x}) h1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x d) E phi ↔ Holds D I (Function.updateITE V x d) E (replace τ phi)
case h D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D ⊢ ∀ x_1 ∉ binders ∪ {x}, Function.updateITE V x d x_1 = V' x_1
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
intro v a1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D ⊢ ∀ x_1 ∉ binders ∪ {x}, Function.updateITE V x d x_1 = V' x_1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1 : v ∉ binders ∪ {x} ⊢ Function.updateITE V x d v = V' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [Function.updateITE]
case h D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1 : v ∉ binders ∪ {x} ⊢ Function.updateITE V x d v = V' v
case h D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1 : v ∉ binders ∪ {x} ⊢ (if v = x then d else V v) = V' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp at a1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1 : v ∉ binders ∪ {x} ⊢ (if v = x then d else V v) = V' v
case h D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1 : v ∉ binders ∧ ¬v = x ⊢ (if v = x then d else V v) = V' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
push_neg at a1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1 : v ∉ binders ∧ ¬v = x ⊢ (if v = x then d else V v) = V' v
case h D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1 : v ∉ binders ∧ v ≠ x ⊢ (if v = x then d else V v) = V' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
cases a1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1 : v ∉ binders ∧ v ≠ x ⊢ (if v = x then d else V v) = V' v
case h.intro D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName left✝ : v ∉ binders right✝ : v ≠ x ⊢ (if v = x then d else V v) = V' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
case h.intro a1_left a1_right => simp only [if_neg a1_right] exact h2 v a1_left
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1_left : v ∉ binders a1_right : v ≠ x ⊢ (if v = x then d else V v) = V' v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
apply forall_congr'
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ (∀ (d : D), Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ ∀ (d : D), Holds D I (Function.updateITE V x d) E (replace τ phi)
case h D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ ∀ (a : D), Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V x a) E (replace τ phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
apply exists_congr
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ (∃ d, Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ ∃ d, Holds D I (Function.updateITE V x d) E (replace τ phi)
case h D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ ∀ (a : D), Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V x a) E (replace τ phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [if_neg a1_right]
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1_left : v ∉ binders a1_right : v ≠ x ⊢ (if v = x then d else V v) = V' v
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1_left : v ∉ binders a1_right : v ≠ x ⊢ V v = V' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
exact h2 v a1_left
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux τ binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace τ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux τ (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1_left : v ∉ binders a1_right : v ≠ x ⊢ V v = V' v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
cases E
D : Type I : Interpretation D V' : VarAssignment D E : Env τ : PredName → ℕ → List VarName × Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) E (τ X ds.length).2 else I.pred_var_ X ds } V E (def_ X xs) ↔ Holds D I V E (replace τ (def_ X xs))
case nil D : Type I : Interpretation D V' : VarAssignment D τ : PredName → ℕ → List VarName × Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) [] (τ X ds.length).2 else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (replace τ (def_ X xs)) case cons D : Type I : Interpretation D V' : VarAssignment D τ : PredName → ℕ → List VarName × Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x head✝ : Definition tail✝ : List Definition ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) (head✝ :: tail✝) (τ X ds.length).2 else I.pred_var_ X ds } V (head✝ :: tail✝) (def_ X xs) ↔ Holds D I V (head✝ :: tail✝) (replace τ (def_ X xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
case nil => simp only [replace] simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D τ : PredName → ℕ → List VarName × Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) [] (τ X ds.length).2 else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (replace τ (def_ X xs))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D τ : PredName → ℕ → List VarName × Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) [] (τ X ds.length).2 else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (replace τ (def_ X xs))
D : Type I : Interpretation D V' : VarAssignment D τ : PredName → ℕ → List VarName × Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) [] (τ X ds.length).2 else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D τ : PredName → ℕ → List VarName × Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) [] (τ X ds.length).2 else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (def_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D τ : PredName → ℕ → List VarName × Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x hd : Definition tl : List Definition ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) (hd :: tl) (τ X ds.length).2 else I.pred_var_ X ds } V (hd :: tl) (def_ X xs) ↔ Holds D I V (hd :: tl) (replace τ (def_ X xs))
D : Type I : Interpretation D V' : VarAssignment D τ : PredName → ℕ → List VarName × Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux τ binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x hd : Definition tl : List Definition ⊢ Holds D { nonempty := ⋯, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (τ X ds.length).1.length then Holds D I (Function.updateListITE V' (τ X ds.length).1 ds) (hd :: tl) (τ X ds.length).2 else I.pred_var_ X ds } V (hd :: tl) (def_ X xs) ↔ Holds D I V (hd :: tl) (def_ X xs)