url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
congr! 1
D : Type I : Interpretation D E : Env c : Char phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Β¬Holds D I V E (sub Οƒ c phi) ↔ Β¬Holds D I (V ∘ Οƒ) E phi
case a.h.e'_1.a D : Type I : Interpretation D E : Env c : Char phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
exact phi_ih V Οƒ
case a.h.e'_1.a D : Type I : Interpretation D E : Env c : Char phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [sub]
D : Type I : Interpretation D E : Env c : Char phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi psi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c psi) ↔ Holds D I (V ∘ Οƒ) E psi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V E (sub Οƒ c (phi.iff_ psi)) ↔ Holds D I (V ∘ Οƒ) E (phi.iff_ psi)
D : Type I : Interpretation D E : Env c : Char phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi psi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c psi) ↔ Holds D I (V ∘ Οƒ) E psi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V E ((sub Οƒ c phi).iff_ (sub Οƒ c psi)) ↔ Holds D I (V ∘ Οƒ) E (phi.iff_ psi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [Holds]
D : Type I : Interpretation D E : Env c : Char phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi psi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c psi) ↔ Holds D I (V ∘ Οƒ) E psi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V E ((sub Οƒ c phi).iff_ (sub Οƒ c psi)) ↔ Holds D I (V ∘ Οƒ) E (phi.iff_ psi)
D : Type I : Interpretation D E : Env c : Char phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi psi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c psi) ↔ Holds D I (V ∘ Οƒ) E psi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ (Holds D I V E (sub Οƒ c phi) ↔ Holds D I V E (sub Οƒ c psi)) ↔ (Holds D I (V ∘ Οƒ) E phi ↔ Holds D I (V ∘ Οƒ) E psi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
congr! 1
D : Type I : Interpretation D E : Env c : Char phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi psi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c psi) ↔ Holds D I (V ∘ Οƒ) E psi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ (Holds D I V E (sub Οƒ c phi) ↔ Holds D I V E (sub Οƒ c psi)) ↔ (Holds D I (V ∘ Οƒ) E phi ↔ Holds D I (V ∘ Οƒ) E psi)
case a.h.e'_1.a D : Type I : Interpretation D E : Env c : Char phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi psi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c psi) ↔ Holds D I (V ∘ Οƒ) E psi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi case a.h.e'_2.a D : Type I : Interpretation D E : Env c : Char phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi psi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c psi) ↔ Holds D I (V ∘ Οƒ) E psi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V E (sub Οƒ c psi) ↔ Holds D I (V ∘ Οƒ) E psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
exact phi_ih V Οƒ
case a.h.e'_1.a D : Type I : Interpretation D E : Env c : Char phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi psi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c psi) ↔ Holds D I (V ∘ Οƒ) E psi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
exact psi_ih V Οƒ
case a.h.e'_2.a D : Type I : Interpretation D E : Env c : Char phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi psi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c psi) ↔ Holds D I (V ∘ Οƒ) E psi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V E (sub Οƒ c psi) ↔ Holds D I (V ∘ Οƒ) E psi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [sub]
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V E (sub Οƒ c (exists_ x phi)) ↔ Holds D I (V ∘ Οƒ) E (exists_ x phi)
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V E (exists_ (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) (sub (Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) c phi)) ↔ Holds D I (V ∘ Οƒ) E (exists_ x phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [Holds]
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V E (exists_ (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) (sub (Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) c phi)) ↔ Holds D I (V ∘ Οƒ) E (exists_ x phi)
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ (βˆƒ d, Holds D I (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d) E (sub (Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) c phi)) ↔ βˆƒ d, Holds D I (Function.updateITE (V ∘ Οƒ) x d) E phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
first | apply forall_congr' | apply exists_congr
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ (βˆƒ d, Holds D I (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d) E (sub (Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) c phi)) ↔ βˆƒ d, Holds D I (Function.updateITE (V ∘ Οƒ) x d) E phi
case h D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) a) E (sub (Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) c phi) ↔ Holds D I (Function.updateITE (V ∘ Οƒ) x a) E phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
intro d
case h D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) a) E (sub (Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) c phi) ↔ Holds D I (Function.updateITE (V ∘ Οƒ) x a) E phi
case h D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D ⊒ Holds D I (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d) E (sub (Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) c phi) ↔ Holds D I (Function.updateITE (V ∘ Οƒ) x d) E phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [phi_ih]
case h D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D ⊒ Holds D I (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d) E (sub (Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) c phi) ↔ Holds D I (Function.updateITE (V ∘ Οƒ) x d) E phi
case h D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D ⊒ Holds D I (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d ∘ Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) E phi ↔ Holds D I (Function.updateITE (V ∘ Οƒ) x d) E phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply Holds_coincide_Var
case h D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D ⊒ Holds D I (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d ∘ Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) E phi ↔ Holds D I (Function.updateITE (V ∘ Οƒ) x d) E phi
case h.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D ⊒ βˆ€ (v : VarName), isFreeIn v phi β†’ (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d ∘ Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) v = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
intro v a1
case h.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D ⊒ βˆ€ (v : VarName), isFreeIn v phi β†’ (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d ∘ Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) v = Function.updateITE (V ∘ Οƒ) x d v
case h.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi ⊒ (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d ∘ Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) v = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
case h.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi ⊒ (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d ∘ Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) v = Function.updateITE (V ∘ Οƒ) x d v
case h.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi ⊒ Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d (Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
split_ifs
case h.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi ⊒ Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d (Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) v) = Function.updateITE (V ∘ Οƒ) x d v
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi h✝ : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x ⊒ Function.updateITE V (fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet) d (Function.updateITE Οƒ x (fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet) v) = Function.updateITE (V ∘ Οƒ) x d v case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi h✝ : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x ⊒ Function.updateITE V x d (Function.updateITE Οƒ x x v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply forall_congr'
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ (βˆ€ (d : D), Holds D I (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d) E (sub (Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) c phi)) ↔ βˆ€ (d : D), Holds D I (Function.updateITE (V ∘ Οƒ) x d) E phi
case h D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) a) E (sub (Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) c phi) ↔ Holds D I (Function.updateITE (V ∘ Οƒ) x a) E phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply exists_congr
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ (βˆƒ d, Holds D I (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) d) E (sub (Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) c phi)) ↔ βˆƒ d, Holds D I (Function.updateITE (V ∘ Οƒ) x d) E phi
case h D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x) a) E (sub (Function.updateITE Οƒ x (if βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x then fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet else x)) c phi) ↔ Holds D I (Function.updateITE (V ∘ Οƒ) x a) E phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
obtain s0 := fresh_not_mem x c (freeVarSet (sub (Function.updateITE Οƒ x x) c phi))
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x ⊒ Function.updateITE V (fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet) d (Function.updateITE Οƒ x (fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet) v) = Function.updateITE (V ∘ Οƒ) x d v
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x s0 : fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet ⊒ Function.updateITE V (fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet) d (Function.updateITE Οƒ x (fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet) v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
generalize (fresh x c (freeVarSet (sub (Function.updateITE Οƒ x x) c phi))) = x' at *
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x s0 : fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet ⊒ Function.updateITE V (fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet) d (Function.updateITE Οƒ x (fresh x c (sub (Function.updateITE Οƒ x x) c phi).freeVarSet) v) = Function.updateITE (V ∘ Οƒ) x d v
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
by_cases c2 : v = x
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' v) = Function.updateITE (V ∘ Οƒ) x d v
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : v = x ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' v) = Function.updateITE (V ∘ Οƒ) x d v case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [c2]
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : v = x ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' v) = Function.updateITE (V ∘ Οƒ) x d v
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : v = x ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' x) = Function.updateITE (V ∘ Οƒ) x d x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [Function.updateITE]
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : v = x ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' x) = Function.updateITE (V ∘ Οƒ) x d x
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : v = x ⊒ (if (if True then x' else Οƒ x) = x' then d else V (if True then x' else Οƒ x)) = if True then d else (V ∘ Οƒ) x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : v = x ⊒ (if (if True then x' else Οƒ x) = x' then d else V (if True then x' else Οƒ x)) = if True then d else (V ∘ Οƒ) x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
by_cases c3 : Οƒ v = x'
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' v) = Function.updateITE (V ∘ Οƒ) x d v
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x c3 : Οƒ v = x' ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' v) = Function.updateITE (V ∘ Οƒ) x d v case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x c3 : ¬σ v = x' ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
subst c3
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x c3 : Οƒ v = x' ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' v) = Function.updateITE (V ∘ Οƒ) x d v
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet ⊒ Function.updateITE V (Οƒ v) d (Function.updateITE Οƒ x (Οƒ v) v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [freeVarSet_sub_eq_freeVarSet_image] at s0
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet ⊒ Function.updateITE V (Οƒ v) d (Function.updateITE Οƒ x (Οƒ v) v) = Function.updateITE (V ∘ Οƒ) x d v
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ Function.updateITE V (Οƒ v) d (Function.updateITE Οƒ x (Οƒ v) v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
have s1 : Οƒ v ∈ Finset.image (Function.updateITE Οƒ x x) (freeVarSet phi)
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ Function.updateITE V (Οƒ v) d (Function.updateITE Οƒ x (Οƒ v) v) = Function.updateITE (V ∘ Οƒ) x d v
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ Οƒ v ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet s1 : Οƒ v ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ Function.updateITE V (Οƒ v) d (Function.updateITE Οƒ x (Οƒ v) v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply Finset.mem_image_update
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ Οƒ v ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet s1 : Οƒ v ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ Function.updateITE V (Οƒ v) d (Function.updateITE Οƒ x (Οƒ v) v) = Function.updateITE (V ∘ Οƒ) x d v
case s1.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ Β¬v = x case s1.h2 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ v ∈ phi.freeVarSet case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet s1 : Οƒ v ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ Function.updateITE V (Οƒ v) d (Function.updateITE Οƒ x (Οƒ v) v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
contradiction
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet s1 : Οƒ v ∈ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ Function.updateITE V (Οƒ v) d (Function.updateITE Οƒ x (Οƒ v) v) = Function.updateITE (V ∘ Οƒ) x d v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
exact c2
case s1.h1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ Β¬v = x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [← isFreeIn_iff_mem_freeVarSet]
case s1.h2 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ v ∈ phi.freeVarSet
case s1.h2 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ isFreeIn v phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
exact a1
case s1.h2 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s0 : Οƒ v βˆ‰ Finset.image (Function.updateITE Οƒ x x) phi.freeVarSet ⊒ isFreeIn v phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [Function.updateITE]
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x c3 : ¬σ v = x' ⊒ Function.updateITE V x' d (Function.updateITE Οƒ x x' v) = Function.updateITE (V ∘ Οƒ) x d v
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x c3 : ¬σ v = x' ⊒ (if (if v = x then x' else Οƒ v) = x' then d else V (if v = x then x' else Οƒ v)) = if v = x then d else (V ∘ Οƒ) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [if_neg c2]
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x c3 : ¬σ v = x' ⊒ (if (if v = x then x' else Οƒ v) = x' then d else V (if v = x then x' else Οƒ v)) = if v = x then d else (V ∘ Οƒ) v
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x c3 : ¬σ v = x' ⊒ (if Οƒ v = x' then d else V (Οƒ v)) = (V ∘ Οƒ) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [if_neg c3]
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x c3 : ¬σ v = x' ⊒ (if Οƒ v = x' then d else V (Οƒ v)) = (V ∘ Οƒ) v
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x c3 : ¬σ v = x' ⊒ V (Οƒ v) = (V ∘ Οƒ) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x x' : VarName s0 : x' βˆ‰ (sub (Function.updateITE Οƒ x x) c phi).freeVarSet c2 : Β¬v = x c3 : ¬σ v = x' ⊒ V (Οƒ v) = (V ∘ Οƒ) v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
by_cases c2 : v = x
D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x ⊒ Function.updateITE V x d (Function.updateITE Οƒ x x v) = Function.updateITE (V ∘ Οƒ) x d v
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : v = x ⊒ Function.updateITE V x d (Function.updateITE Οƒ x x v) = Function.updateITE (V ∘ Οƒ) x d v case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x ⊒ Function.updateITE V x d (Function.updateITE Οƒ x x v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
subst c2
case pos D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : v = x ⊒ Function.updateITE V x d (Function.updateITE Οƒ x x v) = Function.updateITE (V ∘ Οƒ) x d v
case pos D : Type I : Interpretation D E : Env c : Char phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {v}, Οƒ y = v ⊒ Function.updateITE V v d (Function.updateITE Οƒ v v v) = Function.updateITE (V ∘ Οƒ) v d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [Function.updateITE]
case pos D : Type I : Interpretation D E : Env c : Char phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {v}, Οƒ y = v ⊒ Function.updateITE V v d (Function.updateITE Οƒ v v v) = Function.updateITE (V ∘ Οƒ) v d v
case pos D : Type I : Interpretation D E : Env c : Char phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {v}, Οƒ y = v ⊒ (if (if True then v else Οƒ v) = v then d else V (if True then v else Οƒ v)) = if True then d else (V ∘ Οƒ) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
case pos D : Type I : Interpretation D E : Env c : Char phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {v}, Οƒ y = v ⊒ (if (if True then v else Οƒ v) = v then d else V (if True then v else Οƒ v)) = if True then d else (V ∘ Οƒ) v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
have s1 : Β¬ Οƒ v = x
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x ⊒ Function.updateITE V x d (Function.updateITE Οƒ x x v) = Function.updateITE (V ∘ Οƒ) x d v
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x ⊒ ¬σ v = x case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s1 : ¬σ v = x ⊒ Function.updateITE V x d (Function.updateITE Οƒ x x v) = Function.updateITE (V ∘ Οƒ) x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [Function.updateITE]
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s1 : ¬σ v = x ⊒ Function.updateITE V x d (Function.updateITE Οƒ x x v) = Function.updateITE (V ∘ Οƒ) x d v
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s1 : ¬σ v = x ⊒ (if (if v = x then x else Οƒ v) = x then d else V (if v = x then x else Οƒ v)) = if v = x then d else (V ∘ Οƒ) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [if_neg c2]
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s1 : ¬σ v = x ⊒ (if (if v = x then x else Οƒ v) = x then d else V (if v = x then x else Οƒ v)) = if v = x then d else (V ∘ Οƒ) v
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s1 : ¬σ v = x ⊒ (if Οƒ v = x then d else V (Οƒ v)) = (V ∘ Οƒ) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [if_neg s1]
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s1 : ¬σ v = x ⊒ (if Οƒ v = x then d else V (Οƒ v)) = (V ∘ Οƒ) v
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s1 : ¬σ v = x ⊒ V (Οƒ v) = (V ∘ Οƒ) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
case neg D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x s1 : ¬σ v = x ⊒ V (Οƒ v) = (V ∘ Οƒ) v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
intro contra
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x ⊒ ¬σ v = x
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ False
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply c1
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ False
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply Exists.intro v
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ v ∈ phi.freeVarSet \ {x} ∧ Οƒ v = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
constructor
case s1 D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ v ∈ phi.freeVarSet \ {x} ∧ Οƒ v = x
case s1.left D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ v ∈ phi.freeVarSet \ {x} case s1.right D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ Οƒ v = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
case s1.left D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ v ∈ phi.freeVarSet \ {x}
case s1.left D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ v ∈ phi.freeVarSet ∧ Β¬v = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [← isFreeIn_iff_mem_freeVarSet]
case s1.left D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ v ∈ phi.freeVarSet ∧ Β¬v = x
case s1.left D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ isFreeIn v phi ∧ Β¬v = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
tauto
case s1.left D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ isFreeIn v phi ∧ Β¬v = x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
exact contra
case s1.right D : Type I : Interpretation D E : Env c : Char x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (Οƒ : VarName β†’ VarName), Holds D I V E (sub Οƒ c phi) ↔ Holds D I (V ∘ Οƒ) E phi V : VarAssignment D Οƒ : VarName β†’ VarName d : D v : VarName a1 : isFreeIn v phi c1 : Β¬βˆƒ y ∈ phi.freeVarSet \ {x}, Οƒ y = x c2 : Β¬v = x contra : Οƒ v = x ⊒ Οƒ v = x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
induction E
D : Type I : Interpretation D E : Env c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V E (sub Οƒ c (def_ X xs)) ↔ Holds D I (V ∘ Οƒ) E (def_ X xs)
case nil D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V [] (sub Οƒ c (def_ X xs)) ↔ Holds D I (V ∘ Οƒ) [] (def_ X xs) case cons D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : Holds D I V tail✝ (sub Οƒ c (def_ X xs)) ↔ Holds D I (V ∘ Οƒ) tail✝ (def_ X xs) ⊒ Holds D I V (head✝ :: tail✝) (sub Οƒ c (def_ X xs)) ↔ Holds D I (V ∘ Οƒ) (head✝ :: tail✝) (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
case nil => simp only [sub] simp only [Holds]
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V [] (sub Οƒ c (def_ X xs)) ↔ Holds D I (V ∘ Οƒ) [] (def_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [sub]
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V [] (sub Οƒ c (def_ X xs)) ↔ Holds D I (V ∘ Οƒ) [] (def_ X xs)
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V [] (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) [] (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [Holds]
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName ⊒ Holds D I V [] (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) [] (def_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [sub] at E_ih
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (sub Οƒ c (def_ X xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) ⊒ Holds D I V (E_hd :: E_tl) (sub Οƒ c (def_ X xs)) ↔ Holds D I (V ∘ Οƒ) (E_hd :: E_tl) (def_ X xs)
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) ⊒ Holds D I V (E_hd :: E_tl) (sub Οƒ c (def_ X xs)) ↔ Holds D I (V ∘ Οƒ) (E_hd :: E_tl) (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [sub]
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) ⊒ Holds D I V (E_hd :: E_tl) (sub Οƒ c (def_ X xs)) ↔ Holds D I (V ∘ Οƒ) (E_hd :: E_tl) (def_ X xs)
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) ⊒ Holds D I V (E_hd :: E_tl) (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) (E_hd :: E_tl) (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [Holds]
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) ⊒ Holds D I V (E_hd :: E_tl) (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) (E_hd :: E_tl) (def_ X xs)
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) ⊒ (if X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))) ↔ if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D I (Function.updateListITE (V ∘ Οƒ) E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q else Holds D I (V ∘ Οƒ) E_tl (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) ⊒ (if X = E_hd.name ∧ (List.map Οƒ xs).length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map V (List.map Οƒ xs))) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))) ↔ if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D I (Function.updateListITE (V ∘ Οƒ) E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q else Holds D I (V ∘ Οƒ) E_tl (def_ X xs)
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) ⊒ (if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))) ↔ if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D I (Function.updateListITE (V ∘ Οƒ) E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q else Holds D I (V ∘ Οƒ) E_tl (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
split_ifs
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) ⊒ (if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q else Holds D I V E_tl (def_ X (List.map Οƒ xs))) ↔ if X = E_hd.name ∧ xs.length = E_hd.args.length then Holds D I (Function.updateListITE (V ∘ Οƒ) E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q else Holds D I (V ∘ Οƒ) E_tl (def_ X xs)
case pos D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) h✝ : X = E_hd.name ∧ xs.length = E_hd.args.length ⊒ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE (V ∘ Οƒ) E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q case neg D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) h✝ : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) ⊒ Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
case neg c1 => exact E_ih
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) ⊒ Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply Holds_coincide_Var
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length ⊒ Holds D I (Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q ↔ Holds D I (Function.updateListITE (V ∘ Οƒ) E_hd.args (List.map (V ∘ Οƒ) xs)) E_tl E_hd.q
case h1 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length ⊒ βˆ€ (v : VarName), isFreeIn v E_hd.q β†’ Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs) v = Function.updateListITE (V ∘ Οƒ) E_hd.args (List.map (V ∘ Οƒ) xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
intro v a1
case h1 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length ⊒ βˆ€ (v : VarName), isFreeIn v E_hd.q β†’ Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs) v = Function.updateListITE (V ∘ Οƒ) E_hd.args (List.map (V ∘ Οƒ) xs) v
case h1 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊒ Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs) v = Function.updateListITE (V ∘ Οƒ) E_hd.args (List.map (V ∘ Οƒ) xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply Function.updateListITE_map_mem_ext
case h1 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊒ Function.updateListITE V E_hd.args (List.map (V ∘ Οƒ) xs) v = Function.updateListITE (V ∘ Οƒ) E_hd.args (List.map (V ∘ Οƒ) xs) v
case h1.h1 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊒ βˆ€ y ∈ xs, (V ∘ Οƒ) y = (V ∘ Οƒ) y case h1.h2 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊒ E_hd.args.length = xs.length case h1.h3 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊒ v ∈ E_hd.args
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp
case h1.h1 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊒ βˆ€ y ∈ xs, (V ∘ Οƒ) y = (V ∘ Οƒ) y
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
cases c1
case h1.h2 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊒ E_hd.args.length = xs.length
case h1.h2.intro D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) v : VarName a1 : isFreeIn v E_hd.q left✝ : X = E_hd.name right✝ : xs.length = E_hd.args.length ⊒ E_hd.args.length = xs.length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
case _ c1_left c1_right => symm exact c1_right
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) v : VarName a1 : isFreeIn v E_hd.q c1_left : X = E_hd.name c1_right : xs.length = E_hd.args.length ⊒ E_hd.args.length = xs.length
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
symm
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) v : VarName a1 : isFreeIn v E_hd.q c1_left : X = E_hd.name c1_right : xs.length = E_hd.args.length ⊒ E_hd.args.length = xs.length
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) v : VarName a1 : isFreeIn v E_hd.q c1_left : X = E_hd.name c1_right : xs.length = E_hd.args.length ⊒ xs.length = E_hd.args.length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
exact c1_right
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) v : VarName a1 : isFreeIn v E_hd.q c1_left : X = E_hd.name c1_right : xs.length = E_hd.args.length ⊒ xs.length = E_hd.args.length
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [isFreeIn_iff_mem_freeVarSet] at a1
case h1.h3 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : isFreeIn v E_hd.q ⊒ v ∈ E_hd.args
case h1.h3 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : v ∈ E_hd.q.freeVarSet ⊒ v ∈ E_hd.args
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
simp only [← List.mem_toFinset]
case h1.h3 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : v ∈ E_hd.q.freeVarSet ⊒ v ∈ E_hd.args
case h1.h3 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : v ∈ E_hd.q.freeVarSet ⊒ v ∈ E_hd.args.toFinset
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
apply Finset.mem_of_subset E_hd.h1 a1
case h1.h3 D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : X = E_hd.name ∧ xs.length = E_hd.args.length v : VarName a1 : v ∈ E_hd.q.freeVarSet ⊒ v ∈ E_hd.args.toFinset
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem
[128, 1]
[245, 19]
exact E_ih
D : Type I : Interpretation D c : Char X : DefName xs : List VarName V : VarAssignment D Οƒ : VarName β†’ VarName E_hd : Definition E_tl : List Definition E_ih : Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs) c1 : Β¬(X = E_hd.name ∧ xs.length = E_hd.args.length) ⊒ Holds D I V E_tl (def_ X (List.map Οƒ xs)) ↔ Holds D I (V ∘ Οƒ) E_tl (def_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_is_valid
[248, 1]
[260, 11]
simp only [IsValid] at h1
Οƒ : VarName β†’ VarName c : Char F : Formula h1 : F.IsValid ⊒ (sub Οƒ c F).IsValid
Οƒ : VarName β†’ VarName c : Char F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ (sub Οƒ c F).IsValid
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_is_valid
[248, 1]
[260, 11]
simp only [IsValid]
Οƒ : VarName β†’ VarName c : Char F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ (sub Οƒ c F).IsValid
Οƒ : VarName β†’ VarName c : Char F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (sub Οƒ c F)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_is_valid
[248, 1]
[260, 11]
intro D I V E
Οƒ : VarName β†’ VarName c : Char F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (sub Οƒ c F)
Οƒ : VarName β†’ VarName c : Char F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I V E (sub Οƒ c F)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_is_valid
[248, 1]
[260, 11]
simp only [substitution_theorem]
Οƒ : VarName β†’ VarName c : Char F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I V E (sub Οƒ c F)
Οƒ : VarName β†’ VarName c : Char F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I (V ∘ Οƒ) E F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/Fresh/Sub.lean
FOL.NV.Sub.Var.All.Rec.Fresh.substitution_is_valid
[248, 1]
[260, 11]
apply h1
Οƒ : VarName β†’ VarName c : Char F : Formula h1 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I (V ∘ Οƒ) E F
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
list_cons_to_set_union
[9, 1]
[17, 9]
ext a
Ξ± : Type inst : DecidableEq Ξ± ys : List Ξ± x : Ξ± ⊒ ↑(x :: ys).toFinset = {x} βˆͺ ↑ys.toFinset
case h Ξ± : Type inst : DecidableEq Ξ± ys : List Ξ± x a : Ξ± ⊒ a ∈ ↑(x :: ys).toFinset ↔ a ∈ {x} βˆͺ ↑ys.toFinset
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
list_cons_to_set_union
[9, 1]
[17, 9]
simp
case h Ξ± : Type inst : DecidableEq Ξ± ys : List Ξ± x a : Ξ± ⊒ a ∈ ↑(x :: ys).toFinset ↔ a ∈ {x} βˆͺ ↑ys.toFinset
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
list_append_to_set_union
[19, 1]
[26, 9]
ext a
Ξ± : Type inst : DecidableEq Ξ± xs ys : List Ξ± ⊒ ↑(xs ++ ys).toFinset = ↑xs.toFinset βˆͺ ↑ys.toFinset
case h Ξ± : Type inst : DecidableEq Ξ± xs ys : List Ξ± a : Ξ± ⊒ a ∈ ↑(xs ++ ys).toFinset ↔ a ∈ ↑xs.toFinset βˆͺ ↑ys.toFinset
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
list_append_to_set_union
[19, 1]
[26, 9]
simp
case h Ξ± : Type inst : DecidableEq Ξ± xs ys : List Ξ± a : Ξ± ⊒ a ∈ ↑(xs ++ ys).toFinset ↔ a ∈ ↑xs.toFinset βˆͺ ↑ys.toFinset
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
induction g
Node : Type inst✝ : DecidableEq Node g : Graph Node ⊒ βˆ€ (x y : Node), y ∈ direct_succ_list g x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ g
case nil Node : Type inst✝ : DecidableEq Node ⊒ βˆ€ (x y : Node), y ∈ direct_succ_list [] x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ [] case cons Node : Type inst✝ : DecidableEq Node head✝ : Node Γ— List Node tail✝ : List (Node Γ— List Node) tail_ih✝ : βˆ€ (x y : Node), y ∈ direct_succ_list tail✝ x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tail✝ ⊒ βˆ€ (x y : Node), y ∈ direct_succ_list (head✝ :: tail✝) x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ head✝ :: tail✝
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
case nil => simp only [direct_succ_list] simp
Node : Type inst✝ : DecidableEq Node ⊒ βˆ€ (x y : Node), y ∈ direct_succ_list [] x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ []
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
simp only [direct_succ_list]
Node : Type inst✝ : DecidableEq Node ⊒ βˆ€ (x y : Node), y ∈ direct_succ_list [] x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ []
Node : Type inst✝ : DecidableEq Node ⊒ βˆ€ (x y : Node), y ∈ [] ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ []
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
simp
Node : Type inst✝ : DecidableEq Node ⊒ βˆ€ (x y : Node), y ∈ [] ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ []
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
simp only [direct_succ_list]
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl ⊒ βˆ€ (x y : Node), y ∈ direct_succ_list (hd :: tl) x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ hd :: tl
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl ⊒ βˆ€ (x y : Node), (y ∈ if hd.1 = x then hd.2 ++ direct_succ_list tl x else direct_succ_list tl x) ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ hd :: tl
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
intro x y
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl ⊒ βˆ€ (x y : Node), (y ∈ if hd.1 = x then hd.2 ++ direct_succ_list tl x else direct_succ_list tl x) ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ hd :: tl
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl x y : Node ⊒ (y ∈ if hd.1 = x then hd.2 ++ direct_succ_list tl x else direct_succ_list tl x) ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ hd :: tl
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
split_ifs
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl x y : Node ⊒ (y ∈ if hd.1 = x then hd.2 ++ direct_succ_list tl x else direct_succ_list tl x) ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ hd :: tl
case pos Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl x y : Node h✝ : hd.1 = x ⊒ y ∈ hd.2 ++ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ hd :: tl case neg Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl x y : Node h✝ : Β¬hd.1 = x ⊒ y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ hd :: tl
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
subst c1
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl x y : Node c1 : hd.1 = x ⊒ y ∈ hd.2 ++ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ hd :: tl
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node ⊒ y ∈ hd.2 ++ direct_succ_list tl hd.1 ↔ βˆƒ ys, y ∈ ys ∧ (hd.1, ys) ∈ hd :: tl
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
simp
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node ⊒ y ∈ hd.2 ++ direct_succ_list tl hd.1 ↔ βˆƒ ys, y ∈ ys ∧ (hd.1, ys) ∈ hd :: tl
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node ⊒ y ∈ hd.2 ∨ y ∈ direct_succ_list tl hd.1 ↔ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
simp only [ih]
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node ⊒ y ∈ hd.2 ∨ y ∈ direct_succ_list tl hd.1 ↔ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl)
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node ⊒ (y ∈ hd.2 ∨ βˆƒ ys, y ∈ ys ∧ (hd.1, ys) ∈ tl) ↔ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
constructor
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node ⊒ (y ∈ hd.2 ∨ βˆƒ ys, y ∈ ys ∧ (hd.1, ys) ∈ tl) ↔ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl)
case mp Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node ⊒ (y ∈ hd.2 ∨ βˆƒ ys, y ∈ ys ∧ (hd.1, ys) ∈ tl) β†’ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl) case mpr Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node ⊒ (βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl)) β†’ y ∈ hd.2 ∨ βˆƒ ys, y ∈ ys ∧ (hd.1, ys) ∈ tl
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
intro a1
case mp Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node ⊒ (y ∈ hd.2 ∨ βˆƒ ys, y ∈ ys ∧ (hd.1, ys) ∈ tl) β†’ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl)
case mp Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node a1 : y ∈ hd.2 ∨ βˆƒ ys, y ∈ ys ∧ (hd.1, ys) ∈ tl ⊒ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
cases a1
case mp Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node a1 : y ∈ hd.2 ∨ βˆƒ ys, y ∈ ys ∧ (hd.1, ys) ∈ tl ⊒ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl)
case mp.inl Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node h✝ : y ∈ hd.2 ⊒ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl) case mp.inr Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node h✝ : βˆƒ ys, y ∈ ys ∧ (hd.1, ys) ∈ tl ⊒ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
case _ left => apply Exists.intro hd.snd tauto
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node left : y ∈ hd.2 ⊒ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/DFT.lean
mem_direct_succ_list_iff
[65, 1]
[122, 16]
case _ right => apply Exists.elim right intro zs a2 apply Exists.intro zs tauto
Node : Type inst✝ : DecidableEq Node hd : Node Γ— List Node tl : List (Node Γ— List Node) ih : βˆ€ (x y : Node), y ∈ direct_succ_list tl x ↔ βˆƒ ys, y ∈ ys ∧ (x, ys) ∈ tl y : Node right : βˆƒ ys, y ∈ ys ∧ (hd.1, ys) ∈ tl ⊒ βˆƒ ys, y ∈ ys ∧ ((hd.1, ys) = hd ∨ (hd.1, ys) ∈ tl)
no goals