code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
__A = logging.getLogger(__name__)
class __lowerCAmelCase ( _lowerCamelCase ):
"""simple docstring"""
snake_case_ = '''token-classification'''
def __init__( self , lowerCamelCase__ ) -> Any:
'''simple docstring'''
if type(lowerCamelCase__ ) == dict:
__lowerCamelCase = Namespace(**lowerCamelCase__ )
__lowerCamelCase = import_module('tasks' )
try:
__lowerCamelCase = getattr(lowerCamelCase__ , hparams.task_type )
__lowerCamelCase = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """
f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" )
__lowerCamelCase = self.token_classification_task.get_labels(hparams.labels )
__lowerCamelCase = CrossEntropyLoss().ignore_index
super().__init__(lowerCamelCase__ , len(self.labels ) , self.mode )
def lowercase_ ( self , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
return self.model(**lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]}
if self.config.model_type != "distilbert":
__lowerCamelCase = (
batch[2] if self.config.model_type in ['bert', 'xlnet'] else None
) # XLM and RoBERTa don"t use token_type_ids
__lowerCamelCase = self(**lowerCamelCase__ )
__lowerCamelCase = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase = self.hparams
for mode in ["train", "dev", "test"]:
__lowerCamelCase = self._feature_file(lowerCamelCase__ )
if os.path.exists(lowerCamelCase__ ) and not args.overwrite_cache:
logger.info('Loading features from cached file %s' , lowerCamelCase__ )
__lowerCamelCase = torch.load(lowerCamelCase__ )
else:
logger.info('Creating features from dataset file at %s' , args.data_dir )
__lowerCamelCase = self.token_classification_task.read_examples_from_file(args.data_dir , lowerCamelCase__ )
__lowerCamelCase = self.token_classification_task.convert_examples_to_features(
lowerCamelCase__ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['xlnet'] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['xlnet'] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowerCamelCase__ , pad_on_left=bool(self.config.model_type in ['xlnet'] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info('Saving features into cached file %s' , lowerCamelCase__ )
torch.save(lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = self._feature_file(lowerCamelCase__ )
logger.info('Loading features from cached file %s' , lowerCamelCase__ )
__lowerCamelCase = torch.load(lowerCamelCase__ )
__lowerCamelCase = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
__lowerCamelCase = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
if features[0].token_type_ids is not None:
__lowerCamelCase = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
else:
__lowerCamelCase = torch.tensor([0 for f in features] , dtype=torch.long )
# HACK(we will not use this anymore soon)
__lowerCamelCase = torch.tensor([f.label_ids for f in features] , dtype=torch.long )
return DataLoader(
TensorDataset(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , batch_size=lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
"""Compute validation""" ""
__lowerCamelCase = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]}
if self.config.model_type != "distilbert":
__lowerCamelCase = (
batch[2] if self.config.model_type in ['bert', 'xlnet'] else None
) # XLM and RoBERTa don"t use token_type_ids
__lowerCamelCase = self(**lowerCamelCase__ )
__lowerCamelCase , __lowerCamelCase = outputs[:2]
__lowerCamelCase = logits.detach().cpu().numpy()
__lowerCamelCase = inputs['labels'].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def lowercase_ ( self , lowerCamelCase__ ) -> int:
'''simple docstring'''
__lowerCamelCase = torch.stack([x['val_loss'] for x in outputs] ).mean()
__lowerCamelCase = np.concatenate([x['pred'] for x in outputs] , axis=0 )
__lowerCamelCase = np.argmax(lowerCamelCase__ , axis=2 )
__lowerCamelCase = np.concatenate([x['target'] for x in outputs] , axis=0 )
__lowerCamelCase = dict(enumerate(self.labels ) )
__lowerCamelCase = [[] for _ in range(out_label_ids.shape[0] )]
__lowerCamelCase = [[] for _ in range(out_label_ids.shape[0] )]
for i in range(out_label_ids.shape[0] ):
for j in range(out_label_ids.shape[1] ):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
__lowerCamelCase = {
'val_loss': val_loss_mean,
'accuracy_score': accuracy_score(lowerCamelCase__ , lowerCamelCase__ ),
'precision': precision_score(lowerCamelCase__ , lowerCamelCase__ ),
'recall': recall_score(lowerCamelCase__ , lowerCamelCase__ ),
'f1': fa_score(lowerCamelCase__ , lowerCamelCase__ ),
}
__lowerCamelCase = dict(results.items() )
__lowerCamelCase = results
return ret, preds_list, out_label_list
def lowercase_ ( self , lowerCamelCase__ ) -> Any:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self._eval_end(lowerCamelCase__ )
__lowerCamelCase = ret['log']
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def lowercase_ ( self , lowerCamelCase__ ) -> Dict:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self._eval_end(lowerCamelCase__ )
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
__lowerCamelCase = ret['log']
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def lowercase_ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
BaseTransformer.add_model_specific_args(lowerCamelCase__ , lowerCamelCase__ )
parser.add_argument(
'--task_type' , default='NER' , type=lowerCamelCase__ , help='Task type to fine tune in training (e.g. NER, POS, etc)' )
parser.add_argument(
'--max_seq_length' , default=128 , type=lowerCamelCase__ , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument(
'--labels' , default='' , type=lowerCamelCase__ , help='Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.' , )
parser.add_argument(
'--gpus' , default=0 , type=lowerCamelCase__ , help='The number of GPUs allocated for this, it is by default 0 meaning none' , )
parser.add_argument(
'--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' )
return parser
if __name__ == "__main__":
__A = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
__A = NERTransformer.add_model_specific_args(parser, os.getcwd())
__A = parser.parse_args()
__A = NERTransformer(args)
__A = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
__A = sorted(glob.glob(os.path.join(args.output_dir, "checkpoint-epoch=*.ckpt"), recursive=True))
__A = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model)
| 353 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
__A = False
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowercase_ ( self ) -> int:
'''simple docstring'''
return 12
@property
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
return 12
@property
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
return 32
@property
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
__lowerCamelCase = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , )
return model
@property
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
torch.manual_seed(0 )
__lowerCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModel(lowerCamelCase__ )
@property
def lowercase_ ( self ) -> str:
'''simple docstring'''
torch.manual_seed(0 )
__lowerCamelCase = 12
__lowerCamelCase = 12
__lowerCamelCase = {
'attention_bias': True,
'cross_attention_dim': 32,
'attention_head_dim': height * width,
'num_attention_heads': 1,
'num_vector_embeds': self.num_embed,
'num_embeds_ada_norm': self.num_embeds_ada_norm,
'norm_num_groups': 32,
'sample_size': width,
'activation_fn': 'geglu-approximate',
}
__lowerCamelCase = TransformeraDModel(**lowerCamelCase__ )
return model
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = 'cpu'
__lowerCamelCase = self.dummy_vqvae
__lowerCamelCase = self.dummy_text_encoder
__lowerCamelCase = self.dummy_tokenizer
__lowerCamelCase = self.dummy_transformer
__lowerCamelCase = VQDiffusionScheduler(self.num_embed )
__lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=lowerCamelCase__ )
__lowerCamelCase = VQDiffusionPipeline(
vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , )
__lowerCamelCase = pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = 'teddy bear playing in the pool'
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' )
__lowerCamelCase = output.images
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipe(
[prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
__lowerCamelCase = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = 'cpu'
__lowerCamelCase = self.dummy_vqvae
__lowerCamelCase = self.dummy_text_encoder
__lowerCamelCase = self.dummy_tokenizer
__lowerCamelCase = self.dummy_transformer
__lowerCamelCase = VQDiffusionScheduler(self.num_embed )
__lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings(
learnable=lowerCamelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length )
__lowerCamelCase = VQDiffusionPipeline(
vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , )
__lowerCamelCase = pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = 'teddy bear playing in the pool'
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' )
__lowerCamelCase = output.images
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipe(
[prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
__lowerCamelCase = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' )
__lowerCamelCase = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' )
__lowerCamelCase = pipeline.to(lowerCamelCase__ )
pipeline.set_progress_bar_config(disable=lowerCamelCase__ )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipeline(
'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=lowerCamelCase__ , output_type='np' , )
__lowerCamelCase = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 348 | 0 |
import importlib
import shutil
import threading
import warnings
from typing import List
import fsspec
import fsspec.asyn
from . import compression
from .hffilesystem import HfFileSystem
__A = importlib.util.find_spec("s3fs") is not None
if _has_safs:
from .safilesystem import SaFileSystem # noqa: F401
__A = [
compression.BzaFileSystem,
compression.GzipFileSystem,
compression.LzaFileSystem,
compression.XzFileSystem,
compression.ZstdFileSystem,
]
# Register custom filesystems
for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]:
if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class:
warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''')
fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True)
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> str:
"""simple docstring"""
if "://" in dataset_path:
__lowerCamelCase = dataset_path.split('://' )[1]
return dataset_path
def lowerCamelCase_ ( UpperCamelCase__ : fsspec.AbstractFileSystem ) -> bool:
"""simple docstring"""
if fs is not None and fs.protocol != "file":
return True
else:
return False
def lowerCamelCase_ ( UpperCamelCase__ : fsspec.AbstractFileSystem , UpperCamelCase__ : str , UpperCamelCase__ : str ) -> str:
"""simple docstring"""
__lowerCamelCase = not is_remote_filesystem(_lowerCAmelCase )
if is_local:
# LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory
shutil.move(fs._strip_protocol(_lowerCAmelCase ) , fs._strip_protocol(_lowerCAmelCase ) )
else:
fs.mv(_lowerCAmelCase , _lowerCAmelCase , recursive=_lowerCAmelCase )
def lowerCamelCase_ ( ) -> None:
"""simple docstring"""
if hasattr(fsspec.asyn , 'reset_lock' ):
# for future fsspec>2022.05.0
fsspec.asyn.reset_lock()
else:
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = threading.Lock()
| 354 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=32 * 8 , lowerCamelCase__=32 * 8 , lowerCamelCase__=4 , lowerCamelCase__=64 , ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = is_training
__lowerCamelCase = use_auxiliary_loss
__lowerCamelCase = num_queries
__lowerCamelCase = num_channels
__lowerCamelCase = min_size
__lowerCamelCase = max_size
__lowerCamelCase = num_labels
__lowerCamelCase = hidden_dim
__lowerCamelCase = hidden_dim
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
__lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
lowerCamelCase__ )
__lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ )
__lowerCamelCase = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5
).float()
__lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long()
__lowerCamelCase = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = MaskaFormerConfig(
hidden_size=self.hidden_dim , )
__lowerCamelCase = self.num_queries
__lowerCamelCase = self.num_labels
__lowerCamelCase = [1, 1, 1, 1]
__lowerCamelCase = self.num_channels
__lowerCamelCase = 64
__lowerCamelCase = 128
__lowerCamelCase = self.hidden_dim
__lowerCamelCase = self.hidden_dim
__lowerCamelCase = self.hidden_dim
return config
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask}
return config, inputs_dict
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any:
'''simple docstring'''
__lowerCamelCase = output.encoder_hidden_states
__lowerCamelCase = output.pixel_decoder_hidden_states
__lowerCamelCase = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Tuple:
'''simple docstring'''
with torch.no_grad():
__lowerCamelCase = MaskaFormerModel(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ )
__lowerCamelCase = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
def comm_check_on_output(lowerCamelCase__ ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
__lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ )
__lowerCamelCase = model(lowerCamelCase__ )
comm_check_on_output(lowerCamelCase__ )
__lowerCamelCase = model(
pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ )
comm_check_on_output(lowerCamelCase__ )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {}
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = MaskaFormerModelTester(self )
__lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ )
@unittest.skip(reason='Mask2Former does not use inputs_embeds' )
def lowercase_ ( self ) -> Any:
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former is not a generative model' )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former does not use token embeddings' )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(
reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
pass
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(lowerCamelCase__ )
__lowerCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase = [*signature.parameters.keys()]
__lowerCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , lowerCamelCase__ )
@slow
def lowercase_ ( self ) -> int:
'''simple docstring'''
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
__lowerCamelCase = MaskaFormerModel.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = (self.model_tester.min_size,) * 2
__lowerCamelCase = {
'pixel_values': torch.randn((2, 3, *size) , device=lowerCamelCase__ ),
'mask_labels': torch.randn((2, 10, *size) , device=lowerCamelCase__ ),
'class_labels': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(),
}
__lowerCamelCase = self.model_tester.get_config()
__lowerCamelCase = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ )
__lowerCamelCase = model(**lowerCamelCase__ )
self.assertTrue(outputs.loss is not None )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ )
__lowerCamelCase = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ )
self.assertTrue(outputs.attentions is not None )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
if not self.model_tester.is_training:
return
__lowerCamelCase = self.all_model_classes[1]
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = model_class(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.train()
__lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss
loss.backward()
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase = self.all_model_classes[1]
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = True
__lowerCamelCase = True
__lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ )
model.train()
__lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ )
__lowerCamelCase = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
__lowerCamelCase = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
__lowerCamelCase = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
__lowerCamelCase = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=lowerCamelCase__ )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__A = 1e-4
def lowerCamelCase_ ( ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_vision
@slow
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ )
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = prepare_img()
__lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ )
__lowerCamelCase = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) )
with torch.no_grad():
__lowerCamelCase = model(**lowerCamelCase__ )
__lowerCamelCase = torch.tensor(
[[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(lowerCamelCase__ )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
__lowerCamelCase = torch.tensor(
[[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(lowerCamelCase__ )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
__lowerCamelCase = torch.tensor(
[[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(lowerCamelCase__ )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval()
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = prepare_img()
__lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ )
__lowerCamelCase = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) )
with torch.no_grad():
__lowerCamelCase = model(**lowerCamelCase__ )
# masks_queries_logits
__lowerCamelCase = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
__lowerCamelCase = [
[-8.78_39, -9.00_56, -8.81_21],
[-7.41_04, -7.03_13, -6.54_01],
[-6.61_05, -6.34_27, -6.46_75],
]
__lowerCamelCase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
# class_queries_logits
__lowerCamelCase = outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) )
__lowerCamelCase = torch.tensor(
[
[1.83_24, -8.08_35, -4.19_22],
[0.84_50, -9.00_50, -3.60_53],
[0.30_45, -7.72_93, -3.02_75],
] ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval()
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = image_processor(
[np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , )
__lowerCamelCase = inputs['pixel_values'].to(lowerCamelCase__ )
__lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['mask_labels']]
__lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['class_labels']]
with torch.no_grad():
__lowerCamelCase = model(**lowerCamelCase__ )
self.assertTrue(outputs.loss is not None )
| 348 | 0 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
__A = logging.get_logger(__name__)
__A = {
"openai/imagegpt-small": "",
"openai/imagegpt-medium": "",
"openai/imagegpt-large": "",
}
class __lowerCamelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''imagegpt'''
snake_case_ = ['''past_key_values''']
snake_case_ = {
'''hidden_size''': '''n_embd''',
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self , lowerCamelCase__=512 + 1 , lowerCamelCase__=32 * 32 , lowerCamelCase__=512 , lowerCamelCase__=24 , lowerCamelCase__=8 , lowerCamelCase__=None , lowerCamelCase__="quick_gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=1e-5 , lowerCamelCase__=0.02 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , **lowerCamelCase__ , ) -> str:
'''simple docstring'''
__lowerCamelCase = vocab_size
__lowerCamelCase = n_positions
__lowerCamelCase = n_embd
__lowerCamelCase = n_layer
__lowerCamelCase = n_head
__lowerCamelCase = n_inner
__lowerCamelCase = activation_function
__lowerCamelCase = resid_pdrop
__lowerCamelCase = embd_pdrop
__lowerCamelCase = attn_pdrop
__lowerCamelCase = layer_norm_epsilon
__lowerCamelCase = initializer_range
__lowerCamelCase = scale_attn_weights
__lowerCamelCase = use_cache
__lowerCamelCase = scale_attn_by_inverse_layer_idx
__lowerCamelCase = reorder_and_upcast_attn
__lowerCamelCase = tie_word_embeddings
super().__init__(tie_word_embeddings=lowerCamelCase_ , **lowerCamelCase_ )
class __lowerCamelCase ( __magic_name__ ):
"""simple docstring"""
@property
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
] )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = 1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = 3 , lowerCamelCase__ = 32 , lowerCamelCase__ = 32 , ) -> int:
'''simple docstring'''
__lowerCamelCase = self._generate_dummy_images(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
__lowerCamelCase = dict(preprocessor(images=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) )
return inputs
| 355 |
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__A = {
"facebook/mask2former-swin-small-coco-instance": (
"https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
__A = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''mask2former'''
snake_case_ = ['''swin''']
snake_case_ = {'''hidden_size''': '''hidden_dim'''}
def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 1_024 , lowerCamelCase__ = "relu" , lowerCamelCase__ = 6 , lowerCamelCase__ = 10 , lowerCamelCase__ = 8 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 2_048 , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = 4 , lowerCamelCase__ = 255 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 2.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 12_544 , lowerCamelCase__ = 3.0 , lowerCamelCase__ = 0.75 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = True , lowerCamelCase__ = [4, 8, 16, 32] , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Tuple:
'''simple docstring'''
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' )
__lowerCamelCase = CONFIG_MAPPING['swin'](
image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
__lowerCamelCase = backbone_config.pop('model_type' )
__lowerCamelCase = CONFIG_MAPPING[backbone_model_type]
__lowerCamelCase = config_class.from_dict(lowerCamelCase__ )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """
f"""Supported model types: {','.join(self.backbones_supported )}""" )
__lowerCamelCase = backbone_config
__lowerCamelCase = feature_size
__lowerCamelCase = mask_feature_size
__lowerCamelCase = hidden_dim
__lowerCamelCase = encoder_feedforward_dim
__lowerCamelCase = activation_function
__lowerCamelCase = encoder_layers
__lowerCamelCase = decoder_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = dropout
__lowerCamelCase = dim_feedforward
__lowerCamelCase = pre_norm
__lowerCamelCase = enforce_input_projection
__lowerCamelCase = common_stride
__lowerCamelCase = ignore_value
__lowerCamelCase = num_queries
__lowerCamelCase = no_object_weight
__lowerCamelCase = class_weight
__lowerCamelCase = mask_weight
__lowerCamelCase = dice_weight
__lowerCamelCase = train_num_points
__lowerCamelCase = oversample_ratio
__lowerCamelCase = importance_sample_ratio
__lowerCamelCase = init_std
__lowerCamelCase = init_xavier_std
__lowerCamelCase = use_auxiliary_loss
__lowerCamelCase = feature_strides
__lowerCamelCase = output_auxiliary_logits
__lowerCamelCase = decoder_layers
super().__init__(**lowerCamelCase__ )
@classmethod
def lowercase_ ( cls , lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
return cls(
backbone_config=lowerCamelCase__ , **lowerCamelCase__ , )
def lowercase_ ( self ) -> Dict[str, any]:
'''simple docstring'''
__lowerCamelCase = copy.deepcopy(self.__dict__ )
__lowerCamelCase = self.backbone_config.to_dict()
__lowerCamelCase = self.__class__.model_type
return output
| 348 | 0 |
"""simple docstring"""
import numpy as np
from nltk.translate import meteor_score
import datasets
from datasets.config import importlib_metadata, version
__A = version.parse(importlib_metadata.version("nltk"))
if NLTK_VERSION >= version.Version("3.6.4"):
from nltk import word_tokenize
__A = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n'
__A = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n'
__A = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Value('string' , id='sequence' ),
} ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[
'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score',
'https://en.wikipedia.org/wiki/METEOR',
] , )
def lowercase_ ( self , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
import nltk
nltk.download('wordnet' )
if NLTK_VERSION >= version.Version('3.6.5' ):
nltk.download('punkt' )
if NLTK_VERSION >= version.Version('3.6.6' ):
nltk.download('omw-1.4' )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=0.9 , lowerCamelCase__=3 , lowerCamelCase__=0.5 ) -> Union[str, Any]:
'''simple docstring'''
if NLTK_VERSION >= version.Version('3.6.5' ):
__lowerCamelCase = [
meteor_score.single_meteor_score(
word_tokenize(lowercase_ ) , word_tokenize(lowercase_ ) , alpha=lowercase_ , beta=lowercase_ , gamma=lowercase_ )
for ref, pred in zip(lowercase_ , lowercase_ )
]
else:
__lowerCamelCase = [
meteor_score.single_meteor_score(lowercase_ , lowercase_ , alpha=lowercase_ , beta=lowercase_ , gamma=lowercase_ )
for ref, pred in zip(lowercase_ , lowercase_ )
]
return {"meteor": np.mean(lowercase_ )}
| 356 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = 42
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
"""simple docstring"""
@register_to_config
def __init__( self , lowerCamelCase__ = 32 , lowerCamelCase__ = 64 , lowerCamelCase__ = 20 , lowerCamelCase__ = 768 , lowerCamelCase__=77 , lowerCamelCase__=4 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = "silu" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "linear" , lowerCamelCase__ = "prd" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Tuple:
'''simple docstring'''
super().__init__()
__lowerCamelCase = num_attention_heads
__lowerCamelCase = attention_head_dim
__lowerCamelCase = num_attention_heads * attention_head_dim
__lowerCamelCase = additional_embeddings
__lowerCamelCase = time_embed_dim or inner_dim
__lowerCamelCase = embedding_proj_dim or embedding_dim
__lowerCamelCase = clip_embed_dim or embedding_dim
__lowerCamelCase = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 )
__lowerCamelCase = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ )
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
if embedding_proj_norm_type is None:
__lowerCamelCase = None
elif embedding_proj_norm_type == "layer":
__lowerCamelCase = nn.LayerNorm(lowerCamelCase__ )
else:
raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" )
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
if encoder_hid_proj_type is None:
__lowerCamelCase = None
elif encoder_hid_proj_type == "linear":
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
else:
raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" )
__lowerCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) )
if added_emb_type == "prd":
__lowerCamelCase = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) )
elif added_emb_type is None:
__lowerCamelCase = None
else:
raise ValueError(
f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" )
__lowerCamelCase = nn.ModuleList(
[
BasicTransformerBlock(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='gelu' , attention_bias=lowerCamelCase__ , )
for d in range(lowerCamelCase__ )
] )
if norm_in_type == "layer":
__lowerCamelCase = nn.LayerNorm(lowerCamelCase__ )
elif norm_in_type is None:
__lowerCamelCase = None
else:
raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" )
__lowerCamelCase = nn.LayerNorm(lowerCamelCase__ )
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 )
causal_attention_mask.triu_(1 )
__lowerCamelCase = causal_attention_mask[None, ...]
self.register_buffer('causal_attention_mask' , lowerCamelCase__ , persistent=lowerCamelCase__ )
__lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) )
__lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def lowercase_ ( self ) -> Dict[str, AttentionProcessor]:
'''simple docstring'''
__lowerCamelCase = {}
def fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
if hasattr(lowerCamelCase__ , 'set_processor' ):
__lowerCamelCase = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
return processors
def lowercase_ ( self , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = len(self.attn_processors.keys() )
if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count:
raise ValueError(
f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the"""
f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
if hasattr(lowerCamelCase__ , 'set_processor' ):
if not isinstance(lowerCamelCase__ , lowerCamelCase__ ):
module.set_processor(lowerCamelCase__ )
else:
module.set_processor(processor.pop(f"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ )
for name, module in self.named_children():
fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> int:
'''simple docstring'''
__lowerCamelCase = hidden_states.shape[0]
__lowerCamelCase = timestep
if not torch.is_tensor(lowerCamelCase__ ):
__lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0:
__lowerCamelCase = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__lowerCamelCase = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device )
__lowerCamelCase = self.time_proj(lowerCamelCase__ )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
__lowerCamelCase = timesteps_projected.to(dtype=self.dtype )
__lowerCamelCase = self.time_embedding(lowerCamelCase__ )
if self.embedding_proj_norm is not None:
__lowerCamelCase = self.embedding_proj_norm(lowerCamelCase__ )
__lowerCamelCase = self.embedding_proj(lowerCamelCase__ )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
__lowerCamelCase = self.encoder_hidden_states_proj(lowerCamelCase__ )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' )
__lowerCamelCase = self.proj_in(lowerCamelCase__ )
__lowerCamelCase = self.positional_embedding.to(hidden_states.dtype )
__lowerCamelCase = []
__lowerCamelCase = 0
if encoder_hidden_states is not None:
additional_embeds.append(lowerCamelCase__ )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
__lowerCamelCase = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
__lowerCamelCase = hidden_states[:, None, :]
__lowerCamelCase = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
__lowerCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 )
additional_embeds.append(lowerCamelCase__ )
__lowerCamelCase = torch.cat(
lowerCamelCase__ , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
__lowerCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
__lowerCamelCase = F.pad(
lowerCamelCase__ , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
__lowerCamelCase = hidden_states + positional_embeddings
if attention_mask is not None:
__lowerCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0
__lowerCamelCase = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 )
__lowerCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
__lowerCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
__lowerCamelCase = self.norm_in(lowerCamelCase__ )
for block in self.transformer_blocks:
__lowerCamelCase = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ )
__lowerCamelCase = self.norm_out(lowerCamelCase__ )
if self.prd_embedding is not None:
__lowerCamelCase = hidden_states[:, -1]
else:
__lowerCamelCase = hidden_states[:, additional_embeddings_len:]
__lowerCamelCase = self.proj_to_clip_embeddings(lowerCamelCase__ )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 348 | 0 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_resnet import ResNetConfig
__A = logging.get_logger(__name__)
# General docstring
__A = '''ResNetConfig'''
# Base docstring
__A = '''microsoft/resnet-50'''
__A = [1, 20_48, 7, 7]
# Image classification docstring
__A = '''microsoft/resnet-50'''
__A = '''tiger cat'''
__A = [
'''microsoft/resnet-50''',
# See all resnet models at https://huggingface.co/models?filter=resnet
]
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 3 , lowerCamelCase__ = 1 , lowerCamelCase__ = "relu" ) -> Dict:
'''simple docstring'''
super().__init__()
__lowerCamelCase = nn.Convad(
lowerCamelCase__ , lowerCamelCase__ , kernel_size=lowerCamelCase__ , stride=lowerCamelCase__ , padding=kernel_size // 2 , bias=lowerCamelCase__ )
__lowerCamelCase = nn.BatchNormad(lowerCamelCase__ )
__lowerCamelCase = ACTaFN[activation] if activation is not None else nn.Identity()
def lowercase_ ( self , lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = self.convolution(lowerCamelCase__ )
__lowerCamelCase = self.normalization(lowerCamelCase__ )
__lowerCamelCase = self.activation(lowerCamelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ ) -> Optional[int]:
'''simple docstring'''
super().__init__()
__lowerCamelCase = ResNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act )
__lowerCamelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 )
__lowerCamelCase = config.num_channels
def lowercase_ ( self , lowerCamelCase__ ) -> int:
'''simple docstring'''
__lowerCamelCase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
__lowerCamelCase = self.embedder(lowerCamelCase__ )
__lowerCamelCase = self.pooler(lowerCamelCase__ )
return embedding
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 2 ) -> Any:
'''simple docstring'''
super().__init__()
__lowerCamelCase = nn.Convad(lowerCamelCase__ , lowerCamelCase__ , kernel_size=1 , stride=lowerCamelCase__ , bias=lowerCamelCase__ )
__lowerCamelCase = nn.BatchNormad(lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = self.convolution(lowerCamelCase__ )
__lowerCamelCase = self.normalization(lowerCamelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 , lowerCamelCase__ = "relu" ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
__lowerCamelCase = in_channels != out_channels or stride != 1
__lowerCamelCase = (
ResNetShortCut(lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ ) if should_apply_shortcut else nn.Identity()
)
__lowerCamelCase = nn.Sequential(
ResNetConvLayer(lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ ) , ResNetConvLayer(lowerCamelCase__ , lowerCamelCase__ , activation=lowerCamelCase__ ) , )
__lowerCamelCase = ACTaFN[activation]
def lowercase_ ( self , lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = hidden_state
__lowerCamelCase = self.layer(lowerCamelCase__ )
__lowerCamelCase = self.shortcut(lowerCamelCase__ )
hidden_state += residual
__lowerCamelCase = self.activation(lowerCamelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 , lowerCamelCase__ = "relu" , lowerCamelCase__ = 4 ) -> List[Any]:
'''simple docstring'''
super().__init__()
__lowerCamelCase = in_channels != out_channels or stride != 1
__lowerCamelCase = out_channels // reduction
__lowerCamelCase = (
ResNetShortCut(lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ ) if should_apply_shortcut else nn.Identity()
)
__lowerCamelCase = nn.Sequential(
ResNetConvLayer(lowerCamelCase__ , lowerCamelCase__ , kernel_size=1 ) , ResNetConvLayer(lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ ) , ResNetConvLayer(lowerCamelCase__ , lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ ) , )
__lowerCamelCase = ACTaFN[activation]
def lowercase_ ( self , lowerCamelCase__ ) -> Dict:
'''simple docstring'''
__lowerCamelCase = hidden_state
__lowerCamelCase = self.layer(lowerCamelCase__ )
__lowerCamelCase = self.shortcut(lowerCamelCase__ )
hidden_state += residual
__lowerCamelCase = self.activation(lowerCamelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , ) -> Optional[int]:
'''simple docstring'''
super().__init__()
__lowerCamelCase = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer
__lowerCamelCase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , activation=config.hidden_act ) , *[layer(lowerCamelCase__ , lowerCamelCase__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , )
def lowercase_ ( self , lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = input
for layer in self.layers:
__lowerCamelCase = layer(lowerCamelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
super().__init__()
__lowerCamelCase = nn.ModuleList([] )
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
ResNetStage(
lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
__lowerCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(lowerCamelCase__ , config.depths[1:] ):
self.stages.append(ResNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ ) )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = False , lowerCamelCase__ = True ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__lowerCamelCase = hidden_states + (hidden_state,)
__lowerCamelCase = stage_module(lowerCamelCase__ )
if output_hidden_states:
__lowerCamelCase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(
last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ , )
class __lowerCAmelCase ( A__ ):
"""simple docstring"""
snake_case_ = ResNetConfig
snake_case_ = 'resnet'
snake_case_ = 'pixel_values'
snake_case_ = True
def lowercase_ ( self , lowerCamelCase__ ) -> Dict:
'''simple docstring'''
if isinstance(lowerCamelCase__ , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' )
elif isinstance(lowerCamelCase__ , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=False ) -> Optional[int]:
'''simple docstring'''
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
__lowerCamelCase = value
__A = R'''
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
'''
__A = R'''
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
'''
@add_start_docstrings(
'''The bare ResNet model outputting raw features without any specific head on top.''' , A__ , )
class __lowerCAmelCase ( A__ ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
super().__init__(lowerCamelCase__ )
__lowerCamelCase = config
__lowerCamelCase = ResNetEmbeddings(lowerCamelCase__ )
__lowerCamelCase = ResNetEncoder(lowerCamelCase__ )
__lowerCamelCase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCamelCase__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None ) -> int:
'''simple docstring'''
__lowerCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
__lowerCamelCase = self.embedder(lowerCamelCase__ )
__lowerCamelCase = self.encoder(
lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ )
__lowerCamelCase = encoder_outputs[0]
__lowerCamelCase = self.pooler(lowerCamelCase__ )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
'''\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ''' , A__ , )
class __lowerCAmelCase ( A__ ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
super().__init__(lowerCamelCase__ )
__lowerCamelCase = config.num_labels
__lowerCamelCase = ResNetModel(lowerCamelCase__ )
# classification head
__lowerCamelCase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCamelCase__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def lowercase_ ( self , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> str:
'''simple docstring'''
__lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
__lowerCamelCase = self.resnet(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ )
__lowerCamelCase = outputs.pooler_output if return_dict else outputs[1]
__lowerCamelCase = self.classifier(lowerCamelCase__ )
__lowerCamelCase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__lowerCamelCase = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__lowerCamelCase = 'single_label_classification'
else:
__lowerCamelCase = 'multi_label_classification'
if self.config.problem_type == "regression":
__lowerCamelCase = MSELoss()
if self.num_labels == 1:
__lowerCamelCase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
__lowerCamelCase = loss_fct(lowerCamelCase__ , lowerCamelCase__ )
elif self.config.problem_type == "single_label_classification":
__lowerCamelCase = CrossEntropyLoss()
__lowerCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
__lowerCamelCase = BCEWithLogitsLoss()
__lowerCamelCase = loss_fct(lowerCamelCase__ , lowerCamelCase__ )
if not return_dict:
__lowerCamelCase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
@add_start_docstrings(
'''\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ''' , A__ , )
class __lowerCAmelCase ( A__ , A__ ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ ) -> int:
'''simple docstring'''
super().__init__(lowerCamelCase__ )
super()._init_backbone(lowerCamelCase__ )
__lowerCamelCase = [config.embedding_size] + config.hidden_sizes
__lowerCamelCase = ResNetEmbeddings(lowerCamelCase__ )
__lowerCamelCase = ResNetEncoder(lowerCamelCase__ )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCamelCase__ )
@replace_return_docstrings(output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None ) -> Dict:
'''simple docstring'''
__lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
__lowerCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowerCamelCase = self.embedder(lowerCamelCase__ )
__lowerCamelCase = self.encoder(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ )
__lowerCamelCase = outputs.hidden_states
__lowerCamelCase = ()
for idx, stage in enumerate(self.stage_names ):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
__lowerCamelCase = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=lowerCamelCase__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCamelCase__ , )
| 357 |
import sys
from collections import defaultdict
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = []
def lowercase_ ( self , lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
return self.node_position[vertex]
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int:
'''simple docstring'''
__lowerCamelCase = pos
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
__lowerCamelCase = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
__lowerCamelCase = 2 * start + 1
else:
__lowerCamelCase = 2 * start + 2
if heap[smallest_child] < heap[start]:
__lowerCamelCase , __lowerCamelCase = heap[smallest_child], positions[smallest_child]
__lowerCamelCase , __lowerCamelCase = (
heap[start],
positions[start],
)
__lowerCamelCase , __lowerCamelCase = temp, tempa
__lowerCamelCase = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , lowerCamelCase__ )
self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int:
'''simple docstring'''
__lowerCamelCase = position[index]
while index != 0:
__lowerCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
__lowerCamelCase = heap[parent]
__lowerCamelCase = position[parent]
self.set_position(position[parent] , lowerCamelCase__ )
else:
__lowerCamelCase = val
__lowerCamelCase = temp
self.set_position(lowerCamelCase__ , lowerCamelCase__ )
break
__lowerCamelCase = parent
else:
__lowerCamelCase = val
__lowerCamelCase = temp
self.set_position(lowerCamelCase__ , 0 )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str:
'''simple docstring'''
__lowerCamelCase = len(lowerCamelCase__ ) // 2 - 1
for i in range(lowerCamelCase__ , -1 , -1 ):
self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = positions[0]
__lowerCamelCase = sys.maxsize
self.top_to_bottom(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ )
return temp
def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = Heap()
__lowerCamelCase = [0] * len(UpperCamelCase__ )
__lowerCamelCase = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
__lowerCamelCase = [] # Heap of Distance of vertices from their neighboring vertex
__lowerCamelCase = []
for vertex in range(len(UpperCamelCase__ ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCamelCase__ )
heap.node_position.append(UpperCamelCase__ )
__lowerCamelCase = []
__lowerCamelCase = 1
__lowerCamelCase = sys.maxsize
for neighbor, distance in adjacency_list[0]:
__lowerCamelCase = 0
__lowerCamelCase = distance
heap.heapify(UpperCamelCase__ , UpperCamelCase__ )
for _ in range(1 , len(UpperCamelCase__ ) ):
__lowerCamelCase = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
__lowerCamelCase = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCamelCase__ )]
):
__lowerCamelCase = distance
heap.bottom_to_top(
UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ )
__lowerCamelCase = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
__A = int(input("Enter number of edges: ").strip())
__A = defaultdict(list)
for _ in range(edges_number):
__A = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 348 | 0 |
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
from requests.exceptions import HTTPError
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
BertTokenizer,
ProcessorMixin,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
)
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
from test_module.custom_processing import CustomProcessor # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
__A = get_tests_dir("fixtures/dummy_feature_extractor_config.json")
__A = get_tests_dir("fixtures/vocab.json")
__A = get_tests_dir("fixtures")
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
snake_case_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou''']
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = 0
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' )
self.assertIsInstance(lowercase_ , lowercase_ )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCamelCase = WavaVecaConfig()
__lowerCamelCase = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' )
# save in new folder
model_config.save_pretrained(lowercase_ )
processor.save_pretrained(lowercase_ )
__lowerCamelCase = AutoProcessor.from_pretrained(lowercase_ )
self.assertIsInstance(lowercase_ , lowercase_ )
def lowercase_ ( self ) -> str:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
# copy relevant files
copyfile(lowercase_ , os.path.join(lowercase_ , lowercase_ ) )
copyfile(lowercase_ , os.path.join(lowercase_ , 'vocab.json' ) )
__lowerCamelCase = AutoProcessor.from_pretrained(lowercase_ )
self.assertIsInstance(lowercase_ , lowercase_ )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCamelCase = WavaVecaFeatureExtractor()
__lowerCamelCase = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' )
__lowerCamelCase = WavaVecaProcessor(lowercase_ , lowercase_ )
# save in new folder
processor.save_pretrained(lowercase_ )
# drop `processor_class` in tokenizer
with open(os.path.join(lowercase_ , lowercase_ ) , 'r' ) as f:
__lowerCamelCase = json.load(lowercase_ )
config_dict.pop('processor_class' )
with open(os.path.join(lowercase_ , lowercase_ ) , 'w' ) as f:
f.write(json.dumps(lowercase_ ) )
__lowerCamelCase = AutoProcessor.from_pretrained(lowercase_ )
self.assertIsInstance(lowercase_ , lowercase_ )
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCamelCase = WavaVecaFeatureExtractor()
__lowerCamelCase = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' )
__lowerCamelCase = WavaVecaProcessor(lowercase_ , lowercase_ )
# save in new folder
processor.save_pretrained(lowercase_ )
# drop `processor_class` in feature extractor
with open(os.path.join(lowercase_ , lowercase_ ) , 'r' ) as f:
__lowerCamelCase = json.load(lowercase_ )
config_dict.pop('processor_class' )
with open(os.path.join(lowercase_ , lowercase_ ) , 'w' ) as f:
f.write(json.dumps(lowercase_ ) )
__lowerCamelCase = AutoProcessor.from_pretrained(lowercase_ )
self.assertIsInstance(lowercase_ , lowercase_ )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCamelCase = WavaVecaConfig(processor_class='Wav2Vec2Processor' )
model_config.save_pretrained(lowercase_ )
# copy relevant files
copyfile(lowercase_ , os.path.join(lowercase_ , 'vocab.json' ) )
# create emtpy sample processor
with open(os.path.join(lowercase_ , lowercase_ ) , 'w' ) as f:
f.write('{}' )
__lowerCamelCase = AutoProcessor.from_pretrained(lowercase_ )
self.assertIsInstance(lowercase_ , lowercase_ )
def lowercase_ ( self ) -> int:
'''simple docstring'''
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(lowercase_ ):
__lowerCamelCase = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(lowercase_ ):
__lowerCamelCase = AutoProcessor.from_pretrained(
'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase_ )
__lowerCamelCase = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase_ )
self.assertTrue(processor.special_attribute_present )
self.assertEqual(processor.__class__.__name__ , 'NewProcessor' )
__lowerCamelCase = processor.feature_extractor
self.assertTrue(feature_extractor.special_attribute_present )
self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' )
__lowerCamelCase = processor.tokenizer
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' )
# Test we can also load the slow version
__lowerCamelCase = AutoProcessor.from_pretrained(
'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase_ , use_fast=lowercase_ )
__lowerCamelCase = new_processor.tokenizer
self.assertTrue(new_tokenizer.special_attribute_present )
self.assertEqual(new_tokenizer.__class__.__name__ , 'NewTokenizer' )
else:
self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
try:
AutoConfig.register('custom' , lowercase_ )
AutoFeatureExtractor.register(lowercase_ , lowercase_ )
AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_ )
AutoProcessor.register(lowercase_ , lowercase_ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(lowercase_ ):
AutoProcessor.register(lowercase_ , lowercase_ )
# Now that the config is registered, it can be used as any other config with the auto-API
__lowerCamelCase = CustomFeatureExtractor.from_pretrained(lowercase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
__lowerCamelCase = os.path.join(lowercase_ , 'vocab.txt' )
with open(lowercase_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
__lowerCamelCase = CustomTokenizer(lowercase_ )
__lowerCamelCase = CustomProcessor(lowercase_ , lowercase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(lowercase_ )
__lowerCamelCase = AutoProcessor.from_pretrained(lowercase_ )
self.assertIsInstance(lowercase_ , lowercase_ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
class __lowerCAmelCase ( a_ ):
"""simple docstring"""
snake_case_ = False
class __lowerCAmelCase ( a_ ):
"""simple docstring"""
snake_case_ = False
class __lowerCAmelCase ( a_ ):
"""simple docstring"""
snake_case_ = '''AutoFeatureExtractor'''
snake_case_ = '''AutoTokenizer'''
snake_case_ = False
try:
AutoConfig.register('custom' , lowercase_ )
AutoFeatureExtractor.register(lowercase_ , lowercase_ )
AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_ )
AutoProcessor.register(lowercase_ , lowercase_ )
# If remote code is not set, the default is to use local classes.
__lowerCamelCase = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' )
self.assertEqual(processor.__class__.__name__ , 'NewProcessor' )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote code is disabled, we load the local ones.
__lowerCamelCase = AutoProcessor.from_pretrained(
'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase_ )
self.assertEqual(processor.__class__.__name__ , 'NewProcessor' )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub.
__lowerCamelCase = AutoProcessor.from_pretrained(
'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase_ )
self.assertEqual(processor.__class__.__name__ , 'NewProcessor' )
self.assertTrue(processor.special_attribute_present )
self.assertTrue(processor.feature_extractor.special_attribute_present )
self.assertTrue(processor.tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
__lowerCamelCase = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' )
self.assertEqual(processor.__class__.__name__ , 'BertTokenizerFast' )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' )
self.assertEqual(processor.__class__.__name__ , 'ConvNextImageProcessor' )
@is_staging_test
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
snake_case_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou''']
@classmethod
def lowercase_ ( cls ) -> Any:
'''simple docstring'''
__lowerCamelCase = TOKEN
HfFolder.save_token(lowercase_ )
@classmethod
def lowercase_ ( cls ) -> Any:
'''simple docstring'''
try:
delete_repo(token=cls._token , repo_id='test-processor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='valid_org/test-processor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='test-dynamic-processor' )
except HTTPError:
pass
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase = WavaVecaProcessor.from_pretrained(lowercase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(lowercase_ , 'test-processor' ) , push_to_hub=lowercase_ , use_auth_token=self._token )
__lowerCamelCase = WavaVecaProcessor.from_pretrained(f"""{USER}/test-processor""" )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(lowercase_ , getattr(new_processor.feature_extractor , lowercase_ ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = WavaVecaProcessor.from_pretrained(lowercase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(lowercase_ , 'test-processor-org' ) , push_to_hub=lowercase_ , use_auth_token=self._token , organization='valid_org' , )
__lowerCamelCase = WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(lowercase_ , getattr(new_processor.feature_extractor , lowercase_ ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
CustomFeatureExtractor.register_for_auto_class()
CustomTokenizer.register_for_auto_class()
CustomProcessor.register_for_auto_class()
__lowerCamelCase = CustomFeatureExtractor.from_pretrained(lowercase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
__lowerCamelCase = os.path.join(lowercase_ , 'vocab.txt' )
with open(lowercase_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
__lowerCamelCase = CustomTokenizer(lowercase_ )
__lowerCamelCase = CustomProcessor(lowercase_ , lowercase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
create_repo(f"""{USER}/test-dynamic-processor""" , token=self._token )
__lowerCamelCase = Repository(lowercase_ , clone_from=f"""{USER}/test-dynamic-processor""" , token=self._token )
processor.save_pretrained(lowercase_ )
# This has added the proper auto_map field to the feature extractor config
self.assertDictEqual(
processor.feature_extractor.auto_map , {
'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor',
'AutoProcessor': 'custom_processing.CustomProcessor',
} , )
# This has added the proper auto_map field to the tokenizer config
with open(os.path.join(lowercase_ , 'tokenizer_config.json' ) ) as f:
__lowerCamelCase = json.load(lowercase_ )
self.assertDictEqual(
tokenizer_config['auto_map'] , {
'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None],
'AutoProcessor': 'custom_processing.CustomProcessor',
} , )
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(lowercase_ , 'custom_feature_extraction.py' ) ) )
self.assertTrue(os.path.isfile(os.path.join(lowercase_ , 'custom_tokenization.py' ) ) )
self.assertTrue(os.path.isfile(os.path.join(lowercase_ , 'custom_processing.py' ) ) )
repo.push_to_hub()
__lowerCamelCase = AutoProcessor.from_pretrained(f"""{USER}/test-dynamic-processor""" , trust_remote_code=lowercase_ )
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
self.assertEqual(new_processor.__class__.__name__ , 'CustomProcessor' )
| 358 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=__magic_name__ )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
snake_case_ = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} )
snake_case_ = Features(
{
'''answers''': Sequence(
{
'''text''': Value('''string''' ),
'''answer_start''': Value('''int32''' ),
} )
} )
snake_case_ = "question"
snake_case_ = "context"
snake_case_ = "answers"
@property
def lowercase_ ( self ) -> Dict[str, str]:
'''simple docstring'''
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 348 | 0 |
from typing import Dict
import numpy as np
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException
if is_tf_available():
import tensorflow as tf
from ..tf_utils import stable_softmax
if is_torch_available():
import torch
__A = logging.get_logger(__name__)
@add_end_docstrings(
__magic_name__ , r'''\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ''' , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def lowercase_ ( self , lowerCamelCase__ ) -> np.ndarray:
'''simple docstring'''
if self.framework == "tf":
__lowerCamelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()
elif self.framework == "pt":
__lowerCamelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__A )
else:
raise ValueError('Unsupported framework' )
return masked_index
def lowercase_ ( self , lowerCamelCase__ ) -> np.ndarray:
'''simple docstring'''
__lowerCamelCase = self.get_masked_index(__A )
__lowerCamelCase = np.prod(masked_index.shape )
if numel < 1:
raise PipelineException(
'fill-mask' , self.model.base_model_prefix , f"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , )
def lowercase_ ( self , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
if isinstance(__A , __A ):
for model_input in model_inputs:
self._ensure_exactly_one_mask_token(model_input['input_ids'][0] )
else:
for input_ids in model_inputs["input_ids"]:
self._ensure_exactly_one_mask_token(__A )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=None , **lowerCamelCase__ ) -> Dict[str, GenericTensor]:
'''simple docstring'''
if return_tensors is None:
__lowerCamelCase = self.framework
__lowerCamelCase = self.tokenizer(__A , return_tensors=__A )
self.ensure_exactly_one_mask_token(__A )
return model_inputs
def lowercase_ ( self , lowerCamelCase__ ) -> str:
'''simple docstring'''
__lowerCamelCase = self.model(**__A )
__lowerCamelCase = model_inputs['input_ids']
return model_outputs
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=5 , lowerCamelCase__=None ) -> Any:
'''simple docstring'''
# Cap top_k if there are targets
if target_ids is not None and target_ids.shape[0] < top_k:
__lowerCamelCase = target_ids.shape[0]
__lowerCamelCase = model_outputs['input_ids'][0]
__lowerCamelCase = model_outputs['logits']
if self.framework == "tf":
__lowerCamelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0]
__lowerCamelCase = outputs.numpy()
__lowerCamelCase = outputs[0, masked_index, :]
__lowerCamelCase = stable_softmax(__A , axis=-1 )
if target_ids is not None:
__lowerCamelCase = tf.gather_nd(tf.squeeze(__A , 0 ) , target_ids.reshape(-1 , 1 ) )
__lowerCamelCase = tf.expand_dims(__A , 0 )
__lowerCamelCase = tf.math.top_k(__A , k=__A )
__lowerCamelCase , __lowerCamelCase = topk.values.numpy(), topk.indices.numpy()
else:
__lowerCamelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__A ).squeeze(-1 )
# Fill mask pipeline supports only one ${mask_token} per sample
__lowerCamelCase = outputs[0, masked_index, :]
__lowerCamelCase = logits.softmax(dim=-1 )
if target_ids is not None:
__lowerCamelCase = probs[..., target_ids]
__lowerCamelCase , __lowerCamelCase = probs.topk(__A )
__lowerCamelCase = []
__lowerCamelCase = values.shape[0] == 1
for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ):
__lowerCamelCase = []
for v, p in zip(_values , _predictions ):
# Copy is important since we're going to modify this array in place
__lowerCamelCase = input_ids.numpy().copy()
if target_ids is not None:
__lowerCamelCase = target_ids[p].tolist()
__lowerCamelCase = p
# Filter padding out:
__lowerCamelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )]
# Originally we skip special tokens to give readable output.
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
__lowerCamelCase = self.tokenizer.decode(__A , skip_special_tokens=__A )
__lowerCamelCase = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence}
row.append(__A )
result.append(__A )
if single_mask:
return result[0]
return result
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=None ) -> Optional[int]:
'''simple docstring'''
if isinstance(__A , __A ):
__lowerCamelCase = [targets]
try:
__lowerCamelCase = self.tokenizer.get_vocab()
except Exception:
__lowerCamelCase = {}
__lowerCamelCase = []
for target in targets:
__lowerCamelCase = vocab.get(__A , __A )
if id_ is None:
__lowerCamelCase = self.tokenizer(
__A , add_special_tokens=__A , return_attention_mask=__A , return_token_type_ids=__A , max_length=1 , truncation=__A , )['input_ids']
if len(__A ) == 0:
logger.warning(
f"""The specified target token `{target}` does not exist in the model vocabulary. """
'We cannot replace it with anything meaningful, ignoring it' )
continue
__lowerCamelCase = input_ids[0]
# XXX: If users encounter this pass
# it becomes pretty slow, so let's make sure
# The warning enables them to fix the input to
# get faster performance.
logger.warning(
f"""The specified target token `{target}` does not exist in the model vocabulary. """
f"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" )
target_ids.append(id_ )
__lowerCamelCase = list(set(__A ) )
if len(__A ) == 0:
raise ValueError('At least one target must be provided when passed.' )
__lowerCamelCase = np.array(__A )
return target_ids
def lowercase_ ( self , lowerCamelCase__=None , lowerCamelCase__=None ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = {}
if targets is not None:
__lowerCamelCase = self.get_target_ids(__A , __A )
__lowerCamelCase = target_ids
if top_k is not None:
__lowerCamelCase = top_k
if self.tokenizer.mask_token_id is None:
raise PipelineException(
'fill-mask' , self.model.base_model_prefix , 'The tokenizer does not define a `mask_token`.' )
return {}, {}, postprocess_params
def __call__( self , lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = super().__call__(__A , **__A )
if isinstance(__A , __A ) and len(__A ) == 1:
return outputs[0]
return outputs
| 359 |
import requests
__A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey="
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None:
"""simple docstring"""
__lowerCamelCase = requests.get(_NEWS_API + bbc_news_api_key ).json()
# each article in the list is a dict
for i, article in enumerate(bbc_news_page['articles'] , 1 ):
print(F"""{i}.) {article['title']}""" )
if __name__ == "__main__":
fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
| 348 | 0 |
__A = {
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
__A = {value: key for key, value in encode_dict.items()}
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> Optional[Any]:
"""simple docstring"""
__lowerCamelCase = """"""
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('encode() accepts only letters of the alphabet and spaces' )
return encoded
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> Dict:
"""simple docstring"""
if set(UpperCamelCase__ ) - {"A", "B", " "} != set():
raise Exception('decode() accepts only \'A\', \'B\' and spaces' )
__lowerCamelCase = """"""
for word in coded.split():
while len(UpperCamelCase__ ) != 0:
decoded += decode_dict[word[:5]]
__lowerCamelCase = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 360 |
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
__A = logging.get_logger(__name__)
__A = TypeVar("DatasetType", Dataset, IterableDataset)
def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[List[float]] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType:
"""simple docstring"""
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('Unable to interleave an empty list of datasets.' )
for i, dataset in enumerate(UpperCamelCase__ ):
if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ):
if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """
'is an empty dataset dictionary.' )
raise ValueError(
F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n"""
F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" )
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" )
if i == 0:
__lowerCamelCase , __lowerCamelCase = (
(Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset)
)
elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise ValueError(
F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ )
else:
return _interleave_iterable_datasets(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ )
def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : int = 0 , ) -> DatasetType:
"""simple docstring"""
if not dsets:
raise ValueError('Unable to concatenate an empty list of datasets.' )
for i, dataset in enumerate(UpperCamelCase__ ):
if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ):
if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """
'is an empty dataset dictionary.' )
raise ValueError(
F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n"""
F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" )
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" )
if i == 0:
__lowerCamelCase , __lowerCamelCase = (
(Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset)
)
elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise ValueError(
F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ )
else:
return _concatenate_iterable_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ )
| 348 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {
"configuration_trajectory_transformer": [
"TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TrajectoryTransformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrajectoryTransformerModel",
"TrajectoryTransformerPreTrainedModel",
"load_tf_weights_in_trajectory_transformer",
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 361 |
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
__A = ["model.decoder.embed_positions.weights"]
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]:
"""simple docstring"""
if "emb" in name:
__lowerCamelCase = name.replace('emb' , 'model.decoder.embed_tokens' )
if "transformer" in name:
__lowerCamelCase = name.replace('transformer' , 'model.decoder' )
if "cross_attention" in name:
__lowerCamelCase = name.replace('cross_attention' , 'encoder_attn' )
if "linear1" in name:
__lowerCamelCase = name.replace('linear1' , 'fc1' )
if "linear2" in name:
__lowerCamelCase = name.replace('linear2' , 'fc2' )
if "norm1" in name:
__lowerCamelCase = name.replace('norm1' , 'self_attn_layer_norm' )
if "norm_cross" in name:
__lowerCamelCase = name.replace('norm_cross' , 'encoder_attn_layer_norm' )
if "norm2" in name:
__lowerCamelCase = name.replace('norm2' , 'final_layer_norm' )
if "out_norm" in name:
__lowerCamelCase = name.replace('out_norm' , 'model.decoder.layer_norm' )
if "linears" in name:
__lowerCamelCase = name.replace('linears' , 'lm_heads' )
if "condition_provider.conditioners.description.output_proj" in name:
__lowerCamelCase = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' )
return name
def lowerCamelCase_ ( UpperCamelCase__ : OrderedDict , UpperCamelCase__ : int ) -> Tuple[Dict, Dict]:
"""simple docstring"""
__lowerCamelCase = list(state_dict.keys() )
__lowerCamelCase = {}
for key in keys:
__lowerCamelCase = state_dict.pop(UpperCamelCase__ )
__lowerCamelCase = rename_keys(UpperCamelCase__ )
if "in_proj_weight" in key:
# split fused qkv proj
__lowerCamelCase = val[:hidden_size, :]
__lowerCamelCase = val[hidden_size : 2 * hidden_size, :]
__lowerCamelCase = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
__lowerCamelCase = val
else:
__lowerCamelCase = val
return state_dict, enc_dec_proj_state_dict
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> MusicgenDecoderConfig:
"""simple docstring"""
if checkpoint == "small":
# default config values
__lowerCamelCase = 1024
__lowerCamelCase = 24
__lowerCamelCase = 16
elif checkpoint == "medium":
__lowerCamelCase = 1536
__lowerCamelCase = 48
__lowerCamelCase = 24
elif checkpoint == "large":
__lowerCamelCase = 2048
__lowerCamelCase = 48
__lowerCamelCase = 32
else:
raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
__lowerCamelCase = MusicgenDecoderConfig(
hidden_size=UpperCamelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase__ , num_attention_heads=UpperCamelCase__ , )
return config
@torch.no_grad()
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[int]="cpu" ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = MusicGen.get_pretrained(UpperCamelCase__ , device=UpperCamelCase__ )
__lowerCamelCase = decoder_config_from_checkpoint(UpperCamelCase__ )
__lowerCamelCase = fairseq_model.lm.state_dict()
__lowerCamelCase , __lowerCamelCase = rename_state_dict(
UpperCamelCase__ , hidden_size=decoder_config.hidden_size )
__lowerCamelCase = TaEncoderModel.from_pretrained('t5-base' )
__lowerCamelCase = EncodecModel.from_pretrained('facebook/encodec_32khz' )
__lowerCamelCase = MusicgenForCausalLM(UpperCamelCase__ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
__lowerCamelCase , __lowerCamelCase = decoder.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ )
for key in missing_keys.copy():
if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" )
if len(UpperCamelCase__ ) > 0:
raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
__lowerCamelCase = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__ , audio_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ )
# check we can do a forward pass
__lowerCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
__lowerCamelCase = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
__lowerCamelCase = model(input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits
if logits.shape != (8, 1, 2048):
raise ValueError('Incorrect shape for logits' )
# now construct the processor
__lowerCamelCase = AutoTokenizer.from_pretrained('t5-base' )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' )
__lowerCamelCase = MusicgenProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ )
# set the appropriate bos/pad token ids
__lowerCamelCase = 2048
__lowerCamelCase = 2048
# set other default generation config params
__lowerCamelCase = int(30 * audio_encoder.config.frame_rate )
__lowerCamelCase = True
__lowerCamelCase = 3.0
if pytorch_dump_folder is not None:
Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ )
logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
if repo_id:
logger.info(F"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(UpperCamelCase__ )
processor.push_to_hub(UpperCamelCase__ )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
__A = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 348 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json",
}
class __lowerCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
snake_case_ = """transfo-xl"""
snake_case_ = ["""mems"""]
snake_case_ = {
"""n_token""": """vocab_size""",
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , lowerCamelCase__=267_735 , lowerCamelCase__=[20_000, 40_000, 200_000] , lowerCamelCase__=1_024 , lowerCamelCase__=1_024 , lowerCamelCase__=16 , lowerCamelCase__=64 , lowerCamelCase__=4_096 , lowerCamelCase__=4 , lowerCamelCase__=False , lowerCamelCase__=18 , lowerCamelCase__=1_600 , lowerCamelCase__=1_000 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=0 , lowerCamelCase__=-1 , lowerCamelCase__=True , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=True , lowerCamelCase__="normal" , lowerCamelCase__=0.01 , lowerCamelCase__=0.01 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-5 , lowerCamelCase__=0 , **lowerCamelCase__ , ) -> Dict:
'''simple docstring'''
__lowerCamelCase = vocab_size
__lowerCamelCase = []
self.cutoffs.extend(snake_case__ )
if proj_share_all_but_first:
__lowerCamelCase = [False] + [True] * len(self.cutoffs )
else:
__lowerCamelCase = [False] + [False] * len(self.cutoffs )
__lowerCamelCase = d_model
__lowerCamelCase = d_embed
__lowerCamelCase = d_head
__lowerCamelCase = d_inner
__lowerCamelCase = div_val
__lowerCamelCase = pre_lnorm
__lowerCamelCase = n_layer
__lowerCamelCase = n_head
__lowerCamelCase = mem_len
__lowerCamelCase = same_length
__lowerCamelCase = attn_type
__lowerCamelCase = clamp_len
__lowerCamelCase = sample_softmax
__lowerCamelCase = adaptive
__lowerCamelCase = dropout
__lowerCamelCase = dropatt
__lowerCamelCase = untie_r
__lowerCamelCase = init
__lowerCamelCase = init_range
__lowerCamelCase = proj_init_std
__lowerCamelCase = init_std
__lowerCamelCase = layer_norm_epsilon
super().__init__(eos_token_id=snake_case__ , **snake_case__ )
@property
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def lowercase_ ( self , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 362 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json",
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''sew-d'''
def __init__( self , lowerCamelCase__=32 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__=2 , lowerCamelCase__=512 , lowerCamelCase__=256 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=("p2c", "c2p") , lowerCamelCase__="layer_norm" , lowerCamelCase__="gelu_python" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-7 , lowerCamelCase__=1e-5 , lowerCamelCase__="group" , lowerCamelCase__="gelu" , lowerCamelCase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase__=False , lowerCamelCase__=128 , lowerCamelCase__=16 , lowerCamelCase__=True , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__="mean" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ) -> Any:
'''simple docstring'''
super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ )
__lowerCamelCase = hidden_size
__lowerCamelCase = feat_extract_norm
__lowerCamelCase = feat_extract_activation
__lowerCamelCase = list(lowerCamelCase__ )
__lowerCamelCase = list(lowerCamelCase__ )
__lowerCamelCase = list(lowerCamelCase__ )
__lowerCamelCase = conv_bias
__lowerCamelCase = num_conv_pos_embeddings
__lowerCamelCase = num_conv_pos_embedding_groups
__lowerCamelCase = len(self.conv_dim )
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = intermediate_size
__lowerCamelCase = squeeze_factor
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = position_buckets
__lowerCamelCase = share_att_key
__lowerCamelCase = relative_attention
__lowerCamelCase = norm_rel_ebd
__lowerCamelCase = list(lowerCamelCase__ )
__lowerCamelCase = hidden_act
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_dropout
__lowerCamelCase = attention_dropout
__lowerCamelCase = activation_dropout
__lowerCamelCase = feat_proj_dropout
__lowerCamelCase = final_dropout
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = feature_layer_norm_eps
__lowerCamelCase = initializer_range
__lowerCamelCase = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"""
f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowerCamelCase = apply_spec_augment
__lowerCamelCase = mask_time_prob
__lowerCamelCase = mask_time_length
__lowerCamelCase = mask_time_min_masks
__lowerCamelCase = mask_feature_prob
__lowerCamelCase = mask_feature_length
__lowerCamelCase = mask_feature_min_masks
# ctc loss
__lowerCamelCase = ctc_loss_reduction
__lowerCamelCase = ctc_zero_infinity
# sequence classification
__lowerCamelCase = use_weighted_layer_sum
__lowerCamelCase = classifier_proj_size
@property
def lowercase_ ( self ) -> Any:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 348 | 0 |
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
__A = logging.getLogger(__name__)
__A = 50 # max width of layer names
__A = 70 # max width of quantizer names
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> Tuple:
"""simple docstring"""
__lowerCamelCase = parser.add_argument_group('quant_trainer arguments' )
group.add_argument('--wprec' , type=_lowercase , default=8 , help='weight precision' )
group.add_argument('--aprec' , type=_lowercase , default=8 , help='activation precision' )
group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' )
group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' )
group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' )
group.add_argument('--quant-disable-keyword' , type=_lowercase , nargs='+' , help='disable quantizers by keyword' )
group.add_argument('--quant-disable-layer-module' , type=_lowercase , help='disable quantizers by keyword under layer.' )
group.add_argument('--quant-enable-layer-module' , type=_lowercase , help='enable quantizers by keyword under layer' )
group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' )
group.add_argument('--percentile' , default=_lowercase , type=_lowercase , help='percentile for PercentileCalibrator' )
group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' )
group.add_argument('--clip-gelu' , metavar='N' , type=_lowercase , help='clip gelu output maximum value to N' )
group.add_argument(
'--recalibrate-weights' , action='store_true' , help=(
'recalibrate weight amaxes by taking the max of the weights.'
' amaxes will be computed with the current quantization granularity (axis).'
) , )
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> str:
"""simple docstring"""
if args.calibrator == "max":
__lowerCamelCase = "max"
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError('Specify --percentile when using percentile calibrator' )
__lowerCamelCase = "histogram"
elif args.calibrator == "mse":
__lowerCamelCase = "histogram"
else:
raise ValueError(F"""Invalid calibrator {args.calibrator}""" )
__lowerCamelCase = QuantDescriptor(num_bits=args.aprec , calib_method=_lowercase )
__lowerCamelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(_lowercase )
quant_nn.QuantLinear.set_default_quant_desc_weight(_lowercase )
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : Tuple=False ) -> Optional[int]:
"""simple docstring"""
logger.info('Configuring Model for Quantization' )
logger.info(F"""using quantization package {pytorch_quantization.__file__}""" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(_lowercase , ['embeddings'] , which='weight' , _disabled=_lowercase )
if args.quant_disable:
set_quantizer_by_name(_lowercase , [''] , _disabled=_lowercase )
if args.quant_disable_keyword:
set_quantizer_by_name(_lowercase , args.quant_disable_keyword , _disabled=_lowercase )
if args.quant_disable_layer_module:
set_quantizer_by_name(_lowercase , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_lowercase )
if args.quant_enable_layer_module:
set_quantizer_by_name(_lowercase , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_lowercase )
if args.recalibrate_weights:
recalibrate_weights(_lowercase )
if args.fuse_qkv:
fuse_qkv(_lowercase , _lowercase )
if args.clip_gelu:
clip_gelu(_lowercase , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(_lowercase )
def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
logger.info('Enabling Calibration' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(F"""{name:80}: {module}""" )
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : int ) -> Dict:
"""simple docstring"""
logger.info('Loading calibrated amax' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax('percentile' , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(_lowercase )
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
def fusea(UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ):
for mod in [qq, qk, qv]:
if not hasattr(_lowercase , '_amax' ):
print(' WARNING: NO AMAX BUFFER' )
return
__lowerCamelCase = qq._amax.detach().item()
__lowerCamelCase = qk._amax.detach().item()
__lowerCamelCase = qv._amax.detach().item()
__lowerCamelCase = max(_lowercase , _lowercase , _lowercase )
qq._amax.fill_(_lowercase )
qk._amax.fill_(_lowercase )
qv._amax.fill_(_lowercase )
logger.info(F""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" )
for name, mod in model.named_modules():
if name.endswith('.attention.self' ):
logger.info(F"""FUSE_QKV: {name:{name_width}}""" )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
for name, mod in model.named_modules():
if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ):
__lowerCamelCase = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=_lowercase )
__lowerCamelCase = mod._input_quantizer._amax.data.detach().item()
logger.info(F"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" )
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> Optional[int]:
"""simple docstring"""
for name, mod in model.named_modules():
if hasattr(_lowercase , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None:
__lowerCamelCase = mod.weight.shape[0]
__lowerCamelCase = mod._weight_quantizer._amax.detach()
__lowerCamelCase = torch.ones(_lowercase , dtype=amax.dtype , device=amax.device ) * amax
print(F"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" )
def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
for name, mod in model.named_modules():
if hasattr(_lowercase , '_weight_quantizer' ):
if not hasattr(mod.weight_quantizer , '_amax' ):
print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
__lowerCamelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
__lowerCamelCase = set(range(len(mod.weight.size() ) ) ) - axis_set
__lowerCamelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_lowercase , keepdims=_lowercase ).detach()
logger.info(F"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" )
__lowerCamelCase = amax
def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple=25 , UpperCamelCase__ : List[str]=180 , UpperCamelCase__ : List[str]=None ) -> Optional[int]:
"""simple docstring"""
if ignore is None:
__lowerCamelCase = []
elif not isinstance(_lowercase , _lowercase ):
__lowerCamelCase = [ignore]
__lowerCamelCase = 0
for name, mod in model.named_modules():
if not hasattr(_lowercase , 'weight' ):
continue
__lowerCamelCase = max(_lowercase , len(_lowercase ) )
for name, mod in model.named_modules():
__lowerCamelCase = getattr(_lowercase , '_input_quantizer' , _lowercase )
__lowerCamelCase = getattr(_lowercase , '_weight_quantizer' , _lowercase )
if not hasattr(_lowercase , 'weight' ):
continue
if type(_lowercase ) in ignore:
continue
if [True for s in ignore if type(_lowercase ) is str and s in name]:
continue
__lowerCamelCase = F"""Act:{input_q.extra_repr()}"""
__lowerCamelCase = F"""Wgt:{weight_q.extra_repr()}"""
__lowerCamelCase = F"""{name:{name_width}} {act_str} {wgt_str}"""
if len(_lowercase ) <= line_width:
logger.info(_lowercase )
else:
logger.info(F"""{name:{name_width}} {act_str}""" )
logger.info(F"""{' ':{name_width}} {wgt_str}""" )
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = 0
for name, mod in model.named_modules():
if isinstance(_lowercase , pytorch_quantization.nn.TensorQuantizer ):
print(F"""{name:80} {mod}""" )
count += 1
print(F"""{count} TensorQuantizers found in model""" )
def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ) -> Dict:
"""simple docstring"""
__lowerCamelCase = getattr(_lowercase , _lowercase , _lowercase )
if quantizer_mod is not None:
assert hasattr(_lowercase , _lowercase )
setattr(_lowercase , _lowercase , _lowercase )
else:
logger.warning(F"""{name} has no {quantizer}""" )
def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple="both" , **UpperCamelCase__ : Tuple ) -> Optional[Any]:
"""simple docstring"""
__lowerCamelCase = F"""Warning: changing {which} quantizers of {name:{qname_width}}"""
for k, v in kwargs.items():
s += F""" {k}={v}"""
if which in ["input", "both"]:
set_quantizer(_lowercase , _lowercase , '_input_quantizer' , _lowercase , _lowercase )
if which in ["weight", "both"]:
set_quantizer(_lowercase , _lowercase , '_weight_quantizer' , _lowercase , _lowercase )
logger.info(_lowercase )
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , **UpperCamelCase__ : Tuple ) -> Tuple:
"""simple docstring"""
for name, mod in model.named_modules():
if hasattr(_lowercase , '_input_quantizer' ) or hasattr(_lowercase , '_weight_quantizer' ):
for n in names:
if re.search(_lowercase , _lowercase ):
set_quantizers(_lowercase , _lowercase , **_lowercase )
elif name.endswith('_quantizer' ):
for n in names:
if re.search(_lowercase , _lowercase ):
__lowerCamelCase = F"""Warning: changing {name:{name_width}}"""
for k, v in kwargs.items():
s += F""" {k}={v}"""
setattr(_lowercase , _lowercase , _lowercase )
logger.info(_lowercase )
| 363 |
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
__A = logging.get_logger("transformers.models.speecht5")
__A = {
"speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm",
"speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection",
"speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv",
"speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed",
}
__A = {
"text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens",
"text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha",
}
__A = {
"speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0",
"speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1",
"speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer",
"speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha",
"speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer",
}
__A = {
"speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out",
"speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out",
"speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv",
"speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm",
"speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv",
"speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm",
"speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv",
"speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm",
"speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv",
"speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm",
"speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv",
"speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm",
}
__A = {
"text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens",
}
__A = {
"text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head",
}
__A = {
"encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj",
"encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj",
"encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj",
"encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj",
"encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm",
"encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense",
"encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense",
"encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm",
"encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k",
}
__A = {
"decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj",
"decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj",
"decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj",
"decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj",
"decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm",
"decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj",
"decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj",
"decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj",
"decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj",
"decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm",
"decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense",
"decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense",
"decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm",
}
__A = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
__A = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__A = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__A = []
__A = [
"encoder.version",
"encoder.layers.*.norm_k.weight",
"encoder.layers.*.norm_k.bias",
"decoder.version",
"decoder.layers.*.norm_k.weight",
"decoder.layers.*.norm_k.bias",
"decoder.pos_emb.pe_k",
"speech_encoder_prenet.embed_positions._float_tensor",
"text_decoder_prenet.embed_positions._float_tensor",
]
__A = IGNORE_KEYS + [
"encoder.proj",
"text_encoder_prenet.*",
"speech_decoder_prenet.*",
"speech_decoder_postnet.*",
]
__A = IGNORE_KEYS + [
"encoder.proj",
"speech_encoder_prenet.*",
"text_decoder_prenet.*",
"text_decoder_postnet.*",
]
__A = IGNORE_KEYS + [
"encoder.proj",
"text_encoder_prenet.*",
"text_decoder_prenet.*",
"text_decoder_postnet.*",
]
def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Dict:
"""simple docstring"""
for attribute in key.split('.' ):
__lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ )
if weight_type is not None:
__lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape
else:
__lowerCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}""" )
if weight_type == "weight":
__lowerCamelCase = value
elif weight_type == "weight_g":
__lowerCamelCase = value
elif weight_type == "weight_v":
__lowerCamelCase = value
elif weight_type == "bias":
__lowerCamelCase = value
elif weight_type == "running_mean":
__lowerCamelCase = value
elif weight_type == "running_var":
__lowerCamelCase = value
elif weight_type == "num_batches_tracked":
__lowerCamelCase = value
else:
__lowerCamelCase = value
logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" )
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ) -> Any:
"""simple docstring"""
for key in ignore_keys:
if key.endswith('.*' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
__lowerCamelCase , __lowerCamelCase = key.split('.*.' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
__lowerCamelCase = []
if task == "s2t":
__lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder
__lowerCamelCase = MAPPING_S2T
__lowerCamelCase = IGNORE_KEYS_S2T
elif task == "t2s":
__lowerCamelCase = None
__lowerCamelCase = MAPPING_T2S
__lowerCamelCase = IGNORE_KEYS_T2S
elif task == "s2s":
__lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder
__lowerCamelCase = MAPPING_S2S
__lowerCamelCase = IGNORE_KEYS_S2S
else:
raise ValueError(F"""Unsupported task: {task}""" )
for name, value in fairseq_dict.items():
if should_ignore(UpperCamelCase__ , UpperCamelCase__ ):
logger.info(F"""{name} was ignored""" )
continue
__lowerCamelCase = False
if "conv_layers" in name:
load_conv_layer(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , )
__lowerCamelCase = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
__lowerCamelCase , __lowerCamelCase = key.split('.*.' )
if prefix in name and suffix in name:
__lowerCamelCase = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
__lowerCamelCase = True
if "*" in mapped_key:
__lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2]
__lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ )
if "weight_g" in name:
__lowerCamelCase = 'weight_g'
elif "weight_v" in name:
__lowerCamelCase = 'weight_v'
elif "bias" in name:
__lowerCamelCase = 'bias'
elif "weight" in name:
__lowerCamelCase = 'weight'
elif "running_mean" in name:
__lowerCamelCase = 'running_mean'
elif "running_var" in name:
__lowerCamelCase = 'running_var'
elif "num_batches_tracked" in name:
__lowerCamelCase = 'num_batches_tracked'
else:
__lowerCamelCase = None
set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
continue
if not is_used:
unused_weights.append(UpperCamelCase__ )
logger.warning(F"""Unused weights: {unused_weights}""" )
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> Tuple:
"""simple docstring"""
__lowerCamelCase = full_name.split('conv_layers.' )[-1]
__lowerCamelCase = name.split('.' )
__lowerCamelCase = int(items[0] )
__lowerCamelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(UpperCamelCase__ )
@torch.no_grad()
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[str]=None , ) -> Tuple:
"""simple docstring"""
if config_path is not None:
__lowerCamelCase = SpeechTaConfig.from_pretrained(UpperCamelCase__ )
else:
__lowerCamelCase = SpeechTaConfig()
if task == "s2t":
__lowerCamelCase = config.max_text_positions
__lowerCamelCase = SpeechTaForSpeechToText(UpperCamelCase__ )
elif task == "t2s":
__lowerCamelCase = 1876
__lowerCamelCase = 600
__lowerCamelCase = config.max_speech_positions
__lowerCamelCase = SpeechTaForTextToSpeech(UpperCamelCase__ )
elif task == "s2s":
__lowerCamelCase = 1876
__lowerCamelCase = config.max_speech_positions
__lowerCamelCase = SpeechTaForSpeechToSpeech(UpperCamelCase__ )
else:
raise ValueError(F"""Unknown task name: {task}""" )
if vocab_path:
__lowerCamelCase = SpeechTaTokenizer(UpperCamelCase__ , model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
__lowerCamelCase = AddedToken('<mask>' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ )
__lowerCamelCase = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
__lowerCamelCase = SpeechTaFeatureExtractor()
__lowerCamelCase = SpeechTaProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
__lowerCamelCase = torch.load(UpperCamelCase__ )
recursively_load_weights(fairseq_checkpoint['model'] , UpperCamelCase__ , UpperCamelCase__ )
model.save_pretrained(UpperCamelCase__ )
if repo_id:
print('Pushing to the hub...' )
processor.push_to_hub(UpperCamelCase__ )
model.push_to_hub(UpperCamelCase__ )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
"--task",
default="s2t",
type=str,
help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.",
)
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
__A = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 348 | 0 |
def lowerCamelCase_ ( UpperCamelCase__ : int ) -> "list[int]":
"""simple docstring"""
if upper_limit < 0:
raise ValueError('Limit for the Catalan sequence must be ≥ 0' )
__lowerCamelCase = [0] * (upper_limit + 1)
# Base case: C(0) = C(1) = 1
__lowerCamelCase = 1
if upper_limit > 0:
__lowerCamelCase = 1
# Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i
for i in range(2 , upper_limit + 1 ):
for j in range(UpperCamelCase__ ):
catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1]
return catalan_list
if __name__ == "__main__":
print("\n********* Catalan Numbers Using Dynamic Programming ************\n")
print("\n*** Enter -1 at any time to quit ***")
print("\nEnter the upper limit (≥ 0) for the Catalan number sequence: ", end="")
try:
while True:
__A = int(input().strip())
if N < 0:
print("\n********* Goodbye!! ************")
break
else:
print(f'''The Catalan numbers from 0 through {N} are:''')
print(catalan_numbers(N))
print("Try another upper limit for the sequence: ", end="")
except (NameError, ValueError):
print("\n********* Invalid input, goodbye! ************\n")
import doctest
doctest.testmod()
| 364 |
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets,
# U and V such that every edge (u, v) either connects a vertex from U to V or a vertex
# from V to U. In other words, for every edge (u, v), either u belongs to U and v to V,
# or u belongs to V and v to U. We can also say that there is no edge that connects
# vertices of same set.
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = [False] * len(UpperCamelCase__ )
__lowerCamelCase = [-1] * len(UpperCamelCase__ )
def dfs(UpperCamelCase__ : int , UpperCamelCase__ : int ):
__lowerCamelCase = True
__lowerCamelCase = c
for u in graph[v]:
if not visited[u]:
dfs(UpperCamelCase__ , 1 - c )
for i in range(len(UpperCamelCase__ ) ):
if not visited[i]:
dfs(UpperCamelCase__ , 0 )
for i in range(len(UpperCamelCase__ ) ):
for j in graph[i]:
if color[i] == color[j]:
return False
return True
# Adjacency list of graph
__A = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []}
print(check_bipartite_dfs(graph))
| 348 | 0 |
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__A = logging.get_logger(__name__)
__A = {"vocab_file": "spiece.model"}
__A = {
"vocab_file": {
"AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model",
}
}
__A = {
"AI-Sweden/gpt-sw3-126m": 20_48,
"AI-Sweden/gpt-sw3-350m": 20_48,
"AI-Sweden/gpt-sw3-1.6b": 20_48,
"AI-Sweden/gpt-sw3-6.7b": 20_48,
"AI-Sweden/gpt-sw3-20b": 20_48,
}
class __lowerCAmelCase ( __lowerCAmelCase ):
"""simple docstring"""
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ['''input_ids''', '''attention_mask''']
def __init__( self , lowerCamelCase__ , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> None:
'''simple docstring'''
__lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
__lowerCamelCase = kwargs.get('name_or_path' )
if name_or_path is None:
logger.warning(
'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,'
' you are testing the model, this can safely be ignored' )
__lowerCamelCase = 'None'
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
__lowerCamelCase = '<|endoftext|>' if eos_token is None else eos_token
__lowerCamelCase = '<unk>' if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
__lowerCamelCase = unk_token if pad_token is None else pad_token
__lowerCamelCase = eos_token if bos_token is None else bos_token
else:
__lowerCamelCase = '<pad>' if pad_token is None else pad_token
__lowerCamelCase = '<s>' if bos_token is None else bos_token
super().__init__(
do_lower_case=lowerCAmelCase_ , remove_space=lowerCAmelCase_ , keep_accents=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , )
__lowerCamelCase = do_lower_case
__lowerCamelCase = remove_space
__lowerCamelCase = keep_accents
__lowerCamelCase = vocab_file
__lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCAmelCase_ )
# Used for whitespace normalization in input texts
# fmt : off
__lowerCamelCase = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', ''}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
__lowerCamelCase = re.compile(
f"""[{''.join(map(lowerCAmelCase_ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8_203] ) )}]""" )
def __getstate__( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = self.__dict__.copy()
__lowerCamelCase = None
return state
def __setstate__( self , lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__lowerCamelCase = {}
__lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def lowercase_ ( self ) -> int:
'''simple docstring'''
return len(self.sp_model )
def lowercase_ ( self , lowerCamelCase__ ) -> str:
'''simple docstring'''
__lowerCamelCase = self.non_printing_characters_re.sub('' , lowerCAmelCase_ )
# Normalize whitespaces
__lowerCamelCase = ''.join([char if char not in self.whitespaces else ' ' for char in text] )
# NFC Unicode normalization
__lowerCamelCase = unicodedata.normalize('NFC' , lowerCAmelCase_ )
return text
def lowercase_ ( self , lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = self.preprocess_text(lowerCAmelCase_ )
return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ )
def lowercase_ ( self , lowerCamelCase__ ) -> int:
'''simple docstring'''
return self.sp_model.PieceToId(lowerCAmelCase_ )
def lowercase_ ( self , lowerCamelCase__ ) -> str:
'''simple docstring'''
return self.sp_model.IdToPiece(lowerCAmelCase_ )
@staticmethod
def lowercase_ ( lowerCamelCase__ ) -> str:
'''simple docstring'''
return out_string
def lowercase_ ( self , lowerCamelCase__ ) -> str:
'''simple docstring'''
__lowerCamelCase = []
__lowerCamelCase = ''
__lowerCamelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowerCAmelCase_ ) + token
__lowerCamelCase = True
__lowerCamelCase = []
else:
current_sub_tokens.append(lowerCAmelCase_ )
__lowerCamelCase = False
out_string += self.sp_model.decode(lowerCAmelCase_ )
return out_string
def lowercase_ ( self ) -> Dict[str, int]:
'''simple docstring'''
__lowerCamelCase = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowerCamelCase = os.path.join(
lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase_ , 'wb' ) as fi:
__lowerCamelCase = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase_ )
return (out_vocab_file,)
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]:
'''simple docstring'''
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
__lowerCamelCase = self.preprocess_text(lowerCAmelCase_ )
__lowerCamelCase = self.sp_model.encode(lowerCAmelCase_ )
else:
__lowerCamelCase = [self.preprocess_text(lowerCAmelCase_ ) for t in text]
__lowerCamelCase = self.sp_model.encode(lowerCAmelCase_ )
if return_tensors is True or return_tensors == "pt":
__lowerCamelCase = torch.tensor(lowerCAmelCase_ )
return token_ids
def lowercase_ ( self , lowerCamelCase__ ) -> str:
'''simple docstring'''
return self.sp_model.decode(lowerCAmelCase_ )
def lowercase_ ( self , lowerCamelCase__ ) -> List[int]:
'''simple docstring'''
__lowerCamelCase = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()]
__lowerCamelCase = (
f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(lowerCAmelCase_ ) + f"""{self.bos_token}Bot:"""
)
return self.encode(text=lowerCAmelCase_ )
| 365 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowerCamelCase__ ).to(lowerCamelCase__ )
__lowerCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' )
__lowerCamelCase = tokenizer('Hello there' , return_tensors='pt' ).input_ids
__lowerCamelCase = tokenizer('Hi I am' , return_tensors='pt' ).input_ids
__lowerCamelCase = model(input_ids.to(lowerCamelCase__ ) , labels=labels.to(lowerCamelCase__ ) ).loss
__lowerCamelCase = -(labels.shape[-1] * loss.item())
__lowerCamelCase = -84.91_27
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 348 | 0 |
def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : int ) -> str:
"""simple docstring"""
if principal <= 0:
raise Exception('Principal borrowed must be > 0' )
if rate_per_annum < 0:
raise Exception('Rate of interest must be >= 0' )
if years_to_repay <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise Exception('Years to repay must be an integer > 0' )
# Yearly rate is divided by 12 to get monthly rate
__lowerCamelCase = rate_per_annum / 12
# Years to repay is multiplied by 12 to get number of payments as payment is monthly
__lowerCamelCase = years_to_repay * 12
return (
principal
* rate_per_month
* (1 + rate_per_month) ** number_of_payments
/ ((1 + rate_per_month) ** number_of_payments - 1)
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 366 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Any:
"""simple docstring"""
__lowerCamelCase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2]
__lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False
__lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False
__lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
__lowerCamelCase = [3, 3, 3, 3]
__lowerCamelCase = [5, 5, 5, 5]
elif "fl4" in model_name:
__lowerCamelCase = [4, 4, 4, 4]
__lowerCamelCase = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
__lowerCamelCase = [3, 3, 3, 3]
if "lrf" in model_name:
__lowerCamelCase = [3, 3, 3, 3]
else:
__lowerCamelCase = [2, 2, 2, 2]
if "tiny" in model_name:
__lowerCamelCase = 96
elif "small" in model_name:
__lowerCamelCase = 96
elif "base" in model_name:
__lowerCamelCase = 128
elif "large" in model_name:
__lowerCamelCase = 192
elif "xlarge" in model_name:
__lowerCamelCase = 256
elif "huge" in model_name:
__lowerCamelCase = 352
# set label information
__lowerCamelCase = 'huggingface/label-files'
if "large" in model_name or "huge" in model_name:
__lowerCamelCase = 'imagenet-22k-id2label.json'
else:
__lowerCamelCase = 'imagenet-1k-id2label.json'
__lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) )
__lowerCamelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()}
__lowerCamelCase = {v: k for k, v in idalabel.items()}
__lowerCamelCase = FocalNetConfig(
embed_dim=UpperCamelCase__ , depths=UpperCamelCase__ , focal_levels=UpperCamelCase__ , focal_windows=UpperCamelCase__ , use_conv_embed=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , use_post_layernorm=UpperCamelCase__ , use_layerscale=UpperCamelCase__ , )
return config
def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> str:
"""simple docstring"""
if "patch_embed.proj" in name:
__lowerCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
__lowerCamelCase = name.replace('patch_embed.norm' , 'embeddings.norm' )
if "layers" in name:
__lowerCamelCase = 'encoder.' + name
if "encoder.layers" in name:
__lowerCamelCase = name.replace('encoder.layers' , 'encoder.stages' )
if "downsample.proj" in name:
__lowerCamelCase = name.replace('downsample.proj' , 'downsample.projection' )
if "blocks" in name:
__lowerCamelCase = name.replace('blocks' , 'layers' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
__lowerCamelCase = name.replace('modulation.f' , 'modulation.projection_in' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
__lowerCamelCase = name.replace('modulation.h' , 'modulation.projection_context' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
__lowerCamelCase = name.replace('modulation.proj' , 'modulation.projection_out' )
if name == "norm.weight":
__lowerCamelCase = 'layernorm.weight'
if name == "norm.bias":
__lowerCamelCase = 'layernorm.bias'
if "head" in name:
__lowerCamelCase = name.replace('head' , 'classifier' )
else:
__lowerCamelCase = 'focalnet.' + name
return name
def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=False ) -> Dict:
"""simple docstring"""
__lowerCamelCase = {
'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth',
'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth',
'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth',
'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth',
'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth',
'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth',
'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth',
'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth',
'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth',
'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth',
}
# fmt: on
__lowerCamelCase = model_name_to_url[model_name]
print('Checkpoint URL: ' , UpperCamelCase__ )
__lowerCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='cpu' )['model']
# rename keys
for key in state_dict.copy().keys():
__lowerCamelCase = state_dict.pop(UpperCamelCase__ )
__lowerCamelCase = val
__lowerCamelCase = get_focalnet_config(UpperCamelCase__ )
__lowerCamelCase = FocalNetForImageClassification(UpperCamelCase__ )
model.eval()
# load state dict
model.load_state_dict(UpperCamelCase__ )
# verify conversion
__lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowerCamelCase = BitImageProcessor(
do_resize=UpperCamelCase__ , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase__ , crop_size=224 , do_normalize=UpperCamelCase__ , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ , )
__lowerCamelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw )
__lowerCamelCase = processor(images=UpperCamelCase__ , return_tensors='pt' )
__lowerCamelCase = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ),
] )
__lowerCamelCase = image_transforms(UpperCamelCase__ ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , UpperCamelCase__ , atol=1E-4 )
__lowerCamelCase = model(**UpperCamelCase__ )
__lowerCamelCase = outputs.logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
print('First values of logits:' , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
__lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] )
elif model_name == "focalnet-tiny-lrf":
__lowerCamelCase = torch.tensor([1.16_69, 0.01_25, -0.16_95] )
elif model_name == "focalnet-small":
__lowerCamelCase = torch.tensor([0.49_17, -0.04_30, 0.13_41] )
elif model_name == "focalnet-small-lrf":
__lowerCamelCase = torch.tensor([-0.25_88, -0.53_42, -0.23_31] )
elif model_name == "focalnet-base":
__lowerCamelCase = torch.tensor([-0.16_55, -0.40_90, -0.17_30] )
elif model_name == "focalnet-base-lrf":
__lowerCamelCase = torch.tensor([0.53_06, -0.04_83, -0.39_28] )
assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
if push_to_hub:
print(F"""Pushing model and processor of {model_name} to the hub...""" )
model.push_to_hub(F"""{model_name}""" )
processor.push_to_hub(F"""{model_name}""" )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="focalnet-tiny",
type=str,
help="Name of the FocalNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model and processor to the hub.",
)
__A = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 348 | 0 |
"""simple docstring"""
from collections.abc import Generator
def lowerCamelCase_ ( ) -> Generator[int, None, None]:
"""simple docstring"""
__lowerCamelCase = 0, 1
while True:
__lowerCamelCase = b, a + b
yield b
def lowerCamelCase_ ( UpperCamelCase__ : List[str] = 1000 ) -> int:
"""simple docstring"""
__lowerCamelCase = 1
__lowerCamelCase = fibonacci_generator()
while len(str(next(SCREAMING_SNAKE_CASE__ ) ) ) < n:
answer += 1
return answer + 1
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 367 |
from __future__ import annotations
def lowerCamelCase_ ( UpperCamelCase__ : list[float] , UpperCamelCase__ : list[float] ) -> float:
"""simple docstring"""
__lowerCamelCase = sorted(numsa + numsa )
__lowerCamelCase , __lowerCamelCase = divmod(len(UpperCamelCase__ ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
__A = [float(x) for x in input("Enter the elements of first array: ").split()]
__A = [float(x) for x in input("Enter the elements of second array: ").split()]
print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
| 348 | 0 |
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
__A = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS}
def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" )
if tokenizer_name is None:
__lowerCamelCase = TOKENIZER_CLASSES
else:
__lowerCamelCase = {tokenizer_name: getattr(lowerCamelCase_ , tokenizer_name + 'Fast' )}
logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" )
for tokenizer_name in tokenizer_names:
__lowerCamelCase = TOKENIZER_CLASSES[tokenizer_name]
__lowerCamelCase = True
if checkpoint_name is None:
__lowerCamelCase = list(tokenizer_class.max_model_input_sizes.keys() )
else:
__lowerCamelCase = [checkpoint_name]
logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" )
for checkpoint in checkpoint_names:
logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" )
# Load tokenizer
__lowerCamelCase = tokenizer_class.from_pretrained(lowerCamelCase_ , force_download=lowerCamelCase_ )
# Save fast tokenizer
logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" )
# For organization names we create sub-directories
if "/" in checkpoint:
__lowerCamelCase = checkpoint.split('/' )
__lowerCamelCase = os.path.join(lowerCamelCase_ , lowerCamelCase_ )
elif add_prefix:
__lowerCamelCase = checkpoint
__lowerCamelCase = dump_path
else:
__lowerCamelCase = None
__lowerCamelCase = dump_path
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
__lowerCamelCase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
__lowerCamelCase = file_path.split(lowerCamelCase_ )[-1][0]
if next_char == "/":
__lowerCamelCase = os.path.join(lowerCamelCase_ , lowerCamelCase_ )
__lowerCamelCase = None
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
__lowerCamelCase = tokenizer.save_pretrained(
lowerCamelCase_ , legacy_format=lowerCamelCase_ , filename_prefix=lowerCamelCase_ )
logger.info(F"""=> File names {file_names}""" )
for file_name in file_names:
if not file_name.endswith('tokenizer.json' ):
os.remove(lowerCamelCase_ )
logger.info(F"""=> removing {file_name}""" )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files."
)
parser.add_argument(
"--tokenizer_name",
default=None,
type=str,
help=(
f'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will '''
"download and convert all the checkpoints from AWS."
),
)
parser.add_argument(
"--checkpoint_name",
default=None,
type=str,
help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.",
)
parser.add_argument(
"--force_download",
action="store_true",
help="Re-download checkpoints.",
)
__A = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 368 |
__A = {
"joule": 1.0,
"kilojoule": 10_00,
"megajoule": 1_00_00_00,
"gigajoule": 10_00_00_00_00,
"wattsecond": 1.0,
"watthour": 36_00,
"kilowatthour": 3_60_00_00,
"newtonmeter": 1.0,
"calorie_nutr": 41_86.8,
"kilocalorie_nutr": 4_18_68_00.00,
"electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9,
"britishthermalunit_it": 10_55.0_55_85,
"footpound": 1.3_5_5_8_1_8,
}
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : float ) -> float:
"""simple docstring"""
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
__lowerCamelCase = (
F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"""
F"""Valid values are: {', '.join(UpperCamelCase__ )}"""
)
raise ValueError(UpperCamelCase__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 348 | 0 |
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=100 , lowerCamelCase__=13 , lowerCamelCase__=30 , lowerCamelCase__=2 , lowerCamelCase__=3 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=32 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=10 , lowerCamelCase__=0.02 , lowerCamelCase__=3 , lowerCamelCase__=None , lowerCamelCase__=[0, 1, 2, 3] , ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = parent
__lowerCamelCase = 100
__lowerCamelCase = batch_size
__lowerCamelCase = image_size
__lowerCamelCase = patch_size
__lowerCamelCase = num_channels
__lowerCamelCase = is_training
__lowerCamelCase = use_labels
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = type_sequence_label_size
__lowerCamelCase = initializer_range
__lowerCamelCase = scope
__lowerCamelCase = out_indices
__lowerCamelCase = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowerCamelCase = (image_size // patch_size) ** 2
__lowerCamelCase = num_patches + 1
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase = None
__lowerCamelCase = None
if self.use_labels:
__lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__lowerCamelCase = self.get_config()
return config, pixel_values, labels, pixel_labels
def lowercase_ ( self ) -> Any:
'''simple docstring'''
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = BeitModel(config=UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
__lowerCamelCase = model(UpperCamelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any:
'''simple docstring'''
__lowerCamelCase = BeitForMaskedImageModeling(config=UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
__lowerCamelCase = model(UpperCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict:
'''simple docstring'''
__lowerCamelCase = self.type_sequence_label_size
__lowerCamelCase = BeitForImageClassification(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
__lowerCamelCase = model(UpperCamelCase__ , labels=UpperCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowerCamelCase = 1
__lowerCamelCase = BeitForImageClassification(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
__lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowerCamelCase = model(UpperCamelCase__ , labels=UpperCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = self.num_labels
__lowerCamelCase = BeitForSemanticSegmentation(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
__lowerCamelCase = model(UpperCamelCase__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
__lowerCamelCase = model(UpperCamelCase__ , labels=UpperCamelCase__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs
__lowerCamelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __a , __a , unittest.TestCase ):
"""simple docstring"""
snake_case_ = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
snake_case_ = (
{
'''feature-extraction''': BeitModel,
'''image-classification''': BeitForImageClassification,
'''image-segmentation''': BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = BeitModelTester(self )
__lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 )
def lowercase_ ( self ) -> Any:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='BEiT does not use inputs_embeds' )
def lowercase_ ( self ) -> str:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
pass
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(UpperCamelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__lowerCamelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(UpperCamelCase__ )
__lowerCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase = [*signature.parameters.keys()]
__lowerCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , UpperCamelCase__ )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase__ )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ )
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase__ )
def lowercase_ ( self ) -> str:
'''simple docstring'''
if not self.model_tester.is_training:
return
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(UpperCamelCase__ ), BeitForMaskedImageModeling]:
continue
__lowerCamelCase = model_class(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.train()
__lowerCamelCase = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ )
__lowerCamelCase = model(**UpperCamelCase__ ).loss
loss.backward()
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
__lowerCamelCase = False
__lowerCamelCase = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(UpperCamelCase__ ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
__lowerCamelCase = model_class(UpperCamelCase__ )
model.gradient_checkpointing_enable()
model.to(UpperCamelCase__ )
model.train()
__lowerCamelCase = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ )
__lowerCamelCase = model(**UpperCamelCase__ ).loss
loss.backward()
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase = _config_zero_init(UpperCamelCase__ )
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(config=UpperCamelCase__ )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@slow
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCamelCase = BeitModel.from_pretrained(UpperCamelCase__ )
self.assertIsNotNone(UpperCamelCase__ )
def lowerCamelCase_ ( ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowercase_ ( self ) -> int:
'''simple docstring'''
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
__lowerCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(UpperCamelCase__ )
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = prepare_img()
__lowerCamelCase = image_processor(images=UpperCamelCase__ , return_tensors='pt' ).pixel_values.to(UpperCamelCase__ )
# prepare bool_masked_pos
__lowerCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(UpperCamelCase__ )
# forward pass
with torch.no_grad():
__lowerCamelCase = model(pixel_values=UpperCamelCase__ , bool_masked_pos=UpperCamelCase__ )
__lowerCamelCase = outputs.logits
# verify the logits
__lowerCamelCase = torch.Size((1, 196, 8_192) )
self.assertEqual(logits.shape , UpperCamelCase__ )
__lowerCamelCase = torch.tensor(
[[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ).to(UpperCamelCase__ )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , UpperCamelCase__ , atol=1e-2 ) )
@slow
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(UpperCamelCase__ )
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = prepare_img()
__lowerCamelCase = image_processor(images=UpperCamelCase__ , return_tensors='pt' ).to(UpperCamelCase__ )
# forward pass
with torch.no_grad():
__lowerCamelCase = model(**UpperCamelCase__ )
__lowerCamelCase = outputs.logits
# verify the logits
__lowerCamelCase = torch.Size((1, 1_000) )
self.assertEqual(logits.shape , UpperCamelCase__ )
__lowerCamelCase = torch.tensor([-1.23_85, -1.09_87, -1.01_08] ).to(UpperCamelCase__ )
self.assertTrue(torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
__lowerCamelCase = 281
self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase__ )
@slow
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to(
UpperCamelCase__ )
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = prepare_img()
__lowerCamelCase = image_processor(images=UpperCamelCase__ , return_tensors='pt' ).to(UpperCamelCase__ )
# forward pass
with torch.no_grad():
__lowerCamelCase = model(**UpperCamelCase__ )
__lowerCamelCase = outputs.logits
# verify the logits
__lowerCamelCase = torch.Size((1, 21_841) )
self.assertEqual(logits.shape , UpperCamelCase__ )
__lowerCamelCase = torch.tensor([1.68_81, -0.27_87, 0.59_01] ).to(UpperCamelCase__ )
self.assertTrue(torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
__lowerCamelCase = 2_396
self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase__ )
@slow
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
__lowerCamelCase = model.to(UpperCamelCase__ )
__lowerCamelCase = BeitImageProcessor(do_resize=UpperCamelCase__ , size=640 , do_center_crop=UpperCamelCase__ )
__lowerCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
__lowerCamelCase = Image.open(ds[0]['file'] )
__lowerCamelCase = image_processor(images=UpperCamelCase__ , return_tensors='pt' ).to(UpperCamelCase__ )
# forward pass
with torch.no_grad():
__lowerCamelCase = model(**UpperCamelCase__ )
__lowerCamelCase = outputs.logits
# verify the logits
__lowerCamelCase = torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape , UpperCamelCase__ )
__lowerCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' )
if is_pillow_less_than_a:
__lowerCamelCase = torch.tensor(
[
[[-4.92_25, -2.39_54, -3.05_22], [-2.88_22, -1.00_46, -1.75_61], [-2.95_49, -1.32_28, -2.13_47]],
[[-5.81_68, -3.41_29, -4.07_78], [-3.86_51, -2.22_14, -3.02_77], [-3.83_56, -2.46_43, -3.35_35]],
[[-0.00_78, 3.99_52, 4.07_54], [2.98_56, 4.69_44, 5.00_35], [3.24_13, 4.78_13, 4.99_69]],
] , device=UpperCamelCase__ , )
else:
__lowerCamelCase = torch.tensor(
[
[[-4.89_60, -2.36_88, -3.03_55], [-2.84_78, -0.98_36, -1.74_18], [-2.94_49, -1.33_32, -2.14_56]],
[[-5.80_81, -3.41_24, -4.10_06], [-3.85_61, -2.20_81, -3.03_23], [-3.83_65, -2.46_01, -3.36_69]],
[[-0.03_09, 3.98_68, 4.05_40], [2.96_40, 4.68_77, 4.99_76], [3.20_81, 4.76_90, 4.99_42]],
] , device=UpperCamelCase__ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1e-4 ) )
@slow
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
__lowerCamelCase = model.to(UpperCamelCase__ )
__lowerCamelCase = BeitImageProcessor(do_resize=UpperCamelCase__ , size=640 , do_center_crop=UpperCamelCase__ )
__lowerCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
__lowerCamelCase = Image.open(ds[0]['file'] )
__lowerCamelCase = image_processor(images=UpperCamelCase__ , return_tensors='pt' ).to(UpperCamelCase__ )
# forward pass
with torch.no_grad():
__lowerCamelCase = model(**UpperCamelCase__ )
__lowerCamelCase = outputs.logits.detach().cpu()
__lowerCamelCase = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ , target_sizes=[(500, 300)] )
__lowerCamelCase = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape , UpperCamelCase__ )
__lowerCamelCase = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ )
__lowerCamelCase = torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape , UpperCamelCase__ )
| 369 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''philschmid/bart-large-cnn-samsum'''
snake_case_ = (
'''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, '''
'''and returns a summary of the text.'''
)
snake_case_ = '''summarizer'''
snake_case_ = AutoTokenizer
snake_case_ = AutoModelForSeqaSeqLM
snake_case_ = ['''text''']
snake_case_ = ['''text''']
def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]:
'''simple docstring'''
return self.pre_processor(lowerCamelCase__ , return_tensors='pt' , truncation=lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ ) -> Dict:
'''simple docstring'''
return self.model.generate(**lowerCamelCase__ )[0]
def lowercase_ ( self , lowerCamelCase__ ) -> Any:
'''simple docstring'''
return self.pre_processor.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ )
| 348 | 0 |
__A = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
__A = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
__A = {
0: 'Sunday',
1: 'Monday',
2: 'Tuesday',
3: 'Wednesday',
4: 'Thursday',
5: 'Friday',
6: 'Saturday',
}
def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> Optional[Any]:
"""simple docstring"""
assert len(str(snake_case_ ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 12, "month should be between 1 to 12"
assert 1 <= day <= 31, "day should be between 1 to 31"
# Doomsday algorithm:
__lowerCamelCase = year // 100
__lowerCamelCase = (5 * (century % 4) + 2) % 7
__lowerCamelCase = year % 100
__lowerCamelCase = centurian % 12
__lowerCamelCase = (
(centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
__lowerCamelCase = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0)
else DOOMSDAY_LEAP[month - 1]
)
__lowerCamelCase = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 370 |
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=4 , ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_attention_mask
__lowerCamelCase = use_token_type_ids
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = type_sequence_label_size
__lowerCamelCase = initializer_range
__lowerCamelCase = num_choices
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = None
if self.use_attention_mask:
__lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase = None
if self.use_token_type_ids:
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowerCamelCase = RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs
__lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs
__lowerCamelCase = True
__lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = True
snake_case_ = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = FlaxRobertaPreLayerNormModelTester(self )
@slow
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__lowerCamelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ )
__lowerCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCamelCase__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ )
__lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa )
__lowerCamelCase = model(lowerCamelCase__ )[0]
__lowerCamelCase = [1, 11, 50_265]
self.assertEqual(list(output.shape ) , lowerCamelCase__ )
# compare the actual values for a slice.
__lowerCamelCase = np.array(
[[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
@slow
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ )
__lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa )
__lowerCamelCase = model(lowerCamelCase__ )[0]
# compare the actual values for a slice.
__lowerCamelCase = np.array(
[[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
| 348 | 0 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import platform
import sys
__A = "3"
print("Python version:", sys.version)
print("OS platform:", platform.platform())
print("OS architecture:", platform.machine())
try:
import torch
print("Torch version:", torch.__version__)
print("Cuda available:", torch.cuda.is_available())
print("Cuda version:", torch.version.cuda)
print("CuDNN version:", torch.backends.cudnn.version())
print("Number of GPUs available:", torch.cuda.device_count())
except ImportError:
print("Torch version:", None)
try:
import transformers
print("transformers version:", transformers.__version__)
except ImportError:
print("transformers version:", None)
| 371 |
from ..utils import DummyObject, requires_backends
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
| 348 | 0 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = "▁"
__A = {"vocab_file": "sentencepiece.bpe.model"}
__A = {
"vocab_file": {
"facebook/mbart-large-en-ro": (
"https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"
),
"facebook/mbart-large-cc25": (
"https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"
),
}
}
__A = {
"facebook/mbart-large-en-ro": 10_24,
"facebook/mbart-large-cc25": 10_24,
}
# fmt: off
__A = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"]
class __lowerCAmelCase ( snake_case_ ):
"""simple docstring"""
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = ["input_ids", "attention_mask"]
snake_case_ = []
snake_case_ = []
def __init__( self , lowerCamelCase__ , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__ = None , lowerCamelCase__=None , **lowerCamelCase__ , ) -> Any:
'''simple docstring'''
__lowerCamelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token
__lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , tokenizer_file=_A , src_lang=_A , tgt_lang=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , )
__lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_A ) )
__lowerCamelCase = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
__lowerCamelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__lowerCamelCase = 1
__lowerCamelCase = len(self.sp_model )
__lowerCamelCase = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_A )
}
__lowerCamelCase = {v: k for k, v in self.lang_code_to_id.items()}
__lowerCamelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
__lowerCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
__lowerCamelCase = list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
__lowerCamelCase = src_lang if src_lang is not None else 'en_XX'
__lowerCamelCase = self.lang_code_to_id[self._src_lang]
__lowerCamelCase = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = self.__dict__.copy()
__lowerCamelCase = None
__lowerCamelCase = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , lowerCamelCase__ ) -> int:
'''simple docstring'''
__lowerCamelCase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__lowerCamelCase = {}
__lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def lowercase_ ( self ) -> str:
'''simple docstring'''
return self._src_lang
@src_lang.setter
def lowercase_ ( self , lowerCamelCase__ ) -> None:
'''simple docstring'''
__lowerCamelCase = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A )
__lowerCamelCase = [1] * len(self.prefix_tokens )
__lowerCamelCase = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(_A )) + suffix_ones
return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]:
'''simple docstring'''
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) -> int:
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
__lowerCamelCase = src_lang
__lowerCamelCase = self(_A , add_special_tokens=_A , return_tensors=_A , **_A )
__lowerCamelCase = self.convert_tokens_to_ids(_A )
__lowerCamelCase = tgt_lang_id
return inputs
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def lowercase_ ( self , lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(_A , out_type=_A )
def lowercase_ ( self , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__lowerCamelCase = self.sp_model.PieceToId(_A )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def lowercase_ ( self , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = ''.join(_A ).replace(_A , ' ' ).strip()
return out_string
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(_A ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowerCamelCase = os.path.join(
_A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _A )
elif not os.path.isfile(self.vocab_file ):
with open(_A , 'wb' ) as fi:
__lowerCamelCase = self.sp_model.serialized_model_proto()
fi.write(_A )
return (out_vocab_file,)
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = "en_XX" , lowerCamelCase__ = None , lowerCamelCase__ = "ro_RO" , **lowerCamelCase__ , ) -> BatchEncoding:
'''simple docstring'''
__lowerCamelCase = src_lang
__lowerCamelCase = tgt_lang
return super().prepare_seqaseq_batch(_A , _A , **_A )
def lowercase_ ( self ) -> str:
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang )
def lowercase_ ( self ) -> Any:
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def lowercase_ ( self , lowerCamelCase__ ) -> None:
'''simple docstring'''
__lowerCamelCase = self.lang_code_to_id[src_lang]
__lowerCamelCase = []
__lowerCamelCase = [self.eos_token_id, self.cur_lang_code]
def lowercase_ ( self , lowerCamelCase__ ) -> None:
'''simple docstring'''
__lowerCamelCase = self.lang_code_to_id[lang]
__lowerCamelCase = []
__lowerCamelCase = [self.eos_token_id, self.cur_lang_code]
| 350 |
import random
import unittest
import numpy as np
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionImgaImgPipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline'''
def lowercase_ ( self , lowerCamelCase__=0 ) -> int:
'''simple docstring'''
__lowerCamelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase__ ) )
__lowerCamelCase = np.random.RandomState(lowerCamelCase__ )
__lowerCamelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 3,
'strength': 0.75,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] )
assert np.abs(image_slice - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
# warmup pass to apply optimizations
__lowerCamelCase = pipe(**self.get_dummy_inputs() )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def lowercase_ ( self ) -> int:
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = ort.SessionOptions()
__lowerCamelCase = False
return options
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
__lowerCamelCase = init_image.resize((768, 512) )
# using the PNDM scheduler by default
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = 'A fantasy landscape, trending on artstation'
__lowerCamelCase = np.random.RandomState(0 )
__lowerCamelCase = pipe(
prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type='np' , )
__lowerCamelCase = output.images
__lowerCamelCase = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
__lowerCamelCase = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
__lowerCamelCase = init_image.resize((768, 512) )
__lowerCamelCase = LMSDiscreteScheduler.from_pretrained(
'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' )
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = 'A fantasy landscape, trending on artstation'
__lowerCamelCase = np.random.RandomState(0 )
__lowerCamelCase = pipe(
prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type='np' , )
__lowerCamelCase = output.images
__lowerCamelCase = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
__lowerCamelCase = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
| 348 | 0 |
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
__A = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n"
__A = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n"
__A = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ),
'references': datasets.Sequence(
datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ),
} ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[
'https://en.wikipedia.org/wiki/BLEU',
'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213',
] , )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=4 , lowerCamelCase__=False ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = compute_bleu(
reference_corpus=lowerCamelCase__ , translation_corpus=lowerCamelCase__ , max_order=lowerCamelCase__ , smooth=lowerCamelCase__ )
(__lowerCamelCase) = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 351 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
__A = logging.get_logger(__name__)
__A = {
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json",
}
# fmt: off
__A = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85,
7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77,
13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11,
46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86,
1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91,
1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09,
3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61
]
__A = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73,
8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27,
32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47,
72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93,
1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75,
2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65,
4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62
]
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''whisper'''
snake_case_ = ['''past_key_values''']
snake_case_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self , lowerCamelCase__=51_865 , lowerCamelCase__=80 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=1_536 , lowerCamelCase__=1_536 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=50_257 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="gelu" , lowerCamelCase__=256 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=1_500 , lowerCamelCase__=448 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=None , lowerCamelCase__=[220, 50_256] , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=False , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__=7 , **lowerCamelCase__ , ) -> str:
'''simple docstring'''
__lowerCamelCase = vocab_size
__lowerCamelCase = num_mel_bins
__lowerCamelCase = d_model
__lowerCamelCase = encoder_layers
__lowerCamelCase = encoder_attention_heads
__lowerCamelCase = decoder_layers
__lowerCamelCase = decoder_attention_heads
__lowerCamelCase = decoder_ffn_dim
__lowerCamelCase = encoder_ffn_dim
__lowerCamelCase = dropout
__lowerCamelCase = attention_dropout
__lowerCamelCase = activation_dropout
__lowerCamelCase = activation_function
__lowerCamelCase = init_std
__lowerCamelCase = encoder_layerdrop
__lowerCamelCase = decoder_layerdrop
__lowerCamelCase = use_cache
__lowerCamelCase = encoder_layers
__lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True
__lowerCamelCase = max_source_positions
__lowerCamelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
__lowerCamelCase = classifier_proj_size
__lowerCamelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowerCamelCase = apply_spec_augment
__lowerCamelCase = mask_time_prob
__lowerCamelCase = mask_time_length
__lowerCamelCase = mask_time_min_masks
__lowerCamelCase = mask_feature_prob
__lowerCamelCase = mask_feature_length
__lowerCamelCase = mask_feature_min_masks
__lowerCamelCase = median_filter_width
super().__init__(
pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , suppress_tokens=lowerCamelCase__ , begin_suppress_tokens=lowerCamelCase__ , **lowerCamelCase__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
@property
def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
__lowerCamelCase = OrderedDict(
[
('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}),
] )
if self.use_past:
__lowerCamelCase = {0: 'batch'}
else:
__lowerCamelCase = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(lowerCamelCase__ , direction='inputs' )
return common_inputs
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = 22_050 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 220 , ) -> Mapping[str, Any]:
'''simple docstring'''
__lowerCamelCase = OrderedDict()
__lowerCamelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase__ , framework=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , time_duration=lowerCamelCase__ , frequency=lowerCamelCase__ , )
__lowerCamelCase = encoder_inputs['input_features'].shape[2]
__lowerCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length
__lowerCamelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = encoder_inputs.pop('input_features' )
__lowerCamelCase = decoder_inputs.pop('decoder_input_ids' )
if "past_key_values" in decoder_inputs:
__lowerCamelCase = decoder_inputs.pop('past_key_values' )
return dummy_inputs
@property
def lowercase_ ( self ) -> float:
'''simple docstring'''
return 1e-3
| 348 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__A = {
"configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"],
"configuration_data2vec_text": [
"DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Data2VecTextConfig",
"Data2VecTextOnnxConfig",
],
"configuration_data2vec_vision": [
"DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Data2VecVisionConfig",
"Data2VecVisionOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST",
"Data2VecAudioForAudioFrameClassification",
"Data2VecAudioForCTC",
"Data2VecAudioForSequenceClassification",
"Data2VecAudioForXVector",
"Data2VecAudioModel",
"Data2VecAudioPreTrainedModel",
]
__A = [
"DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"Data2VecTextForCausalLM",
"Data2VecTextForMaskedLM",
"Data2VecTextForMultipleChoice",
"Data2VecTextForQuestionAnswering",
"Data2VecTextForSequenceClassification",
"Data2VecTextForTokenClassification",
"Data2VecTextModel",
"Data2VecTextPreTrainedModel",
]
__A = [
"DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST",
"Data2VecVisionForImageClassification",
"Data2VecVisionForMaskedImageModeling",
"Data2VecVisionForSemanticSegmentation",
"Data2VecVisionModel",
"Data2VecVisionPreTrainedModel",
]
if is_tf_available():
__A = [
"TFData2VecVisionForImageClassification",
"TFData2VecVisionForSemanticSegmentation",
"TFData2VecVisionModel",
"TFData2VecVisionPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig
from .configuration_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecTextConfig,
DataaVecTextOnnxConfig,
)
from .configuration_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecVisionConfig,
DataaVecVisionOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dataavec_audio import (
DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecAudioForAudioFrameClassification,
DataaVecAudioForCTC,
DataaVecAudioForSequenceClassification,
DataaVecAudioForXVector,
DataaVecAudioModel,
DataaVecAudioPreTrainedModel,
)
from .modeling_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecTextForCausalLM,
DataaVecTextForMaskedLM,
DataaVecTextForMultipleChoice,
DataaVecTextForQuestionAnswering,
DataaVecTextForSequenceClassification,
DataaVecTextForTokenClassification,
DataaVecTextModel,
DataaVecTextPreTrainedModel,
)
from .modeling_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecVisionForImageClassification,
DataaVecVisionForMaskedImageModeling,
DataaVecVisionForSemanticSegmentation,
DataaVecVisionModel,
DataaVecVisionPreTrainedModel,
)
if is_tf_available():
from .modeling_tf_dataavec_vision import (
TFDataaVecVisionForImageClassification,
TFDataaVecVisionForSemanticSegmentation,
TFDataaVecVisionModel,
TFDataaVecVisionPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 352 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ) -> int:
'''simple docstring'''
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_input_mask
__lowerCamelCase = use_token_type_ids
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = rotary_dim
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = initializer_range
__lowerCamelCase = None
__lowerCamelCase = vocab_size - 1
__lowerCamelCase = vocab_size - 1
__lowerCamelCase = vocab_size - 1
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = None
if self.use_input_mask:
__lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs
__lowerCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any:
'''simple docstring'''
__lowerCamelCase = 20
__lowerCamelCase = model_class_name(lowerCamelCase__ )
__lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ )
__lowerCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' )
__lowerCamelCase = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__lowerCamelCase = model(
input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , )
__lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' )
__lowerCamelCase = model(
input_ids[:, -1:] , attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase__ , )
__lowerCamelCase = model(lowerCamelCase__ )
__lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int:
'''simple docstring'''
__lowerCamelCase = 20
__lowerCamelCase = model_class_name(lowerCamelCase__ )
__lowerCamelCase = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
__lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ )
__lowerCamelCase = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__lowerCamelCase = model(
input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , )
__lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' )
__lowerCamelCase = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase__ , position_ids=lowerCamelCase__ , )
__lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )
__lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
@require_flax
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
snake_case_ = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = FlaxGPTJModelTester(self )
def lowercase_ ( self ) -> str:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
@tooslow
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' )
__lowerCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowerCamelCase__ , truncation=lowerCamelCase__ )
__lowerCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' )
__lowerCamelCase = False
__lowerCamelCase = model.config.eos_token_id
__lowerCamelCase = jax.jit(model.generate )
__lowerCamelCase = jit_generate(
inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences
__lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ )
__lowerCamelCase = [
'Hello this is a long string of text.\n\nI\'m trying to get the text of the',
'Hey, I\'m a little late to the party. I\'m going to',
]
self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
@is_pt_flax_cross_test
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning
__lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape
__lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowerCamelCase__ ):
__lowerCamelCase = 0
__lowerCamelCase = 1
__lowerCamelCase = 0
__lowerCamelCase = 1
__lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval()
__lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa )
__lowerCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase__ )
__lowerCamelCase = fx_state
with torch.no_grad():
__lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple()
__lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple()
self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowerCamelCase__ )
__lowerCamelCase = model_class.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ )
__lowerCamelCase = fx_model_loaded(**lowerCamelCase__ ).to_tuple()
self.assertEqual(
len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output_loaded, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning
__lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval()
__lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa )
__lowerCamelCase = load_flax_weights_in_pytorch_model(lowerCamelCase__ , fx_model.params )
__lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape
__lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowerCamelCase__ ):
__lowerCamelCase = 0
__lowerCamelCase = 1
__lowerCamelCase = 0
__lowerCamelCase = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
__lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple()
__lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple()
self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowerCamelCase__ )
__lowerCamelCase = pt_model_class.from_pretrained(lowerCamelCase__ , from_flax=lowerCamelCase__ )
with torch.no_grad():
__lowerCamelCase = pt_model_loaded(**lowerCamelCase__ ).to_tuple()
self.assertEqual(
len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__lowerCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' )
__lowerCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCamelCase__ )
| 348 | 0 |
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
__A = """bart"""
__A = True
@st.cache(allow_output_mutation=UpperCamelCase__ )
def lowerCamelCase_ ( ) -> int:
"""simple docstring"""
if LOAD_DENSE_INDEX:
__lowerCamelCase = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' )
__lowerCamelCase = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' )
__lowerCamelCase = qar_model.eval()
else:
__lowerCamelCase , __lowerCamelCase = (None, None)
if MODEL_TYPE == "bart":
__lowerCamelCase = AutoTokenizer.from_pretrained('yjernite/bart_eli5' )
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' )
__lowerCamelCase = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' )
sas_model.load_state_dict(save_dict['model'] )
__lowerCamelCase = sas_model.eval()
else:
__lowerCamelCase , __lowerCamelCase = make_qa_sas_model(
model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=UpperCamelCase__ )
def lowerCamelCase_ ( ) -> Any:
"""simple docstring"""
if LOAD_DENSE_INDEX:
__lowerCamelCase = faiss.StandardGpuResources()
__lowerCamelCase = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train']
__lowerCamelCase = np.memmap(
'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 128) , )
__lowerCamelCase = faiss.IndexFlatIP(128 )
__lowerCamelCase = faiss.index_cpu_to_gpu(UpperCamelCase__ , 1 , UpperCamelCase__ )
wikiaab_gpu_index_flat.add(UpperCamelCase__ ) # TODO fix for larger GPU
else:
__lowerCamelCase , __lowerCamelCase = (None, None)
__lowerCamelCase = Elasticsearch([{'host': 'localhost', 'port': '9200'}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=UpperCamelCase__ )
def lowerCamelCase_ ( ) -> Union[str, Any]:
"""simple docstring"""
__lowerCamelCase = datasets.load_dataset('eli5' , name='LFQA_reddit' )
__lowerCamelCase = elia['train_eli5']
__lowerCamelCase = np.memmap(
'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 128) )
__lowerCamelCase = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(UpperCamelCase__ )
return (elia_train, eli5_train_q_index)
__A = load_indexes()
__A = load_models()
__A = load_train_data()
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[str]=10 ) -> Dict:
"""simple docstring"""
__lowerCamelCase = embed_questions_for_retrieval([question] , UpperCamelCase__ , UpperCamelCase__ )
__lowerCamelCase , __lowerCamelCase = eli5_train_q_index.search(UpperCamelCase__ , UpperCamelCase__ )
__lowerCamelCase = [elia_train[int(UpperCamelCase__ )] for i in I[0]]
return nn_examples
def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any]="wiki40b" , UpperCamelCase__ : str="dense" , UpperCamelCase__ : Dict=10 ) -> List[Any]:
"""simple docstring"""
if source == "none":
__lowerCamelCase , __lowerCamelCase = (' <P> '.join(['' for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__lowerCamelCase , __lowerCamelCase = query_qa_dense_index(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
__lowerCamelCase , __lowerCamelCase = query_es_index(
UpperCamelCase__ , UpperCamelCase__ , index_name='english_wiki40b_snippets_100w' , n_results=UpperCamelCase__ , )
__lowerCamelCase = [
(res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst
]
__lowerCamelCase = 'question: {} context: {}'.format(UpperCamelCase__ , UpperCamelCase__ )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda UpperCamelCase__ : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda UpperCamelCase__ : None),
} )
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=64 , UpperCamelCase__ : Any=256 , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : int=0.95 , UpperCamelCase__ : Dict=0.8 ) -> Dict:
"""simple docstring"""
with torch.no_grad():
__lowerCamelCase = qa_sas_generate(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , num_answers=1 , num_beams=UpperCamelCase__ , min_len=UpperCamelCase__ , max_len=UpperCamelCase__ , do_sample=UpperCamelCase__ , temp=UpperCamelCase__ , top_p=UpperCamelCase__ , top_k=UpperCamelCase__ , max_input_length=1024 , device='cuda:0' , )[0]
return (answer, support_list)
st.title("Long Form Question Answering with ELI5")
# Start sidebar
__A = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>"""
__A = """
<html>
<head>
<style>
.img-container {
padding-left: 90px;
padding-right: 90px;
padding-top: 50px;
padding-bottom: 50px;
background-color: #f0f3f9;
}
</style>
</head>
<body>
<span class=\"img-container\"> <!-- Inline parent element -->
%s
</span>
</body>
</html>
""" % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
__A = """
This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).
First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,
a pre-processed fixed snapshot of Wikipedia.
"""
st.sidebar.markdown(description, unsafe_allow_html=True)
__A = [
"""Answer the question""",
"""View the retrieved document only""",
"""View the most similar ELI5 question and answer""",
"""Show me everything, please!""",
]
__A = st.sidebar.checkbox("Demo options")
if demo_options:
__A = st.sidebar.selectbox(
"",
action_list,
index=3,
)
__A = action_list.index(action_st)
__A = st.sidebar.selectbox(
"",
["Show full text of passages", "Show passage section titles"],
index=0,
)
__A = show_type == """Show full text of passages"""
else:
__A = 3
__A = True
__A = st.sidebar.checkbox("Retrieval options")
if retrieval_options:
__A = """
### Information retriever options
The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding
trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.
The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.
"""
st.sidebar.markdown(retriever_info)
__A = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"])
__A = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"])
else:
__A = """wiki40b"""
__A = """dense"""
__A = """beam"""
__A = 2
__A = 64
__A = 2_56
__A = None
__A = None
__A = st.sidebar.checkbox("Generation options")
if generate_options:
__A = """
### Answer generation options
The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)
weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with
**beam** search, or **sample** from the decoder's output probabilities.
"""
st.sidebar.markdown(generate_info)
__A = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"])
__A = st.sidebar.slider(
"Minimum generation length", min_value=8, max_value=2_56, value=64, step=8, format=None, key=None
)
__A = st.sidebar.slider(
"Maximum generation length", min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None
)
if sampled == "beam":
__A = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
__A = st.sidebar.slider(
"Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None
)
__A = st.sidebar.slider(
"Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None
)
__A = None
# start main text
__A = [
"""<MY QUESTION>""",
"""How do people make chocolate?""",
"""Why do we get a fever when we are sick?""",
"""How can different animals perceive different colors?""",
"""What is natural language processing?""",
"""What's the best way to treat a sunburn?""",
"""What exactly are vitamins ?""",
"""How does nuclear energy provide electricity?""",
"""What's the difference between viruses and bacteria?""",
"""Why are flutes classified as woodwinds when most of them are made out of metal ?""",
"""Why do people like drinking coffee even though it tastes so bad?""",
"""What happens when wine ages? How does it make the wine taste better?""",
"""If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""",
"""How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""",
"""How does New Zealand have so many large bird predators?""",
]
__A = st.selectbox(
"What would you like to ask? ---- select <MY QUESTION> to enter a new query",
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
__A = st.text_input("Enter your question here:", "")
else:
__A = question_s
if st.button("Show me!"):
if action in [0, 1, 3]:
if index_type == "mixed":
__A = make_support(question, source=wiki_source, method="dense", n_results=10)
__A = make_support(question, source=wiki_source, method="sparse", n_results=10)
__A = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
__A = support_list[:10]
__A = """<P> """ + """ <P> """.join([res[-1] for res in support_list])
else:
__A = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
__A = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == "sampled"),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown("### The model generated answer is:")
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:")
for i, res in enumerate(support_list):
__A = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(" ", "_"))
__A = res[1].strip()
if sec_titles == "":
__A = """[{}]({})""".format(res[0], wiki_url)
else:
__A = sec_titles.split(" & ")
__A = """ & """.join(
["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list]
)
st.markdown(
"{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
"> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True
)
if action in [2, 3]:
__A = find_nearest_training(question)
__A = nn_train_list[0]
st.markdown(
"--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"])
)
__A = [
"""{}. {}""".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""]))
for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"]))
if i == 0 or sc > 2
]
st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st)))
__A = """
---
**Disclaimer**
*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.
Evaluating biases of such a model and ensuring factual generations are still very much open research problems.
Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*
"""
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 353 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
__A = False
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowercase_ ( self ) -> int:
'''simple docstring'''
return 12
@property
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
return 12
@property
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
return 32
@property
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
__lowerCamelCase = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , )
return model
@property
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
torch.manual_seed(0 )
__lowerCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModel(lowerCamelCase__ )
@property
def lowercase_ ( self ) -> str:
'''simple docstring'''
torch.manual_seed(0 )
__lowerCamelCase = 12
__lowerCamelCase = 12
__lowerCamelCase = {
'attention_bias': True,
'cross_attention_dim': 32,
'attention_head_dim': height * width,
'num_attention_heads': 1,
'num_vector_embeds': self.num_embed,
'num_embeds_ada_norm': self.num_embeds_ada_norm,
'norm_num_groups': 32,
'sample_size': width,
'activation_fn': 'geglu-approximate',
}
__lowerCamelCase = TransformeraDModel(**lowerCamelCase__ )
return model
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = 'cpu'
__lowerCamelCase = self.dummy_vqvae
__lowerCamelCase = self.dummy_text_encoder
__lowerCamelCase = self.dummy_tokenizer
__lowerCamelCase = self.dummy_transformer
__lowerCamelCase = VQDiffusionScheduler(self.num_embed )
__lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=lowerCamelCase__ )
__lowerCamelCase = VQDiffusionPipeline(
vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , )
__lowerCamelCase = pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = 'teddy bear playing in the pool'
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' )
__lowerCamelCase = output.images
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipe(
[prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
__lowerCamelCase = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = 'cpu'
__lowerCamelCase = self.dummy_vqvae
__lowerCamelCase = self.dummy_text_encoder
__lowerCamelCase = self.dummy_tokenizer
__lowerCamelCase = self.dummy_transformer
__lowerCamelCase = VQDiffusionScheduler(self.num_embed )
__lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings(
learnable=lowerCamelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length )
__lowerCamelCase = VQDiffusionPipeline(
vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , )
__lowerCamelCase = pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = 'teddy bear playing in the pool'
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' )
__lowerCamelCase = output.images
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipe(
[prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
__lowerCamelCase = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' )
__lowerCamelCase = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' )
__lowerCamelCase = pipeline.to(lowerCamelCase__ )
pipeline.set_progress_bar_config(disable=lowerCamelCase__ )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipeline(
'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=lowerCamelCase__ , output_type='np' , )
__lowerCamelCase = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 348 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__A = {
"configuration_swiftformer": [
"SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SwiftFormerConfig",
"SwiftFormerOnnxConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"SwiftFormerForImageClassification",
"SwiftFormerModel",
"SwiftFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_swiftformer import (
SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
SwiftFormerConfig,
SwiftFormerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swiftformer import (
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SwiftFormerForImageClassification,
SwiftFormerModel,
SwiftFormerPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 354 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=32 * 8 , lowerCamelCase__=32 * 8 , lowerCamelCase__=4 , lowerCamelCase__=64 , ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = is_training
__lowerCamelCase = use_auxiliary_loss
__lowerCamelCase = num_queries
__lowerCamelCase = num_channels
__lowerCamelCase = min_size
__lowerCamelCase = max_size
__lowerCamelCase = num_labels
__lowerCamelCase = hidden_dim
__lowerCamelCase = hidden_dim
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
__lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
lowerCamelCase__ )
__lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ )
__lowerCamelCase = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5
).float()
__lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long()
__lowerCamelCase = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = MaskaFormerConfig(
hidden_size=self.hidden_dim , )
__lowerCamelCase = self.num_queries
__lowerCamelCase = self.num_labels
__lowerCamelCase = [1, 1, 1, 1]
__lowerCamelCase = self.num_channels
__lowerCamelCase = 64
__lowerCamelCase = 128
__lowerCamelCase = self.hidden_dim
__lowerCamelCase = self.hidden_dim
__lowerCamelCase = self.hidden_dim
return config
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask}
return config, inputs_dict
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any:
'''simple docstring'''
__lowerCamelCase = output.encoder_hidden_states
__lowerCamelCase = output.pixel_decoder_hidden_states
__lowerCamelCase = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Tuple:
'''simple docstring'''
with torch.no_grad():
__lowerCamelCase = MaskaFormerModel(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ )
__lowerCamelCase = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
def comm_check_on_output(lowerCamelCase__ ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
__lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ )
__lowerCamelCase = model(lowerCamelCase__ )
comm_check_on_output(lowerCamelCase__ )
__lowerCamelCase = model(
pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ )
comm_check_on_output(lowerCamelCase__ )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {}
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = MaskaFormerModelTester(self )
__lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ )
@unittest.skip(reason='Mask2Former does not use inputs_embeds' )
def lowercase_ ( self ) -> Any:
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former is not a generative model' )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former does not use token embeddings' )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(
reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
pass
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(lowerCamelCase__ )
__lowerCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase = [*signature.parameters.keys()]
__lowerCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , lowerCamelCase__ )
@slow
def lowercase_ ( self ) -> int:
'''simple docstring'''
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
__lowerCamelCase = MaskaFormerModel.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = (self.model_tester.min_size,) * 2
__lowerCamelCase = {
'pixel_values': torch.randn((2, 3, *size) , device=lowerCamelCase__ ),
'mask_labels': torch.randn((2, 10, *size) , device=lowerCamelCase__ ),
'class_labels': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(),
}
__lowerCamelCase = self.model_tester.get_config()
__lowerCamelCase = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ )
__lowerCamelCase = model(**lowerCamelCase__ )
self.assertTrue(outputs.loss is not None )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ )
__lowerCamelCase = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ )
self.assertTrue(outputs.attentions is not None )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
if not self.model_tester.is_training:
return
__lowerCamelCase = self.all_model_classes[1]
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = model_class(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.train()
__lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss
loss.backward()
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase = self.all_model_classes[1]
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = True
__lowerCamelCase = True
__lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ )
model.train()
__lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ )
__lowerCamelCase = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
__lowerCamelCase = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
__lowerCamelCase = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
__lowerCamelCase = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=lowerCamelCase__ )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__A = 1e-4
def lowerCamelCase_ ( ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_vision
@slow
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ )
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = prepare_img()
__lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ )
__lowerCamelCase = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) )
with torch.no_grad():
__lowerCamelCase = model(**lowerCamelCase__ )
__lowerCamelCase = torch.tensor(
[[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(lowerCamelCase__ )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
__lowerCamelCase = torch.tensor(
[[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(lowerCamelCase__ )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
__lowerCamelCase = torch.tensor(
[[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(lowerCamelCase__ )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval()
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = prepare_img()
__lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ )
__lowerCamelCase = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) )
with torch.no_grad():
__lowerCamelCase = model(**lowerCamelCase__ )
# masks_queries_logits
__lowerCamelCase = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
__lowerCamelCase = [
[-8.78_39, -9.00_56, -8.81_21],
[-7.41_04, -7.03_13, -6.54_01],
[-6.61_05, -6.34_27, -6.46_75],
]
__lowerCamelCase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
# class_queries_logits
__lowerCamelCase = outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) )
__lowerCamelCase = torch.tensor(
[
[1.83_24, -8.08_35, -4.19_22],
[0.84_50, -9.00_50, -3.60_53],
[0.30_45, -7.72_93, -3.02_75],
] ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval()
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = image_processor(
[np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , )
__lowerCamelCase = inputs['pixel_values'].to(lowerCamelCase__ )
__lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['mask_labels']]
__lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['class_labels']]
with torch.no_grad():
__lowerCamelCase = model(**lowerCamelCase__ )
self.assertTrue(outputs.loss is not None )
| 348 | 0 |
def lowerCamelCase_ ( UpperCamelCase__ : Tuple = 1000 ) -> Optional[int]:
"""simple docstring"""
__lowerCamelCase , __lowerCamelCase = 1, 1
__lowerCamelCase = 2
while True:
__lowerCamelCase = 0
__lowerCamelCase = fa + fa
__lowerCamelCase , __lowerCamelCase = fa, f
index += 1
for _ in str(UpperCamelCase__ ):
i += 1
if i == n:
break
return index
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 355 |
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__A = {
"facebook/mask2former-swin-small-coco-instance": (
"https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
__A = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''mask2former'''
snake_case_ = ['''swin''']
snake_case_ = {'''hidden_size''': '''hidden_dim'''}
def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 1_024 , lowerCamelCase__ = "relu" , lowerCamelCase__ = 6 , lowerCamelCase__ = 10 , lowerCamelCase__ = 8 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 2_048 , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = 4 , lowerCamelCase__ = 255 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 2.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 12_544 , lowerCamelCase__ = 3.0 , lowerCamelCase__ = 0.75 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = True , lowerCamelCase__ = [4, 8, 16, 32] , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Tuple:
'''simple docstring'''
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' )
__lowerCamelCase = CONFIG_MAPPING['swin'](
image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
__lowerCamelCase = backbone_config.pop('model_type' )
__lowerCamelCase = CONFIG_MAPPING[backbone_model_type]
__lowerCamelCase = config_class.from_dict(lowerCamelCase__ )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """
f"""Supported model types: {','.join(self.backbones_supported )}""" )
__lowerCamelCase = backbone_config
__lowerCamelCase = feature_size
__lowerCamelCase = mask_feature_size
__lowerCamelCase = hidden_dim
__lowerCamelCase = encoder_feedforward_dim
__lowerCamelCase = activation_function
__lowerCamelCase = encoder_layers
__lowerCamelCase = decoder_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = dropout
__lowerCamelCase = dim_feedforward
__lowerCamelCase = pre_norm
__lowerCamelCase = enforce_input_projection
__lowerCamelCase = common_stride
__lowerCamelCase = ignore_value
__lowerCamelCase = num_queries
__lowerCamelCase = no_object_weight
__lowerCamelCase = class_weight
__lowerCamelCase = mask_weight
__lowerCamelCase = dice_weight
__lowerCamelCase = train_num_points
__lowerCamelCase = oversample_ratio
__lowerCamelCase = importance_sample_ratio
__lowerCamelCase = init_std
__lowerCamelCase = init_xavier_std
__lowerCamelCase = use_auxiliary_loss
__lowerCamelCase = feature_strides
__lowerCamelCase = output_auxiliary_logits
__lowerCamelCase = decoder_layers
super().__init__(**lowerCamelCase__ )
@classmethod
def lowercase_ ( cls , lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
return cls(
backbone_config=lowerCamelCase__ , **lowerCamelCase__ , )
def lowercase_ ( self ) -> Dict[str, any]:
'''simple docstring'''
__lowerCamelCase = copy.deepcopy(self.__dict__ )
__lowerCamelCase = self.backbone_config.to_dict()
__lowerCamelCase = self.__class__.model_type
return output
| 348 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json',
# See all ViT MSN models at https://huggingface.co/models?filter=vit_msn
}
class __lowerCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
snake_case_ = '''vit_msn'''
def __init__( self , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-06 , lowerCamelCase__=224 , lowerCamelCase__=16 , lowerCamelCase__=3 , lowerCamelCase__=True , **lowerCamelCase__ , ) -> Any:
'''simple docstring'''
super().__init__(**__lowerCamelCase )
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = initializer_range
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = image_size
__lowerCamelCase = patch_size
__lowerCamelCase = num_channels
__lowerCamelCase = qkv_bias
| 356 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = 42
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
"""simple docstring"""
@register_to_config
def __init__( self , lowerCamelCase__ = 32 , lowerCamelCase__ = 64 , lowerCamelCase__ = 20 , lowerCamelCase__ = 768 , lowerCamelCase__=77 , lowerCamelCase__=4 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = "silu" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "linear" , lowerCamelCase__ = "prd" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Tuple:
'''simple docstring'''
super().__init__()
__lowerCamelCase = num_attention_heads
__lowerCamelCase = attention_head_dim
__lowerCamelCase = num_attention_heads * attention_head_dim
__lowerCamelCase = additional_embeddings
__lowerCamelCase = time_embed_dim or inner_dim
__lowerCamelCase = embedding_proj_dim or embedding_dim
__lowerCamelCase = clip_embed_dim or embedding_dim
__lowerCamelCase = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 )
__lowerCamelCase = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ )
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
if embedding_proj_norm_type is None:
__lowerCamelCase = None
elif embedding_proj_norm_type == "layer":
__lowerCamelCase = nn.LayerNorm(lowerCamelCase__ )
else:
raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" )
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
if encoder_hid_proj_type is None:
__lowerCamelCase = None
elif encoder_hid_proj_type == "linear":
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
else:
raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" )
__lowerCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) )
if added_emb_type == "prd":
__lowerCamelCase = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) )
elif added_emb_type is None:
__lowerCamelCase = None
else:
raise ValueError(
f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" )
__lowerCamelCase = nn.ModuleList(
[
BasicTransformerBlock(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='gelu' , attention_bias=lowerCamelCase__ , )
for d in range(lowerCamelCase__ )
] )
if norm_in_type == "layer":
__lowerCamelCase = nn.LayerNorm(lowerCamelCase__ )
elif norm_in_type is None:
__lowerCamelCase = None
else:
raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" )
__lowerCamelCase = nn.LayerNorm(lowerCamelCase__ )
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 )
causal_attention_mask.triu_(1 )
__lowerCamelCase = causal_attention_mask[None, ...]
self.register_buffer('causal_attention_mask' , lowerCamelCase__ , persistent=lowerCamelCase__ )
__lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) )
__lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def lowercase_ ( self ) -> Dict[str, AttentionProcessor]:
'''simple docstring'''
__lowerCamelCase = {}
def fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
if hasattr(lowerCamelCase__ , 'set_processor' ):
__lowerCamelCase = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
return processors
def lowercase_ ( self , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = len(self.attn_processors.keys() )
if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count:
raise ValueError(
f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the"""
f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
if hasattr(lowerCamelCase__ , 'set_processor' ):
if not isinstance(lowerCamelCase__ , lowerCamelCase__ ):
module.set_processor(lowerCamelCase__ )
else:
module.set_processor(processor.pop(f"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ )
for name, module in self.named_children():
fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> int:
'''simple docstring'''
__lowerCamelCase = hidden_states.shape[0]
__lowerCamelCase = timestep
if not torch.is_tensor(lowerCamelCase__ ):
__lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0:
__lowerCamelCase = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__lowerCamelCase = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device )
__lowerCamelCase = self.time_proj(lowerCamelCase__ )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
__lowerCamelCase = timesteps_projected.to(dtype=self.dtype )
__lowerCamelCase = self.time_embedding(lowerCamelCase__ )
if self.embedding_proj_norm is not None:
__lowerCamelCase = self.embedding_proj_norm(lowerCamelCase__ )
__lowerCamelCase = self.embedding_proj(lowerCamelCase__ )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
__lowerCamelCase = self.encoder_hidden_states_proj(lowerCamelCase__ )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' )
__lowerCamelCase = self.proj_in(lowerCamelCase__ )
__lowerCamelCase = self.positional_embedding.to(hidden_states.dtype )
__lowerCamelCase = []
__lowerCamelCase = 0
if encoder_hidden_states is not None:
additional_embeds.append(lowerCamelCase__ )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
__lowerCamelCase = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
__lowerCamelCase = hidden_states[:, None, :]
__lowerCamelCase = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
__lowerCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 )
additional_embeds.append(lowerCamelCase__ )
__lowerCamelCase = torch.cat(
lowerCamelCase__ , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
__lowerCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
__lowerCamelCase = F.pad(
lowerCamelCase__ , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
__lowerCamelCase = hidden_states + positional_embeddings
if attention_mask is not None:
__lowerCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0
__lowerCamelCase = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 )
__lowerCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
__lowerCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
__lowerCamelCase = self.norm_in(lowerCamelCase__ )
for block in self.transformer_blocks:
__lowerCamelCase = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ )
__lowerCamelCase = self.norm_out(lowerCamelCase__ )
if self.prd_embedding is not None:
__lowerCamelCase = hidden_states[:, -1]
else:
__lowerCamelCase = hidden_states[:, additional_embeddings_len:]
__lowerCamelCase = self.proj_to_clip_embeddings(lowerCamelCase__ )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 348 | 0 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=3 , lowerCamelCase__=18 , lowerCamelCase__=30 , lowerCamelCase__=400 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=None , ) -> Dict:
'''simple docstring'''
__lowerCamelCase = size if size is not None else {'shortest_edge': 20}
__lowerCamelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18}
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = num_channels
__lowerCamelCase = image_size
__lowerCamelCase = min_resolution
__lowerCamelCase = max_resolution
__lowerCamelCase = do_resize
__lowerCamelCase = size
__lowerCamelCase = do_center_crop
__lowerCamelCase = crop_size
def lowercase_ ( self ) -> Any:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = MobileNetVaImageProcessor if is_vision_available() else None
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = MobileNetVaImageProcessingTester(self )
@property
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_A , 'do_resize' ) )
self.assertTrue(hasattr(_A , 'size' ) )
self.assertTrue(hasattr(_A , 'do_center_crop' ) )
self.assertTrue(hasattr(_A , 'crop_size' ) )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 20} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
__lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def lowercase_ ( self ) -> int:
'''simple docstring'''
pass
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
# Initialize image_processing
__lowerCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A )
for image in image_inputs:
self.assertIsInstance(_A , Image.Image )
# Test not batched input
__lowerCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
__lowerCamelCase = image_processing(_A , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
# Initialize image_processing
__lowerCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A )
for image in image_inputs:
self.assertIsInstance(_A , np.ndarray )
# Test not batched input
__lowerCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
__lowerCamelCase = image_processing(_A , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
# Initialize image_processing
__lowerCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A )
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
# Test not batched input
__lowerCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
__lowerCamelCase = image_processing(_A , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 357 |
import sys
from collections import defaultdict
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = []
def lowercase_ ( self , lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
return self.node_position[vertex]
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int:
'''simple docstring'''
__lowerCamelCase = pos
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
__lowerCamelCase = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
__lowerCamelCase = 2 * start + 1
else:
__lowerCamelCase = 2 * start + 2
if heap[smallest_child] < heap[start]:
__lowerCamelCase , __lowerCamelCase = heap[smallest_child], positions[smallest_child]
__lowerCamelCase , __lowerCamelCase = (
heap[start],
positions[start],
)
__lowerCamelCase , __lowerCamelCase = temp, tempa
__lowerCamelCase = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , lowerCamelCase__ )
self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int:
'''simple docstring'''
__lowerCamelCase = position[index]
while index != 0:
__lowerCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
__lowerCamelCase = heap[parent]
__lowerCamelCase = position[parent]
self.set_position(position[parent] , lowerCamelCase__ )
else:
__lowerCamelCase = val
__lowerCamelCase = temp
self.set_position(lowerCamelCase__ , lowerCamelCase__ )
break
__lowerCamelCase = parent
else:
__lowerCamelCase = val
__lowerCamelCase = temp
self.set_position(lowerCamelCase__ , 0 )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str:
'''simple docstring'''
__lowerCamelCase = len(lowerCamelCase__ ) // 2 - 1
for i in range(lowerCamelCase__ , -1 , -1 ):
self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = positions[0]
__lowerCamelCase = sys.maxsize
self.top_to_bottom(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ )
return temp
def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = Heap()
__lowerCamelCase = [0] * len(UpperCamelCase__ )
__lowerCamelCase = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
__lowerCamelCase = [] # Heap of Distance of vertices from their neighboring vertex
__lowerCamelCase = []
for vertex in range(len(UpperCamelCase__ ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCamelCase__ )
heap.node_position.append(UpperCamelCase__ )
__lowerCamelCase = []
__lowerCamelCase = 1
__lowerCamelCase = sys.maxsize
for neighbor, distance in adjacency_list[0]:
__lowerCamelCase = 0
__lowerCamelCase = distance
heap.heapify(UpperCamelCase__ , UpperCamelCase__ )
for _ in range(1 , len(UpperCamelCase__ ) ):
__lowerCamelCase = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
__lowerCamelCase = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCamelCase__ )]
):
__lowerCamelCase = distance
heap.bottom_to_top(
UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ )
__lowerCamelCase = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
__A = int(input("Enter number of edges: ").strip())
__A = defaultdict(list)
for _ in range(edges_number):
__A = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 348 | 0 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class __lowerCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
snake_case_ = '''gpt_neo'''
snake_case_ = ['''past_key_values''']
snake_case_ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self , lowerCamelCase__=50_257 , lowerCamelCase__=2_048 , lowerCamelCase__=2_048 , lowerCamelCase__=24 , lowerCamelCase__=[[["global", "local"], 12]] , lowerCamelCase__=16 , lowerCamelCase__=None , lowerCamelCase__=256 , lowerCamelCase__="gelu_new" , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=1e-5 , lowerCamelCase__=0.02 , lowerCamelCase__=True , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , **lowerCamelCase__ , ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = vocab_size
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = hidden_size
__lowerCamelCase = num_layers
__lowerCamelCase = num_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = window_size
__lowerCamelCase = activation_function
__lowerCamelCase = resid_dropout
__lowerCamelCase = embed_dropout
__lowerCamelCase = attention_dropout
__lowerCamelCase = classifier_dropout
__lowerCamelCase = layer_norm_epsilon
__lowerCamelCase = initializer_range
__lowerCamelCase = use_cache
__lowerCamelCase = bos_token_id
__lowerCamelCase = eos_token_id
__lowerCamelCase = attention_types
__lowerCamelCase = self.expand_attention_types_params(__snake_case )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.attention_layers)` == `config.num_layers` '
f"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """
f"""`config.num_layers = {self.num_layers}`. """
'`config.attention_layers` is prepared using `config.attention_types`. '
'Please verify the value of `config.attention_types` argument.' )
super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
@staticmethod
def lowercase_ ( lowerCamelCase__ ) -> Any:
'''simple docstring'''
__lowerCamelCase = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ) -> Optional[int]:
"""simple docstring"""
import torch
__lowerCamelCase = input.size()
__lowerCamelCase = len(_A )
__lowerCamelCase = shape[dimension]
__lowerCamelCase = torch.arange(0 , _A , _A )
__lowerCamelCase = torch.div(sizedim - size , _A , rounding_mode='floor' ) + 1
__lowerCamelCase = torch.arange(_A ) + low_indices[:min_length][:, None]
__lowerCamelCase = [slice(_A )] * rank
__lowerCamelCase = indices
__lowerCamelCase = input[s]
__lowerCamelCase = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(_A )
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : str ) -> Union[str, Any]:
"""simple docstring"""
import torch
__lowerCamelCase = torch.arange(1 , _A )
__lowerCamelCase = torch.remainder(_A , _A )
__lowerCamelCase = remainders == 0
__lowerCamelCase = candidates[divisor_indices]
__lowerCamelCase = torch.max(_A )
return largest_divisor, torch.div(_A , _A , rounding_mode='floor' )
class __lowerCAmelCase ( lowerCamelCase__ ):
"""simple docstring"""
@property
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} )
if self.use_past:
self.fill_with_past_key_values_(__snake_case , direction='inputs' )
__lowerCamelCase = {0: 'batch', 1: 'past_sequence + sequence'}
else:
__lowerCamelCase = {0: 'batch', 1: 'sequence'}
return common_inputs
@property
def lowercase_ ( self ) -> int:
'''simple docstring'''
return self._config.num_heads
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = super(__snake_case , self ).generate_dummy_inputs(
__snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case )
# We need to order the input in the way they appears in the forward()
__lowerCamelCase = OrderedDict({'input_ids': common_inputs['input_ids']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
__lowerCamelCase = common_inputs['input_ids'].shape
# Not using the same length for past_key_values
__lowerCamelCase = seqlen + 2
__lowerCamelCase = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__lowerCamelCase = [
(torch.zeros(__snake_case ), torch.zeros(__snake_case )) for _ in range(self.num_layers )
]
__lowerCamelCase = common_inputs['attention_mask']
if self.use_past:
__lowerCamelCase = ordered_inputs['attention_mask'].dtype
__lowerCamelCase = torch.cat(
[ordered_inputs['attention_mask'], torch.ones(__snake_case , __snake_case , dtype=__snake_case )] , dim=1 )
return ordered_inputs
@property
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
return 13
| 358 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=__magic_name__ )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
snake_case_ = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} )
snake_case_ = Features(
{
'''answers''': Sequence(
{
'''text''': Value('''string''' ),
'''answer_start''': Value('''int32''' ),
} )
} )
snake_case_ = "question"
snake_case_ = "context"
snake_case_ = "answers"
@property
def lowercase_ ( self ) -> Dict[str, str]:
'''simple docstring'''
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 348 | 0 |
from __future__ import annotations
import typing
from collections import Counter
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ):
"""simple docstring"""
__lowerCamelCase = Counter()
for base in range(1 , max_perimeter + 1 ):
for perpendicular in range(lowerCAmelCase__ , max_perimeter + 1 ):
__lowerCamelCase = (base * base + perpendicular * perpendicular) ** 0.5
if hypotenuse == int(lowerCAmelCase__ ):
__lowerCamelCase = int(base + perpendicular + hypotenuse )
if perimeter > max_perimeter:
continue
triplets[perimeter] += 1
return triplets
def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] = 1000 ):
"""simple docstring"""
__lowerCamelCase = pythagorean_triple(lowerCAmelCase__ )
return triplets.most_common(1 )[0][0]
if __name__ == "__main__":
print(f'''Perimeter {solution()} has maximum solutions''')
| 359 |
import requests
__A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey="
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None:
"""simple docstring"""
__lowerCamelCase = requests.get(_NEWS_API + bbc_news_api_key ).json()
# each article in the list is a dict
for i, article in enumerate(bbc_news_page['articles'] , 1 ):
print(F"""{i}.) {article['title']}""" )
if __name__ == "__main__":
fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
| 348 | 0 |
__A = "Tobias Carryer"
from time import time
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=int(time() ) ) -> List[str]: # noqa: B008
'''simple docstring'''
__lowerCamelCase = multiplier
__lowerCamelCase = increment
__lowerCamelCase = modulo
__lowerCamelCase = seed
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = (self.multiplier * self.seed + self.increment) % self.modulo
return self.seed
if __name__ == "__main__":
# Show the LCG in action.
__A = LinearCongruentialGenerator(1_66_45_25, 10_13_90_42_23, 2 << 31)
while True:
print(lcg.next_number())
| 360 |
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
__A = logging.get_logger(__name__)
__A = TypeVar("DatasetType", Dataset, IterableDataset)
def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[List[float]] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType:
"""simple docstring"""
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('Unable to interleave an empty list of datasets.' )
for i, dataset in enumerate(UpperCamelCase__ ):
if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ):
if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """
'is an empty dataset dictionary.' )
raise ValueError(
F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n"""
F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" )
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" )
if i == 0:
__lowerCamelCase , __lowerCamelCase = (
(Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset)
)
elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise ValueError(
F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ )
else:
return _interleave_iterable_datasets(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ )
def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : int = 0 , ) -> DatasetType:
"""simple docstring"""
if not dsets:
raise ValueError('Unable to concatenate an empty list of datasets.' )
for i, dataset in enumerate(UpperCamelCase__ ):
if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ):
if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """
'is an empty dataset dictionary.' )
raise ValueError(
F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n"""
F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" )
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" )
if i == 0:
__lowerCamelCase , __lowerCamelCase = (
(Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset)
)
elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise ValueError(
F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ )
else:
return _concatenate_iterable_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ )
| 348 | 0 |
"""simple docstring"""
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
__A = "2.13.1"
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse("3.7"):
raise ImportWarning(
"To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition."
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
"To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n"
"If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`."
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
__A = concatenate_datasets
__A = DownloadConfig
__A = DownloadManager
__A = DownloadMode
__A = DownloadConfig
__A = DownloadMode
__A = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
| 361 |
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
__A = ["model.decoder.embed_positions.weights"]
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]:
"""simple docstring"""
if "emb" in name:
__lowerCamelCase = name.replace('emb' , 'model.decoder.embed_tokens' )
if "transformer" in name:
__lowerCamelCase = name.replace('transformer' , 'model.decoder' )
if "cross_attention" in name:
__lowerCamelCase = name.replace('cross_attention' , 'encoder_attn' )
if "linear1" in name:
__lowerCamelCase = name.replace('linear1' , 'fc1' )
if "linear2" in name:
__lowerCamelCase = name.replace('linear2' , 'fc2' )
if "norm1" in name:
__lowerCamelCase = name.replace('norm1' , 'self_attn_layer_norm' )
if "norm_cross" in name:
__lowerCamelCase = name.replace('norm_cross' , 'encoder_attn_layer_norm' )
if "norm2" in name:
__lowerCamelCase = name.replace('norm2' , 'final_layer_norm' )
if "out_norm" in name:
__lowerCamelCase = name.replace('out_norm' , 'model.decoder.layer_norm' )
if "linears" in name:
__lowerCamelCase = name.replace('linears' , 'lm_heads' )
if "condition_provider.conditioners.description.output_proj" in name:
__lowerCamelCase = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' )
return name
def lowerCamelCase_ ( UpperCamelCase__ : OrderedDict , UpperCamelCase__ : int ) -> Tuple[Dict, Dict]:
"""simple docstring"""
__lowerCamelCase = list(state_dict.keys() )
__lowerCamelCase = {}
for key in keys:
__lowerCamelCase = state_dict.pop(UpperCamelCase__ )
__lowerCamelCase = rename_keys(UpperCamelCase__ )
if "in_proj_weight" in key:
# split fused qkv proj
__lowerCamelCase = val[:hidden_size, :]
__lowerCamelCase = val[hidden_size : 2 * hidden_size, :]
__lowerCamelCase = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
__lowerCamelCase = val
else:
__lowerCamelCase = val
return state_dict, enc_dec_proj_state_dict
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> MusicgenDecoderConfig:
"""simple docstring"""
if checkpoint == "small":
# default config values
__lowerCamelCase = 1024
__lowerCamelCase = 24
__lowerCamelCase = 16
elif checkpoint == "medium":
__lowerCamelCase = 1536
__lowerCamelCase = 48
__lowerCamelCase = 24
elif checkpoint == "large":
__lowerCamelCase = 2048
__lowerCamelCase = 48
__lowerCamelCase = 32
else:
raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
__lowerCamelCase = MusicgenDecoderConfig(
hidden_size=UpperCamelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase__ , num_attention_heads=UpperCamelCase__ , )
return config
@torch.no_grad()
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[int]="cpu" ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = MusicGen.get_pretrained(UpperCamelCase__ , device=UpperCamelCase__ )
__lowerCamelCase = decoder_config_from_checkpoint(UpperCamelCase__ )
__lowerCamelCase = fairseq_model.lm.state_dict()
__lowerCamelCase , __lowerCamelCase = rename_state_dict(
UpperCamelCase__ , hidden_size=decoder_config.hidden_size )
__lowerCamelCase = TaEncoderModel.from_pretrained('t5-base' )
__lowerCamelCase = EncodecModel.from_pretrained('facebook/encodec_32khz' )
__lowerCamelCase = MusicgenForCausalLM(UpperCamelCase__ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
__lowerCamelCase , __lowerCamelCase = decoder.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ )
for key in missing_keys.copy():
if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" )
if len(UpperCamelCase__ ) > 0:
raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
__lowerCamelCase = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__ , audio_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ )
# check we can do a forward pass
__lowerCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
__lowerCamelCase = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
__lowerCamelCase = model(input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits
if logits.shape != (8, 1, 2048):
raise ValueError('Incorrect shape for logits' )
# now construct the processor
__lowerCamelCase = AutoTokenizer.from_pretrained('t5-base' )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' )
__lowerCamelCase = MusicgenProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ )
# set the appropriate bos/pad token ids
__lowerCamelCase = 2048
__lowerCamelCase = 2048
# set other default generation config params
__lowerCamelCase = int(30 * audio_encoder.config.frame_rate )
__lowerCamelCase = True
__lowerCamelCase = 3.0
if pytorch_dump_folder is not None:
Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ )
logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
if repo_id:
logger.info(F"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(UpperCamelCase__ )
processor.push_to_hub(UpperCamelCase__ )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
__A = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 348 | 0 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
__A = logging.get_logger(__name__)
__A = {
"salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json",
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''blip_2_vision_model'''
def __init__( self , lowerCamelCase__=1_408 , lowerCamelCase__=6_144 , lowerCamelCase__=39 , lowerCamelCase__=16 , lowerCamelCase__=224 , lowerCamelCase__=14 , lowerCamelCase__="gelu" , lowerCamelCase__=0.0_00_01 , lowerCamelCase__=0.0 , lowerCamelCase__=1e-10 , lowerCamelCase__=True , **lowerCamelCase__ , ) -> str:
'''simple docstring'''
super().__init__(**__a )
__lowerCamelCase = hidden_size
__lowerCamelCase = intermediate_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = patch_size
__lowerCamelCase = image_size
__lowerCamelCase = initializer_range
__lowerCamelCase = attention_dropout
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = hidden_act
__lowerCamelCase = qkv_bias
@classmethod
def lowercase_ ( cls , lowerCamelCase__ , **lowerCamelCase__ ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(__a )
__lowerCamelCase , __lowerCamelCase = cls.get_config_dict(__a , **__a )
# get the vision config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
__lowerCamelCase = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(__a , **__a )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''blip_2_qformer'''
def __init__( self , lowerCamelCase__=30_522 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-12 , lowerCamelCase__=0 , lowerCamelCase__="absolute" , lowerCamelCase__=2 , lowerCamelCase__=1_408 , **lowerCamelCase__ , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(pad_token_id=__a , **__a )
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = initializer_range
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = position_embedding_type
__lowerCamelCase = cross_attention_frequency
__lowerCamelCase = encoder_hidden_size
@classmethod
def lowercase_ ( cls , lowerCamelCase__ , **lowerCamelCase__ ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(__a )
__lowerCamelCase , __lowerCamelCase = cls.get_config_dict(__a , **__a )
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
__lowerCamelCase = config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(__a , **__a )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''blip-2'''
snake_case_ = True
def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=32 , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
super().__init__(**__a )
if vision_config is None:
__lowerCamelCase = {}
logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' )
if qformer_config is None:
__lowerCamelCase = {}
logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' )
if text_config is None:
__lowerCamelCase = {}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
__lowerCamelCase = BlipaVisionConfig(**__a )
__lowerCamelCase = BlipaQFormerConfig(**__a )
__lowerCamelCase = text_config['model_type'] if 'model_type' in text_config else 'opt'
__lowerCamelCase = CONFIG_MAPPING[text_model_type](**__a )
__lowerCamelCase = self.text_config.tie_word_embeddings
__lowerCamelCase = self.text_config.is_encoder_decoder
__lowerCamelCase = num_query_tokens
__lowerCamelCase = self.vision_config.hidden_size
__lowerCamelCase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
__lowerCamelCase = 1.0
__lowerCamelCase = 0.02
@classmethod
def lowercase_ ( cls , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ , ) -> Tuple:
'''simple docstring'''
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__a , )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = copy.deepcopy(self.__dict__ )
__lowerCamelCase = self.vision_config.to_dict()
__lowerCamelCase = self.qformer_config.to_dict()
__lowerCamelCase = self.text_config.to_dict()
__lowerCamelCase = self.__class__.model_type
return output
| 362 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json",
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''sew-d'''
def __init__( self , lowerCamelCase__=32 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__=2 , lowerCamelCase__=512 , lowerCamelCase__=256 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=("p2c", "c2p") , lowerCamelCase__="layer_norm" , lowerCamelCase__="gelu_python" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-7 , lowerCamelCase__=1e-5 , lowerCamelCase__="group" , lowerCamelCase__="gelu" , lowerCamelCase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase__=False , lowerCamelCase__=128 , lowerCamelCase__=16 , lowerCamelCase__=True , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__="mean" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ) -> Any:
'''simple docstring'''
super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ )
__lowerCamelCase = hidden_size
__lowerCamelCase = feat_extract_norm
__lowerCamelCase = feat_extract_activation
__lowerCamelCase = list(lowerCamelCase__ )
__lowerCamelCase = list(lowerCamelCase__ )
__lowerCamelCase = list(lowerCamelCase__ )
__lowerCamelCase = conv_bias
__lowerCamelCase = num_conv_pos_embeddings
__lowerCamelCase = num_conv_pos_embedding_groups
__lowerCamelCase = len(self.conv_dim )
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = intermediate_size
__lowerCamelCase = squeeze_factor
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = position_buckets
__lowerCamelCase = share_att_key
__lowerCamelCase = relative_attention
__lowerCamelCase = norm_rel_ebd
__lowerCamelCase = list(lowerCamelCase__ )
__lowerCamelCase = hidden_act
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_dropout
__lowerCamelCase = attention_dropout
__lowerCamelCase = activation_dropout
__lowerCamelCase = feat_proj_dropout
__lowerCamelCase = final_dropout
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = feature_layer_norm_eps
__lowerCamelCase = initializer_range
__lowerCamelCase = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"""
f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowerCamelCase = apply_spec_augment
__lowerCamelCase = mask_time_prob
__lowerCamelCase = mask_time_length
__lowerCamelCase = mask_time_min_masks
__lowerCamelCase = mask_feature_prob
__lowerCamelCase = mask_feature_length
__lowerCamelCase = mask_feature_min_masks
# ctc loss
__lowerCamelCase = ctc_loss_reduction
__lowerCamelCase = ctc_zero_infinity
# sequence classification
__lowerCamelCase = use_weighted_layer_sum
__lowerCamelCase = classifier_proj_size
@property
def lowercase_ ( self ) -> Any:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 348 | 0 |
from __future__ import annotations
from random import random
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self , lowerCamelCase__ = None ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = value
__lowerCamelCase = random()
__lowerCamelCase = None
__lowerCamelCase = None
def __repr__( self ) -> str:
'''simple docstring'''
from pprint import pformat
if self.left is None and self.right is None:
return f"""\'{self.value}: {self.prior:.5}\'"""
else:
return pformat(
{f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 )
def __str__( self ) -> str:
'''simple docstring'''
__lowerCamelCase = str(self.value ) + ' '
__lowerCamelCase = str(self.left or '' )
__lowerCamelCase = str(self.right or '' )
return value + left + right
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[str] ) -> tuple[Node | None, Node | None]:
"""simple docstring"""
if root is None: # None tree is split into 2 Nones
return None, None
elif root.value is None:
return None, None
else:
if value < root.value:
__lowerCamelCase , __lowerCamelCase = split(root.left , UpperCAmelCase__ )
return left, root
else:
__lowerCamelCase , __lowerCamelCase = split(root.right , UpperCAmelCase__ )
return root, right
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] ) -> Node | None:
"""simple docstring"""
if (not left) or (not right): # If one node is None, return the other
return left or right
elif left.prior < right.prior:
__lowerCamelCase = merge(left.right , UpperCAmelCase__ )
return left
else:
__lowerCamelCase = merge(UpperCAmelCase__ , right.left )
return right
def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] ) -> Node | None:
"""simple docstring"""
__lowerCamelCase = Node(UpperCAmelCase__ )
__lowerCamelCase , __lowerCamelCase = split(UpperCAmelCase__ , UpperCAmelCase__ )
return merge(merge(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ )
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict ) -> Node | None:
"""simple docstring"""
__lowerCamelCase , __lowerCamelCase = split(UpperCAmelCase__ , value - 1 )
__lowerCamelCase , __lowerCamelCase = split(UpperCAmelCase__ , UpperCAmelCase__ )
return merge(UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> None:
"""simple docstring"""
if not root: # None
return
else:
inorder(root.left )
print(root.value , end=',' )
inorder(root.right )
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] ) -> Node | None:
"""simple docstring"""
for arg in args.split():
if arg[0] == "+":
__lowerCamelCase = insert(UpperCAmelCase__ , int(arg[1:] ) )
elif arg[0] == "-":
__lowerCamelCase = erase(UpperCAmelCase__ , int(arg[1:] ) )
else:
print('Unknown command' )
return root
def lowerCamelCase_ ( ) -> None:
"""simple docstring"""
__lowerCamelCase = None
print(
'enter numbers to create a tree, + value to add value into treap, '
'- value to erase all nodes with value. \'q\' to quit. ' )
__lowerCamelCase = input()
while args != "q":
__lowerCamelCase = interact_treap(UpperCAmelCase__ , UpperCAmelCase__ )
print(UpperCAmelCase__ )
__lowerCamelCase = input()
print('good by!' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 363 |
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
__A = logging.get_logger("transformers.models.speecht5")
__A = {
"speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm",
"speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection",
"speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv",
"speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed",
}
__A = {
"text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens",
"text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha",
}
__A = {
"speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0",
"speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1",
"speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer",
"speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha",
"speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer",
}
__A = {
"speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out",
"speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out",
"speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv",
"speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm",
"speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv",
"speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm",
"speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv",
"speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm",
"speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv",
"speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm",
"speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv",
"speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm",
}
__A = {
"text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens",
}
__A = {
"text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head",
}
__A = {
"encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj",
"encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj",
"encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj",
"encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj",
"encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm",
"encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense",
"encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense",
"encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm",
"encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k",
}
__A = {
"decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj",
"decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj",
"decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj",
"decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj",
"decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm",
"decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj",
"decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj",
"decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj",
"decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj",
"decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm",
"decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense",
"decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense",
"decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm",
}
__A = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
__A = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__A = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__A = []
__A = [
"encoder.version",
"encoder.layers.*.norm_k.weight",
"encoder.layers.*.norm_k.bias",
"decoder.version",
"decoder.layers.*.norm_k.weight",
"decoder.layers.*.norm_k.bias",
"decoder.pos_emb.pe_k",
"speech_encoder_prenet.embed_positions._float_tensor",
"text_decoder_prenet.embed_positions._float_tensor",
]
__A = IGNORE_KEYS + [
"encoder.proj",
"text_encoder_prenet.*",
"speech_decoder_prenet.*",
"speech_decoder_postnet.*",
]
__A = IGNORE_KEYS + [
"encoder.proj",
"speech_encoder_prenet.*",
"text_decoder_prenet.*",
"text_decoder_postnet.*",
]
__A = IGNORE_KEYS + [
"encoder.proj",
"text_encoder_prenet.*",
"text_decoder_prenet.*",
"text_decoder_postnet.*",
]
def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Dict:
"""simple docstring"""
for attribute in key.split('.' ):
__lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ )
if weight_type is not None:
__lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape
else:
__lowerCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}""" )
if weight_type == "weight":
__lowerCamelCase = value
elif weight_type == "weight_g":
__lowerCamelCase = value
elif weight_type == "weight_v":
__lowerCamelCase = value
elif weight_type == "bias":
__lowerCamelCase = value
elif weight_type == "running_mean":
__lowerCamelCase = value
elif weight_type == "running_var":
__lowerCamelCase = value
elif weight_type == "num_batches_tracked":
__lowerCamelCase = value
else:
__lowerCamelCase = value
logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" )
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ) -> Any:
"""simple docstring"""
for key in ignore_keys:
if key.endswith('.*' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
__lowerCamelCase , __lowerCamelCase = key.split('.*.' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
__lowerCamelCase = []
if task == "s2t":
__lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder
__lowerCamelCase = MAPPING_S2T
__lowerCamelCase = IGNORE_KEYS_S2T
elif task == "t2s":
__lowerCamelCase = None
__lowerCamelCase = MAPPING_T2S
__lowerCamelCase = IGNORE_KEYS_T2S
elif task == "s2s":
__lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder
__lowerCamelCase = MAPPING_S2S
__lowerCamelCase = IGNORE_KEYS_S2S
else:
raise ValueError(F"""Unsupported task: {task}""" )
for name, value in fairseq_dict.items():
if should_ignore(UpperCamelCase__ , UpperCamelCase__ ):
logger.info(F"""{name} was ignored""" )
continue
__lowerCamelCase = False
if "conv_layers" in name:
load_conv_layer(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , )
__lowerCamelCase = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
__lowerCamelCase , __lowerCamelCase = key.split('.*.' )
if prefix in name and suffix in name:
__lowerCamelCase = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
__lowerCamelCase = True
if "*" in mapped_key:
__lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2]
__lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ )
if "weight_g" in name:
__lowerCamelCase = 'weight_g'
elif "weight_v" in name:
__lowerCamelCase = 'weight_v'
elif "bias" in name:
__lowerCamelCase = 'bias'
elif "weight" in name:
__lowerCamelCase = 'weight'
elif "running_mean" in name:
__lowerCamelCase = 'running_mean'
elif "running_var" in name:
__lowerCamelCase = 'running_var'
elif "num_batches_tracked" in name:
__lowerCamelCase = 'num_batches_tracked'
else:
__lowerCamelCase = None
set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
continue
if not is_used:
unused_weights.append(UpperCamelCase__ )
logger.warning(F"""Unused weights: {unused_weights}""" )
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> Tuple:
"""simple docstring"""
__lowerCamelCase = full_name.split('conv_layers.' )[-1]
__lowerCamelCase = name.split('.' )
__lowerCamelCase = int(items[0] )
__lowerCamelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(UpperCamelCase__ )
@torch.no_grad()
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[str]=None , ) -> Tuple:
"""simple docstring"""
if config_path is not None:
__lowerCamelCase = SpeechTaConfig.from_pretrained(UpperCamelCase__ )
else:
__lowerCamelCase = SpeechTaConfig()
if task == "s2t":
__lowerCamelCase = config.max_text_positions
__lowerCamelCase = SpeechTaForSpeechToText(UpperCamelCase__ )
elif task == "t2s":
__lowerCamelCase = 1876
__lowerCamelCase = 600
__lowerCamelCase = config.max_speech_positions
__lowerCamelCase = SpeechTaForTextToSpeech(UpperCamelCase__ )
elif task == "s2s":
__lowerCamelCase = 1876
__lowerCamelCase = config.max_speech_positions
__lowerCamelCase = SpeechTaForSpeechToSpeech(UpperCamelCase__ )
else:
raise ValueError(F"""Unknown task name: {task}""" )
if vocab_path:
__lowerCamelCase = SpeechTaTokenizer(UpperCamelCase__ , model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
__lowerCamelCase = AddedToken('<mask>' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ )
__lowerCamelCase = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
__lowerCamelCase = SpeechTaFeatureExtractor()
__lowerCamelCase = SpeechTaProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
__lowerCamelCase = torch.load(UpperCamelCase__ )
recursively_load_weights(fairseq_checkpoint['model'] , UpperCamelCase__ , UpperCamelCase__ )
model.save_pretrained(UpperCamelCase__ )
if repo_id:
print('Pushing to the hub...' )
processor.push_to_hub(UpperCamelCase__ )
model.push_to_hub(UpperCamelCase__ )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
"--task",
default="s2t",
type=str,
help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.",
)
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
__A = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 348 | 0 |
import argparse
import torch
from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
if openai_config_file == "":
__lowerCamelCase = OpenAIGPTConfig()
else:
__lowerCamelCase = OpenAIGPTConfig.from_json_file(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase = OpenAIGPTModel(SCREAMING_SNAKE_CASE_ )
# Load weights from numpy
load_tf_weights_in_openai_gpt(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save pytorch-model
__lowerCamelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME
__lowerCamelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME
print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" )
torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ )
print(F"""Save configuration file to {pytorch_config_dump_path}""" )
with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--openai_checkpoint_folder_path",
default=None,
type=str,
required=True,
help="Path to the TensorFlow checkpoint path.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--openai_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained OpenAI model. \n"
"This specifies the model architecture."
),
)
__A = parser.parse_args()
convert_openai_checkpoint_to_pytorch(
args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path
)
| 364 |
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets,
# U and V such that every edge (u, v) either connects a vertex from U to V or a vertex
# from V to U. In other words, for every edge (u, v), either u belongs to U and v to V,
# or u belongs to V and v to U. We can also say that there is no edge that connects
# vertices of same set.
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = [False] * len(UpperCamelCase__ )
__lowerCamelCase = [-1] * len(UpperCamelCase__ )
def dfs(UpperCamelCase__ : int , UpperCamelCase__ : int ):
__lowerCamelCase = True
__lowerCamelCase = c
for u in graph[v]:
if not visited[u]:
dfs(UpperCamelCase__ , 1 - c )
for i in range(len(UpperCamelCase__ ) ):
if not visited[i]:
dfs(UpperCamelCase__ , 0 )
for i in range(len(UpperCamelCase__ ) ):
for j in graph[i]:
if color[i] == color[j]:
return False
return True
# Adjacency list of graph
__A = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []}
print(check_bipartite_dfs(graph))
| 348 | 0 |
def lowerCamelCase_ ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> bool:
"""simple docstring"""
return not any(
neighbour == 1 and colored_vertices[i] == color
for i, neighbour in enumerate(snake_case__ ) )
def lowerCamelCase_ ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> bool:
"""simple docstring"""
if index == len(snake_case__ ):
return True
# Recursive Step
for i in range(snake_case__ ):
if valid_coloring(graph[index] , snake_case__ , snake_case__ ):
# Color current vertex
__lowerCamelCase = i
# Validate coloring
if util_color(snake_case__ , snake_case__ , snake_case__ , index + 1 ):
return True
# Backtrack
__lowerCamelCase = -1
return False
def lowerCamelCase_ ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : int ) -> list[int]:
"""simple docstring"""
__lowerCamelCase = [-1] * len(snake_case__ )
if util_color(snake_case__ , snake_case__ , snake_case__ , 0 ):
return colored_vertices
return []
| 365 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowerCamelCase__ ).to(lowerCamelCase__ )
__lowerCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' )
__lowerCamelCase = tokenizer('Hello there' , return_tensors='pt' ).input_ids
__lowerCamelCase = tokenizer('Hi I am' , return_tensors='pt' ).input_ids
__lowerCamelCase = model(input_ids.to(lowerCamelCase__ ) , labels=labels.to(lowerCamelCase__ ) ).loss
__lowerCamelCase = -(labels.shape[-1] * loss.item())
__lowerCamelCase = -84.91_27
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 348 | 0 |
import unittest
from typing import Tuple
import torch
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
from diffusers.utils.testing_utils import require_torch
@require_torch
class __lowerCAmelCase :
"""simple docstring"""
@property
def lowercase_ ( self ) -> int:
'''simple docstring'''
return self.get_dummy_input()
@property
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
if self.block_type == "down":
return (4, 32, 16, 16)
elif self.block_type == "mid":
return (4, 32, 32, 32)
elif self.block_type == "up":
return (4, 32, 64, 64)
raise ValueError(f"""\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.""" )
def lowercase_ ( self , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , ) -> Any:
'''simple docstring'''
__lowerCamelCase = 4
__lowerCamelCase = 32
__lowerCamelCase = (32, 32)
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = torch.device(lowerCamelCase__ )
__lowerCamelCase = (batch_size, num_channels) + sizes
__lowerCamelCase = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ )
__lowerCamelCase = {'hidden_states': hidden_states}
if include_temb:
__lowerCamelCase = 128
__lowerCamelCase = randn_tensor((batch_size, temb_channels) , generator=lowerCamelCase__ , device=lowerCamelCase__ )
if include_res_hidden_states_tuple:
__lowerCamelCase = torch.manual_seed(1 )
__lowerCamelCase = (randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ ),)
if include_encoder_hidden_states:
__lowerCamelCase = floats_tensor((batch_size, 32, 32) ).to(lowerCamelCase__ )
if include_skip_sample:
__lowerCamelCase = randn_tensor(((batch_size, 3) + sizes) , generator=lowerCamelCase__ , device=lowerCamelCase__ )
return dummy_input
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = {
'in_channels': 32,
'out_channels': 32,
'temb_channels': 128,
}
if self.block_type == "up":
__lowerCamelCase = 32
if self.block_type == "mid":
init_dict.pop('out_channels' )
__lowerCamelCase = self.dummy_input
return init_dict, inputs_dict
def lowercase_ ( self , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.prepare_init_args_and_inputs_for_common()
__lowerCamelCase = self.block_class(**lowerCamelCase__ )
unet_block.to(lowerCamelCase__ )
unet_block.eval()
with torch.no_grad():
__lowerCamelCase = unet_block(**lowerCamelCase__ )
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
__lowerCamelCase = output[0]
self.assertEqual(output.shape , self.output_shape )
__lowerCamelCase = output[0, -1, -3:, -3:]
__lowerCamelCase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ )
assert torch_all_close(output_slice.flatten() , lowerCamelCase__ , atol=5e-3 )
@unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' )
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.prepare_init_args_and_inputs_for_common()
__lowerCamelCase = self.block_class(**lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.train()
__lowerCamelCase = model(**lowerCamelCase__ )
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
__lowerCamelCase = output[0]
__lowerCamelCase = torch.device(lowerCamelCase__ )
__lowerCamelCase = randn_tensor(output.shape , device=lowerCamelCase__ )
__lowerCamelCase = torch.nn.functional.mse_loss(lowerCamelCase__ , lowerCamelCase__ )
loss.backward()
| 366 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Any:
"""simple docstring"""
__lowerCamelCase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2]
__lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False
__lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False
__lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
__lowerCamelCase = [3, 3, 3, 3]
__lowerCamelCase = [5, 5, 5, 5]
elif "fl4" in model_name:
__lowerCamelCase = [4, 4, 4, 4]
__lowerCamelCase = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
__lowerCamelCase = [3, 3, 3, 3]
if "lrf" in model_name:
__lowerCamelCase = [3, 3, 3, 3]
else:
__lowerCamelCase = [2, 2, 2, 2]
if "tiny" in model_name:
__lowerCamelCase = 96
elif "small" in model_name:
__lowerCamelCase = 96
elif "base" in model_name:
__lowerCamelCase = 128
elif "large" in model_name:
__lowerCamelCase = 192
elif "xlarge" in model_name:
__lowerCamelCase = 256
elif "huge" in model_name:
__lowerCamelCase = 352
# set label information
__lowerCamelCase = 'huggingface/label-files'
if "large" in model_name or "huge" in model_name:
__lowerCamelCase = 'imagenet-22k-id2label.json'
else:
__lowerCamelCase = 'imagenet-1k-id2label.json'
__lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) )
__lowerCamelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()}
__lowerCamelCase = {v: k for k, v in idalabel.items()}
__lowerCamelCase = FocalNetConfig(
embed_dim=UpperCamelCase__ , depths=UpperCamelCase__ , focal_levels=UpperCamelCase__ , focal_windows=UpperCamelCase__ , use_conv_embed=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , use_post_layernorm=UpperCamelCase__ , use_layerscale=UpperCamelCase__ , )
return config
def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> str:
"""simple docstring"""
if "patch_embed.proj" in name:
__lowerCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
__lowerCamelCase = name.replace('patch_embed.norm' , 'embeddings.norm' )
if "layers" in name:
__lowerCamelCase = 'encoder.' + name
if "encoder.layers" in name:
__lowerCamelCase = name.replace('encoder.layers' , 'encoder.stages' )
if "downsample.proj" in name:
__lowerCamelCase = name.replace('downsample.proj' , 'downsample.projection' )
if "blocks" in name:
__lowerCamelCase = name.replace('blocks' , 'layers' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
__lowerCamelCase = name.replace('modulation.f' , 'modulation.projection_in' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
__lowerCamelCase = name.replace('modulation.h' , 'modulation.projection_context' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
__lowerCamelCase = name.replace('modulation.proj' , 'modulation.projection_out' )
if name == "norm.weight":
__lowerCamelCase = 'layernorm.weight'
if name == "norm.bias":
__lowerCamelCase = 'layernorm.bias'
if "head" in name:
__lowerCamelCase = name.replace('head' , 'classifier' )
else:
__lowerCamelCase = 'focalnet.' + name
return name
def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=False ) -> Dict:
"""simple docstring"""
__lowerCamelCase = {
'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth',
'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth',
'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth',
'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth',
'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth',
'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth',
'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth',
'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth',
'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth',
'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth',
}
# fmt: on
__lowerCamelCase = model_name_to_url[model_name]
print('Checkpoint URL: ' , UpperCamelCase__ )
__lowerCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='cpu' )['model']
# rename keys
for key in state_dict.copy().keys():
__lowerCamelCase = state_dict.pop(UpperCamelCase__ )
__lowerCamelCase = val
__lowerCamelCase = get_focalnet_config(UpperCamelCase__ )
__lowerCamelCase = FocalNetForImageClassification(UpperCamelCase__ )
model.eval()
# load state dict
model.load_state_dict(UpperCamelCase__ )
# verify conversion
__lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowerCamelCase = BitImageProcessor(
do_resize=UpperCamelCase__ , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase__ , crop_size=224 , do_normalize=UpperCamelCase__ , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ , )
__lowerCamelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw )
__lowerCamelCase = processor(images=UpperCamelCase__ , return_tensors='pt' )
__lowerCamelCase = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ),
] )
__lowerCamelCase = image_transforms(UpperCamelCase__ ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , UpperCamelCase__ , atol=1E-4 )
__lowerCamelCase = model(**UpperCamelCase__ )
__lowerCamelCase = outputs.logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
print('First values of logits:' , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
__lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] )
elif model_name == "focalnet-tiny-lrf":
__lowerCamelCase = torch.tensor([1.16_69, 0.01_25, -0.16_95] )
elif model_name == "focalnet-small":
__lowerCamelCase = torch.tensor([0.49_17, -0.04_30, 0.13_41] )
elif model_name == "focalnet-small-lrf":
__lowerCamelCase = torch.tensor([-0.25_88, -0.53_42, -0.23_31] )
elif model_name == "focalnet-base":
__lowerCamelCase = torch.tensor([-0.16_55, -0.40_90, -0.17_30] )
elif model_name == "focalnet-base-lrf":
__lowerCamelCase = torch.tensor([0.53_06, -0.04_83, -0.39_28] )
assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
if push_to_hub:
print(F"""Pushing model and processor of {model_name} to the hub...""" )
model.push_to_hub(F"""{model_name}""" )
processor.push_to_hub(F"""{model_name}""" )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="focalnet-tiny",
type=str,
help="Name of the FocalNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model and processor to the hub.",
)
__A = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 348 | 0 |
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__A = "platform"
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class __lowerCAmelCase :
"""simple docstring"""
snake_case_ = PegasusConfig
snake_case_ = {}
snake_case_ = """gelu"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=20 , lowerCamelCase__=2 , lowerCamelCase__=1 , lowerCamelCase__=0 , ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = eos_token_id
__lowerCamelCase = pad_token_id
__lowerCamelCase = bos_token_id
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
__lowerCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
__lowerCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1 )
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__lowerCamelCase = prepare_pegasus_inputs_dict(__lowercase , __lowercase , __lowercase )
return config, inputs_dict
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = 20
__lowerCamelCase = model_class_name(__lowercase )
__lowerCamelCase = model.encode(inputs_dict['input_ids'] )
__lowerCamelCase = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
__lowerCamelCase = model.init_cache(decoder_input_ids.shape[0] , __lowercase , __lowercase )
__lowerCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' )
__lowerCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__lowerCamelCase = model.decode(
decoder_input_ids[:, :-1] , __lowercase , decoder_attention_mask=__lowercase , past_key_values=__lowercase , decoder_position_ids=__lowercase , )
__lowerCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
__lowerCamelCase = model.decode(
decoder_input_ids[:, -1:] , __lowercase , decoder_attention_mask=__lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__lowercase , )
__lowerCamelCase = model.decode(__lowercase , __lowercase )
__lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = 20
__lowerCamelCase = model_class_name(__lowercase )
__lowerCamelCase = model.encode(inputs_dict['input_ids'] )
__lowerCamelCase = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
__lowerCamelCase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__lowerCamelCase = model.init_cache(decoder_input_ids.shape[0] , __lowercase , __lowercase )
__lowerCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__lowerCamelCase = model.decode(
decoder_input_ids[:, :-1] , __lowercase , decoder_attention_mask=__lowercase , past_key_values=__lowercase , decoder_position_ids=__lowercase , )
__lowerCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
__lowerCamelCase = model.decode(
decoder_input_ids[:, -1:] , __lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__lowercase , decoder_position_ids=__lowercase , )
__lowerCamelCase = model.decode(__lowercase , __lowercase , decoder_attention_mask=__lowercase )
__lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Union[str, Any]=None , ) -> Tuple:
"""simple docstring"""
if attention_mask is None:
__lowerCamelCase = np.not_equal(UpperCamelCase__ , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
__lowerCamelCase = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
snake_case_ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
snake_case_ = True
snake_case_ = False
snake_case_ = False
snake_case_ = False
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = FlaxPegasusModelTester(self )
__lowerCamelCase = ConfigTester(self , config_class=__lowercase )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(__lowercase , __lowercase , __lowercase )
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(__lowercase , __lowercase , __lowercase )
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase = self._prepare_for_class(__lowercase , __lowercase )
__lowerCamelCase = model_class(__lowercase )
@jax.jit
def encode_jitted(lowerCamelCase__ , lowerCamelCase__=None , **lowerCamelCase__ ):
return model.encode(input_ids=__lowercase , attention_mask=__lowercase )
with self.subTest('JIT Enabled' ):
__lowerCamelCase = encode_jitted(**__lowercase ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
__lowerCamelCase = encode_jitted(**__lowercase ).to_tuple()
self.assertEqual(len(__lowercase ) , len(__lowercase ) )
for jitted_output, output in zip(__lowercase , __lowercase ):
self.assertEqual(jitted_output.shape , output.shape )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase = model_class(__lowercase )
__lowerCamelCase = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] )
__lowerCamelCase = {
'''decoder_input_ids''': inputs_dict['''decoder_input_ids'''],
'''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''],
'''encoder_outputs''': encoder_outputs,
}
@jax.jit
def decode_jitted(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
return model.decode(
decoder_input_ids=__lowercase , decoder_attention_mask=__lowercase , encoder_outputs=__lowercase , )
with self.subTest('JIT Enabled' ):
__lowerCamelCase = decode_jitted(**__lowercase ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
__lowerCamelCase = decode_jitted(**__lowercase ).to_tuple()
self.assertEqual(len(__lowercase ) , len(__lowercase ) )
for jitted_output, output in zip(__lowercase , __lowercase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__lowerCamelCase = model_class_name.from_pretrained('google/pegasus-large' , from_pt=__lowercase )
__lowerCamelCase = np.ones((1, 1) )
__lowerCamelCase = model(__lowercase )
self.assertIsNotNone(__lowercase )
@slow
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' )
__lowerCamelCase = PegasusTokenizer.from_pretrained('google/pegasus-xsum' )
__lowerCamelCase = [
''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''',
''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''',
]
__lowerCamelCase = [
'''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''',
'''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''',
]
__lowerCamelCase = tokenizer(__lowercase , return_tensors='np' , truncation=__lowercase , max_length=512 , padding=__lowercase )
__lowerCamelCase = model.generate(**__lowercase , num_beams=2 ).sequences
__lowerCamelCase = tokenizer.batch_decode(__lowercase , skip_special_tokens=__lowercase )
assert tgt_text == decoded
| 367 |
from __future__ import annotations
def lowerCamelCase_ ( UpperCamelCase__ : list[float] , UpperCamelCase__ : list[float] ) -> float:
"""simple docstring"""
__lowerCamelCase = sorted(numsa + numsa )
__lowerCamelCase , __lowerCamelCase = divmod(len(UpperCamelCase__ ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
__A = [float(x) for x in input("Enter the elements of first array: ").split()]
__A = [float(x) for x in input("Enter the elements of second array: ").split()]
print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
| 348 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
__A = logging.get_logger(__name__)
class __lowerCAmelCase ( UpperCamelCase__ ):
"""simple docstring"""
snake_case_ = ["""pixel_values"""]
def __init__( self , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = PILImageResampling.BICUBIC , lowerCamelCase__ = True , lowerCamelCase__ = True , lowerCamelCase__ = 1 / 255 , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Any:
'''simple docstring'''
super().__init__(**__a )
__lowerCamelCase = size if size is not None else {'height': 224, 'width': 224}
__lowerCamelCase = get_size_dict(__a )
__lowerCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224}
__lowerCamelCase = get_size_dict(__a , default_to_square=__a , param_name='crop_size' )
__lowerCamelCase = do_resize
__lowerCamelCase = do_rescale
__lowerCamelCase = do_normalize
__lowerCamelCase = do_center_crop
__lowerCamelCase = crop_size
__lowerCamelCase = size
__lowerCamelCase = resample
__lowerCamelCase = rescale_factor
__lowerCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
__lowerCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = PILImageResampling.BILINEAR , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Optional[int]:
'''simple docstring'''
__lowerCamelCase = get_size_dict(__a )
if "shortest_edge" in size:
__lowerCamelCase = get_resize_output_image_size(__a , size=size['shortest_edge'] , default_to_square=__a )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
__lowerCamelCase = (size['height'], size['width'])
else:
raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" )
return resize(__a , size=__a , resample=__a , data_format=__a , **__a )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Any:
'''simple docstring'''
__lowerCamelCase = get_size_dict(__a )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" )
return center_crop(__a , size=(size['height'], size['width']) , data_format=__a , **__a )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
return rescale(__a , scale=__a , data_format=__a , **__a )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Tuple:
'''simple docstring'''
return normalize(__a , mean=__a , std=__a , data_format=__a , **__a )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = ChannelDimension.FIRST , **lowerCamelCase__ , ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = do_resize if do_resize is not None else self.do_resize
__lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize
__lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
__lowerCamelCase = crop_size if crop_size is not None else self.crop_size
__lowerCamelCase = get_size_dict(__a , param_name='crop_size' , default_to_square=__a )
__lowerCamelCase = resample if resample is not None else self.resample
__lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowerCamelCase = image_mean if image_mean is not None else self.image_mean
__lowerCamelCase = image_std if image_std is not None else self.image_std
__lowerCamelCase = size if size is not None else self.size
__lowerCamelCase = get_size_dict(__a )
if not is_batched(__a ):
__lowerCamelCase = [images]
if not valid_images(__a ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
# All transformations expect numpy arrays.
__lowerCamelCase = [to_numpy_array(__a ) for image in images]
if do_resize:
__lowerCamelCase = [self.resize(image=__a , size=__a , resample=__a ) for image in images]
if do_center_crop:
__lowerCamelCase = [self.center_crop(image=__a , size=__a ) for image in images]
if do_rescale:
__lowerCamelCase = [self.rescale(image=__a , scale=__a ) for image in images]
if do_normalize:
__lowerCamelCase = [self.normalize(image=__a , mean=__a , std=__a ) for image in images]
__lowerCamelCase = [to_channel_dimension_format(__a , __a ) for image in images]
__lowerCamelCase = {'pixel_values': images}
return BatchFeature(data=__a , tensor_type=__a )
| 368 |
__A = {
"joule": 1.0,
"kilojoule": 10_00,
"megajoule": 1_00_00_00,
"gigajoule": 10_00_00_00_00,
"wattsecond": 1.0,
"watthour": 36_00,
"kilowatthour": 3_60_00_00,
"newtonmeter": 1.0,
"calorie_nutr": 41_86.8,
"kilocalorie_nutr": 4_18_68_00.00,
"electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9,
"britishthermalunit_it": 10_55.0_55_85,
"footpound": 1.3_5_5_8_1_8,
}
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : float ) -> float:
"""simple docstring"""
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
__lowerCamelCase = (
F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"""
F"""Valid values are: {', '.join(UpperCamelCase__ )}"""
)
raise ValueError(UpperCamelCase__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 348 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__A = {"processing_layoutxlm": ["LayoutXLMProcessor"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["LayoutXLMTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["LayoutXLMTokenizerFast"]
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 369 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''philschmid/bart-large-cnn-samsum'''
snake_case_ = (
'''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, '''
'''and returns a summary of the text.'''
)
snake_case_ = '''summarizer'''
snake_case_ = AutoTokenizer
snake_case_ = AutoModelForSeqaSeqLM
snake_case_ = ['''text''']
snake_case_ = ['''text''']
def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]:
'''simple docstring'''
return self.pre_processor(lowerCamelCase__ , return_tensors='pt' , truncation=lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ ) -> Dict:
'''simple docstring'''
return self.model.generate(**lowerCamelCase__ )[0]
def lowercase_ ( self , lowerCamelCase__ ) -> Any:
'''simple docstring'''
return self.pre_processor.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ )
| 348 | 0 |
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("0.12.2"):
raise Exception("requires fairseq >= 0.12.2")
if version.parse(fairseq.__version__) > version.parse("2"):
raise Exception("requires fairseq < v2")
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
__A = "Hello, World!"
__A = "en_XX"
def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__lowerCamelCase = Path('data_bin' )
__lowerCamelCase = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(__SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(__SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(__SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(__SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , )
xmod.eval() # disable dropout
print(__SCREAMING_SNAKE_CASE )
__lowerCamelCase = xmod.model.encoder.sentence_encoder
__lowerCamelCase = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
__lowerCamelCase = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0]
print('Our X-MOD config:' , __SCREAMING_SNAKE_CASE )
__lowerCamelCase = XmodForSequenceClassification(__SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(__SCREAMING_SNAKE_CASE )
model.eval()
# Now let's copy all the weights.
# Embeddings
__lowerCamelCase = xmod_sent_encoder.embed_tokens.weight
__lowerCamelCase = xmod_sent_encoder.embed_positions.weight
__lowerCamelCase = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
__lowerCamelCase = xmod_sent_encoder.layernorm_embedding.weight
__lowerCamelCase = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
__lowerCamelCase = model.roberta.encoder.layer[i]
__lowerCamelCase = xmod_sent_encoder.layers[i]
# self attention
__lowerCamelCase = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('Dimensions of self-attention weights do not match.' )
__lowerCamelCase = xmod_layer.self_attn.q_proj.weight
__lowerCamelCase = xmod_layer.self_attn.q_proj.bias
__lowerCamelCase = xmod_layer.self_attn.k_proj.weight
__lowerCamelCase = xmod_layer.self_attn.k_proj.bias
__lowerCamelCase = xmod_layer.self_attn.v_proj.weight
__lowerCamelCase = xmod_layer.self_attn.v_proj.bias
# self-attention output
__lowerCamelCase = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('Dimensions of self-attention output weights do not match.' )
__lowerCamelCase = xmod_layer.self_attn.out_proj.weight
__lowerCamelCase = xmod_layer.self_attn.out_proj.bias
__lowerCamelCase = xmod_layer.self_attn_layer_norm.weight
__lowerCamelCase = xmod_layer.self_attn_layer_norm.bias
# intermediate
__lowerCamelCase = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of intermediate weights do not match.' )
__lowerCamelCase = xmod_layer.fca.weight
__lowerCamelCase = xmod_layer.fca.bias
# output
__lowerCamelCase = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of feed-forward weights do not match.' )
__lowerCamelCase = xmod_layer.fca.weight
__lowerCamelCase = xmod_layer.fca.bias
__lowerCamelCase = xmod_layer.final_layer_norm.weight
__lowerCamelCase = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
__lowerCamelCase = xmod_layer.adapter_layer_norm.weight
__lowerCamelCase = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('Lists of language adapters do not match.' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
__lowerCamelCase = bert_output.adapter_modules[lang_code]
__lowerCamelCase = xmod_layer.adapter_modules[lang_code]
__lowerCamelCase = from_adapter.fca.weight
__lowerCamelCase = from_adapter.fca.bias
__lowerCamelCase = from_adapter.fca.weight
__lowerCamelCase = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
__lowerCamelCase = xmod_sent_encoder.layer_norm.weight
__lowerCamelCase = xmod_sent_encoder.layer_norm.bias
if classification_head:
__lowerCamelCase = xmod.model.classification_heads["mnli"].dense.weight
__lowerCamelCase = xmod.model.classification_heads["mnli"].dense.bias
__lowerCamelCase = xmod.model.classification_heads["mnli"].out_proj.weight
__lowerCamelCase = xmod.model.classification_heads["mnli"].out_proj.bias
else:
# LM Head
__lowerCamelCase = xmod.model.encoder.lm_head.dense.weight
__lowerCamelCase = xmod.model.encoder.lm_head.dense.bias
__lowerCamelCase = xmod.model.encoder.lm_head.layer_norm.weight
__lowerCamelCase = xmod.model.encoder.lm_head.layer_norm.bias
__lowerCamelCase = xmod.model.encoder.lm_head.weight
__lowerCamelCase = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
__lowerCamelCase = xmod.encode(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(__SCREAMING_SNAKE_CASE )
__lowerCamelCase = model(__SCREAMING_SNAKE_CASE )[0]
if classification_head:
__lowerCamelCase = xmod.model.classification_heads["mnli"](xmod.extract_features(__SCREAMING_SNAKE_CASE ) )
else:
__lowerCamelCase = xmod.model(__SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
__lowerCamelCase = torch.max(torch.abs(our_output - their_output ) ).item()
print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7
__lowerCamelCase = torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 )
print('Do both models output the same tensors?' , '🔥' if success else '💩' )
if not success:
raise Exception('Something went wRoNg' )
Path(__SCREAMING_SNAKE_CASE ).mkdir(parents=__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--classification_head", action="store_true", help="Whether to convert a final classification head."
)
__A = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 370 |
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=4 , ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_attention_mask
__lowerCamelCase = use_token_type_ids
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = type_sequence_label_size
__lowerCamelCase = initializer_range
__lowerCamelCase = num_choices
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = None
if self.use_attention_mask:
__lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase = None
if self.use_token_type_ids:
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowerCamelCase = RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs
__lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs
__lowerCamelCase = True
__lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = True
snake_case_ = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = FlaxRobertaPreLayerNormModelTester(self )
@slow
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__lowerCamelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ )
__lowerCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCamelCase__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ )
__lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa )
__lowerCamelCase = model(lowerCamelCase__ )[0]
__lowerCamelCase = [1, 11, 50_265]
self.assertEqual(list(output.shape ) , lowerCamelCase__ )
# compare the actual values for a slice.
__lowerCamelCase = np.array(
[[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
@slow
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ )
__lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa )
__lowerCamelCase = model(lowerCamelCase__ )[0]
# compare the actual values for a slice.
__lowerCamelCase = np.array(
[[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
| 348 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
__A = {
'''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''],
'''processing_trocr''': ['''TrOCRProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TrOCRForCausalLM''',
'''TrOCRPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 371 |
from ..utils import DummyObject, requires_backends
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
| 348 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__A = {
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["ConditionalDetrFeatureExtractor"]
__A = ["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 350 |
import random
import unittest
import numpy as np
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionImgaImgPipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline'''
def lowercase_ ( self , lowerCamelCase__=0 ) -> int:
'''simple docstring'''
__lowerCamelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase__ ) )
__lowerCamelCase = np.random.RandomState(lowerCamelCase__ )
__lowerCamelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 3,
'strength': 0.75,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] )
assert np.abs(image_slice - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
# warmup pass to apply optimizations
__lowerCamelCase = pipe(**self.get_dummy_inputs() )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def lowercase_ ( self ) -> int:
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = ort.SessionOptions()
__lowerCamelCase = False
return options
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
__lowerCamelCase = init_image.resize((768, 512) )
# using the PNDM scheduler by default
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = 'A fantasy landscape, trending on artstation'
__lowerCamelCase = np.random.RandomState(0 )
__lowerCamelCase = pipe(
prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type='np' , )
__lowerCamelCase = output.images
__lowerCamelCase = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
__lowerCamelCase = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
__lowerCamelCase = init_image.resize((768, 512) )
__lowerCamelCase = LMSDiscreteScheduler.from_pretrained(
'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' )
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = 'A fantasy landscape, trending on artstation'
__lowerCamelCase = np.random.RandomState(0 )
__lowerCamelCase = pipe(
prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type='np' , )
__lowerCamelCase = output.images
__lowerCamelCase = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
__lowerCamelCase = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
| 348 | 0 |
__A = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
__A = [{"type": "code", "content": INSTALL_CONTENT}]
__A = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 351 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
__A = logging.get_logger(__name__)
__A = {
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json",
}
# fmt: off
__A = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85,
7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77,
13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11,
46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86,
1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91,
1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09,
3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61
]
__A = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73,
8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27,
32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47,
72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93,
1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75,
2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65,
4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62
]
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''whisper'''
snake_case_ = ['''past_key_values''']
snake_case_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self , lowerCamelCase__=51_865 , lowerCamelCase__=80 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=1_536 , lowerCamelCase__=1_536 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=50_257 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="gelu" , lowerCamelCase__=256 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=1_500 , lowerCamelCase__=448 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=None , lowerCamelCase__=[220, 50_256] , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=False , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__=7 , **lowerCamelCase__ , ) -> str:
'''simple docstring'''
__lowerCamelCase = vocab_size
__lowerCamelCase = num_mel_bins
__lowerCamelCase = d_model
__lowerCamelCase = encoder_layers
__lowerCamelCase = encoder_attention_heads
__lowerCamelCase = decoder_layers
__lowerCamelCase = decoder_attention_heads
__lowerCamelCase = decoder_ffn_dim
__lowerCamelCase = encoder_ffn_dim
__lowerCamelCase = dropout
__lowerCamelCase = attention_dropout
__lowerCamelCase = activation_dropout
__lowerCamelCase = activation_function
__lowerCamelCase = init_std
__lowerCamelCase = encoder_layerdrop
__lowerCamelCase = decoder_layerdrop
__lowerCamelCase = use_cache
__lowerCamelCase = encoder_layers
__lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True
__lowerCamelCase = max_source_positions
__lowerCamelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
__lowerCamelCase = classifier_proj_size
__lowerCamelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowerCamelCase = apply_spec_augment
__lowerCamelCase = mask_time_prob
__lowerCamelCase = mask_time_length
__lowerCamelCase = mask_time_min_masks
__lowerCamelCase = mask_feature_prob
__lowerCamelCase = mask_feature_length
__lowerCamelCase = mask_feature_min_masks
__lowerCamelCase = median_filter_width
super().__init__(
pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , suppress_tokens=lowerCamelCase__ , begin_suppress_tokens=lowerCamelCase__ , **lowerCamelCase__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
@property
def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
__lowerCamelCase = OrderedDict(
[
('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}),
] )
if self.use_past:
__lowerCamelCase = {0: 'batch'}
else:
__lowerCamelCase = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(lowerCamelCase__ , direction='inputs' )
return common_inputs
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = 22_050 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 220 , ) -> Mapping[str, Any]:
'''simple docstring'''
__lowerCamelCase = OrderedDict()
__lowerCamelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase__ , framework=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , time_duration=lowerCamelCase__ , frequency=lowerCamelCase__ , )
__lowerCamelCase = encoder_inputs['input_features'].shape[2]
__lowerCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length
__lowerCamelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = encoder_inputs.pop('input_features' )
__lowerCamelCase = decoder_inputs.pop('decoder_input_ids' )
if "past_key_values" in decoder_inputs:
__lowerCamelCase = decoder_inputs.pop('past_key_values' )
return dummy_inputs
@property
def lowercase_ ( self ) -> float:
'''simple docstring'''
return 1e-3
| 348 | 0 |
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> str:
"""simple docstring"""
return " ".join(input_str.split()[::-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 352 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ) -> int:
'''simple docstring'''
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_input_mask
__lowerCamelCase = use_token_type_ids
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = rotary_dim
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = initializer_range
__lowerCamelCase = None
__lowerCamelCase = vocab_size - 1
__lowerCamelCase = vocab_size - 1
__lowerCamelCase = vocab_size - 1
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = None
if self.use_input_mask:
__lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs
__lowerCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any:
'''simple docstring'''
__lowerCamelCase = 20
__lowerCamelCase = model_class_name(lowerCamelCase__ )
__lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ )
__lowerCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' )
__lowerCamelCase = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__lowerCamelCase = model(
input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , )
__lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' )
__lowerCamelCase = model(
input_ids[:, -1:] , attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase__ , )
__lowerCamelCase = model(lowerCamelCase__ )
__lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int:
'''simple docstring'''
__lowerCamelCase = 20
__lowerCamelCase = model_class_name(lowerCamelCase__ )
__lowerCamelCase = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
__lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ )
__lowerCamelCase = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__lowerCamelCase = model(
input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , )
__lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' )
__lowerCamelCase = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase__ , position_ids=lowerCamelCase__ , )
__lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )
__lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
@require_flax
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
snake_case_ = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = FlaxGPTJModelTester(self )
def lowercase_ ( self ) -> str:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
@tooslow
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' )
__lowerCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowerCamelCase__ , truncation=lowerCamelCase__ )
__lowerCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' )
__lowerCamelCase = False
__lowerCamelCase = model.config.eos_token_id
__lowerCamelCase = jax.jit(model.generate )
__lowerCamelCase = jit_generate(
inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences
__lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ )
__lowerCamelCase = [
'Hello this is a long string of text.\n\nI\'m trying to get the text of the',
'Hey, I\'m a little late to the party. I\'m going to',
]
self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
@is_pt_flax_cross_test
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning
__lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape
__lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowerCamelCase__ ):
__lowerCamelCase = 0
__lowerCamelCase = 1
__lowerCamelCase = 0
__lowerCamelCase = 1
__lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval()
__lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa )
__lowerCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase__ )
__lowerCamelCase = fx_state
with torch.no_grad():
__lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple()
__lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple()
self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowerCamelCase__ )
__lowerCamelCase = model_class.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ )
__lowerCamelCase = fx_model_loaded(**lowerCamelCase__ ).to_tuple()
self.assertEqual(
len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output_loaded, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning
__lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval()
__lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa )
__lowerCamelCase = load_flax_weights_in_pytorch_model(lowerCamelCase__ , fx_model.params )
__lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape
__lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowerCamelCase__ ):
__lowerCamelCase = 0
__lowerCamelCase = 1
__lowerCamelCase = 0
__lowerCamelCase = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
__lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple()
__lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple()
self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowerCamelCase__ )
__lowerCamelCase = pt_model_class.from_pretrained(lowerCamelCase__ , from_flax=lowerCamelCase__ )
with torch.no_grad():
__lowerCamelCase = pt_model_loaded(**lowerCamelCase__ ).to_tuple()
self.assertEqual(
len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__lowerCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' )
__lowerCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCamelCase__ )
| 348 | 0 |
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__A = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = XLMProphetNetTokenizer
snake_case_ = False
snake_case_ = True
def lowercase_ ( self ) -> int:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
__lowerCamelCase = XLMProphetNetTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase = '[PAD]'
__lowerCamelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '[PAD]' )
self.assertEqual(vocab_keys[1] , '[CLS]' )
self.assertEqual(vocab_keys[-1] , 'j' )
self.assertEqual(len(lowerCamelCase__ ) , 1_012 )
def lowercase_ ( self ) -> str:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1_012 )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase = XLMProphetNetTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ )
__lowerCamelCase = tokenizer.tokenize('This is a test' )
self.assertListEqual(lowerCamelCase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
__lowerCamelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
lowerCamelCase__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
__lowerCamelCase = tokenizer.convert_tokens_to_ids(lowerCamelCase__ )
self.assertListEqual(
lowerCamelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
__lowerCamelCase = tokenizer.convert_ids_to_tokens(lowerCamelCase__ )
self.assertListEqual(
lowerCamelCase__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'[UNK]',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'[UNK]',
'.',
] , )
@cached_property
def lowercase_ ( self ) -> str:
'''simple docstring'''
return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' )
@slow
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = 'Hello World!'
__lowerCamelCase = [35_389, 6_672, 49, 2]
self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) )
@slow
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase = {'input_ids': [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCamelCase__ , model_name='microsoft/xprophetnet-large-wiki100-cased' , revision='1acad1643ddd54a44df6a1b797ada8373685d90e' , )
| 353 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
__A = False
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowercase_ ( self ) -> int:
'''simple docstring'''
return 12
@property
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
return 12
@property
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
return 32
@property
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
__lowerCamelCase = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , )
return model
@property
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
torch.manual_seed(0 )
__lowerCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModel(lowerCamelCase__ )
@property
def lowercase_ ( self ) -> str:
'''simple docstring'''
torch.manual_seed(0 )
__lowerCamelCase = 12
__lowerCamelCase = 12
__lowerCamelCase = {
'attention_bias': True,
'cross_attention_dim': 32,
'attention_head_dim': height * width,
'num_attention_heads': 1,
'num_vector_embeds': self.num_embed,
'num_embeds_ada_norm': self.num_embeds_ada_norm,
'norm_num_groups': 32,
'sample_size': width,
'activation_fn': 'geglu-approximate',
}
__lowerCamelCase = TransformeraDModel(**lowerCamelCase__ )
return model
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = 'cpu'
__lowerCamelCase = self.dummy_vqvae
__lowerCamelCase = self.dummy_text_encoder
__lowerCamelCase = self.dummy_tokenizer
__lowerCamelCase = self.dummy_transformer
__lowerCamelCase = VQDiffusionScheduler(self.num_embed )
__lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=lowerCamelCase__ )
__lowerCamelCase = VQDiffusionPipeline(
vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , )
__lowerCamelCase = pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = 'teddy bear playing in the pool'
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' )
__lowerCamelCase = output.images
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipe(
[prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
__lowerCamelCase = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = 'cpu'
__lowerCamelCase = self.dummy_vqvae
__lowerCamelCase = self.dummy_text_encoder
__lowerCamelCase = self.dummy_tokenizer
__lowerCamelCase = self.dummy_transformer
__lowerCamelCase = VQDiffusionScheduler(self.num_embed )
__lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings(
learnable=lowerCamelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length )
__lowerCamelCase = VQDiffusionPipeline(
vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , )
__lowerCamelCase = pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = 'teddy bear playing in the pool'
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' )
__lowerCamelCase = output.images
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipe(
[prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
__lowerCamelCase = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' )
__lowerCamelCase = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' )
__lowerCamelCase = pipeline.to(lowerCamelCase__ )
pipeline.set_progress_bar_config(disable=lowerCamelCase__ )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipeline(
'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=lowerCamelCase__ , output_type='np' , )
__lowerCamelCase = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 348 | 0 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
debug_launcher(test_script.main )
def lowercase_ ( self ) -> Any:
'''simple docstring'''
debug_launcher(test_ops.main )
| 354 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=32 * 8 , lowerCamelCase__=32 * 8 , lowerCamelCase__=4 , lowerCamelCase__=64 , ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = is_training
__lowerCamelCase = use_auxiliary_loss
__lowerCamelCase = num_queries
__lowerCamelCase = num_channels
__lowerCamelCase = min_size
__lowerCamelCase = max_size
__lowerCamelCase = num_labels
__lowerCamelCase = hidden_dim
__lowerCamelCase = hidden_dim
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
__lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
lowerCamelCase__ )
__lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ )
__lowerCamelCase = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5
).float()
__lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long()
__lowerCamelCase = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = MaskaFormerConfig(
hidden_size=self.hidden_dim , )
__lowerCamelCase = self.num_queries
__lowerCamelCase = self.num_labels
__lowerCamelCase = [1, 1, 1, 1]
__lowerCamelCase = self.num_channels
__lowerCamelCase = 64
__lowerCamelCase = 128
__lowerCamelCase = self.hidden_dim
__lowerCamelCase = self.hidden_dim
__lowerCamelCase = self.hidden_dim
return config
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask}
return config, inputs_dict
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any:
'''simple docstring'''
__lowerCamelCase = output.encoder_hidden_states
__lowerCamelCase = output.pixel_decoder_hidden_states
__lowerCamelCase = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Tuple:
'''simple docstring'''
with torch.no_grad():
__lowerCamelCase = MaskaFormerModel(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ )
__lowerCamelCase = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
def comm_check_on_output(lowerCamelCase__ ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
__lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ )
__lowerCamelCase = model(lowerCamelCase__ )
comm_check_on_output(lowerCamelCase__ )
__lowerCamelCase = model(
pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ )
comm_check_on_output(lowerCamelCase__ )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {}
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = MaskaFormerModelTester(self )
__lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ )
@unittest.skip(reason='Mask2Former does not use inputs_embeds' )
def lowercase_ ( self ) -> Any:
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former is not a generative model' )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former does not use token embeddings' )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(
reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
pass
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(lowerCamelCase__ )
__lowerCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase = [*signature.parameters.keys()]
__lowerCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , lowerCamelCase__ )
@slow
def lowercase_ ( self ) -> int:
'''simple docstring'''
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
__lowerCamelCase = MaskaFormerModel.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = (self.model_tester.min_size,) * 2
__lowerCamelCase = {
'pixel_values': torch.randn((2, 3, *size) , device=lowerCamelCase__ ),
'mask_labels': torch.randn((2, 10, *size) , device=lowerCamelCase__ ),
'class_labels': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(),
}
__lowerCamelCase = self.model_tester.get_config()
__lowerCamelCase = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ )
__lowerCamelCase = model(**lowerCamelCase__ )
self.assertTrue(outputs.loss is not None )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ )
__lowerCamelCase = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ )
self.assertTrue(outputs.attentions is not None )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
if not self.model_tester.is_training:
return
__lowerCamelCase = self.all_model_classes[1]
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = model_class(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.train()
__lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss
loss.backward()
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase = self.all_model_classes[1]
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = True
__lowerCamelCase = True
__lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ )
model.train()
__lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ )
__lowerCamelCase = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
__lowerCamelCase = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
__lowerCamelCase = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
__lowerCamelCase = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=lowerCamelCase__ )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__A = 1e-4
def lowerCamelCase_ ( ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_vision
@slow
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ )
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = prepare_img()
__lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ )
__lowerCamelCase = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) )
with torch.no_grad():
__lowerCamelCase = model(**lowerCamelCase__ )
__lowerCamelCase = torch.tensor(
[[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(lowerCamelCase__ )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
__lowerCamelCase = torch.tensor(
[[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(lowerCamelCase__ )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
__lowerCamelCase = torch.tensor(
[[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(lowerCamelCase__ )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval()
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = prepare_img()
__lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ )
__lowerCamelCase = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) )
with torch.no_grad():
__lowerCamelCase = model(**lowerCamelCase__ )
# masks_queries_logits
__lowerCamelCase = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
__lowerCamelCase = [
[-8.78_39, -9.00_56, -8.81_21],
[-7.41_04, -7.03_13, -6.54_01],
[-6.61_05, -6.34_27, -6.46_75],
]
__lowerCamelCase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
# class_queries_logits
__lowerCamelCase = outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) )
__lowerCamelCase = torch.tensor(
[
[1.83_24, -8.08_35, -4.19_22],
[0.84_50, -9.00_50, -3.60_53],
[0.30_45, -7.72_93, -3.02_75],
] ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval()
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = image_processor(
[np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , )
__lowerCamelCase = inputs['pixel_values'].to(lowerCamelCase__ )
__lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['mask_labels']]
__lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['class_labels']]
with torch.no_grad():
__lowerCamelCase = model(**lowerCamelCase__ )
self.assertTrue(outputs.loss is not None )
| 348 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class __lowerCamelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''megatron-bert'''
def __init__( self , lowerCamelCase__=29_056 , lowerCamelCase__=1_024 , lowerCamelCase__=24 , lowerCamelCase__=16 , lowerCamelCase__=4_096 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-12 , lowerCamelCase__=0 , lowerCamelCase__="absolute" , lowerCamelCase__=True , **lowerCamelCase__ , ) -> str:
'''simple docstring'''
super().__init__(pad_token_id=lowerCamelCase__ , **lowerCamelCase__ )
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = initializer_range
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = position_embedding_type
__lowerCamelCase = use_cache
| 355 |
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__A = {
"facebook/mask2former-swin-small-coco-instance": (
"https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
__A = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''mask2former'''
snake_case_ = ['''swin''']
snake_case_ = {'''hidden_size''': '''hidden_dim'''}
def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 1_024 , lowerCamelCase__ = "relu" , lowerCamelCase__ = 6 , lowerCamelCase__ = 10 , lowerCamelCase__ = 8 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 2_048 , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = 4 , lowerCamelCase__ = 255 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 2.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 12_544 , lowerCamelCase__ = 3.0 , lowerCamelCase__ = 0.75 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = True , lowerCamelCase__ = [4, 8, 16, 32] , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Tuple:
'''simple docstring'''
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' )
__lowerCamelCase = CONFIG_MAPPING['swin'](
image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
__lowerCamelCase = backbone_config.pop('model_type' )
__lowerCamelCase = CONFIG_MAPPING[backbone_model_type]
__lowerCamelCase = config_class.from_dict(lowerCamelCase__ )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """
f"""Supported model types: {','.join(self.backbones_supported )}""" )
__lowerCamelCase = backbone_config
__lowerCamelCase = feature_size
__lowerCamelCase = mask_feature_size
__lowerCamelCase = hidden_dim
__lowerCamelCase = encoder_feedforward_dim
__lowerCamelCase = activation_function
__lowerCamelCase = encoder_layers
__lowerCamelCase = decoder_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = dropout
__lowerCamelCase = dim_feedforward
__lowerCamelCase = pre_norm
__lowerCamelCase = enforce_input_projection
__lowerCamelCase = common_stride
__lowerCamelCase = ignore_value
__lowerCamelCase = num_queries
__lowerCamelCase = no_object_weight
__lowerCamelCase = class_weight
__lowerCamelCase = mask_weight
__lowerCamelCase = dice_weight
__lowerCamelCase = train_num_points
__lowerCamelCase = oversample_ratio
__lowerCamelCase = importance_sample_ratio
__lowerCamelCase = init_std
__lowerCamelCase = init_xavier_std
__lowerCamelCase = use_auxiliary_loss
__lowerCamelCase = feature_strides
__lowerCamelCase = output_auxiliary_logits
__lowerCamelCase = decoder_layers
super().__init__(**lowerCamelCase__ )
@classmethod
def lowercase_ ( cls , lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
return cls(
backbone_config=lowerCamelCase__ , **lowerCamelCase__ , )
def lowercase_ ( self ) -> Dict[str, any]:
'''simple docstring'''
__lowerCamelCase = copy.deepcopy(self.__dict__ )
__lowerCamelCase = self.backbone_config.to_dict()
__lowerCamelCase = self.__class__.model_type
return output
| 348 | 0 |
"""simple docstring"""
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] ) -> List[Any]:
"""simple docstring"""
assert isinstance(UpperCamelCase__ , UpperCamelCase__ )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str ) -> int:
"""simple docstring"""
__lowerCamelCase = tmp_path / 'cache'
__lowerCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__lowerCamelCase = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read()
_check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ )
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str ) -> Optional[int]:
"""simple docstring"""
__lowerCamelCase = tmp_path / 'cache'
__lowerCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
__lowerCamelCase = features.copy() if features else default_expected_features
__lowerCamelCase = (
Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None
)
__lowerCamelCase = ParquetDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read()
_check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] ) -> Dict:
"""simple docstring"""
__lowerCamelCase = tmp_path / 'cache'
__lowerCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
__lowerCamelCase = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , split=UpperCamelCase__ ).read()
_check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type' , [str, list] )
def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : str ) -> Union[str, Any]:
"""simple docstring"""
if issubclass(UpperCamelCase__ , UpperCamelCase__ ):
__lowerCamelCase = parquet_path
elif issubclass(UpperCamelCase__ , UpperCamelCase__ ):
__lowerCamelCase = [parquet_path]
__lowerCamelCase = tmp_path / 'cache'
__lowerCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
__lowerCamelCase = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read()
_check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ )
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int]=("train",) ) -> Union[str, Any]:
"""simple docstring"""
assert isinstance(UpperCamelCase__ , UpperCamelCase__ )
for split in splits:
__lowerCamelCase = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ) -> List[str]:
"""simple docstring"""
__lowerCamelCase = tmp_path / 'cache'
__lowerCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__lowerCamelCase = ParquetDatasetReader(
{'train': parquet_path} , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read()
_check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ )
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ) -> Optional[Any]:
"""simple docstring"""
__lowerCamelCase = tmp_path / 'cache'
__lowerCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
__lowerCamelCase = features.copy() if features else default_expected_features
__lowerCamelCase = (
Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None
)
__lowerCamelCase = ParquetDatasetReader({'train': parquet_path} , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read()
_check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] ) -> List[str]:
"""simple docstring"""
if split:
__lowerCamelCase = {split: parquet_path}
else:
__lowerCamelCase = 'train'
__lowerCamelCase = {'train': parquet_path, 'test': parquet_path}
__lowerCamelCase = tmp_path / 'cache'
__lowerCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
__lowerCamelCase = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read()
_check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowerCamelCase = ParquetDatasetWriter(UpperCamelCase__ , tmp_path / 'foo.parquet' )
assert writer.write() > 0
__lowerCamelCase = pq.ParquetFile(tmp_path / 'foo.parquet' )
__lowerCamelCase = pf.read()
assert dataset.data.table == output_table
def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = str(shared_datadir / 'test_image_rgb.jpg' )
__lowerCamelCase = {'image': [image_path]}
__lowerCamelCase = Features({'image': Image()} )
__lowerCamelCase = Dataset.from_dict(UpperCamelCase__ , features=UpperCamelCase__ )
__lowerCamelCase = ParquetDatasetWriter(UpperCamelCase__ , tmp_path / 'foo.parquet' )
assert writer.write() > 0
__lowerCamelCase = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) )
assert dataset.features == reloaded_dataset.features
__lowerCamelCase = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=UpperCamelCase__ ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
'feature, expected' , [
(Features({'foo': Value('int32' )} ), None),
(Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Optional[Any]:
"""simple docstring"""
assert get_writer_batch_size(UpperCamelCase__ ) == expected
| 356 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = 42
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
"""simple docstring"""
@register_to_config
def __init__( self , lowerCamelCase__ = 32 , lowerCamelCase__ = 64 , lowerCamelCase__ = 20 , lowerCamelCase__ = 768 , lowerCamelCase__=77 , lowerCamelCase__=4 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = "silu" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "linear" , lowerCamelCase__ = "prd" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Tuple:
'''simple docstring'''
super().__init__()
__lowerCamelCase = num_attention_heads
__lowerCamelCase = attention_head_dim
__lowerCamelCase = num_attention_heads * attention_head_dim
__lowerCamelCase = additional_embeddings
__lowerCamelCase = time_embed_dim or inner_dim
__lowerCamelCase = embedding_proj_dim or embedding_dim
__lowerCamelCase = clip_embed_dim or embedding_dim
__lowerCamelCase = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 )
__lowerCamelCase = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ )
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
if embedding_proj_norm_type is None:
__lowerCamelCase = None
elif embedding_proj_norm_type == "layer":
__lowerCamelCase = nn.LayerNorm(lowerCamelCase__ )
else:
raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" )
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
if encoder_hid_proj_type is None:
__lowerCamelCase = None
elif encoder_hid_proj_type == "linear":
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
else:
raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" )
__lowerCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) )
if added_emb_type == "prd":
__lowerCamelCase = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) )
elif added_emb_type is None:
__lowerCamelCase = None
else:
raise ValueError(
f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" )
__lowerCamelCase = nn.ModuleList(
[
BasicTransformerBlock(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='gelu' , attention_bias=lowerCamelCase__ , )
for d in range(lowerCamelCase__ )
] )
if norm_in_type == "layer":
__lowerCamelCase = nn.LayerNorm(lowerCamelCase__ )
elif norm_in_type is None:
__lowerCamelCase = None
else:
raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" )
__lowerCamelCase = nn.LayerNorm(lowerCamelCase__ )
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 )
causal_attention_mask.triu_(1 )
__lowerCamelCase = causal_attention_mask[None, ...]
self.register_buffer('causal_attention_mask' , lowerCamelCase__ , persistent=lowerCamelCase__ )
__lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) )
__lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def lowercase_ ( self ) -> Dict[str, AttentionProcessor]:
'''simple docstring'''
__lowerCamelCase = {}
def fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
if hasattr(lowerCamelCase__ , 'set_processor' ):
__lowerCamelCase = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
return processors
def lowercase_ ( self , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = len(self.attn_processors.keys() )
if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count:
raise ValueError(
f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the"""
f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
if hasattr(lowerCamelCase__ , 'set_processor' ):
if not isinstance(lowerCamelCase__ , lowerCamelCase__ ):
module.set_processor(lowerCamelCase__ )
else:
module.set_processor(processor.pop(f"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ )
for name, module in self.named_children():
fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> int:
'''simple docstring'''
__lowerCamelCase = hidden_states.shape[0]
__lowerCamelCase = timestep
if not torch.is_tensor(lowerCamelCase__ ):
__lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0:
__lowerCamelCase = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__lowerCamelCase = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device )
__lowerCamelCase = self.time_proj(lowerCamelCase__ )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
__lowerCamelCase = timesteps_projected.to(dtype=self.dtype )
__lowerCamelCase = self.time_embedding(lowerCamelCase__ )
if self.embedding_proj_norm is not None:
__lowerCamelCase = self.embedding_proj_norm(lowerCamelCase__ )
__lowerCamelCase = self.embedding_proj(lowerCamelCase__ )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
__lowerCamelCase = self.encoder_hidden_states_proj(lowerCamelCase__ )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' )
__lowerCamelCase = self.proj_in(lowerCamelCase__ )
__lowerCamelCase = self.positional_embedding.to(hidden_states.dtype )
__lowerCamelCase = []
__lowerCamelCase = 0
if encoder_hidden_states is not None:
additional_embeds.append(lowerCamelCase__ )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
__lowerCamelCase = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
__lowerCamelCase = hidden_states[:, None, :]
__lowerCamelCase = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
__lowerCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 )
additional_embeds.append(lowerCamelCase__ )
__lowerCamelCase = torch.cat(
lowerCamelCase__ , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
__lowerCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
__lowerCamelCase = F.pad(
lowerCamelCase__ , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
__lowerCamelCase = hidden_states + positional_embeddings
if attention_mask is not None:
__lowerCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0
__lowerCamelCase = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 )
__lowerCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
__lowerCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
__lowerCamelCase = self.norm_in(lowerCamelCase__ )
for block in self.transformer_blocks:
__lowerCamelCase = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ )
__lowerCamelCase = self.norm_out(lowerCamelCase__ )
if self.prd_embedding is not None:
__lowerCamelCase = hidden_states[:, -1]
else:
__lowerCamelCase = hidden_states[:, additional_embeddings_len:]
__lowerCamelCase = self.proj_to_clip_embeddings(lowerCamelCase__ )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 348 | 0 |
import json
import sys
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] ) -> Optional[Any]:
"""simple docstring"""
with open(UpperCamelCase__ , encoding='utf-8' ) as f:
__lowerCamelCase = json.load(UpperCamelCase__ )
__lowerCamelCase = ['<details>', '<summary>Show updated benchmarks!</summary>', ' ']
for benchmark_name in sorted(UpperCamelCase__ ):
__lowerCamelCase = results[benchmark_name]
__lowerCamelCase = benchmark_name.split('/' )[-1]
output_md.append(F"""### Benchmark: {benchmark_file_name}""" )
__lowerCamelCase = '| metric |'
__lowerCamelCase = '|--------|'
__lowerCamelCase = '| new / old (diff) |'
for metric_name in sorted(UpperCamelCase__ ):
__lowerCamelCase = benchmark_res[metric_name]
__lowerCamelCase = metric_vals['new']
__lowerCamelCase = metric_vals.get('old' , UpperCamelCase__ )
__lowerCamelCase = metric_vals.get('diff' , UpperCamelCase__ )
__lowerCamelCase = F""" {new_val:f}""" if isinstance(UpperCamelCase__ , (int, float) ) else 'None'
if old_val is not None:
val_str += F""" / {old_val:f}""" if isinstance(UpperCamelCase__ , (int, float) ) else "None"
if dif_val is not None:
val_str += F""" ({dif_val:f})""" if isinstance(UpperCamelCase__ , (int, float) ) else "None"
title += " " + metric_name + " |"
lines += "---|"
value += val_str + " |"
output_md += [title, lines, value, " "]
output_md.append('</details>' )
with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f:
f.writelines('\n'.join(UpperCamelCase__ ) )
if __name__ == "__main__":
__A = sys.argv[1]
__A = sys.argv[2]
format_json_to_md(input_json_file, output_md_file)
| 357 |
import sys
from collections import defaultdict
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = []
def lowercase_ ( self , lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
return self.node_position[vertex]
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int:
'''simple docstring'''
__lowerCamelCase = pos
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
__lowerCamelCase = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
__lowerCamelCase = 2 * start + 1
else:
__lowerCamelCase = 2 * start + 2
if heap[smallest_child] < heap[start]:
__lowerCamelCase , __lowerCamelCase = heap[smallest_child], positions[smallest_child]
__lowerCamelCase , __lowerCamelCase = (
heap[start],
positions[start],
)
__lowerCamelCase , __lowerCamelCase = temp, tempa
__lowerCamelCase = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , lowerCamelCase__ )
self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int:
'''simple docstring'''
__lowerCamelCase = position[index]
while index != 0:
__lowerCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
__lowerCamelCase = heap[parent]
__lowerCamelCase = position[parent]
self.set_position(position[parent] , lowerCamelCase__ )
else:
__lowerCamelCase = val
__lowerCamelCase = temp
self.set_position(lowerCamelCase__ , lowerCamelCase__ )
break
__lowerCamelCase = parent
else:
__lowerCamelCase = val
__lowerCamelCase = temp
self.set_position(lowerCamelCase__ , 0 )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str:
'''simple docstring'''
__lowerCamelCase = len(lowerCamelCase__ ) // 2 - 1
for i in range(lowerCamelCase__ , -1 , -1 ):
self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = positions[0]
__lowerCamelCase = sys.maxsize
self.top_to_bottom(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ )
return temp
def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = Heap()
__lowerCamelCase = [0] * len(UpperCamelCase__ )
__lowerCamelCase = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
__lowerCamelCase = [] # Heap of Distance of vertices from their neighboring vertex
__lowerCamelCase = []
for vertex in range(len(UpperCamelCase__ ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCamelCase__ )
heap.node_position.append(UpperCamelCase__ )
__lowerCamelCase = []
__lowerCamelCase = 1
__lowerCamelCase = sys.maxsize
for neighbor, distance in adjacency_list[0]:
__lowerCamelCase = 0
__lowerCamelCase = distance
heap.heapify(UpperCamelCase__ , UpperCamelCase__ )
for _ in range(1 , len(UpperCamelCase__ ) ):
__lowerCamelCase = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
__lowerCamelCase = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCamelCase__ )]
):
__lowerCamelCase = distance
heap.bottom_to_top(
UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ )
__lowerCamelCase = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
__A = int(input("Enter number of edges: ").strip())
__A = defaultdict(list)
for _ in range(edges_number):
__A = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 348 | 0 |
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
__A = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> None:
'''simple docstring'''
warnings.warn(
'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use SegformerImageProcessor instead.' , lowerCamelCase__ , )
super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
| 358 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=__magic_name__ )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
snake_case_ = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} )
snake_case_ = Features(
{
'''answers''': Sequence(
{
'''text''': Value('''string''' ),
'''answer_start''': Value('''int32''' ),
} )
} )
snake_case_ = "question"
snake_case_ = "context"
snake_case_ = "answers"
@property
def lowercase_ ( self ) -> Dict[str, str]:
'''simple docstring'''
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 348 | 0 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=32 * 8 , lowerCamelCase__=32 * 8 , lowerCamelCase__=4 , lowerCamelCase__=64 , ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = is_training
__lowerCamelCase = use_auxiliary_loss
__lowerCamelCase = num_queries
__lowerCamelCase = num_channels
__lowerCamelCase = min_size
__lowerCamelCase = max_size
__lowerCamelCase = num_labels
__lowerCamelCase = hidden_dim
__lowerCamelCase = hidden_dim
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
__lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
lowerCamelCase__ )
__lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ )
__lowerCamelCase = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5
).float()
__lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long()
__lowerCamelCase = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = MaskaFormerConfig(
hidden_size=self.hidden_dim , )
__lowerCamelCase = self.num_queries
__lowerCamelCase = self.num_labels
__lowerCamelCase = [1, 1, 1, 1]
__lowerCamelCase = self.num_channels
__lowerCamelCase = 64
__lowerCamelCase = 128
__lowerCamelCase = self.hidden_dim
__lowerCamelCase = self.hidden_dim
__lowerCamelCase = self.hidden_dim
return config
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask}
return config, inputs_dict
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any:
'''simple docstring'''
__lowerCamelCase = output.encoder_hidden_states
__lowerCamelCase = output.pixel_decoder_hidden_states
__lowerCamelCase = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Tuple:
'''simple docstring'''
with torch.no_grad():
__lowerCamelCase = MaskaFormerModel(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ )
__lowerCamelCase = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
def comm_check_on_output(lowerCamelCase__ ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
__lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ )
__lowerCamelCase = model(lowerCamelCase__ )
comm_check_on_output(lowerCamelCase__ )
__lowerCamelCase = model(
pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ )
comm_check_on_output(lowerCamelCase__ )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {}
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = MaskaFormerModelTester(self )
__lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ )
@unittest.skip(reason='Mask2Former does not use inputs_embeds' )
def lowercase_ ( self ) -> Any:
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former is not a generative model' )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former does not use token embeddings' )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(
reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
pass
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(lowerCamelCase__ )
__lowerCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase = [*signature.parameters.keys()]
__lowerCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , lowerCamelCase__ )
@slow
def lowercase_ ( self ) -> int:
'''simple docstring'''
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
__lowerCamelCase = MaskaFormerModel.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = (self.model_tester.min_size,) * 2
__lowerCamelCase = {
'pixel_values': torch.randn((2, 3, *size) , device=lowerCamelCase__ ),
'mask_labels': torch.randn((2, 10, *size) , device=lowerCamelCase__ ),
'class_labels': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(),
}
__lowerCamelCase = self.model_tester.get_config()
__lowerCamelCase = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ )
__lowerCamelCase = model(**lowerCamelCase__ )
self.assertTrue(outputs.loss is not None )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ )
__lowerCamelCase = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ )
self.assertTrue(outputs.attentions is not None )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
if not self.model_tester.is_training:
return
__lowerCamelCase = self.all_model_classes[1]
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = model_class(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.train()
__lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss
loss.backward()
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase = self.all_model_classes[1]
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = True
__lowerCamelCase = True
__lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ )
model.train()
__lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ )
__lowerCamelCase = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
__lowerCamelCase = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
__lowerCamelCase = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
__lowerCamelCase = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=lowerCamelCase__ )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__A = 1e-4
def lowerCamelCase_ ( ):
"""simple docstring"""
__lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_vision
@slow
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ )
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = prepare_img()
__lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ )
__lowerCamelCase = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) )
with torch.no_grad():
__lowerCamelCase = model(**lowerCamelCase__ )
__lowerCamelCase = torch.tensor(
[[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(lowerCamelCase__ )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
__lowerCamelCase = torch.tensor(
[[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(lowerCamelCase__ )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
__lowerCamelCase = torch.tensor(
[[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(lowerCamelCase__ )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval()
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = prepare_img()
__lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ )
__lowerCamelCase = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) )
with torch.no_grad():
__lowerCamelCase = model(**lowerCamelCase__ )
# masks_queries_logits
__lowerCamelCase = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
__lowerCamelCase = [
[-8.78_39, -9.00_56, -8.81_21],
[-7.41_04, -7.03_13, -6.54_01],
[-6.61_05, -6.34_27, -6.46_75],
]
__lowerCamelCase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
# class_queries_logits
__lowerCamelCase = outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) )
__lowerCamelCase = torch.tensor(
[
[1.83_24, -8.08_35, -4.19_22],
[0.84_50, -9.00_50, -3.60_53],
[0.30_45, -7.72_93, -3.02_75],
] ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval()
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = image_processor(
[np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , )
__lowerCamelCase = inputs['pixel_values'].to(lowerCamelCase__ )
__lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['mask_labels']]
__lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['class_labels']]
with torch.no_grad():
__lowerCamelCase = model(**lowerCamelCase__ )
self.assertTrue(outputs.loss is not None )
| 359 |
import requests
__A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey="
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None:
"""simple docstring"""
__lowerCamelCase = requests.get(_NEWS_API + bbc_news_api_key ).json()
# each article in the list is a dict
for i, article in enumerate(bbc_news_page['articles'] , 1 ):
print(F"""{i}.) {article['title']}""" )
if __name__ == "__main__":
fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
| 348 | 0 |
def lowerCamelCase_ ( UpperCamelCase__ : bytes ) -> str:
"""simple docstring"""
return "".join([hex(UpperCamelCase__ )[2:].zfill(2 ).upper() for byte in list(UpperCamelCase__ )] )
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> bytes:
"""simple docstring"""
if (len(UpperCamelCase__ ) % 2) != 0:
raise ValueError(
'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' )
# Check the character set - the standard base16 alphabet
# is uppercase according to RFC3548 section 6
if not set(UpperCamelCase__ ) <= set('0123456789ABCDEF' ):
raise ValueError(
'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' )
# For every two hexadecimal digits (= a byte), turn it into an integer.
# Then, string the result together into bytes, and return it.
return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(UpperCamelCase__ ) , 2 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 360 |
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
__A = logging.get_logger(__name__)
__A = TypeVar("DatasetType", Dataset, IterableDataset)
def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[List[float]] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType:
"""simple docstring"""
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('Unable to interleave an empty list of datasets.' )
for i, dataset in enumerate(UpperCamelCase__ ):
if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ):
if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """
'is an empty dataset dictionary.' )
raise ValueError(
F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n"""
F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" )
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" )
if i == 0:
__lowerCamelCase , __lowerCamelCase = (
(Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset)
)
elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise ValueError(
F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ )
else:
return _interleave_iterable_datasets(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ )
def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : int = 0 , ) -> DatasetType:
"""simple docstring"""
if not dsets:
raise ValueError('Unable to concatenate an empty list of datasets.' )
for i, dataset in enumerate(UpperCamelCase__ ):
if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ):
if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """
'is an empty dataset dictionary.' )
raise ValueError(
F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n"""
F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" )
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" )
if i == 0:
__lowerCamelCase , __lowerCamelCase = (
(Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset)
)
elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise ValueError(
F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ )
else:
return _concatenate_iterable_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ )
| 348 | 0 |
"""simple docstring"""
import warnings
from contextlib import contextmanager
from ....processing_utils import ProcessorMixin
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''MCTCTFeatureExtractor'''
snake_case_ = '''AutoTokenizer'''
def __init__( self , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]:
'''simple docstring'''
super().__init__(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = self.feature_extractor
__lowerCamelCase = False
def __call__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*lowerCamelCase__ , **lowerCamelCase__ )
if "raw_speech" in kwargs:
warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' )
__lowerCamelCase = kwargs.pop('raw_speech' )
else:
__lowerCamelCase = kwargs.pop('audio' , lowerCamelCase__ )
__lowerCamelCase = kwargs.pop('sampling_rate' , lowerCamelCase__ )
__lowerCamelCase = kwargs.pop('text' , lowerCamelCase__ )
if len(lowerCamelCase__ ) > 0:
__lowerCamelCase = args[0]
__lowerCamelCase = args[1:]
if audio is None and text is None:
raise ValueError('You need to specify either an `audio` or `text` input to process.' )
if audio is not None:
__lowerCamelCase = self.feature_extractor(lowerCamelCase__ , *lowerCamelCase__ , sampling_rate=lowerCamelCase__ , **lowerCamelCase__ )
if text is not None:
__lowerCamelCase = self.tokenizer(lowerCamelCase__ , **lowerCamelCase__ )
if text is None:
return inputs
elif audio is None:
return encodings
else:
__lowerCamelCase = encodings['input_ids']
return inputs
def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ )
def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int:
'''simple docstring'''
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor.pad(*lowerCamelCase__ , **lowerCamelCase__ )
__lowerCamelCase = kwargs.pop('input_features' , lowerCamelCase__ )
__lowerCamelCase = kwargs.pop('labels' , lowerCamelCase__ )
if len(lowerCamelCase__ ) > 0:
__lowerCamelCase = args[0]
__lowerCamelCase = args[1:]
if input_features is not None:
__lowerCamelCase = self.feature_extractor.pad(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ )
if labels is not None:
__lowerCamelCase = self.tokenizer.pad(lowerCamelCase__ , **lowerCamelCase__ )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
__lowerCamelCase = labels['input_ids']
return input_features
def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ )
@contextmanager
def lowercase_ ( self ) -> int:
'''simple docstring'''
warnings.warn(
'`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '
'labels by using the argument `text` of the regular `__call__` method (either in the same call as '
'your audio inputs, or in a separate call.' )
__lowerCamelCase = True
__lowerCamelCase = self.tokenizer
yield
__lowerCamelCase = self.feature_extractor
__lowerCamelCase = False
| 361 |
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
__A = ["model.decoder.embed_positions.weights"]
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]:
"""simple docstring"""
if "emb" in name:
__lowerCamelCase = name.replace('emb' , 'model.decoder.embed_tokens' )
if "transformer" in name:
__lowerCamelCase = name.replace('transformer' , 'model.decoder' )
if "cross_attention" in name:
__lowerCamelCase = name.replace('cross_attention' , 'encoder_attn' )
if "linear1" in name:
__lowerCamelCase = name.replace('linear1' , 'fc1' )
if "linear2" in name:
__lowerCamelCase = name.replace('linear2' , 'fc2' )
if "norm1" in name:
__lowerCamelCase = name.replace('norm1' , 'self_attn_layer_norm' )
if "norm_cross" in name:
__lowerCamelCase = name.replace('norm_cross' , 'encoder_attn_layer_norm' )
if "norm2" in name:
__lowerCamelCase = name.replace('norm2' , 'final_layer_norm' )
if "out_norm" in name:
__lowerCamelCase = name.replace('out_norm' , 'model.decoder.layer_norm' )
if "linears" in name:
__lowerCamelCase = name.replace('linears' , 'lm_heads' )
if "condition_provider.conditioners.description.output_proj" in name:
__lowerCamelCase = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' )
return name
def lowerCamelCase_ ( UpperCamelCase__ : OrderedDict , UpperCamelCase__ : int ) -> Tuple[Dict, Dict]:
"""simple docstring"""
__lowerCamelCase = list(state_dict.keys() )
__lowerCamelCase = {}
for key in keys:
__lowerCamelCase = state_dict.pop(UpperCamelCase__ )
__lowerCamelCase = rename_keys(UpperCamelCase__ )
if "in_proj_weight" in key:
# split fused qkv proj
__lowerCamelCase = val[:hidden_size, :]
__lowerCamelCase = val[hidden_size : 2 * hidden_size, :]
__lowerCamelCase = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
__lowerCamelCase = val
else:
__lowerCamelCase = val
return state_dict, enc_dec_proj_state_dict
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> MusicgenDecoderConfig:
"""simple docstring"""
if checkpoint == "small":
# default config values
__lowerCamelCase = 1024
__lowerCamelCase = 24
__lowerCamelCase = 16
elif checkpoint == "medium":
__lowerCamelCase = 1536
__lowerCamelCase = 48
__lowerCamelCase = 24
elif checkpoint == "large":
__lowerCamelCase = 2048
__lowerCamelCase = 48
__lowerCamelCase = 32
else:
raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
__lowerCamelCase = MusicgenDecoderConfig(
hidden_size=UpperCamelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase__ , num_attention_heads=UpperCamelCase__ , )
return config
@torch.no_grad()
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[int]="cpu" ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = MusicGen.get_pretrained(UpperCamelCase__ , device=UpperCamelCase__ )
__lowerCamelCase = decoder_config_from_checkpoint(UpperCamelCase__ )
__lowerCamelCase = fairseq_model.lm.state_dict()
__lowerCamelCase , __lowerCamelCase = rename_state_dict(
UpperCamelCase__ , hidden_size=decoder_config.hidden_size )
__lowerCamelCase = TaEncoderModel.from_pretrained('t5-base' )
__lowerCamelCase = EncodecModel.from_pretrained('facebook/encodec_32khz' )
__lowerCamelCase = MusicgenForCausalLM(UpperCamelCase__ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
__lowerCamelCase , __lowerCamelCase = decoder.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ )
for key in missing_keys.copy():
if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" )
if len(UpperCamelCase__ ) > 0:
raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
__lowerCamelCase = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__ , audio_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ )
# check we can do a forward pass
__lowerCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
__lowerCamelCase = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
__lowerCamelCase = model(input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits
if logits.shape != (8, 1, 2048):
raise ValueError('Incorrect shape for logits' )
# now construct the processor
__lowerCamelCase = AutoTokenizer.from_pretrained('t5-base' )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' )
__lowerCamelCase = MusicgenProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ )
# set the appropriate bos/pad token ids
__lowerCamelCase = 2048
__lowerCamelCase = 2048
# set other default generation config params
__lowerCamelCase = int(30 * audio_encoder.config.frame_rate )
__lowerCamelCase = True
__lowerCamelCase = 3.0
if pytorch_dump_folder is not None:
Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ )
logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
if repo_id:
logger.info(F"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(UpperCamelCase__ )
processor.push_to_hub(UpperCamelCase__ )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
__A = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 348 | 0 |
from numpy import exp, pi, sqrt
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : float = 1.0 ) -> int:
"""simple docstring"""
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 362 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json",
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''sew-d'''
def __init__( self , lowerCamelCase__=32 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__=2 , lowerCamelCase__=512 , lowerCamelCase__=256 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=("p2c", "c2p") , lowerCamelCase__="layer_norm" , lowerCamelCase__="gelu_python" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-7 , lowerCamelCase__=1e-5 , lowerCamelCase__="group" , lowerCamelCase__="gelu" , lowerCamelCase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase__=False , lowerCamelCase__=128 , lowerCamelCase__=16 , lowerCamelCase__=True , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__="mean" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ) -> Any:
'''simple docstring'''
super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ )
__lowerCamelCase = hidden_size
__lowerCamelCase = feat_extract_norm
__lowerCamelCase = feat_extract_activation
__lowerCamelCase = list(lowerCamelCase__ )
__lowerCamelCase = list(lowerCamelCase__ )
__lowerCamelCase = list(lowerCamelCase__ )
__lowerCamelCase = conv_bias
__lowerCamelCase = num_conv_pos_embeddings
__lowerCamelCase = num_conv_pos_embedding_groups
__lowerCamelCase = len(self.conv_dim )
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = intermediate_size
__lowerCamelCase = squeeze_factor
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = position_buckets
__lowerCamelCase = share_att_key
__lowerCamelCase = relative_attention
__lowerCamelCase = norm_rel_ebd
__lowerCamelCase = list(lowerCamelCase__ )
__lowerCamelCase = hidden_act
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_dropout
__lowerCamelCase = attention_dropout
__lowerCamelCase = activation_dropout
__lowerCamelCase = feat_proj_dropout
__lowerCamelCase = final_dropout
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = feature_layer_norm_eps
__lowerCamelCase = initializer_range
__lowerCamelCase = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"""
f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowerCamelCase = apply_spec_augment
__lowerCamelCase = mask_time_prob
__lowerCamelCase = mask_time_length
__lowerCamelCase = mask_time_min_masks
__lowerCamelCase = mask_feature_prob
__lowerCamelCase = mask_feature_length
__lowerCamelCase = mask_feature_min_masks
# ctc loss
__lowerCamelCase = ctc_loss_reduction
__lowerCamelCase = ctc_zero_infinity
# sequence classification
__lowerCamelCase = use_weighted_layer_sum
__lowerCamelCase = classifier_proj_size
@property
def lowercase_ ( self ) -> Any:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 348 | 0 |
from argparse import ArgumentParser, Namespace
from ..utils import logging
from . import BaseTransformersCLICommand
def lowerCamelCase_ ( UpperCamelCase__ : Namespace ) -> Optional[int]:
"""simple docstring"""
return ConvertCommand(
args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name )
__A = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n"
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
@staticmethod
def lowercase_ ( lowerCamelCase__ ) -> Optional[int]:
'''simple docstring'''
__lowerCamelCase = parser.add_parser(
'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , )
train_parser.add_argument('--model_type' , type=lowerCamelCase__ , required=lowerCamelCase__ , help='Model\'s type.' )
train_parser.add_argument(
'--tf_checkpoint' , type=lowerCamelCase__ , required=lowerCamelCase__ , help='TensorFlow checkpoint path or folder.' )
train_parser.add_argument(
'--pytorch_dump_output' , type=lowerCamelCase__ , required=lowerCamelCase__ , help='Path to the PyTorch saved model output.' )
train_parser.add_argument('--config' , type=lowerCamelCase__ , default='' , help='Configuration file path or folder.' )
train_parser.add_argument(
'--finetuning_task_name' , type=lowerCamelCase__ , default=lowerCamelCase__ , help='Optional fine-tuning task name if the TF model was a finetuned model.' , )
train_parser.set_defaults(func=lowerCamelCase__ )
def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , *lowerCamelCase__ , ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = logging.get_logger('transformers-cli/converting' )
self._logger.info(f"""Loading model {model_type}""" )
__lowerCamelCase = model_type
__lowerCamelCase = tf_checkpoint
__lowerCamelCase = pytorch_dump_output
__lowerCamelCase = config
__lowerCamelCase = finetuning_task_name
def lowercase_ ( self ) -> int:
'''simple docstring'''
if self._model_type == "albert":
try:
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCamelCase__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "bert":
try:
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCamelCase__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "funnel":
try:
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCamelCase__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "t5":
try:
from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
raise ImportError(lowerCamelCase__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "gpt":
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch,
)
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "transfo_xl":
try:
from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
convert_transfo_xl_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCamelCase__ )
if "ckpt" in self._tf_checkpoint.lower():
__lowerCamelCase = self._tf_checkpoint
__lowerCamelCase = ''
else:
__lowerCamelCase = self._tf_checkpoint
__lowerCamelCase = ''
convert_transfo_xl_checkpoint_to_pytorch(
lowerCamelCase__ , self._config , self._pytorch_dump_output , lowerCamelCase__ )
elif self._model_type == "gpt2":
try:
from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import (
convert_gpta_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCamelCase__ )
convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "xlnet":
try:
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(lowerCamelCase__ )
convert_xlnet_checkpoint_to_pytorch(
self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name )
elif self._model_type == "xlm":
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch,
)
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "rembert":
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
convert_rembert_tf_checkpoint_to_pytorch,
)
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
else:
raise ValueError(
'--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
| 363 |
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
__A = logging.get_logger("transformers.models.speecht5")
__A = {
"speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm",
"speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection",
"speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv",
"speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed",
}
__A = {
"text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens",
"text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha",
}
__A = {
"speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0",
"speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1",
"speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer",
"speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha",
"speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer",
}
__A = {
"speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out",
"speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out",
"speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv",
"speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm",
"speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv",
"speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm",
"speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv",
"speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm",
"speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv",
"speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm",
"speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv",
"speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm",
}
__A = {
"text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens",
}
__A = {
"text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head",
}
__A = {
"encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj",
"encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj",
"encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj",
"encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj",
"encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm",
"encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense",
"encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense",
"encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm",
"encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k",
}
__A = {
"decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj",
"decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj",
"decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj",
"decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj",
"decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm",
"decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj",
"decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj",
"decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj",
"decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj",
"decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm",
"decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense",
"decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense",
"decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm",
}
__A = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
__A = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__A = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__A = []
__A = [
"encoder.version",
"encoder.layers.*.norm_k.weight",
"encoder.layers.*.norm_k.bias",
"decoder.version",
"decoder.layers.*.norm_k.weight",
"decoder.layers.*.norm_k.bias",
"decoder.pos_emb.pe_k",
"speech_encoder_prenet.embed_positions._float_tensor",
"text_decoder_prenet.embed_positions._float_tensor",
]
__A = IGNORE_KEYS + [
"encoder.proj",
"text_encoder_prenet.*",
"speech_decoder_prenet.*",
"speech_decoder_postnet.*",
]
__A = IGNORE_KEYS + [
"encoder.proj",
"speech_encoder_prenet.*",
"text_decoder_prenet.*",
"text_decoder_postnet.*",
]
__A = IGNORE_KEYS + [
"encoder.proj",
"text_encoder_prenet.*",
"text_decoder_prenet.*",
"text_decoder_postnet.*",
]
def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Dict:
"""simple docstring"""
for attribute in key.split('.' ):
__lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ )
if weight_type is not None:
__lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape
else:
__lowerCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}""" )
if weight_type == "weight":
__lowerCamelCase = value
elif weight_type == "weight_g":
__lowerCamelCase = value
elif weight_type == "weight_v":
__lowerCamelCase = value
elif weight_type == "bias":
__lowerCamelCase = value
elif weight_type == "running_mean":
__lowerCamelCase = value
elif weight_type == "running_var":
__lowerCamelCase = value
elif weight_type == "num_batches_tracked":
__lowerCamelCase = value
else:
__lowerCamelCase = value
logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" )
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ) -> Any:
"""simple docstring"""
for key in ignore_keys:
if key.endswith('.*' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
__lowerCamelCase , __lowerCamelCase = key.split('.*.' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
__lowerCamelCase = []
if task == "s2t":
__lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder
__lowerCamelCase = MAPPING_S2T
__lowerCamelCase = IGNORE_KEYS_S2T
elif task == "t2s":
__lowerCamelCase = None
__lowerCamelCase = MAPPING_T2S
__lowerCamelCase = IGNORE_KEYS_T2S
elif task == "s2s":
__lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder
__lowerCamelCase = MAPPING_S2S
__lowerCamelCase = IGNORE_KEYS_S2S
else:
raise ValueError(F"""Unsupported task: {task}""" )
for name, value in fairseq_dict.items():
if should_ignore(UpperCamelCase__ , UpperCamelCase__ ):
logger.info(F"""{name} was ignored""" )
continue
__lowerCamelCase = False
if "conv_layers" in name:
load_conv_layer(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , )
__lowerCamelCase = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
__lowerCamelCase , __lowerCamelCase = key.split('.*.' )
if prefix in name and suffix in name:
__lowerCamelCase = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
__lowerCamelCase = True
if "*" in mapped_key:
__lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2]
__lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ )
if "weight_g" in name:
__lowerCamelCase = 'weight_g'
elif "weight_v" in name:
__lowerCamelCase = 'weight_v'
elif "bias" in name:
__lowerCamelCase = 'bias'
elif "weight" in name:
__lowerCamelCase = 'weight'
elif "running_mean" in name:
__lowerCamelCase = 'running_mean'
elif "running_var" in name:
__lowerCamelCase = 'running_var'
elif "num_batches_tracked" in name:
__lowerCamelCase = 'num_batches_tracked'
else:
__lowerCamelCase = None
set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
continue
if not is_used:
unused_weights.append(UpperCamelCase__ )
logger.warning(F"""Unused weights: {unused_weights}""" )
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> Tuple:
"""simple docstring"""
__lowerCamelCase = full_name.split('conv_layers.' )[-1]
__lowerCamelCase = name.split('.' )
__lowerCamelCase = int(items[0] )
__lowerCamelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(UpperCamelCase__ )
@torch.no_grad()
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[str]=None , ) -> Tuple:
"""simple docstring"""
if config_path is not None:
__lowerCamelCase = SpeechTaConfig.from_pretrained(UpperCamelCase__ )
else:
__lowerCamelCase = SpeechTaConfig()
if task == "s2t":
__lowerCamelCase = config.max_text_positions
__lowerCamelCase = SpeechTaForSpeechToText(UpperCamelCase__ )
elif task == "t2s":
__lowerCamelCase = 1876
__lowerCamelCase = 600
__lowerCamelCase = config.max_speech_positions
__lowerCamelCase = SpeechTaForTextToSpeech(UpperCamelCase__ )
elif task == "s2s":
__lowerCamelCase = 1876
__lowerCamelCase = config.max_speech_positions
__lowerCamelCase = SpeechTaForSpeechToSpeech(UpperCamelCase__ )
else:
raise ValueError(F"""Unknown task name: {task}""" )
if vocab_path:
__lowerCamelCase = SpeechTaTokenizer(UpperCamelCase__ , model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
__lowerCamelCase = AddedToken('<mask>' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ )
__lowerCamelCase = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
__lowerCamelCase = SpeechTaFeatureExtractor()
__lowerCamelCase = SpeechTaProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
__lowerCamelCase = torch.load(UpperCamelCase__ )
recursively_load_weights(fairseq_checkpoint['model'] , UpperCamelCase__ , UpperCamelCase__ )
model.save_pretrained(UpperCamelCase__ )
if repo_id:
print('Pushing to the hub...' )
processor.push_to_hub(UpperCamelCase__ )
model.push_to_hub(UpperCamelCase__ )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
"--task",
default="s2t",
type=str,
help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.",
)
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
__A = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 348 | 0 |
import json
import os
import shutil
import warnings
from argparse import ArgumentParser, Namespace
from pathlib import Path
from typing import List
from ..utils import logging
from . import BaseTransformersCLICommand
try:
from cookiecutter.main import cookiecutter
__A = True
except ImportError:
__A = False
__A = logging.get_logger(__name__) # pylint: disable=invalid-name
def lowerCamelCase_ ( UpperCamelCase__ : Namespace ) -> List[str]:
"""simple docstring"""
return AddNewModelCommand(args.testing , args.testing_file , path=args.path )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
@staticmethod
def lowercase_ ( lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = parser.add_parser('add-new-model' )
add_new_model_parser.add_argument('--testing' , action='store_true' , help='If in testing mode.' )
add_new_model_parser.add_argument('--testing_file' , type=lowerCamelCase__ , help='Configuration file on which to run.' )
add_new_model_parser.add_argument(
'--path' , type=lowerCamelCase__ , help='Path to cookiecutter. Should only be used for testing purposes.' )
add_new_model_parser.set_defaults(func=lowerCamelCase__ )
def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , *lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = testing
__lowerCamelCase = testing_file
__lowerCamelCase = path
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
warnings.warn(
'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. '
'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality '
'checks, you should use `transformers-cli add-new-model-like` instead.' )
if not _has_cookiecutter:
raise ImportError(
'Model creation dependencies are required to use the `add_new_model` command. Install them by running '
'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' )
# Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory
__lowerCamelCase = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]]
if len(lowerCamelCase__ ) > 0:
raise ValueError(
'Several directories starting with `cookiecutter-template-` in current working directory. '
'Please clean your directory by removing all folders starting with `cookiecutter-template-` or '
'change your working directory.' )
__lowerCamelCase = (
Path(lowerCamelCase__ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent
)
__lowerCamelCase = path_to_transformer_root / 'templates' / 'adding_a_new_model'
# Execute cookiecutter
if not self._testing:
cookiecutter(str(lowerCamelCase__ ) )
else:
with open(self._testing_file , 'r' ) as configuration_file:
__lowerCamelCase = json.load(lowerCamelCase__ )
cookiecutter(
str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowerCamelCase__ , extra_context=lowerCamelCase__ , )
__lowerCamelCase = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0]
# Retrieve configuration
with open(directory + '/configuration.json' , 'r' ) as configuration_file:
__lowerCamelCase = json.load(lowerCamelCase__ )
__lowerCamelCase = configuration['lowercase_modelname']
__lowerCamelCase = configuration['generate_tensorflow_pytorch_and_flax']
os.remove(f"""{directory}/configuration.json""" )
__lowerCamelCase = 'PyTorch' in generate_tensorflow_pytorch_and_flax
__lowerCamelCase = 'TensorFlow' in generate_tensorflow_pytorch_and_flax
__lowerCamelCase = 'Flax' in generate_tensorflow_pytorch_and_flax
__lowerCamelCase = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}"""
os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ )
os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=lowerCamelCase__ )
# Tests require submodules as they have parent imports
with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , 'w' ):
pass
shutil.move(
f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , )
shutil.move(
f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , )
def remove_copy_lines(lowerCamelCase__ ):
with open(lowerCamelCase__ , 'r' ) as f:
__lowerCamelCase = f.readlines()
with open(lowerCamelCase__ , 'w' ) as f:
for line in lines:
if "# Copied from transformers." not in line:
f.write(lowerCamelCase__ )
if output_pytorch:
if not self._testing:
remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" )
shutil.move(
f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , )
shutil.move(
f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , )
else:
os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" )
os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" )
if output_tensorflow:
if not self._testing:
remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" )
shutil.move(
f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , )
shutil.move(
f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , )
else:
os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" )
os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" )
if output_flax:
if not self._testing:
remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" )
shutil.move(
f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , )
shutil.move(
f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , )
else:
os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" )
os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" )
shutil.move(
f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , )
shutil.move(
f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , )
shutil.move(
f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , )
from os import fdopen, remove
from shutil import copymode, move
from tempfile import mkstemp
def replace(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
# Create temp file
__lowerCamelCase , __lowerCamelCase = mkstemp()
__lowerCamelCase = False
with fdopen(lowerCamelCase__ , 'w' ) as new_file:
with open(lowerCamelCase__ ) as old_file:
for line in old_file:
new_file.write(lowerCamelCase__ )
if line_to_copy_below in line:
__lowerCamelCase = True
for line_to_copy in lines_to_copy:
new_file.write(lowerCamelCase__ )
if not line_found:
raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" )
# Copy the file permissions from the old file to the new file
copymode(lowerCamelCase__ , lowerCamelCase__ )
# Remove original file
remove(lowerCamelCase__ )
# Move new file
move(lowerCamelCase__ , lowerCamelCase__ )
def skip_units(lowerCamelCase__ ):
return (
("generating PyTorch" in line and not output_pytorch)
or ("generating TensorFlow" in line and not output_tensorflow)
or ("generating Flax" in line and not output_flax)
)
def replace_in_files(lowerCamelCase__ ):
with open(lowerCamelCase__ ) as datafile:
__lowerCamelCase = []
__lowerCamelCase = False
__lowerCamelCase = False
for line in datafile:
if "# To replace in: " in line and "##" not in line:
__lowerCamelCase = line.split('"' )[1]
__lowerCamelCase = skip_units(lowerCamelCase__ )
elif "# Below: " in line and "##" not in line:
__lowerCamelCase = line.split('"' )[1]
__lowerCamelCase = skip_units(lowerCamelCase__ )
elif "# End." in line and "##" not in line:
if not skip_file and not skip_snippet:
replace(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = []
elif "# Replace with" in line and "##" not in line:
__lowerCamelCase = []
elif "##" not in line:
lines_to_copy.append(lowerCamelCase__ )
remove(lowerCamelCase__ )
replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" )
os.rmdir(lowerCamelCase__ )
| 364 |
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets,
# U and V such that every edge (u, v) either connects a vertex from U to V or a vertex
# from V to U. In other words, for every edge (u, v), either u belongs to U and v to V,
# or u belongs to V and v to U. We can also say that there is no edge that connects
# vertices of same set.
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = [False] * len(UpperCamelCase__ )
__lowerCamelCase = [-1] * len(UpperCamelCase__ )
def dfs(UpperCamelCase__ : int , UpperCamelCase__ : int ):
__lowerCamelCase = True
__lowerCamelCase = c
for u in graph[v]:
if not visited[u]:
dfs(UpperCamelCase__ , 1 - c )
for i in range(len(UpperCamelCase__ ) ):
if not visited[i]:
dfs(UpperCamelCase__ , 0 )
for i in range(len(UpperCamelCase__ ) ):
for j in graph[i]:
if color[i] == color[j]:
return False
return True
# Adjacency list of graph
__A = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []}
print(check_bipartite_dfs(graph))
| 348 | 0 |
import argparse
import os
import gluonnlp as nlp
import mxnet as mx
import numpy as np
import torch
from gluonnlp.base import get_home_dir
from gluonnlp.model.bert import BERTEncoder
from gluonnlp.model.utils import _load_vocab
from gluonnlp.vocab import Vocab
from packaging import version
from torch import nn
from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
if version.parse(nlp.__version__) != version.parse("0.8.3"):
raise Exception("requires gluonnlp == 0.8.3")
if version.parse(mx.__version__) != version.parse("1.5.0"):
raise Exception("requires mxnet == 1.5.0")
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
__A = "The Nymphenburg Palace is a beautiful palace in Munich!"
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> int:
"""simple docstring"""
__lowerCamelCase = {
'attention_cell': 'multi_head',
'num_layers': 4,
'units': 1024,
'hidden_size': 768,
'max_length': 512,
'num_heads': 8,
'scaled': True,
'dropout': 0.1,
'use_residual': True,
'embed_size': 1024,
'embed_dropout': 0.1,
'word_embed': None,
'layer_norm_eps': 1E-5,
'token_type_vocab_size': 2,
}
__lowerCamelCase = bort_4_8_768_1024_hparams
# Let's construct the original Bort model here
# Taken from official BERT implementation, see:
# https://github.com/alexa/bort/blob/master/bort/bort.py
__lowerCamelCase = BERTEncoder(
attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=UpperCamelCase__ , output_all_encodings=UpperCamelCase__ , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , UpperCamelCase__ ) , )
# Vocab information needs to be fetched first
# It's the same as RoBERTa, so RobertaTokenizer can be used later
__lowerCamelCase = 'openwebtext_ccnews_stories_books_cased'
# Specify download folder to Gluonnlp's vocab
__lowerCamelCase = os.path.join(get_home_dir() , 'models' )
__lowerCamelCase = _load_vocab(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , cls=UpperCamelCase__ )
__lowerCamelCase = nlp.model.BERTModel(
UpperCamelCase__ , len(UpperCamelCase__ ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=UpperCamelCase__ , use_token_type_embed=UpperCamelCase__ , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=UpperCamelCase__ , use_decoder=UpperCamelCase__ , )
original_bort.load_parameters(UpperCamelCase__ , cast_dtype=UpperCamelCase__ , ignore_extra=UpperCamelCase__ )
__lowerCamelCase = original_bort._collect_params_with_prefix()
# Build our config 🤗
__lowerCamelCase = {
'architectures': ['BertForMaskedLM'],
'attention_probs_dropout_prob': predefined_args['dropout'],
'hidden_act': 'gelu',
'hidden_dropout_prob': predefined_args['dropout'],
'hidden_size': predefined_args['embed_size'],
'initializer_range': 0.02,
'intermediate_size': predefined_args['hidden_size'],
'layer_norm_eps': predefined_args['layer_norm_eps'],
'max_position_embeddings': predefined_args['max_length'],
'model_type': 'bort',
'num_attention_heads': predefined_args['num_heads'],
'num_hidden_layers': predefined_args['num_layers'],
'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa
'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa
'vocab_size': len(UpperCamelCase__ ),
}
__lowerCamelCase = BertConfig.from_dict(UpperCamelCase__ )
__lowerCamelCase = BertForMaskedLM(UpperCamelCase__ )
hf_bort_model.eval()
# Parameter mapping table (Gluonnlp to Transformers)
# * denotes layer index
#
# | Gluon Parameter | Transformers Parameter
# | -------------------------------------------------------------- | ----------------------
# | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias`
# | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight`
# | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight`
# | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight`
# | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight`
# | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight`
# | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias`
# | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight`
# Helper function to convert MXNET Arrays to PyTorch
def to_torch(UpperCamelCase__ : Dict ) -> nn.Parameter:
return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) )
# Check param shapes and map new HF param back
def check_and_map_params(UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ):
__lowerCamelCase = hf_param.shape
__lowerCamelCase = to_torch(params[gluon_param] )
__lowerCamelCase = gluon_param.shape
assert (
shape_hf == shape_gluon
), F"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers"""
return gluon_param
__lowerCamelCase = check_and_map_params(
hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' )
__lowerCamelCase = check_and_map_params(
hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' )
__lowerCamelCase = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' )
__lowerCamelCase = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' )
# Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them)
__lowerCamelCase = torch.zeros_like(
hf_bort_model.bert.embeddings.token_type_embeddings.weight.data )
for i in range(hf_bort_config.num_hidden_layers ):
__lowerCamelCase = hf_bort_model.bert.encoder.layer[i]
# self attention
__lowerCamelCase = layer.attention.self
__lowerCamelCase = check_and_map_params(
self_attn.key.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" )
__lowerCamelCase = check_and_map_params(
self_attn.key.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" )
__lowerCamelCase = check_and_map_params(
self_attn.query.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" )
__lowerCamelCase = check_and_map_params(
self_attn.query.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" )
__lowerCamelCase = check_and_map_params(
self_attn.value.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" )
__lowerCamelCase = check_and_map_params(
self_attn.value.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" )
# self attention output
__lowerCamelCase = layer.attention.output
__lowerCamelCase = check_and_map_params(
self_output.dense.bias , F"""encoder.transformer_cells.{i}.proj.bias""" )
__lowerCamelCase = check_and_map_params(
self_output.dense.weight , F"""encoder.transformer_cells.{i}.proj.weight""" )
__lowerCamelCase = check_and_map_params(
self_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.layer_norm.beta""" )
__lowerCamelCase = check_and_map_params(
self_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.layer_norm.gamma""" )
# intermediate
__lowerCamelCase = layer.intermediate
__lowerCamelCase = check_and_map_params(
intermediate.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" )
__lowerCamelCase = check_and_map_params(
intermediate.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" )
# output
__lowerCamelCase = layer.output
__lowerCamelCase = check_and_map_params(
bert_output.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" )
__lowerCamelCase = check_and_map_params(
bert_output.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" )
__lowerCamelCase = check_and_map_params(
bert_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" )
__lowerCamelCase = check_and_map_params(
bert_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" )
# Save space and energy 🎄
hf_bort_model.half()
# Compare output of both models
__lowerCamelCase = RobertaTokenizer.from_pretrained('roberta-base' )
__lowerCamelCase = tokenizer.encode_plus(UpperCamelCase__ )['input_ids']
# Get gluon output
__lowerCamelCase = mx.nd.array([input_ids] )
__lowerCamelCase = original_bort(inputs=UpperCamelCase__ , token_types=[] )
# Get Transformer output (save and reload model again)
hf_bort_model.save_pretrained(UpperCamelCase__ )
__lowerCamelCase = BertModel.from_pretrained(UpperCamelCase__ )
hf_bort_model.eval()
__lowerCamelCase = tokenizer.encode_plus(UpperCamelCase__ , return_tensors='pt' )
__lowerCamelCase = hf_bort_model(**UpperCamelCase__ )[0]
__lowerCamelCase = output_gluon[0].asnumpy()
__lowerCamelCase = output_hf[0].detach().numpy()
__lowerCamelCase = np.max(np.abs(hf_layer - gluon_layer ) ).item()
__lowerCamelCase = np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-3 )
if success:
print('✔️ Both model do output the same tensors' )
else:
print('❌ Both model do **NOT** output the same tensors' )
print('Absolute difference is:' , UpperCamelCase__ )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__A = parser.parse_args()
convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
| 365 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowerCamelCase__ ).to(lowerCamelCase__ )
__lowerCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' )
__lowerCamelCase = tokenizer('Hello there' , return_tensors='pt' ).input_ids
__lowerCamelCase = tokenizer('Hi I am' , return_tensors='pt' ).input_ids
__lowerCamelCase = model(input_ids.to(lowerCamelCase__ ) , labels=labels.to(lowerCamelCase__ ) ).loss
__lowerCamelCase = -(labels.shape[-1] * loss.item())
__lowerCamelCase = -84.91_27
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 348 | 0 |
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = ['''image_processor''', '''tokenizer''']
snake_case_ = '''Pix2StructImageProcessor'''
snake_case_ = ('''T5Tokenizer''', '''T5TokenizerFast''')
def __init__( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any:
'''simple docstring'''
__lowerCamelCase = False
super().__init__(lowerCamelCase__ , lowerCamelCase__ )
def __call__( self , lowerCamelCase__=None , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 2_048 , lowerCamelCase__ = 0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = True , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> BatchEncoding:
'''simple docstring'''
if images is None and text is None:
raise ValueError('You have to specify either images or text.' )
# Get only text
if images is None and not self.image_processor.is_vqa:
__lowerCamelCase = self.tokenizer
__lowerCamelCase = self.tokenizer(
text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , )
return text_encoding
if not self.image_processor.is_vqa:
# add pixel_values
__lowerCamelCase = self.image_processor(
lowerCamelCase__ , return_tensors=lowerCamelCase__ , max_patches=lowerCamelCase__ , **lowerCamelCase__ )
else:
# add pixel_values and bbox
__lowerCamelCase = self.image_processor(
lowerCamelCase__ , return_tensors=lowerCamelCase__ , max_patches=lowerCamelCase__ , header_text=lowerCamelCase__ , **lowerCamelCase__ )
if text is not None and not self.image_processor.is_vqa:
__lowerCamelCase = self.tokenizer(
text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , )
if "attention_mask" in text_encoding:
__lowerCamelCase = text_encoding.pop('attention_mask' )
if "input_ids" in text_encoding:
__lowerCamelCase = text_encoding.pop('input_ids' )
else:
__lowerCamelCase = None
if text_encoding is not None:
encoding_image_processor.update(lowerCamelCase__ )
return encoding_image_processor
def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ )
def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ )
@property
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = self.tokenizer.model_input_names
__lowerCamelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 366 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Any:
"""simple docstring"""
__lowerCamelCase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2]
__lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False
__lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False
__lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
__lowerCamelCase = [3, 3, 3, 3]
__lowerCamelCase = [5, 5, 5, 5]
elif "fl4" in model_name:
__lowerCamelCase = [4, 4, 4, 4]
__lowerCamelCase = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
__lowerCamelCase = [3, 3, 3, 3]
if "lrf" in model_name:
__lowerCamelCase = [3, 3, 3, 3]
else:
__lowerCamelCase = [2, 2, 2, 2]
if "tiny" in model_name:
__lowerCamelCase = 96
elif "small" in model_name:
__lowerCamelCase = 96
elif "base" in model_name:
__lowerCamelCase = 128
elif "large" in model_name:
__lowerCamelCase = 192
elif "xlarge" in model_name:
__lowerCamelCase = 256
elif "huge" in model_name:
__lowerCamelCase = 352
# set label information
__lowerCamelCase = 'huggingface/label-files'
if "large" in model_name or "huge" in model_name:
__lowerCamelCase = 'imagenet-22k-id2label.json'
else:
__lowerCamelCase = 'imagenet-1k-id2label.json'
__lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) )
__lowerCamelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()}
__lowerCamelCase = {v: k for k, v in idalabel.items()}
__lowerCamelCase = FocalNetConfig(
embed_dim=UpperCamelCase__ , depths=UpperCamelCase__ , focal_levels=UpperCamelCase__ , focal_windows=UpperCamelCase__ , use_conv_embed=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , use_post_layernorm=UpperCamelCase__ , use_layerscale=UpperCamelCase__ , )
return config
def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> str:
"""simple docstring"""
if "patch_embed.proj" in name:
__lowerCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
__lowerCamelCase = name.replace('patch_embed.norm' , 'embeddings.norm' )
if "layers" in name:
__lowerCamelCase = 'encoder.' + name
if "encoder.layers" in name:
__lowerCamelCase = name.replace('encoder.layers' , 'encoder.stages' )
if "downsample.proj" in name:
__lowerCamelCase = name.replace('downsample.proj' , 'downsample.projection' )
if "blocks" in name:
__lowerCamelCase = name.replace('blocks' , 'layers' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
__lowerCamelCase = name.replace('modulation.f' , 'modulation.projection_in' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
__lowerCamelCase = name.replace('modulation.h' , 'modulation.projection_context' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
__lowerCamelCase = name.replace('modulation.proj' , 'modulation.projection_out' )
if name == "norm.weight":
__lowerCamelCase = 'layernorm.weight'
if name == "norm.bias":
__lowerCamelCase = 'layernorm.bias'
if "head" in name:
__lowerCamelCase = name.replace('head' , 'classifier' )
else:
__lowerCamelCase = 'focalnet.' + name
return name
def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=False ) -> Dict:
"""simple docstring"""
__lowerCamelCase = {
'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth',
'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth',
'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth',
'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth',
'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth',
'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth',
'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth',
'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth',
'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth',
'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth',
}
# fmt: on
__lowerCamelCase = model_name_to_url[model_name]
print('Checkpoint URL: ' , UpperCamelCase__ )
__lowerCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='cpu' )['model']
# rename keys
for key in state_dict.copy().keys():
__lowerCamelCase = state_dict.pop(UpperCamelCase__ )
__lowerCamelCase = val
__lowerCamelCase = get_focalnet_config(UpperCamelCase__ )
__lowerCamelCase = FocalNetForImageClassification(UpperCamelCase__ )
model.eval()
# load state dict
model.load_state_dict(UpperCamelCase__ )
# verify conversion
__lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowerCamelCase = BitImageProcessor(
do_resize=UpperCamelCase__ , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase__ , crop_size=224 , do_normalize=UpperCamelCase__ , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ , )
__lowerCamelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw )
__lowerCamelCase = processor(images=UpperCamelCase__ , return_tensors='pt' )
__lowerCamelCase = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ),
] )
__lowerCamelCase = image_transforms(UpperCamelCase__ ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , UpperCamelCase__ , atol=1E-4 )
__lowerCamelCase = model(**UpperCamelCase__ )
__lowerCamelCase = outputs.logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
print('First values of logits:' , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
__lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] )
elif model_name == "focalnet-tiny-lrf":
__lowerCamelCase = torch.tensor([1.16_69, 0.01_25, -0.16_95] )
elif model_name == "focalnet-small":
__lowerCamelCase = torch.tensor([0.49_17, -0.04_30, 0.13_41] )
elif model_name == "focalnet-small-lrf":
__lowerCamelCase = torch.tensor([-0.25_88, -0.53_42, -0.23_31] )
elif model_name == "focalnet-base":
__lowerCamelCase = torch.tensor([-0.16_55, -0.40_90, -0.17_30] )
elif model_name == "focalnet-base-lrf":
__lowerCamelCase = torch.tensor([0.53_06, -0.04_83, -0.39_28] )
assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
if push_to_hub:
print(F"""Pushing model and processor of {model_name} to the hub...""" )
model.push_to_hub(F"""{model_name}""" )
processor.push_to_hub(F"""{model_name}""" )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="focalnet-tiny",
type=str,
help="Name of the FocalNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model and processor to the hub.",
)
__A = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 348 | 0 |
"""simple docstring"""
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
__A = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8")
__A = (
subprocess.check_output(f'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("utf-8").split()
)
__A = "|".join(sys.argv[1:])
__A = re.compile(Rf'''^({joined_dirs}).*?\.py$''')
__A = [x for x in modified_files if regex.match(x)]
print(" ".join(relevant_modified_files), end="")
| 367 |
from __future__ import annotations
def lowerCamelCase_ ( UpperCamelCase__ : list[float] , UpperCamelCase__ : list[float] ) -> float:
"""simple docstring"""
__lowerCamelCase = sorted(numsa + numsa )
__lowerCamelCase , __lowerCamelCase = divmod(len(UpperCamelCase__ ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
__A = [float(x) for x in input("Enter the elements of first array: ").split()]
__A = [float(x) for x in input("Enter the elements of second array: ").split()]
print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
| 348 | 0 |
from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class __lowerCAmelCase :
"""simple docstring"""
snake_case_ = BlenderbotConfig
snake_case_ = {}
snake_case_ = '''gelu'''
def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=20 , lowerCamelCase__=2 , lowerCamelCase__=1 , lowerCamelCase__=0 , ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = eos_token_id
__lowerCamelCase = pad_token_id
__lowerCamelCase = bos_token_id
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__lowerCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__lowerCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__lowerCamelCase = prepare_blenderbot_inputs_dict(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
return config, inputs_dict
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str:
'''simple docstring'''
__lowerCamelCase = TFBlenderbotModel(config=lowerCamelCase__ ).get_decoder()
__lowerCamelCase = inputs_dict['input_ids']
__lowerCamelCase = input_ids[:1, :]
__lowerCamelCase = inputs_dict['attention_mask'][:1, :]
__lowerCamelCase = inputs_dict['head_mask']
__lowerCamelCase = 1
# first forward pass
__lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , head_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ )
__lowerCamelCase , __lowerCamelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
__lowerCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
__lowerCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 )
__lowerCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
__lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0]
__lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
__lowerCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
__lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx]
__lowerCamelCase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowerCamelCase__ , lowerCamelCase__ , rtol=1e-3 )
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any=None , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : int=None , ) -> List[str]:
"""simple docstring"""
if attention_mask is None:
__lowerCamelCase = tf.cast(tf.math.not_equal(UpperCamelCase__ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
__lowerCamelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
__lowerCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__lowerCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__lowerCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
snake_case_ = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
snake_case_ = (
{
'''conversational''': TFBlenderbotForConditionalGeneration,
'''feature-extraction''': TFBlenderbotModel,
'''summarization''': TFBlenderbotForConditionalGeneration,
'''text2text-generation''': TFBlenderbotForConditionalGeneration,
'''translation''': TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
snake_case_ = True
snake_case_ = False
snake_case_ = False
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = TFBlenderbotModelTester(self )
__lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ )
def lowercase_ ( self ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase__ )
@require_tokenizers
@require_tf
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
snake_case_ = ['''My friends are cool but they eat too many carbs.''']
snake_case_ = '''facebook/blenderbot-400M-distill'''
@cached_property
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = self.tokenizer(self.src_text , return_tensors='tf' )
__lowerCamelCase = self.model.generate(
model_inputs.input_ids , )
__lowerCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCamelCase__ )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 368 |
__A = {
"joule": 1.0,
"kilojoule": 10_00,
"megajoule": 1_00_00_00,
"gigajoule": 10_00_00_00_00,
"wattsecond": 1.0,
"watthour": 36_00,
"kilowatthour": 3_60_00_00,
"newtonmeter": 1.0,
"calorie_nutr": 41_86.8,
"kilocalorie_nutr": 4_18_68_00.00,
"electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9,
"britishthermalunit_it": 10_55.0_55_85,
"footpound": 1.3_5_5_8_1_8,
}
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : float ) -> float:
"""simple docstring"""
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
__lowerCamelCase = (
F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"""
F"""Valid values are: {', '.join(UpperCamelCase__ )}"""
)
raise ValueError(UpperCamelCase__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 348 | 0 |
import gc
import unittest
from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
super().tearDown()
gc.collect()
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = FlaxControlNetModel.from_pretrained(
'lllyasviel/sd-controlnet-canny' , from_pt=lowerCamelCase__ , dtype=jnp.bfloataa )
__lowerCamelCase , __lowerCamelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' , controlnet=lowerCamelCase__ , from_pt=lowerCamelCase__ , dtype=jnp.bfloataa )
__lowerCamelCase = controlnet_params
__lowerCamelCase = 'bird'
__lowerCamelCase = jax.device_count()
__lowerCamelCase = pipe.prepare_text_inputs([prompts] * num_samples )
__lowerCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' )
__lowerCamelCase = pipe.prepare_image_inputs([canny_image] * num_samples )
__lowerCamelCase = jax.random.PRNGKey(0 )
__lowerCamelCase = jax.random.split(lowerCamelCase__ , jax.device_count() )
__lowerCamelCase = replicate(lowerCamelCase__ )
__lowerCamelCase = shard(lowerCamelCase__ )
__lowerCamelCase = shard(lowerCamelCase__ )
__lowerCamelCase = pipe(
prompt_ids=lowerCamelCase__ , image=lowerCamelCase__ , params=lowerCamelCase__ , prng_seed=lowerCamelCase__ , num_inference_steps=50 , jit=lowerCamelCase__ , ).images
assert images.shape == (jax.device_count(), 1, 768, 512, 3)
__lowerCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__lowerCamelCase = images[0, 253:256, 253:256, -1]
__lowerCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__lowerCamelCase = jnp.array(
[0.16_79_69, 0.11_66_99, 0.08_15_43, 0.15_42_97, 0.13_28_12, 0.10_88_87, 0.16_99_22, 0.16_99_22, 0.20_50_78] )
print(f"""output_slice: {output_slice}""" )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = FlaxControlNetModel.from_pretrained(
'lllyasviel/sd-controlnet-openpose' , from_pt=lowerCamelCase__ , dtype=jnp.bfloataa )
__lowerCamelCase , __lowerCamelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' , controlnet=lowerCamelCase__ , from_pt=lowerCamelCase__ , dtype=jnp.bfloataa )
__lowerCamelCase = controlnet_params
__lowerCamelCase = 'Chef in the kitchen'
__lowerCamelCase = jax.device_count()
__lowerCamelCase = pipe.prepare_text_inputs([prompts] * num_samples )
__lowerCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' )
__lowerCamelCase = pipe.prepare_image_inputs([pose_image] * num_samples )
__lowerCamelCase = jax.random.PRNGKey(0 )
__lowerCamelCase = jax.random.split(lowerCamelCase__ , jax.device_count() )
__lowerCamelCase = replicate(lowerCamelCase__ )
__lowerCamelCase = shard(lowerCamelCase__ )
__lowerCamelCase = shard(lowerCamelCase__ )
__lowerCamelCase = pipe(
prompt_ids=lowerCamelCase__ , image=lowerCamelCase__ , params=lowerCamelCase__ , prng_seed=lowerCamelCase__ , num_inference_steps=50 , jit=lowerCamelCase__ , ).images
assert images.shape == (jax.device_count(), 1, 768, 512, 3)
__lowerCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__lowerCamelCase = images[0, 253:256, 253:256, -1]
__lowerCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__lowerCamelCase = jnp.array(
[[0.27_14_84, 0.26_17_19, 0.27_53_91, 0.27_73_44, 0.27_92_97, 0.29_10_16, 0.29_49_22, 0.30_27_34, 0.30_27_34]] )
print(f"""output_slice: {output_slice}""" )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 369 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''philschmid/bart-large-cnn-samsum'''
snake_case_ = (
'''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, '''
'''and returns a summary of the text.'''
)
snake_case_ = '''summarizer'''
snake_case_ = AutoTokenizer
snake_case_ = AutoModelForSeqaSeqLM
snake_case_ = ['''text''']
snake_case_ = ['''text''']
def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]:
'''simple docstring'''
return self.pre_processor(lowerCamelCase__ , return_tensors='pt' , truncation=lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ ) -> Dict:
'''simple docstring'''
return self.model.generate(**lowerCamelCase__ )[0]
def lowercase_ ( self , lowerCamelCase__ ) -> Any:
'''simple docstring'''
return self.pre_processor.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ )
| 348 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A = {
"configuration_blenderbot_small": [
"BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotSmallConfig",
"BlenderbotSmallOnnxConfig",
],
"tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["BlenderbotSmallTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotSmallForCausalLM",
"BlenderbotSmallForConditionalGeneration",
"BlenderbotSmallModel",
"BlenderbotSmallPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"TFBlenderbotSmallForConditionalGeneration",
"TFBlenderbotSmallModel",
"TFBlenderbotSmallPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"FlaxBlenderbotSmallForConditionalGeneration",
"FlaxBlenderbotSmallModel",
"FlaxBlenderbotSmallPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 370 |
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=4 , ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_attention_mask
__lowerCamelCase = use_token_type_ids
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = type_sequence_label_size
__lowerCamelCase = initializer_range
__lowerCamelCase = num_choices
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = None
if self.use_attention_mask:
__lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase = None
if self.use_token_type_ids:
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowerCamelCase = RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs
__lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs
__lowerCamelCase = True
__lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = True
snake_case_ = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = FlaxRobertaPreLayerNormModelTester(self )
@slow
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__lowerCamelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ )
__lowerCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCamelCase__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ )
__lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa )
__lowerCamelCase = model(lowerCamelCase__ )[0]
__lowerCamelCase = [1, 11, 50_265]
self.assertEqual(list(output.shape ) , lowerCamelCase__ )
# compare the actual values for a slice.
__lowerCamelCase = np.array(
[[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
@slow
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ )
__lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa )
__lowerCamelCase = model(lowerCamelCase__ )[0]
# compare the actual values for a slice.
__lowerCamelCase = np.array(
[[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
| 348 | 0 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
@slow
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('google/mt5-small' )
__lowerCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' )
__lowerCamelCase = tokenizer('Hello there' , return_tensors='np' ).input_ids
__lowerCamelCase = tokenizer('Hi I am' , return_tensors='np' ).input_ids
__lowerCamelCase = shift_tokens_right(lowerCamelCase__ , model.config.pad_token_id , model.config.decoder_start_token_id )
__lowerCamelCase = model(lowerCamelCase__ , decoder_input_ids=lowerCamelCase__ ).logits
__lowerCamelCase = optax.softmax_cross_entropy(lowerCamelCase__ , onehot(lowerCamelCase__ , logits.shape[-1] ) ).mean()
__lowerCamelCase = -(labels.shape[-1] * loss.item())
__lowerCamelCase = -84.91_27
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 371 |
from ..utils import DummyObject, requires_backends
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
| 348 | 0 |
from sklearn.metrics import matthews_corrcoef
import datasets
__A = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n"
__A = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n"
__A = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('int32' ),
'references': datasets.Value('int32' ),
} ) , reference_urls=[
'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html'
] , )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ) -> Optional[Any]:
'''simple docstring'''
return {
"matthews_correlation": float(matthews_corrcoef(lowerCamelCase__ , lowerCamelCase__ , sample_weight=lowerCamelCase__ ) ),
}
| 350 |
import random
import unittest
import numpy as np
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionImgaImgPipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline'''
def lowercase_ ( self , lowerCamelCase__=0 ) -> int:
'''simple docstring'''
__lowerCamelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase__ ) )
__lowerCamelCase = np.random.RandomState(lowerCamelCase__ )
__lowerCamelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 3,
'strength': 0.75,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] )
assert np.abs(image_slice - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
# warmup pass to apply optimizations
__lowerCamelCase = pipe(**self.get_dummy_inputs() )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def lowercase_ ( self ) -> int:
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = ort.SessionOptions()
__lowerCamelCase = False
return options
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
__lowerCamelCase = init_image.resize((768, 512) )
# using the PNDM scheduler by default
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = 'A fantasy landscape, trending on artstation'
__lowerCamelCase = np.random.RandomState(0 )
__lowerCamelCase = pipe(
prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type='np' , )
__lowerCamelCase = output.images
__lowerCamelCase = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
__lowerCamelCase = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
__lowerCamelCase = init_image.resize((768, 512) )
__lowerCamelCase = LMSDiscreteScheduler.from_pretrained(
'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' )
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = 'A fantasy landscape, trending on artstation'
__lowerCamelCase = np.random.RandomState(0 )
__lowerCamelCase = pipe(
prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type='np' , )
__lowerCamelCase = output.images
__lowerCamelCase = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
__lowerCamelCase = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
| 348 | 0 |
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = (DDPMParallelScheduler,)
def lowercase_ ( self , **lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = {
'num_train_timesteps': 1_000,
'beta_start': 0.00_01,
'beta_end': 0.02,
'beta_schedule': 'linear',
'variance_type': 'fixed_small',
'clip_sample': True,
}
config.update(**lowerCamelCase__ )
return config
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=lowerCamelCase__ )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=lowerCamelCase__ , beta_end=lowerCamelCase__ )
def lowercase_ ( self ) -> int:
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=lowerCamelCase__ )
def lowercase_ ( self ) -> Any:
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowerCamelCase__ )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
self.check_over_configs(thresholding=lowerCamelCase__ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=lowerCamelCase__ , prediction_type=lowerCamelCase__ , sample_max_value=lowerCamelCase__ , )
def lowercase_ ( self ) -> str:
'''simple docstring'''
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCamelCase__ )
def lowercase_ ( self ) -> Any:
'''simple docstring'''
for t in [0, 500, 999]:
self.check_over_forward(time_step=lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config()
__lowerCamelCase = scheduler_class(**lowerCamelCase__ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_09_79 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config()
__lowerCamelCase = scheduler_class(**lowerCamelCase__ )
__lowerCamelCase = len(lowerCamelCase__ )
__lowerCamelCase = self.dummy_model()
__lowerCamelCase = self.dummy_sample_deter
__lowerCamelCase = self.dummy_sample_deter + 0.1
__lowerCamelCase = self.dummy_sample_deter - 0.1
__lowerCamelCase = samplea.shape[0]
__lowerCamelCase = torch.stack([samplea, samplea, samplea] , dim=0 )
__lowerCamelCase = torch.arange(lowerCamelCase__ )[0:3, None].repeat(1 , lowerCamelCase__ )
__lowerCamelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
__lowerCamelCase = scheduler.batch_step_no_noise(lowerCamelCase__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) )
__lowerCamelCase = torch.sum(torch.abs(lowerCamelCase__ ) )
__lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) )
assert abs(result_sum.item() - 1_153.1_833 ) < 1e-2
assert abs(result_mean.item() - 0.50_05 ) < 1e-3
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config()
__lowerCamelCase = scheduler_class(**lowerCamelCase__ )
__lowerCamelCase = len(lowerCamelCase__ )
__lowerCamelCase = self.dummy_model()
__lowerCamelCase = self.dummy_sample_deter
__lowerCamelCase = torch.manual_seed(0 )
for t in reversed(range(lowerCamelCase__ ) ):
# 1. predict noise residual
__lowerCamelCase = model(lowerCamelCase__ , lowerCamelCase__ )
# 2. predict previous mean of sample x_t-1
__lowerCamelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , generator=lowerCamelCase__ ).prev_sample
__lowerCamelCase = pred_prev_sample
__lowerCamelCase = torch.sum(torch.abs(lowerCamelCase__ ) )
__lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) )
assert abs(result_sum.item() - 258.9_606 ) < 1e-2
assert abs(result_mean.item() - 0.33_72 ) < 1e-3
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config(prediction_type='v_prediction' )
__lowerCamelCase = scheduler_class(**lowerCamelCase__ )
__lowerCamelCase = len(lowerCamelCase__ )
__lowerCamelCase = self.dummy_model()
__lowerCamelCase = self.dummy_sample_deter
__lowerCamelCase = torch.manual_seed(0 )
for t in reversed(range(lowerCamelCase__ ) ):
# 1. predict noise residual
__lowerCamelCase = model(lowerCamelCase__ , lowerCamelCase__ )
# 2. predict previous mean of sample x_t-1
__lowerCamelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , generator=lowerCamelCase__ ).prev_sample
__lowerCamelCase = pred_prev_sample
__lowerCamelCase = torch.sum(torch.abs(lowerCamelCase__ ) )
__lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) )
assert abs(result_sum.item() - 202.0_296 ) < 1e-2
assert abs(result_mean.item() - 0.26_31 ) < 1e-3
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config()
__lowerCamelCase = scheduler_class(**lowerCamelCase__ )
__lowerCamelCase = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=lowerCamelCase__ )
__lowerCamelCase = scheduler.timesteps
for i, timestep in enumerate(lowerCamelCase__ ):
if i == len(lowerCamelCase__ ) - 1:
__lowerCamelCase = -1
else:
__lowerCamelCase = timesteps[i + 1]
__lowerCamelCase = scheduler.previous_timestep(lowerCamelCase__ )
__lowerCamelCase = prev_t.item()
self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config()
__lowerCamelCase = scheduler_class(**lowerCamelCase__ )
__lowerCamelCase = [100, 87, 50, 51, 0]
with self.assertRaises(lowerCamelCase__ , msg='`custom_timesteps` must be in descending order.' ):
scheduler.set_timesteps(timesteps=lowerCamelCase__ )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config()
__lowerCamelCase = scheduler_class(**lowerCamelCase__ )
__lowerCamelCase = [100, 87, 50, 1, 0]
__lowerCamelCase = len(lowerCamelCase__ )
with self.assertRaises(lowerCamelCase__ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ):
scheduler.set_timesteps(num_inference_steps=lowerCamelCase__ , timesteps=lowerCamelCase__ )
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config()
__lowerCamelCase = scheduler_class(**lowerCamelCase__ )
__lowerCamelCase = [scheduler.config.num_train_timesteps]
with self.assertRaises(
lowerCamelCase__ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ):
scheduler.set_timesteps(timesteps=lowerCamelCase__ )
| 351 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
__A = logging.get_logger(__name__)
__A = {
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json",
}
# fmt: off
__A = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85,
7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77,
13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11,
46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86,
1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91,
1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09,
3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61
]
__A = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73,
8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27,
32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47,
72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93,
1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75,
2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65,
4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62
]
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''whisper'''
snake_case_ = ['''past_key_values''']
snake_case_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self , lowerCamelCase__=51_865 , lowerCamelCase__=80 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=1_536 , lowerCamelCase__=1_536 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=50_257 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="gelu" , lowerCamelCase__=256 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=1_500 , lowerCamelCase__=448 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=None , lowerCamelCase__=[220, 50_256] , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=False , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__=7 , **lowerCamelCase__ , ) -> str:
'''simple docstring'''
__lowerCamelCase = vocab_size
__lowerCamelCase = num_mel_bins
__lowerCamelCase = d_model
__lowerCamelCase = encoder_layers
__lowerCamelCase = encoder_attention_heads
__lowerCamelCase = decoder_layers
__lowerCamelCase = decoder_attention_heads
__lowerCamelCase = decoder_ffn_dim
__lowerCamelCase = encoder_ffn_dim
__lowerCamelCase = dropout
__lowerCamelCase = attention_dropout
__lowerCamelCase = activation_dropout
__lowerCamelCase = activation_function
__lowerCamelCase = init_std
__lowerCamelCase = encoder_layerdrop
__lowerCamelCase = decoder_layerdrop
__lowerCamelCase = use_cache
__lowerCamelCase = encoder_layers
__lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True
__lowerCamelCase = max_source_positions
__lowerCamelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
__lowerCamelCase = classifier_proj_size
__lowerCamelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowerCamelCase = apply_spec_augment
__lowerCamelCase = mask_time_prob
__lowerCamelCase = mask_time_length
__lowerCamelCase = mask_time_min_masks
__lowerCamelCase = mask_feature_prob
__lowerCamelCase = mask_feature_length
__lowerCamelCase = mask_feature_min_masks
__lowerCamelCase = median_filter_width
super().__init__(
pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , suppress_tokens=lowerCamelCase__ , begin_suppress_tokens=lowerCamelCase__ , **lowerCamelCase__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
@property
def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
__lowerCamelCase = OrderedDict(
[
('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}),
] )
if self.use_past:
__lowerCamelCase = {0: 'batch'}
else:
__lowerCamelCase = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(lowerCamelCase__ , direction='inputs' )
return common_inputs
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = 22_050 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 220 , ) -> Mapping[str, Any]:
'''simple docstring'''
__lowerCamelCase = OrderedDict()
__lowerCamelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase__ , framework=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , time_duration=lowerCamelCase__ , frequency=lowerCamelCase__ , )
__lowerCamelCase = encoder_inputs['input_features'].shape[2]
__lowerCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length
__lowerCamelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = encoder_inputs.pop('input_features' )
__lowerCamelCase = decoder_inputs.pop('decoder_input_ids' )
if "past_key_values" in decoder_inputs:
__lowerCamelCase = decoder_inputs.pop('past_key_values' )
return dummy_inputs
@property
def lowercase_ ( self ) -> float:
'''simple docstring'''
return 1e-3
| 348 | 0 |
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
__A = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model")
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = SpeechTaTokenizer
snake_case_ = False
snake_case_ = True
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
__lowerCamelCase = SpeechTaTokenizer(lowerCamelCase__ )
__lowerCamelCase = AddedToken('<mask>' , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ )
__lowerCamelCase = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase_ ( self , lowerCamelCase__ ) -> int:
'''simple docstring'''
__lowerCamelCase = 'this is a test'
__lowerCamelCase = 'this is a test'
return input_text, output_text
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=False , lowerCamelCase__=20 , lowerCamelCase__=5 ) -> Dict:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.get_input_output_texts(lowerCamelCase__ )
__lowerCamelCase = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ )
__lowerCamelCase = tokenizer.decode(lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ )
return text, ids
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = '<pad>'
__lowerCamelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-4] , 'œ' )
self.assertEqual(vocab_keys[-2] , '<mask>' )
self.assertEqual(vocab_keys[-1] , '<ctc_blank>' )
self.assertEqual(len(lowerCamelCase__ ) , 81 )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 79 )
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = self.get_tokenizers(do_lower_case=lowerCamelCase__ )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
__lowerCamelCase = tokenizer.vocab_size
__lowerCamelCase = len(lowerCamelCase__ )
self.assertNotEqual(lowerCamelCase__ , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
__lowerCamelCase = ['aaaaa bbbbbb', 'cccccccccdddddddd']
__lowerCamelCase = tokenizer.add_tokens(lowerCamelCase__ )
__lowerCamelCase = tokenizer.vocab_size
__lowerCamelCase = len(lowerCamelCase__ )
self.assertNotEqual(lowerCamelCase__ , 0 )
self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
self.assertEqual(lowerCamelCase__ , len(lowerCamelCase__ ) )
self.assertEqual(lowerCamelCase__ , all_size + len(lowerCamelCase__ ) )
__lowerCamelCase = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=lowerCamelCase__ )
self.assertGreaterEqual(len(lowerCamelCase__ ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
__lowerCamelCase = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'}
__lowerCamelCase = tokenizer.add_special_tokens(lowerCamelCase__ )
__lowerCamelCase = tokenizer.vocab_size
__lowerCamelCase = len(lowerCamelCase__ )
self.assertNotEqual(lowerCamelCase__ , 0 )
self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
self.assertEqual(lowerCamelCase__ , len(lowerCamelCase__ ) )
self.assertEqual(lowerCamelCase__ , all_size_a + len(lowerCamelCase__ ) )
__lowerCamelCase = tokenizer.encode(
'>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=lowerCamelCase__ )
self.assertGreaterEqual(len(lowerCamelCase__ ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
def lowercase_ ( self ) -> str:
'''simple docstring'''
pass
def lowercase_ ( self ) -> int:
'''simple docstring'''
pass
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = tokenizer.tokenize('This is a test' )
# fmt: off
self.assertListEqual(lowerCamelCase__ , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , )
__lowerCamelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
lowerCamelCase__ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
__lowerCamelCase = tokenizer.convert_tokens_to_ids(lowerCamelCase__ )
# fmt: off
self.assertListEqual(lowerCamelCase__ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
__lowerCamelCase = tokenizer.convert_ids_to_tokens(lowerCamelCase__ )
self.assertListEqual(
lowerCamelCase__ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
@slow
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = [
'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides '
'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural '
'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained '
'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.',
'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly '
'conditioning on both left and right context in all layers.',
'The quick brown fox jumps over the lazy dog.',
]
# fmt: off
__lowerCamelCase = {
'input_ids': [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
'attention_mask': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCamelCase__ , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=lowerCamelCase__ , )
| 352 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ) -> int:
'''simple docstring'''
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_input_mask
__lowerCamelCase = use_token_type_ids
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = rotary_dim
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = initializer_range
__lowerCamelCase = None
__lowerCamelCase = vocab_size - 1
__lowerCamelCase = vocab_size - 1
__lowerCamelCase = vocab_size - 1
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = None
if self.use_input_mask:
__lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs
__lowerCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any:
'''simple docstring'''
__lowerCamelCase = 20
__lowerCamelCase = model_class_name(lowerCamelCase__ )
__lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ )
__lowerCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' )
__lowerCamelCase = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__lowerCamelCase = model(
input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , )
__lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' )
__lowerCamelCase = model(
input_ids[:, -1:] , attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase__ , )
__lowerCamelCase = model(lowerCamelCase__ )
__lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int:
'''simple docstring'''
__lowerCamelCase = 20
__lowerCamelCase = model_class_name(lowerCamelCase__ )
__lowerCamelCase = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
__lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ )
__lowerCamelCase = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__lowerCamelCase = model(
input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , )
__lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' )
__lowerCamelCase = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase__ , position_ids=lowerCamelCase__ , )
__lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )
__lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
@require_flax
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
snake_case_ = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = FlaxGPTJModelTester(self )
def lowercase_ ( self ) -> str:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
@tooslow
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' )
__lowerCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowerCamelCase__ , truncation=lowerCamelCase__ )
__lowerCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' )
__lowerCamelCase = False
__lowerCamelCase = model.config.eos_token_id
__lowerCamelCase = jax.jit(model.generate )
__lowerCamelCase = jit_generate(
inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences
__lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ )
__lowerCamelCase = [
'Hello this is a long string of text.\n\nI\'m trying to get the text of the',
'Hey, I\'m a little late to the party. I\'m going to',
]
self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
@is_pt_flax_cross_test
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning
__lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape
__lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowerCamelCase__ ):
__lowerCamelCase = 0
__lowerCamelCase = 1
__lowerCamelCase = 0
__lowerCamelCase = 1
__lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval()
__lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa )
__lowerCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase__ )
__lowerCamelCase = fx_state
with torch.no_grad():
__lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple()
__lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple()
self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowerCamelCase__ )
__lowerCamelCase = model_class.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ )
__lowerCamelCase = fx_model_loaded(**lowerCamelCase__ ).to_tuple()
self.assertEqual(
len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output_loaded, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning
__lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval()
__lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa )
__lowerCamelCase = load_flax_weights_in_pytorch_model(lowerCamelCase__ , fx_model.params )
__lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape
__lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowerCamelCase__ ):
__lowerCamelCase = 0
__lowerCamelCase = 1
__lowerCamelCase = 0
__lowerCamelCase = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
__lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple()
__lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple()
self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowerCamelCase__ )
__lowerCamelCase = pt_model_class.from_pretrained(lowerCamelCase__ , from_flax=lowerCamelCase__ )
with torch.no_grad():
__lowerCamelCase = pt_model_loaded(**lowerCamelCase__ ).to_tuple()
self.assertEqual(
len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__lowerCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' )
__lowerCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCamelCase__ )
| 348 | 0 |
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json",
"facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json",
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''encodec'''
def __init__( self , lowerCamelCase__=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCamelCase__=24_000 , lowerCamelCase__=1 , lowerCamelCase__=False , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=128 , lowerCamelCase__=32 , lowerCamelCase__=1 , lowerCamelCase__=[8, 5, 4, 2] , lowerCamelCase__="weight_norm" , lowerCamelCase__=7 , lowerCamelCase__=7 , lowerCamelCase__=3 , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__="reflect" , lowerCamelCase__=2 , lowerCamelCase__=2 , lowerCamelCase__=1.0 , lowerCamelCase__=1_024 , lowerCamelCase__=None , lowerCamelCase__=True , **lowerCamelCase__ , ) -> Any:
'''simple docstring'''
__lowerCamelCase = target_bandwidths
__lowerCamelCase = sampling_rate
__lowerCamelCase = audio_channels
__lowerCamelCase = normalize
__lowerCamelCase = chunk_length_s
__lowerCamelCase = overlap
__lowerCamelCase = hidden_size
__lowerCamelCase = num_filters
__lowerCamelCase = num_residual_layers
__lowerCamelCase = upsampling_ratios
__lowerCamelCase = norm_type
__lowerCamelCase = kernel_size
__lowerCamelCase = last_kernel_size
__lowerCamelCase = residual_kernel_size
__lowerCamelCase = dilation_growth_rate
__lowerCamelCase = use_causal_conv
__lowerCamelCase = pad_mode
__lowerCamelCase = compress
__lowerCamelCase = num_lstm_layers
__lowerCamelCase = trim_right_ratio
__lowerCamelCase = codebook_size
__lowerCamelCase = codebook_dim if codebook_dim is not None else hidden_size
__lowerCamelCase = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" )
super().__init__(**lowerCamelCase__ )
@property
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def lowercase_ ( self ) -> int:
'''simple docstring'''
return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 353 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
__A = False
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowercase_ ( self ) -> int:
'''simple docstring'''
return 12
@property
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
return 12
@property
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
return 32
@property
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
__lowerCamelCase = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , )
return model
@property
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
torch.manual_seed(0 )
__lowerCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModel(lowerCamelCase__ )
@property
def lowercase_ ( self ) -> str:
'''simple docstring'''
torch.manual_seed(0 )
__lowerCamelCase = 12
__lowerCamelCase = 12
__lowerCamelCase = {
'attention_bias': True,
'cross_attention_dim': 32,
'attention_head_dim': height * width,
'num_attention_heads': 1,
'num_vector_embeds': self.num_embed,
'num_embeds_ada_norm': self.num_embeds_ada_norm,
'norm_num_groups': 32,
'sample_size': width,
'activation_fn': 'geglu-approximate',
}
__lowerCamelCase = TransformeraDModel(**lowerCamelCase__ )
return model
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = 'cpu'
__lowerCamelCase = self.dummy_vqvae
__lowerCamelCase = self.dummy_text_encoder
__lowerCamelCase = self.dummy_tokenizer
__lowerCamelCase = self.dummy_transformer
__lowerCamelCase = VQDiffusionScheduler(self.num_embed )
__lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=lowerCamelCase__ )
__lowerCamelCase = VQDiffusionPipeline(
vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , )
__lowerCamelCase = pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = 'teddy bear playing in the pool'
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' )
__lowerCamelCase = output.images
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipe(
[prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
__lowerCamelCase = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = 'cpu'
__lowerCamelCase = self.dummy_vqvae
__lowerCamelCase = self.dummy_text_encoder
__lowerCamelCase = self.dummy_tokenizer
__lowerCamelCase = self.dummy_transformer
__lowerCamelCase = VQDiffusionScheduler(self.num_embed )
__lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings(
learnable=lowerCamelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length )
__lowerCamelCase = VQDiffusionPipeline(
vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , )
__lowerCamelCase = pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = 'teddy bear playing in the pool'
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' )
__lowerCamelCase = output.images
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipe(
[prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
__lowerCamelCase = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' )
__lowerCamelCase = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' )
__lowerCamelCase = pipeline.to(lowerCamelCase__ )
pipeline.set_progress_bar_config(disable=lowerCamelCase__ )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipeline(
'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=lowerCamelCase__ , output_type='np' , )
__lowerCamelCase = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 348 | 0 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from typing import Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import randn_tensor
from .scheduling_utils import SchedulerMixin
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
"""simple docstring"""
snake_case_ = 1
@register_to_config
def __init__( self , lowerCamelCase__=2_000 , lowerCamelCase__=0.1 , lowerCamelCase__=20 , lowerCamelCase__=1e-3 ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Any:
'''simple docstring'''
__lowerCamelCase = torch.linspace(1 , self.config.sampling_eps , lowerCamelCase__ , device=lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ) -> Optional[Any]:
'''simple docstring'''
if self.timesteps is None:
raise ValueError(
'`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' )
# TODO(Patrick) better comments + non-PyTorch
# postprocess model score
__lowerCamelCase = (
-0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min
)
__lowerCamelCase = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) )
__lowerCamelCase = std.flatten()
while len(std.shape ) < len(score.shape ):
__lowerCamelCase = std.unsqueeze(-1 )
__lowerCamelCase = -score / std
# compute
__lowerCamelCase = -1.0 / len(self.timesteps )
__lowerCamelCase = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min)
__lowerCamelCase = beta_t.flatten()
while len(beta_t.shape ) < len(x.shape ):
__lowerCamelCase = beta_t.unsqueeze(-1 )
__lowerCamelCase = -0.5 * beta_t * x
__lowerCamelCase = torch.sqrt(lowerCamelCase__ )
__lowerCamelCase = drift - diffusion**2 * score
__lowerCamelCase = x + drift * dt
# add noise
__lowerCamelCase = randn_tensor(x.shape , layout=x.layout , generator=lowerCamelCase__ , device=x.device , dtype=x.dtype )
__lowerCamelCase = x_mean + diffusion * math.sqrt(-dt ) * noise
return x, x_mean
def __len__( self ) -> Optional[Any]:
'''simple docstring'''
return self.config.num_train_timesteps
| 354 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=32 * 8 , lowerCamelCase__=32 * 8 , lowerCamelCase__=4 , lowerCamelCase__=64 , ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = is_training
__lowerCamelCase = use_auxiliary_loss
__lowerCamelCase = num_queries
__lowerCamelCase = num_channels
__lowerCamelCase = min_size
__lowerCamelCase = max_size
__lowerCamelCase = num_labels
__lowerCamelCase = hidden_dim
__lowerCamelCase = hidden_dim
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
__lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
lowerCamelCase__ )
__lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ )
__lowerCamelCase = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5
).float()
__lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long()
__lowerCamelCase = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = MaskaFormerConfig(
hidden_size=self.hidden_dim , )
__lowerCamelCase = self.num_queries
__lowerCamelCase = self.num_labels
__lowerCamelCase = [1, 1, 1, 1]
__lowerCamelCase = self.num_channels
__lowerCamelCase = 64
__lowerCamelCase = 128
__lowerCamelCase = self.hidden_dim
__lowerCamelCase = self.hidden_dim
__lowerCamelCase = self.hidden_dim
return config
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask}
return config, inputs_dict
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any:
'''simple docstring'''
__lowerCamelCase = output.encoder_hidden_states
__lowerCamelCase = output.pixel_decoder_hidden_states
__lowerCamelCase = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Tuple:
'''simple docstring'''
with torch.no_grad():
__lowerCamelCase = MaskaFormerModel(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ )
__lowerCamelCase = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
def comm_check_on_output(lowerCamelCase__ ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
__lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ )
__lowerCamelCase = model(lowerCamelCase__ )
comm_check_on_output(lowerCamelCase__ )
__lowerCamelCase = model(
pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ )
comm_check_on_output(lowerCamelCase__ )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {}
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = MaskaFormerModelTester(self )
__lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ )
@unittest.skip(reason='Mask2Former does not use inputs_embeds' )
def lowercase_ ( self ) -> Any:
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former is not a generative model' )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former does not use token embeddings' )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(
reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
pass
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(lowerCamelCase__ )
__lowerCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase = [*signature.parameters.keys()]
__lowerCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , lowerCamelCase__ )
@slow
def lowercase_ ( self ) -> int:
'''simple docstring'''
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
__lowerCamelCase = MaskaFormerModel.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = (self.model_tester.min_size,) * 2
__lowerCamelCase = {
'pixel_values': torch.randn((2, 3, *size) , device=lowerCamelCase__ ),
'mask_labels': torch.randn((2, 10, *size) , device=lowerCamelCase__ ),
'class_labels': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(),
}
__lowerCamelCase = self.model_tester.get_config()
__lowerCamelCase = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ )
__lowerCamelCase = model(**lowerCamelCase__ )
self.assertTrue(outputs.loss is not None )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ )
__lowerCamelCase = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ )
self.assertTrue(outputs.attentions is not None )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
if not self.model_tester.is_training:
return
__lowerCamelCase = self.all_model_classes[1]
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = model_class(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.train()
__lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss
loss.backward()
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase = self.all_model_classes[1]
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = True
__lowerCamelCase = True
__lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ )
model.train()
__lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ )
__lowerCamelCase = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
__lowerCamelCase = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
__lowerCamelCase = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
__lowerCamelCase = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=lowerCamelCase__ )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__A = 1e-4
def lowerCamelCase_ ( ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_vision
@slow
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ )
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = prepare_img()
__lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ )
__lowerCamelCase = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) )
with torch.no_grad():
__lowerCamelCase = model(**lowerCamelCase__ )
__lowerCamelCase = torch.tensor(
[[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(lowerCamelCase__ )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
__lowerCamelCase = torch.tensor(
[[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(lowerCamelCase__ )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
__lowerCamelCase = torch.tensor(
[[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(lowerCamelCase__ )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval()
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = prepare_img()
__lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ )
__lowerCamelCase = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) )
with torch.no_grad():
__lowerCamelCase = model(**lowerCamelCase__ )
# masks_queries_logits
__lowerCamelCase = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
__lowerCamelCase = [
[-8.78_39, -9.00_56, -8.81_21],
[-7.41_04, -7.03_13, -6.54_01],
[-6.61_05, -6.34_27, -6.46_75],
]
__lowerCamelCase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
# class_queries_logits
__lowerCamelCase = outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) )
__lowerCamelCase = torch.tensor(
[
[1.83_24, -8.08_35, -4.19_22],
[0.84_50, -9.00_50, -3.60_53],
[0.30_45, -7.72_93, -3.02_75],
] ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval()
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = image_processor(
[np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , )
__lowerCamelCase = inputs['pixel_values'].to(lowerCamelCase__ )
__lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['mask_labels']]
__lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['class_labels']]
with torch.no_grad():
__lowerCamelCase = model(**lowerCamelCase__ )
self.assertTrue(outputs.loss is not None )
| 348 | 0 |
from typing import List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json",
}
class __lowerCamelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''autoformer'''
snake_case_ = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "student_t" , lowerCamelCase__ = "nll" , lowerCamelCase__ = 1 , lowerCamelCase__ = [1, 2, 3, 4, 5, 6, 7] , lowerCamelCase__ = True , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 64 , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = 32 , lowerCamelCase__ = 32 , lowerCamelCase__ = "gelu" , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = True , lowerCamelCase__=True , lowerCamelCase__ = 10 , lowerCamelCase__ = 25 , lowerCamelCase__ = 3 , **lowerCamelCase__ , ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = prediction_length
__lowerCamelCase = context_length if context_length is not None else prediction_length
__lowerCamelCase = distribution_output
__lowerCamelCase = loss
__lowerCamelCase = input_size
__lowerCamelCase = num_time_features
__lowerCamelCase = lags_sequence
__lowerCamelCase = scaling
__lowerCamelCase = num_dynamic_real_features
__lowerCamelCase = num_static_real_features
__lowerCamelCase = num_static_categorical_features
if cardinality is not None and num_static_categorical_features > 0:
if len(lowerCamelCase__ ) != num_static_categorical_features:
raise ValueError(
'The cardinality should be a list of the same length as `num_static_categorical_features`' )
__lowerCamelCase = cardinality
else:
__lowerCamelCase = [0]
if embedding_dimension is not None and num_static_categorical_features > 0:
if len(lowerCamelCase__ ) != num_static_categorical_features:
raise ValueError(
'The embedding dimension should be a list of the same length as `num_static_categorical_features`' )
__lowerCamelCase = embedding_dimension
else:
__lowerCamelCase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
__lowerCamelCase = num_parallel_samples
# Transformer architecture configuration
__lowerCamelCase = input_size * len(self.lags_sequence ) + self._number_of_features
__lowerCamelCase = d_model
__lowerCamelCase = encoder_attention_heads
__lowerCamelCase = decoder_attention_heads
__lowerCamelCase = encoder_ffn_dim
__lowerCamelCase = decoder_ffn_dim
__lowerCamelCase = encoder_layers
__lowerCamelCase = decoder_layers
__lowerCamelCase = dropout
__lowerCamelCase = attention_dropout
__lowerCamelCase = activation_dropout
__lowerCamelCase = encoder_layerdrop
__lowerCamelCase = decoder_layerdrop
__lowerCamelCase = activation_function
__lowerCamelCase = init_std
__lowerCamelCase = use_cache
# Autoformer
__lowerCamelCase = label_length
__lowerCamelCase = moving_average
__lowerCamelCase = autocorrelation_factor
super().__init__(is_encoder_decoder=lowerCamelCase__ , **lowerCamelCase__ )
@property
def lowercase_ ( self ) -> int:
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 355 |
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__A = {
"facebook/mask2former-swin-small-coco-instance": (
"https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
__A = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''mask2former'''
snake_case_ = ['''swin''']
snake_case_ = {'''hidden_size''': '''hidden_dim'''}
def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 1_024 , lowerCamelCase__ = "relu" , lowerCamelCase__ = 6 , lowerCamelCase__ = 10 , lowerCamelCase__ = 8 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 2_048 , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = 4 , lowerCamelCase__ = 255 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 2.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 12_544 , lowerCamelCase__ = 3.0 , lowerCamelCase__ = 0.75 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = True , lowerCamelCase__ = [4, 8, 16, 32] , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Tuple:
'''simple docstring'''
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' )
__lowerCamelCase = CONFIG_MAPPING['swin'](
image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
__lowerCamelCase = backbone_config.pop('model_type' )
__lowerCamelCase = CONFIG_MAPPING[backbone_model_type]
__lowerCamelCase = config_class.from_dict(lowerCamelCase__ )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """
f"""Supported model types: {','.join(self.backbones_supported )}""" )
__lowerCamelCase = backbone_config
__lowerCamelCase = feature_size
__lowerCamelCase = mask_feature_size
__lowerCamelCase = hidden_dim
__lowerCamelCase = encoder_feedforward_dim
__lowerCamelCase = activation_function
__lowerCamelCase = encoder_layers
__lowerCamelCase = decoder_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = dropout
__lowerCamelCase = dim_feedforward
__lowerCamelCase = pre_norm
__lowerCamelCase = enforce_input_projection
__lowerCamelCase = common_stride
__lowerCamelCase = ignore_value
__lowerCamelCase = num_queries
__lowerCamelCase = no_object_weight
__lowerCamelCase = class_weight
__lowerCamelCase = mask_weight
__lowerCamelCase = dice_weight
__lowerCamelCase = train_num_points
__lowerCamelCase = oversample_ratio
__lowerCamelCase = importance_sample_ratio
__lowerCamelCase = init_std
__lowerCamelCase = init_xavier_std
__lowerCamelCase = use_auxiliary_loss
__lowerCamelCase = feature_strides
__lowerCamelCase = output_auxiliary_logits
__lowerCamelCase = decoder_layers
super().__init__(**lowerCamelCase__ )
@classmethod
def lowercase_ ( cls , lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
return cls(
backbone_config=lowerCamelCase__ , **lowerCamelCase__ , )
def lowercase_ ( self ) -> Dict[str, any]:
'''simple docstring'''
__lowerCamelCase = copy.deepcopy(self.__dict__ )
__lowerCamelCase = self.backbone_config.to_dict()
__lowerCamelCase = self.__class__.model_type
return output
| 348 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__A = {
"configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["BloomTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST",
"BloomForCausalLM",
"BloomModel",
"BloomPreTrainedModel",
"BloomForSequenceClassification",
"BloomForTokenClassification",
"BloomForQuestionAnswering",
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 356 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = 42
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
"""simple docstring"""
@register_to_config
def __init__( self , lowerCamelCase__ = 32 , lowerCamelCase__ = 64 , lowerCamelCase__ = 20 , lowerCamelCase__ = 768 , lowerCamelCase__=77 , lowerCamelCase__=4 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = "silu" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "linear" , lowerCamelCase__ = "prd" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Tuple:
'''simple docstring'''
super().__init__()
__lowerCamelCase = num_attention_heads
__lowerCamelCase = attention_head_dim
__lowerCamelCase = num_attention_heads * attention_head_dim
__lowerCamelCase = additional_embeddings
__lowerCamelCase = time_embed_dim or inner_dim
__lowerCamelCase = embedding_proj_dim or embedding_dim
__lowerCamelCase = clip_embed_dim or embedding_dim
__lowerCamelCase = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 )
__lowerCamelCase = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ )
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
if embedding_proj_norm_type is None:
__lowerCamelCase = None
elif embedding_proj_norm_type == "layer":
__lowerCamelCase = nn.LayerNorm(lowerCamelCase__ )
else:
raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" )
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
if encoder_hid_proj_type is None:
__lowerCamelCase = None
elif encoder_hid_proj_type == "linear":
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
else:
raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" )
__lowerCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) )
if added_emb_type == "prd":
__lowerCamelCase = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) )
elif added_emb_type is None:
__lowerCamelCase = None
else:
raise ValueError(
f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" )
__lowerCamelCase = nn.ModuleList(
[
BasicTransformerBlock(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='gelu' , attention_bias=lowerCamelCase__ , )
for d in range(lowerCamelCase__ )
] )
if norm_in_type == "layer":
__lowerCamelCase = nn.LayerNorm(lowerCamelCase__ )
elif norm_in_type is None:
__lowerCamelCase = None
else:
raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" )
__lowerCamelCase = nn.LayerNorm(lowerCamelCase__ )
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 )
causal_attention_mask.triu_(1 )
__lowerCamelCase = causal_attention_mask[None, ...]
self.register_buffer('causal_attention_mask' , lowerCamelCase__ , persistent=lowerCamelCase__ )
__lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) )
__lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def lowercase_ ( self ) -> Dict[str, AttentionProcessor]:
'''simple docstring'''
__lowerCamelCase = {}
def fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
if hasattr(lowerCamelCase__ , 'set_processor' ):
__lowerCamelCase = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
return processors
def lowercase_ ( self , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = len(self.attn_processors.keys() )
if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count:
raise ValueError(
f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the"""
f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
if hasattr(lowerCamelCase__ , 'set_processor' ):
if not isinstance(lowerCamelCase__ , lowerCamelCase__ ):
module.set_processor(lowerCamelCase__ )
else:
module.set_processor(processor.pop(f"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ )
for name, module in self.named_children():
fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> int:
'''simple docstring'''
__lowerCamelCase = hidden_states.shape[0]
__lowerCamelCase = timestep
if not torch.is_tensor(lowerCamelCase__ ):
__lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0:
__lowerCamelCase = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__lowerCamelCase = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device )
__lowerCamelCase = self.time_proj(lowerCamelCase__ )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
__lowerCamelCase = timesteps_projected.to(dtype=self.dtype )
__lowerCamelCase = self.time_embedding(lowerCamelCase__ )
if self.embedding_proj_norm is not None:
__lowerCamelCase = self.embedding_proj_norm(lowerCamelCase__ )
__lowerCamelCase = self.embedding_proj(lowerCamelCase__ )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
__lowerCamelCase = self.encoder_hidden_states_proj(lowerCamelCase__ )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' )
__lowerCamelCase = self.proj_in(lowerCamelCase__ )
__lowerCamelCase = self.positional_embedding.to(hidden_states.dtype )
__lowerCamelCase = []
__lowerCamelCase = 0
if encoder_hidden_states is not None:
additional_embeds.append(lowerCamelCase__ )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
__lowerCamelCase = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
__lowerCamelCase = hidden_states[:, None, :]
__lowerCamelCase = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
__lowerCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 )
additional_embeds.append(lowerCamelCase__ )
__lowerCamelCase = torch.cat(
lowerCamelCase__ , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
__lowerCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
__lowerCamelCase = F.pad(
lowerCamelCase__ , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
__lowerCamelCase = hidden_states + positional_embeddings
if attention_mask is not None:
__lowerCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0
__lowerCamelCase = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 )
__lowerCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
__lowerCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
__lowerCamelCase = self.norm_in(lowerCamelCase__ )
for block in self.transformer_blocks:
__lowerCamelCase = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ )
__lowerCamelCase = self.norm_out(lowerCamelCase__ )
if self.prd_embedding is not None:
__lowerCamelCase = hidden_states[:, -1]
else:
__lowerCamelCase = hidden_states[:, additional_embeddings_len:]
__lowerCamelCase = self.proj_to_clip_embeddings(lowerCamelCase__ )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 348 | 0 |
import numpy as np
from PIL import Image
def lowerCamelCase_ ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> np.ndarray:
"""simple docstring"""
__lowerCamelCase = np.array(UpperCamelCase__ )
if arr.shape[0] != arr.shape[1]:
raise ValueError('The input array is not a square matrix' )
__lowerCamelCase = 0
__lowerCamelCase = 0
__lowerCamelCase = 0
__lowerCamelCase = 0
# compute the shape of the output matrix
__lowerCamelCase = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
__lowerCamelCase = np.zeros((maxpool_shape, maxpool_shape) )
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
__lowerCamelCase = np.max(arr[i : i + size, j : j + size] )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
__lowerCamelCase = 0
__lowerCamelCase = 0
return updated_arr
def lowerCamelCase_ ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> np.ndarray:
"""simple docstring"""
__lowerCamelCase = np.array(UpperCamelCase__ )
if arr.shape[0] != arr.shape[1]:
raise ValueError('The input array is not a square matrix' )
__lowerCamelCase = 0
__lowerCamelCase = 0
__lowerCamelCase = 0
__lowerCamelCase = 0
# compute the shape of the output matrix
__lowerCamelCase = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
__lowerCamelCase = np.zeros((avgpool_shape, avgpool_shape) )
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
__lowerCamelCase = int(np.average(arr[i : i + size, j : j + size] ) )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
__lowerCamelCase = 0
__lowerCamelCase = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name="avgpooling", verbose=True)
# Loading the image
__A = Image.open("path_to_image")
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
| 357 |
import sys
from collections import defaultdict
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = []
def lowercase_ ( self , lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
return self.node_position[vertex]
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int:
'''simple docstring'''
__lowerCamelCase = pos
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
__lowerCamelCase = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
__lowerCamelCase = 2 * start + 1
else:
__lowerCamelCase = 2 * start + 2
if heap[smallest_child] < heap[start]:
__lowerCamelCase , __lowerCamelCase = heap[smallest_child], positions[smallest_child]
__lowerCamelCase , __lowerCamelCase = (
heap[start],
positions[start],
)
__lowerCamelCase , __lowerCamelCase = temp, tempa
__lowerCamelCase = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , lowerCamelCase__ )
self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int:
'''simple docstring'''
__lowerCamelCase = position[index]
while index != 0:
__lowerCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
__lowerCamelCase = heap[parent]
__lowerCamelCase = position[parent]
self.set_position(position[parent] , lowerCamelCase__ )
else:
__lowerCamelCase = val
__lowerCamelCase = temp
self.set_position(lowerCamelCase__ , lowerCamelCase__ )
break
__lowerCamelCase = parent
else:
__lowerCamelCase = val
__lowerCamelCase = temp
self.set_position(lowerCamelCase__ , 0 )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str:
'''simple docstring'''
__lowerCamelCase = len(lowerCamelCase__ ) // 2 - 1
for i in range(lowerCamelCase__ , -1 , -1 ):
self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = positions[0]
__lowerCamelCase = sys.maxsize
self.top_to_bottom(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ )
return temp
def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = Heap()
__lowerCamelCase = [0] * len(UpperCamelCase__ )
__lowerCamelCase = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
__lowerCamelCase = [] # Heap of Distance of vertices from their neighboring vertex
__lowerCamelCase = []
for vertex in range(len(UpperCamelCase__ ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCamelCase__ )
heap.node_position.append(UpperCamelCase__ )
__lowerCamelCase = []
__lowerCamelCase = 1
__lowerCamelCase = sys.maxsize
for neighbor, distance in adjacency_list[0]:
__lowerCamelCase = 0
__lowerCamelCase = distance
heap.heapify(UpperCamelCase__ , UpperCamelCase__ )
for _ in range(1 , len(UpperCamelCase__ ) ):
__lowerCamelCase = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
__lowerCamelCase = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCamelCase__ )]
):
__lowerCamelCase = distance
heap.bottom_to_top(
UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ )
__lowerCamelCase = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
__A = int(input("Enter number of edges: ").strip())
__A = defaultdict(list)
for _ in range(edges_number):
__A = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 348 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
__A = None
__A = logging.get_logger(__name__)
__A = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
__A = {
"vocab_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model"
),
},
"tokenizer_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json"
),
},
}
__A = {
"facebook/nllb-large-en-ro": 10_24,
"facebook/nllb-200-distilled-600M": 10_24,
}
# fmt: off
__A = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"]
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = ['''input_ids''', '''attention_mask''']
snake_case_ = NllbTokenizer
snake_case_ = []
snake_case_ = []
def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=False , **lowerCamelCase__ , ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token
__lowerCamelCase = legacy_behaviour
super().__init__(
vocab_file=lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , src_lang=lowerCamelCase__ , tgt_lang=lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , legacy_behaviour=lowerCamelCase__ , **lowerCamelCase__ , )
__lowerCamelCase = vocab_file
__lowerCamelCase = False if not self.vocab_file else True
__lowerCamelCase = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} )
__lowerCamelCase = {
lang_code: self.convert_tokens_to_ids(lowerCamelCase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
__lowerCamelCase = src_lang if src_lang is not None else 'eng_Latn'
__lowerCamelCase = self.convert_tokens_to_ids(self._src_lang )
__lowerCamelCase = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def lowercase_ ( self ) -> str:
'''simple docstring'''
return self._src_lang
@src_lang.setter
def lowercase_ ( self , lowerCamelCase__ ) -> None:
'''simple docstring'''
__lowerCamelCase = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]:
'''simple docstring'''
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
__lowerCamelCase = src_lang
__lowerCamelCase = self(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ )
__lowerCamelCase = self.convert_tokens_to_ids(lowerCamelCase__ )
__lowerCamelCase = tgt_lang_id
return inputs
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = "eng_Latn" , lowerCamelCase__ = None , lowerCamelCase__ = "fra_Latn" , **lowerCamelCase__ , ) -> BatchEncoding:
'''simple docstring'''
__lowerCamelCase = src_lang
__lowerCamelCase = tgt_lang
return super().prepare_seqaseq_batch(lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ )
def lowercase_ ( self ) -> int:
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def lowercase_ ( self , lowerCamelCase__ ) -> None:
'''simple docstring'''
__lowerCamelCase = self.convert_tokens_to_ids(lowerCamelCase__ )
if self.legacy_behaviour:
__lowerCamelCase = []
__lowerCamelCase = [self.eos_token_id, self.cur_lang_code]
else:
__lowerCamelCase = [self.cur_lang_code]
__lowerCamelCase = [self.eos_token_id]
__lowerCamelCase = self.convert_ids_to_tokens(self.prefix_tokens )
__lowerCamelCase = self.convert_ids_to_tokens(self.suffix_tokens )
__lowerCamelCase = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def lowercase_ ( self , lowerCamelCase__ ) -> None:
'''simple docstring'''
__lowerCamelCase = self.convert_tokens_to_ids(lowerCamelCase__ )
if self.legacy_behaviour:
__lowerCamelCase = []
__lowerCamelCase = [self.eos_token_id, self.cur_lang_code]
else:
__lowerCamelCase = [self.cur_lang_code]
__lowerCamelCase = [self.eos_token_id]
__lowerCamelCase = self.convert_ids_to_tokens(self.prefix_tokens )
__lowerCamelCase = self.convert_ids_to_tokens(self.suffix_tokens )
__lowerCamelCase = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]:
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(lowerCamelCase__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" )
return
__lowerCamelCase = os.path.join(
lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ):
copyfile(self.vocab_file , lowerCamelCase__ )
return (out_vocab_file,)
| 358 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=__magic_name__ )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
snake_case_ = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} )
snake_case_ = Features(
{
'''answers''': Sequence(
{
'''text''': Value('''string''' ),
'''answer_start''': Value('''int32''' ),
} )
} )
snake_case_ = "question"
snake_case_ = "context"
snake_case_ = "answers"
@property
def lowercase_ ( self ) -> Dict[str, str]:
'''simple docstring'''
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 348 | 0 |
__A = {
"joule": 1.0,
"kilojoule": 10_00,
"megajoule": 1_00_00_00,
"gigajoule": 10_00_00_00_00,
"wattsecond": 1.0,
"watthour": 36_00,
"kilowatthour": 3_60_00_00,
"newtonmeter": 1.0,
"calorie_nutr": 41_86.8,
"kilocalorie_nutr": 4_18_68_00.00,
"electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9,
"britishthermalunit_it": 10_55.0_55_85,
"footpound": 1.3_5_5_8_1_8,
}
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : float ):
"""simple docstring"""
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
__lowerCamelCase = (
F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"""
F"""Valid values are: {', '.join(UpperCamelCase__ )}"""
)
raise ValueError(UpperCamelCase__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 359 |
import requests
__A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey="
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None:
"""simple docstring"""
__lowerCamelCase = requests.get(_NEWS_API + bbc_news_api_key ).json()
# each article in the list is a dict
for i, article in enumerate(bbc_news_page['articles'] , 1 ):
print(F"""{i}.) {article['title']}""" )
if __name__ == "__main__":
fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
| 348 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__A = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = ['''pixel_values''']
def __init__( self , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = PILImageResampling.BICUBIC , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = 1 / 255 , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , **lowerCamelCase__ , ) -> None:
'''simple docstring'''
super().__init__(**lowerCamelCase__ )
__lowerCamelCase = size if size is not None else {'shortest_edge': 224}
__lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ )
__lowerCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224}
__lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ , param_name='crop_size' )
__lowerCamelCase = do_resize
__lowerCamelCase = size
__lowerCamelCase = resample
__lowerCamelCase = do_center_crop
__lowerCamelCase = crop_size
__lowerCamelCase = do_rescale
__lowerCamelCase = rescale_factor
__lowerCamelCase = do_normalize
__lowerCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__lowerCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD
__lowerCamelCase = do_convert_rgb
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = PILImageResampling.BICUBIC , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray:
'''simple docstring'''
__lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ )
if "shortest_edge" not in size:
raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
__lowerCamelCase = get_resize_output_image_size(lowerCamelCase__ , size=size['shortest_edge'] , default_to_square=lowerCamelCase__ )
return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray:
'''simple docstring'''
__lowerCamelCase = get_size_dict(lowerCamelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" )
return center_crop(lowerCamelCase__ , size=(size['height'], size['width']) , data_format=lowerCamelCase__ , **lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Optional[Any]:
'''simple docstring'''
return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray:
'''simple docstring'''
return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = ChannelDimension.FIRST , **lowerCamelCase__ , ) -> PIL.Image.Image:
'''simple docstring'''
__lowerCamelCase = do_resize if do_resize is not None else self.do_resize
__lowerCamelCase = size if size is not None else self.size
__lowerCamelCase = get_size_dict(lowerCamelCase__ , param_name='size' , default_to_square=lowerCamelCase__ )
__lowerCamelCase = resample if resample is not None else self.resample
__lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
__lowerCamelCase = crop_size if crop_size is not None else self.crop_size
__lowerCamelCase = get_size_dict(lowerCamelCase__ , param_name='crop_size' , default_to_square=lowerCamelCase__ )
__lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize
__lowerCamelCase = image_mean if image_mean is not None else self.image_mean
__lowerCamelCase = image_std if image_std is not None else self.image_std
__lowerCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__lowerCamelCase = make_list_of_images(lowerCamelCase__ )
if not valid_images(lowerCamelCase__ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__lowerCamelCase = [convert_to_rgb(lowerCamelCase__ ) for image in images]
# All transformations expect numpy arrays.
__lowerCamelCase = [to_numpy_array(lowerCamelCase__ ) for image in images]
if do_resize:
__lowerCamelCase = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images]
if do_center_crop:
__lowerCamelCase = [self.center_crop(image=lowerCamelCase__ , size=lowerCamelCase__ ) for image in images]
if do_rescale:
__lowerCamelCase = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images]
if do_normalize:
__lowerCamelCase = [self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images]
__lowerCamelCase = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images]
__lowerCamelCase = {'pixel_values': images}
return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ )
| 360 |
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
__A = logging.get_logger(__name__)
__A = TypeVar("DatasetType", Dataset, IterableDataset)
def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[List[float]] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType:
"""simple docstring"""
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('Unable to interleave an empty list of datasets.' )
for i, dataset in enumerate(UpperCamelCase__ ):
if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ):
if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """
'is an empty dataset dictionary.' )
raise ValueError(
F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n"""
F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" )
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" )
if i == 0:
__lowerCamelCase , __lowerCamelCase = (
(Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset)
)
elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise ValueError(
F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ )
else:
return _interleave_iterable_datasets(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ )
def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : int = 0 , ) -> DatasetType:
"""simple docstring"""
if not dsets:
raise ValueError('Unable to concatenate an empty list of datasets.' )
for i, dataset in enumerate(UpperCamelCase__ ):
if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ):
if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """
'is an empty dataset dictionary.' )
raise ValueError(
F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n"""
F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" )
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" )
if i == 0:
__lowerCamelCase , __lowerCamelCase = (
(Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset)
)
elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise ValueError(
F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ )
else:
return _concatenate_iterable_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ )
| 348 | 0 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_big_bird import BigBirdTokenizer
else:
__A = None
__A = logging.get_logger(__name__)
__A = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
__A = {
"vocab_file": {
"google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model",
"google/bigbird-roberta-large": (
"https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model"
),
"google/bigbird-base-trivia-itc": (
"https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model"
),
},
"tokenizer_file": {
"google/bigbird-roberta-base": (
"https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json"
),
"google/bigbird-roberta-large": (
"https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json"
),
"google/bigbird-base-trivia-itc": (
"https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json"
),
},
}
__A = {
"google/bigbird-roberta-base": 40_96,
"google/bigbird-roberta-large": 40_96,
"google/bigbird-base-trivia-itc": 40_96,
}
__A = "▁"
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = BigBirdTokenizer
snake_case_ = ['''input_ids''', '''attention_mask''']
snake_case_ = []
def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="<unk>" , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<pad>" , lowerCamelCase__="[SEP]" , lowerCamelCase__="[MASK]" , lowerCamelCase__="[CLS]" , **lowerCamelCase__ , ) -> Any:
'''simple docstring'''
__lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else bos_token
__lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else eos_token
__lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else unk_token
__lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else pad_token
__lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cls_token
__lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
__lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token
super().__init__(
lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , **lowerCamelCase__ , )
__lowerCamelCase = vocab_file
__lowerCamelCase = False if not self.vocab_file else True
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]:
'''simple docstring'''
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is None:
return [1] + ([0] * len(lowerCamelCase__ )) + [1]
return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1]
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]:
'''simple docstring'''
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]:
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(lowerCamelCase__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowerCamelCase = os.path.join(
lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ):
copyfile(self.vocab_file , lowerCamelCase__ )
return (out_vocab_file,)
| 361 |
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
__A = ["model.decoder.embed_positions.weights"]
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]:
"""simple docstring"""
if "emb" in name:
__lowerCamelCase = name.replace('emb' , 'model.decoder.embed_tokens' )
if "transformer" in name:
__lowerCamelCase = name.replace('transformer' , 'model.decoder' )
if "cross_attention" in name:
__lowerCamelCase = name.replace('cross_attention' , 'encoder_attn' )
if "linear1" in name:
__lowerCamelCase = name.replace('linear1' , 'fc1' )
if "linear2" in name:
__lowerCamelCase = name.replace('linear2' , 'fc2' )
if "norm1" in name:
__lowerCamelCase = name.replace('norm1' , 'self_attn_layer_norm' )
if "norm_cross" in name:
__lowerCamelCase = name.replace('norm_cross' , 'encoder_attn_layer_norm' )
if "norm2" in name:
__lowerCamelCase = name.replace('norm2' , 'final_layer_norm' )
if "out_norm" in name:
__lowerCamelCase = name.replace('out_norm' , 'model.decoder.layer_norm' )
if "linears" in name:
__lowerCamelCase = name.replace('linears' , 'lm_heads' )
if "condition_provider.conditioners.description.output_proj" in name:
__lowerCamelCase = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' )
return name
def lowerCamelCase_ ( UpperCamelCase__ : OrderedDict , UpperCamelCase__ : int ) -> Tuple[Dict, Dict]:
"""simple docstring"""
__lowerCamelCase = list(state_dict.keys() )
__lowerCamelCase = {}
for key in keys:
__lowerCamelCase = state_dict.pop(UpperCamelCase__ )
__lowerCamelCase = rename_keys(UpperCamelCase__ )
if "in_proj_weight" in key:
# split fused qkv proj
__lowerCamelCase = val[:hidden_size, :]
__lowerCamelCase = val[hidden_size : 2 * hidden_size, :]
__lowerCamelCase = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
__lowerCamelCase = val
else:
__lowerCamelCase = val
return state_dict, enc_dec_proj_state_dict
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> MusicgenDecoderConfig:
"""simple docstring"""
if checkpoint == "small":
# default config values
__lowerCamelCase = 1024
__lowerCamelCase = 24
__lowerCamelCase = 16
elif checkpoint == "medium":
__lowerCamelCase = 1536
__lowerCamelCase = 48
__lowerCamelCase = 24
elif checkpoint == "large":
__lowerCamelCase = 2048
__lowerCamelCase = 48
__lowerCamelCase = 32
else:
raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
__lowerCamelCase = MusicgenDecoderConfig(
hidden_size=UpperCamelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase__ , num_attention_heads=UpperCamelCase__ , )
return config
@torch.no_grad()
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[int]="cpu" ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = MusicGen.get_pretrained(UpperCamelCase__ , device=UpperCamelCase__ )
__lowerCamelCase = decoder_config_from_checkpoint(UpperCamelCase__ )
__lowerCamelCase = fairseq_model.lm.state_dict()
__lowerCamelCase , __lowerCamelCase = rename_state_dict(
UpperCamelCase__ , hidden_size=decoder_config.hidden_size )
__lowerCamelCase = TaEncoderModel.from_pretrained('t5-base' )
__lowerCamelCase = EncodecModel.from_pretrained('facebook/encodec_32khz' )
__lowerCamelCase = MusicgenForCausalLM(UpperCamelCase__ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
__lowerCamelCase , __lowerCamelCase = decoder.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ )
for key in missing_keys.copy():
if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" )
if len(UpperCamelCase__ ) > 0:
raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
__lowerCamelCase = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__ , audio_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ )
# check we can do a forward pass
__lowerCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
__lowerCamelCase = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
__lowerCamelCase = model(input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits
if logits.shape != (8, 1, 2048):
raise ValueError('Incorrect shape for logits' )
# now construct the processor
__lowerCamelCase = AutoTokenizer.from_pretrained('t5-base' )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' )
__lowerCamelCase = MusicgenProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ )
# set the appropriate bos/pad token ids
__lowerCamelCase = 2048
__lowerCamelCase = 2048
# set other default generation config params
__lowerCamelCase = int(30 * audio_encoder.config.frame_rate )
__lowerCamelCase = True
__lowerCamelCase = 3.0
if pytorch_dump_folder is not None:
Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ )
logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
if repo_id:
logger.info(F"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(UpperCamelCase__ )
processor.push_to_hub(UpperCamelCase__ )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
__A = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 348 | 0 |
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = name
__lowerCamelCase = val
def __str__( self ) -> Any:
'''simple docstring'''
return f"""{self.__class__.__name__}({self.name}, {self.val})"""
def __lt__( self , lowerCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
return self.val < other.val
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self , lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = {}
__lowerCamelCase = {}
__lowerCamelCase = self.build_heap(lowerCamelCase__ )
def __getitem__( self , lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
return self.get_value(lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
return (idx - 1) // 2
def lowercase_ ( self , lowerCamelCase__ ) -> Dict:
'''simple docstring'''
return idx * 2 + 1
def lowercase_ ( self , lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
return idx * 2 + 2
def lowercase_ ( self , lowerCamelCase__ ) -> str:
'''simple docstring'''
return self.heap_dict[key]
def lowercase_ ( self , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = len(lowerCamelCase__ ) - 1
__lowerCamelCase = self.get_parent_idx(lowerCamelCase__ )
for idx, i in enumerate(lowerCamelCase__ ):
__lowerCamelCase = idx
__lowerCamelCase = i.val
for i in range(lowerCamelCase__ , -1 , -1 ):
self.sift_down(lowerCamelCase__ , lowerCamelCase__ )
return array
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int:
'''simple docstring'''
while True:
__lowerCamelCase = self.get_left_child_idx(lowerCamelCase__ ) # noqa: E741
__lowerCamelCase = self.get_right_child_idx(lowerCamelCase__ )
__lowerCamelCase = idx
if l < len(lowerCamelCase__ ) and array[l] < array[idx]:
__lowerCamelCase = l
if r < len(lowerCamelCase__ ) and array[r] < array[smallest]:
__lowerCamelCase = r
if smallest != idx:
__lowerCamelCase , __lowerCamelCase = array[smallest], array[idx]
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
__lowerCamelCase = smallest
else:
break
def lowercase_ ( self , lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = self.get_parent_idx(lowerCamelCase__ )
while p >= 0 and self.heap[p] > self.heap[idx]:
__lowerCamelCase , __lowerCamelCase = self.heap[idx], self.heap[p]
__lowerCamelCase , __lowerCamelCase = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
__lowerCamelCase = p
__lowerCamelCase = self.get_parent_idx(lowerCamelCase__ )
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
return self.heap[0]
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.heap[-1], self.heap[0]
__lowerCamelCase , __lowerCamelCase = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
__lowerCamelCase = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 , self.heap )
return x
def lowercase_ ( self , lowerCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
self.heap.append(lowerCamelCase__ )
__lowerCamelCase = len(self.heap ) - 1
__lowerCamelCase = node.val
self.sift_up(len(self.heap ) - 1 )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
return len(self.heap ) == 0
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
__lowerCamelCase = new_value
__lowerCamelCase = new_value
self.sift_up(self.idx_of_element[node] )
__A = Node("R", -1)
__A = Node("B", 6)
__A = Node("A", 3)
__A = Node("X", 1)
__A = Node("E", 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
__A = MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print("Min Heap - before decrease key")
for i in my_min_heap.heap:
print(i)
print("Min Heap - After decrease key of node [B -> -17]")
my_min_heap.decrease_key(b, -17)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 362 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json",
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''sew-d'''
def __init__( self , lowerCamelCase__=32 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__=2 , lowerCamelCase__=512 , lowerCamelCase__=256 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=("p2c", "c2p") , lowerCamelCase__="layer_norm" , lowerCamelCase__="gelu_python" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-7 , lowerCamelCase__=1e-5 , lowerCamelCase__="group" , lowerCamelCase__="gelu" , lowerCamelCase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase__=False , lowerCamelCase__=128 , lowerCamelCase__=16 , lowerCamelCase__=True , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__="mean" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ) -> Any:
'''simple docstring'''
super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ )
__lowerCamelCase = hidden_size
__lowerCamelCase = feat_extract_norm
__lowerCamelCase = feat_extract_activation
__lowerCamelCase = list(lowerCamelCase__ )
__lowerCamelCase = list(lowerCamelCase__ )
__lowerCamelCase = list(lowerCamelCase__ )
__lowerCamelCase = conv_bias
__lowerCamelCase = num_conv_pos_embeddings
__lowerCamelCase = num_conv_pos_embedding_groups
__lowerCamelCase = len(self.conv_dim )
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = intermediate_size
__lowerCamelCase = squeeze_factor
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = position_buckets
__lowerCamelCase = share_att_key
__lowerCamelCase = relative_attention
__lowerCamelCase = norm_rel_ebd
__lowerCamelCase = list(lowerCamelCase__ )
__lowerCamelCase = hidden_act
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_dropout
__lowerCamelCase = attention_dropout
__lowerCamelCase = activation_dropout
__lowerCamelCase = feat_proj_dropout
__lowerCamelCase = final_dropout
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = feature_layer_norm_eps
__lowerCamelCase = initializer_range
__lowerCamelCase = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"""
f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowerCamelCase = apply_spec_augment
__lowerCamelCase = mask_time_prob
__lowerCamelCase = mask_time_length
__lowerCamelCase = mask_time_min_masks
__lowerCamelCase = mask_feature_prob
__lowerCamelCase = mask_feature_length
__lowerCamelCase = mask_feature_min_masks
# ctc loss
__lowerCamelCase = ctc_loss_reduction
__lowerCamelCase = ctc_zero_infinity
# sequence classification
__lowerCamelCase = use_weighted_layer_sum
__lowerCamelCase = classifier_proj_size
@property
def lowercase_ ( self ) -> Any:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 348 | 0 |
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : list[str] ) -> str:
"""simple docstring"""
__lowerCamelCase = ''
for word_or_phrase in separated:
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise Exception('join() accepts only strings to be joined' )
joined += word_or_phrase + separator
return joined.strip(UpperCamelCase__ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 363 |
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
__A = logging.get_logger("transformers.models.speecht5")
__A = {
"speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm",
"speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection",
"speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv",
"speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed",
}
__A = {
"text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens",
"text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha",
}
__A = {
"speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0",
"speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1",
"speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer",
"speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha",
"speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer",
}
__A = {
"speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out",
"speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out",
"speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv",
"speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm",
"speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv",
"speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm",
"speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv",
"speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm",
"speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv",
"speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm",
"speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv",
"speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm",
}
__A = {
"text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens",
}
__A = {
"text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head",
}
__A = {
"encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj",
"encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj",
"encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj",
"encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj",
"encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm",
"encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense",
"encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense",
"encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm",
"encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k",
}
__A = {
"decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj",
"decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj",
"decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj",
"decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj",
"decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm",
"decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj",
"decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj",
"decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj",
"decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj",
"decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm",
"decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense",
"decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense",
"decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm",
}
__A = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
__A = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__A = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__A = []
__A = [
"encoder.version",
"encoder.layers.*.norm_k.weight",
"encoder.layers.*.norm_k.bias",
"decoder.version",
"decoder.layers.*.norm_k.weight",
"decoder.layers.*.norm_k.bias",
"decoder.pos_emb.pe_k",
"speech_encoder_prenet.embed_positions._float_tensor",
"text_decoder_prenet.embed_positions._float_tensor",
]
__A = IGNORE_KEYS + [
"encoder.proj",
"text_encoder_prenet.*",
"speech_decoder_prenet.*",
"speech_decoder_postnet.*",
]
__A = IGNORE_KEYS + [
"encoder.proj",
"speech_encoder_prenet.*",
"text_decoder_prenet.*",
"text_decoder_postnet.*",
]
__A = IGNORE_KEYS + [
"encoder.proj",
"text_encoder_prenet.*",
"text_decoder_prenet.*",
"text_decoder_postnet.*",
]
def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Dict:
"""simple docstring"""
for attribute in key.split('.' ):
__lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ )
if weight_type is not None:
__lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape
else:
__lowerCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}""" )
if weight_type == "weight":
__lowerCamelCase = value
elif weight_type == "weight_g":
__lowerCamelCase = value
elif weight_type == "weight_v":
__lowerCamelCase = value
elif weight_type == "bias":
__lowerCamelCase = value
elif weight_type == "running_mean":
__lowerCamelCase = value
elif weight_type == "running_var":
__lowerCamelCase = value
elif weight_type == "num_batches_tracked":
__lowerCamelCase = value
else:
__lowerCamelCase = value
logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" )
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ) -> Any:
"""simple docstring"""
for key in ignore_keys:
if key.endswith('.*' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
__lowerCamelCase , __lowerCamelCase = key.split('.*.' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
__lowerCamelCase = []
if task == "s2t":
__lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder
__lowerCamelCase = MAPPING_S2T
__lowerCamelCase = IGNORE_KEYS_S2T
elif task == "t2s":
__lowerCamelCase = None
__lowerCamelCase = MAPPING_T2S
__lowerCamelCase = IGNORE_KEYS_T2S
elif task == "s2s":
__lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder
__lowerCamelCase = MAPPING_S2S
__lowerCamelCase = IGNORE_KEYS_S2S
else:
raise ValueError(F"""Unsupported task: {task}""" )
for name, value in fairseq_dict.items():
if should_ignore(UpperCamelCase__ , UpperCamelCase__ ):
logger.info(F"""{name} was ignored""" )
continue
__lowerCamelCase = False
if "conv_layers" in name:
load_conv_layer(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , )
__lowerCamelCase = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
__lowerCamelCase , __lowerCamelCase = key.split('.*.' )
if prefix in name and suffix in name:
__lowerCamelCase = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
__lowerCamelCase = True
if "*" in mapped_key:
__lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2]
__lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ )
if "weight_g" in name:
__lowerCamelCase = 'weight_g'
elif "weight_v" in name:
__lowerCamelCase = 'weight_v'
elif "bias" in name:
__lowerCamelCase = 'bias'
elif "weight" in name:
__lowerCamelCase = 'weight'
elif "running_mean" in name:
__lowerCamelCase = 'running_mean'
elif "running_var" in name:
__lowerCamelCase = 'running_var'
elif "num_batches_tracked" in name:
__lowerCamelCase = 'num_batches_tracked'
else:
__lowerCamelCase = None
set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
continue
if not is_used:
unused_weights.append(UpperCamelCase__ )
logger.warning(F"""Unused weights: {unused_weights}""" )
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> Tuple:
"""simple docstring"""
__lowerCamelCase = full_name.split('conv_layers.' )[-1]
__lowerCamelCase = name.split('.' )
__lowerCamelCase = int(items[0] )
__lowerCamelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(UpperCamelCase__ )
@torch.no_grad()
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[str]=None , ) -> Tuple:
"""simple docstring"""
if config_path is not None:
__lowerCamelCase = SpeechTaConfig.from_pretrained(UpperCamelCase__ )
else:
__lowerCamelCase = SpeechTaConfig()
if task == "s2t":
__lowerCamelCase = config.max_text_positions
__lowerCamelCase = SpeechTaForSpeechToText(UpperCamelCase__ )
elif task == "t2s":
__lowerCamelCase = 1876
__lowerCamelCase = 600
__lowerCamelCase = config.max_speech_positions
__lowerCamelCase = SpeechTaForTextToSpeech(UpperCamelCase__ )
elif task == "s2s":
__lowerCamelCase = 1876
__lowerCamelCase = config.max_speech_positions
__lowerCamelCase = SpeechTaForSpeechToSpeech(UpperCamelCase__ )
else:
raise ValueError(F"""Unknown task name: {task}""" )
if vocab_path:
__lowerCamelCase = SpeechTaTokenizer(UpperCamelCase__ , model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
__lowerCamelCase = AddedToken('<mask>' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ )
__lowerCamelCase = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
__lowerCamelCase = SpeechTaFeatureExtractor()
__lowerCamelCase = SpeechTaProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
__lowerCamelCase = torch.load(UpperCamelCase__ )
recursively_load_weights(fairseq_checkpoint['model'] , UpperCamelCase__ , UpperCamelCase__ )
model.save_pretrained(UpperCamelCase__ )
if repo_id:
print('Pushing to the hub...' )
processor.push_to_hub(UpperCamelCase__ )
model.push_to_hub(UpperCamelCase__ )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
"--task",
default="s2t",
type=str,
help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.",
)
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
__A = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 348 | 0 |
import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
'compression_format, is_archive' , [
('7z', True),
('bz2', False),
('gzip', False),
('lz4', False),
('tar', True),
('xz', False),
('zip', True),
('zstd', False),
] , )
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , ) -> Any:
"""simple docstring"""
__lowerCamelCase = {
'7z': (seven_zip_file, SevenZipExtractor),
'bz2': (bza_file, BzipaExtractor),
'gzip': (gz_file, GzipExtractor),
'lz4': (lza_file, LzaExtractor),
'tar': (tar_file, TarExtractor),
'xz': (xz_file, XzExtractor),
'zip': (zip_file, ZipExtractor),
'zstd': (zstd_file, ZstdExtractor),
}
__lowerCamelCase , __lowerCamelCase = input_paths_and_base_extractors[compression_format]
if input_path is None:
__lowerCamelCase = F"""for '{compression_format}' compression_format, """
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(UpperCamelCase__ )
assert base_extractor.is_extractable(UpperCamelCase__ )
__lowerCamelCase = tmp_path / ('extracted' if is_archive else 'extracted.txt')
base_extractor.extract(UpperCamelCase__ , UpperCamelCase__ )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__lowerCamelCase = file_path.read_text(encoding='utf-8' )
else:
__lowerCamelCase = output_path.read_text(encoding='utf-8' )
__lowerCamelCase = text_file.read_text(encoding='utf-8' )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
'compression_format, is_archive' , [
('7z', True),
('bz2', False),
('gzip', False),
('lz4', False),
('tar', True),
('xz', False),
('zip', True),
('zstd', False),
] , )
def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , ) -> Union[str, Any]:
"""simple docstring"""
__lowerCamelCase = {
'7z': seven_zip_file,
'bz2': bza_file,
'gzip': gz_file,
'lz4': lza_file,
'tar': tar_file,
'xz': xz_file,
'zip': zip_file,
'zstd': zstd_file,
}
__lowerCamelCase = input_paths[compression_format]
if input_path is None:
__lowerCamelCase = F"""for '{compression_format}' compression_format, """
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(UpperCamelCase__ )
__lowerCamelCase = Extractor.infer_extractor_format(UpperCamelCase__ )
assert extractor_format is not None
__lowerCamelCase = tmp_path / ('extracted' if is_archive else 'extracted.txt')
Extractor.extract(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__lowerCamelCase = file_path.read_text(encoding='utf-8' )
else:
__lowerCamelCase = output_path.read_text(encoding='utf-8' )
__lowerCamelCase = text_file.read_text(encoding='utf-8' )
assert extracted_file_content == expected_file_content
@pytest.fixture
def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any ) -> Optional[int]:
"""simple docstring"""
import tarfile
__lowerCamelCase = tmp_path / 'data_dot_dot'
directory.mkdir()
__lowerCamelCase = directory / 'tar_file_with_dot_dot.tar'
with tarfile.TarFile(UpperCamelCase__ , 'w' ) as f:
f.add(UpperCamelCase__ , arcname=os.path.join('..' , text_file.name ) )
return path
@pytest.fixture
def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> Optional[Any]:
"""simple docstring"""
import tarfile
__lowerCamelCase = tmp_path / 'data_sym_link'
directory.mkdir()
__lowerCamelCase = directory / 'tar_file_with_sym_link.tar'
os.symlink('..' , directory / 'subdir' , target_is_directory=UpperCamelCase__ )
with tarfile.TarFile(UpperCamelCase__ , 'w' ) as f:
f.add(str(directory / 'subdir' ) , arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
'insecure_tar_file, error_log' , [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] , )
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : str ) -> Optional[int]:
"""simple docstring"""
__lowerCamelCase = {
'tar_file_with_dot_dot': tar_file_with_dot_dot,
'tar_file_with_sym_link': tar_file_with_sym_link,
}
__lowerCamelCase = insecure_tar_files[insecure_tar_file]
__lowerCamelCase = tmp_path / 'extracted'
TarExtractor.extract(UpperCamelCase__ , UpperCamelCase__ )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ) -> Any:
"""simple docstring"""
__lowerCamelCase = tmpdir / 'not_a_zip_file'
# From: https://github.com/python/cpython/pull/5053
__lowerCamelCase = (
b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00'
b'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I'
b'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07'
b'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82'
)
with not_a_zip_file.open('wb' ) as f:
f.write(UpperCamelCase__ )
assert zipfile.is_zipfile(str(UpperCamelCase__ ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(UpperCamelCase__ ) # but we're right
| 364 |
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets,
# U and V such that every edge (u, v) either connects a vertex from U to V or a vertex
# from V to U. In other words, for every edge (u, v), either u belongs to U and v to V,
# or u belongs to V and v to U. We can also say that there is no edge that connects
# vertices of same set.
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = [False] * len(UpperCamelCase__ )
__lowerCamelCase = [-1] * len(UpperCamelCase__ )
def dfs(UpperCamelCase__ : int , UpperCamelCase__ : int ):
__lowerCamelCase = True
__lowerCamelCase = c
for u in graph[v]:
if not visited[u]:
dfs(UpperCamelCase__ , 1 - c )
for i in range(len(UpperCamelCase__ ) ):
if not visited[i]:
dfs(UpperCamelCase__ , 0 )
for i in range(len(UpperCamelCase__ ) ):
for j in graph[i]:
if color[i] == color[j]:
return False
return True
# Adjacency list of graph
__A = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []}
print(check_bipartite_dfs(graph))
| 348 | 0 |
import os
import jsonlines
import numpy as np
from tqdm import tqdm
__A = 20_48
__A = 40_96
__A = 42
__A = os.environ.pop("PROCESS_TRAIN", "false")
__A = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4}
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> str:
"""simple docstring"""
def choose_first(UpperCamelCase__ : int , UpperCamelCase__ : List[Any]=False ):
assert isinstance(UpperCamelCase__ , UpperCamelCase__ )
if len(UpperCamelCase__ ) == 1:
__lowerCamelCase = answer[0]
return {k: [answer[k]] for k in answer} if is_long_answer else answer
for a in answer:
if is_long_answer:
__lowerCamelCase = {k: [a[k]] for k in a}
if len(a['start_token'] ) > 0:
break
return a
__lowerCamelCase = {'id': example['id']}
__lowerCamelCase = example['annotations']
__lowerCamelCase = annotation['yes_no_answer']
if 0 in yes_no_answer or 1 in yes_no_answer:
__lowerCamelCase = ['yes'] if 1 in yes_no_answer else ['no']
__lowerCamelCase = __lowerCamelCase = []
__lowerCamelCase = __lowerCamelCase = []
__lowerCamelCase = ['<cls>']
else:
__lowerCamelCase = ['short']
__lowerCamelCase = choose_first(annotation['short_answers'] )
if len(out['start_token'] ) == 0:
# answer will be long if short is not available
__lowerCamelCase = ['long']
__lowerCamelCase = choose_first(annotation['long_answer'] , is_long_answer=UpperCamelCase__ )
__lowerCamelCase = []
answer.update(UpperCamelCase__ )
# disregard some samples
if len(answer['start_token'] ) > 1 or answer["start_token"] == answer["end_token"]:
__lowerCamelCase = True
else:
__lowerCamelCase = False
__lowerCamelCase = ['start_token', 'end_token', 'start_byte', 'end_byte', 'text']
if not all(isinstance(answer[k] , UpperCamelCase__ ) for k in cols ):
raise ValueError('Issue in ID' , example['id'] )
return answer
def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict=False ) -> int:
"""simple docstring"""
__lowerCamelCase = _get_single_answer(UpperCamelCase__ )
# bytes are of no use
del answer["start_byte"]
del answer["end_byte"]
# handle yes_no answers explicitly
if answer["category"][0] in ["yes", "no"]: # category is list with one element
__lowerCamelCase = example['document']['tokens']
__lowerCamelCase = []
for i in range(len(doc['token'] ) ):
if not doc["is_html"][i]:
context.append(doc['token'][i] )
return {
"context": " ".join(UpperCamelCase__ ),
"answer": {
"start_token": -100, # ignore index in cross-entropy
"end_token": -100, # ignore index in cross-entropy
"category": answer["category"],
"span": answer["category"], # extra
},
}
# later, help in removing all no answers
if answer["start_token"] == [-1]:
return {
"context": "None",
"answer": {
"start_token": -1,
"end_token": -1,
"category": "null",
"span": "None", # extra
},
}
# handling normal samples
__lowerCamelCase = ['start_token', 'end_token']
answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10
__lowerCamelCase = example['document']['tokens']
__lowerCamelCase = answer['start_token']
__lowerCamelCase = answer['end_token']
__lowerCamelCase = []
for i in range(len(doc['token'] ) ):
if not doc["is_html"][i]:
context.append(doc['token'][i] )
else:
if answer["start_token"] > i:
start_token -= 1
if answer["end_token"] > i:
end_token -= 1
__lowerCamelCase = ' '.join(context[start_token:end_token] )
# checking above code
if assertion:
__lowerCamelCase = doc['is_html'][answer['start_token'] : answer['end_token']]
__lowerCamelCase = doc['token'][answer['start_token'] : answer['end_token']]
__lowerCamelCase = ' '.join([old[i] for i in range(len(UpperCamelCase__ ) ) if not is_html[i]] )
if new != old:
print('ID:' , example['id'] )
print('New:' , UpperCamelCase__ , end='\n' )
print('Old:' , UpperCamelCase__ , end='\n\n' )
return {
"context": " ".join(UpperCamelCase__ ),
"answer": {
"start_token": start_token,
"end_token": end_token - 1, # this makes it inclusive
"category": answer["category"], # either long or short
"span": new, # extra
},
}
def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any=2048 , UpperCamelCase__ : List[Any]=4096 , UpperCamelCase__ : List[str]=True ) -> Dict:
"""simple docstring"""
__lowerCamelCase = get_context_and_ans(UpperCamelCase__ , assertion=UpperCamelCase__ )
__lowerCamelCase = out['answer']
# later, removing these samples
if answer["start_token"] == -1:
return {
"example_id": example["id"],
"input_ids": [[-1]],
"labels": {
"start_token": [-1],
"end_token": [-1],
"category": ["null"],
},
}
__lowerCamelCase = tokenizer(example['question']['text'] , out['context'] ).input_ids
__lowerCamelCase = input_ids.index(tokenizer.sep_token_id ) + 1
# return yes/no
if answer["category"][0] in ["yes", "no"]: # category is list with one element
__lowerCamelCase = []
__lowerCamelCase = []
__lowerCamelCase = input_ids[:q_len]
__lowerCamelCase = range(UpperCamelCase__ , len(UpperCamelCase__ ) , max_length - doc_stride )
for i in doc_start_indices:
__lowerCamelCase = i + max_length - q_len
__lowerCamelCase = input_ids[i:end_index]
inputs.append(q_indices + slice )
category.append(answer['category'][0] )
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": [-100] * len(UpperCamelCase__ ),
"end_token": [-100] * len(UpperCamelCase__ ),
"category": category,
},
}
__lowerCamelCase = out['context'].split()
__lowerCamelCase = splitted_context[answer['end_token']]
__lowerCamelCase = len(
tokenizer(
' '.join(splitted_context[: answer['start_token']] ) , add_special_tokens=UpperCamelCase__ , ).input_ids )
__lowerCamelCase = len(
tokenizer(' '.join(splitted_context[: answer['end_token']] ) , add_special_tokens=UpperCamelCase__ ).input_ids )
answer["start_token"] += q_len
answer["end_token"] += q_len
# fixing end token
__lowerCamelCase = len(tokenizer(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids )
if num_sub_tokens > 1:
answer["end_token"] += num_sub_tokens - 1
__lowerCamelCase = input_ids[answer['start_token'] : answer['end_token'] + 1] # right & left are inclusive
__lowerCamelCase = answer['start_token']
__lowerCamelCase = answer['end_token']
if assertion:
__lowerCamelCase = tokenizer.decode(UpperCamelCase__ )
if answer["span"] != new:
print('ISSUE IN TOKENIZATION' )
print('OLD:' , answer['span'] )
print('NEW:' , UpperCamelCase__ , end='\n\n' )
if len(UpperCamelCase__ ) <= max_length:
return {
"example_id": example["id"],
"input_ids": [input_ids],
"labels": {
"start_token": [answer["start_token"]],
"end_token": [answer["end_token"]],
"category": answer["category"],
},
}
__lowerCamelCase = input_ids[:q_len]
__lowerCamelCase = range(UpperCamelCase__ , len(UpperCamelCase__ ) , max_length - doc_stride )
__lowerCamelCase = []
__lowerCamelCase = []
__lowerCamelCase = []
__lowerCamelCase = [] # null, yes, no, long, short
for i in doc_start_indices:
__lowerCamelCase = i + max_length - q_len
__lowerCamelCase = input_ids[i:end_index]
inputs.append(q_indices + slice )
assert len(inputs[-1] ) <= max_length, "Issue in truncating length"
if start_token >= i and end_token <= end_index - 1:
__lowerCamelCase = start_token - i + q_len
__lowerCamelCase = end_token - i + q_len
answers_category.append(answer['category'][0] ) # ["short"] -> "short"
else:
__lowerCamelCase = -100
__lowerCamelCase = -100
answers_category.append('null' )
__lowerCamelCase = inputs[-1][start_token : end_token + 1]
answers_start_token.append(UpperCamelCase__ )
answers_end_token.append(UpperCamelCase__ )
if assertion:
if new != old and new != [tokenizer.cls_token_id]:
print('ISSUE in strided for ID:' , example['id'] )
print('New:' , tokenizer.decode(UpperCamelCase__ ) )
print('Old:' , tokenizer.decode(UpperCamelCase__ ) , end='\n\n' )
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": answers_start_token,
"end_token": answers_end_token,
"category": answers_category,
},
}
def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : str=2048 , UpperCamelCase__ : int=4096 , UpperCamelCase__ : str=False ) -> Union[str, Any]:
"""simple docstring"""
__lowerCamelCase = get_strided_contexts_and_ans(
UpperCamelCase__ , UpperCamelCase__ , doc_stride=UpperCamelCase__ , max_length=UpperCamelCase__ , assertion=UpperCamelCase__ , )
return example
def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int ) -> List[Any]:
"""simple docstring"""
with jsonlines.open(UpperCamelCase__ , 'a' ) as writer:
for example in tqdm(UpperCamelCase__ , total=len(UpperCamelCase__ ) , desc='Saving samples ... ' ):
__lowerCamelCase = example['labels']
for ids, start, end, cat in zip(
example['input_ids'] , labels['start_token'] , labels['end_token'] , labels['category'] , ):
if start == -1 and end == -1:
continue # leave waste samples with no answer
if cat == "null" and np.random.rand() < 0.6:
continue # removing 50 % samples
writer.write(
{
'input_ids': ids,
'start_token': start,
'end_token': end,
'category': CATEGORY_MAPPING[cat],
} )
if __name__ == "__main__":
from datasets import load_dataset
from transformers import BigBirdTokenizer
__A = load_dataset("natural_questions")
__A = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base")
__A = data["train" if PROCESS_TRAIN == "true" else "validation"]
__A = {
"tokenizer": tokenizer,
"doc_stride": DOC_STRIDE,
"max_length": MAX_LENGTH,
"assertion": False,
}
__A = data.map(prepare_inputs, fn_kwargs=fn_kwargs)
__A = data.remove_columns(["annotations", "document", "id", "question"])
print(data)
np.random.seed(SEED)
__A = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl"
save_to_disk(data, file_name=cache_file_name)
| 365 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowerCamelCase__ ).to(lowerCamelCase__ )
__lowerCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' )
__lowerCamelCase = tokenizer('Hello there' , return_tensors='pt' ).input_ids
__lowerCamelCase = tokenizer('Hi I am' , return_tensors='pt' ).input_ids
__lowerCamelCase = model(input_ids.to(lowerCamelCase__ ) , labels=labels.to(lowerCamelCase__ ) ).loss
__lowerCamelCase = -(labels.shape[-1] * loss.item())
__lowerCamelCase = -84.91_27
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 348 | 0 |
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse("3.8"):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict=False ) -> List[Any]:
"""simple docstring"""
try:
__lowerCamelCase = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
__lowerCamelCase = default
else:
# KEY is set, convert it to True or False.
try:
__lowerCamelCase = strtobool(UpperCamelCase__ )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F"""If set, {key} must be yes or no.""" )
return _value
__A = parse_flag_from_env("RUN_SLOW", default=False)
__A = parse_flag_from_env("RUN_REMOTE", default=False)
__A = parse_flag_from_env("RUN_LOCAL", default=True)
__A = parse_flag_from_env("RUN_PACKAGED", default=True)
# Compression
__A = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4")
__A = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr")
__A = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard")
# Audio
__A = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"),
reason="test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; ",
)
# Beam
__A = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"),
reason="test requires apache-beam and a compatible dill version",
)
# Dill-cloudpickle compatibility
__A = pytest.mark.skipif(
config.DILL_VERSION <= version.parse("0.3.2"),
reason="test requires dill>0.3.2 for cloudpickle compatibility",
)
# Windows
__A = pytest.mark.skipif(
sys.platform == "win32",
reason="test should not be run on Windows",
)
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> int:
"""simple docstring"""
try:
import faiss # noqa
except ImportError:
__lowerCamelCase = unittest.skip('test requires faiss' )(UpperCamelCase__ )
return test_case
def lowerCamelCase_ ( UpperCamelCase__ : int ) -> Union[str, Any]:
"""simple docstring"""
try:
import regex # noqa
except ImportError:
__lowerCamelCase = unittest.skip('test requires regex' )(UpperCamelCase__ )
return test_case
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Optional[Any]:
"""simple docstring"""
try:
import elasticsearch # noqa
except ImportError:
__lowerCamelCase = unittest.skip('test requires elasticsearch' )(UpperCamelCase__ )
return test_case
def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> Optional[Any]:
"""simple docstring"""
try:
import sqlalchemy # noqa
except ImportError:
__lowerCamelCase = unittest.skip('test requires sqlalchemy' )(UpperCamelCase__ )
return test_case
def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> Optional[int]:
"""simple docstring"""
if not config.TORCH_AVAILABLE:
__lowerCamelCase = unittest.skip('test requires PyTorch' )(UpperCamelCase__ )
return test_case
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
if not config.TF_AVAILABLE:
__lowerCamelCase = unittest.skip('test requires TensorFlow' )(UpperCamelCase__ )
return test_case
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
if not config.JAX_AVAILABLE:
__lowerCamelCase = unittest.skip('test requires JAX' )(UpperCamelCase__ )
return test_case
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Tuple:
"""simple docstring"""
if not config.PIL_AVAILABLE:
__lowerCamelCase = unittest.skip('test requires Pillow' )(UpperCamelCase__ )
return test_case
def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ) -> Dict:
"""simple docstring"""
try:
import transformers # noqa F401
except ImportError:
return unittest.skip('test requires transformers' )(UpperCamelCase__ )
else:
return test_case
def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> Any:
"""simple docstring"""
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip('test requires tiktoken' )(UpperCamelCase__ )
else:
return test_case
def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> List[Any]:
"""simple docstring"""
try:
import spacy # noqa F401
except ImportError:
return unittest.skip('test requires spacy' )(UpperCamelCase__ )
else:
return test_case
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Any:
"""simple docstring"""
def _require_spacy_model(UpperCamelCase__ : Optional[int] ):
try:
import spacy # noqa F401
spacy.load(UpperCamelCase__ )
except ImportError:
return unittest.skip('test requires spacy' )(UpperCamelCase__ )
except OSError:
return unittest.skip('test requires spacy model \'{}\''.format(UpperCamelCase__ ) )(UpperCamelCase__ )
else:
return test_case
return _require_spacy_model
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip('test requires pyspark' )(UpperCamelCase__ )
else:
return test_case
def lowerCamelCase_ ( UpperCamelCase__ : Tuple ) -> Optional[int]:
"""simple docstring"""
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip('test requires joblibspark' )(UpperCamelCase__ )
else:
return test_case
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]:
"""simple docstring"""
if not _run_slow_tests or _run_slow_tests == 0:
__lowerCamelCase = unittest.skip('test is slow' )(UpperCamelCase__ )
return test_case
def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> Any:
"""simple docstring"""
if not _run_local_tests or _run_local_tests == 0:
__lowerCamelCase = unittest.skip('test is local' )(UpperCamelCase__ )
return test_case
def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> int:
"""simple docstring"""
if not _run_packaged_tests or _run_packaged_tests == 0:
__lowerCamelCase = unittest.skip('test is packaged' )(UpperCamelCase__ )
return test_case
def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
if not _run_remote_tests or _run_remote_tests == 0:
__lowerCamelCase = unittest.skip('test requires remote' )(UpperCamelCase__ )
return test_case
def lowerCamelCase_ ( *UpperCamelCase__ : Optional[Any] ) -> List[str]:
"""simple docstring"""
def decorate(cls : Any ):
for name, fn in cls.__dict__.items():
if callable(UpperCamelCase__ ) and name.startswith('test' ):
for decorator in decorators:
__lowerCamelCase = decorator(UpperCamelCase__ )
setattr(cls , UpperCamelCase__ , UpperCamelCase__ )
return cls
return decorate
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
pass
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = 0
snake_case_ = 1
snake_case_ = 2
@contextmanager
def lowerCamelCase_ ( UpperCamelCase__ : int=OfflineSimulationMode.CONNECTION_FAILS , UpperCamelCase__ : Optional[Any]=1E-16 ) -> List[str]:
"""simple docstring"""
__lowerCamelCase = requests.Session().request
def timeout_request(UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , **UpperCamelCase__ : Optional[int] ):
# Change the url to an invalid url so that the connection hangs
__lowerCamelCase = 'https://10.255.255.1'
if kwargs.get('timeout' ) is None:
raise RequestWouldHangIndefinitelyError(
F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" )
__lowerCamelCase = timeout
try:
return online_request(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
__lowerCamelCase = url
__lowerCamelCase = e.args[0]
__lowerCamelCase = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),)
__lowerCamelCase = (max_retry_error,)
raise
def raise_connection_error(UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , **UpperCamelCase__ : Optional[Any] ):
raise requests.ConnectionError('Offline mode is enabled.' , request=UpperCamelCase__ )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch('requests.Session.send' , UpperCamelCase__ ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch('requests.Session.request' , UpperCamelCase__ ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch('datasets.config.HF_DATASETS_OFFLINE' , UpperCamelCase__ ):
yield
else:
raise ValueError('Please use a value from the OfflineSimulationMode enum.' )
@contextmanager
def lowerCamelCase_ ( *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Tuple ) -> List[str]:
"""simple docstring"""
__lowerCamelCase = str(Path().resolve() )
with tempfile.TemporaryDirectory(*UpperCamelCase__ , **UpperCamelCase__ ) as tmp_dir:
try:
os.chdir(UpperCamelCase__ )
yield
finally:
os.chdir(UpperCamelCase__ )
@contextmanager
def lowerCamelCase_ ( ) -> Tuple:
"""simple docstring"""
import gc
gc.collect()
__lowerCamelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def lowerCamelCase_ ( ) -> Union[str, Any]:
"""simple docstring"""
import gc
gc.collect()
__lowerCamelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] ) -> Optional[int]:
"""simple docstring"""
return deepcopy(UpperCamelCase__ ).integers(0 , 100 , 10 ).tolist() == deepcopy(UpperCamelCase__ ).integers(0 , 100 , 10 ).tolist()
def lowerCamelCase_ ( UpperCamelCase__ : Tuple ) -> Optional[int]:
"""simple docstring"""
import decorator
from requests.exceptions import HTTPError
def _wrapper(UpperCamelCase__ : List[Any] , *UpperCamelCase__ : Any , **UpperCamelCase__ : Dict ):
try:
return func(*UpperCamelCase__ , **UpperCamelCase__ )
except HTTPError as err:
if str(UpperCamelCase__ ).startswith('500' ) or str(UpperCamelCase__ ).startswith('502' ):
pytest.xfail(str(UpperCamelCase__ ) )
raise err
return decorator.decorator(_wrapper , UpperCamelCase__ )
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = returncode
__lowerCamelCase = stdout
__lowerCamelCase = stderr
async def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
while True:
__lowerCamelCase = await stream.readline()
if line:
callback(UpperCamelCase__ )
else:
break
async def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : List[Any]=False ) -> _RunOutput:
"""simple docstring"""
if echo:
print('\nRunning: ' , ' '.join(UpperCamelCase__ ) )
__lowerCamelCase = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=UpperCamelCase__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=UpperCamelCase__ , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
__lowerCamelCase = []
__lowerCamelCase = []
def tee(UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Dict="" ):
__lowerCamelCase = line.decode('utf-8' ).rstrip()
sink.append(UpperCamelCase__ )
if not quiet:
print(UpperCamelCase__ , UpperCamelCase__ , file=UpperCamelCase__ )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout , lambda UpperCamelCase__ : tee(UpperCamelCase__ , UpperCamelCase__ , sys.stdout , label='stdout:' ) ),
_read_stream(p.stderr , lambda UpperCamelCase__ : tee(UpperCamelCase__ , UpperCamelCase__ , sys.stderr , label='stderr:' ) ),
] , timeout=UpperCamelCase__ , )
return _RunOutput(await p.wait() , UpperCamelCase__ , UpperCamelCase__ )
def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Optional[Any]=180 , UpperCamelCase__ : str=False , UpperCamelCase__ : Dict=True ) -> _RunOutput:
"""simple docstring"""
__lowerCamelCase = asyncio.get_event_loop()
__lowerCamelCase = loop.run_until_complete(
_stream_subprocess(UpperCamelCase__ , env=UpperCamelCase__ , stdin=UpperCamelCase__ , timeout=UpperCamelCase__ , quiet=UpperCamelCase__ , echo=UpperCamelCase__ ) )
__lowerCamelCase = ' '.join(UpperCamelCase__ )
if result.returncode > 0:
__lowerCamelCase = '\n'.join(result.stderr )
raise RuntimeError(
F"""'{cmd_str}' failed with returncode {result.returncode}\n\n"""
F"""The combined stderr from workers follows:\n{stderr}""" )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(F"""'{cmd_str}' produced no output.""" )
return result
def lowerCamelCase_ ( ) -> Tuple:
"""simple docstring"""
__lowerCamelCase = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' )
__lowerCamelCase = re.sub(R'^gw' , '' , UpperCamelCase__ , 0 , re.M )
return int(UpperCamelCase__ )
def lowerCamelCase_ ( ) -> Optional[Any]:
"""simple docstring"""
__lowerCamelCase = 2_9500
__lowerCamelCase = pytest_xdist_worker_id()
return port + uniq_delta
| 366 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Any:
"""simple docstring"""
__lowerCamelCase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2]
__lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False
__lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False
__lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
__lowerCamelCase = [3, 3, 3, 3]
__lowerCamelCase = [5, 5, 5, 5]
elif "fl4" in model_name:
__lowerCamelCase = [4, 4, 4, 4]
__lowerCamelCase = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
__lowerCamelCase = [3, 3, 3, 3]
if "lrf" in model_name:
__lowerCamelCase = [3, 3, 3, 3]
else:
__lowerCamelCase = [2, 2, 2, 2]
if "tiny" in model_name:
__lowerCamelCase = 96
elif "small" in model_name:
__lowerCamelCase = 96
elif "base" in model_name:
__lowerCamelCase = 128
elif "large" in model_name:
__lowerCamelCase = 192
elif "xlarge" in model_name:
__lowerCamelCase = 256
elif "huge" in model_name:
__lowerCamelCase = 352
# set label information
__lowerCamelCase = 'huggingface/label-files'
if "large" in model_name or "huge" in model_name:
__lowerCamelCase = 'imagenet-22k-id2label.json'
else:
__lowerCamelCase = 'imagenet-1k-id2label.json'
__lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) )
__lowerCamelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()}
__lowerCamelCase = {v: k for k, v in idalabel.items()}
__lowerCamelCase = FocalNetConfig(
embed_dim=UpperCamelCase__ , depths=UpperCamelCase__ , focal_levels=UpperCamelCase__ , focal_windows=UpperCamelCase__ , use_conv_embed=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , use_post_layernorm=UpperCamelCase__ , use_layerscale=UpperCamelCase__ , )
return config
def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> str:
"""simple docstring"""
if "patch_embed.proj" in name:
__lowerCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
__lowerCamelCase = name.replace('patch_embed.norm' , 'embeddings.norm' )
if "layers" in name:
__lowerCamelCase = 'encoder.' + name
if "encoder.layers" in name:
__lowerCamelCase = name.replace('encoder.layers' , 'encoder.stages' )
if "downsample.proj" in name:
__lowerCamelCase = name.replace('downsample.proj' , 'downsample.projection' )
if "blocks" in name:
__lowerCamelCase = name.replace('blocks' , 'layers' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
__lowerCamelCase = name.replace('modulation.f' , 'modulation.projection_in' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
__lowerCamelCase = name.replace('modulation.h' , 'modulation.projection_context' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
__lowerCamelCase = name.replace('modulation.proj' , 'modulation.projection_out' )
if name == "norm.weight":
__lowerCamelCase = 'layernorm.weight'
if name == "norm.bias":
__lowerCamelCase = 'layernorm.bias'
if "head" in name:
__lowerCamelCase = name.replace('head' , 'classifier' )
else:
__lowerCamelCase = 'focalnet.' + name
return name
def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=False ) -> Dict:
"""simple docstring"""
__lowerCamelCase = {
'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth',
'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth',
'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth',
'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth',
'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth',
'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth',
'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth',
'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth',
'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth',
'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth',
}
# fmt: on
__lowerCamelCase = model_name_to_url[model_name]
print('Checkpoint URL: ' , UpperCamelCase__ )
__lowerCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='cpu' )['model']
# rename keys
for key in state_dict.copy().keys():
__lowerCamelCase = state_dict.pop(UpperCamelCase__ )
__lowerCamelCase = val
__lowerCamelCase = get_focalnet_config(UpperCamelCase__ )
__lowerCamelCase = FocalNetForImageClassification(UpperCamelCase__ )
model.eval()
# load state dict
model.load_state_dict(UpperCamelCase__ )
# verify conversion
__lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowerCamelCase = BitImageProcessor(
do_resize=UpperCamelCase__ , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase__ , crop_size=224 , do_normalize=UpperCamelCase__ , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ , )
__lowerCamelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw )
__lowerCamelCase = processor(images=UpperCamelCase__ , return_tensors='pt' )
__lowerCamelCase = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ),
] )
__lowerCamelCase = image_transforms(UpperCamelCase__ ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , UpperCamelCase__ , atol=1E-4 )
__lowerCamelCase = model(**UpperCamelCase__ )
__lowerCamelCase = outputs.logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
print('First values of logits:' , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
__lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] )
elif model_name == "focalnet-tiny-lrf":
__lowerCamelCase = torch.tensor([1.16_69, 0.01_25, -0.16_95] )
elif model_name == "focalnet-small":
__lowerCamelCase = torch.tensor([0.49_17, -0.04_30, 0.13_41] )
elif model_name == "focalnet-small-lrf":
__lowerCamelCase = torch.tensor([-0.25_88, -0.53_42, -0.23_31] )
elif model_name == "focalnet-base":
__lowerCamelCase = torch.tensor([-0.16_55, -0.40_90, -0.17_30] )
elif model_name == "focalnet-base-lrf":
__lowerCamelCase = torch.tensor([0.53_06, -0.04_83, -0.39_28] )
assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
if push_to_hub:
print(F"""Pushing model and processor of {model_name} to the hub...""" )
model.push_to_hub(F"""{model_name}""" )
processor.push_to_hub(F"""{model_name}""" )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="focalnet-tiny",
type=str,
help="Name of the FocalNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model and processor to the hub.",
)
__A = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 348 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import TensorType, logging
if TYPE_CHECKING:
from ...onnx.config import PatchingSpec
from ...tokenization_utils_base import PreTrainedTokenizerBase
__A = logging.get_logger(__name__)
__A = {
"allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json",
"allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json",
"allenai/longformer-large-4096-finetuned-triviaqa": (
"https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json"
),
"allenai/longformer-base-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json"
),
"allenai/longformer-large-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json"
),
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''longformer'''
def __init__( self , lowerCamelCase__ = 512 , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 0 , lowerCamelCase__ = 2 , lowerCamelCase__ = 30_522 , lowerCamelCase__ = 768 , lowerCamelCase__ = 12 , lowerCamelCase__ = 12 , lowerCamelCase__ = 3_072 , lowerCamelCase__ = "gelu" , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 512 , lowerCamelCase__ = 2 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1e-12 , lowerCamelCase__ = False , **lowerCamelCase__ , ) -> Tuple:
'''simple docstring'''
super().__init__(pad_token_id=lowerCamelCase__ , **lowerCamelCase__ )
__lowerCamelCase = attention_window
__lowerCamelCase = sep_token_id
__lowerCamelCase = bos_token_id
__lowerCamelCase = eos_token_id
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = initializer_range
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = onnx_export
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__ = "default" , lowerCamelCase__ = None ) -> int:
'''simple docstring'''
super().__init__(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = True
@property
def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
__lowerCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__lowerCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('global_attention_mask', dynamic_axis),
] )
@property
def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
__lowerCamelCase = super().outputs
if self.task == "default":
__lowerCamelCase = {0: 'batch'}
return outputs
@property
def lowercase_ ( self ) -> float:
'''simple docstring'''
return 1e-4
@property
def lowercase_ ( self ) -> int:
'''simple docstring'''
return max(super().default_onnx_opset , 14 )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , ) -> Mapping[str, Any]:
'''simple docstring'''
__lowerCamelCase = super().generate_dummy_inputs(
preprocessor=lowerCamelCase__ , batch_size=lowerCamelCase__ , seq_length=lowerCamelCase__ , is_pair=lowerCamelCase__ , framework=lowerCamelCase__ )
import torch
# for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64)
# makes the export fail randomly
__lowerCamelCase = torch.zeros_like(inputs['input_ids'] )
# make every second token global
__lowerCamelCase = 1
return inputs
| 367 |
from __future__ import annotations
def lowerCamelCase_ ( UpperCamelCase__ : list[float] , UpperCamelCase__ : list[float] ) -> float:
"""simple docstring"""
__lowerCamelCase = sorted(numsa + numsa )
__lowerCamelCase , __lowerCamelCase = divmod(len(UpperCamelCase__ ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
__A = [float(x) for x in input("Enter the elements of first array: ").split()]
__A = [float(x) for x in input("Enter the elements of second array: ").split()]
print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
| 348 | 0 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
| 368 |
__A = {
"joule": 1.0,
"kilojoule": 10_00,
"megajoule": 1_00_00_00,
"gigajoule": 10_00_00_00_00,
"wattsecond": 1.0,
"watthour": 36_00,
"kilowatthour": 3_60_00_00,
"newtonmeter": 1.0,
"calorie_nutr": 41_86.8,
"kilocalorie_nutr": 4_18_68_00.00,
"electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9,
"britishthermalunit_it": 10_55.0_55_85,
"footpound": 1.3_5_5_8_1_8,
}
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : float ) -> float:
"""simple docstring"""
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
__lowerCamelCase = (
F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"""
F"""Valid values are: {', '.join(UpperCamelCase__ )}"""
)
raise ValueError(UpperCamelCase__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 348 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"OPT_PRETRAINED_MODEL_ARCHIVE_LIST",
"OPTForCausalLM",
"OPTModel",
"OPTPreTrainedModel",
"OPTForSequenceClassification",
"OPTForQuestionAnswering",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"FlaxOPTForCausalLM",
"FlaxOPTModel",
"FlaxOPTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 369 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''philschmid/bart-large-cnn-samsum'''
snake_case_ = (
'''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, '''
'''and returns a summary of the text.'''
)
snake_case_ = '''summarizer'''
snake_case_ = AutoTokenizer
snake_case_ = AutoModelForSeqaSeqLM
snake_case_ = ['''text''']
snake_case_ = ['''text''']
def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]:
'''simple docstring'''
return self.pre_processor(lowerCamelCase__ , return_tensors='pt' , truncation=lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ ) -> Dict:
'''simple docstring'''
return self.model.generate(**lowerCamelCase__ )[0]
def lowercase_ ( self , lowerCamelCase__ ) -> Any:
'''simple docstring'''
return self.pre_processor.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ )
| 348 | 0 |
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
__A = logging.get_logger("transformers.models.speecht5")
__A = {
"speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm",
"speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection",
"speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv",
"speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed",
}
__A = {
"text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens",
"text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha",
}
__A = {
"speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0",
"speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1",
"speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer",
"speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha",
"speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer",
}
__A = {
"speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out",
"speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out",
"speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv",
"speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm",
"speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv",
"speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm",
"speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv",
"speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm",
"speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv",
"speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm",
"speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv",
"speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm",
}
__A = {
"text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens",
}
__A = {
"text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head",
}
__A = {
"encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj",
"encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj",
"encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj",
"encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj",
"encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm",
"encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense",
"encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense",
"encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm",
"encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k",
}
__A = {
"decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj",
"decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj",
"decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj",
"decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj",
"decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm",
"decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj",
"decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj",
"decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj",
"decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj",
"decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm",
"decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense",
"decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense",
"decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm",
}
__A = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
__A = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__A = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__A = []
__A = [
"encoder.version",
"encoder.layers.*.norm_k.weight",
"encoder.layers.*.norm_k.bias",
"decoder.version",
"decoder.layers.*.norm_k.weight",
"decoder.layers.*.norm_k.bias",
"decoder.pos_emb.pe_k",
"speech_encoder_prenet.embed_positions._float_tensor",
"text_decoder_prenet.embed_positions._float_tensor",
]
__A = IGNORE_KEYS + [
"encoder.proj",
"text_encoder_prenet.*",
"speech_decoder_prenet.*",
"speech_decoder_postnet.*",
]
__A = IGNORE_KEYS + [
"encoder.proj",
"speech_encoder_prenet.*",
"text_decoder_prenet.*",
"text_decoder_postnet.*",
]
__A = IGNORE_KEYS + [
"encoder.proj",
"text_encoder_prenet.*",
"text_decoder_prenet.*",
"text_decoder_postnet.*",
]
def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Dict:
"""simple docstring"""
for attribute in key.split('.' ):
__lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ )
if weight_type is not None:
__lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape
else:
__lowerCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}""" )
if weight_type == "weight":
__lowerCamelCase = value
elif weight_type == "weight_g":
__lowerCamelCase = value
elif weight_type == "weight_v":
__lowerCamelCase = value
elif weight_type == "bias":
__lowerCamelCase = value
elif weight_type == "running_mean":
__lowerCamelCase = value
elif weight_type == "running_var":
__lowerCamelCase = value
elif weight_type == "num_batches_tracked":
__lowerCamelCase = value
else:
__lowerCamelCase = value
logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" )
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ) -> Any:
"""simple docstring"""
for key in ignore_keys:
if key.endswith('.*' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
__lowerCamelCase , __lowerCamelCase = key.split('.*.' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
__lowerCamelCase = []
if task == "s2t":
__lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder
__lowerCamelCase = MAPPING_S2T
__lowerCamelCase = IGNORE_KEYS_S2T
elif task == "t2s":
__lowerCamelCase = None
__lowerCamelCase = MAPPING_T2S
__lowerCamelCase = IGNORE_KEYS_T2S
elif task == "s2s":
__lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder
__lowerCamelCase = MAPPING_S2S
__lowerCamelCase = IGNORE_KEYS_S2S
else:
raise ValueError(F"""Unsupported task: {task}""" )
for name, value in fairseq_dict.items():
if should_ignore(UpperCamelCase__ , UpperCamelCase__ ):
logger.info(F"""{name} was ignored""" )
continue
__lowerCamelCase = False
if "conv_layers" in name:
load_conv_layer(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , )
__lowerCamelCase = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
__lowerCamelCase , __lowerCamelCase = key.split('.*.' )
if prefix in name and suffix in name:
__lowerCamelCase = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
__lowerCamelCase = True
if "*" in mapped_key:
__lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2]
__lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ )
if "weight_g" in name:
__lowerCamelCase = 'weight_g'
elif "weight_v" in name:
__lowerCamelCase = 'weight_v'
elif "bias" in name:
__lowerCamelCase = 'bias'
elif "weight" in name:
__lowerCamelCase = 'weight'
elif "running_mean" in name:
__lowerCamelCase = 'running_mean'
elif "running_var" in name:
__lowerCamelCase = 'running_var'
elif "num_batches_tracked" in name:
__lowerCamelCase = 'num_batches_tracked'
else:
__lowerCamelCase = None
set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
continue
if not is_used:
unused_weights.append(UpperCamelCase__ )
logger.warning(F"""Unused weights: {unused_weights}""" )
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> Tuple:
"""simple docstring"""
__lowerCamelCase = full_name.split('conv_layers.' )[-1]
__lowerCamelCase = name.split('.' )
__lowerCamelCase = int(items[0] )
__lowerCamelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(UpperCamelCase__ )
@torch.no_grad()
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[str]=None , ) -> Tuple:
"""simple docstring"""
if config_path is not None:
__lowerCamelCase = SpeechTaConfig.from_pretrained(UpperCamelCase__ )
else:
__lowerCamelCase = SpeechTaConfig()
if task == "s2t":
__lowerCamelCase = config.max_text_positions
__lowerCamelCase = SpeechTaForSpeechToText(UpperCamelCase__ )
elif task == "t2s":
__lowerCamelCase = 1876
__lowerCamelCase = 600
__lowerCamelCase = config.max_speech_positions
__lowerCamelCase = SpeechTaForTextToSpeech(UpperCamelCase__ )
elif task == "s2s":
__lowerCamelCase = 1876
__lowerCamelCase = config.max_speech_positions
__lowerCamelCase = SpeechTaForSpeechToSpeech(UpperCamelCase__ )
else:
raise ValueError(F"""Unknown task name: {task}""" )
if vocab_path:
__lowerCamelCase = SpeechTaTokenizer(UpperCamelCase__ , model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
__lowerCamelCase = AddedToken('<mask>' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ )
__lowerCamelCase = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
__lowerCamelCase = SpeechTaFeatureExtractor()
__lowerCamelCase = SpeechTaProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
__lowerCamelCase = torch.load(UpperCamelCase__ )
recursively_load_weights(fairseq_checkpoint['model'] , UpperCamelCase__ , UpperCamelCase__ )
model.save_pretrained(UpperCamelCase__ )
if repo_id:
print('Pushing to the hub...' )
processor.push_to_hub(UpperCamelCase__ )
model.push_to_hub(UpperCamelCase__ )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
"--task",
default="s2t",
type=str,
help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.",
)
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
__A = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 370 |
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=4 , ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_attention_mask
__lowerCamelCase = use_token_type_ids
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = type_sequence_label_size
__lowerCamelCase = initializer_range
__lowerCamelCase = num_choices
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = None
if self.use_attention_mask:
__lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase = None
if self.use_token_type_ids:
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowerCamelCase = RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs
__lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs
__lowerCamelCase = True
__lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = True
snake_case_ = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = FlaxRobertaPreLayerNormModelTester(self )
@slow
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__lowerCamelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ )
__lowerCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCamelCase__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ )
__lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa )
__lowerCamelCase = model(lowerCamelCase__ )[0]
__lowerCamelCase = [1, 11, 50_265]
self.assertEqual(list(output.shape ) , lowerCamelCase__ )
# compare the actual values for a slice.
__lowerCamelCase = np.array(
[[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
@slow
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ )
__lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa )
__lowerCamelCase = model(lowerCamelCase__ )[0]
# compare the actual values for a slice.
__lowerCamelCase = np.array(
[[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
| 348 | 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = tempfile.mkdtemp()
# fmt: off
__lowerCamelCase = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
__lowerCamelCase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) )
__lowerCamelCase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
__lowerCamelCase = {'unk_token': '<unk>'}
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(lowerCamelCase__ ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(lowerCamelCase__ ) )
__lowerCamelCase = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
}
__lowerCamelCase = os.path.join(self.tmpdirname , lowerCamelCase__ )
with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:
json.dump(lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self , **lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ )
def lowercase_ ( self , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ )
def lowercase_ ( self , **lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase__ )
def lowercase_ ( self ) -> int:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
__lowerCamelCase = [Image.fromarray(np.moveaxis(lowerCamelCase__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = self.get_rust_tokenizer()
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = CLIPProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCamelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase__ )
__lowerCamelCase = CLIPProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCamelCase = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase__ )
self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase__ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , lowerCamelCase__ )
self.assertIsInstance(processor_fast.image_processor , lowerCamelCase__ )
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCamelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
__lowerCamelCase = self.get_image_processor(do_normalize=lowerCamelCase__ , padding_value=1.0 )
__lowerCamelCase = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCamelCase__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , lowerCamelCase__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ )
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='np' )
__lowerCamelCase = processor(images=lowerCamelCase__ , return_tensors='np' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ )
__lowerCamelCase = 'lower newer'
__lowerCamelCase = processor(text=lowerCamelCase__ )
__lowerCamelCase = tokenizer(lowerCamelCase__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ )
__lowerCamelCase = 'lower newer'
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = processor(text=lowerCamelCase__ , images=lowerCamelCase__ )
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(lowerCamelCase__ ):
processor()
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ )
__lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCamelCase = processor.batch_decode(lowerCamelCase__ )
__lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ )
self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ )
__lowerCamelCase = 'lower newer'
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = processor(text=lowerCamelCase__ , images=lowerCamelCase__ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 371 |
from ..utils import DummyObject, requires_backends
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
class __lowerCAmelCase ( metaclass=__magic_name__ ):
"""simple docstring"""
snake_case_ = ['''sentencepiece''']
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int:
'''simple docstring'''
requires_backends(self , ['sentencepiece'] )
| 348 | 0 |
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = MgpstrTokenizer
snake_case_ = False
snake_case_ = {}
snake_case_ = False
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
super().setUp()
# fmt: off
__lowerCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
# fmt: on
__lowerCamelCase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) )
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(lowerCamelCase__ ) + '\n' )
def lowercase_ ( self , **lowerCamelCase__ ) -> str:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ ) -> int:
'''simple docstring'''
__lowerCamelCase = 'tester'
__lowerCamelCase = 'tester'
return input_text, output_text
@unittest.skip('MGP-STR always lower cases letters.' )
def lowercase_ ( self ) -> int:
'''simple docstring'''
pass
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = self.get_tokenizers(do_lower_case=lowerCamelCase__ )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
__lowerCamelCase = '[SPECIAL_TOKEN]'
tokenizer.add_special_tokens({'cls_token': special_token} )
__lowerCamelCase = tokenizer.encode([special_token] , add_special_tokens=lowerCamelCase__ )
self.assertEqual(len(lowerCamelCase__ ) , 1 )
__lowerCamelCase = tokenizer.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ )
self.assertTrue(special_token not in decoded )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
__lowerCamelCase , __lowerCamelCase = self.get_input_output_texts(lowerCamelCase__ )
__lowerCamelCase = tokenizer.tokenize(lowerCamelCase__ )
__lowerCamelCase = tokenizer.convert_tokens_to_ids(lowerCamelCase__ )
__lowerCamelCase = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ )
self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = tokenizer.convert_ids_to_tokens(lowerCamelCase__ )
self.assertNotEqual(len(lowerCamelCase__ ) , 0 )
__lowerCamelCase = tokenizer.decode(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ )
self.assertEqual(text_a.replace(' ' , '' ) , lowerCamelCase__ )
@unittest.skip('MGP-STR tokenizer only handles one sequence.' )
def lowercase_ ( self ) -> str:
'''simple docstring'''
pass
@unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
pass
| 350 |
import random
import unittest
import numpy as np
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionImgaImgPipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline'''
def lowercase_ ( self , lowerCamelCase__=0 ) -> int:
'''simple docstring'''
__lowerCamelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase__ ) )
__lowerCamelCase = np.random.RandomState(lowerCamelCase__ )
__lowerCamelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 3,
'strength': 0.75,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] )
assert np.abs(image_slice - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
# warmup pass to apply optimizations
__lowerCamelCase = pipe(**self.get_dummy_inputs() )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
__lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = self.get_dummy_inputs()
__lowerCamelCase = pipe(**lowerCamelCase__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
__lowerCamelCase = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def lowercase_ ( self ) -> int:
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = ort.SessionOptions()
__lowerCamelCase = False
return options
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
__lowerCamelCase = init_image.resize((768, 512) )
# using the PNDM scheduler by default
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = 'A fantasy landscape, trending on artstation'
__lowerCamelCase = np.random.RandomState(0 )
__lowerCamelCase = pipe(
prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type='np' , )
__lowerCamelCase = output.images
__lowerCamelCase = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
__lowerCamelCase = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def lowercase_ ( self ) -> int:
'''simple docstring'''
__lowerCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
__lowerCamelCase = init_image.resize((768, 512) )
__lowerCamelCase = LMSDiscreteScheduler.from_pretrained(
'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' )
__lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = 'A fantasy landscape, trending on artstation'
__lowerCamelCase = np.random.RandomState(0 )
__lowerCamelCase = pipe(
prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type='np' , )
__lowerCamelCase = output.images
__lowerCamelCase = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
__lowerCamelCase = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
| 348 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
__A = logging.get_logger(__name__)
__A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all BART models at https://huggingface.co/models?filter=bart
__A = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
"tokenizer_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json",
},
}
__A = {
"facebook/bart-base": 10_24,
"facebook/bart-large": 10_24,
"facebook/bart-large-mnli": 10_24,
"facebook/bart-large-cnn": 10_24,
"facebook/bart-large-xsum": 10_24,
"yjernite/bart_eli5": 10_24,
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ['''input_ids''', '''attention_mask''']
snake_case_ = BartTokenizer
def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="replace" , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__=False , lowerCamelCase__=True , **lowerCamelCase__ , ) -> Any:
'''simple docstring'''
super().__init__(
lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , )
__lowerCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , lowerCamelCase__ ) != add_prefix_space:
__lowerCamelCase = getattr(lowerCamelCase__ , pre_tok_state.pop('type' ) )
__lowerCamelCase = add_prefix_space
__lowerCamelCase = pre_tok_class(**lowerCamelCase__ )
__lowerCamelCase = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
__lowerCamelCase = 'post_processor'
__lowerCamelCase = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ )
if tokenizer_component_instance:
__lowerCamelCase = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
__lowerCamelCase = tuple(state['sep'] )
if "cls" in state:
__lowerCamelCase = tuple(state['cls'] )
__lowerCamelCase = False
if state.get('add_prefix_space' , lowerCamelCase__ ) != add_prefix_space:
__lowerCamelCase = add_prefix_space
__lowerCamelCase = True
if state.get('trim_offsets' , lowerCamelCase__ ) != trim_offsets:
__lowerCamelCase = trim_offsets
__lowerCamelCase = True
if changes_to_apply:
__lowerCamelCase = getattr(lowerCamelCase__ , state.pop('type' ) )
__lowerCamelCase = component_class(**lowerCamelCase__ )
setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ )
@property
def lowercase_ ( self ) -> str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def lowercase_ ( self , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value
__lowerCamelCase = value
def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> BatchEncoding:
'''simple docstring'''
__lowerCamelCase = kwargs.get('is_split_into_words' , lowerCamelCase__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
'to use it with pretokenized inputs.' )
return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ )
def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> BatchEncoding:
'''simple docstring'''
__lowerCamelCase = kwargs.get('is_split_into_words' , lowerCamelCase__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
'to use it with pretokenized inputs.' )
return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]:
'''simple docstring'''
__lowerCamelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ )
return tuple(lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=None ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]:
'''simple docstring'''
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 351 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
__A = logging.get_logger(__name__)
__A = {
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json",
}
# fmt: off
__A = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85,
7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77,
13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11,
46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86,
1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91,
1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09,
3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61
]
__A = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73,
8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27,
32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47,
72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93,
1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75,
2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65,
4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62
]
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''whisper'''
snake_case_ = ['''past_key_values''']
snake_case_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self , lowerCamelCase__=51_865 , lowerCamelCase__=80 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=1_536 , lowerCamelCase__=1_536 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=50_257 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="gelu" , lowerCamelCase__=256 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=1_500 , lowerCamelCase__=448 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=None , lowerCamelCase__=[220, 50_256] , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=False , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__=7 , **lowerCamelCase__ , ) -> str:
'''simple docstring'''
__lowerCamelCase = vocab_size
__lowerCamelCase = num_mel_bins
__lowerCamelCase = d_model
__lowerCamelCase = encoder_layers
__lowerCamelCase = encoder_attention_heads
__lowerCamelCase = decoder_layers
__lowerCamelCase = decoder_attention_heads
__lowerCamelCase = decoder_ffn_dim
__lowerCamelCase = encoder_ffn_dim
__lowerCamelCase = dropout
__lowerCamelCase = attention_dropout
__lowerCamelCase = activation_dropout
__lowerCamelCase = activation_function
__lowerCamelCase = init_std
__lowerCamelCase = encoder_layerdrop
__lowerCamelCase = decoder_layerdrop
__lowerCamelCase = use_cache
__lowerCamelCase = encoder_layers
__lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True
__lowerCamelCase = max_source_positions
__lowerCamelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
__lowerCamelCase = classifier_proj_size
__lowerCamelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowerCamelCase = apply_spec_augment
__lowerCamelCase = mask_time_prob
__lowerCamelCase = mask_time_length
__lowerCamelCase = mask_time_min_masks
__lowerCamelCase = mask_feature_prob
__lowerCamelCase = mask_feature_length
__lowerCamelCase = mask_feature_min_masks
__lowerCamelCase = median_filter_width
super().__init__(
pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , suppress_tokens=lowerCamelCase__ , begin_suppress_tokens=lowerCamelCase__ , **lowerCamelCase__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
@property
def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
__lowerCamelCase = OrderedDict(
[
('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}),
] )
if self.use_past:
__lowerCamelCase = {0: 'batch'}
else:
__lowerCamelCase = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(lowerCamelCase__ , direction='inputs' )
return common_inputs
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = 22_050 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 220 , ) -> Mapping[str, Any]:
'''simple docstring'''
__lowerCamelCase = OrderedDict()
__lowerCamelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase__ , framework=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , time_duration=lowerCamelCase__ , frequency=lowerCamelCase__ , )
__lowerCamelCase = encoder_inputs['input_features'].shape[2]
__lowerCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length
__lowerCamelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = encoder_inputs.pop('input_features' )
__lowerCamelCase = decoder_inputs.pop('decoder_input_ids' )
if "past_key_values" in decoder_inputs:
__lowerCamelCase = decoder_inputs.pop('past_key_values' )
return dummy_inputs
@property
def lowercase_ ( self ) -> float:
'''simple docstring'''
return 1e-3
| 348 | 0 |
def lowerCamelCase_ ( UpperCamelCase__ : int ) -> int:
"""simple docstring"""
__lowerCamelCase = abs(UpperCamelCase__ )
__lowerCamelCase = 0
while n > 0:
res += n % 10
n //= 10
return res
def lowerCamelCase_ ( UpperCamelCase__ : int ) -> int:
"""simple docstring"""
__lowerCamelCase = abs(UpperCamelCase__ )
return n if n < 10 else n % 10 + sum_of_digits(n // 10 )
def lowerCamelCase_ ( UpperCamelCase__ : int ) -> int:
"""simple docstring"""
return sum(int(UpperCamelCase__ ) for c in str(abs(UpperCamelCase__ ) ) )
def lowerCamelCase_ ( ) -> None:
"""simple docstring"""
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(UpperCamelCase__ : Callable , UpperCamelCase__ : int ) -> None:
__lowerCamelCase = F"""{func.__name__}({value})"""
__lowerCamelCase = timeit(F"""__main__.{call}""" , setup='import __main__' )
print(F"""{call:56} = {func(UpperCamelCase__ )} -- {timing:.4f} seconds""" )
for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(UpperCamelCase__ , UpperCamelCase__ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 352 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ) -> int:
'''simple docstring'''
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_input_mask
__lowerCamelCase = use_token_type_ids
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = rotary_dim
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = initializer_range
__lowerCamelCase = None
__lowerCamelCase = vocab_size - 1
__lowerCamelCase = vocab_size - 1
__lowerCamelCase = vocab_size - 1
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = None
if self.use_input_mask:
__lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs
__lowerCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any:
'''simple docstring'''
__lowerCamelCase = 20
__lowerCamelCase = model_class_name(lowerCamelCase__ )
__lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ )
__lowerCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' )
__lowerCamelCase = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__lowerCamelCase = model(
input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , )
__lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' )
__lowerCamelCase = model(
input_ids[:, -1:] , attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase__ , )
__lowerCamelCase = model(lowerCamelCase__ )
__lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int:
'''simple docstring'''
__lowerCamelCase = 20
__lowerCamelCase = model_class_name(lowerCamelCase__ )
__lowerCamelCase = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
__lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ )
__lowerCamelCase = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__lowerCamelCase = model(
input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , )
__lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' )
__lowerCamelCase = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase__ , position_ids=lowerCamelCase__ , )
__lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )
__lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
@require_flax
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
snake_case_ = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = FlaxGPTJModelTester(self )
def lowercase_ ( self ) -> str:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
@tooslow
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' )
__lowerCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowerCamelCase__ , truncation=lowerCamelCase__ )
__lowerCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' )
__lowerCamelCase = False
__lowerCamelCase = model.config.eos_token_id
__lowerCamelCase = jax.jit(model.generate )
__lowerCamelCase = jit_generate(
inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences
__lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ )
__lowerCamelCase = [
'Hello this is a long string of text.\n\nI\'m trying to get the text of the',
'Hey, I\'m a little late to the party. I\'m going to',
]
self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
@is_pt_flax_cross_test
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning
__lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape
__lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowerCamelCase__ ):
__lowerCamelCase = 0
__lowerCamelCase = 1
__lowerCamelCase = 0
__lowerCamelCase = 1
__lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval()
__lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa )
__lowerCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase__ )
__lowerCamelCase = fx_state
with torch.no_grad():
__lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple()
__lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple()
self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowerCamelCase__ )
__lowerCamelCase = model_class.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ )
__lowerCamelCase = fx_model_loaded(**lowerCamelCase__ ).to_tuple()
self.assertEqual(
len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output_loaded, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning
__lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval()
__lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa )
__lowerCamelCase = load_flax_weights_in_pytorch_model(lowerCamelCase__ , fx_model.params )
__lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape
__lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowerCamelCase__ ):
__lowerCamelCase = 0
__lowerCamelCase = 1
__lowerCamelCase = 0
__lowerCamelCase = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
__lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple()
__lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple()
self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowerCamelCase__ )
__lowerCamelCase = pt_model_class.from_pretrained(lowerCamelCase__ , from_flax=lowerCamelCase__ )
with torch.no_grad():
__lowerCamelCase = pt_model_loaded(**lowerCamelCase__ ).to_tuple()
self.assertEqual(
len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__lowerCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' )
__lowerCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCamelCase__ )
| 348 | 0 |
import heapq
def lowerCamelCase_ ( UpperCamelCase__ : dict ) -> set[int]:
"""simple docstring"""
__lowerCamelCase = []
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(UpperCamelCase__ , [-1 * len(UpperCamelCase__ ), (key, value)] )
# chosen_vertices = set of chosen vertices
__lowerCamelCase = set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
__lowerCamelCase = heapq.heappop(UpperCamelCase__ )[1][0]
chosen_vertices.add(UpperCamelCase__ )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
__lowerCamelCase = elem[1][1].index(UpperCamelCase__ )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(UpperCamelCase__ )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
__A = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
| 353 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
__A = False
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowercase_ ( self ) -> int:
'''simple docstring'''
return 12
@property
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
return 12
@property
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
return 32
@property
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
__lowerCamelCase = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , )
return model
@property
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
torch.manual_seed(0 )
__lowerCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModel(lowerCamelCase__ )
@property
def lowercase_ ( self ) -> str:
'''simple docstring'''
torch.manual_seed(0 )
__lowerCamelCase = 12
__lowerCamelCase = 12
__lowerCamelCase = {
'attention_bias': True,
'cross_attention_dim': 32,
'attention_head_dim': height * width,
'num_attention_heads': 1,
'num_vector_embeds': self.num_embed,
'num_embeds_ada_norm': self.num_embeds_ada_norm,
'norm_num_groups': 32,
'sample_size': width,
'activation_fn': 'geglu-approximate',
}
__lowerCamelCase = TransformeraDModel(**lowerCamelCase__ )
return model
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = 'cpu'
__lowerCamelCase = self.dummy_vqvae
__lowerCamelCase = self.dummy_text_encoder
__lowerCamelCase = self.dummy_tokenizer
__lowerCamelCase = self.dummy_transformer
__lowerCamelCase = VQDiffusionScheduler(self.num_embed )
__lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=lowerCamelCase__ )
__lowerCamelCase = VQDiffusionPipeline(
vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , )
__lowerCamelCase = pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = 'teddy bear playing in the pool'
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' )
__lowerCamelCase = output.images
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipe(
[prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
__lowerCamelCase = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = 'cpu'
__lowerCamelCase = self.dummy_vqvae
__lowerCamelCase = self.dummy_text_encoder
__lowerCamelCase = self.dummy_tokenizer
__lowerCamelCase = self.dummy_transformer
__lowerCamelCase = VQDiffusionScheduler(self.num_embed )
__lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings(
learnable=lowerCamelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length )
__lowerCamelCase = VQDiffusionPipeline(
vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , )
__lowerCamelCase = pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = 'teddy bear playing in the pool'
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' )
__lowerCamelCase = output.images
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipe(
[prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
__lowerCamelCase = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' )
__lowerCamelCase = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' )
__lowerCamelCase = pipeline.to(lowerCamelCase__ )
pipeline.set_progress_bar_config(disable=lowerCamelCase__ )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__lowerCamelCase = pipeline(
'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=lowerCamelCase__ , output_type='np' , )
__lowerCamelCase = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 348 | 0 |
import math
import tensorflow as tf
from packaging import version
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[str]:
"""simple docstring"""
__lowerCamelCase = tf.convert_to_tensor(UpperCamelCase__ )
__lowerCamelCase = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) ))
return x * cdf
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> Dict:
"""simple docstring"""
__lowerCamelCase = tf.convert_to_tensor(UpperCamelCase__ )
__lowerCamelCase = tf.cast(math.pi , x.dtype )
__lowerCamelCase = tf.cast(0.04_47_15 , x.dtype )
__lowerCamelCase = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(UpperCamelCase__ , 3 )) ))
return x * cdf
def lowerCamelCase_ ( UpperCamelCase__ : int ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = tf.convert_to_tensor(UpperCamelCase__ )
return x * tf.tanh(tf.math.softplus(UpperCamelCase__ ) )
def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowerCamelCase = tf.convert_to_tensor(UpperCamelCase__ )
__lowerCamelCase = tf.cast(0.04_47_15 , x.dtype )
__lowerCamelCase = tf.cast(0.79_78_84_56_08 , x.dtype )
return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) ))
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowerCamelCase = tf.convert_to_tensor(UpperCamelCase__ )
__lowerCamelCase = tf.cast(1.7_02 , x.dtype )
return x * tf.math.sigmoid(coeff * x )
def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
return tf.clip_by_value(_gelu(UpperCamelCase__ ) , -10 , 10 )
def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any]=-1 ) -> Tuple:
"""simple docstring"""
__lowerCamelCase , __lowerCamelCase = tf.split(UpperCamelCase__ , 2 , axis=UpperCamelCase__ )
return a * tf.math.sigmoid(UpperCamelCase__ )
if version.parse(tf.version.VERSION) >= version.parse("2.4"):
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return tf.keras.activations.gelu(UpperCamelCase__ , approximate=UpperCamelCase__ )
__A = tf.keras.activations.gelu
__A = approximate_gelu_wrap
else:
__A = _gelu
__A = _gelu_new
__A = {
"gelu": gelu,
"gelu_10": gelu_aa,
"gelu_fast": gelu_fast,
"gelu_new": gelu_new,
"glu": glu,
"mish": mish,
"quick_gelu": quick_gelu,
"relu": tf.keras.activations.relu,
"sigmoid": tf.keras.activations.sigmoid,
"silu": tf.keras.activations.swish,
"swish": tf.keras.activations.swish,
"tanh": tf.keras.activations.tanh,
}
def lowerCamelCase_ ( UpperCamelCase__ : Tuple ) -> Any:
"""simple docstring"""
if activation_string in ACTaFN:
return ACTaFN[activation_string]
else:
raise KeyError(F"""function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}""" )
| 354 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=32 * 8 , lowerCamelCase__=32 * 8 , lowerCamelCase__=4 , lowerCamelCase__=64 , ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = is_training
__lowerCamelCase = use_auxiliary_loss
__lowerCamelCase = num_queries
__lowerCamelCase = num_channels
__lowerCamelCase = min_size
__lowerCamelCase = max_size
__lowerCamelCase = num_labels
__lowerCamelCase = hidden_dim
__lowerCamelCase = hidden_dim
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
__lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
lowerCamelCase__ )
__lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ )
__lowerCamelCase = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5
).float()
__lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long()
__lowerCamelCase = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = MaskaFormerConfig(
hidden_size=self.hidden_dim , )
__lowerCamelCase = self.num_queries
__lowerCamelCase = self.num_labels
__lowerCamelCase = [1, 1, 1, 1]
__lowerCamelCase = self.num_channels
__lowerCamelCase = 64
__lowerCamelCase = 128
__lowerCamelCase = self.hidden_dim
__lowerCamelCase = self.hidden_dim
__lowerCamelCase = self.hidden_dim
return config
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask}
return config, inputs_dict
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any:
'''simple docstring'''
__lowerCamelCase = output.encoder_hidden_states
__lowerCamelCase = output.pixel_decoder_hidden_states
__lowerCamelCase = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Tuple:
'''simple docstring'''
with torch.no_grad():
__lowerCamelCase = MaskaFormerModel(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ )
__lowerCamelCase = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
def comm_check_on_output(lowerCamelCase__ ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
__lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ )
__lowerCamelCase = model(lowerCamelCase__ )
comm_check_on_output(lowerCamelCase__ )
__lowerCamelCase = model(
pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ )
comm_check_on_output(lowerCamelCase__ )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {}
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = MaskaFormerModelTester(self )
__lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ )
@unittest.skip(reason='Mask2Former does not use inputs_embeds' )
def lowercase_ ( self ) -> Any:
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' )
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former is not a generative model' )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former does not use token embeddings' )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(
reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
pass
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(lowerCamelCase__ )
__lowerCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase = [*signature.parameters.keys()]
__lowerCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , lowerCamelCase__ )
@slow
def lowercase_ ( self ) -> int:
'''simple docstring'''
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
__lowerCamelCase = MaskaFormerModel.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = (self.model_tester.min_size,) * 2
__lowerCamelCase = {
'pixel_values': torch.randn((2, 3, *size) , device=lowerCamelCase__ ),
'mask_labels': torch.randn((2, 10, *size) , device=lowerCamelCase__ ),
'class_labels': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(),
}
__lowerCamelCase = self.model_tester.get_config()
__lowerCamelCase = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ )
__lowerCamelCase = model(**lowerCamelCase__ )
self.assertTrue(outputs.loss is not None )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ )
__lowerCamelCase = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ )
self.assertTrue(outputs.attentions is not None )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
if not self.model_tester.is_training:
return
__lowerCamelCase = self.all_model_classes[1]
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = model_class(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.train()
__lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss
loss.backward()
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase = self.all_model_classes[1]
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = True
__lowerCamelCase = True
__lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ )
model.train()
__lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ )
__lowerCamelCase = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
__lowerCamelCase = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
__lowerCamelCase = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
__lowerCamelCase = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=lowerCamelCase__ )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__A = 1e-4
def lowerCamelCase_ ( ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_vision
@slow
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ )
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = prepare_img()
__lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ )
__lowerCamelCase = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) )
with torch.no_grad():
__lowerCamelCase = model(**lowerCamelCase__ )
__lowerCamelCase = torch.tensor(
[[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(lowerCamelCase__ )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
__lowerCamelCase = torch.tensor(
[[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(lowerCamelCase__ )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
__lowerCamelCase = torch.tensor(
[[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(lowerCamelCase__ )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval()
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = prepare_img()
__lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ )
__lowerCamelCase = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) )
with torch.no_grad():
__lowerCamelCase = model(**lowerCamelCase__ )
# masks_queries_logits
__lowerCamelCase = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
__lowerCamelCase = [
[-8.78_39, -9.00_56, -8.81_21],
[-7.41_04, -7.03_13, -6.54_01],
[-6.61_05, -6.34_27, -6.46_75],
]
__lowerCamelCase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
# class_queries_logits
__lowerCamelCase = outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) )
__lowerCamelCase = torch.tensor(
[
[1.83_24, -8.08_35, -4.19_22],
[0.84_50, -9.00_50, -3.60_53],
[0.30_45, -7.72_93, -3.02_75],
] ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval()
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = image_processor(
[np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , )
__lowerCamelCase = inputs['pixel_values'].to(lowerCamelCase__ )
__lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['mask_labels']]
__lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['class_labels']]
with torch.no_grad():
__lowerCamelCase = model(**lowerCamelCase__ )
self.assertTrue(outputs.loss is not None )
| 348 | 0 |
def lowerCamelCase_ ( UpperCamelCase__ : int = 200 ) -> int:
"""simple docstring"""
__lowerCamelCase = [1, 2, 5, 10, 20, 50, 100, 200]
__lowerCamelCase = [0] * (pence + 1)
__lowerCamelCase = 1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(UpperCamelCase__ , pence + 1 , 1 ):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(2_00) == 7_36_82
| 355 |
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__A = {
"facebook/mask2former-swin-small-coco-instance": (
"https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
__A = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''mask2former'''
snake_case_ = ['''swin''']
snake_case_ = {'''hidden_size''': '''hidden_dim'''}
def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 1_024 , lowerCamelCase__ = "relu" , lowerCamelCase__ = 6 , lowerCamelCase__ = 10 , lowerCamelCase__ = 8 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 2_048 , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = 4 , lowerCamelCase__ = 255 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 2.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 12_544 , lowerCamelCase__ = 3.0 , lowerCamelCase__ = 0.75 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = True , lowerCamelCase__ = [4, 8, 16, 32] , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Tuple:
'''simple docstring'''
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' )
__lowerCamelCase = CONFIG_MAPPING['swin'](
image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
__lowerCamelCase = backbone_config.pop('model_type' )
__lowerCamelCase = CONFIG_MAPPING[backbone_model_type]
__lowerCamelCase = config_class.from_dict(lowerCamelCase__ )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """
f"""Supported model types: {','.join(self.backbones_supported )}""" )
__lowerCamelCase = backbone_config
__lowerCamelCase = feature_size
__lowerCamelCase = mask_feature_size
__lowerCamelCase = hidden_dim
__lowerCamelCase = encoder_feedforward_dim
__lowerCamelCase = activation_function
__lowerCamelCase = encoder_layers
__lowerCamelCase = decoder_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = dropout
__lowerCamelCase = dim_feedforward
__lowerCamelCase = pre_norm
__lowerCamelCase = enforce_input_projection
__lowerCamelCase = common_stride
__lowerCamelCase = ignore_value
__lowerCamelCase = num_queries
__lowerCamelCase = no_object_weight
__lowerCamelCase = class_weight
__lowerCamelCase = mask_weight
__lowerCamelCase = dice_weight
__lowerCamelCase = train_num_points
__lowerCamelCase = oversample_ratio
__lowerCamelCase = importance_sample_ratio
__lowerCamelCase = init_std
__lowerCamelCase = init_xavier_std
__lowerCamelCase = use_auxiliary_loss
__lowerCamelCase = feature_strides
__lowerCamelCase = output_auxiliary_logits
__lowerCamelCase = decoder_layers
super().__init__(**lowerCamelCase__ )
@classmethod
def lowercase_ ( cls , lowerCamelCase__ , **lowerCamelCase__ ) -> Any:
'''simple docstring'''
return cls(
backbone_config=lowerCamelCase__ , **lowerCamelCase__ , )
def lowercase_ ( self ) -> Dict[str, any]:
'''simple docstring'''
__lowerCamelCase = copy.deepcopy(self.__dict__ )
__lowerCamelCase = self.backbone_config.to_dict()
__lowerCamelCase = self.__class__.model_type
return output
| 348 | 0 |
"""simple docstring"""
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = (KDPMaDiscreteScheduler,)
snake_case_ = 10
def lowercase_ ( self , **lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = {
'num_train_timesteps': 1_100,
'beta_start': 0.00_01,
'beta_end': 0.02,
'beta_schedule': 'linear',
}
config.update(**lowerCamelCase__ )
return config
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
for timesteps in [10, 50, 100, 1_000]:
self.check_over_configs(num_train_timesteps=lowerCamelCase__ )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ):
self.check_over_configs(beta_start=lowerCamelCase__ , beta_end=lowerCamelCase__ )
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=lowerCamelCase__ )
def lowercase_ ( self ) -> int:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCamelCase__ )
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config(prediction_type='v_prediction' )
__lowerCamelCase = scheduler_class(**lowerCamelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
__lowerCamelCase = self.dummy_model()
__lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
__lowerCamelCase = sample.to(lowerCamelCase__ )
for i, t in enumerate(scheduler.timesteps ):
__lowerCamelCase = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = model(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = output.prev_sample
__lowerCamelCase = torch.sum(torch.abs(lowerCamelCase__ ) )
__lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2
assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2
assert abs(result_mean.item() - 0.00_02 ) < 1e-3
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
if torch_device == "mps":
return
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config()
__lowerCamelCase = scheduler_class(**lowerCamelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
__lowerCamelCase = self.dummy_model()
__lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
__lowerCamelCase = sample.to(lowerCamelCase__ )
for i, t in enumerate(scheduler.timesteps ):
__lowerCamelCase = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = model(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = output.prev_sample
__lowerCamelCase = torch.sum(torch.abs(lowerCamelCase__ ) )
__lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.41_25 ) < 1e-2
assert abs(result_mean.item() - 0.02_66 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.41_25 ) < 1e-2
assert abs(result_mean.item() - 0.02_66 ) < 1e-3
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
if torch_device == "mps":
return
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config()
__lowerCamelCase = scheduler_class(**lowerCamelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase__ )
__lowerCamelCase = self.dummy_model()
__lowerCamelCase = self.dummy_sample_deter.to(lowerCamelCase__ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
__lowerCamelCase = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = model(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = output.prev_sample
__lowerCamelCase = torch.sum(torch.abs(lowerCamelCase__ ) )
__lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) )
if str(lowerCamelCase__ ).startswith('cpu' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.41_25 ) < 1e-2
assert abs(result_mean.item() - 0.02_66 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.41_25 ) < 1e-2
assert abs(result_mean.item() - 0.02_66 ) < 1e-3
| 356 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = 42
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
"""simple docstring"""
@register_to_config
def __init__( self , lowerCamelCase__ = 32 , lowerCamelCase__ = 64 , lowerCamelCase__ = 20 , lowerCamelCase__ = 768 , lowerCamelCase__=77 , lowerCamelCase__=4 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = "silu" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "linear" , lowerCamelCase__ = "prd" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Tuple:
'''simple docstring'''
super().__init__()
__lowerCamelCase = num_attention_heads
__lowerCamelCase = attention_head_dim
__lowerCamelCase = num_attention_heads * attention_head_dim
__lowerCamelCase = additional_embeddings
__lowerCamelCase = time_embed_dim or inner_dim
__lowerCamelCase = embedding_proj_dim or embedding_dim
__lowerCamelCase = clip_embed_dim or embedding_dim
__lowerCamelCase = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 )
__lowerCamelCase = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ )
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
if embedding_proj_norm_type is None:
__lowerCamelCase = None
elif embedding_proj_norm_type == "layer":
__lowerCamelCase = nn.LayerNorm(lowerCamelCase__ )
else:
raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" )
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
if encoder_hid_proj_type is None:
__lowerCamelCase = None
elif encoder_hid_proj_type == "linear":
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
else:
raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" )
__lowerCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) )
if added_emb_type == "prd":
__lowerCamelCase = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) )
elif added_emb_type is None:
__lowerCamelCase = None
else:
raise ValueError(
f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" )
__lowerCamelCase = nn.ModuleList(
[
BasicTransformerBlock(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='gelu' , attention_bias=lowerCamelCase__ , )
for d in range(lowerCamelCase__ )
] )
if norm_in_type == "layer":
__lowerCamelCase = nn.LayerNorm(lowerCamelCase__ )
elif norm_in_type is None:
__lowerCamelCase = None
else:
raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" )
__lowerCamelCase = nn.LayerNorm(lowerCamelCase__ )
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 )
causal_attention_mask.triu_(1 )
__lowerCamelCase = causal_attention_mask[None, ...]
self.register_buffer('causal_attention_mask' , lowerCamelCase__ , persistent=lowerCamelCase__ )
__lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) )
__lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def lowercase_ ( self ) -> Dict[str, AttentionProcessor]:
'''simple docstring'''
__lowerCamelCase = {}
def fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
if hasattr(lowerCamelCase__ , 'set_processor' ):
__lowerCamelCase = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
return processors
def lowercase_ ( self , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = len(self.attn_processors.keys() )
if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count:
raise ValueError(
f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the"""
f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
if hasattr(lowerCamelCase__ , 'set_processor' ):
if not isinstance(lowerCamelCase__ , lowerCamelCase__ ):
module.set_processor(lowerCamelCase__ )
else:
module.set_processor(processor.pop(f"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ )
for name, module in self.named_children():
fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> int:
'''simple docstring'''
__lowerCamelCase = hidden_states.shape[0]
__lowerCamelCase = timestep
if not torch.is_tensor(lowerCamelCase__ ):
__lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0:
__lowerCamelCase = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__lowerCamelCase = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device )
__lowerCamelCase = self.time_proj(lowerCamelCase__ )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
__lowerCamelCase = timesteps_projected.to(dtype=self.dtype )
__lowerCamelCase = self.time_embedding(lowerCamelCase__ )
if self.embedding_proj_norm is not None:
__lowerCamelCase = self.embedding_proj_norm(lowerCamelCase__ )
__lowerCamelCase = self.embedding_proj(lowerCamelCase__ )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
__lowerCamelCase = self.encoder_hidden_states_proj(lowerCamelCase__ )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' )
__lowerCamelCase = self.proj_in(lowerCamelCase__ )
__lowerCamelCase = self.positional_embedding.to(hidden_states.dtype )
__lowerCamelCase = []
__lowerCamelCase = 0
if encoder_hidden_states is not None:
additional_embeds.append(lowerCamelCase__ )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
__lowerCamelCase = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
__lowerCamelCase = hidden_states[:, None, :]
__lowerCamelCase = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
__lowerCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 )
additional_embeds.append(lowerCamelCase__ )
__lowerCamelCase = torch.cat(
lowerCamelCase__ , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
__lowerCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
__lowerCamelCase = F.pad(
lowerCamelCase__ , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
__lowerCamelCase = hidden_states + positional_embeddings
if attention_mask is not None:
__lowerCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0
__lowerCamelCase = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 )
__lowerCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
__lowerCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
__lowerCamelCase = self.norm_in(lowerCamelCase__ )
for block in self.transformer_blocks:
__lowerCamelCase = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ )
__lowerCamelCase = self.norm_out(lowerCamelCase__ )
if self.prd_embedding is not None:
__lowerCamelCase = hidden_states[:, -1]
else:
__lowerCamelCase = hidden_states[:, additional_embeddings_len:]
__lowerCamelCase = self.proj_to_clip_embeddings(lowerCamelCase__ )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 348 | 0 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
__A = logging.get_logger(__name__)
__A = {
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json",
}
# fmt: off
__A = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85,
7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77,
13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11,
46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86,
1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91,
1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09,
3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61
]
__A = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73,
8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27,
32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47,
72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93,
1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75,
2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65,
4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62
]
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''whisper'''
snake_case_ = ['''past_key_values''']
snake_case_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self , lowerCamelCase__=51_865 , lowerCamelCase__=80 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=1_536 , lowerCamelCase__=1_536 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=50_257 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="gelu" , lowerCamelCase__=256 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=1_500 , lowerCamelCase__=448 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=None , lowerCamelCase__=[220, 50_256] , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=False , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__=7 , **lowerCamelCase__ , ) -> str:
'''simple docstring'''
__lowerCamelCase = vocab_size
__lowerCamelCase = num_mel_bins
__lowerCamelCase = d_model
__lowerCamelCase = encoder_layers
__lowerCamelCase = encoder_attention_heads
__lowerCamelCase = decoder_layers
__lowerCamelCase = decoder_attention_heads
__lowerCamelCase = decoder_ffn_dim
__lowerCamelCase = encoder_ffn_dim
__lowerCamelCase = dropout
__lowerCamelCase = attention_dropout
__lowerCamelCase = activation_dropout
__lowerCamelCase = activation_function
__lowerCamelCase = init_std
__lowerCamelCase = encoder_layerdrop
__lowerCamelCase = decoder_layerdrop
__lowerCamelCase = use_cache
__lowerCamelCase = encoder_layers
__lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True
__lowerCamelCase = max_source_positions
__lowerCamelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
__lowerCamelCase = classifier_proj_size
__lowerCamelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowerCamelCase = apply_spec_augment
__lowerCamelCase = mask_time_prob
__lowerCamelCase = mask_time_length
__lowerCamelCase = mask_time_min_masks
__lowerCamelCase = mask_feature_prob
__lowerCamelCase = mask_feature_length
__lowerCamelCase = mask_feature_min_masks
__lowerCamelCase = median_filter_width
super().__init__(
pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , suppress_tokens=lowerCamelCase__ , begin_suppress_tokens=lowerCamelCase__ , **lowerCamelCase__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
@property
def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
__lowerCamelCase = OrderedDict(
[
('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}),
] )
if self.use_past:
__lowerCamelCase = {0: 'batch'}
else:
__lowerCamelCase = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(lowerCamelCase__ , direction='inputs' )
return common_inputs
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = 22_050 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 220 , ) -> Mapping[str, Any]:
'''simple docstring'''
__lowerCamelCase = OrderedDict()
__lowerCamelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase__ , framework=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , time_duration=lowerCamelCase__ , frequency=lowerCamelCase__ , )
__lowerCamelCase = encoder_inputs['input_features'].shape[2]
__lowerCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length
__lowerCamelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = encoder_inputs.pop('input_features' )
__lowerCamelCase = decoder_inputs.pop('decoder_input_ids' )
if "past_key_values" in decoder_inputs:
__lowerCamelCase = decoder_inputs.pop('past_key_values' )
return dummy_inputs
@property
def lowercase_ ( self ) -> float:
'''simple docstring'''
return 1e-3
| 357 |
import sys
from collections import defaultdict
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = []
def lowercase_ ( self , lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
return self.node_position[vertex]
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int:
'''simple docstring'''
__lowerCamelCase = pos
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
__lowerCamelCase = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
__lowerCamelCase = 2 * start + 1
else:
__lowerCamelCase = 2 * start + 2
if heap[smallest_child] < heap[start]:
__lowerCamelCase , __lowerCamelCase = heap[smallest_child], positions[smallest_child]
__lowerCamelCase , __lowerCamelCase = (
heap[start],
positions[start],
)
__lowerCamelCase , __lowerCamelCase = temp, tempa
__lowerCamelCase = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , lowerCamelCase__ )
self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int:
'''simple docstring'''
__lowerCamelCase = position[index]
while index != 0:
__lowerCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
__lowerCamelCase = heap[parent]
__lowerCamelCase = position[parent]
self.set_position(position[parent] , lowerCamelCase__ )
else:
__lowerCamelCase = val
__lowerCamelCase = temp
self.set_position(lowerCamelCase__ , lowerCamelCase__ )
break
__lowerCamelCase = parent
else:
__lowerCamelCase = val
__lowerCamelCase = temp
self.set_position(lowerCamelCase__ , 0 )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str:
'''simple docstring'''
__lowerCamelCase = len(lowerCamelCase__ ) // 2 - 1
for i in range(lowerCamelCase__ , -1 , -1 ):
self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = positions[0]
__lowerCamelCase = sys.maxsize
self.top_to_bottom(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ )
return temp
def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = Heap()
__lowerCamelCase = [0] * len(UpperCamelCase__ )
__lowerCamelCase = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
__lowerCamelCase = [] # Heap of Distance of vertices from their neighboring vertex
__lowerCamelCase = []
for vertex in range(len(UpperCamelCase__ ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCamelCase__ )
heap.node_position.append(UpperCamelCase__ )
__lowerCamelCase = []
__lowerCamelCase = 1
__lowerCamelCase = sys.maxsize
for neighbor, distance in adjacency_list[0]:
__lowerCamelCase = 0
__lowerCamelCase = distance
heap.heapify(UpperCamelCase__ , UpperCamelCase__ )
for _ in range(1 , len(UpperCamelCase__ ) ):
__lowerCamelCase = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
__lowerCamelCase = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCamelCase__ )]
):
__lowerCamelCase = distance
heap.bottom_to_top(
UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ )
__lowerCamelCase = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
__A = int(input("Enter number of edges: ").strip())
__A = defaultdict(list)
for _ in range(edges_number):
__A = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 348 | 0 |
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
__A = pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
__A = dataset.iloc[:, 1:2].values
__A = dataset.iloc[:, 2].values
__A , __A , __A , __A = train_test_split(X, y, test_size=0.2, random_state=0)
__A = PolynomialFeatures(degree=4)
__A = poly_reg.fit_transform(X)
__A = LinearRegression()
pol_reg.fit(X_poly, y)
def lowerCamelCase_ ( ) -> str:
"""simple docstring"""
plt.scatter(UpperCamelCase__ , UpperCamelCase__ , color='red' )
plt.plot(UpperCamelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase__ ) ) , color='blue' )
plt.title('Truth or Bluff (Linear Regression)' )
plt.xlabel('Position level' )
plt.ylabel('Salary' )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 358 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=__magic_name__ )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
snake_case_ = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} )
snake_case_ = Features(
{
'''answers''': Sequence(
{
'''text''': Value('''string''' ),
'''answer_start''': Value('''int32''' ),
} )
} )
snake_case_ = "question"
snake_case_ = "context"
snake_case_ = "answers"
@property
def lowercase_ ( self ) -> Dict[str, str]:
'''simple docstring'''
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 348 | 0 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = 42
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
"""simple docstring"""
@register_to_config
def __init__( self , lowerCamelCase__ = 32 , lowerCamelCase__ = 64 , lowerCamelCase__ = 20 , lowerCamelCase__ = 768 , lowerCamelCase__=77 , lowerCamelCase__=4 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = "silu" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "linear" , lowerCamelCase__ = "prd" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Tuple:
'''simple docstring'''
super().__init__()
__lowerCamelCase = num_attention_heads
__lowerCamelCase = attention_head_dim
__lowerCamelCase = num_attention_heads * attention_head_dim
__lowerCamelCase = additional_embeddings
__lowerCamelCase = time_embed_dim or inner_dim
__lowerCamelCase = embedding_proj_dim or embedding_dim
__lowerCamelCase = clip_embed_dim or embedding_dim
__lowerCamelCase = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 )
__lowerCamelCase = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ )
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
if embedding_proj_norm_type is None:
__lowerCamelCase = None
elif embedding_proj_norm_type == "layer":
__lowerCamelCase = nn.LayerNorm(lowerCamelCase__ )
else:
raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" )
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
if encoder_hid_proj_type is None:
__lowerCamelCase = None
elif encoder_hid_proj_type == "linear":
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
else:
raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" )
__lowerCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) )
if added_emb_type == "prd":
__lowerCamelCase = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) )
elif added_emb_type is None:
__lowerCamelCase = None
else:
raise ValueError(
f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" )
__lowerCamelCase = nn.ModuleList(
[
BasicTransformerBlock(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='gelu' , attention_bias=lowerCamelCase__ , )
for d in range(lowerCamelCase__ )
] )
if norm_in_type == "layer":
__lowerCamelCase = nn.LayerNorm(lowerCamelCase__ )
elif norm_in_type is None:
__lowerCamelCase = None
else:
raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" )
__lowerCamelCase = nn.LayerNorm(lowerCamelCase__ )
__lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ )
__lowerCamelCase = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10_000.0 )
causal_attention_mask.triu_(1 )
__lowerCamelCase = causal_attention_mask[None, ...]
self.register_buffer('causal_attention_mask' , lowerCamelCase__ , persistent=lowerCamelCase__ )
__lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) )
__lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def lowercase_ ( self ) -> Dict[str, AttentionProcessor]:
'''simple docstring'''
__lowerCamelCase = {}
def fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
if hasattr(lowerCamelCase__ , 'set_processor' ):
__lowerCamelCase = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
return processors
def lowercase_ ( self , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = len(self.attn_processors.keys() )
if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count:
raise ValueError(
f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the"""
f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
if hasattr(lowerCamelCase__ , 'set_processor' ):
if not isinstance(lowerCamelCase__ , lowerCamelCase__ ):
module.set_processor(lowerCamelCase__ )
else:
module.set_processor(processor.pop(f"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ )
for name, module in self.named_children():
fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> int:
'''simple docstring'''
__lowerCamelCase = hidden_states.shape[0]
__lowerCamelCase = timestep
if not torch.is_tensor(lowerCamelCase__ ):
__lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0:
__lowerCamelCase = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__lowerCamelCase = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device )
__lowerCamelCase = self.time_proj(lowerCamelCase__ )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
__lowerCamelCase = timesteps_projected.to(dtype=self.dtype )
__lowerCamelCase = self.time_embedding(lowerCamelCase__ )
if self.embedding_proj_norm is not None:
__lowerCamelCase = self.embedding_proj_norm(lowerCamelCase__ )
__lowerCamelCase = self.embedding_proj(lowerCamelCase__ )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
__lowerCamelCase = self.encoder_hidden_states_proj(lowerCamelCase__ )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' )
__lowerCamelCase = self.proj_in(lowerCamelCase__ )
__lowerCamelCase = self.positional_embedding.to(hidden_states.dtype )
__lowerCamelCase = []
__lowerCamelCase = 0
if encoder_hidden_states is not None:
additional_embeds.append(lowerCamelCase__ )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
__lowerCamelCase = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
__lowerCamelCase = hidden_states[:, None, :]
__lowerCamelCase = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
__lowerCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 )
additional_embeds.append(lowerCamelCase__ )
__lowerCamelCase = torch.cat(
lowerCamelCase__ , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
__lowerCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
__lowerCamelCase = F.pad(
lowerCamelCase__ , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
__lowerCamelCase = hidden_states + positional_embeddings
if attention_mask is not None:
__lowerCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -10_000.0
__lowerCamelCase = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 )
__lowerCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
__lowerCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
__lowerCamelCase = self.norm_in(lowerCamelCase__ )
for block in self.transformer_blocks:
__lowerCamelCase = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ )
__lowerCamelCase = self.norm_out(lowerCamelCase__ )
if self.prd_embedding is not None:
__lowerCamelCase = hidden_states[:, -1]
else:
__lowerCamelCase = hidden_states[:, additional_embeddings_len:]
__lowerCamelCase = self.proj_to_clip_embeddings(lowerCamelCase__ )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 359 |
import requests
__A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey="
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None:
"""simple docstring"""
__lowerCamelCase = requests.get(_NEWS_API + bbc_news_api_key ).json()
# each article in the list is a dict
for i, article in enumerate(bbc_news_page['articles'] , 1 ):
print(F"""{i}.) {article['title']}""" )
if __name__ == "__main__":
fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
| 348 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = KandinskyInpaintPipeline
snake_case_ = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''']
snake_case_ = [
'''prompt''',
'''negative_prompt''',
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
'''mask_image''',
]
snake_case_ = [
'''generator''',
'''height''',
'''width''',
'''latents''',
'''guidance_scale''',
'''negative_prompt''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
snake_case_ = False
@property
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
return 32
@property
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
return 32
@property
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
return self.time_input_dim
@property
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
return 100
@property
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' )
return tokenizer
@property
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
__lowerCamelCase = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , )
__lowerCamelCase = MultilingualCLIP(lowerCamelCase__ )
__lowerCamelCase = text_encoder.eval()
return text_encoder
@property
def lowercase_ ( self ) -> str:
'''simple docstring'''
torch.manual_seed(0 )
__lowerCamelCase = {
'in_channels': 9,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'text_image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'text_image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
__lowerCamelCase = UNetaDConditionModel(**lowerCamelCase__ )
return model
@property
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
torch.manual_seed(0 )
__lowerCamelCase = VQModel(**self.dummy_movq_kwargs )
return model
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = self.dummy_text_encoder
__lowerCamelCase = self.dummy_tokenizer
__lowerCamelCase = self.dummy_unet
__lowerCamelCase = self.dummy_movq
__lowerCamelCase = DDIMScheduler(
num_train_timesteps=1_000 , beta_schedule='linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , steps_offset=1 , prediction_type='epsilon' , thresholding=lowerCamelCase__ , )
__lowerCamelCase = {
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> str:
'''simple docstring'''
__lowerCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ )
__lowerCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCamelCase__ )
# create init_image
__lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ )
__lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__lowerCamelCase = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert('RGB' ).resize((256, 256) )
# create mask
__lowerCamelCase = np.ones((64, 64) , dtype=np.floataa )
__lowerCamelCase = 0
if str(lowerCamelCase__ ).startswith('mps' ):
__lowerCamelCase = torch.manual_seed(lowerCamelCase__ )
else:
__lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ )
__lowerCamelCase = {
'prompt': 'horse',
'image': init_image,
'mask_image': mask,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 2,
'guidance_scale': 4.0,
'output_type': 'np',
}
return inputs
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = 'cpu'
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**lowerCamelCase__ )
__lowerCamelCase = pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) )
__lowerCamelCase = output.images
__lowerCamelCase = pipe(
**self.get_dummy_inputs(lowerCamelCase__ ) , return_dict=lowerCamelCase__ , )[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
print(f"""image.shape {image.shape}""" )
assert image.shape == (1, 64, 64, 3)
__lowerCamelCase = np.array(
[0.8_32_69_19, 0.73_79_04_67, 0.20_91_85_81, 0.9_30_96_12, 0.5_51_17_91, 0.43_71_33_28, 0.5_51_33_21, 0.49_92_29_34, 0.59_49_77_86] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' )
__lowerCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
__lowerCamelCase = np.ones((768, 768) , dtype=np.floataa )
__lowerCamelCase = 0
__lowerCamelCase = 'a hat'
__lowerCamelCase = KandinskyPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa )
pipe_prior.to(lowerCamelCase__ )
__lowerCamelCase = KandinskyInpaintPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-inpaint' , torch_dtype=torch.floataa )
__lowerCamelCase = pipeline.to(lowerCamelCase__ )
pipeline.set_progress_bar_config(disable=lowerCamelCase__ )
__lowerCamelCase = torch.Generator(device='cpu' ).manual_seed(0 )
__lowerCamelCase , __lowerCamelCase = pipe_prior(
lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple()
__lowerCamelCase = pipeline(
lowerCamelCase__ , image=lowerCamelCase__ , mask_image=lowerCamelCase__ , image_embeds=lowerCamelCase__ , negative_image_embeds=lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , )
__lowerCamelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ )
| 360 |
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
__A = logging.get_logger(__name__)
__A = TypeVar("DatasetType", Dataset, IterableDataset)
def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[List[float]] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType:
"""simple docstring"""
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('Unable to interleave an empty list of datasets.' )
for i, dataset in enumerate(UpperCamelCase__ ):
if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ):
if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """
'is an empty dataset dictionary.' )
raise ValueError(
F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n"""
F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" )
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" )
if i == 0:
__lowerCamelCase , __lowerCamelCase = (
(Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset)
)
elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise ValueError(
F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ )
else:
return _interleave_iterable_datasets(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ )
def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : int = 0 , ) -> DatasetType:
"""simple docstring"""
if not dsets:
raise ValueError('Unable to concatenate an empty list of datasets.' )
for i, dataset in enumerate(UpperCamelCase__ ):
if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ):
if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """
'is an empty dataset dictionary.' )
raise ValueError(
F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n"""
F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" )
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" )
if i == 0:
__lowerCamelCase , __lowerCamelCase = (
(Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset)
)
elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise ValueError(
F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ )
else:
return _concatenate_iterable_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ )
| 348 | 0 |
"""simple docstring"""
def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError('both inputs must be positive integers' )
__lowerCamelCase = str(bin(UpperCamelCase__ ) )
binary_number += "0" * shift_amount
return binary_number
def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError('both inputs must be positive integers' )
__lowerCamelCase = str(bin(UpperCamelCase__ ) )[2:]
if shift_amount >= len(UpperCamelCase__ ):
return "0b0"
__lowerCamelCase = binary_number[: len(UpperCamelCase__ ) - shift_amount]
return "0b" + shifted_binary_number
def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> str:
"""simple docstring"""
if number >= 0: # Get binary representation of positive number
__lowerCamelCase = '0' + str(bin(UpperCamelCase__ ) ).strip('-' )[2:]
else: # Get binary (2's complement) representation of negative number
__lowerCamelCase = len(bin(UpperCamelCase__ )[3:] ) # Find 2's complement of number
__lowerCamelCase = bin(abs(UpperCamelCase__ ) - (1 << binary_number_length) )[3:]
__lowerCamelCase = (
'1' + '0' * (binary_number_length - len(UpperCamelCase__ )) + binary_number
)
if shift_amount >= len(UpperCamelCase__ ):
return "0b" + binary_number[0] * len(UpperCamelCase__ )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(UpperCamelCase__ ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 361 |
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
__A = ["model.decoder.embed_positions.weights"]
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]:
"""simple docstring"""
if "emb" in name:
__lowerCamelCase = name.replace('emb' , 'model.decoder.embed_tokens' )
if "transformer" in name:
__lowerCamelCase = name.replace('transformer' , 'model.decoder' )
if "cross_attention" in name:
__lowerCamelCase = name.replace('cross_attention' , 'encoder_attn' )
if "linear1" in name:
__lowerCamelCase = name.replace('linear1' , 'fc1' )
if "linear2" in name:
__lowerCamelCase = name.replace('linear2' , 'fc2' )
if "norm1" in name:
__lowerCamelCase = name.replace('norm1' , 'self_attn_layer_norm' )
if "norm_cross" in name:
__lowerCamelCase = name.replace('norm_cross' , 'encoder_attn_layer_norm' )
if "norm2" in name:
__lowerCamelCase = name.replace('norm2' , 'final_layer_norm' )
if "out_norm" in name:
__lowerCamelCase = name.replace('out_norm' , 'model.decoder.layer_norm' )
if "linears" in name:
__lowerCamelCase = name.replace('linears' , 'lm_heads' )
if "condition_provider.conditioners.description.output_proj" in name:
__lowerCamelCase = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' )
return name
def lowerCamelCase_ ( UpperCamelCase__ : OrderedDict , UpperCamelCase__ : int ) -> Tuple[Dict, Dict]:
"""simple docstring"""
__lowerCamelCase = list(state_dict.keys() )
__lowerCamelCase = {}
for key in keys:
__lowerCamelCase = state_dict.pop(UpperCamelCase__ )
__lowerCamelCase = rename_keys(UpperCamelCase__ )
if "in_proj_weight" in key:
# split fused qkv proj
__lowerCamelCase = val[:hidden_size, :]
__lowerCamelCase = val[hidden_size : 2 * hidden_size, :]
__lowerCamelCase = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
__lowerCamelCase = val
else:
__lowerCamelCase = val
return state_dict, enc_dec_proj_state_dict
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> MusicgenDecoderConfig:
"""simple docstring"""
if checkpoint == "small":
# default config values
__lowerCamelCase = 1024
__lowerCamelCase = 24
__lowerCamelCase = 16
elif checkpoint == "medium":
__lowerCamelCase = 1536
__lowerCamelCase = 48
__lowerCamelCase = 24
elif checkpoint == "large":
__lowerCamelCase = 2048
__lowerCamelCase = 48
__lowerCamelCase = 32
else:
raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
__lowerCamelCase = MusicgenDecoderConfig(
hidden_size=UpperCamelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase__ , num_attention_heads=UpperCamelCase__ , )
return config
@torch.no_grad()
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[int]="cpu" ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = MusicGen.get_pretrained(UpperCamelCase__ , device=UpperCamelCase__ )
__lowerCamelCase = decoder_config_from_checkpoint(UpperCamelCase__ )
__lowerCamelCase = fairseq_model.lm.state_dict()
__lowerCamelCase , __lowerCamelCase = rename_state_dict(
UpperCamelCase__ , hidden_size=decoder_config.hidden_size )
__lowerCamelCase = TaEncoderModel.from_pretrained('t5-base' )
__lowerCamelCase = EncodecModel.from_pretrained('facebook/encodec_32khz' )
__lowerCamelCase = MusicgenForCausalLM(UpperCamelCase__ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
__lowerCamelCase , __lowerCamelCase = decoder.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ )
for key in missing_keys.copy():
if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" )
if len(UpperCamelCase__ ) > 0:
raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
__lowerCamelCase = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__ , audio_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ )
# check we can do a forward pass
__lowerCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
__lowerCamelCase = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
__lowerCamelCase = model(input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits
if logits.shape != (8, 1, 2048):
raise ValueError('Incorrect shape for logits' )
# now construct the processor
__lowerCamelCase = AutoTokenizer.from_pretrained('t5-base' )
__lowerCamelCase = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' )
__lowerCamelCase = MusicgenProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ )
# set the appropriate bos/pad token ids
__lowerCamelCase = 2048
__lowerCamelCase = 2048
# set other default generation config params
__lowerCamelCase = int(30 * audio_encoder.config.frame_rate )
__lowerCamelCase = True
__lowerCamelCase = 3.0
if pytorch_dump_folder is not None:
Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ )
logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
if repo_id:
logger.info(F"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(UpperCamelCase__ )
processor.push_to_hub(UpperCamelCase__ )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
__A = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 348 | 0 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self , lowerCamelCase__ ) -> str:
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ):
__lowerCamelCase = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = 'sshleifer/tiny-gpt2'
__lowerCamelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=lowerCamelCase__ , multi_process=lowerCamelCase__ , )
__lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ )
__lowerCamelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = 'sgugger/tiny-distilbert-classification'
__lowerCamelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , only_pretrain_model=lowerCamelCase__ , )
__lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ )
__lowerCamelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = 'sshleifer/tiny-gpt2'
__lowerCamelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , )
__lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ )
__lowerCamelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase_ ( self ) -> Any:
'''simple docstring'''
__lowerCamelCase = 'sshleifer/tiny-gpt2'
__lowerCamelCase = AutoConfig.from_pretrained(lowerCamelCase__ )
__lowerCamelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=lowerCamelCase__ , multi_process=lowerCamelCase__ , )
__lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ , [config] )
__lowerCamelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = 'sshleifer/tiny-gpt2'
__lowerCamelCase = AutoConfig.from_pretrained(lowerCamelCase__ )
__lowerCamelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , )
__lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ , [config] )
__lowerCamelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = 'sshleifer/tiny-gpt2'
__lowerCamelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , )
__lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ )
__lowerCamelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
__lowerCamelCase = 'sshleifer/tiny-gpt2'
__lowerCamelCase = AutoConfig.from_pretrained(lowerCamelCase__ )
__lowerCamelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , )
__lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ , [config] )
__lowerCamelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = 'patrickvonplaten/t5-tiny-random'
__lowerCamelCase = AutoConfig.from_pretrained(lowerCamelCase__ )
__lowerCamelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , )
__lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ , configs=[config] )
__lowerCamelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = 'sshleifer/tiny-gpt2'
__lowerCamelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=lowerCamelCase__ , multi_process=lowerCamelCase__ , )
__lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ )
__lowerCamelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
__lowerCamelCase = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
__lowerCamelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=lowerCamelCase__ , save_to_csv=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowerCamelCase__ , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(lowerCamelCase__ , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(lowerCamelCase__ , 'env.csv' ) , multi_process=lowerCamelCase__ , )
__lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ )
benchmark.run()
self.assertTrue(Path(os.path.join(lowerCamelCase__ , 'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(lowerCamelCase__ , 'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(lowerCamelCase__ , 'env.csv' ) ).exists() )
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(lowerCamelCase__ ):
self.assertTrue(hasattr(lowerCamelCase__ , 'sequential' ) )
self.assertTrue(hasattr(lowerCamelCase__ , 'cumulative' ) )
self.assertTrue(hasattr(lowerCamelCase__ , 'current' ) )
self.assertTrue(hasattr(lowerCamelCase__ , 'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__lowerCamelCase = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowerCamelCase__ , 'log.txt' ) , log_print=lowerCamelCase__ , trace_memory_line_by_line=lowerCamelCase__ , eager_mode=lowerCamelCase__ , multi_process=lowerCamelCase__ , )
__lowerCamelCase = TensorFlowBenchmark(lowerCamelCase__ )
__lowerCamelCase = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(lowerCamelCase__ , 'log.txt' ) ).exists() )
| 362 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json",
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = '''sew-d'''
def __init__( self , lowerCamelCase__=32 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__=2 , lowerCamelCase__=512 , lowerCamelCase__=256 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=("p2c", "c2p") , lowerCamelCase__="layer_norm" , lowerCamelCase__="gelu_python" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-7 , lowerCamelCase__=1e-5 , lowerCamelCase__="group" , lowerCamelCase__="gelu" , lowerCamelCase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase__=False , lowerCamelCase__=128 , lowerCamelCase__=16 , lowerCamelCase__=True , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__="mean" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ) -> Any:
'''simple docstring'''
super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ )
__lowerCamelCase = hidden_size
__lowerCamelCase = feat_extract_norm
__lowerCamelCase = feat_extract_activation
__lowerCamelCase = list(lowerCamelCase__ )
__lowerCamelCase = list(lowerCamelCase__ )
__lowerCamelCase = list(lowerCamelCase__ )
__lowerCamelCase = conv_bias
__lowerCamelCase = num_conv_pos_embeddings
__lowerCamelCase = num_conv_pos_embedding_groups
__lowerCamelCase = len(self.conv_dim )
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = intermediate_size
__lowerCamelCase = squeeze_factor
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = position_buckets
__lowerCamelCase = share_att_key
__lowerCamelCase = relative_attention
__lowerCamelCase = norm_rel_ebd
__lowerCamelCase = list(lowerCamelCase__ )
__lowerCamelCase = hidden_act
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_dropout
__lowerCamelCase = attention_dropout
__lowerCamelCase = activation_dropout
__lowerCamelCase = feat_proj_dropout
__lowerCamelCase = final_dropout
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = feature_layer_norm_eps
__lowerCamelCase = initializer_range
__lowerCamelCase = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"""
f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowerCamelCase = apply_spec_augment
__lowerCamelCase = mask_time_prob
__lowerCamelCase = mask_time_length
__lowerCamelCase = mask_time_min_masks
__lowerCamelCase = mask_feature_prob
__lowerCamelCase = mask_feature_length
__lowerCamelCase = mask_feature_min_masks
# ctc loss
__lowerCamelCase = ctc_loss_reduction
__lowerCamelCase = ctc_zero_infinity
# sequence classification
__lowerCamelCase = use_weighted_layer_sum
__lowerCamelCase = classifier_proj_size
@property
def lowercase_ ( self ) -> Any:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 348 | 0 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
__A = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
snake_case_ = ['''pixel_values''']
def __init__( self , lowerCamelCase__ = True , lowerCamelCase__ = 1 / 255 , lowerCamelCase__ = True , lowerCamelCase__ = 8 , **lowerCamelCase__ , ) -> None:
'''simple docstring'''
super().__init__(**lowerCamelCase__ )
__lowerCamelCase = do_rescale
__lowerCamelCase = rescale_factor
__lowerCamelCase = do_pad
__lowerCamelCase = pad_size
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ ) -> np.ndarray:
'''simple docstring'''
return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase = get_image_size(lowerCamelCase__ )
__lowerCamelCase = (old_height // size + 1) * size - old_height
__lowerCamelCase = (old_width // size + 1) * size - old_width
return pad(lowerCamelCase__ , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = ChannelDimension.FIRST , **lowerCamelCase__ , ) -> Dict:
'''simple docstring'''
__lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowerCamelCase = do_pad if do_pad is not None else self.do_pad
__lowerCamelCase = pad_size if pad_size is not None else self.pad_size
__lowerCamelCase = make_list_of_images(lowerCamelCase__ )
if not valid_images(lowerCamelCase__ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
# All transformations expect numpy arrays.
__lowerCamelCase = [to_numpy_array(lowerCamelCase__ ) for image in images]
if do_rescale:
__lowerCamelCase = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images]
if do_pad:
__lowerCamelCase = [self.pad(lowerCamelCase__ , size=lowerCamelCase__ ) for image in images]
__lowerCamelCase = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images]
__lowerCamelCase = {'pixel_values': images}
return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ )
| 363 |
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
__A = logging.get_logger("transformers.models.speecht5")
__A = {
"speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm",
"speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection",
"speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv",
"speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed",
}
__A = {
"text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens",
"text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha",
}
__A = {
"speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0",
"speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1",
"speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer",
"speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha",
"speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer",
}
__A = {
"speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out",
"speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out",
"speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv",
"speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm",
"speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv",
"speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm",
"speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv",
"speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm",
"speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv",
"speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm",
"speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv",
"speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm",
}
__A = {
"text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens",
}
__A = {
"text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head",
}
__A = {
"encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj",
"encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj",
"encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj",
"encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj",
"encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm",
"encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense",
"encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense",
"encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm",
"encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k",
}
__A = {
"decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj",
"decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj",
"decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj",
"decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj",
"decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm",
"decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj",
"decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj",
"decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj",
"decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj",
"decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm",
"decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense",
"decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense",
"decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm",
}
__A = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
__A = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__A = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__A = []
__A = [
"encoder.version",
"encoder.layers.*.norm_k.weight",
"encoder.layers.*.norm_k.bias",
"decoder.version",
"decoder.layers.*.norm_k.weight",
"decoder.layers.*.norm_k.bias",
"decoder.pos_emb.pe_k",
"speech_encoder_prenet.embed_positions._float_tensor",
"text_decoder_prenet.embed_positions._float_tensor",
]
__A = IGNORE_KEYS + [
"encoder.proj",
"text_encoder_prenet.*",
"speech_decoder_prenet.*",
"speech_decoder_postnet.*",
]
__A = IGNORE_KEYS + [
"encoder.proj",
"speech_encoder_prenet.*",
"text_decoder_prenet.*",
"text_decoder_postnet.*",
]
__A = IGNORE_KEYS + [
"encoder.proj",
"text_encoder_prenet.*",
"text_decoder_prenet.*",
"text_decoder_postnet.*",
]
def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Dict:
"""simple docstring"""
for attribute in key.split('.' ):
__lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ )
if weight_type is not None:
__lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape
else:
__lowerCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}""" )
if weight_type == "weight":
__lowerCamelCase = value
elif weight_type == "weight_g":
__lowerCamelCase = value
elif weight_type == "weight_v":
__lowerCamelCase = value
elif weight_type == "bias":
__lowerCamelCase = value
elif weight_type == "running_mean":
__lowerCamelCase = value
elif weight_type == "running_var":
__lowerCamelCase = value
elif weight_type == "num_batches_tracked":
__lowerCamelCase = value
else:
__lowerCamelCase = value
logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" )
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ) -> Any:
"""simple docstring"""
for key in ignore_keys:
if key.endswith('.*' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
__lowerCamelCase , __lowerCamelCase = key.split('.*.' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
__lowerCamelCase = []
if task == "s2t":
__lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder
__lowerCamelCase = MAPPING_S2T
__lowerCamelCase = IGNORE_KEYS_S2T
elif task == "t2s":
__lowerCamelCase = None
__lowerCamelCase = MAPPING_T2S
__lowerCamelCase = IGNORE_KEYS_T2S
elif task == "s2s":
__lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder
__lowerCamelCase = MAPPING_S2S
__lowerCamelCase = IGNORE_KEYS_S2S
else:
raise ValueError(F"""Unsupported task: {task}""" )
for name, value in fairseq_dict.items():
if should_ignore(UpperCamelCase__ , UpperCamelCase__ ):
logger.info(F"""{name} was ignored""" )
continue
__lowerCamelCase = False
if "conv_layers" in name:
load_conv_layer(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , )
__lowerCamelCase = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
__lowerCamelCase , __lowerCamelCase = key.split('.*.' )
if prefix in name and suffix in name:
__lowerCamelCase = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
__lowerCamelCase = True
if "*" in mapped_key:
__lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2]
__lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ )
if "weight_g" in name:
__lowerCamelCase = 'weight_g'
elif "weight_v" in name:
__lowerCamelCase = 'weight_v'
elif "bias" in name:
__lowerCamelCase = 'bias'
elif "weight" in name:
__lowerCamelCase = 'weight'
elif "running_mean" in name:
__lowerCamelCase = 'running_mean'
elif "running_var" in name:
__lowerCamelCase = 'running_var'
elif "num_batches_tracked" in name:
__lowerCamelCase = 'num_batches_tracked'
else:
__lowerCamelCase = None
set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
continue
if not is_used:
unused_weights.append(UpperCamelCase__ )
logger.warning(F"""Unused weights: {unused_weights}""" )
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> Tuple:
"""simple docstring"""
__lowerCamelCase = full_name.split('conv_layers.' )[-1]
__lowerCamelCase = name.split('.' )
__lowerCamelCase = int(items[0] )
__lowerCamelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
__lowerCamelCase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(UpperCamelCase__ )
@torch.no_grad()
def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[str]=None , ) -> Tuple:
"""simple docstring"""
if config_path is not None:
__lowerCamelCase = SpeechTaConfig.from_pretrained(UpperCamelCase__ )
else:
__lowerCamelCase = SpeechTaConfig()
if task == "s2t":
__lowerCamelCase = config.max_text_positions
__lowerCamelCase = SpeechTaForSpeechToText(UpperCamelCase__ )
elif task == "t2s":
__lowerCamelCase = 1876
__lowerCamelCase = 600
__lowerCamelCase = config.max_speech_positions
__lowerCamelCase = SpeechTaForTextToSpeech(UpperCamelCase__ )
elif task == "s2s":
__lowerCamelCase = 1876
__lowerCamelCase = config.max_speech_positions
__lowerCamelCase = SpeechTaForSpeechToSpeech(UpperCamelCase__ )
else:
raise ValueError(F"""Unknown task name: {task}""" )
if vocab_path:
__lowerCamelCase = SpeechTaTokenizer(UpperCamelCase__ , model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
__lowerCamelCase = AddedToken('<mask>' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ )
__lowerCamelCase = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
__lowerCamelCase = SpeechTaFeatureExtractor()
__lowerCamelCase = SpeechTaProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
__lowerCamelCase = torch.load(UpperCamelCase__ )
recursively_load_weights(fairseq_checkpoint['model'] , UpperCamelCase__ , UpperCamelCase__ )
model.save_pretrained(UpperCamelCase__ )
if repo_id:
print('Pushing to the hub...' )
processor.push_to_hub(UpperCamelCase__ )
model.push_to_hub(UpperCamelCase__ )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
"--task",
default="s2t",
type=str,
help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.",
)
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
__A = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 348 | 0 |
def lowerCamelCase_ ( UpperCamelCase__ : list[int] ) -> int:
"""simple docstring"""
if not numbers:
return 0
if not isinstance(UpperCamelCase__ , (list, tuple) ) or not all(
isinstance(UpperCamelCase__ , UpperCamelCase__ ) for number in numbers ):
raise ValueError('numbers must be an iterable of integers' )
__lowerCamelCase = __lowerCamelCase = __lowerCamelCase = numbers[0]
for i in range(1 , len(UpperCamelCase__ ) ):
# update the maximum and minimum subarray products
__lowerCamelCase = numbers[i]
if number < 0:
__lowerCamelCase , __lowerCamelCase = min_till_now, max_till_now
__lowerCamelCase = max(UpperCamelCase__ , max_till_now * number )
__lowerCamelCase = min(UpperCamelCase__ , min_till_now * number )
# update the maximum product found till now
__lowerCamelCase = max(UpperCamelCase__ , UpperCamelCase__ )
return max_prod
| 364 |
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets,
# U and V such that every edge (u, v) either connects a vertex from U to V or a vertex
# from V to U. In other words, for every edge (u, v), either u belongs to U and v to V,
# or u belongs to V and v to U. We can also say that there is no edge that connects
# vertices of same set.
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]:
"""simple docstring"""
__lowerCamelCase = [False] * len(UpperCamelCase__ )
__lowerCamelCase = [-1] * len(UpperCamelCase__ )
def dfs(UpperCamelCase__ : int , UpperCamelCase__ : int ):
__lowerCamelCase = True
__lowerCamelCase = c
for u in graph[v]:
if not visited[u]:
dfs(UpperCamelCase__ , 1 - c )
for i in range(len(UpperCamelCase__ ) ):
if not visited[i]:
dfs(UpperCamelCase__ , 0 )
for i in range(len(UpperCamelCase__ ) ):
for j in graph[i]:
if color[i] == color[j]:
return False
return True
# Adjacency list of graph
__A = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []}
print(check_bipartite_dfs(graph))
| 348 | 0 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.