code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def __A ( __lowerCamelCase ) -> bool:
a = int(number**0.5 )
return number == sq * sq
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple[int, int]:
a = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
a = x_den * y_den * z_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
top //= hcf
bottom //= hcf
return top, bottom
def __A ( __lowerCamelCase = 35 ) -> int:
a = set()
a = 42
a = Fraction(0 )
a = 42
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
a = x_num * y_den + x_den * y_num
a = x_den * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
a = x_den * x_den * y_den * y_den
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=-1
a = x_num * y_num
a = x_den * y_num + x_num * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = x_num * x_num * y_num * y_num
a = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
for num, den in unique_s:
total += Fraction(__lowerCamelCase , __lowerCamelCase )
return total.denominator + total.numerator
if __name__ == "__main__":
print(F'{solution() = }')
| 347 |
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = torch.permute(__lowerCamelCase , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ):
# linear layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
a = flax_key_tuple[:-1] + ("""weight""",)
return flax_key_tuple, flax_tensor
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
if "metadata" in layer:
a = layer.split("""metadata""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )]
elif "kvstore" in layer:
a = layer.split("""kvstore""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )]
else:
a = layer.split("""/""" )
a = """/""".join(split_layer[:-1] )
a = (split_layer[-1],)
if "kvstore/path" in layer:
a = f'{switch_checkpoint_path}/{checkpoint_info[layer]}'
elif "kvstore/driver" in layer:
a = """file"""
else:
a = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
a = rename_keys(__lowerCamelCase )
a = {}
for k, v in current_block.items():
a = v
a = new_current_block
torch.save(__lowerCamelCase , __lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = WEIGHTS_NAME ) -> List[str]:
a = convert_file_size_to_int(__lowerCamelCase )
a = []
a = {}
a = 0
a = 0
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp:
a = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""]
a = flatten_dict(__lowerCamelCase , sep="""/""" )
a = {}
for layer in checkpoint_info.keys():
a , a , a = get_key_and_tensorstore_dict(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if curr_real_layer_name in all_layers:
a = content
else:
a = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
a = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
a = torch.tensor(__lowerCamelCase )
a = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
a , a = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __lowerCamelCase )
a = """/""".join(__lowerCamelCase )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
a = os.path.join(
__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
del current_block
a = {}
a = 0
a = raw_weights.to(getattr(__lowerCamelCase , __lowerCamelCase ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(__lowerCamelCase ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
a = {}
a = {}
for idx, shard in enumerate(__lowerCamelCase ):
a = weights_name.replace(
""".bin""" , f'-{idx+1:05d}-of-{len(__lowerCamelCase ):05d}.bin' ) # len(sharded_state_dicts):05d}
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{idx+1:05d}-of-???.bin' ) )
os.rename(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
a = shard
for key in shard:
a = shard_file
# Add the metadata
a = {"""total_size""": total_size}
a = {"""metadata""": metadata, """weight_map""": weight_map}
with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f:
a = json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase ) + """\n"""
f.write(__lowerCamelCase )
return metadata, index
if __name__ == "__main__":
__UpperCamelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--switch_t5x_checkpoint_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size")
parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted",
type=str,
required=False,
help="Path to the output pytorch model.",
)
__UpperCamelCase : Any = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def __A ( ) -> Tuple:
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
a = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" )
config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" )
a = SwitchTransformersForConditionalGeneration.from_pretrained(
"""/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" )
a = TaTokenizer.from_pretrained("""t5-small""" )
a = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."""
a = tokenizer(__lowerCamelCase , return_tensors="""pt""" ).input_ids
a = model.generate(__lowerCamelCase , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 347 | 1 |
__UpperCamelCase : str = tuple[float, float, float]
__UpperCamelCase : Union[str, Any] = tuple[float, float, float]
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Vectorad:
a = end_pointa[0] - end_pointa[0]
a = end_pointa[1] - end_pointa[1]
a = end_pointa[2] - end_pointa[2]
return (x, y, z)
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Vectorad:
a = ab[1] * ac[2] - ab[2] * ac[1] # *i
a = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j
a = ab[0] * ac[1] - ab[1] * ac[0] # *k
return (x, y, z)
def __A ( __lowerCamelCase , __lowerCamelCase ) -> bool:
return tuple(round(__lowerCamelCase , __lowerCamelCase ) for x in vector ) == (0, 0, 0)
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 10 ) -> bool:
a = create_vector(__lowerCamelCase , __lowerCamelCase )
a = create_vector(__lowerCamelCase , __lowerCamelCase )
return is_zero_vector(get_ad_vectors_cross(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase )
| 347 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
__UpperCamelCase : Union[str, Any] = (720, 1_280) # Height, Width
__UpperCamelCase : Any = (0.4, 0.6) # if height or width lower than this scale, drop it.
__UpperCamelCase : str = 1 / 100
__UpperCamelCase : Optional[int] = ""
__UpperCamelCase : List[Any] = ""
__UpperCamelCase : Union[str, Any] = ""
__UpperCamelCase : Tuple = 250
def __A ( ) -> None:
a , a = get_dataset(__lowerCamelCase , __lowerCamelCase )
for index in range(__lowerCamelCase ):
a = random.sample(range(len(__lowerCamelCase ) ) , 4 )
a , a , a = update_image_and_anno(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , filter_scale=__lowerCamelCase , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
a = random_chars(32 )
a = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
a = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}'
cva.imwrite(f'{file_root}.jpg' , __lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' )
a = []
for anno in new_annos:
a = anno[3] - anno[1]
a = anno[4] - anno[2]
a = anno[1] + width / 2
a = anno[2] + height / 2
a = f'{anno[0]} {x_center} {y_center} {width} {height}'
annos_list.append(__lowerCamelCase )
with open(f'{file_root}.txt' , """w""" ) as outfile:
outfile.write("""\n""".join(line for line in annos_list ) )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> tuple[list, list]:
a = []
a = []
for label_file in glob.glob(os.path.join(__lowerCamelCase , """*.txt""" ) ):
a = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
with open(__lowerCamelCase ) as in_file:
a = in_file.readlines()
a = os.path.join(__lowerCamelCase , f'{label_name}.jpg' )
a = []
for obj_list in obj_lists:
a = obj_list.rstrip("""\n""" ).split(""" """ )
a = float(obj[1] ) - float(obj[3] ) / 2
a = float(obj[2] ) - float(obj[4] ) / 2
a = float(obj[1] ) + float(obj[3] ) / 2
a = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(__lowerCamelCase )
labels.append(__lowerCamelCase )
return img_paths, labels
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 0.0 , ) -> tuple[list, list, str]:
a = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
a = int(scale_x * output_size[1] )
a = int(scale_y * output_size[0] )
a = []
a = []
for i, index in enumerate(__lowerCamelCase ):
a = all_img_list[index]
path_list.append(__lowerCamelCase )
a = all_annos[index]
a = cva.imread(__lowerCamelCase )
if i == 0: # top-left
a = cva.resize(__lowerCamelCase , (divid_point_x, divid_point_y) )
a = img
for bbox in img_annos:
a = bbox[1] * scale_x
a = bbox[2] * scale_y
a = bbox[3] * scale_x
a = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
a = cva.resize(__lowerCamelCase , (output_size[1] - divid_point_x, divid_point_y) )
a = img
for bbox in img_annos:
a = scale_x + bbox[1] * (1 - scale_x)
a = bbox[2] * scale_y
a = scale_x + bbox[3] * (1 - scale_x)
a = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
a = cva.resize(__lowerCamelCase , (divid_point_x, output_size[0] - divid_point_y) )
a = img
for bbox in img_annos:
a = bbox[1] * scale_x
a = scale_y + bbox[2] * (1 - scale_y)
a = bbox[3] * scale_x
a = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
a = cva.resize(
__lowerCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
a = img
for bbox in img_annos:
a = scale_x + bbox[1] * (1 - scale_x)
a = scale_y + bbox[2] * (1 - scale_y)
a = scale_x + bbox[3] * (1 - scale_x)
a = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
a = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def __A ( __lowerCamelCase ) -> str:
assert number_char > 1, "The number of character should greater than 1"
a = ascii_lowercase + digits
return "".join(random.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 347 | 1 |
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
# FIXME: add fast tests
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
@property
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = ort.SessionOptions()
a = False
return options
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
a = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
a = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"""runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__magic_name__ )
a = """A red cat sitting on a park bench"""
a = np.random.RandomState(0 )
a = pipe(
prompt=__magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , guidance_scale=7.5 , num_inference_steps=10 , generator=__magic_name__ , output_type="""np""" , )
a = output.images
a = images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
a = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
a = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
a = LMSDiscreteScheduler.from_pretrained(
"""runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" )
a = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"""runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__magic_name__ )
a = """A red cat sitting on a park bench"""
a = np.random.RandomState(0 )
a = pipe(
prompt=__magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , guidance_scale=7.5 , num_inference_steps=20 , generator=__magic_name__ , output_type="""np""" , )
a = output.images
a = images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
a = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
| 347 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase : Optional[Any] = {
"configuration_mobilenet_v2": [
"MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP",
"MobileNetV2Config",
"MobileNetV2OnnxConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = ["MobileNetV2FeatureExtractor"]
__UpperCamelCase : Tuple = ["MobileNetV2ImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
"MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
"MobileNetV2ForImageClassification",
"MobileNetV2ForSemanticSegmentation",
"MobileNetV2Model",
"MobileNetV2PreTrainedModel",
"load_tf_weights_in_mobilenet_v2",
]
if TYPE_CHECKING:
from .configuration_mobilenet_va import (
MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileNetVaConfig,
MobileNetVaOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor
from .image_processing_mobilenet_va import MobileNetVaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilenet_va import (
MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileNetVaForImageClassification,
MobileNetVaForSemanticSegmentation,
MobileNetVaModel,
MobileNetVaPreTrainedModel,
load_tf_weights_in_mobilenet_va,
)
else:
import sys
__UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 1 |
class __lowerCAmelCase :
def __init__( self :Optional[Any] , __magic_name__ :Tuple , __magic_name__ :Optional[Any] ):
'''simple docstring'''
a = name
a = val
def __str__( self :Union[str, Any] ):
'''simple docstring'''
return F'{self.__class__.__name__}({self.name}, {self.val})'
def __lt__( self :Any , __magic_name__ :List[Any] ):
'''simple docstring'''
return self.val < other.val
class __lowerCAmelCase :
def __init__( self :Tuple , __magic_name__ :Optional[Any] ):
'''simple docstring'''
a = {}
a = {}
a = self.build_heap(__magic_name__ )
def __getitem__( self :Tuple , __magic_name__ :Optional[int] ):
'''simple docstring'''
return self.get_value(__magic_name__ )
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :str ):
'''simple docstring'''
return (idx - 1) // 2
def lowerCamelCase__ ( self :Tuple , __magic_name__ :List[str] ):
'''simple docstring'''
return idx * 2 + 1
def lowerCamelCase__ ( self :Any , __magic_name__ :int ):
'''simple docstring'''
return idx * 2 + 2
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Any ):
'''simple docstring'''
return self.heap_dict[key]
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Union[str, Any] ):
'''simple docstring'''
a = len(__magic_name__ ) - 1
a = self.get_parent_idx(__magic_name__ )
for idx, i in enumerate(__magic_name__ ):
a = idx
a = i.val
for i in range(__magic_name__ , -1 , -1 ):
self.sift_down(__magic_name__ , __magic_name__ )
return array
def lowerCamelCase__ ( self :Any , __magic_name__ :Optional[int] , __magic_name__ :Optional[Any] ):
'''simple docstring'''
while True:
a = self.get_left_child_idx(__magic_name__ ) # noqa: E741
a = self.get_right_child_idx(__magic_name__ )
a = idx
if l < len(__magic_name__ ) and array[l] < array[idx]:
a = l
if r < len(__magic_name__ ) and array[r] < array[smallest]:
a = r
if smallest != idx:
a , a = array[smallest], array[idx]
(
(
a
) , (
a
) ,
) = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
a = smallest
else:
break
def lowerCamelCase__ ( self :Dict , __magic_name__ :str ):
'''simple docstring'''
a = self.get_parent_idx(__magic_name__ )
while p >= 0 and self.heap[p] > self.heap[idx]:
a , a = self.heap[idx], self.heap[p]
a , a = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
a = p
a = self.get_parent_idx(__magic_name__ )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
return self.heap[0]
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a , a = self.heap[-1], self.heap[0]
a , a = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
a = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 , self.heap )
return x
def lowerCamelCase__ ( self :str , __magic_name__ :Any ):
'''simple docstring'''
self.heap.append(__magic_name__ )
a = len(self.heap ) - 1
a = node.val
self.sift_up(len(self.heap ) - 1 )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
return len(self.heap ) == 0
def lowerCamelCase__ ( self :str , __magic_name__ :int , __magic_name__ :Any ):
'''simple docstring'''
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
a = new_value
a = new_value
self.sift_up(self.idx_of_element[node] )
__UpperCamelCase : Optional[Any] = Node("R", -1)
__UpperCamelCase : Union[str, Any] = Node("B", 6)
__UpperCamelCase : List[str] = Node("A", 3)
__UpperCamelCase : Union[str, Any] = Node("X", 1)
__UpperCamelCase : int = Node("E", 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
__UpperCamelCase : List[str] = MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print("Min Heap - before decrease key")
for i in my_min_heap.heap:
print(i)
print("Min Heap - After decrease key of node [B -> -17]")
my_min_heap.decrease_key(b, -17)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 |
def __A ( __lowerCamelCase ) -> bool:
if num < 0:
return False
a = num
a = 0
while num > 0:
a = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 1 |
import math
import unittest
def __A ( __lowerCamelCase ) -> bool:
assert isinstance(__lowerCamelCase , __lowerCamelCase ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__lowerCamelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
self.assertTrue(is_prime(2 ) )
self.assertTrue(is_prime(3 ) )
self.assertTrue(is_prime(5 ) )
self.assertTrue(is_prime(7 ) )
self.assertTrue(is_prime(11 ) )
self.assertTrue(is_prime(13 ) )
self.assertTrue(is_prime(17 ) )
self.assertTrue(is_prime(19 ) )
self.assertTrue(is_prime(23 ) )
self.assertTrue(is_prime(29 ) )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
with self.assertRaises(__magic_name__ ):
is_prime(-19 )
self.assertFalse(
is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , )
self.assertFalse(
is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , )
self.assertFalse(is_prime(2 * 2 ) )
self.assertFalse(is_prime(2 * 3 ) )
self.assertFalse(is_prime(3 * 3 ) )
self.assertFalse(is_prime(3 * 5 ) )
self.assertFalse(is_prime(3 * 5 * 7 ) )
if __name__ == "__main__":
unittest.main()
| 347 |
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = CanineTokenizer
UpperCamelCase__ = False
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
super().setUp()
a = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def lowerCamelCase__ ( self :Tuple , **__magic_name__ :Dict ):
'''simple docstring'''
a = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
a = 1024
return tokenizer
@require_torch
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.canine_tokenizer
a = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
a = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0]
# fmt: on
a = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
self.assertIsInstance(__magic_name__ , __magic_name__ )
a = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.canine_tokenizer
a = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
a = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , __magic_name__ )
self.assertIn("""attention_mask""" , __magic_name__ )
self.assertIn("""token_type_ids""" , __magic_name__ )
@require_torch
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.canine_tokenizer
a = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
a = tokenizer(
text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
a = tempfile.mkdtemp()
a = """ He is very happy, UNwant\u00E9d,running"""
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
a = tokenizer.__class__.from_pretrained(__magic_name__ )
a = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
shutil.rmtree(__magic_name__ )
a = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
a = tempfile.mkdtemp()
a = """ He is very happy, UNwant\u00E9d,running"""
a = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
a = chr(0Xe_0_0_7 )
additional_special_tokens.append(__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
a = tokenizer.__class__.from_pretrained(__magic_name__ )
a = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
a = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__magic_name__ )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a , a = self.get_clean_sequence(__magic_name__ )
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_5
a = chr(__magic_name__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
a = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , input_encoded + special_token_id )
a = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = chr(0Xe_0_0_5 )
a = chr(0Xe_0_0_6 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
a = tokenizer.tokenize(__magic_name__ )
a = tokenizer.tokenize(__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(token_a[0] , __magic_name__ )
self.assertEqual(token_a[0] , __magic_name__ )
@require_tokenizers
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_6
a = chr(__magic_name__ )
a = AddedToken(__magic_name__ , lstrip=__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__magic_name__ )
tokenizer.from_pretrained(__magic_name__ )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__magic_name__ )
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
a = json.load(__magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
a = json.load(__magic_name__ )
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_6
a = chr(__magic_name__ )
a = [new_token_a]
a = [new_token_a]
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
a = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
a = 0Xe_0_0_7
a = chr(__magic_name__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
a = [AddedToken(__magic_name__ , lstrip=__magic_name__ )]
a = tokenizer_class.from_pretrained(
__magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = """hello world"""
if self.space_between_special_tokens:
a = """[CLS] hello world [SEP]"""
else:
a = input
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__magic_name__ , [output, output.lower()] )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
a = """a"""
a = ord(__magic_name__ )
for attr in attributes_list:
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] )
a = 0Xe_0_0_6
a = chr(__magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
| 347 | 1 |
from __future__ import annotations
import math
def __A ( __lowerCamelCase , __lowerCamelCase ) -> float:
a = u
for i in range(1 , __lowerCamelCase ):
a = temp * (u - i)
return temp
def __A ( ) -> None:
a = int(input("""enter the numbers of values: """ ) )
a = []
for _ in range(__lowerCamelCase ):
y.append([] )
for i in range(__lowerCamelCase ):
for j in range(__lowerCamelCase ):
y[i].append(__lowerCamelCase )
a = 0
print("""enter the values of parameters in a list: """ )
a = list(map(__lowerCamelCase , input().split() ) )
print("""enter the values of corresponding parameters: """ )
for i in range(__lowerCamelCase ):
a = float(input() )
a = int(input("""enter the value to interpolate: """ ) )
a = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , __lowerCamelCase ):
for j in range(n - i ):
a = y[j + 1][i - 1] - y[j][i - 1]
a = y[0][0]
for i in range(1 , __lowerCamelCase ):
summ += (ucal(__lowerCamelCase , __lowerCamelCase ) * y[0][i]) / math.factorial(__lowerCamelCase )
print(f'the value at {value} is {summ}' )
if __name__ == "__main__":
main()
| 347 |
def __A ( __lowerCamelCase ) -> bool:
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 1 |
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
__UpperCamelCase : Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n"
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=8 ) -> Dict:
a = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
a = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def __A ( __lowerCamelCase , __lowerCamelCase=512 , __lowerCamelCase=512 ) -> Optional[Any]:
a = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 )
a = np.array(pil_image.convert("""RGB""" ) )
a = arr.astype(np.floataa ) / 127.5 - 1
a = np.transpose(__lowerCamelCase , [2, 0, 1] )
a = torch.from_numpy(__lowerCamelCase ).unsqueeze(0 )
return image
class __lowerCAmelCase ( __magic_name__ ):
def __init__( self :List[str] , __magic_name__ :UNetaDConditionModel , __magic_name__ :DDPMScheduler , __magic_name__ :VQModel , ):
'''simple docstring'''
super().__init__()
self.register_modules(
unet=__magic_name__ , scheduler=__magic_name__ , movq=__magic_name__ , )
a = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Any , __magic_name__ :Tuple , __magic_name__ :List[Any] ):
'''simple docstring'''
a = min(int(num_inference_steps * strength ) , __magic_name__ )
a = max(num_inference_steps - init_timestep , 0 )
a = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def lowerCamelCase__ ( self :str , __magic_name__ :int , __magic_name__ :Optional[Any] , __magic_name__ :Optional[int] , __magic_name__ :int , __magic_name__ :Dict , __magic_name__ :Union[str, Any] , __magic_name__ :List[Any]=None ):
'''simple docstring'''
if not isinstance(__magic_name__ , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__magic_name__ )}' )
a = image.to(device=__magic_name__ , dtype=__magic_name__ )
a = batch_size * num_images_per_prompt
if image.shape[1] == 4:
a = image
else:
if isinstance(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) != batch_size:
raise ValueError(
F'You have passed a list of generators of length {len(__magic_name__ )}, but requested an effective batch'
F' size of {batch_size}. Make sure the batch size matches the length of the generators.' )
elif isinstance(__magic_name__ , __magic_name__ ):
a = [
self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__magic_name__ )
]
a = torch.cat(__magic_name__ , dim=0 )
else:
a = self.movq.encode(__magic_name__ ).latent_dist.sample(__magic_name__ )
a = self.movq.config.scaling_factor * init_latents
a = torch.cat([init_latents] , dim=0 )
a = init_latents.shape
a = randn_tensor(__magic_name__ , generator=__magic_name__ , device=__magic_name__ , dtype=__magic_name__ )
# get latents
a = self.scheduler.add_noise(__magic_name__ , __magic_name__ , __magic_name__ )
a = init_latents
return latents
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :str=0 ):
'''simple docstring'''
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
a = torch.device(F'cuda:{gpu_id}' )
a = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :int , __magic_name__ :int=0 ):
'''simple docstring'''
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" )
a = torch.device(F'cuda:{gpu_id}' )
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=__magic_name__ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
a = None
for cpu_offloaded_model in [self.unet, self.movq]:
a , a = cpu_offload_with_hook(__magic_name__ , __magic_name__ , prev_module_hook=__magic_name__ )
# We'll offload the last model manually.
a = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
if not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(__magic_name__ , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(__magic_name__ )
def __call__( self :Any , __magic_name__ :Union[torch.FloatTensor, List[torch.FloatTensor]] , __magic_name__ :Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , __magic_name__ :Union[torch.FloatTensor, List[torch.FloatTensor]] , __magic_name__ :int = 512 , __magic_name__ :int = 512 , __magic_name__ :int = 100 , __magic_name__ :float = 4.0 , __magic_name__ :float = 0.3 , __magic_name__ :int = 1 , __magic_name__ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , __magic_name__ :Optional[str] = "pil" , __magic_name__ :bool = True , ):
'''simple docstring'''
a = self._execution_device
a = guidance_scale > 1.0
if isinstance(__magic_name__ , __magic_name__ ):
a = torch.cat(__magic_name__ , dim=0 )
a = image_embeds.shape[0]
if isinstance(__magic_name__ , __magic_name__ ):
a = torch.cat(__magic_name__ , dim=0 )
if do_classifier_free_guidance:
a = image_embeds.repeat_interleave(__magic_name__ , dim=0 )
a = negative_image_embeds.repeat_interleave(__magic_name__ , dim=0 )
a = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__magic_name__ )
if not isinstance(__magic_name__ , __magic_name__ ):
a = [image]
if not all(isinstance(__magic_name__ , (PIL.Image.Image, torch.Tensor) ) for i in image ):
raise ValueError(
F'Input is in incorrect format: {[type(__magic_name__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor' )
a = torch.cat([prepare_image(__magic_name__ , __magic_name__ , __magic_name__ ) for i in image] , dim=0 )
a = image.to(dtype=image_embeds.dtype , device=__magic_name__ )
a = self.movq.encode(__magic_name__ )["""latents"""]
a = latents.repeat_interleave(__magic_name__ , dim=0 )
self.scheduler.set_timesteps(__magic_name__ , device=__magic_name__ )
a , a = self.get_timesteps(__magic_name__ , __magic_name__ , __magic_name__ )
a = timesteps[:1].repeat(batch_size * num_images_per_prompt )
a , a = downscale_height_and_width(__magic_name__ , __magic_name__ , self.movq_scale_factor )
a = self.prepare_latents(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , image_embeds.dtype , __magic_name__ , __magic_name__ )
for i, t in enumerate(self.progress_bar(__magic_name__ ) ):
# expand the latents if we are doing classifier free guidance
a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
a = {"""image_embeds""": image_embeds}
a = self.unet(
sample=__magic_name__ , timestep=__magic_name__ , encoder_hidden_states=__magic_name__ , added_cond_kwargs=__magic_name__ , return_dict=__magic_name__ , )[0]
if do_classifier_free_guidance:
a , a = noise_pred.split(latents.shape[1] , dim=1 )
a , a = noise_pred.chunk(2 )
a , a = variance_pred.chunk(2 )
a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
a = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , """variance_type""" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
a , a = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
a = self.scheduler.step(
__magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ , )[0]
# post-processing
a = self.movq.decode(__magic_name__ , force_not_quantize=__magic_name__ )["""sample"""]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' )
if output_type in ["np", "pil"]:
a = image * 0.5 + 0.5
a = image.clamp(0 , 1 )
a = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
a = self.numpy_to_pil(__magic_name__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__magic_name__ )
| 347 |
def __A ( __lowerCamelCase ) -> int:
if not numbers:
return 0
if not isinstance(__lowerCamelCase , (list, tuple) ) or not all(
isinstance(__lowerCamelCase , __lowerCamelCase ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
a = a = a = numbers[0]
for i in range(1 , len(__lowerCamelCase ) ):
# update the maximum and minimum subarray products
a = numbers[i]
if number < 0:
a , a = min_till_now, max_till_now
a = max(__lowerCamelCase , max_till_now * number )
a = min(__lowerCamelCase , min_till_now * number )
# update the maximum product found till now
a = max(__lowerCamelCase , __lowerCamelCase )
return max_prod
| 347 | 1 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __lowerCAmelCase :
@staticmethod
def lowerCamelCase__ ( *__magic_name__ :Tuple , **__magic_name__ :str ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
@require_torch
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = pipeline(
model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , )
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
a = image_classifier(__magic_name__ , candidate_labels=["""a""", """b""", """c"""] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(__magic_name__ ) , [
[{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}],
[{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}],
] , )
a = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
] , )
@require_tf
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = pipeline(
model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" )
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
a = image_classifier(__magic_name__ , candidate_labels=["""a""", """b""", """c"""] )
self.assertEqual(
nested_simplify(__magic_name__ ) , [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}] , )
a = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
[
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
{"""score""": 0.333, """label""": ANY(__magic_name__ )},
],
] , )
@slow
@require_torch
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = pipeline(
task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , )
# This is an image of 2 cats with remotes and no planes
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
a = image_classifier(__magic_name__ , candidate_labels=["""cat""", """plane""", """remote"""] )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
] , )
a = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
[
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
],
]
* 5 , )
@slow
@require_tf
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = pipeline(
task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" )
# This is an image of 2 cats with remotes and no planes
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
a = image_classifier(__magic_name__ , candidate_labels=["""cat""", """plane""", """remote"""] )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
] , )
a = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
[
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
],
]
* 5 , )
| 347 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__UpperCamelCase : Optional[Any] = {
"configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"],
"feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"],
"processing_wav2vec2": ["Wav2Vec2Processor"],
"tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : str = [
"WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Wav2Vec2ForAudioFrameClassification",
"Wav2Vec2ForCTC",
"Wav2Vec2ForMaskedLM",
"Wav2Vec2ForPreTraining",
"Wav2Vec2ForSequenceClassification",
"Wav2Vec2ForXVector",
"Wav2Vec2Model",
"Wav2Vec2PreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Dict = [
"TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWav2Vec2ForCTC",
"TFWav2Vec2Model",
"TFWav2Vec2PreTrainedModel",
"TFWav2Vec2ForSequenceClassification",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
"FlaxWav2Vec2ForCTC",
"FlaxWav2Vec2ForPreTraining",
"FlaxWav2Vec2Model",
"FlaxWav2Vec2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
__UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 1 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
PNDMScheduler,
StableDiffusionLDMaDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import nightly, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
enable_full_determinism()
class __lowerCAmelCase ( unittest.TestCase ):
UpperCamelCase__ = StableDiffusionLDMaDPipeline
UpperCamelCase__ = TEXT_TO_IMAGE_PARAMS
UpperCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
torch.manual_seed(0 )
a = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
a = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , )
torch.manual_seed(0 )
a = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
a = CLIPTextModel(__magic_name__ )
a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
a = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def lowerCamelCase__ ( self :List[str] , __magic_name__ :int , __magic_name__ :Dict=0 ):
'''simple docstring'''
if str(__magic_name__ ).startswith("""mps""" ):
a = torch.manual_seed(__magic_name__ )
else:
a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
a = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = """cpu""" # ensure determinism for the device-dependent torch.Generator
a = self.get_dummy_components()
a = StableDiffusionLDMaDPipeline(**__magic_name__ )
a = ldmad_pipe.to(__magic_name__ )
ldmad_pipe.set_progress_bar_config(disable=__magic_name__ )
a = self.get_dummy_inputs(__magic_name__ )
a = ldmad_pipe(**__magic_name__ )
a , a = output.rgb, output.depth
a = rgb[0, -3:, -3:, -1]
a = depth[0, -3:, -1]
assert rgb.shape == (1, 64, 64, 3)
assert depth.shape == (1, 64, 64)
a = np.array(
[0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262] )
a = np.array([103.46727, 85.812004, 87.849236] )
assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2
assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.get_dummy_components()
a = StableDiffusionLDMaDPipeline(**__magic_name__ )
a = ldmad_pipe.to(__magic_name__ )
ldmad_pipe.set_progress_bar_config(disable=__magic_name__ )
a = self.get_dummy_inputs(__magic_name__ )
a = 3 * [inputs["""prompt"""]]
# forward
a = ldmad_pipe(**__magic_name__ )
a , a = output.rgb, output.depth
a = rgb_slice_a[0, -3:, -3:, -1]
a = depth_slice_a[0, -3:, -1]
a = self.get_dummy_inputs(__magic_name__ )
a = 3 * [inputs.pop("""prompt""" )]
a = ldmad_pipe.tokenizer(
__magic_name__ , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=__magic_name__ , return_tensors="""pt""" , )
a = text_inputs["""input_ids"""].to(__magic_name__ )
a = ldmad_pipe.text_encoder(__magic_name__ )[0]
a = prompt_embeds
# forward
a = ldmad_pipe(**__magic_name__ )
a , a = output.rgb, output.depth
a = rgb_slice_a[0, -3:, -3:, -1]
a = depth_slice_a[0, -3:, -1]
assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4
assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = """cpu""" # ensure determinism for the device-dependent torch.Generator
a = self.get_dummy_components()
a = PNDMScheduler(skip_prk_steps=__magic_name__ )
a = StableDiffusionLDMaDPipeline(**__magic_name__ )
a = ldmad_pipe.to(__magic_name__ )
ldmad_pipe.set_progress_bar_config(disable=__magic_name__ )
a = self.get_dummy_inputs(__magic_name__ )
a = """french fries"""
a = ldmad_pipe(**__magic_name__ , negative_prompt=__magic_name__ )
a , a = output.rgb, output.depth
a = rgb[0, -3:, -3:, -1]
a = depth[0, -3:, -1]
assert rgb.shape == (1, 64, 64, 3)
assert depth.shape == (1, 64, 64)
a = np.array(
[0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217] )
a = np.array([107.84738, 84.62802, 89.962135] )
assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2
assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :List[Any]="cpu" , __magic_name__ :Optional[int]=torch.floataa , __magic_name__ :int=0 ):
'''simple docstring'''
a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
a = np.random.RandomState(__magic_name__ ).standard_normal((1, 4, 64, 64) )
a = torch.from_numpy(__magic_name__ ).to(device=__magic_name__ , dtype=__magic_name__ )
a = {
"""prompt""": """a photograph of an astronaut riding a horse""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" )
a = ldmad_pipe.to(__magic_name__ )
ldmad_pipe.set_progress_bar_config(disable=__magic_name__ )
a = self.get_inputs(__magic_name__ )
a = ldmad_pipe(**__magic_name__ )
a , a = output.rgb, output.depth
a = rgb[0, -3:, -3:, -1].flatten()
a = rgb[0, -3:, -1].flatten()
assert rgb.shape == (1, 512, 512, 3)
assert depth.shape == (1, 512, 512)
a = np.array(
[0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706] )
a = np.array(
[0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706] )
assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3
assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3
@nightly
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :str , __magic_name__ :List[str]="cpu" , __magic_name__ :Optional[int]=torch.floataa , __magic_name__ :List[str]=0 ):
'''simple docstring'''
a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
a = np.random.RandomState(__magic_name__ ).standard_normal((1, 4, 64, 64) )
a = torch.from_numpy(__magic_name__ ).to(device=__magic_name__ , dtype=__magic_name__ )
a = {
"""prompt""": """a photograph of an astronaut riding a horse""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 50,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ).to(__magic_name__ )
ldmad_pipe.set_progress_bar_config(disable=__magic_name__ )
a = self.get_inputs(__magic_name__ )
a = ldmad_pipe(**__magic_name__ )
a , a = output.rgb, output.depth
a = 0.495586
a = 0.33795515
a = 112.48518
a = 98.489746
assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3
assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3
assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3
assert np.abs(expected_depth_std - depth.std() ) < 1E-3
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""" ).to(__magic_name__ )
ldmad_pipe.set_progress_bar_config(disable=__magic_name__ )
a = self.get_inputs(__magic_name__ )
a = ldmad_pipe(**__magic_name__ )
a , a = output.rgb, output.depth
a = 0.4194127
a = 0.35375586
a = 0.5638502
a = 0.34686103
assert rgb.shape == (1, 512, 512, 3)
assert depth.shape == (1, 512, 512, 1)
assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3
assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3
assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3
assert np.abs(expected_depth_std - depth.std() ) < 1E-3
| 347 |
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any:
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , __lowerCamelCase )
a = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
a = dataset_size < in_memory_max_size
else:
a = False
a = is_small_dataset(__lowerCamelCase )
assert result == expected
| 347 | 1 |
def __A ( __lowerCamelCase ) -> float:
if not nums: # Makes sure that the list is not empty
raise ValueError("""List is empty""" )
a = sum(__lowerCamelCase ) / len(__lowerCamelCase ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(__lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 |
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def __A ( __lowerCamelCase ) -> bool:
a = int(number**0.5 )
return number == sq * sq
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple[int, int]:
a = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
a = x_den * y_den * z_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
top //= hcf
bottom //= hcf
return top, bottom
def __A ( __lowerCamelCase = 35 ) -> int:
a = set()
a = 42
a = Fraction(0 )
a = 42
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
a = x_num * y_den + x_den * y_num
a = x_den * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
a = x_den * x_den * y_den * y_den
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=-1
a = x_num * y_num
a = x_den * y_num + x_num * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = x_num * x_num * y_num * y_num
a = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
for num, den in unique_s:
total += Fraction(__lowerCamelCase , __lowerCamelCase )
return total.denominator + total.numerator
if __name__ == "__main__":
print(F'{solution() = }')
| 347 | 1 |
__UpperCamelCase : dict[str, float] = {
"km/h": 1.0,
"m/s": 3.6,
"mph": 1.60_93_44,
"knot": 1.8_52,
}
__UpperCamelCase : dict[str, float] = {
"km/h": 1.0,
"m/s": 0.2_77_77_77_78,
"mph": 0.6_21_37_11_92,
"knot": 0.5_39_95_68_03,
}
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> float:
if unit_to not in speed_chart or unit_from not in speed_chart_inverse:
a = (
f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n'
f'Valid values are: {", ".join(__lowerCamelCase )}'
)
raise ValueError(__lowerCamelCase )
return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 |
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :List[str] , __magic_name__ :List[str] , __magic_name__ :List[Any]=13 , __magic_name__ :Any=7 , __magic_name__ :Optional[int]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :Any=99 , __magic_name__ :List[str]=32 , __magic_name__ :List[str]=5 , __magic_name__ :str=4 , __magic_name__ :str=37 , __magic_name__ :Optional[int]="gelu" , __magic_name__ :int=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :List[str]=512 , __magic_name__ :Tuple=16 , __magic_name__ :Tuple=2 , __magic_name__ :List[str]=0.02 , __magic_name__ :Any=4 , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_attention_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_choices
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_attention_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = True
UpperCamelCase__ = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = FlaxRoFormerModelTester(self )
@slow
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__magic_name__ )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
@slow
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
a = jnp.array([[0, 1, 2, 3, 4, 5]] )
a = model(__magic_name__ )[0]
a = 5_0000
a = (1, 6, vocab_size)
self.assertEqual(output.shape , __magic_name__ )
a = jnp.array(
[[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 347 | 1 |
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(__magic_name__ ) , '''Tatoeba directory does not exist.''' )
class __lowerCAmelCase ( unittest.TestCase ):
@cached_property
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = tempfile.mkdtemp()
return TatoebaConverter(save_dir=__magic_name__ )
@slow
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
self.resolver.convert_models(["""heb-eng"""] )
@slow
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a , a = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=__magic_name__ )
assert mmeta["long_pair"] == "heb-eng"
| 347 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCamelCase : Optional[int] = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
__UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 1 |
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__UpperCamelCase : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = XLMRobertaTokenizer
UpperCamelCase__ = XLMRobertaTokenizerFast
UpperCamelCase__ = True
UpperCamelCase__ = True
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
a = XLMRobertaTokenizer(__magic_name__ , keep_accents=__magic_name__ )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = """<pad>"""
a = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<s>""" )
self.assertEqual(vocab_keys[1] , """<pad>""" )
self.assertEqual(vocab_keys[-1] , """<mask>""" )
self.assertEqual(len(__magic_name__ ) , 1002 )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1002 )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = XLMRobertaTokenizer(__magic_name__ , keep_accents=__magic_name__ )
a = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(__magic_name__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__magic_name__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
a = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
__magic_name__ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
a = tokenizer.convert_tokens_to_ids(__magic_name__ )
self.assertListEqual(
__magic_name__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
a = tokenizer.convert_ids_to_tokens(__magic_name__ )
self.assertListEqual(
__magic_name__ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
a = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
a = self.rust_tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ )
a = self.tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ )
a = tempfile.mkdtemp()
a = tokenizer_r.save_pretrained(__magic_name__ )
a = tokenizer_p.save_pretrained(__magic_name__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
a = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f )
self.assertSequenceEqual(__magic_name__ , __magic_name__ )
# Checks everything loads correctly in the same way
a = tokenizer_r.from_pretrained(__magic_name__ )
a = tokenizer_p.from_pretrained(__magic_name__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__magic_name__ , __magic_name__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(__magic_name__ )
# Save tokenizer rust, legacy_format=True
a = tempfile.mkdtemp()
a = tokenizer_r.save_pretrained(__magic_name__ , legacy_format=__magic_name__ )
a = tokenizer_p.save_pretrained(__magic_name__ )
# Checks it save with the same files
self.assertSequenceEqual(__magic_name__ , __magic_name__ )
# Checks everything loads correctly in the same way
a = tokenizer_r.from_pretrained(__magic_name__ )
a = tokenizer_p.from_pretrained(__magic_name__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__magic_name__ , __magic_name__ ) )
shutil.rmtree(__magic_name__ )
# Save tokenizer rust, legacy_format=False
a = tempfile.mkdtemp()
a = tokenizer_r.save_pretrained(__magic_name__ , legacy_format=__magic_name__ )
a = tokenizer_p.save_pretrained(__magic_name__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
a = tokenizer_r.from_pretrained(__magic_name__ )
a = tokenizer_p.from_pretrained(__magic_name__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__magic_name__ , __magic_name__ ) )
shutil.rmtree(__magic_name__ )
@cached_property
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(__magic_name__ , f.name )
a = XLMRobertaTokenizer(f.name , keep_accents=__magic_name__ )
a = pickle.dumps(__magic_name__ )
pickle.loads(__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
a = self.get_tokenizer()
a = self.get_rust_tokenizer()
a = """I was born in 92000, and this is falsé."""
a = tokenizer.tokenize(__magic_name__ )
a = rust_tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
a = self.get_rust_tokenizer()
a = tokenizer.encode(__magic_name__ )
a = rust_tokenizer.encode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
@slow
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = """Hello World!"""
a = [0, 3_5378, 6661, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(__magic_name__ , self.big_tokenizer.encode(__magic_name__ ) )
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = (
"""This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"""
""" add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth"""
)
a = [
0,
3293,
83,
10,
4552,
4989,
7986,
678,
10,
5915,
111,
17_9459,
12_4850,
4,
6044,
237,
12,
6,
5,
6,
4,
6780,
705,
15,
1388,
44,
378,
1_0114,
711,
152,
20,
6,
5,
2_2376,
642,
1221,
1_5190,
3_4153,
450,
5608,
959,
1119,
5_7702,
136,
186,
47,
1098,
2_9367,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
6044,
237,
6284,
5_0901,
528,
31,
90,
34,
927,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(__magic_name__ , self.big_tokenizer.encode(__magic_name__ ) )
@slow
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = {"""input_ids""": [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__magic_name__ , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
| 347 |
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = (IPNDMScheduler,)
UpperCamelCase__ = (('''num_inference_steps''', 50),)
def lowerCamelCase__ ( self :Any , **__magic_name__ :Optional[Any] ):
'''simple docstring'''
a = {"""num_train_timesteps""": 1000}
config.update(**__magic_name__ )
return config
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple=0 , **__magic_name__ :Optional[int] ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config(**__magic_name__ )
a = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals
a = dummy_past_residuals[:]
if time_step is None:
a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__magic_name__ )
a = scheduler_class.from_pretrained(__magic_name__ )
new_scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals
a = dummy_past_residuals[:]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :List[Any]=0 , **__magic_name__ :Any ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals (must be after setting timesteps)
a = dummy_past_residuals[:]
if time_step is None:
a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__magic_name__ )
a = scheduler_class.from_pretrained(__magic_name__ )
# copy over dummy past residuals
new_scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residual (must be after setting timesteps)
a = dummy_past_residuals[:]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCamelCase__ ( self :Optional[Any] , **__magic_name__ :Optional[int] ):
'''simple docstring'''
a = self.scheduler_classes[0]
a = self.get_scheduler_config(**__magic_name__ )
a = scheduler_class(**__magic_name__ )
a = 10
a = self.dummy_model()
a = self.dummy_sample_deter
scheduler.set_timesteps(__magic_name__ )
for i, t in enumerate(scheduler.timesteps ):
a = model(__magic_name__ , __magic_name__ )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
a = model(__magic_name__ , __magic_name__ )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
return sample
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
if num_inference_steps is not None and hasattr(__magic_name__ , """set_timesteps""" ):
scheduler.set_timesteps(__magic_name__ )
elif num_inference_steps is not None and not hasattr(__magic_name__ , """set_timesteps""" ):
a = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
a = dummy_past_residuals[:]
a = scheduler.timesteps[5]
a = scheduler.timesteps[6]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=__magic_name__ , time_step=__magic_name__ )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=__magic_name__ , time_step=__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.full_loop()
a = torch.mean(torch.abs(__magic_name__ ) )
assert abs(result_mean.item() - 254_0529 ) < 10
| 347 | 1 |
import math
def __A ( __lowerCamelCase ) -> str:
a = 0
a = 0
while num > 0:
a = num % 8
a = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) ))
counter += 1
a = math.floor(num / 8 ) # basically /= 8 without remainder if any
# This formatting removes trailing '.0' from `octal`.
return f'0o{int(__lowerCamelCase )}'
def __A ( ) -> None:
print("""\n2 in octal is:""" )
print(decimal_to_octal(2 ) ) # = 2
print("""\n8 in octal is:""" )
print(decimal_to_octal(8 ) ) # = 10
print("""\n65 in octal is:""" )
print(decimal_to_octal(65 ) ) # = 101
print("""\n216 in octal is:""" )
print(decimal_to_octal(216 ) ) # = 330
print("""\n512 in octal is:""" )
print(decimal_to_octal(512 ) ) # = 1000
print("""\n""" )
if __name__ == "__main__":
main()
| 347 |
__UpperCamelCase : Dict = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def __A ( ) -> None:
a = input("""Enter message: """ )
a = input("""Enter key [alphanumeric]: """ )
a = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
a = """encrypt"""
a = encrypt_message(__lowerCamelCase , __lowerCamelCase )
elif mode.lower().startswith("""d""" ):
a = """decrypt"""
a = decrypt_message(__lowerCamelCase , __lowerCamelCase )
print(f'\n{mode.title()}ed message:' )
print(__lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
return translate_message(__lowerCamelCase , __lowerCamelCase , """encrypt""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
return translate_message(__lowerCamelCase , __lowerCamelCase , """decrypt""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
a = []
a = 0
a = key.upper()
for symbol in message:
a = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(__lowerCamelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(__lowerCamelCase ):
a = 0
else:
translated.append(__lowerCamelCase )
return "".join(__lowerCamelCase )
if __name__ == "__main__":
main()
| 347 | 1 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :Optional[Any] , __magic_name__ :Union[str, Any] , __magic_name__ :Any=7 , __magic_name__ :Optional[int]=3 , __magic_name__ :Optional[int]=30 , __magic_name__ :Tuple=400 , __magic_name__ :Dict=True , __magic_name__ :Optional[Any]=None , __magic_name__ :Tuple=True , __magic_name__ :Dict=[0.5, 0.5, 0.5] , __magic_name__ :Union[str, Any]=[0.5, 0.5, 0.5] , __magic_name__ :int=True , __magic_name__ :Dict=1 / 255 , __magic_name__ :List[str]=True , ):
'''simple docstring'''
a = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333}
a = parent
a = batch_size
a = num_channels
a = min_resolution
a = max_resolution
a = do_resize
a = size
a = do_normalize
a = image_mean
a = image_std
a = do_rescale
a = rescale_factor
a = do_pad
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def lowerCamelCase__ ( self :int , __magic_name__ :Any , __magic_name__ :int=False ):
'''simple docstring'''
if not batched:
a = image_inputs[0]
if isinstance(__magic_name__ , Image.Image ):
a , a = image.size
else:
a , a = image.shape[1], image.shape[2]
if w < h:
a = int(self.size["""shortest_edge"""] * h / w )
a = self.size["""shortest_edge"""]
elif w > h:
a = self.size["""shortest_edge"""]
a = int(self.size["""shortest_edge"""] * w / h )
else:
a = self.size["""shortest_edge"""]
a = self.size["""shortest_edge"""]
else:
a = []
for image in image_inputs:
a , a = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
a = max(__magic_name__ , key=lambda __magic_name__ : item[0] )[0]
a = max(__magic_name__ , key=lambda __magic_name__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = ConditionalDetrImageProcessor if is_vision_available() else None
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = ConditionalDetrImageProcessingTester(self )
@property
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__magic_name__ , """image_mean""" ) )
self.assertTrue(hasattr(__magic_name__ , """image_std""" ) )
self.assertTrue(hasattr(__magic_name__ , """do_normalize""" ) )
self.assertTrue(hasattr(__magic_name__ , """do_resize""" ) )
self.assertTrue(hasattr(__magic_name__ , """size""" ) )
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} )
self.assertEqual(image_processor.do_pad , __magic_name__ )
a = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__magic_name__ )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} )
self.assertEqual(image_processor.do_pad , __magic_name__ )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , Image.Image )
# Test not batched input
a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
a , a = self.image_processor_tester.get_expected_values(__magic_name__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
a , a = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ )
a = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , np.ndarray )
# Test not batched input
a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
a , a = self.image_processor_tester.get_expected_values(__magic_name__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
a = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values
a , a = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , torch.Tensor )
# Test not batched input
a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
a , a = self.image_processor_tester.get_expected_values(__magic_name__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
a = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values
a , a = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f:
a = json.loads(f.read() )
a = {"""image_id""": 3_9769, """annotations""": target}
# encode them
a = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""" )
a = image_processing(images=__magic_name__ , annotations=__magic_name__ , return_tensors="""pt""" )
# verify pixel values
a = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , __magic_name__ )
a = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __magic_name__ , atol=1E-4 ) )
# verify area
a = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __magic_name__ ) )
# verify boxes
a = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __magic_name__ )
a = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __magic_name__ , atol=1E-3 ) )
# verify image_id
a = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __magic_name__ ) )
# verify is_crowd
a = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __magic_name__ ) )
# verify class_labels
a = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __magic_name__ ) )
# verify orig_size
a = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __magic_name__ ) )
# verify size
a = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __magic_name__ ) )
@slow
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f:
a = json.loads(f.read() )
a = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target}
a = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" )
# encode them
a = ConditionalDetrImageProcessor(format="""coco_panoptic""" )
a = image_processing(images=__magic_name__ , annotations=__magic_name__ , masks_path=__magic_name__ , return_tensors="""pt""" )
# verify pixel values
a = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , __magic_name__ )
a = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __magic_name__ , atol=1E-4 ) )
# verify area
a = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __magic_name__ ) )
# verify boxes
a = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __magic_name__ )
a = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __magic_name__ , atol=1E-3 ) )
# verify image_id
a = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __magic_name__ ) )
# verify is_crowd
a = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __magic_name__ ) )
# verify class_labels
a = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __magic_name__ ) )
# verify masks
a = 82_2873
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __magic_name__ )
# verify orig_size
a = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __magic_name__ ) )
# verify size
a = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __magic_name__ ) )
| 347 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Tuple=13 , __magic_name__ :List[Any]=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :List[str]=True , __magic_name__ :str=99 , __magic_name__ :Optional[Any]=32 , __magic_name__ :Union[str, Any]=5 , __magic_name__ :Any=4 , __magic_name__ :int=37 , __magic_name__ :Tuple="gelu" , __magic_name__ :List[str]=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :Tuple=512 , __magic_name__ :Dict=16 , __magic_name__ :Optional[int]=2 , __magic_name__ :Optional[int]=0.02 , __magic_name__ :Optional[Any]=4 , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_attention_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_choices
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_attention_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = True
a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = True
UpperCamelCase__ = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = FlaxRobertaModelTester(self )
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained("""roberta-base""" , from_pt=__magic_name__ )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
| 347 | 1 |
from typing import List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase : Optional[int] = logging.get_logger(__name__)
__UpperCamelCase : Tuple = {
"huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json",
}
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''autoformer'''
UpperCamelCase__ = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self :int , __magic_name__ :Optional[int] = None , __magic_name__ :Optional[int] = None , __magic_name__ :str = "student_t" , __magic_name__ :str = "nll" , __magic_name__ :int = 1 , __magic_name__ :List[int] = [1, 2, 3, 4, 5, 6, 7] , __magic_name__ :bool = True , __magic_name__ :int = 0 , __magic_name__ :int = 0 , __magic_name__ :int = 0 , __magic_name__ :int = 0 , __magic_name__ :Optional[List[int]] = None , __magic_name__ :Optional[List[int]] = None , __magic_name__ :int = 64 , __magic_name__ :int = 2 , __magic_name__ :int = 2 , __magic_name__ :int = 2 , __magic_name__ :int = 2 , __magic_name__ :int = 32 , __magic_name__ :int = 32 , __magic_name__ :str = "gelu" , __magic_name__ :float = 0.1 , __magic_name__ :float = 0.1 , __magic_name__ :float = 0.1 , __magic_name__ :float = 0.1 , __magic_name__ :float = 0.1 , __magic_name__ :int = 100 , __magic_name__ :float = 0.02 , __magic_name__ :bool = True , __magic_name__ :str=True , __magic_name__ :int = 10 , __magic_name__ :int = 25 , __magic_name__ :int = 3 , **__magic_name__ :Tuple , ):
'''simple docstring'''
a = prediction_length
a = context_length if context_length is not None else prediction_length
a = distribution_output
a = loss
a = input_size
a = num_time_features
a = lags_sequence
a = scaling
a = num_dynamic_real_features
a = num_static_real_features
a = num_static_categorical_features
if cardinality is not None and num_static_categorical_features > 0:
if len(__magic_name__ ) != num_static_categorical_features:
raise ValueError(
"""The cardinality should be a list of the same length as `num_static_categorical_features`""" )
a = cardinality
else:
a = [0]
if embedding_dimension is not None and num_static_categorical_features > 0:
if len(__magic_name__ ) != num_static_categorical_features:
raise ValueError(
"""The embedding dimension should be a list of the same length as `num_static_categorical_features`""" )
a = embedding_dimension
else:
a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
a = num_parallel_samples
# Transformer architecture configuration
a = input_size * len(self.lags_sequence ) + self._number_of_features
a = d_model
a = encoder_attention_heads
a = decoder_attention_heads
a = encoder_ffn_dim
a = decoder_ffn_dim
a = encoder_layers
a = decoder_layers
a = dropout
a = attention_dropout
a = activation_dropout
a = encoder_layerdrop
a = decoder_layerdrop
a = activation_function
a = init_std
a = use_cache
# Autoformer
a = label_length
a = moving_average
a = autocorrelation_factor
super().__init__(is_encoder_decoder=__magic_name__ , **__magic_name__ )
@property
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 347 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
__UpperCamelCase : Any = datasets.utils.logging.get_logger(__name__)
@dataclass
class __lowerCAmelCase ( datasets.BuilderConfig ):
UpperCamelCase__ = None
UpperCamelCase__ = "utf-8"
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = True # deprecated
UpperCamelCase__ = None # deprecated
UpperCamelCase__ = 10 << 20 # 10MB
UpperCamelCase__ = None
class __lowerCAmelCase ( datasets.ArrowBasedBuilder ):
UpperCamelCase__ = JsonConfig
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
if self.config.block_size is not None:
logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" )
a = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
"""The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" )
if self.config.newlines_in_values is not None:
raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" )
return datasets.DatasetInfo(features=self.config.features )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' )
a = dl_manager.download_and_extract(self.config.data_files )
if isinstance(__magic_name__ , (str, list, tuple) ):
a = data_files
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )]
a = []
for split_name, files in data_files.items():
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"""files""": files} ) )
return splits
def lowerCamelCase__ ( self :List[str] , __magic_name__ :pa.Table ):
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
a = self.config.features.arrow_schema.field(__magic_name__ ).type
a = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
a = table_cast(__magic_name__ , self.config.features.arrow_schema )
return pa_table
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Union[str, Any] ):
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
# We keep only the field we are interested in
a = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(__magic_name__ , (list, tuple) ):
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
else:
a = dataset
a = pa.Table.from_pydict(__magic_name__ )
yield file_idx, self._cast_table(__magic_name__ )
# If the file has one json object per line
else:
with open(__magic_name__ , """rb""" ) as f:
a = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
a = max(self.config.chunksize // 32 , 16 << 10 )
a = (
self.config.encoding_errors if self.config.encoding_errors is not None else """strict"""
)
while True:
a = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(__magic_name__ )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
a = batch.decode(self.config.encoding , errors=__magic_name__ ).encode("""utf-8""" )
try:
while True:
try:
a = paj.read_json(
io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(__magic_name__ , pa.ArrowInvalid )
and "straddling" not in str(__magic_name__ )
or block_size > len(__magic_name__ )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
F'Batch of {len(__magic_name__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
except json.JSONDecodeError:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON
try:
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
a = pa.Table.from_pydict(__magic_name__ )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(F'Not able to read records in the JSON file at {file}.' ) from None
yield file_idx, self._cast_table(__magic_name__ )
break
else:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(
F'Not able to read records in the JSON file at {file}. '
F'You should probably indicate the field of the JSON file containing your records. '
F'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. '
F'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(__magic_name__ )
batch_idx += 1
| 347 | 1 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __lowerCAmelCase :
def __init__( self :Optional[int] , __magic_name__ :str , __magic_name__ :int=2 , __magic_name__ :List[str]=3 , __magic_name__ :Optional[int]=4 , __magic_name__ :str=2 , __magic_name__ :Any=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Dict=True , __magic_name__ :List[Any]=99 , __magic_name__ :Dict=36 , __magic_name__ :Optional[Any]=3 , __magic_name__ :str=4 , __magic_name__ :Optional[Any]=37 , __magic_name__ :Dict="gelu" , __magic_name__ :Any=0.1 , __magic_name__ :Union[str, Any]=0.1 , __magic_name__ :Dict=512 , __magic_name__ :str=16 , __magic_name__ :List[Any]=2 , __magic_name__ :Tuple=0.02 , __magic_name__ :Any=6 , __magic_name__ :Optional[int]=6 , __magic_name__ :Tuple=3 , __magic_name__ :str=4 , __magic_name__ :List[str]=None , __magic_name__ :str=1000 , ):
'''simple docstring'''
a = parent
a = batch_size
a = num_channels
a = image_size
a = patch_size
a = text_seq_length
a = is_training
a = use_input_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = coordinate_size
a = shape_size
a = num_labels
a = num_choices
a = scope
a = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
a = text_seq_length
a = (image_size // patch_size) ** 2 + 1
a = self.text_seq_length + self.image_seq_length
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
a = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
a = bbox[i, j, 3]
a = bbox[i, j, 1]
a = t
if bbox[i, j, 2] < bbox[i, j, 0]:
a = bbox[i, j, 2]
a = bbox[i, j, 0]
a = t
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = None
if self.use_input_mask:
a = random_attention_mask([self.batch_size, self.text_seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
a = None
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
a = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCamelCase__ ( self :int , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :List[str] , __magic_name__ :int , __magic_name__ :Tuple , __magic_name__ :int , __magic_name__ :Tuple , __magic_name__ :int ):
'''simple docstring'''
a = LayoutLMvaModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# text + image
a = model(__magic_name__ , pixel_values=__magic_name__ )
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
a = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , token_type_ids=__magic_name__ )
a = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
a = model(__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
a = model(pixel_values=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :List[Any] , __magic_name__ :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Union[str, Any] , __magic_name__ :int , __magic_name__ :Optional[int] , __magic_name__ :List[str] , __magic_name__ :List[str] ):
'''simple docstring'''
a = self.num_labels
a = LayoutLMvaForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Dict , __magic_name__ :Optional[Any] , __magic_name__ :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Dict , __magic_name__ :int , __magic_name__ :List[str] , __magic_name__ :Tuple ):
'''simple docstring'''
a = self.num_labels
a = LayoutLMvaForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :str , __magic_name__ :int , __magic_name__ :Optional[int] , __magic_name__ :str , __magic_name__ :List[str] , __magic_name__ :Optional[int] , __magic_name__ :Optional[Any] ):
'''simple docstring'''
a = LayoutLMvaForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
(
(
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) ,
) = config_and_inputs
a = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
UpperCamelCase__ = (
{'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel}
if is_torch_available()
else {}
)
def lowerCamelCase__ ( self :List[str] , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :Optional[Any] , __magic_name__ :List[str] , __magic_name__ :List[Any] ):
'''simple docstring'''
return True
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = LayoutLMvaModelTester(self )
a = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Dict , __magic_name__ :Any=False ):
'''simple docstring'''
a = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
a = {
k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous()
if isinstance(__magic_name__ , torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
a = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in get_values(__magic_name__ ):
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in [
*get_values(__magic_name__ ),
]:
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in [
*get_values(__magic_name__ ),
]:
a = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__magic_name__ , )
return inputs_dict
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
a = type
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a = LayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def __A ( ) -> str:
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
@cached_property
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(__magic_name__ )
a = self.default_image_processor
a = prepare_img()
a = image_processor(images=__magic_name__ , return_tensors="""pt""" ).pixel_values.to(__magic_name__ )
a = torch.tensor([[1, 2]] )
a = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
a = model(
input_ids=input_ids.to(__magic_name__ ) , bbox=bbox.to(__magic_name__ ) , pixel_values=pixel_values.to(__magic_name__ ) , )
# verify the logits
a = torch.Size((1, 199, 768) )
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
a = torch.tensor(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 347 |
import warnings
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase : Dict = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = ['''input_ids''', '''attention_mask''']
def __init__( self :List[str] , __magic_name__ :int="</s>" , __magic_name__ :List[Any]="<unk>" , __magic_name__ :Optional[Any]="<pad>" , __magic_name__ :Optional[int]=125 , __magic_name__ :List[str]=None , **__magic_name__ :List[str] , ):
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
a = [F'<extra_id_{i}>' for i in range(__magic_name__ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
a = len(set(filter(lambda __magic_name__ : bool("""extra_id""" in str(__magic_name__ ) ) , __magic_name__ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'
""" provided to ByT5Tokenizer. In this case the additional_special_tokens must include the"""
""" extra_ids tokens""" )
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else pad_token
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else eos_token
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else unk_token
super().__init__(
eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , extra_ids=__magic_name__ , additional_special_tokens=__magic_name__ , **__magic_name__ , )
a = extra_ids
a = 2**8 # utf is 8 bits
# define special tokens dict
a = {
self.pad_token: 0,
self.eos_token: 1,
self.unk_token: 2,
}
a = len(self.special_tokens_encoder )
a = len(__magic_name__ )
for i, token in enumerate(__magic_name__ ):
a = self.vocab_size + i - n
a = {v: k for k, v in self.special_tokens_encoder.items()}
@property
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
return self._utf_vocab_size + self._num_special_tokens + self._extra_ids
def lowerCamelCase__ ( self :Any , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None , __magic_name__ :bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(__magic_name__ )) + [1]
return ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1]
def lowerCamelCase__ ( self :str , __magic_name__ :List[int] ):
'''simple docstring'''
if len(__magic_name__ ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'
""" eos tokens being added.""" )
return token_ids
else:
return token_ids + [self.eos_token_id]
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = self._add_eos_if_not_present(__magic_name__ )
if token_ids_a is None:
return token_ids_a
else:
a = self._add_eos_if_not_present(__magic_name__ )
return token_ids_a + token_ids_a
def lowerCamelCase__ ( self :List[str] , __magic_name__ :str ):
'''simple docstring'''
a = [chr(__magic_name__ ) for i in text.encode("""utf-8""" )]
return tokens
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
if token in self.special_tokens_encoder:
a = self.special_tokens_encoder[token]
elif token in self.added_tokens_encoder:
a = self.added_tokens_encoder[token]
elif len(__magic_name__ ) != 1:
a = self.unk_token_id
else:
a = ord(__magic_name__ ) + self._num_special_tokens
return token_id
def lowerCamelCase__ ( self :List[str] , __magic_name__ :Dict ):
'''simple docstring'''
if index in self.special_tokens_decoder:
a = self.special_tokens_decoder[index]
else:
a = chr(index - self._num_special_tokens )
return token
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Optional[int] ):
'''simple docstring'''
a = b""""""
for token in tokens:
if token in self.special_tokens_decoder:
a = self.special_tokens_decoder[token].encode("""utf-8""" )
elif token in self.added_tokens_decoder:
a = self.special_tokens_decoder[token].encode("""utf-8""" )
elif token in self.special_tokens_encoder:
a = token.encode("""utf-8""" )
elif token in self.added_tokens_encoder:
a = token.encode("""utf-8""" )
else:
a = bytes([ord(__magic_name__ )] )
bstring += tok_string
a = bstring.decode("""utf-8""" , errors="""ignore""" )
return string
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :str , __magic_name__ :Optional[str] = None ):
'''simple docstring'''
return ()
| 347 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
__UpperCamelCase : Tuple = logging.get_logger(__name__)
__UpperCamelCase : Any = {
"microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json",
}
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''layoutlmv3'''
def __init__( self :int , __magic_name__ :Optional[int]=5_0265 , __magic_name__ :Dict=768 , __magic_name__ :Optional[Any]=12 , __magic_name__ :Union[str, Any]=12 , __magic_name__ :Tuple=3072 , __magic_name__ :Tuple="gelu" , __magic_name__ :Union[str, Any]=0.1 , __magic_name__ :Optional[Any]=0.1 , __magic_name__ :List[str]=512 , __magic_name__ :Tuple=2 , __magic_name__ :Optional[int]=0.02 , __magic_name__ :Optional[int]=1E-5 , __magic_name__ :Tuple=1 , __magic_name__ :Optional[int]=0 , __magic_name__ :List[str]=2 , __magic_name__ :int=1024 , __magic_name__ :Optional[Any]=128 , __magic_name__ :List[Any]=128 , __magic_name__ :str=True , __magic_name__ :int=32 , __magic_name__ :str=128 , __magic_name__ :Tuple=64 , __magic_name__ :Optional[Any]=256 , __magic_name__ :Optional[int]=True , __magic_name__ :List[str]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :List[Any]=224 , __magic_name__ :Any=3 , __magic_name__ :Optional[int]=16 , __magic_name__ :str=None , **__magic_name__ :Optional[int] , ):
'''simple docstring'''
super().__init__(
vocab_size=__magic_name__ , hidden_size=__magic_name__ , num_hidden_layers=__magic_name__ , num_attention_heads=__magic_name__ , intermediate_size=__magic_name__ , hidden_act=__magic_name__ , hidden_dropout_prob=__magic_name__ , attention_probs_dropout_prob=__magic_name__ , max_position_embeddings=__magic_name__ , type_vocab_size=__magic_name__ , initializer_range=__magic_name__ , layer_norm_eps=__magic_name__ , pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ , )
a = max_ad_position_embeddings
a = coordinate_size
a = shape_size
a = has_relative_attention_bias
a = rel_pos_bins
a = max_rel_pos
a = has_spatial_attention_bias
a = rel_ad_pos_bins
a = max_rel_ad_pos
a = text_embed
a = visual_embed
a = input_size
a = num_channels
a = patch_size
a = classifier_dropout
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = version.parse('''1.12''' )
@property
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
("""attention_mask""", {0: """batch""", 1: """sequence"""}),
("""bbox""", {0: """batch""", 1: """sequence"""}),
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
else:
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
("""bbox""", {0: """batch""", 1: """sequence"""}),
("""attention_mask""", {0: """batch""", 1: """sequence"""}),
("""pixel_values""", {0: """batch""", 1: """num_channels"""}),
] )
@property
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
return 1E-5
@property
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
return 12
def lowerCamelCase__ ( self :str , __magic_name__ :"ProcessorMixin" , __magic_name__ :int = -1 , __magic_name__ :int = -1 , __magic_name__ :bool = False , __magic_name__ :Optional["TensorType"] = None , __magic_name__ :int = 3 , __magic_name__ :int = 40 , __magic_name__ :int = 40 , ):
'''simple docstring'''
setattr(processor.image_processor , """apply_ocr""" , __magic_name__ )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
a = compute_effective_axis_dimension(
__magic_name__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
a = processor.tokenizer.num_special_tokens_to_add(__magic_name__ )
a = compute_effective_axis_dimension(
__magic_name__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__magic_name__ )
# Generate dummy inputs according to compute batch and sequence
a = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
a = [[[48, 84, 73, 128]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
a = self._generate_dummy_images(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
a = dict(
processor(
__magic_name__ , text=__magic_name__ , boxes=__magic_name__ , return_tensors=__magic_name__ , ) )
return inputs
| 347 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __lowerCAmelCase :
def __init__( self :Optional[int] , __magic_name__ :str , __magic_name__ :int=2 , __magic_name__ :List[str]=3 , __magic_name__ :Optional[int]=4 , __magic_name__ :str=2 , __magic_name__ :Any=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Dict=True , __magic_name__ :List[Any]=99 , __magic_name__ :Dict=36 , __magic_name__ :Optional[Any]=3 , __magic_name__ :str=4 , __magic_name__ :Optional[Any]=37 , __magic_name__ :Dict="gelu" , __magic_name__ :Any=0.1 , __magic_name__ :Union[str, Any]=0.1 , __magic_name__ :Dict=512 , __magic_name__ :str=16 , __magic_name__ :List[Any]=2 , __magic_name__ :Tuple=0.02 , __magic_name__ :Any=6 , __magic_name__ :Optional[int]=6 , __magic_name__ :Tuple=3 , __magic_name__ :str=4 , __magic_name__ :List[str]=None , __magic_name__ :str=1000 , ):
'''simple docstring'''
a = parent
a = batch_size
a = num_channels
a = image_size
a = patch_size
a = text_seq_length
a = is_training
a = use_input_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = coordinate_size
a = shape_size
a = num_labels
a = num_choices
a = scope
a = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
a = text_seq_length
a = (image_size // patch_size) ** 2 + 1
a = self.text_seq_length + self.image_seq_length
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
a = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
a = bbox[i, j, 3]
a = bbox[i, j, 1]
a = t
if bbox[i, j, 2] < bbox[i, j, 0]:
a = bbox[i, j, 2]
a = bbox[i, j, 0]
a = t
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = None
if self.use_input_mask:
a = random_attention_mask([self.batch_size, self.text_seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
a = None
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
a = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCamelCase__ ( self :int , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :List[str] , __magic_name__ :int , __magic_name__ :Tuple , __magic_name__ :int , __magic_name__ :Tuple , __magic_name__ :int ):
'''simple docstring'''
a = LayoutLMvaModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# text + image
a = model(__magic_name__ , pixel_values=__magic_name__ )
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
a = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , token_type_ids=__magic_name__ )
a = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
a = model(__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
a = model(pixel_values=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :List[Any] , __magic_name__ :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Union[str, Any] , __magic_name__ :int , __magic_name__ :Optional[int] , __magic_name__ :List[str] , __magic_name__ :List[str] ):
'''simple docstring'''
a = self.num_labels
a = LayoutLMvaForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Dict , __magic_name__ :Optional[Any] , __magic_name__ :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Dict , __magic_name__ :int , __magic_name__ :List[str] , __magic_name__ :Tuple ):
'''simple docstring'''
a = self.num_labels
a = LayoutLMvaForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :str , __magic_name__ :int , __magic_name__ :Optional[int] , __magic_name__ :str , __magic_name__ :List[str] , __magic_name__ :Optional[int] , __magic_name__ :Optional[Any] ):
'''simple docstring'''
a = LayoutLMvaForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
(
(
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) ,
) = config_and_inputs
a = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
UpperCamelCase__ = (
{'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel}
if is_torch_available()
else {}
)
def lowerCamelCase__ ( self :List[str] , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :Optional[Any] , __magic_name__ :List[str] , __magic_name__ :List[Any] ):
'''simple docstring'''
return True
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = LayoutLMvaModelTester(self )
a = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Dict , __magic_name__ :Any=False ):
'''simple docstring'''
a = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
a = {
k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous()
if isinstance(__magic_name__ , torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
a = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in get_values(__magic_name__ ):
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in [
*get_values(__magic_name__ ),
]:
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in [
*get_values(__magic_name__ ),
]:
a = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__magic_name__ , )
return inputs_dict
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
a = type
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a = LayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def __A ( ) -> str:
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
@cached_property
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(__magic_name__ )
a = self.default_image_processor
a = prepare_img()
a = image_processor(images=__magic_name__ , return_tensors="""pt""" ).pixel_values.to(__magic_name__ )
a = torch.tensor([[1, 2]] )
a = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
a = model(
input_ids=input_ids.to(__magic_name__ ) , bbox=bbox.to(__magic_name__ ) , pixel_values=pixel_values.to(__magic_name__ ) , )
# verify the logits
a = torch.Size((1, 199, 768) )
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
a = torch.tensor(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 347 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase : Optional[Any] = {
"configuration_mobilenet_v2": [
"MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP",
"MobileNetV2Config",
"MobileNetV2OnnxConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = ["MobileNetV2FeatureExtractor"]
__UpperCamelCase : Tuple = ["MobileNetV2ImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
"MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
"MobileNetV2ForImageClassification",
"MobileNetV2ForSemanticSegmentation",
"MobileNetV2Model",
"MobileNetV2PreTrainedModel",
"load_tf_weights_in_mobilenet_v2",
]
if TYPE_CHECKING:
from .configuration_mobilenet_va import (
MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileNetVaConfig,
MobileNetVaOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor
from .image_processing_mobilenet_va import MobileNetVaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilenet_va import (
MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileNetVaForImageClassification,
MobileNetVaForSemanticSegmentation,
MobileNetVaModel,
MobileNetVaPreTrainedModel,
load_tf_weights_in_mobilenet_va,
)
else:
import sys
__UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 |
from copy import deepcopy
class __lowerCAmelCase :
def __init__( self :Union[str, Any] , __magic_name__ :list[int] | None = None , __magic_name__ :int | None = None ):
'''simple docstring'''
if arr is None and size is not None:
a = size
a = [0] * size
elif arr is not None:
self.init(__magic_name__ )
else:
raise ValueError("""Either arr or size must be specified""" )
def lowerCamelCase__ ( self :Dict , __magic_name__ :list[int] ):
'''simple docstring'''
a = len(__magic_name__ )
a = deepcopy(__magic_name__ )
for i in range(1 , self.size ):
a = self.next_(__magic_name__ )
if j < self.size:
self.tree[j] += self.tree[i]
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
a = self.next_(__magic_name__ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def lowerCamelCase__ ( __magic_name__ :int ):
'''simple docstring'''
return index + (index & (-index))
@staticmethod
def lowerCamelCase__ ( __magic_name__ :int ):
'''simple docstring'''
return index - (index & (-index))
def lowerCamelCase__ ( self :Any , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
a = self.next_(__magic_name__ )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
self.add(__magic_name__ , value - self.get(__magic_name__ ) )
def lowerCamelCase__ ( self :int , __magic_name__ :int ):
'''simple docstring'''
if right == 0:
return 0
a = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
a = self.prev(__magic_name__ )
return result
def lowerCamelCase__ ( self :int , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
return self.prefix(__magic_name__ ) - self.prefix(__magic_name__ )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :int ):
'''simple docstring'''
return self.query(__magic_name__ , index + 1 )
def lowerCamelCase__ ( self :Dict , __magic_name__ :int ):
'''simple docstring'''
value -= self.tree[0]
if value < 0:
return -1
a = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
a = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 1 |
def __A ( __lowerCamelCase ) -> list:
a = len(__lowerCamelCase )
for i in range(1 , __lowerCamelCase ):
a = collection[i]
a = 0
a = i - 1
while low <= high:
a = (low + high) // 2
if val < collection[mid]:
a = mid - 1
else:
a = mid + 1
for j in range(__lowerCamelCase , __lowerCamelCase , -1 ):
a = collection[j - 1]
a = val
return collection
if __name__ == "__main__":
__UpperCamelCase : Union[str, Any] = input("Enter numbers separated by a comma:\n").strip()
__UpperCamelCase : List[str] = [int(item) for item in user_input.split(",")]
print(binary_insertion_sort(unsorted))
| 347 |
from __future__ import annotations
from typing import Generic, TypeVar
__UpperCamelCase : Union[str, Any] = TypeVar("T")
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Tuple , __magic_name__ :T ):
'''simple docstring'''
a = data
a = self
a = 0
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Tuple ):
'''simple docstring'''
a = {}
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T ):
'''simple docstring'''
a = DisjointSetTreeNode(__magic_name__ )
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :T ):
'''simple docstring'''
a = self.map[data]
if elem_ref != elem_ref.parent:
a = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :DisjointSetTreeNode[T] , __magic_name__ :DisjointSetTreeNode[T] ):
'''simple docstring'''
if nodea.rank > nodea.rank:
a = nodea
else:
a = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T , __magic_name__ :T ):
'''simple docstring'''
self.link(self.find_set(__magic_name__ ) , self.find_set(__magic_name__ ) )
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Union[str, Any] ):
'''simple docstring'''
a = {}
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :T ):
'''simple docstring'''
if node not in self.connections:
a = {}
def lowerCamelCase__ ( self :Any , __magic_name__ :T , __magic_name__ :T , __magic_name__ :int ):
'''simple docstring'''
self.add_node(__magic_name__ )
self.add_node(__magic_name__ )
a = weight
a = weight
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = []
a = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda __magic_name__ : x[2] )
# creating the disjoint set
a = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(__magic_name__ )
# MST generation
a = 0
a = 0
a = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
a , a , a = edges[index]
index += 1
a = disjoint_set.find_set(__magic_name__ )
a = disjoint_set.find_set(__magic_name__ )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(__magic_name__ , __magic_name__ , __magic_name__ )
disjoint_set.union(__magic_name__ , __magic_name__ )
return graph
| 347 | 1 |
from __future__ import annotations
from decimal import Decimal
from numpy import array
def __A ( __lowerCamelCase ) -> list[list[float]]:
a = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(__lowerCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
a = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creates a copy of the matrix with swapped positions of the elements
a = [[0.0, 0.0], [0.0, 0.0]]
a , a = matrix[1][1], matrix[0][0]
a , a = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(__lowerCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(__lowerCamelCase ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
a = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creating cofactor matrix
a = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
a = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
a = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
a = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
a = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
a = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
a = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
a = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
a = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
a = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
a = array(__lowerCamelCase )
for i in range(3 ):
for j in range(3 ):
a = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
a = array(__lowerCamelCase )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(__lowerCamelCase )
# Calculate the inverse of the matrix
return [[float(d(__lowerCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
| 347 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = tempfile.mkdtemp()
a = BlipImageProcessor()
a = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" )
a = BlipProcessor(__magic_name__ , __magic_name__ )
processor.save_pretrained(self.tmpdirname )
def lowerCamelCase__ ( self :List[Any] , **__magic_name__ :Union[str, Any] ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer
def lowerCamelCase__ ( self :str , **__magic_name__ :List[str] ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
a = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
a = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
a = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 )
a = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__magic_name__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __magic_name__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __magic_name__ )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = self.prepare_image_inputs()
a = image_processor(__magic_name__ , return_tensors="""np""" )
a = processor(images=__magic_name__ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = processor(text=__magic_name__ )
a = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = self.prepare_image_inputs()
a = processor(text=__magic_name__ , images=__magic_name__ )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
# test if it raises when no input is passed
with pytest.raises(__magic_name__ ):
processor()
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
a = processor.batch_decode(__magic_name__ )
a = tokenizer.batch_decode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = self.prepare_image_inputs()
a = processor(text=__magic_name__ , images=__magic_name__ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
| 347 | 1 |
def __A ( __lowerCamelCase ) -> list[int]:
a = [0 for i in range(len(__lowerCamelCase ) )]
# initialize interval's left pointer and right pointer
a , a = 0, 0
for i in range(1 , len(__lowerCamelCase ) ):
# case when current index is inside the interval
if i <= right_pointer:
a = min(right_pointer - i + 1 , z_result[i - left_pointer] )
a = min_edge
while go_next(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ):
z_result[i] += 1
# if new index's result gives us more right interval,
# we've to update left_pointer and right_pointer
if i + z_result[i] - 1 > right_pointer:
a , a = i, i + z_result[i] - 1
return z_result
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> bool:
return i + z_result[i] < len(__lowerCamelCase ) and s[z_result[i]] == s[i + z_result[i]]
def __A ( __lowerCamelCase , __lowerCamelCase ) -> int:
a = 0
# concatenate 'pattern' and 'input_str' and call z_function
# with concatenated string
a = z_function(pattern + input_str )
for val in z_result:
# if value is greater then length of the pattern string
# that means this index is starting position of substring
# which is equal to pattern string
if val >= len(__lowerCamelCase ):
answer += 1
return answer
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCamelCase : int = {
"shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
UpperCamelCase__ = '''nat'''
UpperCamelCase__ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self :Any , __magic_name__ :int=4 , __magic_name__ :Dict=3 , __magic_name__ :List[str]=64 , __magic_name__ :Optional[int]=[3, 4, 6, 5] , __magic_name__ :int=[2, 4, 8, 16] , __magic_name__ :str=7 , __magic_name__ :Tuple=3.0 , __magic_name__ :Dict=True , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.1 , __magic_name__ :Optional[Any]="gelu" , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :Tuple=1E-5 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :int=None , __magic_name__ :Any=None , **__magic_name__ :Dict , ):
'''simple docstring'''
super().__init__(**__magic_name__ )
a = patch_size
a = num_channels
a = embed_dim
a = depths
a = len(__magic_name__ )
a = num_heads
a = kernel_size
a = mlp_ratio
a = qkv_bias
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = drop_path_rate
a = hidden_act
a = layer_norm_eps
a = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
a = int(embed_dim * 2 ** (len(__magic_name__ ) - 1) )
a = layer_scale_init_value
a = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(__magic_name__ ) + 1 )]
a , a = get_aligned_output_features_output_indices(
out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
| 347 | 1 |
import numpy as np
from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> np.ndarray:
# prepare kernel
# the kernel size have to be odd
if (ksize % 2) == 0:
a = ksize + 1
a = np.zeros((ksize, ksize) , dtype=np.floataa )
# each value
for y in range(__lowerCamelCase ):
for x in range(__lowerCamelCase ):
# distance from center
a = x - ksize // 2
a = y - ksize // 2
# degree to radiant
a = theta / 180 * np.pi
a = np.cos(_theta )
a = np.sin(_theta )
# get kernel x
a = cos_theta * px + sin_theta * py
# get kernel y
a = -sin_theta * px + cos_theta * py
# fill kernel
a = np.exp(
-(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi )
return gabor
if __name__ == "__main__":
import doctest
doctest.testmod()
# read original image
__UpperCamelCase : Any = imread("../image_data/lena.jpg")
# turn image in gray scale value
__UpperCamelCase : List[str] = cvtColor(img, COLOR_BGR2GRAY)
# Apply multiple Kernel to detect edges
__UpperCamelCase : str = np.zeros(gray.shape[:2])
for theta in [0, 30, 60, 90, 120, 150]:
__UpperCamelCase : Optional[Any] = gabor_filter_kernel(10, 8, theta, 10, 0, 0)
out += filteraD(gray, CV_8UC3, kernel_aa)
__UpperCamelCase : str = out / out.max() * 255
__UpperCamelCase : Tuple = out.astype(np.uinta)
imshow("Original", gray)
imshow("Gabor filter with 20x20 mask and 6 directions", out)
waitKey(0)
| 347 |
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = torch.permute(__lowerCamelCase , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ):
# linear layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
a = flax_key_tuple[:-1] + ("""weight""",)
return flax_key_tuple, flax_tensor
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
if "metadata" in layer:
a = layer.split("""metadata""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )]
elif "kvstore" in layer:
a = layer.split("""kvstore""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )]
else:
a = layer.split("""/""" )
a = """/""".join(split_layer[:-1] )
a = (split_layer[-1],)
if "kvstore/path" in layer:
a = f'{switch_checkpoint_path}/{checkpoint_info[layer]}'
elif "kvstore/driver" in layer:
a = """file"""
else:
a = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
a = rename_keys(__lowerCamelCase )
a = {}
for k, v in current_block.items():
a = v
a = new_current_block
torch.save(__lowerCamelCase , __lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = WEIGHTS_NAME ) -> List[str]:
a = convert_file_size_to_int(__lowerCamelCase )
a = []
a = {}
a = 0
a = 0
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp:
a = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""]
a = flatten_dict(__lowerCamelCase , sep="""/""" )
a = {}
for layer in checkpoint_info.keys():
a , a , a = get_key_and_tensorstore_dict(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if curr_real_layer_name in all_layers:
a = content
else:
a = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
a = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
a = torch.tensor(__lowerCamelCase )
a = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
a , a = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __lowerCamelCase )
a = """/""".join(__lowerCamelCase )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
a = os.path.join(
__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
del current_block
a = {}
a = 0
a = raw_weights.to(getattr(__lowerCamelCase , __lowerCamelCase ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(__lowerCamelCase ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
a = {}
a = {}
for idx, shard in enumerate(__lowerCamelCase ):
a = weights_name.replace(
""".bin""" , f'-{idx+1:05d}-of-{len(__lowerCamelCase ):05d}.bin' ) # len(sharded_state_dicts):05d}
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{idx+1:05d}-of-???.bin' ) )
os.rename(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
a = shard
for key in shard:
a = shard_file
# Add the metadata
a = {"""total_size""": total_size}
a = {"""metadata""": metadata, """weight_map""": weight_map}
with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f:
a = json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase ) + """\n"""
f.write(__lowerCamelCase )
return metadata, index
if __name__ == "__main__":
__UpperCamelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--switch_t5x_checkpoint_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size")
parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted",
type=str,
required=False,
help="Path to the output pytorch model.",
)
__UpperCamelCase : Any = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def __A ( ) -> Tuple:
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
a = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" )
config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" )
a = SwitchTransformersForConditionalGeneration.from_pretrained(
"""/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" )
a = TaTokenizer.from_pretrained("""t5-small""" )
a = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."""
a = tokenizer(__lowerCamelCase , return_tensors="""pt""" ).input_ids
a = model.generate(__lowerCamelCase , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 347 | 1 |
from argparse import ArgumentParser
from . import BaseTransformersCLICommand
def __A ( __lowerCamelCase ) -> Optional[Any]:
return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code )
class __lowerCAmelCase ( __magic_name__ ):
@staticmethod
def lowerCamelCase__ ( __magic_name__ :ArgumentParser ):
'''simple docstring'''
a = parser.add_parser("""download""" )
download_parser.add_argument(
"""--cache-dir""" , type=__magic_name__ , default=__magic_name__ , help="""Path to location to store the models""" )
download_parser.add_argument(
"""--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" )
download_parser.add_argument(
"""--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , )
download_parser.add_argument("""model""" , type=__magic_name__ , help="""Name of the model to download""" )
download_parser.set_defaults(func=__magic_name__ )
def __init__( self :List[str] , __magic_name__ :str , __magic_name__ :str , __magic_name__ :bool , __magic_name__ :bool ):
'''simple docstring'''
a = model
a = cache
a = force
a = trust_remote_code
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
from ..models.auto import AutoModel, AutoTokenizer
AutoModel.from_pretrained(
self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
AutoTokenizer.from_pretrained(
self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
| 347 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
__UpperCamelCase : Union[str, Any] = (720, 1_280) # Height, Width
__UpperCamelCase : Any = (0.4, 0.6) # if height or width lower than this scale, drop it.
__UpperCamelCase : str = 1 / 100
__UpperCamelCase : Optional[int] = ""
__UpperCamelCase : List[Any] = ""
__UpperCamelCase : Union[str, Any] = ""
__UpperCamelCase : Tuple = 250
def __A ( ) -> None:
a , a = get_dataset(__lowerCamelCase , __lowerCamelCase )
for index in range(__lowerCamelCase ):
a = random.sample(range(len(__lowerCamelCase ) ) , 4 )
a , a , a = update_image_and_anno(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , filter_scale=__lowerCamelCase , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
a = random_chars(32 )
a = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
a = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}'
cva.imwrite(f'{file_root}.jpg' , __lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' )
a = []
for anno in new_annos:
a = anno[3] - anno[1]
a = anno[4] - anno[2]
a = anno[1] + width / 2
a = anno[2] + height / 2
a = f'{anno[0]} {x_center} {y_center} {width} {height}'
annos_list.append(__lowerCamelCase )
with open(f'{file_root}.txt' , """w""" ) as outfile:
outfile.write("""\n""".join(line for line in annos_list ) )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> tuple[list, list]:
a = []
a = []
for label_file in glob.glob(os.path.join(__lowerCamelCase , """*.txt""" ) ):
a = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
with open(__lowerCamelCase ) as in_file:
a = in_file.readlines()
a = os.path.join(__lowerCamelCase , f'{label_name}.jpg' )
a = []
for obj_list in obj_lists:
a = obj_list.rstrip("""\n""" ).split(""" """ )
a = float(obj[1] ) - float(obj[3] ) / 2
a = float(obj[2] ) - float(obj[4] ) / 2
a = float(obj[1] ) + float(obj[3] ) / 2
a = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(__lowerCamelCase )
labels.append(__lowerCamelCase )
return img_paths, labels
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 0.0 , ) -> tuple[list, list, str]:
a = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
a = int(scale_x * output_size[1] )
a = int(scale_y * output_size[0] )
a = []
a = []
for i, index in enumerate(__lowerCamelCase ):
a = all_img_list[index]
path_list.append(__lowerCamelCase )
a = all_annos[index]
a = cva.imread(__lowerCamelCase )
if i == 0: # top-left
a = cva.resize(__lowerCamelCase , (divid_point_x, divid_point_y) )
a = img
for bbox in img_annos:
a = bbox[1] * scale_x
a = bbox[2] * scale_y
a = bbox[3] * scale_x
a = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
a = cva.resize(__lowerCamelCase , (output_size[1] - divid_point_x, divid_point_y) )
a = img
for bbox in img_annos:
a = scale_x + bbox[1] * (1 - scale_x)
a = bbox[2] * scale_y
a = scale_x + bbox[3] * (1 - scale_x)
a = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
a = cva.resize(__lowerCamelCase , (divid_point_x, output_size[0] - divid_point_y) )
a = img
for bbox in img_annos:
a = bbox[1] * scale_x
a = scale_y + bbox[2] * (1 - scale_y)
a = bbox[3] * scale_x
a = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
a = cva.resize(
__lowerCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
a = img
for bbox in img_annos:
a = scale_x + bbox[1] * (1 - scale_x)
a = scale_y + bbox[2] * (1 - scale_y)
a = scale_x + bbox[3] * (1 - scale_x)
a = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
a = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def __A ( __lowerCamelCase ) -> str:
assert number_char > 1, "The number of character should greater than 1"
a = ascii_lowercase + digits
return "".join(random.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 347 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase : List[str] = logging.get_logger(__name__)
__UpperCamelCase : int = {
"vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json",
# See all GLPN models at https://huggingface.co/models?filter=glpn
}
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''glpn'''
def __init__( self :Optional[int] , __magic_name__ :Union[str, Any]=3 , __magic_name__ :Union[str, Any]=4 , __magic_name__ :Dict=[2, 2, 2, 2] , __magic_name__ :List[Any]=[8, 4, 2, 1] , __magic_name__ :Any=[32, 64, 160, 256] , __magic_name__ :List[Any]=[7, 3, 3, 3] , __magic_name__ :Optional[int]=[4, 2, 2, 2] , __magic_name__ :int=[1, 2, 5, 8] , __magic_name__ :Tuple=[4, 4, 4, 4] , __magic_name__ :str="gelu" , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[str]=0.02 , __magic_name__ :List[str]=0.1 , __magic_name__ :Optional[Any]=1E-6 , __magic_name__ :Union[str, Any]=64 , __magic_name__ :Optional[int]=10 , __magic_name__ :List[str]=-1 , **__magic_name__ :List[str] , ):
'''simple docstring'''
super().__init__(**__magic_name__ )
a = num_channels
a = num_encoder_blocks
a = depths
a = sr_ratios
a = hidden_sizes
a = patch_sizes
a = strides
a = mlp_ratios
a = num_attention_heads
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = initializer_range
a = drop_path_rate
a = layer_norm_eps
a = decoder_hidden_size
a = max_depth
a = head_in_index
| 347 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase : Optional[Any] = {
"configuration_mobilenet_v2": [
"MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP",
"MobileNetV2Config",
"MobileNetV2OnnxConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = ["MobileNetV2FeatureExtractor"]
__UpperCamelCase : Tuple = ["MobileNetV2ImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
"MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
"MobileNetV2ForImageClassification",
"MobileNetV2ForSemanticSegmentation",
"MobileNetV2Model",
"MobileNetV2PreTrainedModel",
"load_tf_weights_in_mobilenet_v2",
]
if TYPE_CHECKING:
from .configuration_mobilenet_va import (
MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileNetVaConfig,
MobileNetVaOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor
from .image_processing_mobilenet_va import MobileNetVaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilenet_va import (
MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileNetVaForImageClassification,
MobileNetVaForSemanticSegmentation,
MobileNetVaModel,
MobileNetVaPreTrainedModel,
load_tf_weights_in_mobilenet_va,
)
else:
import sys
__UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 1 |
import math
from collections.abc import Iterator
from itertools import takewhile
def __A ( __lowerCamelCase ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__lowerCamelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __A ( ) -> Iterator[int]:
a = 2
while True:
if is_prime(__lowerCamelCase ):
yield num
num += 1
def __A ( __lowerCamelCase = 200_0000 ) -> int:
return sum(takewhile(lambda __lowerCamelCase : x < n , prime_generator() ) )
if __name__ == "__main__":
print(F'{solution() = }')
| 347 |
def __A ( __lowerCamelCase ) -> bool:
if num < 0:
return False
a = num
a = 0
while num > 0:
a = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 1 |
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
__UpperCamelCase : List[Any] = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n"
__UpperCamelCase : List[Any] = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n"
__UpperCamelCase : Any = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCAmelCase ( datasets.Metric ):
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/ROUGE_(metric)""",
"""https://github.com/google-research/google-research/tree/master/rouge""",
] , )
def lowerCamelCase__ ( self :str , __magic_name__ :Union[str, Any] , __magic_name__ :str , __magic_name__ :Tuple=None , __magic_name__ :str=True , __magic_name__ :Union[str, Any]=False ):
'''simple docstring'''
if rouge_types is None:
a = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""]
a = rouge_scorer.RougeScorer(rouge_types=__magic_name__ , use_stemmer=__magic_name__ )
if use_aggregator:
a = scoring.BootstrapAggregator()
else:
a = []
for ref, pred in zip(__magic_name__ , __magic_name__ ):
a = scorer.score(__magic_name__ , __magic_name__ )
if use_aggregator:
aggregator.add_scores(__magic_name__ )
else:
scores.append(__magic_name__ )
if use_aggregator:
a = aggregator.aggregate()
else:
a = {}
for key in scores[0]:
a = [score[key] for score in scores]
return result
| 347 |
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = CanineTokenizer
UpperCamelCase__ = False
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
super().setUp()
a = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def lowerCamelCase__ ( self :Tuple , **__magic_name__ :Dict ):
'''simple docstring'''
a = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
a = 1024
return tokenizer
@require_torch
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.canine_tokenizer
a = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
a = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0]
# fmt: on
a = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
self.assertIsInstance(__magic_name__ , __magic_name__ )
a = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.canine_tokenizer
a = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
a = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , __magic_name__ )
self.assertIn("""attention_mask""" , __magic_name__ )
self.assertIn("""token_type_ids""" , __magic_name__ )
@require_torch
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.canine_tokenizer
a = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
a = tokenizer(
text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
a = tempfile.mkdtemp()
a = """ He is very happy, UNwant\u00E9d,running"""
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
a = tokenizer.__class__.from_pretrained(__magic_name__ )
a = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
shutil.rmtree(__magic_name__ )
a = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
a = tempfile.mkdtemp()
a = """ He is very happy, UNwant\u00E9d,running"""
a = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
a = chr(0Xe_0_0_7 )
additional_special_tokens.append(__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
a = tokenizer.__class__.from_pretrained(__magic_name__ )
a = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
a = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__magic_name__ )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a , a = self.get_clean_sequence(__magic_name__ )
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_5
a = chr(__magic_name__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
a = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , input_encoded + special_token_id )
a = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = chr(0Xe_0_0_5 )
a = chr(0Xe_0_0_6 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
a = tokenizer.tokenize(__magic_name__ )
a = tokenizer.tokenize(__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(token_a[0] , __magic_name__ )
self.assertEqual(token_a[0] , __magic_name__ )
@require_tokenizers
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_6
a = chr(__magic_name__ )
a = AddedToken(__magic_name__ , lstrip=__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__magic_name__ )
tokenizer.from_pretrained(__magic_name__ )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__magic_name__ )
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
a = json.load(__magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
a = json.load(__magic_name__ )
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_6
a = chr(__magic_name__ )
a = [new_token_a]
a = [new_token_a]
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
a = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
a = 0Xe_0_0_7
a = chr(__magic_name__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
a = [AddedToken(__magic_name__ , lstrip=__magic_name__ )]
a = tokenizer_class.from_pretrained(
__magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = """hello world"""
if self.space_between_special_tokens:
a = """[CLS] hello world [SEP]"""
else:
a = input
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__magic_name__ , [output, output.lower()] )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
a = """a"""
a = ord(__magic_name__ )
for attr in attributes_list:
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] )
a = 0Xe_0_0_6
a = chr(__magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
| 347 | 1 |
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all image processors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...image_processing_utils import ImageProcessingMixin
from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
__UpperCamelCase : Optional[int] = logging.get_logger(__name__)
__UpperCamelCase : Optional[int] = OrderedDict(
[
("align", "EfficientNetImageProcessor"),
("beit", "BeitImageProcessor"),
("bit", "BitImageProcessor"),
("blip", "BlipImageProcessor"),
("blip-2", "BlipImageProcessor"),
("bridgetower", "BridgeTowerImageProcessor"),
("chinese_clip", "ChineseCLIPImageProcessor"),
("clip", "CLIPImageProcessor"),
("clipseg", "ViTImageProcessor"),
("conditional_detr", "ConditionalDetrImageProcessor"),
("convnext", "ConvNextImageProcessor"),
("convnextv2", "ConvNextImageProcessor"),
("cvt", "ConvNextImageProcessor"),
("data2vec-vision", "BeitImageProcessor"),
("deformable_detr", "DeformableDetrImageProcessor"),
("deit", "DeiTImageProcessor"),
("deta", "DetaImageProcessor"),
("detr", "DetrImageProcessor"),
("dinat", "ViTImageProcessor"),
("donut-swin", "DonutImageProcessor"),
("dpt", "DPTImageProcessor"),
("efficientformer", "EfficientFormerImageProcessor"),
("efficientnet", "EfficientNetImageProcessor"),
("flava", "FlavaImageProcessor"),
("focalnet", "BitImageProcessor"),
("git", "CLIPImageProcessor"),
("glpn", "GLPNImageProcessor"),
("groupvit", "CLIPImageProcessor"),
("imagegpt", "ImageGPTImageProcessor"),
("instructblip", "BlipImageProcessor"),
("layoutlmv2", "LayoutLMv2ImageProcessor"),
("layoutlmv3", "LayoutLMv3ImageProcessor"),
("levit", "LevitImageProcessor"),
("mask2former", "Mask2FormerImageProcessor"),
("maskformer", "MaskFormerImageProcessor"),
("mgp-str", "ViTImageProcessor"),
("mobilenet_v1", "MobileNetV1ImageProcessor"),
("mobilenet_v2", "MobileNetV2ImageProcessor"),
("mobilevit", "MobileViTImageProcessor"),
("mobilevit", "MobileViTImageProcessor"),
("mobilevitv2", "MobileViTImageProcessor"),
("nat", "ViTImageProcessor"),
("oneformer", "OneFormerImageProcessor"),
("owlvit", "OwlViTImageProcessor"),
("perceiver", "PerceiverImageProcessor"),
("pix2struct", "Pix2StructImageProcessor"),
("poolformer", "PoolFormerImageProcessor"),
("regnet", "ConvNextImageProcessor"),
("resnet", "ConvNextImageProcessor"),
("sam", "SamImageProcessor"),
("segformer", "SegformerImageProcessor"),
("swiftformer", "ViTImageProcessor"),
("swin", "ViTImageProcessor"),
("swin2sr", "Swin2SRImageProcessor"),
("swinv2", "ViTImageProcessor"),
("table-transformer", "DetrImageProcessor"),
("timesformer", "VideoMAEImageProcessor"),
("tvlt", "TvltImageProcessor"),
("upernet", "SegformerImageProcessor"),
("van", "ConvNextImageProcessor"),
("videomae", "VideoMAEImageProcessor"),
("vilt", "ViltImageProcessor"),
("vit", "ViTImageProcessor"),
("vit_hybrid", "ViTHybridImageProcessor"),
("vit_mae", "ViTImageProcessor"),
("vit_msn", "ViTImageProcessor"),
("xclip", "CLIPImageProcessor"),
("yolos", "YolosImageProcessor"),
]
)
__UpperCamelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES)
def __A ( __lowerCamelCase ) -> Dict:
for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
if class_name in extractors:
a = model_type_to_module_name(__lowerCamelCase )
a = importlib.import_module(f'.{module_name}' , """transformers.models""" )
try:
return getattr(__lowerCamelCase , __lowerCamelCase )
except AttributeError:
continue
for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items():
if getattr(__lowerCamelCase , """__name__""" , __lowerCamelCase ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
a = importlib.import_module("""transformers""" )
if hasattr(__lowerCamelCase , __lowerCamelCase ):
return getattr(__lowerCamelCase , __lowerCamelCase )
return None
def __A ( __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = False , **__lowerCamelCase , ) -> Tuple:
a = get_file_from_repo(
__lowerCamelCase , __lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , resume_download=__lowerCamelCase , proxies=__lowerCamelCase , use_auth_token=__lowerCamelCase , revision=__lowerCamelCase , local_files_only=__lowerCamelCase , )
if resolved_config_file is None:
logger.info(
"""Could not locate the image processor configuration file, will try to use the model config instead.""" )
return {}
with open(__lowerCamelCase , encoding="""utf-8""" ) as reader:
return json.load(__lowerCamelCase )
class __lowerCAmelCase :
def __init__( self :List[Any] ):
'''simple docstring'''
raise EnvironmentError(
"""AutoImageProcessor is designed to be instantiated """
"""using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.""" )
@classmethod
@replace_list_option_in_docstrings(__magic_name__ )
def lowerCamelCase__ ( cls :str , __magic_name__ :Any , **__magic_name__ :List[Any] ):
'''simple docstring'''
a = kwargs.pop("""config""" , __magic_name__ )
a = kwargs.pop("""trust_remote_code""" , __magic_name__ )
a = True
a , a = ImageProcessingMixin.get_image_processor_dict(__magic_name__ , **__magic_name__ )
a = config_dict.get("""image_processor_type""" , __magic_name__ )
a = None
if "AutoImageProcessor" in config_dict.get("""auto_map""" , {} ):
a = config_dict["""auto_map"""]["""AutoImageProcessor"""]
# If we still don't have the image processor class, check if we're loading from a previous feature extractor config
# and if so, infer the image processor class from there.
if image_processor_class is None and image_processor_auto_map is None:
a = config_dict.pop("""feature_extractor_type""" , __magic_name__ )
if feature_extractor_class is not None:
logger.warning(
"""Could not find image processor class in the image processor config or the model config. Loading"""
""" based on pattern matching with the model's feature extractor configuration.""" )
a = feature_extractor_class.replace("""FeatureExtractor""" , """ImageProcessor""" )
if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ):
a = config_dict["""auto_map"""]["""AutoFeatureExtractor"""]
a = feature_extractor_auto_map.replace("""FeatureExtractor""" , """ImageProcessor""" )
logger.warning(
"""Could not find image processor auto map in the image processor config or the model config."""
""" Loading based on pattern matching with the model's feature extractor configuration.""" )
# If we don't find the image processor class in the image processor config, let's try the model config.
if image_processor_class is None and image_processor_auto_map is None:
if not isinstance(__magic_name__ , __magic_name__ ):
a = AutoConfig.from_pretrained(__magic_name__ , **__magic_name__ )
# It could be in `config.image_processor_type``
a = getattr(__magic_name__ , """image_processor_type""" , __magic_name__ )
if hasattr(__magic_name__ , """auto_map""" ) and "AutoImageProcessor" in config.auto_map:
a = config.auto_map["""AutoImageProcessor"""]
if image_processor_class is not None:
a = image_processor_class_from_name(__magic_name__ )
a = image_processor_auto_map is not None
a = image_processor_class is not None or type(__magic_name__ ) in IMAGE_PROCESSOR_MAPPING
a = resolve_trust_remote_code(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
if has_remote_code and trust_remote_code:
a = get_class_from_dynamic_module(
__magic_name__ , __magic_name__ , **__magic_name__ )
a = kwargs.pop("""code_revision""" , __magic_name__ )
if os.path.isdir(__magic_name__ ):
image_processor_class.register_for_auto_class()
return image_processor_class.from_dict(__magic_name__ , **__magic_name__ )
elif image_processor_class is not None:
return image_processor_class.from_dict(__magic_name__ , **__magic_name__ )
# Last try: we use the IMAGE_PROCESSOR_MAPPING.
elif type(__magic_name__ ) in IMAGE_PROCESSOR_MAPPING:
a = IMAGE_PROCESSOR_MAPPING[type(__magic_name__ )]
return image_processor_class.from_dict(__magic_name__ , **__magic_name__ )
raise ValueError(
F'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a '
F'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following '
F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' )
@staticmethod
def lowerCamelCase__ ( __magic_name__ :Any , __magic_name__ :List[str] ):
'''simple docstring'''
IMAGE_PROCESSOR_MAPPING.register(__magic_name__ , __magic_name__ )
| 347 |
def __A ( __lowerCamelCase ) -> bool:
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 1 |
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __lowerCAmelCase :
def __init__( self :Dict , __magic_name__ :Optional[Any] , __magic_name__ :List[Any]=13 , __magic_name__ :Union[str, Any]=30 , __magic_name__ :Optional[int]=2 , __magic_name__ :List[str]=3 , __magic_name__ :Any=True , __magic_name__ :int=True , __magic_name__ :Optional[Any]=32 , __magic_name__ :Any=2 , __magic_name__ :List[str]=4 , __magic_name__ :Optional[int]=37 , __magic_name__ :Optional[int]="gelu" , __magic_name__ :Dict=0.1 , __magic_name__ :Any=0.1 , __magic_name__ :Optional[int]=10 , __magic_name__ :List[Any]=0.02 , __magic_name__ :Union[str, Any]=3 , __magic_name__ :Dict=0.6 , __magic_name__ :Tuple=None , ):
'''simple docstring'''
a = parent
a = batch_size
a = image_size
a = patch_size
a = num_channels
a = is_training
a = use_labels
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = type_sequence_label_size
a = initializer_range
a = mask_ratio
a = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
a = (image_size // patch_size) ** 2
a = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a = self.get_config()
return config, pixel_values, labels
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def lowerCamelCase__ ( self :Dict , __magic_name__ :List[str] , __magic_name__ :List[str] , __magic_name__ :Any ):
'''simple docstring'''
a = TFViTMAEModel(config=__magic_name__ )
a = model(__magic_name__ , training=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase__ ( self :List[str] , __magic_name__ :str , __magic_name__ :Dict , __magic_name__ :Optional[Any] ):
'''simple docstring'''
a = TFViTMAEForPreTraining(__magic_name__ )
a = model(__magic_name__ , training=__magic_name__ )
# expected sequence length = num_patches
a = (self.image_size // self.patch_size) ** 2
a = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
a = 1
a = TFViTMAEForPreTraining(__magic_name__ )
a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
a = model(__magic_name__ , training=__magic_name__ )
a = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
((a) , (a) , (a)) = config_and_inputs
a = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
UpperCamelCase__ = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {}
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = TFViTMAEModelTester(self )
a = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMAE does not use inputs_embeds""" )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(__magic_name__ )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
a = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__magic_name__ , tf.keras.layers.Layer ) )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(__magic_name__ )
a = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a = [*signature.parameters.keys()]
a = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__magic_name__ )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
np.random.seed(2 )
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = int((config.image_size // config.patch_size) ** 2 )
a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
a = model_class(__magic_name__ )
a = self._prepare_for_class(__magic_name__ , __magic_name__ )
a = model(__magic_name__ , noise=__magic_name__ )
a = copy.deepcopy(self._prepare_for_class(__magic_name__ , __magic_name__ ) )
a = model(**__magic_name__ , noise=__magic_name__ )
a = outputs_dict[0].numpy()
a = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
np.random.seed(2 )
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = int((config.image_size // config.patch_size) ** 2 )
a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(__magic_name__ :str ):
a = {}
for k, v in inputs_dict.items():
if tf.is_tensor(__magic_name__ ):
a = v.numpy()
else:
a = np.array(__magic_name__ )
return inputs_np_dict
for model_class in self.all_model_classes:
a = model_class(__magic_name__ )
a = self._prepare_for_class(__magic_name__ , __magic_name__ )
a = prepare_numpy_arrays(__magic_name__ )
a = model(__magic_name__ , noise=__magic_name__ )
a = model(**__magic_name__ , noise=__magic_name__ )
self.assert_outputs_same(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :Optional[int] , __magic_name__ :List[str] , __magic_name__ :Union[str, Any] ):
'''simple docstring'''
np.random.seed(2 )
a = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
a = tf.constant(__magic_name__ )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
a = tf_noise
super().check_pt_tf_models(__magic_name__ , __magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
np.random.seed(2 )
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(__magic_name__ )
if module_member_name.endswith("""MainLayer""" )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )]
for module_member in (getattr(__magic_name__ , __magic_name__ ),)
if isinstance(__magic_name__ , __magic_name__ )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(__magic_name__ , """_keras_serializable""" , __magic_name__ )
}
a = int((config.image_size // config.patch_size) ** 2 )
a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
a = tf.convert_to_tensor(__magic_name__ )
inputs_dict.update({"""noise""": noise} )
for main_layer_class in tf_main_layer_classes:
a = main_layer_class(__magic_name__ )
a = {
name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
a = tf.keras.Model(__magic_name__ , outputs=main_layer(__magic_name__ ) )
a = model(__magic_name__ )
with tempfile.TemporaryDirectory() as tmpdirname:
a = os.path.join(__magic_name__ , """keras_model.h5""" )
model.save(__magic_name__ )
a = tf.keras.models.load_model(
__magic_name__ , custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(__magic_name__ , tf.keras.Model )
a = model(__magic_name__ )
self.assert_outputs_same(__magic_name__ , __magic_name__ )
@slow
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
np.random.seed(2 )
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = int((config.image_size // config.patch_size) ** 2 )
a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
a = model_class(__magic_name__ )
a = self._prepare_for_class(__magic_name__ , __magic_name__ )
a = model(__magic_name__ , noise=__magic_name__ )
if model_class.__name__ == "TFViTMAEModel":
a = outputs.last_hidden_state.numpy()
a = 0
else:
a = outputs.logits.numpy()
a = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__magic_name__ , saved_model=__magic_name__ )
a = model_class.from_pretrained(__magic_name__ )
a = model(__magic_name__ , noise=__magic_name__ )
if model_class.__name__ == "TFViTMAEModel":
a = after_outputs["""last_hidden_state"""].numpy()
a = 0
else:
a = after_outputs["""logits"""].numpy()
a = 0
a = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__magic_name__ , 1E-5 )
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
np.random.seed(2 )
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = int((config.image_size // config.patch_size) ** 2 )
a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
a = model_class(__magic_name__ )
a = self._prepare_for_class(__magic_name__ , __magic_name__ )
a = model(__magic_name__ , noise=__magic_name__ )
a = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(__magic_name__ )
a = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
a = model_class.from_config(model.config )
a = new_model(__magic_name__ ) # Build model
new_model.set_weights(model.get_weights() )
a = new_model(__magic_name__ , noise=__magic_name__ )
self.assert_outputs_same(__magic_name__ , __magic_name__ )
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
@unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
pass
@slow
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" )
self.assertIsNotNone(__magic_name__ )
def __A ( ) -> int:
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
@cached_property
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None
@slow
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
np.random.seed(2 )
a = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" )
a = self.default_image_processor
a = prepare_img()
a = image_processor(images=__magic_name__ , return_tensors="""tf""" )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
a = ViTMAEConfig()
a = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
a = np.random.uniform(size=(1, num_patches) )
# forward pass
a = model(**__magic_name__ , noise=__magic_name__ )
# verify the logits
a = tf.convert_to_tensor([1, 196, 768] )
self.assertEqual(outputs.logits.shape , __magic_name__ )
a = tf.convert_to_tensor(
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] , __magic_name__ , atol=1E-4 )
| 347 |
def __A ( __lowerCamelCase ) -> int:
if not numbers:
return 0
if not isinstance(__lowerCamelCase , (list, tuple) ) or not all(
isinstance(__lowerCamelCase , __lowerCamelCase ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
a = a = a = numbers[0]
for i in range(1 , len(__lowerCamelCase ) ):
# update the maximum and minimum subarray products
a = numbers[i]
if number < 0:
a , a = min_till_now, max_till_now
a = max(__lowerCamelCase , max_till_now * number )
a = min(__lowerCamelCase , min_till_now * number )
# update the maximum product found till now
a = max(__lowerCamelCase , __lowerCamelCase )
return max_prod
| 347 | 1 |
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class __lowerCAmelCase :
def __init__( self :Union[str, Any] , __magic_name__ :List[Any] , __magic_name__ :Optional[Any]=sys.maxsize ):
'''simple docstring'''
a = """bilinear"""
a = max_size
a = short_edge_length
def __call__( self :Optional[int] , __magic_name__ :Dict ):
'''simple docstring'''
a = []
for img in imgs:
a , a = img.shape[:2]
# later: provide list and randomly choose index for resize
a = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
a = size * 1.0 / min(__magic_name__ , __magic_name__ )
if h < w:
a , a = size, scale * w
else:
a , a = scale * h, size
if max(__magic_name__ , __magic_name__ ) > self.max_size:
a = self.max_size * 1.0 / max(__magic_name__ , __magic_name__ )
a = newh * scale
a = neww * scale
a = int(neww + 0.5 )
a = int(newh + 0.5 )
if img.dtype == np.uinta:
a = Image.fromarray(__magic_name__ )
a = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
a = np.asarray(__magic_name__ )
else:
a = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
a = nn.functional.interpolate(
__magic_name__ , (newh, neww) , mode=self.interp_method , align_corners=__magic_name__ ).squeeze(0 )
img_augs.append(__magic_name__ )
return img_augs
class __lowerCAmelCase :
def __init__( self :Union[str, Any] , __magic_name__ :str ):
'''simple docstring'''
a = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
a = cfg.INPUT.FORMAT
a = cfg.SIZE_DIVISIBILITY
a = cfg.PAD_VALUE
a = cfg.INPUT.MAX_SIZE_TEST
a = cfg.MODEL.DEVICE
a = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
a = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
a = lambda __magic_name__ : (x - self.pixel_mean) / self.pixel_std
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :str ):
'''simple docstring'''
a = tuple(max(__magic_name__ ) for s in zip(*[img.shape for img in images] ) )
a = [im.shape[-2:] for im in images]
a = [
nn.functional.pad(
__magic_name__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(__magic_name__ , __magic_name__ )
]
return torch.stack(__magic_name__ ), torch.tensor(__magic_name__ )
def __call__( self :str , __magic_name__ :str , __magic_name__ :List[Any]=False ):
'''simple docstring'''
with torch.no_grad():
if not isinstance(__magic_name__ , __magic_name__ ):
a = [images]
if single_image:
assert len(__magic_name__ ) == 1
for i in range(len(__magic_name__ ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(__magic_name__ , images.pop(__magic_name__ ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
__magic_name__ , torch.as_tensor(img_tensorize(images.pop(__magic_name__ ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
a = torch.tensor([im.shape[:2] for im in images] )
a = self.aug(__magic_name__ )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
a = [self.normalizer(__magic_name__ ) for x in images]
# now pad them to do the following operations
a , a = self.pad(__magic_name__ )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
a = torch.true_divide(__magic_name__ , __magic_name__ )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Tuple:
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
assert torch.isfinite(__lowerCamelCase ).all(), "Box tensor contains infinite or NaN!"
a , a = box_size
tensor[:, 0].clamp_(min=0 , max=__lowerCamelCase )
tensor[:, 1].clamp_(min=0 , max=__lowerCamelCase )
tensor[:, 2].clamp_(min=0 , max=__lowerCamelCase )
tensor[:, 3].clamp_(min=0 , max=__lowerCamelCase )
| 347 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__UpperCamelCase : Optional[Any] = {
"configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"],
"feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"],
"processing_wav2vec2": ["Wav2Vec2Processor"],
"tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : str = [
"WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Wav2Vec2ForAudioFrameClassification",
"Wav2Vec2ForCTC",
"Wav2Vec2ForMaskedLM",
"Wav2Vec2ForPreTraining",
"Wav2Vec2ForSequenceClassification",
"Wav2Vec2ForXVector",
"Wav2Vec2Model",
"Wav2Vec2PreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Dict = [
"TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWav2Vec2ForCTC",
"TFWav2Vec2Model",
"TFWav2Vec2PreTrainedModel",
"TFWav2Vec2ForSequenceClassification",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
"FlaxWav2Vec2ForCTC",
"FlaxWav2Vec2ForPreTraining",
"FlaxWav2Vec2Model",
"FlaxWav2Vec2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
__UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 1 |
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCamelCase : int = logging.get_logger(__name__)
__UpperCamelCase : Union[str, Any] = {
"nvidia/segformer-b0-finetuned-ade-512-512": (
"https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''segformer'''
def __init__( self :Dict , __magic_name__ :List[str]=3 , __magic_name__ :int=4 , __magic_name__ :Union[str, Any]=[2, 2, 2, 2] , __magic_name__ :List[Any]=[8, 4, 2, 1] , __magic_name__ :str=[32, 64, 160, 256] , __magic_name__ :int=[7, 3, 3, 3] , __magic_name__ :Dict=[4, 2, 2, 2] , __magic_name__ :List[Any]=[1, 2, 5, 8] , __magic_name__ :int=[4, 4, 4, 4] , __magic_name__ :Union[str, Any]="gelu" , __magic_name__ :Any=0.0 , __magic_name__ :Optional[int]=0.0 , __magic_name__ :List[Any]=0.1 , __magic_name__ :str=0.02 , __magic_name__ :List[str]=0.1 , __magic_name__ :Any=1E-6 , __magic_name__ :Optional[int]=256 , __magic_name__ :Tuple=255 , **__magic_name__ :Tuple , ):
'''simple docstring'''
super().__init__(**__magic_name__ )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
"""Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be"""
""" removed, as the behaviour will default to that of reshape_last_stage = True.""" , __magic_name__ , )
a = num_channels
a = num_encoder_blocks
a = depths
a = sr_ratios
a = hidden_sizes
a = patch_sizes
a = strides
a = mlp_ratios
a = num_attention_heads
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = classifier_dropout_prob
a = initializer_range
a = drop_path_rate
a = layer_norm_eps
a = decoder_hidden_size
a = kwargs.get("""reshape_last_stage""" , __magic_name__ )
a = semantic_loss_ignore_index
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = version.parse('''1.11''' )
@property
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
return 1E-4
@property
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
return 12
| 347 |
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any:
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , __lowerCamelCase )
a = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
a = dataset_size < in_memory_max_size
else:
a = False
a = is_small_dataset(__lowerCamelCase )
assert result == expected
| 347 | 1 |
import webbrowser
from sys import argv
from urllib.parse import parse_qs, quote
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
__UpperCamelCase : Dict = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: ")))
print("Googling.....")
__UpperCamelCase : Dict = F'https://www.google.com/search?q={query}&num=100'
__UpperCamelCase : List[str] = requests.get(
url,
headers={"User-Agent": str(UserAgent().random)},
)
try:
__UpperCamelCase : Union[str, Any] = (
BeautifulSoup(res.text, "html.parser")
.find("div", attrs={"class": "yuRUbf"})
.find("a")
.get("href")
)
except AttributeError:
__UpperCamelCase : Tuple = parse_qs(
BeautifulSoup(res.text, "html.parser")
.find("div", attrs={"class": "kCrYT"})
.find("a")
.get("href")
)["url"][0]
webbrowser.open(link)
| 347 |
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def __A ( __lowerCamelCase ) -> bool:
a = int(number**0.5 )
return number == sq * sq
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple[int, int]:
a = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
a = x_den * y_den * z_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
top //= hcf
bottom //= hcf
return top, bottom
def __A ( __lowerCamelCase = 35 ) -> int:
a = set()
a = 42
a = Fraction(0 )
a = 42
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
a = x_num * y_den + x_den * y_num
a = x_den * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
a = x_den * x_den * y_den * y_den
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=-1
a = x_num * y_num
a = x_den * y_num + x_num * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = x_num * x_num * y_num * y_num
a = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
for num, den in unique_s:
total += Fraction(__lowerCamelCase , __lowerCamelCase )
return total.denominator + total.numerator
if __name__ == "__main__":
print(F'{solution() = }')
| 347 | 1 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = """ylacombe/bark-small"""
a = tempfile.mkdtemp()
a = """en_speaker_1"""
a = """This is a test string"""
a = """speaker_embeddings_path.json"""
a = """speaker_embeddings"""
def lowerCamelCase__ ( self :Tuple , **__magic_name__ :Dict ):
'''simple docstring'''
return AutoTokenizer.from_pretrained(self.checkpoint , **__magic_name__ )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.get_tokenizer()
a = BarkProcessor(tokenizer=__magic_name__ )
processor.save_pretrained(self.tmpdirname )
a = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
a = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
a = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
a = 35
a = 2
a = 8
a = {
"""semantic_prompt""": np.ones(__magic_name__ ),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
a = processor(text=self.input_string , voice_preset=__magic_name__ )
a = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__magic_name__ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
a = os.path.join(self.tmpdirname , """file.npz""" )
np.savez(__magic_name__ , **__magic_name__ )
a = processor(text=self.input_string , voice_preset=__magic_name__ )
a = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__magic_name__ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
a = processor(text=self.input_string , voice_preset=self.voice_preset )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = self.get_tokenizer()
a = BarkProcessor(tokenizer=__magic_name__ )
a = processor(text=self.input_string )
a = tokenizer(
self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=__magic_name__ , return_attention_mask=__magic_name__ , return_token_type_ids=__magic_name__ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 347 |
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :List[str] , __magic_name__ :List[str] , __magic_name__ :List[Any]=13 , __magic_name__ :Any=7 , __magic_name__ :Optional[int]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :Any=99 , __magic_name__ :List[str]=32 , __magic_name__ :List[str]=5 , __magic_name__ :str=4 , __magic_name__ :str=37 , __magic_name__ :Optional[int]="gelu" , __magic_name__ :int=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :List[str]=512 , __magic_name__ :Tuple=16 , __magic_name__ :Tuple=2 , __magic_name__ :List[str]=0.02 , __magic_name__ :Any=4 , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_attention_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_choices
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_attention_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = True
UpperCamelCase__ = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = FlaxRoFormerModelTester(self )
@slow
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__magic_name__ )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
@slow
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
a = jnp.array([[0, 1, 2, 3, 4, 5]] )
a = model(__magic_name__ )[0]
a = 5_0000
a = (1, 6, vocab_size)
self.assertEqual(output.shape , __magic_name__ )
a = jnp.array(
[[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 347 | 1 |
class __lowerCAmelCase :
def __init__( self :Union[str, Any] ):
'''simple docstring'''
a = 0
a = 0
a = {}
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Any ):
'''simple docstring'''
if vertex not in self.adjacency:
a = {}
self.num_vertices += 1
def lowerCamelCase__ ( self :Any , __magic_name__ :Dict , __magic_name__ :Union[str, Any] , __magic_name__ :Tuple ):
'''simple docstring'''
self.add_vertex(__magic_name__ )
self.add_vertex(__magic_name__ )
if head == tail:
return
a = weight
a = weight
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.get_edges()
for edge in edges:
a , a , a = edge
edges.remove((tail, head, weight) )
for i in range(len(__magic_name__ ) ):
a = list(edges[i] )
edges.sort(key=lambda __magic_name__ : e[2] )
for i in range(len(__magic_name__ ) - 1 ):
if edges[i][2] >= edges[i + 1][2]:
a = edges[i][2] + 1
for edge in edges:
a , a , a = edge
a = weight
a = weight
def __str__( self :str ):
'''simple docstring'''
a = """"""
for tail in self.adjacency:
for head in self.adjacency[tail]:
a = self.adjacency[head][tail]
string += F'{head} -> {tail} == {weight}\n'
return string.rstrip("""\n""" )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = []
for tail in self.adjacency:
for head in self.adjacency[tail]:
output.append((tail, head, self.adjacency[head][tail]) )
return output
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
return self.adjacency.keys()
@staticmethod
def lowerCamelCase__ ( __magic_name__ :List[str]=None , __magic_name__ :int=None ):
'''simple docstring'''
a = Graph()
if vertices is None:
a = []
if edges is None:
a = []
for vertex in vertices:
g.add_vertex(__magic_name__ )
for edge in edges:
g.add_edge(*__magic_name__ )
return g
class __lowerCAmelCase :
def __init__( self :Optional[int] ):
'''simple docstring'''
a = {}
a = {}
def __len__( self :Dict ):
'''simple docstring'''
return len(self.parent )
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :List[str] ):
'''simple docstring'''
if item in self.parent:
return self.find(__magic_name__ )
a = item
a = 0
return item
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :str ):
'''simple docstring'''
if item not in self.parent:
return self.make_set(__magic_name__ )
if item != self.parent[item]:
a = self.find(self.parent[item] )
return self.parent[item]
def lowerCamelCase__ ( self :Any , __magic_name__ :Dict , __magic_name__ :Dict ):
'''simple docstring'''
a = self.find(__magic_name__ )
a = self.find(__magic_name__ )
if roota == roota:
return roota
if self.rank[roota] > self.rank[roota]:
a = roota
return roota
if self.rank[roota] < self.rank[roota]:
a = roota
return roota
if self.rank[roota] == self.rank[roota]:
self.rank[roota] += 1
a = roota
return roota
return None
@staticmethod
def lowerCamelCase__ ( __magic_name__ :Dict ):
'''simple docstring'''
a = graph.num_vertices
a = Graph.UnionFind()
a = []
while num_components > 1:
a = {}
for vertex in graph.get_vertices():
a = -1
a = graph.get_edges()
for edge in edges:
a , a , a = edge
edges.remove((tail, head, weight) )
for edge in edges:
a , a , a = edge
a = union_find.find(__magic_name__ )
a = union_find.find(__magic_name__ )
if seta != seta:
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
a = [head, tail, weight]
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
a = [head, tail, weight]
for vertex in cheap_edge:
if cheap_edge[vertex] != -1:
a , a , a = cheap_edge[vertex]
if union_find.find(__magic_name__ ) != union_find.find(__magic_name__ ):
union_find.union(__magic_name__ , __magic_name__ )
mst_edges.append(cheap_edge[vertex] )
a = num_components - 1
a = Graph.build(edges=__magic_name__ )
return mst
| 347 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCamelCase : Optional[int] = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
__UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 1 |
from __future__ import annotations
__UpperCamelCase : List[str] = tuple[int, int, int]
__UpperCamelCase : Optional[Any] = tuple[str, str, str]
# used alphabet --------------------------
# from string.ascii_uppercase
__UpperCamelCase : Optional[Any] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
# -------------------------- default selection --------------------------
# rotors --------------------------
__UpperCamelCase : int = "EGZWVONAHDCLFQMSIPJBYUKXTR"
__UpperCamelCase : List[Any] = "FOBHMDKEXQNRAULPGSJVTYICZW"
__UpperCamelCase : Dict = "ZJXESIUQLHAVRMDOYGTNFWPBKC"
# reflector --------------------------
__UpperCamelCase : str = {
"A": "N",
"N": "A",
"B": "O",
"O": "B",
"C": "P",
"P": "C",
"D": "Q",
"Q": "D",
"E": "R",
"R": "E",
"F": "S",
"S": "F",
"G": "T",
"T": "G",
"H": "U",
"U": "H",
"I": "V",
"V": "I",
"J": "W",
"W": "J",
"K": "X",
"X": "K",
"L": "Y",
"Y": "L",
"M": "Z",
"Z": "M",
}
# -------------------------- extra rotors --------------------------
__UpperCamelCase : Optional[int] = "RMDJXFUWGISLHVTCQNKYPBEZOA"
__UpperCamelCase : Dict = "SGLCPQWZHKXAREONTFBVIYJUDM"
__UpperCamelCase : Optional[Any] = "HVSICLTYKQUBXDWAJZOMFGPREN"
__UpperCamelCase : List[Any] = "RZWQHFMVDBKICJLNTUXAGYPSOE"
__UpperCamelCase : Optional[Any] = "LFKIJODBEGAMQPXVUHYSTCZRWN"
__UpperCamelCase : Optional[Any] = "KOAEGVDHXPQZMLFTYWJNBRCIUS"
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]:
# Checks if there are 3 unique rotors
if (unique_rotsel := len(set(__lowerCamelCase ) )) < 3:
a = f'Please use 3 unique rotors (not {unique_rotsel})'
raise Exception(__lowerCamelCase )
# Checks if rotor positions are valid
a , a , a = rotpos
if not 0 < rotorposa <= len(__lowerCamelCase ):
a = f'First rotor position is not within range of 1..26 ({rotorposa}'
raise ValueError(__lowerCamelCase )
if not 0 < rotorposa <= len(__lowerCamelCase ):
a = f'Second rotor position is not within range of 1..26 ({rotorposa})'
raise ValueError(__lowerCamelCase )
if not 0 < rotorposa <= len(__lowerCamelCase ):
a = f'Third rotor position is not within range of 1..26 ({rotorposa})'
raise ValueError(__lowerCamelCase )
# Validates string and returns dict
a = _plugboard(__lowerCamelCase )
return rotpos, rotsel, pbdict
def __A ( __lowerCamelCase ) -> dict[str, str]:
# tests the input string if it
# a) is type string
# b) has even length (so pairs can be made)
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
a = f'Plugboard setting isn\'t type string ({type(__lowerCamelCase )})'
raise TypeError(__lowerCamelCase )
elif len(__lowerCamelCase ) % 2 != 0:
a = f'Odd number of symbols ({len(__lowerCamelCase )})'
raise Exception(__lowerCamelCase )
elif pbstring == "":
return {}
pbstring.replace(""" """ , """""" )
# Checks if all characters are unique
a = set()
for i in pbstring:
if i not in abc:
a = f'\'{i}\' not in list of symbols'
raise Exception(__lowerCamelCase )
elif i in tmppbl:
a = f'Duplicate symbol ({i})'
raise Exception(__lowerCamelCase )
else:
tmppbl.add(__lowerCamelCase )
del tmppbl
# Created the dictionary
a = {}
for j in range(0 , len(__lowerCamelCase ) - 1 , 2 ):
a = pbstring[j + 1]
a = pbstring[j]
return pb
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = (rotora, rotora, rotora) , __lowerCamelCase = "" , ) -> str:
a = text.upper()
a , a , a = _validator(
__lowerCamelCase , __lowerCamelCase , plugb.upper() )
a , a , a = rotor_position
a , a , a = rotor_selection
rotorposa -= 1
rotorposa -= 1
rotorposa -= 1
a = []
# encryption/decryption process --------------------------
for symbol in text:
if symbol in abc:
# 1st plugboard --------------------------
if symbol in plugboard:
a = plugboard[symbol]
# rotor ra --------------------------
a = abc.index(__lowerCamelCase ) + rotorposa
a = rotora[index % len(__lowerCamelCase )]
# rotor rb --------------------------
a = abc.index(__lowerCamelCase ) + rotorposa
a = rotora[index % len(__lowerCamelCase )]
# rotor rc --------------------------
a = abc.index(__lowerCamelCase ) + rotorposa
a = rotora[index % len(__lowerCamelCase )]
# reflector --------------------------
# this is the reason you don't need another machine to decipher
a = reflector[symbol]
# 2nd rotors
a = abc[rotora.index(__lowerCamelCase ) - rotorposa]
a = abc[rotora.index(__lowerCamelCase ) - rotorposa]
a = abc[rotora.index(__lowerCamelCase ) - rotorposa]
# 2nd plugboard
if symbol in plugboard:
a = plugboard[symbol]
# moves/resets rotor positions
rotorposa += 1
if rotorposa >= len(__lowerCamelCase ):
a = 0
rotorposa += 1
if rotorposa >= len(__lowerCamelCase ):
a = 0
rotorposa += 1
if rotorposa >= len(__lowerCamelCase ):
a = 0
# else:
# pass
# Error could be also raised
# raise ValueError(
# 'Invalid symbol('+repr(symbol)+')')
result.append(__lowerCamelCase )
return "".join(__lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase : List[Any] = "This is my Python script that emulates the Enigma machine from WWII."
__UpperCamelCase : Union[str, Any] = (1, 1, 1)
__UpperCamelCase : List[Any] = "pictures"
__UpperCamelCase : Tuple = (rotora, rotora, rotora)
__UpperCamelCase : str = enigma(message, rotor_pos, rotor_sel, pb)
print("Encrypted message:", en)
print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
| 347 |
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = (IPNDMScheduler,)
UpperCamelCase__ = (('''num_inference_steps''', 50),)
def lowerCamelCase__ ( self :Any , **__magic_name__ :Optional[Any] ):
'''simple docstring'''
a = {"""num_train_timesteps""": 1000}
config.update(**__magic_name__ )
return config
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple=0 , **__magic_name__ :Optional[int] ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config(**__magic_name__ )
a = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals
a = dummy_past_residuals[:]
if time_step is None:
a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__magic_name__ )
a = scheduler_class.from_pretrained(__magic_name__ )
new_scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals
a = dummy_past_residuals[:]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :List[Any]=0 , **__magic_name__ :Any ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals (must be after setting timesteps)
a = dummy_past_residuals[:]
if time_step is None:
a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__magic_name__ )
a = scheduler_class.from_pretrained(__magic_name__ )
# copy over dummy past residuals
new_scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residual (must be after setting timesteps)
a = dummy_past_residuals[:]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCamelCase__ ( self :Optional[Any] , **__magic_name__ :Optional[int] ):
'''simple docstring'''
a = self.scheduler_classes[0]
a = self.get_scheduler_config(**__magic_name__ )
a = scheduler_class(**__magic_name__ )
a = 10
a = self.dummy_model()
a = self.dummy_sample_deter
scheduler.set_timesteps(__magic_name__ )
for i, t in enumerate(scheduler.timesteps ):
a = model(__magic_name__ , __magic_name__ )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
a = model(__magic_name__ , __magic_name__ )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
return sample
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
if num_inference_steps is not None and hasattr(__magic_name__ , """set_timesteps""" ):
scheduler.set_timesteps(__magic_name__ )
elif num_inference_steps is not None and not hasattr(__magic_name__ , """set_timesteps""" ):
a = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
a = dummy_past_residuals[:]
a = scheduler.timesteps[5]
a = scheduler.timesteps[6]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=__magic_name__ , time_step=__magic_name__ )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=__magic_name__ , time_step=__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.full_loop()
a = torch.mean(torch.abs(__magic_name__ ) )
assert abs(result_mean.item() - 254_0529 ) < 10
| 347 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''dandelin/vilt-b32-finetuned-vqa'''
UpperCamelCase__ = (
'''This is a tool that answers a question about an image. It takes an input named `image` which should be the '''
'''image containing the information, as well as a `question` which should be the question in English. It '''
'''returns a text that is the answer to the question.'''
)
UpperCamelCase__ = '''image_qa'''
UpperCamelCase__ = AutoProcessor
UpperCamelCase__ = AutoModelForVisualQuestionAnswering
UpperCamelCase__ = ['''image''', '''text''']
UpperCamelCase__ = ['''text''']
def __init__( self :Optional[Any] , *__magic_name__ :Any , **__magic_name__ :Tuple ):
'''simple docstring'''
requires_backends(self , ["""vision"""] )
super().__init__(*__magic_name__ , **__magic_name__ )
def lowerCamelCase__ ( self :List[str] , __magic_name__ :"Image" , __magic_name__ :str ):
'''simple docstring'''
return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors="""pt""" )
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Optional[int] ):
'''simple docstring'''
with torch.no_grad():
return self.model(**__magic_name__ ).logits
def lowerCamelCase__ ( self :Dict , __magic_name__ :List[Any] ):
'''simple docstring'''
a = outputs.argmax(-1 ).item()
return self.model.config.idalabel[idx]
| 347 |
__UpperCamelCase : Dict = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def __A ( ) -> None:
a = input("""Enter message: """ )
a = input("""Enter key [alphanumeric]: """ )
a = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
a = """encrypt"""
a = encrypt_message(__lowerCamelCase , __lowerCamelCase )
elif mode.lower().startswith("""d""" ):
a = """decrypt"""
a = decrypt_message(__lowerCamelCase , __lowerCamelCase )
print(f'\n{mode.title()}ed message:' )
print(__lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
return translate_message(__lowerCamelCase , __lowerCamelCase , """encrypt""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
return translate_message(__lowerCamelCase , __lowerCamelCase , """decrypt""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
a = []
a = 0
a = key.upper()
for symbol in message:
a = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(__lowerCamelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(__lowerCamelCase ):
a = 0
else:
translated.append(__lowerCamelCase )
return "".join(__lowerCamelCase )
if __name__ == "__main__":
main()
| 347 | 1 |
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
__UpperCamelCase : Dict = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = BartphoTokenizer
UpperCamelCase__ = False
UpperCamelCase__ = True
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
super().setUp()
a = ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""]
a = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
a = {"""unk_token""": """<unk>"""}
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""monolingual_vocab_file"""] )
with open(self.monolingual_vocab_file , """w""" , encoding="""utf-8""" ) as fp:
for token in vocab_tokens:
fp.write(F'{token} {vocab_tokens[token]}\n' )
a = BartphoTokenizer(__magic_name__ , self.monolingual_vocab_file , **self.special_tokens_map )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCamelCase__ ( self :Optional[int] , **__magic_name__ :List[str] ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return BartphoTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def lowerCamelCase__ ( self :List[str] , __magic_name__ :Union[str, Any] ):
'''simple docstring'''
a = """This is a là test"""
a = """This is a<unk><unk> test"""
return input_text, output_text
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = BartphoTokenizer(__magic_name__ , self.monolingual_vocab_file , **self.special_tokens_map )
a = """This is a là test"""
a = """▁This ▁is ▁a ▁l à ▁t est""".split()
a = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
a = tokens + [tokenizer.unk_token]
a = [4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
| 347 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Tuple=13 , __magic_name__ :List[Any]=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :List[str]=True , __magic_name__ :str=99 , __magic_name__ :Optional[Any]=32 , __magic_name__ :Union[str, Any]=5 , __magic_name__ :Any=4 , __magic_name__ :int=37 , __magic_name__ :Tuple="gelu" , __magic_name__ :List[str]=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :Tuple=512 , __magic_name__ :Dict=16 , __magic_name__ :Optional[int]=2 , __magic_name__ :Optional[int]=0.02 , __magic_name__ :Optional[Any]=4 , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_attention_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_choices
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_attention_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = True
a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = True
UpperCamelCase__ = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = FlaxRobertaModelTester(self )
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained("""roberta-base""" , from_pt=__magic_name__ )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
| 347 | 1 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
__UpperCamelCase : List[str] = logging.get_logger(__name__)
__UpperCamelCase : Optional[int] = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"adapter_layer": "encoder.layers.*.adapter_layer",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
"pooling_layer.linear": "projector",
"pooling_layer.projection": "classifier",
}
__UpperCamelCase : Dict = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
"projector",
"classifier",
]
def __A ( __lowerCamelCase ) -> Optional[int]:
a = {}
with open(__lowerCamelCase , """r""" ) as file:
for line_number, line in enumerate(__lowerCamelCase ):
a = line.strip()
if line:
a = line.split()
a = line_number
a = words[0]
a = value
return result
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
for attribute in key.split(""".""" ):
a = getattr(__lowerCamelCase , __lowerCamelCase )
a = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__lowerCamelCase ):
a = PARAM_MAPPING[full_name.split(""".""" )[-1]]
a = """param"""
if weight_type is not None and weight_type != "param":
a = getattr(__lowerCamelCase , __lowerCamelCase ).shape
elif weight_type is not None and weight_type == "param":
a = hf_pointer
for attribute in hf_param_name.split(""".""" ):
a = getattr(__lowerCamelCase , __lowerCamelCase )
a = shape_pointer.shape
# let's reduce dimension
a = value[0]
else:
a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
a = value
elif weight_type == "weight_g":
a = value
elif weight_type == "weight_v":
a = value
elif weight_type == "bias":
a = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
a = getattr(__lowerCamelCase , __lowerCamelCase )
a = value
else:
a = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any:
a = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__lowerCamelCase ):
a = PARAM_MAPPING[full_name.split(""".""" )[-1]]
a = """param"""
if weight_type is not None and weight_type != "param":
a = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
a = """.""".join([key, hf_param_name] )
else:
a = key
a = value if """lm_head""" in full_key else value[0]
__UpperCamelCase : int = {
"W_a": "linear_1.weight",
"W_b": "linear_2.weight",
"b_a": "linear_1.bias",
"b_b": "linear_2.bias",
"ln_W": "norm.weight",
"ln_b": "norm.bias",
}
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None ) -> Dict:
a = False
for key, mapped_key in MAPPING.items():
a = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
a = True
if "*" in mapped_key:
a = name.split(__lowerCamelCase )[0].split(""".""" )[-2]
a = mapped_key.replace("""*""" , __lowerCamelCase )
if "weight_g" in name:
a = """weight_g"""
elif "weight_v" in name:
a = """weight_v"""
elif "bias" in name:
a = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
a = """weight"""
else:
a = None
if hf_dict is not None:
rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
else:
set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return is_used
return is_used
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
a = []
a = fairseq_model.state_dict()
a = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
a = False
if "conv_layers" in name:
load_conv_layer(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
a = True
else:
a = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if not is_used:
unused_weights.append(__lowerCamelCase )
logger.warning(f'Unused weights: {unused_weights}' )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
a = full_name.split("""conv_layers.""" )[-1]
a = name.split(""".""" )
a = int(items[0] )
a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(__lowerCamelCase )
@torch.no_grad()
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=False ) -> List[Any]:
if config_path is not None:
a = WavaVecaConfig.from_pretrained(__lowerCamelCase )
else:
a = WavaVecaConfig()
if is_seq_class:
a = read_txt_into_dict(__lowerCamelCase )
a = idalabel
a = WavaVecaForSequenceClassification(__lowerCamelCase )
a = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
feature_extractor.save_pretrained(__lowerCamelCase )
elif is_finetuned:
if dict_path:
a = Dictionary.load(__lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
a = target_dict.pad_index
a = target_dict.bos_index
a = target_dict.eos_index
a = len(target_dict.symbols )
a = os.path.join(__lowerCamelCase , """vocab.json""" )
if not os.path.isdir(__lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) )
return
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
a = target_dict.indices
# fairseq has the <pad> and <s> switched
a = 0
a = 1
with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(__lowerCamelCase , __lowerCamelCase )
a = WavaVecaCTCTokenizer(
__lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , )
a = True if config.feat_extract_norm == """layer""" else False
a = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
a = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase )
processor.save_pretrained(__lowerCamelCase )
a = WavaVecaForCTC(__lowerCamelCase )
else:
a = WavaVecaForPreTraining(__lowerCamelCase )
if is_finetuned or is_seq_class:
a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
a = argparse.Namespace(task="""audio_pretraining""" )
a = fairseq.tasks.setup_task(__lowerCamelCase )
a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase )
a = model[0].eval()
recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned )
hf_wavavec.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
parser.add_argument(
"--is_seq_class",
action="store_true",
help="Whether the model to convert is a fine-tuned sequence classification model or not",
)
__UpperCamelCase : Tuple = parser.parse_args()
__UpperCamelCase : Optional[Any] = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 347 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
__UpperCamelCase : Any = datasets.utils.logging.get_logger(__name__)
@dataclass
class __lowerCAmelCase ( datasets.BuilderConfig ):
UpperCamelCase__ = None
UpperCamelCase__ = "utf-8"
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = True # deprecated
UpperCamelCase__ = None # deprecated
UpperCamelCase__ = 10 << 20 # 10MB
UpperCamelCase__ = None
class __lowerCAmelCase ( datasets.ArrowBasedBuilder ):
UpperCamelCase__ = JsonConfig
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
if self.config.block_size is not None:
logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" )
a = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
"""The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" )
if self.config.newlines_in_values is not None:
raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" )
return datasets.DatasetInfo(features=self.config.features )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' )
a = dl_manager.download_and_extract(self.config.data_files )
if isinstance(__magic_name__ , (str, list, tuple) ):
a = data_files
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )]
a = []
for split_name, files in data_files.items():
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"""files""": files} ) )
return splits
def lowerCamelCase__ ( self :List[str] , __magic_name__ :pa.Table ):
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
a = self.config.features.arrow_schema.field(__magic_name__ ).type
a = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
a = table_cast(__magic_name__ , self.config.features.arrow_schema )
return pa_table
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Union[str, Any] ):
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
# We keep only the field we are interested in
a = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(__magic_name__ , (list, tuple) ):
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
else:
a = dataset
a = pa.Table.from_pydict(__magic_name__ )
yield file_idx, self._cast_table(__magic_name__ )
# If the file has one json object per line
else:
with open(__magic_name__ , """rb""" ) as f:
a = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
a = max(self.config.chunksize // 32 , 16 << 10 )
a = (
self.config.encoding_errors if self.config.encoding_errors is not None else """strict"""
)
while True:
a = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(__magic_name__ )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
a = batch.decode(self.config.encoding , errors=__magic_name__ ).encode("""utf-8""" )
try:
while True:
try:
a = paj.read_json(
io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(__magic_name__ , pa.ArrowInvalid )
and "straddling" not in str(__magic_name__ )
or block_size > len(__magic_name__ )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
F'Batch of {len(__magic_name__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
except json.JSONDecodeError:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON
try:
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
a = pa.Table.from_pydict(__magic_name__ )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(F'Not able to read records in the JSON file at {file}.' ) from None
yield file_idx, self._cast_table(__magic_name__ )
break
else:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(
F'Not able to read records in the JSON file at {file}. '
F'You should probably indicate the field of the JSON file containing your records. '
F'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. '
F'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(__magic_name__ )
batch_idx += 1
| 347 | 1 |
from __future__ import annotations
def __A ( __lowerCamelCase , __lowerCamelCase ) -> bool:
a = get_failure_array(__lowerCamelCase )
# 2) Step through text searching for pattern
a , a = 0, 0 # index into text, pattern
while i < len(__lowerCamelCase ):
if pattern[j] == text[i]:
if j == (len(__lowerCamelCase ) - 1):
return True
j += 1
# if this is a prefix in our pattern
# just go back far enough to continue
elif j > 0:
a = failure[j - 1]
continue
i += 1
return False
def __A ( __lowerCamelCase ) -> list[int]:
a = [0]
a = 0
a = 1
while j < len(__lowerCamelCase ):
if pattern[i] == pattern[j]:
i += 1
elif i > 0:
a = failure[i - 1]
continue
j += 1
failure.append(__lowerCamelCase )
return failure
if __name__ == "__main__":
# Test 1)
__UpperCamelCase : List[Any] = "abc1abc12"
__UpperCamelCase : Tuple = "alskfjaldsabc1abc1abc12k23adsfabcabc"
__UpperCamelCase : int = "alskfjaldsk23adsfabcabc"
assert kmp(pattern, texta) and not kmp(pattern, texta)
# Test 2)
__UpperCamelCase : Dict = "ABABX"
__UpperCamelCase : int = "ABABZABABYABABX"
assert kmp(pattern, text)
# Test 3)
__UpperCamelCase : Dict = "AAAB"
__UpperCamelCase : List[str] = "ABAAAAAB"
assert kmp(pattern, text)
# Test 4)
__UpperCamelCase : Union[str, Any] = "abcdabcy"
__UpperCamelCase : str = "abcxabcdabxabcdabcdabcy"
assert kmp(pattern, text)
# Test 5)
__UpperCamelCase : Tuple = "aabaabaaa"
assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
| 347 |
import warnings
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase : Dict = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = ['''input_ids''', '''attention_mask''']
def __init__( self :List[str] , __magic_name__ :int="</s>" , __magic_name__ :List[Any]="<unk>" , __magic_name__ :Optional[Any]="<pad>" , __magic_name__ :Optional[int]=125 , __magic_name__ :List[str]=None , **__magic_name__ :List[str] , ):
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
a = [F'<extra_id_{i}>' for i in range(__magic_name__ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
a = len(set(filter(lambda __magic_name__ : bool("""extra_id""" in str(__magic_name__ ) ) , __magic_name__ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'
""" provided to ByT5Tokenizer. In this case the additional_special_tokens must include the"""
""" extra_ids tokens""" )
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else pad_token
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else eos_token
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else unk_token
super().__init__(
eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , extra_ids=__magic_name__ , additional_special_tokens=__magic_name__ , **__magic_name__ , )
a = extra_ids
a = 2**8 # utf is 8 bits
# define special tokens dict
a = {
self.pad_token: 0,
self.eos_token: 1,
self.unk_token: 2,
}
a = len(self.special_tokens_encoder )
a = len(__magic_name__ )
for i, token in enumerate(__magic_name__ ):
a = self.vocab_size + i - n
a = {v: k for k, v in self.special_tokens_encoder.items()}
@property
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
return self._utf_vocab_size + self._num_special_tokens + self._extra_ids
def lowerCamelCase__ ( self :Any , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None , __magic_name__ :bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(__magic_name__ )) + [1]
return ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1]
def lowerCamelCase__ ( self :str , __magic_name__ :List[int] ):
'''simple docstring'''
if len(__magic_name__ ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'
""" eos tokens being added.""" )
return token_ids
else:
return token_ids + [self.eos_token_id]
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = self._add_eos_if_not_present(__magic_name__ )
if token_ids_a is None:
return token_ids_a
else:
a = self._add_eos_if_not_present(__magic_name__ )
return token_ids_a + token_ids_a
def lowerCamelCase__ ( self :List[str] , __magic_name__ :str ):
'''simple docstring'''
a = [chr(__magic_name__ ) for i in text.encode("""utf-8""" )]
return tokens
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
if token in self.special_tokens_encoder:
a = self.special_tokens_encoder[token]
elif token in self.added_tokens_encoder:
a = self.added_tokens_encoder[token]
elif len(__magic_name__ ) != 1:
a = self.unk_token_id
else:
a = ord(__magic_name__ ) + self._num_special_tokens
return token_id
def lowerCamelCase__ ( self :List[str] , __magic_name__ :Dict ):
'''simple docstring'''
if index in self.special_tokens_decoder:
a = self.special_tokens_decoder[index]
else:
a = chr(index - self._num_special_tokens )
return token
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Optional[int] ):
'''simple docstring'''
a = b""""""
for token in tokens:
if token in self.special_tokens_decoder:
a = self.special_tokens_decoder[token].encode("""utf-8""" )
elif token in self.added_tokens_decoder:
a = self.special_tokens_decoder[token].encode("""utf-8""" )
elif token in self.special_tokens_encoder:
a = token.encode("""utf-8""" )
elif token in self.added_tokens_encoder:
a = token.encode("""utf-8""" )
else:
a = bytes([ord(__magic_name__ )] )
bstring += tok_string
a = bstring.decode("""utf-8""" , errors="""ignore""" )
return string
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :str , __magic_name__ :Optional[str] = None ):
'''simple docstring'''
return ()
| 347 | 1 |
from __future__ import annotations
__UpperCamelCase : Any = "#"
class __lowerCAmelCase :
def __init__( self :str ):
'''simple docstring'''
a = {}
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
a = self._trie
for char in text:
if char not in trie:
a = {}
a = trie[char]
a = True
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
a = self._trie
for char in prefix:
if char in trie:
a = trie[char]
else:
return []
return self._elements(__magic_name__ )
def lowerCamelCase__ ( self :Dict , __magic_name__ :dict ):
'''simple docstring'''
a = []
for c, v in d.items():
a = [""" """] if c == END else [(c + s) for s in self._elements(__magic_name__ )]
result.extend(__magic_name__ )
return tuple(__magic_name__ )
__UpperCamelCase : int = Trie()
__UpperCamelCase : Optional[int] = ("depart", "detergent", "daring", "dog", "deer", "deal")
for word in words:
trie.insert_word(word)
def __A ( __lowerCamelCase ) -> tuple:
a = trie.find_word(__lowerCamelCase )
return tuple(string + word for word in suffixes )
def __A ( ) -> None:
print(autocomplete_using_trie("""de""" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 347 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __lowerCAmelCase :
def __init__( self :Optional[int] , __magic_name__ :str , __magic_name__ :int=2 , __magic_name__ :List[str]=3 , __magic_name__ :Optional[int]=4 , __magic_name__ :str=2 , __magic_name__ :Any=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Dict=True , __magic_name__ :List[Any]=99 , __magic_name__ :Dict=36 , __magic_name__ :Optional[Any]=3 , __magic_name__ :str=4 , __magic_name__ :Optional[Any]=37 , __magic_name__ :Dict="gelu" , __magic_name__ :Any=0.1 , __magic_name__ :Union[str, Any]=0.1 , __magic_name__ :Dict=512 , __magic_name__ :str=16 , __magic_name__ :List[Any]=2 , __magic_name__ :Tuple=0.02 , __magic_name__ :Any=6 , __magic_name__ :Optional[int]=6 , __magic_name__ :Tuple=3 , __magic_name__ :str=4 , __magic_name__ :List[str]=None , __magic_name__ :str=1000 , ):
'''simple docstring'''
a = parent
a = batch_size
a = num_channels
a = image_size
a = patch_size
a = text_seq_length
a = is_training
a = use_input_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = coordinate_size
a = shape_size
a = num_labels
a = num_choices
a = scope
a = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
a = text_seq_length
a = (image_size // patch_size) ** 2 + 1
a = self.text_seq_length + self.image_seq_length
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
a = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
a = bbox[i, j, 3]
a = bbox[i, j, 1]
a = t
if bbox[i, j, 2] < bbox[i, j, 0]:
a = bbox[i, j, 2]
a = bbox[i, j, 0]
a = t
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = None
if self.use_input_mask:
a = random_attention_mask([self.batch_size, self.text_seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
a = None
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
a = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCamelCase__ ( self :int , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :List[str] , __magic_name__ :int , __magic_name__ :Tuple , __magic_name__ :int , __magic_name__ :Tuple , __magic_name__ :int ):
'''simple docstring'''
a = LayoutLMvaModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# text + image
a = model(__magic_name__ , pixel_values=__magic_name__ )
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
a = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , token_type_ids=__magic_name__ )
a = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
a = model(__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
a = model(pixel_values=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :List[Any] , __magic_name__ :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Union[str, Any] , __magic_name__ :int , __magic_name__ :Optional[int] , __magic_name__ :List[str] , __magic_name__ :List[str] ):
'''simple docstring'''
a = self.num_labels
a = LayoutLMvaForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Dict , __magic_name__ :Optional[Any] , __magic_name__ :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Dict , __magic_name__ :int , __magic_name__ :List[str] , __magic_name__ :Tuple ):
'''simple docstring'''
a = self.num_labels
a = LayoutLMvaForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :str , __magic_name__ :int , __magic_name__ :Optional[int] , __magic_name__ :str , __magic_name__ :List[str] , __magic_name__ :Optional[int] , __magic_name__ :Optional[Any] ):
'''simple docstring'''
a = LayoutLMvaForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
(
(
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) ,
) = config_and_inputs
a = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
UpperCamelCase__ = (
{'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel}
if is_torch_available()
else {}
)
def lowerCamelCase__ ( self :List[str] , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :Optional[Any] , __magic_name__ :List[str] , __magic_name__ :List[Any] ):
'''simple docstring'''
return True
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = LayoutLMvaModelTester(self )
a = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Dict , __magic_name__ :Any=False ):
'''simple docstring'''
a = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
a = {
k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous()
if isinstance(__magic_name__ , torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
a = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in get_values(__magic_name__ ):
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in [
*get_values(__magic_name__ ),
]:
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in [
*get_values(__magic_name__ ),
]:
a = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__magic_name__ , )
return inputs_dict
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
a = type
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a = LayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def __A ( ) -> str:
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
@cached_property
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(__magic_name__ )
a = self.default_image_processor
a = prepare_img()
a = image_processor(images=__magic_name__ , return_tensors="""pt""" ).pixel_values.to(__magic_name__ )
a = torch.tensor([[1, 2]] )
a = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
a = model(
input_ids=input_ids.to(__magic_name__ ) , bbox=bbox.to(__magic_name__ ) , pixel_values=pixel_values.to(__magic_name__ ) , )
# verify the logits
a = torch.Size((1, 199, 768) )
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
a = torch.tensor(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 347 | 1 |
from __future__ import annotations
from PIL import Image
# Define glider example
__UpperCamelCase : List[Any] = [
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
]
# Define blinker example
__UpperCamelCase : str = [[0, 1, 0], [0, 1, 0], [0, 1, 0]]
def __A ( __lowerCamelCase ) -> list[list[int]]:
a = []
for i in range(len(__lowerCamelCase ) ):
a = []
for j in range(len(cells[i] ) ):
# Get the number of live neighbours
a = 0
if i > 0 and j > 0:
neighbour_count += cells[i - 1][j - 1]
if i > 0:
neighbour_count += cells[i - 1][j]
if i > 0 and j < len(cells[i] ) - 1:
neighbour_count += cells[i - 1][j + 1]
if j > 0:
neighbour_count += cells[i][j - 1]
if j < len(cells[i] ) - 1:
neighbour_count += cells[i][j + 1]
if i < len(__lowerCamelCase ) - 1 and j > 0:
neighbour_count += cells[i + 1][j - 1]
if i < len(__lowerCamelCase ) - 1:
neighbour_count += cells[i + 1][j]
if i < len(__lowerCamelCase ) - 1 and j < len(cells[i] ) - 1:
neighbour_count += cells[i + 1][j + 1]
# Rules of the game of life (excerpt from Wikipedia):
# 1. Any live cell with two or three live neighbours survives.
# 2. Any dead cell with three live neighbours becomes a live cell.
# 3. All other live cells die in the next generation.
# Similarly, all other dead cells stay dead.
a = cells[i][j] == 1
if (
(alive and 2 <= neighbour_count <= 3)
or not alive
and neighbour_count == 3
):
next_generation_row.append(1 )
else:
next_generation_row.append(0 )
next_generation.append(__lowerCamelCase )
return next_generation
def __A ( __lowerCamelCase , __lowerCamelCase ) -> list[Image.Image]:
a = []
for _ in range(__lowerCamelCase ):
# Create output image
a = Image.new("""RGB""" , (len(cells[0] ), len(__lowerCamelCase )) )
a = img.load()
# Save cells to image
for x in range(len(__lowerCamelCase ) ):
for y in range(len(cells[0] ) ):
a = 255 - cells[y][x] * 255
a = (colour, colour, colour)
# Save image
images.append(__lowerCamelCase )
a = new_generation(__lowerCamelCase )
return images
if __name__ == "__main__":
__UpperCamelCase : Any = generate_images(GLIDER, 16)
images[0].save("out.gif", save_all=True, append_images=images[1:])
| 347 |
from copy import deepcopy
class __lowerCAmelCase :
def __init__( self :Union[str, Any] , __magic_name__ :list[int] | None = None , __magic_name__ :int | None = None ):
'''simple docstring'''
if arr is None and size is not None:
a = size
a = [0] * size
elif arr is not None:
self.init(__magic_name__ )
else:
raise ValueError("""Either arr or size must be specified""" )
def lowerCamelCase__ ( self :Dict , __magic_name__ :list[int] ):
'''simple docstring'''
a = len(__magic_name__ )
a = deepcopy(__magic_name__ )
for i in range(1 , self.size ):
a = self.next_(__magic_name__ )
if j < self.size:
self.tree[j] += self.tree[i]
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
a = self.next_(__magic_name__ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def lowerCamelCase__ ( __magic_name__ :int ):
'''simple docstring'''
return index + (index & (-index))
@staticmethod
def lowerCamelCase__ ( __magic_name__ :int ):
'''simple docstring'''
return index - (index & (-index))
def lowerCamelCase__ ( self :Any , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
a = self.next_(__magic_name__ )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
self.add(__magic_name__ , value - self.get(__magic_name__ ) )
def lowerCamelCase__ ( self :int , __magic_name__ :int ):
'''simple docstring'''
if right == 0:
return 0
a = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
a = self.prev(__magic_name__ )
return result
def lowerCamelCase__ ( self :int , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
return self.prefix(__magic_name__ ) - self.prefix(__magic_name__ )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :int ):
'''simple docstring'''
return self.query(__magic_name__ , index + 1 )
def lowerCamelCase__ ( self :Dict , __magic_name__ :int ):
'''simple docstring'''
value -= self.tree[0]
if value < 0:
return -1
a = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
a = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 1 |
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
__UpperCamelCase : List[Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8")
__UpperCamelCase : int = subprocess.check_output(F'git diff --name-only {fork_point_sha}'.split()).decode("utf-8").split()
__UpperCamelCase : str = "|".join(sys.argv[1:])
__UpperCamelCase : int = re.compile(RF'^({joined_dirs}).*?\.py$')
__UpperCamelCase : Optional[Any] = [x for x in modified_files if regex.match(x)]
print(" ".join(relevant_modified_files), end="")
| 347 |
from __future__ import annotations
from typing import Generic, TypeVar
__UpperCamelCase : Union[str, Any] = TypeVar("T")
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Tuple , __magic_name__ :T ):
'''simple docstring'''
a = data
a = self
a = 0
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Tuple ):
'''simple docstring'''
a = {}
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T ):
'''simple docstring'''
a = DisjointSetTreeNode(__magic_name__ )
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :T ):
'''simple docstring'''
a = self.map[data]
if elem_ref != elem_ref.parent:
a = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :DisjointSetTreeNode[T] , __magic_name__ :DisjointSetTreeNode[T] ):
'''simple docstring'''
if nodea.rank > nodea.rank:
a = nodea
else:
a = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T , __magic_name__ :T ):
'''simple docstring'''
self.link(self.find_set(__magic_name__ ) , self.find_set(__magic_name__ ) )
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Union[str, Any] ):
'''simple docstring'''
a = {}
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :T ):
'''simple docstring'''
if node not in self.connections:
a = {}
def lowerCamelCase__ ( self :Any , __magic_name__ :T , __magic_name__ :T , __magic_name__ :int ):
'''simple docstring'''
self.add_node(__magic_name__ )
self.add_node(__magic_name__ )
a = weight
a = weight
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = []
a = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda __magic_name__ : x[2] )
# creating the disjoint set
a = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(__magic_name__ )
# MST generation
a = 0
a = 0
a = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
a , a , a = edges[index]
index += 1
a = disjoint_set.find_set(__magic_name__ )
a = disjoint_set.find_set(__magic_name__ )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(__magic_name__ , __magic_name__ , __magic_name__ )
disjoint_set.union(__magic_name__ , __magic_name__ )
return graph
| 347 | 1 |
import math
def __A ( __lowerCamelCase ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__lowerCamelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __A ( __lowerCamelCase = 0.1 ) -> int:
a = 3
a = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ):
primes += is_prime(__lowerCamelCase )
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = tempfile.mkdtemp()
a = BlipImageProcessor()
a = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" )
a = BlipProcessor(__magic_name__ , __magic_name__ )
processor.save_pretrained(self.tmpdirname )
def lowerCamelCase__ ( self :List[Any] , **__magic_name__ :Union[str, Any] ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer
def lowerCamelCase__ ( self :str , **__magic_name__ :List[str] ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
a = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
a = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
a = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 )
a = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__magic_name__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __magic_name__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __magic_name__ )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = self.prepare_image_inputs()
a = image_processor(__magic_name__ , return_tensors="""np""" )
a = processor(images=__magic_name__ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = processor(text=__magic_name__ )
a = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = self.prepare_image_inputs()
a = processor(text=__magic_name__ , images=__magic_name__ )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
# test if it raises when no input is passed
with pytest.raises(__magic_name__ ):
processor()
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
a = processor.batch_decode(__magic_name__ )
a = tokenizer.batch_decode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = self.prepare_image_inputs()
a = processor(text=__magic_name__ , images=__magic_name__ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
| 347 | 1 |
from __future__ import annotations
def __A ( __lowerCamelCase ) -> list[int]:
a = 2
a = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(__lowerCamelCase )
if n > 1:
factors.append(__lowerCamelCase )
return factors
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCamelCase : int = {
"shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
UpperCamelCase__ = '''nat'''
UpperCamelCase__ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self :Any , __magic_name__ :int=4 , __magic_name__ :Dict=3 , __magic_name__ :List[str]=64 , __magic_name__ :Optional[int]=[3, 4, 6, 5] , __magic_name__ :int=[2, 4, 8, 16] , __magic_name__ :str=7 , __magic_name__ :Tuple=3.0 , __magic_name__ :Dict=True , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.1 , __magic_name__ :Optional[Any]="gelu" , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :Tuple=1E-5 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :int=None , __magic_name__ :Any=None , **__magic_name__ :Dict , ):
'''simple docstring'''
super().__init__(**__magic_name__ )
a = patch_size
a = num_channels
a = embed_dim
a = depths
a = len(__magic_name__ )
a = num_heads
a = kernel_size
a = mlp_ratio
a = qkv_bias
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = drop_path_rate
a = hidden_act
a = layer_norm_eps
a = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
a = int(embed_dim * 2 ** (len(__magic_name__ ) - 1) )
a = layer_scale_init_value
a = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(__magic_name__ ) + 1 )]
a , a = get_aligned_output_features_output_indices(
out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
| 347 | 1 |
import requests
def __A ( __lowerCamelCase , __lowerCamelCase ) -> None:
a = {"""Content-Type""": """application/json"""}
a = requests.post(__lowerCamelCase , json={"""text""": message_body} , headers=__lowerCamelCase )
if response.status_code != 200:
a = (
"""Request to slack returned an error """
f'{response.status_code}, the response is:\n{response.text}'
)
raise ValueError(__lowerCamelCase )
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
| 347 |
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = torch.permute(__lowerCamelCase , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ):
# linear layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
a = flax_key_tuple[:-1] + ("""weight""",)
return flax_key_tuple, flax_tensor
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
if "metadata" in layer:
a = layer.split("""metadata""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )]
elif "kvstore" in layer:
a = layer.split("""kvstore""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )]
else:
a = layer.split("""/""" )
a = """/""".join(split_layer[:-1] )
a = (split_layer[-1],)
if "kvstore/path" in layer:
a = f'{switch_checkpoint_path}/{checkpoint_info[layer]}'
elif "kvstore/driver" in layer:
a = """file"""
else:
a = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
a = rename_keys(__lowerCamelCase )
a = {}
for k, v in current_block.items():
a = v
a = new_current_block
torch.save(__lowerCamelCase , __lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = WEIGHTS_NAME ) -> List[str]:
a = convert_file_size_to_int(__lowerCamelCase )
a = []
a = {}
a = 0
a = 0
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp:
a = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""]
a = flatten_dict(__lowerCamelCase , sep="""/""" )
a = {}
for layer in checkpoint_info.keys():
a , a , a = get_key_and_tensorstore_dict(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if curr_real_layer_name in all_layers:
a = content
else:
a = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
a = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
a = torch.tensor(__lowerCamelCase )
a = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
a , a = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __lowerCamelCase )
a = """/""".join(__lowerCamelCase )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
a = os.path.join(
__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
del current_block
a = {}
a = 0
a = raw_weights.to(getattr(__lowerCamelCase , __lowerCamelCase ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(__lowerCamelCase ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
a = {}
a = {}
for idx, shard in enumerate(__lowerCamelCase ):
a = weights_name.replace(
""".bin""" , f'-{idx+1:05d}-of-{len(__lowerCamelCase ):05d}.bin' ) # len(sharded_state_dicts):05d}
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{idx+1:05d}-of-???.bin' ) )
os.rename(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
a = shard
for key in shard:
a = shard_file
# Add the metadata
a = {"""total_size""": total_size}
a = {"""metadata""": metadata, """weight_map""": weight_map}
with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f:
a = json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase ) + """\n"""
f.write(__lowerCamelCase )
return metadata, index
if __name__ == "__main__":
__UpperCamelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--switch_t5x_checkpoint_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size")
parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted",
type=str,
required=False,
help="Path to the output pytorch model.",
)
__UpperCamelCase : Any = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def __A ( ) -> Tuple:
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
a = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" )
config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" )
a = SwitchTransformersForConditionalGeneration.from_pretrained(
"""/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" )
a = TaTokenizer.from_pretrained("""t5-small""" )
a = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."""
a = tokenizer(__lowerCamelCase , return_tensors="""pt""" ).input_ids
a = model.generate(__lowerCamelCase , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 347 | 1 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
@slow
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" )
a = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] )
# The dog is cute and lives in the garden house
a = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim
a = torch.tensor(
[[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
a = model(__magic_name__ )["""last_hidden_state"""].detach()
self.assertEqual(output.shape , __magic_name__ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , __magic_name__ , atol=1E-3 ) )
@slow
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" )
a = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] )
# The dog is cute and lives in the garden house
a = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim
a = torch.tensor(
[[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
a = model(__magic_name__ )["""last_hidden_state"""].detach()
self.assertEqual(output.shape , __magic_name__ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , __magic_name__ , atol=1E-3 ) )
| 347 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
__UpperCamelCase : Union[str, Any] = (720, 1_280) # Height, Width
__UpperCamelCase : Any = (0.4, 0.6) # if height or width lower than this scale, drop it.
__UpperCamelCase : str = 1 / 100
__UpperCamelCase : Optional[int] = ""
__UpperCamelCase : List[Any] = ""
__UpperCamelCase : Union[str, Any] = ""
__UpperCamelCase : Tuple = 250
def __A ( ) -> None:
a , a = get_dataset(__lowerCamelCase , __lowerCamelCase )
for index in range(__lowerCamelCase ):
a = random.sample(range(len(__lowerCamelCase ) ) , 4 )
a , a , a = update_image_and_anno(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , filter_scale=__lowerCamelCase , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
a = random_chars(32 )
a = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
a = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}'
cva.imwrite(f'{file_root}.jpg' , __lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' )
a = []
for anno in new_annos:
a = anno[3] - anno[1]
a = anno[4] - anno[2]
a = anno[1] + width / 2
a = anno[2] + height / 2
a = f'{anno[0]} {x_center} {y_center} {width} {height}'
annos_list.append(__lowerCamelCase )
with open(f'{file_root}.txt' , """w""" ) as outfile:
outfile.write("""\n""".join(line for line in annos_list ) )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> tuple[list, list]:
a = []
a = []
for label_file in glob.glob(os.path.join(__lowerCamelCase , """*.txt""" ) ):
a = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
with open(__lowerCamelCase ) as in_file:
a = in_file.readlines()
a = os.path.join(__lowerCamelCase , f'{label_name}.jpg' )
a = []
for obj_list in obj_lists:
a = obj_list.rstrip("""\n""" ).split(""" """ )
a = float(obj[1] ) - float(obj[3] ) / 2
a = float(obj[2] ) - float(obj[4] ) / 2
a = float(obj[1] ) + float(obj[3] ) / 2
a = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(__lowerCamelCase )
labels.append(__lowerCamelCase )
return img_paths, labels
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 0.0 , ) -> tuple[list, list, str]:
a = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
a = int(scale_x * output_size[1] )
a = int(scale_y * output_size[0] )
a = []
a = []
for i, index in enumerate(__lowerCamelCase ):
a = all_img_list[index]
path_list.append(__lowerCamelCase )
a = all_annos[index]
a = cva.imread(__lowerCamelCase )
if i == 0: # top-left
a = cva.resize(__lowerCamelCase , (divid_point_x, divid_point_y) )
a = img
for bbox in img_annos:
a = bbox[1] * scale_x
a = bbox[2] * scale_y
a = bbox[3] * scale_x
a = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
a = cva.resize(__lowerCamelCase , (output_size[1] - divid_point_x, divid_point_y) )
a = img
for bbox in img_annos:
a = scale_x + bbox[1] * (1 - scale_x)
a = bbox[2] * scale_y
a = scale_x + bbox[3] * (1 - scale_x)
a = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
a = cva.resize(__lowerCamelCase , (divid_point_x, output_size[0] - divid_point_y) )
a = img
for bbox in img_annos:
a = bbox[1] * scale_x
a = scale_y + bbox[2] * (1 - scale_y)
a = bbox[3] * scale_x
a = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
a = cva.resize(
__lowerCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
a = img
for bbox in img_annos:
a = scale_x + bbox[1] * (1 - scale_x)
a = scale_y + bbox[2] * (1 - scale_y)
a = scale_x + bbox[3] * (1 - scale_x)
a = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
a = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def __A ( __lowerCamelCase ) -> str:
assert number_char > 1, "The number of character should greater than 1"
a = ascii_lowercase + digits
return "".join(random.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 347 | 1 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = ['''image_processor''', '''tokenizer''']
UpperCamelCase__ = '''ViltImageProcessor'''
UpperCamelCase__ = ('''BertTokenizer''', '''BertTokenizerFast''')
def __init__( self :Optional[int] , __magic_name__ :Any=None , __magic_name__ :List[str]=None , **__magic_name__ :List[Any] ):
'''simple docstring'''
a = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __magic_name__ , )
a = kwargs.pop("""feature_extractor""" )
a = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__magic_name__ , __magic_name__ )
a = self.image_processor
def __call__( self :Tuple , __magic_name__ :Union[str, Any] , __magic_name__ :Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __magic_name__ :bool = True , __magic_name__ :Union[bool, str, PaddingStrategy] = False , __magic_name__ :Union[bool, str, TruncationStrategy] = None , __magic_name__ :Optional[int] = None , __magic_name__ :int = 0 , __magic_name__ :Optional[int] = None , __magic_name__ :Optional[bool] = None , __magic_name__ :Optional[bool] = None , __magic_name__ :bool = False , __magic_name__ :bool = False , __magic_name__ :bool = False , __magic_name__ :bool = False , __magic_name__ :bool = True , __magic_name__ :Optional[Union[str, TensorType]] = None , **__magic_name__ :Dict , ):
'''simple docstring'''
a = self.tokenizer(
text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_token_type_ids=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , )
# add pixel_values + pixel_mask
a = self.image_processor(__magic_name__ , return_tensors=__magic_name__ )
encoding.update(__magic_name__ )
return encoding
def lowerCamelCase__ ( self :List[str] , *__magic_name__ :Dict , **__magic_name__ :int ):
'''simple docstring'''
return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ )
def lowerCamelCase__ ( self :Union[str, Any] , *__magic_name__ :Optional[int] , **__magic_name__ :Optional[int] ):
'''simple docstring'''
return self.tokenizer.decode(*__magic_name__ , **__magic_name__ )
@property
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.tokenizer.model_input_names
a = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __magic_name__ , )
return self.image_processor_class
@property
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __magic_name__ , )
return self.image_processor
| 347 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase : Optional[Any] = {
"configuration_mobilenet_v2": [
"MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP",
"MobileNetV2Config",
"MobileNetV2OnnxConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = ["MobileNetV2FeatureExtractor"]
__UpperCamelCase : Tuple = ["MobileNetV2ImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
"MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
"MobileNetV2ForImageClassification",
"MobileNetV2ForSemanticSegmentation",
"MobileNetV2Model",
"MobileNetV2PreTrainedModel",
"load_tf_weights_in_mobilenet_v2",
]
if TYPE_CHECKING:
from .configuration_mobilenet_va import (
MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileNetVaConfig,
MobileNetVaOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor
from .image_processing_mobilenet_va import MobileNetVaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilenet_va import (
MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileNetVaForImageClassification,
MobileNetVaForSemanticSegmentation,
MobileNetVaModel,
MobileNetVaPreTrainedModel,
load_tf_weights_in_mobilenet_va,
)
else:
import sys
__UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 1 |
__UpperCamelCase : Union[str, Any] = {
0: "0",
1: "1",
2: "2",
3: "3",
4: "4",
5: "5",
6: "6",
7: "7",
8: "8",
9: "9",
10: "a",
11: "b",
12: "c",
13: "d",
14: "e",
15: "f",
}
def __A ( __lowerCamelCase ) -> str:
assert type(__lowerCamelCase ) in (int, float) and decimal == int(__lowerCamelCase )
a = int(__lowerCamelCase )
a = """"""
a = False
if decimal < 0:
a = True
decimal *= -1
while decimal > 0:
a , a = divmod(__lowerCamelCase , 16 )
a = values[remainder] + hexadecimal
a = """0x""" + hexadecimal
if negative:
a = """-""" + hexadecimal
return hexadecimal
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 |
def __A ( __lowerCamelCase ) -> bool:
if num < 0:
return False
a = num
a = 0
while num > 0:
a = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 1 |
import argparse
import torch
from transformers import (
EncodecConfig,
EncodecFeatureExtractor,
EncodecModel,
logging,
)
# checkpoints downloaded from:
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th
# https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th
logging.set_verbosity_info()
__UpperCamelCase : int = logging.get_logger("transformers.models.encodec")
__UpperCamelCase : Optional[int] = {
"quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited",
"quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size",
"quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed",
"quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg",
}
__UpperCamelCase : Tuple = {
"encoder.model.0.conv.conv": "encoder.layers.0.conv",
"encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv",
"encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv",
"encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv",
"encoder.model.3.conv.conv": "encoder.layers.3.conv",
"encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv",
"encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv",
"encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv",
"encoder.model.6.conv.conv": "encoder.layers.6.conv",
"encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv",
"encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv",
"encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv",
"encoder.model.9.conv.conv": "encoder.layers.9.conv",
"encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv",
"encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv",
"encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv",
"encoder.model.12.conv.conv": "encoder.layers.12.conv",
"encoder.model.13.lstm": "encoder.layers.13.lstm",
"encoder.model.15.conv.conv": "encoder.layers.15.conv",
}
__UpperCamelCase : Optional[Any] = {
"encoder.model.0.conv.norm": "encoder.layers.0.norm",
"encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm",
"encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm",
"encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm",
"encoder.model.3.conv.norm": "encoder.layers.3.norm",
"encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm",
"encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm",
"encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm",
"encoder.model.6.conv.norm": "encoder.layers.6.norm",
"encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm",
"encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm",
"encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm",
"encoder.model.9.conv.norm": "encoder.layers.9.norm",
"encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm",
"encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm",
"encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm",
"encoder.model.12.conv.norm": "encoder.layers.12.norm",
"encoder.model.15.conv.norm": "encoder.layers.15.norm",
}
__UpperCamelCase : Optional[int] = {
"decoder.model.0.conv.conv": "decoder.layers.0.conv",
"decoder.model.1.lstm": "decoder.layers.1.lstm",
"decoder.model.3.convtr.convtr": "decoder.layers.3.conv",
"decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv",
"decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv",
"decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv",
"decoder.model.6.convtr.convtr": "decoder.layers.6.conv",
"decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv",
"decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv",
"decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv",
"decoder.model.9.convtr.convtr": "decoder.layers.9.conv",
"decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv",
"decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv",
"decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv",
"decoder.model.12.convtr.convtr": "decoder.layers.12.conv",
"decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv",
"decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv",
"decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv",
"decoder.model.15.conv.conv": "decoder.layers.15.conv",
}
__UpperCamelCase : Dict = {
"decoder.model.0.conv.norm": "decoder.layers.0.norm",
"decoder.model.3.convtr.norm": "decoder.layers.3.norm",
"decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm",
"decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm",
"decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm",
"decoder.model.6.convtr.norm": "decoder.layers.6.norm",
"decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm",
"decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm",
"decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm",
"decoder.model.9.convtr.norm": "decoder.layers.9.norm",
"decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm",
"decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm",
"decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm",
"decoder.model.12.convtr.norm": "decoder.layers.12.norm",
"decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm",
"decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm",
"decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm",
"decoder.model.15.conv.norm": "decoder.layers.15.norm",
}
__UpperCamelCase : Any = {
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_DECODER,
}
__UpperCamelCase : List[str] = {
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_ENCODER_48K,
**MAPPING_DECODER,
**MAPPING_DECODER_48K,
}
__UpperCamelCase : Optional[Any] = []
__UpperCamelCase : List[str] = []
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any:
for attribute in key.split(""".""" ):
a = getattr(__lowerCamelCase , __lowerCamelCase )
if weight_type is not None:
a = getattr(__lowerCamelCase , __lowerCamelCase ).shape
else:
a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
a = value
elif weight_type == "weight_g":
a = value
elif weight_type == "weight_v":
a = value
elif weight_type == "bias":
a = value
elif weight_type == "running_mean":
a = value
elif weight_type == "running_var":
a = value
elif weight_type == "num_batches_tracked":
a = value
elif weight_type == "weight_ih_l0":
a = value
elif weight_type == "weight_hh_l0":
a = value
elif weight_type == "bias_ih_l0":
a = value
elif weight_type == "bias_hh_l0":
a = value
elif weight_type == "weight_ih_l1":
a = value
elif weight_type == "weight_hh_l1":
a = value
elif weight_type == "bias_ih_l1":
a = value
elif weight_type == "bias_hh_l1":
a = value
else:
a = value
logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> int:
for key in ignore_keys:
if key.endswith(""".*""" ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
a , a = key.split(""".*.""" )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any:
a = []
if model_name == "encodec_24khz" or "encodec_32khz":
a = MAPPING_24K
elif model_name == "encodec_48khz":
a = MAPPING_48K
else:
raise ValueError(f'Unsupported model: {model_name}' )
for name, value in orig_dict.items():
if should_ignore(__lowerCamelCase , __lowerCamelCase ):
logger.info(f'{name} was ignored' )
continue
a = False
for key, mapped_key in MAPPING.items():
if "*" in key:
a , a = key.split(""".*.""" )
if prefix in name and suffix in name:
a = suffix
if key in name:
# HACK otherwise .embed gets initialized with .embed_avg too
if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ):
continue
a = True
if "*" in mapped_key:
a = name.split(__lowerCamelCase )[0].split(""".""" )[-2]
a = mapped_key.replace("""*""" , __lowerCamelCase )
if "weight_g" in name:
a = """weight_g"""
elif "weight_v" in name:
a = """weight_v"""
elif "weight_ih_l0" in name:
a = """weight_ih_l0"""
elif "weight_hh_l0" in name:
a = """weight_hh_l0"""
elif "bias_ih_l0" in name:
a = """bias_ih_l0"""
elif "bias_hh_l0" in name:
a = """bias_hh_l0"""
elif "weight_ih_l1" in name:
a = """weight_ih_l1"""
elif "weight_hh_l1" in name:
a = """weight_hh_l1"""
elif "bias_ih_l1" in name:
a = """bias_ih_l1"""
elif "bias_hh_l1" in name:
a = """bias_hh_l1"""
elif "bias" in name:
a = """bias"""
elif "weight" in name:
a = """weight"""
elif "running_mean" in name:
a = """running_mean"""
elif "running_var" in name:
a = """running_var"""
elif "num_batches_tracked" in name:
a = """num_batches_tracked"""
else:
a = None
set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
continue
if not is_used:
unused_weights.append(__lowerCamelCase )
logger.warning(f'Unused weights: {unused_weights}' )
@torch.no_grad()
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> str:
if config_path is not None:
a = EncodecConfig.from_pretrained(__lowerCamelCase )
else:
a = EncodecConfig()
if model_name == "encodec_24khz":
pass # config is already correct
elif model_name == "encodec_32khz":
a = [8, 5, 4, 4]
a = [2.2]
a = 64
a = 3_2000
a = 2048
a = False
a = False
a = False
elif model_name == "encodec_48khz":
a = [8, 5, 4, 2]
a = [3.0, 6.0, 12.0, 24.0]
a = 4_8000
a = 2
a = False
a = """time_group_norm"""
a = True
a = 1.0
a = 0.01
else:
raise ValueError(f'Unknown model name: {model_name}' )
a = EncodecModel(__lowerCamelCase )
a = EncodecFeatureExtractor(
feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , )
feature_extractor.save_pretrained(__lowerCamelCase )
a = torch.load(__lowerCamelCase )
if "best_state" in original_checkpoint:
# we might have a training state saved, in which case discard the yaml results and just retain the weights
a = original_checkpoint["""best_state"""]
recursively_load_weights(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
model.save_pretrained(__lowerCamelCase )
if repo_id:
print("""Pushing to the hub...""" )
feature_extractor.push_to_hub(__lowerCamelCase )
model.push_to_hub(__lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase : Dict = argparse.ArgumentParser()
parser.add_argument(
"--model",
default="encodec_24khz",
type=str,
help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.",
)
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
__UpperCamelCase : Optional[int] = parser.parse_args()
convert_checkpoint(
args.model,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 347 |
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = CanineTokenizer
UpperCamelCase__ = False
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
super().setUp()
a = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def lowerCamelCase__ ( self :Tuple , **__magic_name__ :Dict ):
'''simple docstring'''
a = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
a = 1024
return tokenizer
@require_torch
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.canine_tokenizer
a = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
a = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0]
# fmt: on
a = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
self.assertIsInstance(__magic_name__ , __magic_name__ )
a = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.canine_tokenizer
a = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
a = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , __magic_name__ )
self.assertIn("""attention_mask""" , __magic_name__ )
self.assertIn("""token_type_ids""" , __magic_name__ )
@require_torch
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.canine_tokenizer
a = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
a = tokenizer(
text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
a = tempfile.mkdtemp()
a = """ He is very happy, UNwant\u00E9d,running"""
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
a = tokenizer.__class__.from_pretrained(__magic_name__ )
a = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
shutil.rmtree(__magic_name__ )
a = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
a = tempfile.mkdtemp()
a = """ He is very happy, UNwant\u00E9d,running"""
a = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
a = chr(0Xe_0_0_7 )
additional_special_tokens.append(__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
a = tokenizer.__class__.from_pretrained(__magic_name__ )
a = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
a = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__magic_name__ )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a , a = self.get_clean_sequence(__magic_name__ )
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_5
a = chr(__magic_name__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
a = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , input_encoded + special_token_id )
a = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = chr(0Xe_0_0_5 )
a = chr(0Xe_0_0_6 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
a = tokenizer.tokenize(__magic_name__ )
a = tokenizer.tokenize(__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(token_a[0] , __magic_name__ )
self.assertEqual(token_a[0] , __magic_name__ )
@require_tokenizers
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_6
a = chr(__magic_name__ )
a = AddedToken(__magic_name__ , lstrip=__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__magic_name__ )
tokenizer.from_pretrained(__magic_name__ )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__magic_name__ )
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
a = json.load(__magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
a = json.load(__magic_name__ )
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_6
a = chr(__magic_name__ )
a = [new_token_a]
a = [new_token_a]
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
a = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
a = 0Xe_0_0_7
a = chr(__magic_name__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
a = [AddedToken(__magic_name__ , lstrip=__magic_name__ )]
a = tokenizer_class.from_pretrained(
__magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = """hello world"""
if self.space_between_special_tokens:
a = """[CLS] hello world [SEP]"""
else:
a = input
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__magic_name__ , [output, output.lower()] )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
a = """a"""
a = ord(__magic_name__ )
for attr in attributes_list:
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] )
a = 0Xe_0_0_6
a = chr(__magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
| 347 | 1 |
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCamelCase : Tuple = logging.get_logger(__name__)
def __A ( __lowerCamelCase ) -> str:
a = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
a = 128
elif "12-12" in model_name:
a = 12
a = 12
elif "14-14" in model_name:
a = 14
a = 14
elif "16-16" in model_name:
a = 16
a = 16
else:
raise ValueError("""Model not supported""" )
a = """huggingface/label-files"""
if "speech-commands" in model_name:
a = 35
a = """speech-commands-v2-id2label.json"""
else:
a = 527
a = """audioset-id2label.json"""
a = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) )
a = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
a = idalabel
a = {v: k for k, v in idalabel.items()}
return config
def __A ( __lowerCamelCase ) -> int:
if "module.v" in name:
a = name.replace("""module.v""" , """audio_spectrogram_transformer""" )
if "cls_token" in name:
a = name.replace("""cls_token""" , """embeddings.cls_token""" )
if "dist_token" in name:
a = name.replace("""dist_token""" , """embeddings.distillation_token""" )
if "pos_embed" in name:
a = name.replace("""pos_embed""" , """embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
a = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
# transformer blocks
if "blocks" in name:
a = name.replace("""blocks""" , """encoder.layer""" )
if "attn.proj" in name:
a = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
a = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
a = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
a = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
a = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
a = name.replace("""mlp.fc2""" , """output.dense""" )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
a = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" )
# classifier head
if "module.mlp_head.0" in name:
a = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" )
if "module.mlp_head.1" in name:
a = name.replace("""module.mlp_head.1""" , """classifier.dense""" )
return name
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
for key in orig_state_dict.copy().keys():
a = orig_state_dict.pop(__lowerCamelCase )
if "qkv" in key:
a = key.split(""".""" )
a = int(key_split[3] )
a = config.hidden_size
if "weight" in key:
a = val[:dim, :]
a = val[dim : dim * 2, :]
a = val[-dim:, :]
else:
a = val[:dim]
a = val[dim : dim * 2]
a = val[-dim:]
else:
a = val
return orig_state_dict
def __A ( __lowerCamelCase ) -> str:
a = [
"""module.v.head.weight""",
"""module.v.head.bias""",
"""module.v.head_dist.weight""",
"""module.v.head_dist.bias""",
]
for k in ignore_keys:
state_dict.pop(__lowerCamelCase , __lowerCamelCase )
@torch.no_grad()
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Union[str, Any]:
a = get_audio_spectrogram_transformer_config(__lowerCamelCase )
a = {
"""ast-finetuned-audioset-10-10-0.4593""": (
"""https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.450""": (
"""https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448""": (
"""https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448-v2""": (
"""https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1"""
),
"""ast-finetuned-audioset-12-12-0.447""": (
"""https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1"""
),
"""ast-finetuned-audioset-14-14-0.443""": (
"""https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1"""
),
"""ast-finetuned-audioset-16-16-0.442""": (
"""https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1"""
),
"""ast-finetuned-speech-commands-v2""": (
"""https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1"""
),
}
# load original state_dict
a = model_name_to_url[model_name]
a = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )
# remove some keys
remove_keys(__lowerCamelCase )
# rename some keys
a = convert_state_dict(__lowerCamelCase , __lowerCamelCase )
# load 🤗 model
a = ASTForAudioClassification(__lowerCamelCase )
model.eval()
model.load_state_dict(__lowerCamelCase )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
a = -4.2677393 if """speech-commands""" not in model_name else -6.845978
a = 4.5689974 if """speech-commands""" not in model_name else 5.5654526
a = 1024 if """speech-commands""" not in model_name else 128
a = ASTFeatureExtractor(mean=__lowerCamelCase , std=__lowerCamelCase , max_length=__lowerCamelCase )
if "speech-commands" in model_name:
a = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" )
a = dataset[0]["""audio"""]["""array"""]
else:
a = hf_hub_download(
repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , )
a , a = torchaudio.load(__lowerCamelCase )
a = waveform.squeeze().numpy()
a = feature_extractor(__lowerCamelCase , sampling_rate=1_6000 , return_tensors="""pt""" )
# forward pass
a = model(**__lowerCamelCase )
a = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
a = torch.tensor([-0.8760, -7.0042, -8.6602] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
a = torch.tensor([-1.1986, -7.0903, -8.2718] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
a = torch.tensor([-2.6128, -8.0080, -9.4344] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
a = torch.tensor([-1.5080, -7.4534, -8.8917] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
a = torch.tensor([-0.5050, -6.5833, -8.0843] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
a = torch.tensor([-0.3826, -7.0336, -8.2413] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
a = torch.tensor([-1.2113, -6.9101, -8.3470] )
elif model_name == "ast-finetuned-speech-commands-v2":
a = torch.tensor([6.1589, -8.0566, -8.7984] )
else:
raise ValueError("""Unknown model name""" )
if not torch.allclose(logits[0, :3] , __lowerCamelCase , atol=1E-4 ):
raise ValueError("""Logits don't match""" )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase )
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(__lowerCamelCase )
print(f'Saving feature extractor to {pytorch_dump_folder_path}' )
feature_extractor.save_pretrained(__lowerCamelCase )
if push_to_hub:
print("""Pushing model and feature extractor to the hub...""" )
model.push_to_hub(f'MIT/{model_name}' )
feature_extractor.push_to_hub(f'MIT/{model_name}' )
if __name__ == "__main__":
__UpperCamelCase : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="ast-finetuned-audioset-10-10-0.4593",
type=str,
help="Name of the Audio Spectrogram Transformer model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
__UpperCamelCase : Any = parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 347 |
def __A ( __lowerCamelCase ) -> bool:
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 1 |
from __future__ import annotations
from typing import Generic, TypeVar
__UpperCamelCase : Union[str, Any] = TypeVar("T")
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Tuple , __magic_name__ :T ):
'''simple docstring'''
a = data
a = self
a = 0
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Tuple ):
'''simple docstring'''
a = {}
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T ):
'''simple docstring'''
a = DisjointSetTreeNode(__magic_name__ )
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :T ):
'''simple docstring'''
a = self.map[data]
if elem_ref != elem_ref.parent:
a = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :DisjointSetTreeNode[T] , __magic_name__ :DisjointSetTreeNode[T] ):
'''simple docstring'''
if nodea.rank > nodea.rank:
a = nodea
else:
a = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T , __magic_name__ :T ):
'''simple docstring'''
self.link(self.find_set(__magic_name__ ) , self.find_set(__magic_name__ ) )
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Union[str, Any] ):
'''simple docstring'''
a = {}
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :T ):
'''simple docstring'''
if node not in self.connections:
a = {}
def lowerCamelCase__ ( self :Any , __magic_name__ :T , __magic_name__ :T , __magic_name__ :int ):
'''simple docstring'''
self.add_node(__magic_name__ )
self.add_node(__magic_name__ )
a = weight
a = weight
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = []
a = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda __magic_name__ : x[2] )
# creating the disjoint set
a = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(__magic_name__ )
# MST generation
a = 0
a = 0
a = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
a , a , a = edges[index]
index += 1
a = disjoint_set.find_set(__magic_name__ )
a = disjoint_set.find_set(__magic_name__ )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(__magic_name__ , __magic_name__ , __magic_name__ )
disjoint_set.union(__magic_name__ , __magic_name__ )
return graph
| 347 |
def __A ( __lowerCamelCase ) -> int:
if not numbers:
return 0
if not isinstance(__lowerCamelCase , (list, tuple) ) or not all(
isinstance(__lowerCamelCase , __lowerCamelCase ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
a = a = a = numbers[0]
for i in range(1 , len(__lowerCamelCase ) ):
# update the maximum and minimum subarray products
a = numbers[i]
if number < 0:
a , a = min_till_now, max_till_now
a = max(__lowerCamelCase , max_till_now * number )
a = min(__lowerCamelCase , min_till_now * number )
# update the maximum product found till now
a = max(__lowerCamelCase , __lowerCamelCase )
return max_prod
| 347 | 1 |
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="""session""" )
def __A ( ) -> Optional[Any]:
a = 10
a = datasets.Features(
{
"""tokens""": datasets.Sequence(datasets.Value("""string""" ) ),
"""labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ),
"""answers""": datasets.Sequence(
{
"""text""": datasets.Value("""string""" ),
"""answer_start""": datasets.Value("""int32""" ),
} ),
"""id""": datasets.Value("""int64""" ),
} )
a = datasets.Dataset.from_dict(
{
"""tokens""": [["""foo"""] * 5] * n,
"""labels""": [[1] * 5] * n,
"""answers""": [{"""answer_start""": [97], """text""": ["""1976"""]}] * 10,
"""id""": list(range(__lowerCamelCase ) ),
} , features=__lowerCamelCase , )
return dataset
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> int:
a = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" )
dataset.map(cache_file_name=__lowerCamelCase )
return filename
# FILE_CONTENT + files
__UpperCamelCase : Union[str, Any] = "\\n Text data.\n Second line of data."
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> List[str]:
a = tmp_path_factory.mktemp("""data""" ) / """file.txt"""
a = FILE_CONTENT
with open(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase )
return filename
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Tuple:
import bza
a = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2"""
a = bytes(__lowerCamelCase , """utf-8""" )
with bza.open(__lowerCamelCase , """wb""" ) as f:
f.write(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> List[Any]:
import gzip
a = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" )
a = bytes(__lowerCamelCase , """utf-8""" )
with gzip.open(__lowerCamelCase , """wb""" ) as f:
f.write(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Dict:
if datasets.config.LZ4_AVAILABLE:
import lza.frame
a = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4"""
a = bytes(__lowerCamelCase , """utf-8""" )
with lza.frame.open(__lowerCamelCase , """wb""" ) as f:
f.write(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> List[str]:
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
a = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z"""
with pyazr.SevenZipFile(__lowerCamelCase , """w""" ) as archive:
archive.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> List[str]:
import tarfile
a = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar"""
with tarfile.TarFile(__lowerCamelCase , """w""" ) as f:
f.add(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> List[str]:
import lzma
a = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz"""
a = bytes(__lowerCamelCase , """utf-8""" )
with lzma.open(__lowerCamelCase , """wb""" ) as f:
f.write(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Dict:
import zipfile
a = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> str:
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
a = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst"""
a = bytes(__lowerCamelCase , """utf-8""" )
with zstd.open(__lowerCamelCase , """wb""" ) as f:
f.write(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Any:
a = tmp_path_factory.mktemp("""data""" ) / """file.xml"""
a = textwrap.dedent(
"""\
<?xml version=\"1.0\" encoding=\"UTF-8\" ?>
<tmx version=\"1.4\">
<header segtype=\"sentence\" srclang=\"ca\" />
<body>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>
</tu>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>
</tu>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>
</tu>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>
</tu>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>
</tu>
</body>
</tmx>""" )
with open(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase )
return filename
__UpperCamelCase : Dict = [
{"col_1": "0", "col_2": 0, "col_3": 0.0},
{"col_1": "1", "col_2": 1, "col_3": 1.0},
{"col_1": "2", "col_2": 2, "col_3": 2.0},
{"col_1": "3", "col_2": 3, "col_3": 3.0},
]
__UpperCamelCase : Tuple = [
{"col_1": "4", "col_2": 4, "col_3": 4.0},
{"col_1": "5", "col_2": 5, "col_3": 5.0},
]
__UpperCamelCase : List[Any] = {
"col_1": ["0", "1", "2", "3"],
"col_2": [0, 1, 2, 3],
"col_3": [0.0, 1.0, 2.0, 3.0],
}
__UpperCamelCase : Optional[Any] = [
{"col_3": 0.0, "col_1": "0", "col_2": 0},
{"col_3": 1.0, "col_1": "1", "col_2": 1},
]
__UpperCamelCase : Union[str, Any] = [
{"col_1": "s0", "col_2": 0, "col_3": 0.0},
{"col_1": "s1", "col_2": 1, "col_3": 1.0},
{"col_1": "s2", "col_2": 2, "col_3": 2.0},
{"col_1": "s3", "col_2": 3, "col_3": 3.0},
]
@pytest.fixture(scope="""session""" )
def __A ( ) -> List[str]:
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Union[str, Any]:
a = datasets.Dataset.from_dict(__lowerCamelCase )
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" )
dataset.map(cache_file_name=__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> int:
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" )
with contextlib.closing(sqlitea.connect(__lowerCamelCase ) ) as con:
a = con.cursor()
cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" )
for item in DATA:
cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Tuple:
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" )
with open(__lowerCamelCase , """w""" , newline="""""" ) as f:
a = csv.DictWriter(__lowerCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] )
writer.writeheader()
for item in DATA:
writer.writerow(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> int:
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" )
with open(__lowerCamelCase , """w""" , newline="""""" ) as f:
a = csv.DictWriter(__lowerCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] )
writer.writeheader()
for item in DATA:
writer.writerow(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Dict:
import bza
a = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2"""
with open(__lowerCamelCase , """rb""" ) as f:
a = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(__lowerCamelCase , """wb""" ) as f:
f.write(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]:
a = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
a = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) )
f.write(__lowerCamelCase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple:
a = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__lowerCamelCase ) ) )
f.write(__lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__lowerCamelCase ) ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Tuple:
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" )
a = pa.schema(
{
"""col_1""": pa.string(),
"""col_2""": pa.intaa(),
"""col_3""": pa.floataa(),
} )
with open(__lowerCamelCase , """wb""" ) as f:
a = pq.ParquetWriter(__lowerCamelCase , schema=__lowerCamelCase )
a = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__lowerCamelCase ) )] for k in DATA[0]} , schema=__lowerCamelCase )
writer.write_table(__lowerCamelCase )
writer.close()
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> List[str]:
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" )
a = {"""data""": DATA}
with open(__lowerCamelCase , """w""" ) as f:
json.dump(__lowerCamelCase , __lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Tuple:
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" )
a = {"""data""": DATA_DICT_OF_LISTS}
with open(__lowerCamelCase , """w""" ) as f:
json.dump(__lowerCamelCase , __lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Any:
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" )
with open(__lowerCamelCase , """w""" ) as f:
for item in DATA:
f.write(json.dumps(__lowerCamelCase ) + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> List[str]:
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" )
with open(__lowerCamelCase , """w""" ) as f:
for item in DATA:
f.write(json.dumps(__lowerCamelCase ) + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Tuple:
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" )
with open(__lowerCamelCase , """w""" ) as f:
for item in DATA_312:
f.write(json.dumps(__lowerCamelCase ) + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Any:
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" )
with open(__lowerCamelCase , """w""" ) as f:
for item in DATA_STR:
f.write(json.dumps(__lowerCamelCase ) + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Tuple:
import gzip
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" )
with open(__lowerCamelCase , """rb""" ) as orig_file:
with gzip.open(__lowerCamelCase , """wb""" ) as zipped_file:
zipped_file.writelines(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
import gzip
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" )
with open(__lowerCamelCase , """rb""" ) as orig_file:
with gzip.open(__lowerCamelCase , """wb""" ) as zipped_file:
zipped_file.writelines(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int:
a = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any:
a = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__lowerCamelCase ) ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]:
a = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__lowerCamelCase ) ) )
f.write(__lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__lowerCamelCase ) ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple:
a = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar"""
with tarfile.TarFile(__lowerCamelCase , """w""" ) as f:
f.add(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
f.add(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
a = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar"""
with tarfile.TarFile(__lowerCamelCase , """w""" ) as f:
f.add(__lowerCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__lowerCamelCase ) ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Union[str, Any]:
a = ["""0""", """1""", """2""", """3"""]
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" )
with open(__lowerCamelCase , """w""" ) as f:
for item in data:
f.write(item + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> Dict:
a = ["""0""", """1""", """2""", """3"""]
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" )
with open(__lowerCamelCase , """w""" ) as f:
for item in data:
f.write(item + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> int:
a = ["""0""", """1""", """2""", """3"""]
a = tmp_path_factory.mktemp("""data""" ) / """dataset.abc"""
with open(__lowerCamelCase , """w""" ) as f:
for item in data:
f.write(item + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict:
a = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
a = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__lowerCamelCase ) ) )
f.write(__lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__lowerCamelCase ) ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]:
a = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.basename("""unsupported.ext""" ) )
f.write(__lowerCamelCase , arcname=os.path.basename("""unsupported_2.ext""" ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> List[Any]:
a = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] )
a = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" )
with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(__lowerCamelCase )
return path
@pytest.fixture(scope="""session""" )
def __A ( ) -> Any:
return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" )
@pytest.fixture(scope="""session""" )
def __A ( ) -> Tuple:
return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" )
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
a = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip"""
with zipfile.ZipFile(__lowerCamelCase , """w""" ) as f:
f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) )
f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ).replace(""".jpg""" , """2.jpg""" ) )
return path
@pytest.fixture(scope="""session""" )
def __A ( __lowerCamelCase ) -> List[str]:
a = tmp_path_factory.mktemp("""data_dir""" )
(data_dir / "subdir").mkdir()
with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f:
f.write("""foo\n""" * 10 )
with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f:
f.write("""bar\n""" * 10 )
# hidden file
with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f:
f.write("""bar\n""" * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f:
f.write("""foo\n""" * 10 )
with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f:
f.write("""bar\n""" * 10 )
return data_dir
| 347 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__UpperCamelCase : Optional[Any] = {
"configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"],
"feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"],
"processing_wav2vec2": ["Wav2Vec2Processor"],
"tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : str = [
"WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Wav2Vec2ForAudioFrameClassification",
"Wav2Vec2ForCTC",
"Wav2Vec2ForMaskedLM",
"Wav2Vec2ForPreTraining",
"Wav2Vec2ForSequenceClassification",
"Wav2Vec2ForXVector",
"Wav2Vec2Model",
"Wav2Vec2PreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Dict = [
"TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWav2Vec2ForCTC",
"TFWav2Vec2Model",
"TFWav2Vec2PreTrainedModel",
"TFWav2Vec2ForSequenceClassification",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
"FlaxWav2Vec2ForCTC",
"FlaxWav2Vec2ForPreTraining",
"FlaxWav2Vec2Model",
"FlaxWav2Vec2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
__UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 1 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''ClapFeatureExtractor'''
UpperCamelCase__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''')
def __init__( self :Dict , __magic_name__ :Any , __magic_name__ :Optional[int] ):
'''simple docstring'''
super().__init__(__magic_name__ , __magic_name__ )
def __call__( self :Tuple , __magic_name__ :Union[str, Any]=None , __magic_name__ :List[Any]=None , __magic_name__ :str=None , **__magic_name__ :str ):
'''simple docstring'''
a = kwargs.pop("""sampling_rate""" , __magic_name__ )
if text is None and audios is None:
raise ValueError("""You have to specify either text or audios. Both cannot be none.""" )
if text is not None:
a = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ )
if audios is not None:
a = self.feature_extractor(
__magic_name__ , sampling_rate=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ )
if text is not None and audios is not None:
a = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ )
def lowerCamelCase__ ( self :List[str] , *__magic_name__ :Optional[Any] , **__magic_name__ :Union[str, Any] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ )
def lowerCamelCase__ ( self :List[str] , *__magic_name__ :Dict , **__magic_name__ :Optional[Any] ):
'''simple docstring'''
return self.tokenizer.decode(*__magic_name__ , **__magic_name__ )
@property
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.tokenizer.model_input_names
a = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 347 |
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any:
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , __lowerCamelCase )
a = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
a = dataset_size < in_memory_max_size
else:
a = False
a = is_small_dataset(__lowerCamelCase )
assert result == expected
| 347 | 1 |
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = torch.permute(__lowerCamelCase , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ):
# linear layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
a = flax_key_tuple[:-1] + ("""weight""",)
return flax_key_tuple, flax_tensor
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
if "metadata" in layer:
a = layer.split("""metadata""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )]
elif "kvstore" in layer:
a = layer.split("""kvstore""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )]
else:
a = layer.split("""/""" )
a = """/""".join(split_layer[:-1] )
a = (split_layer[-1],)
if "kvstore/path" in layer:
a = f'{switch_checkpoint_path}/{checkpoint_info[layer]}'
elif "kvstore/driver" in layer:
a = """file"""
else:
a = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
a = rename_keys(__lowerCamelCase )
a = {}
for k, v in current_block.items():
a = v
a = new_current_block
torch.save(__lowerCamelCase , __lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = WEIGHTS_NAME ) -> List[str]:
a = convert_file_size_to_int(__lowerCamelCase )
a = []
a = {}
a = 0
a = 0
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp:
a = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""]
a = flatten_dict(__lowerCamelCase , sep="""/""" )
a = {}
for layer in checkpoint_info.keys():
a , a , a = get_key_and_tensorstore_dict(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if curr_real_layer_name in all_layers:
a = content
else:
a = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
a = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
a = torch.tensor(__lowerCamelCase )
a = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
a , a = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __lowerCamelCase )
a = """/""".join(__lowerCamelCase )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
a = os.path.join(
__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
del current_block
a = {}
a = 0
a = raw_weights.to(getattr(__lowerCamelCase , __lowerCamelCase ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(__lowerCamelCase ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
a = {}
a = {}
for idx, shard in enumerate(__lowerCamelCase ):
a = weights_name.replace(
""".bin""" , f'-{idx+1:05d}-of-{len(__lowerCamelCase ):05d}.bin' ) # len(sharded_state_dicts):05d}
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{idx+1:05d}-of-???.bin' ) )
os.rename(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
a = shard
for key in shard:
a = shard_file
# Add the metadata
a = {"""total_size""": total_size}
a = {"""metadata""": metadata, """weight_map""": weight_map}
with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f:
a = json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase ) + """\n"""
f.write(__lowerCamelCase )
return metadata, index
if __name__ == "__main__":
__UpperCamelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--switch_t5x_checkpoint_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size")
parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted",
type=str,
required=False,
help="Path to the output pytorch model.",
)
__UpperCamelCase : Any = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def __A ( ) -> Tuple:
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
a = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" )
config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" )
a = SwitchTransformersForConditionalGeneration.from_pretrained(
"""/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" )
a = TaTokenizer.from_pretrained("""t5-small""" )
a = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."""
a = tokenizer(__lowerCamelCase , return_tensors="""pt""" ).input_ids
a = model.generate(__lowerCamelCase , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 347 |
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def __A ( __lowerCamelCase ) -> bool:
a = int(number**0.5 )
return number == sq * sq
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple[int, int]:
a = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
a = x_den * y_den * z_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
top //= hcf
bottom //= hcf
return top, bottom
def __A ( __lowerCamelCase = 35 ) -> int:
a = set()
a = 42
a = Fraction(0 )
a = 42
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
a = x_num * y_den + x_den * y_num
a = x_den * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
a = x_den * x_den * y_den * y_den
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=-1
a = x_num * y_num
a = x_den * y_num + x_num * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = x_num * x_num * y_num * y_num
a = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
for num, den in unique_s:
total += Fraction(__lowerCamelCase , __lowerCamelCase )
return total.denominator + total.numerator
if __name__ == "__main__":
print(F'{solution() = }')
| 347 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCamelCase : Any = logging.get_logger(__name__)
__UpperCamelCase : Any = {
"google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json",
"google/bigbird-roberta-large": "https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json",
"google/bigbird-base-trivia-itc": "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json",
# See all BigBird models at https://huggingface.co/models?filter=big_bird
}
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''big_bird'''
def __init__( self :Union[str, Any] , __magic_name__ :Any=5_0358 , __magic_name__ :List[str]=768 , __magic_name__ :List[str]=12 , __magic_name__ :Optional[int]=12 , __magic_name__ :List[str]=3072 , __magic_name__ :Dict="gelu_new" , __magic_name__ :List[Any]=0.1 , __magic_name__ :Any=0.1 , __magic_name__ :Optional[int]=4096 , __magic_name__ :Union[str, Any]=2 , __magic_name__ :int=0.02 , __magic_name__ :int=1E-1_2 , __magic_name__ :Any=True , __magic_name__ :Any=0 , __magic_name__ :Union[str, Any]=1 , __magic_name__ :Any=2 , __magic_name__ :Dict=66 , __magic_name__ :int="block_sparse" , __magic_name__ :List[Any]=True , __magic_name__ :Dict=False , __magic_name__ :Tuple=64 , __magic_name__ :Dict=3 , __magic_name__ :Union[str, Any]=None , **__magic_name__ :Optional[Any] , ):
'''simple docstring'''
super().__init__(
pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , sep_token_id=__magic_name__ , **__magic_name__ , )
a = vocab_size
a = max_position_embeddings
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = initializer_range
a = type_vocab_size
a = layer_norm_eps
a = use_cache
a = rescale_embeddings
a = attention_type
a = use_bias
a = block_size
a = num_random_blocks
a = classifier_dropout
class __lowerCAmelCase ( __magic_name__ ):
@property
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
a = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
a = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 347 |
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :List[str] , __magic_name__ :List[str] , __magic_name__ :List[Any]=13 , __magic_name__ :Any=7 , __magic_name__ :Optional[int]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :Any=99 , __magic_name__ :List[str]=32 , __magic_name__ :List[str]=5 , __magic_name__ :str=4 , __magic_name__ :str=37 , __magic_name__ :Optional[int]="gelu" , __magic_name__ :int=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :List[str]=512 , __magic_name__ :Tuple=16 , __magic_name__ :Tuple=2 , __magic_name__ :List[str]=0.02 , __magic_name__ :Any=4 , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_attention_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_choices
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_attention_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = True
UpperCamelCase__ = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = FlaxRoFormerModelTester(self )
@slow
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__magic_name__ )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
@slow
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
a = jnp.array([[0, 1, 2, 3, 4, 5]] )
a = model(__magic_name__ )[0]
a = 5_0000
a = (1, 6, vocab_size)
self.assertEqual(output.shape , __magic_name__ )
a = jnp.array(
[[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 347 | 1 |
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any:
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , __lowerCamelCase )
a = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
a = dataset_size < in_memory_max_size
else:
a = False
a = is_small_dataset(__lowerCamelCase )
assert result == expected
| 347 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCamelCase : Optional[int] = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
__UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 1 |
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
__UpperCamelCase : Dict = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = ['''pixel_values''']
def __init__( self :str , __magic_name__ :bool = True , __magic_name__ :Optional[Dict[str, int]] = None , __magic_name__ :PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ :bool = True , __magic_name__ :Dict[str, int] = None , __magic_name__ :bool = True , __magic_name__ :Union[int, float] = 1 / 255 , __magic_name__ :bool = True , __magic_name__ :Optional[Union[float, List[float]]] = None , __magic_name__ :Optional[Union[float, List[float]]] = None , **__magic_name__ :Optional[int] , ):
'''simple docstring'''
super().__init__(**__magic_name__ )
a = size if size is not None else {"""shortest_edge""": 256}
a = get_size_dict(__magic_name__ , default_to_square=__magic_name__ )
a = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
a = get_size_dict(__magic_name__ , param_name="""crop_size""" )
a = do_resize
a = size
a = resample
a = do_center_crop
a = crop_size
a = do_rescale
a = rescale_factor
a = do_normalize
a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
a = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowerCamelCase__ ( self :int , __magic_name__ :np.ndarray , __magic_name__ :Dict[str, int] , __magic_name__ :PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ :Optional[Union[str, ChannelDimension]] = None , **__magic_name__ :Optional[Any] , ):
'''simple docstring'''
a = get_size_dict(__magic_name__ , default_to_square=__magic_name__ )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
a = get_resize_output_image_size(__magic_name__ , size=size["""shortest_edge"""] , default_to_square=__magic_name__ )
return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :np.ndarray , __magic_name__ :Dict[str, int] , __magic_name__ :Optional[Union[str, ChannelDimension]] = None , **__magic_name__ :Dict , ):
'''simple docstring'''
a = get_size_dict(__magic_name__ )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' )
return center_crop(__magic_name__ , size=(size["""height"""], size["""width"""]) , data_format=__magic_name__ , **__magic_name__ )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :np.ndarray , __magic_name__ :float , __magic_name__ :Optional[Union[str, ChannelDimension]] = None , **__magic_name__ :str ):
'''simple docstring'''
return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :np.ndarray , __magic_name__ :Union[float, List[float]] , __magic_name__ :Union[float, List[float]] , __magic_name__ :Optional[Union[str, ChannelDimension]] = None , **__magic_name__ :Optional[Any] , ):
'''simple docstring'''
return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def lowerCamelCase__ ( self :List[str] , __magic_name__ :ImageInput , __magic_name__ :Optional[bool] = None , __magic_name__ :Dict[str, int] = None , __magic_name__ :PILImageResampling = None , __magic_name__ :bool = None , __magic_name__ :Dict[str, int] = None , __magic_name__ :Optional[bool] = None , __magic_name__ :Optional[float] = None , __magic_name__ :Optional[bool] = None , __magic_name__ :Optional[Union[float, List[float]]] = None , __magic_name__ :Optional[Union[float, List[float]]] = None , __magic_name__ :Optional[Union[str, TensorType]] = None , __magic_name__ :Union[str, ChannelDimension] = ChannelDimension.FIRST , **__magic_name__ :Union[str, Any] , ):
'''simple docstring'''
a = do_resize if do_resize is not None else self.do_resize
a = size if size is not None else self.size
a = get_size_dict(__magic_name__ , default_to_square=__magic_name__ )
a = resample if resample is not None else self.resample
a = do_center_crop if do_center_crop is not None else self.do_center_crop
a = crop_size if crop_size is not None else self.crop_size
a = get_size_dict(__magic_name__ , param_name="""crop_size""" )
a = do_rescale if do_rescale is not None else self.do_rescale
a = rescale_factor if rescale_factor is not None else self.rescale_factor
a = do_normalize if do_normalize is not None else self.do_normalize
a = image_mean if image_mean is not None else self.image_mean
a = image_std if image_std is not None else self.image_std
a = make_list_of_images(__magic_name__ )
if not valid_images(__magic_name__ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
a = [to_numpy_array(__magic_name__ ) for image in images]
if do_resize:
a = [self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) for image in images]
if do_center_crop:
a = [self.center_crop(image=__magic_name__ , size=__magic_name__ ) for image in images]
if do_rescale:
a = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images]
if do_normalize:
a = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images]
a = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images]
a = {"""pixel_values""": images}
return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
def lowerCamelCase__ ( self :List[str] , __magic_name__ :Dict , __magic_name__ :List[Tuple] = None ):
'''simple docstring'''
a = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(__magic_name__ ) != len(__magic_name__ ):
raise ValueError(
"""Make sure that you pass in as many target sizes as the batch dimension of the logits""" )
if is_torch_tensor(__magic_name__ ):
a = target_sizes.numpy()
a = []
for idx in range(len(__magic_name__ ) ):
a = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__magic_name__ )
a = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(__magic_name__ )
else:
a = logits.argmax(dim=1 )
a = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 347 |
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = (IPNDMScheduler,)
UpperCamelCase__ = (('''num_inference_steps''', 50),)
def lowerCamelCase__ ( self :Any , **__magic_name__ :Optional[Any] ):
'''simple docstring'''
a = {"""num_train_timesteps""": 1000}
config.update(**__magic_name__ )
return config
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple=0 , **__magic_name__ :Optional[int] ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config(**__magic_name__ )
a = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals
a = dummy_past_residuals[:]
if time_step is None:
a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__magic_name__ )
a = scheduler_class.from_pretrained(__magic_name__ )
new_scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals
a = dummy_past_residuals[:]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :List[Any]=0 , **__magic_name__ :Any ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals (must be after setting timesteps)
a = dummy_past_residuals[:]
if time_step is None:
a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__magic_name__ )
a = scheduler_class.from_pretrained(__magic_name__ )
# copy over dummy past residuals
new_scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residual (must be after setting timesteps)
a = dummy_past_residuals[:]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCamelCase__ ( self :Optional[Any] , **__magic_name__ :Optional[int] ):
'''simple docstring'''
a = self.scheduler_classes[0]
a = self.get_scheduler_config(**__magic_name__ )
a = scheduler_class(**__magic_name__ )
a = 10
a = self.dummy_model()
a = self.dummy_sample_deter
scheduler.set_timesteps(__magic_name__ )
for i, t in enumerate(scheduler.timesteps ):
a = model(__magic_name__ , __magic_name__ )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
a = model(__magic_name__ , __magic_name__ )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
return sample
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
if num_inference_steps is not None and hasattr(__magic_name__ , """set_timesteps""" ):
scheduler.set_timesteps(__magic_name__ )
elif num_inference_steps is not None and not hasattr(__magic_name__ , """set_timesteps""" ):
a = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
a = dummy_past_residuals[:]
a = scheduler.timesteps[5]
a = scheduler.timesteps[6]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=__magic_name__ , time_step=__magic_name__ )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=__magic_name__ , time_step=__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.full_loop()
a = torch.mean(torch.abs(__magic_name__ ) )
assert abs(result_mean.item() - 254_0529 ) < 10
| 347 | 1 |
import argparse
from collections import defaultdict
import yaml
__UpperCamelCase : str = "docs/source/en/_toctree.yml"
def __A ( __lowerCamelCase ) -> Dict:
a = defaultdict(__lowerCamelCase )
for doc in model_doc:
counts[doc["local"]] += 1
a = [key for key, value in counts.items() if value > 1]
a = []
for duplicate_key in duplicates:
a = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} )
if len(__lowerCamelCase ) > 1:
raise ValueError(
f'{duplicate_key} is present several times in the documentation table of content at '
"""`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """
"""others.""" )
# Only add this once
new_doc.append({"""local""": duplicate_key, """title""": titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] )
# Sort
return sorted(__lowerCamelCase , key=lambda __lowerCamelCase : s["title"].lower() )
def __A ( __lowerCamelCase=False ) -> Tuple:
with open(__lowerCamelCase , encoding="""utf-8""" ) as f:
a = yaml.safe_load(f.read() )
# Get to the API doc
a = 0
while content[api_idx]["title"] != "API":
api_idx += 1
a = content[api_idx]["""sections"""]
# Then to the model doc
a = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
a = api_doc[model_idx]["""sections"""]
a = [(idx, section) for idx, section in enumerate(__lowerCamelCase ) if """sections""" in section]
a = False
for idx, modality_doc in modalities_docs:
a = modality_doc["""sections"""]
a = clean_model_doc_toc(__lowerCamelCase )
if old_modality_doc != new_modality_doc:
a = True
if overwrite:
a = new_modality_doc
if diff:
if overwrite:
a = model_doc
a = api_doc
with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(yaml.dump(__lowerCamelCase , allow_unicode=__lowerCamelCase ) )
else:
raise ValueError(
"""The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" )
if __name__ == "__main__":
__UpperCamelCase : int = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
__UpperCamelCase : List[str] = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 347 |
__UpperCamelCase : Dict = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def __A ( ) -> None:
a = input("""Enter message: """ )
a = input("""Enter key [alphanumeric]: """ )
a = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
a = """encrypt"""
a = encrypt_message(__lowerCamelCase , __lowerCamelCase )
elif mode.lower().startswith("""d""" ):
a = """decrypt"""
a = decrypt_message(__lowerCamelCase , __lowerCamelCase )
print(f'\n{mode.title()}ed message:' )
print(__lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
return translate_message(__lowerCamelCase , __lowerCamelCase , """encrypt""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
return translate_message(__lowerCamelCase , __lowerCamelCase , """decrypt""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
a = []
a = 0
a = key.upper()
for symbol in message:
a = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(__lowerCamelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(__lowerCamelCase ):
a = 0
else:
translated.append(__lowerCamelCase )
return "".join(__lowerCamelCase )
if __name__ == "__main__":
main()
| 347 | 1 |
import random
class __lowerCAmelCase :
@staticmethod
def lowerCamelCase__ ( __magic_name__ :str ):
'''simple docstring'''
a = [ord(__magic_name__ ) for i in text]
a = []
a = []
for i in plain:
a = random.randint(1 , 300 )
a = (i + k) * k
cipher.append(__magic_name__ )
key.append(__magic_name__ )
return cipher, key
@staticmethod
def lowerCamelCase__ ( __magic_name__ :list[int] , __magic_name__ :list[int] ):
'''simple docstring'''
a = []
for i in range(len(__magic_name__ ) ):
a = int((cipher[i] - (key[i]) ** 2) / key[i] )
plain.append(chr(__magic_name__ ) )
return "".join(__magic_name__ )
if __name__ == "__main__":
__UpperCamelCase , __UpperCamelCase : int = Onepad().encrypt("Hello")
print(c, k)
print(Onepad().decrypt(c, k))
| 347 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Tuple=13 , __magic_name__ :List[Any]=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :List[str]=True , __magic_name__ :str=99 , __magic_name__ :Optional[Any]=32 , __magic_name__ :Union[str, Any]=5 , __magic_name__ :Any=4 , __magic_name__ :int=37 , __magic_name__ :Tuple="gelu" , __magic_name__ :List[str]=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :Tuple=512 , __magic_name__ :Dict=16 , __magic_name__ :Optional[int]=2 , __magic_name__ :Optional[int]=0.02 , __magic_name__ :Optional[Any]=4 , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_attention_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_choices
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_attention_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = True
a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = True
UpperCamelCase__ = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = FlaxRobertaModelTester(self )
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained("""roberta-base""" , from_pt=__magic_name__ )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
| 347 | 1 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class __lowerCAmelCase :
def __init__( self :List[Any] , __magic_name__ :Union[str, Any] , __magic_name__ :Any=2 , __magic_name__ :Dict=True , __magic_name__ :Dict=False , __magic_name__ :Dict=10 , __magic_name__ :Optional[Any]=3 , __magic_name__ :Tuple=32 * 8 , __magic_name__ :List[Any]=32 * 8 , __magic_name__ :Dict=4 , __magic_name__ :List[str]=64 , ):
'''simple docstring'''
a = parent
a = batch_size
a = is_training
a = use_auxiliary_loss
a = num_queries
a = num_channels
a = min_size
a = max_size
a = num_labels
a = hidden_dim
a = hidden_dim
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
__magic_name__ )
a = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__magic_name__ )
a = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__magic_name__ ) > 0.5
).float()
a = (torch.rand((self.batch_size, self.num_labels) , device=__magic_name__ ) > 0.5).long()
a = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = MaskaFormerConfig(
hidden_size=self.hidden_dim , )
a = self.num_queries
a = self.num_labels
a = [1, 1, 1, 1]
a = self.num_channels
a = 64
a = 128
a = self.hidden_dim
a = self.hidden_dim
a = self.hidden_dim
return config
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a , a , a , a , a = self.prepare_config_and_inputs()
a = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def lowerCamelCase__ ( self :int , __magic_name__ :Union[str, Any] , __magic_name__ :Dict ):
'''simple docstring'''
a = output.encoder_hidden_states
a = output.pixel_decoder_hidden_states
a = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(__magic_name__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__magic_name__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__magic_name__ ) , config.decoder_layers )
def lowerCamelCase__ ( self :Dict , __magic_name__ :str , __magic_name__ :str , __magic_name__ :Union[str, Any] , __magic_name__ :Tuple=False ):
'''simple docstring'''
with torch.no_grad():
a = MaskaFormerModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(pixel_values=__magic_name__ , pixel_mask=__magic_name__ )
a = model(__magic_name__ , output_hidden_states=__magic_name__ )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :int , __magic_name__ :List[str] , __magic_name__ :str , __magic_name__ :Optional[Any] , __magic_name__ :List[Any] , __magic_name__ :Tuple ):
'''simple docstring'''
a = MaskaFormerForUniversalSegmentation(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
def comm_check_on_output(__magic_name__ :Union[str, Any] ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
a = model(pixel_values=__magic_name__ , pixel_mask=__magic_name__ )
a = model(__magic_name__ )
comm_check_on_output(__magic_name__ )
a = model(
pixel_values=__magic_name__ , pixel_mask=__magic_name__ , mask_labels=__magic_name__ , class_labels=__magic_name__ )
comm_check_on_output(__magic_name__ )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
UpperCamelCase__ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {}
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = MaskaFormerModelTester(self )
a = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(__magic_name__ , **__magic_name__ , output_hidden_states=__magic_name__ )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__magic_name__ )
@unittest.skip(reason="""Mask2Former does not use inputs_embeds""" )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
@unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
pass
@unittest.skip(reason="""Mask2Former is not a generative model""" )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
pass
@unittest.skip(reason="""Mask2Former does not use token embeddings""" )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(__magic_name__ )
a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a = [*signature.parameters.keys()]
a = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
@slow
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
a = MaskaFormerModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = (self.model_tester.min_size,) * 2
a = {
"""pixel_values""": torch.randn((2, 3, *size) , device=__magic_name__ ),
"""mask_labels""": torch.randn((2, 10, *size) , device=__magic_name__ ),
"""class_labels""": torch.zeros(2 , 10 , device=__magic_name__ ).long(),
}
a = self.model_tester.get_config()
a = MaskaFormerForUniversalSegmentation(__magic_name__ ).to(__magic_name__ )
a = model(**__magic_name__ )
self.assertTrue(outputs.loss is not None )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(__magic_name__ , **__magic_name__ , output_hidden_states=__magic_name__ )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(__magic_name__ ).to(__magic_name__ )
a = model(**__magic_name__ , output_attentions=__magic_name__ )
self.assertTrue(outputs.attentions is not None )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
if not self.model_tester.is_training:
return
a = self.all_model_classes[1]
a , a , a , a , a = self.model_tester.prepare_config_and_inputs()
a = model_class(__magic_name__ )
model.to(__magic_name__ )
model.train()
a = model(__magic_name__ , mask_labels=__magic_name__ , class_labels=__magic_name__ ).loss
loss.backward()
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = self.all_model_classes[1]
a , a , a , a , a = self.model_tester.prepare_config_and_inputs()
a = True
a = True
a = model_class(__magic_name__ ).to(__magic_name__ )
model.train()
a = model(__magic_name__ , mask_labels=__magic_name__ , class_labels=__magic_name__ )
a = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
a = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
a = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
a = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=__magic_name__ )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__UpperCamelCase : List[str] = 1E-4
def __A ( ) -> Dict:
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class __lowerCAmelCase ( unittest.TestCase ):
@cached_property
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__magic_name__ )
a = self.default_image_processor
a = prepare_img()
a = image_processor(__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ )
a = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__magic_name__ , (1, 3, 384, 384) )
with torch.no_grad():
a = model(**__magic_name__ )
a = torch.tensor(
[[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__magic_name__ )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , __magic_name__ , atol=__magic_name__ ) )
a = torch.tensor(
[[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__magic_name__ )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __magic_name__ , atol=__magic_name__ ) )
a = torch.tensor(
[[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__magic_name__ )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __magic_name__ , atol=__magic_name__ ) )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__magic_name__ ).eval()
a = self.default_image_processor
a = prepare_img()
a = image_processor(__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ )
a = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__magic_name__ , (1, 3, 384, 384) )
with torch.no_grad():
a = model(**__magic_name__ )
# masks_queries_logits
a = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
a = [
[-8.7839, -9.0056, -8.8121],
[-7.4104, -7.0313, -6.5401],
[-6.6105, -6.3427, -6.4675],
]
a = torch.tensor(__magic_name__ ).to(__magic_name__ )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __magic_name__ , atol=__magic_name__ ) )
# class_queries_logits
a = outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) )
a = torch.tensor(
[
[1.8324, -8.0835, -4.1922],
[0.8450, -9.0050, -3.6053],
[0.3045, -7.7293, -3.0275],
] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __magic_name__ , atol=__magic_name__ ) )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__magic_name__ ).eval()
a = self.default_image_processor
a = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , )
a = inputs["""pixel_values"""].to(__magic_name__ )
a = [el.to(__magic_name__ ) for el in inputs["""mask_labels"""]]
a = [el.to(__magic_name__ ) for el in inputs["""class_labels"""]]
with torch.no_grad():
a = model(**__magic_name__ )
self.assertTrue(outputs.loss is not None )
| 347 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
__UpperCamelCase : Any = datasets.utils.logging.get_logger(__name__)
@dataclass
class __lowerCAmelCase ( datasets.BuilderConfig ):
UpperCamelCase__ = None
UpperCamelCase__ = "utf-8"
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = True # deprecated
UpperCamelCase__ = None # deprecated
UpperCamelCase__ = 10 << 20 # 10MB
UpperCamelCase__ = None
class __lowerCAmelCase ( datasets.ArrowBasedBuilder ):
UpperCamelCase__ = JsonConfig
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
if self.config.block_size is not None:
logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" )
a = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
"""The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" )
if self.config.newlines_in_values is not None:
raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" )
return datasets.DatasetInfo(features=self.config.features )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' )
a = dl_manager.download_and_extract(self.config.data_files )
if isinstance(__magic_name__ , (str, list, tuple) ):
a = data_files
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )]
a = []
for split_name, files in data_files.items():
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"""files""": files} ) )
return splits
def lowerCamelCase__ ( self :List[str] , __magic_name__ :pa.Table ):
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
a = self.config.features.arrow_schema.field(__magic_name__ ).type
a = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
a = table_cast(__magic_name__ , self.config.features.arrow_schema )
return pa_table
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Union[str, Any] ):
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
# We keep only the field we are interested in
a = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(__magic_name__ , (list, tuple) ):
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
else:
a = dataset
a = pa.Table.from_pydict(__magic_name__ )
yield file_idx, self._cast_table(__magic_name__ )
# If the file has one json object per line
else:
with open(__magic_name__ , """rb""" ) as f:
a = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
a = max(self.config.chunksize // 32 , 16 << 10 )
a = (
self.config.encoding_errors if self.config.encoding_errors is not None else """strict"""
)
while True:
a = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(__magic_name__ )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
a = batch.decode(self.config.encoding , errors=__magic_name__ ).encode("""utf-8""" )
try:
while True:
try:
a = paj.read_json(
io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(__magic_name__ , pa.ArrowInvalid )
and "straddling" not in str(__magic_name__ )
or block_size > len(__magic_name__ )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
F'Batch of {len(__magic_name__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
except json.JSONDecodeError:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON
try:
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
a = pa.Table.from_pydict(__magic_name__ )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(F'Not able to read records in the JSON file at {file}.' ) from None
yield file_idx, self._cast_table(__magic_name__ )
break
else:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(
F'Not able to read records in the JSON file at {file}. '
F'You should probably indicate the field of the JSON file containing your records. '
F'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. '
F'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(__magic_name__ )
batch_idx += 1
| 347 | 1 |
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import BatchEncoding, MarianTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available
if is_sentencepiece_available():
from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
__UpperCamelCase : Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model")
__UpperCamelCase : Any = {"target_lang": "fi", "source_lang": "en"}
__UpperCamelCase : Optional[int] = ">>zh<<"
__UpperCamelCase : List[Any] = "Helsinki-NLP/"
if is_torch_available():
__UpperCamelCase : str = "pt"
elif is_tf_available():
__UpperCamelCase : Union[str, Any] = "tf"
else:
__UpperCamelCase : int = "jax"
@require_sentencepiece
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = MarianTokenizer
UpperCamelCase__ = False
UpperCamelCase__ = True
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
super().setUp()
a = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""]
a = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
a = Path(self.tmpdirname )
save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] )
save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] )
if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists():
copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] )
copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] )
a = MarianTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCamelCase__ ( self :Any , **__magic_name__ :str ):
'''simple docstring'''
return MarianTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def lowerCamelCase__ ( self :Dict , __magic_name__ :List[Any] ):
'''simple docstring'''
return (
"This is a test",
"This is a test",
)
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = """</s>"""
a = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """</s>""" )
self.assertEqual(vocab_keys[1] , """<unk>""" )
self.assertEqual(vocab_keys[-1] , """<pad>""" )
self.assertEqual(len(__magic_name__ ) , 9 )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 9 )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = MarianTokenizer.from_pretrained(F'{ORG_NAME}opus-mt-en-de' )
a = en_de_tokenizer(["""I am a small frog"""] , return_tensors=__magic_name__ )
self.assertIsInstance(__magic_name__ , __magic_name__ )
a = [38, 121, 14, 697, 3_8848, 0]
self.assertListEqual(__magic_name__ , batch.input_ids[0] )
a = tempfile.mkdtemp()
en_de_tokenizer.save_pretrained(__magic_name__ )
a = [x.name for x in Path(__magic_name__ ).glob("""*""" )]
self.assertIn("""source.spm""" , __magic_name__ )
MarianTokenizer.from_pretrained(__magic_name__ )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = self.get_tokenizer()
a = tok(
["""I am a small frog""" * 1000, """I am a small frog"""] , padding=__magic_name__ , truncation=__magic_name__ , return_tensors=__magic_name__ )
self.assertIsInstance(__magic_name__ , __magic_name__ )
self.assertEqual(batch.input_ids.shape , (2, 512) )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.get_tokenizer()
a = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=__magic_name__ , return_tensors=__magic_name__ )
self.assertIsInstance(__magic_name__ , __magic_name__ )
self.assertEqual(batch_smaller.input_ids.shape , (2, 10) )
@slow
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = {"""input_ids""": [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__magic_name__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" )
a = """Tämä on testi"""
a = """This is a test"""
a = [76, 7, 2047, 2]
a = [69, 12, 11, 940, 2]
a = tokenizer(__magic_name__ ).input_ids
self.assertListEqual(__magic_name__ , __magic_name__ )
a = tokenizer(text_target=__magic_name__ ).input_ids
self.assertListEqual(__magic_name__ , __magic_name__ )
a = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
| 347 |
import warnings
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase : Dict = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = ['''input_ids''', '''attention_mask''']
def __init__( self :List[str] , __magic_name__ :int="</s>" , __magic_name__ :List[Any]="<unk>" , __magic_name__ :Optional[Any]="<pad>" , __magic_name__ :Optional[int]=125 , __magic_name__ :List[str]=None , **__magic_name__ :List[str] , ):
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
a = [F'<extra_id_{i}>' for i in range(__magic_name__ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
a = len(set(filter(lambda __magic_name__ : bool("""extra_id""" in str(__magic_name__ ) ) , __magic_name__ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'
""" provided to ByT5Tokenizer. In this case the additional_special_tokens must include the"""
""" extra_ids tokens""" )
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else pad_token
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else eos_token
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else unk_token
super().__init__(
eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , extra_ids=__magic_name__ , additional_special_tokens=__magic_name__ , **__magic_name__ , )
a = extra_ids
a = 2**8 # utf is 8 bits
# define special tokens dict
a = {
self.pad_token: 0,
self.eos_token: 1,
self.unk_token: 2,
}
a = len(self.special_tokens_encoder )
a = len(__magic_name__ )
for i, token in enumerate(__magic_name__ ):
a = self.vocab_size + i - n
a = {v: k for k, v in self.special_tokens_encoder.items()}
@property
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
return self._utf_vocab_size + self._num_special_tokens + self._extra_ids
def lowerCamelCase__ ( self :Any , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None , __magic_name__ :bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(__magic_name__ )) + [1]
return ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1]
def lowerCamelCase__ ( self :str , __magic_name__ :List[int] ):
'''simple docstring'''
if len(__magic_name__ ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'
""" eos tokens being added.""" )
return token_ids
else:
return token_ids + [self.eos_token_id]
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = self._add_eos_if_not_present(__magic_name__ )
if token_ids_a is None:
return token_ids_a
else:
a = self._add_eos_if_not_present(__magic_name__ )
return token_ids_a + token_ids_a
def lowerCamelCase__ ( self :List[str] , __magic_name__ :str ):
'''simple docstring'''
a = [chr(__magic_name__ ) for i in text.encode("""utf-8""" )]
return tokens
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
if token in self.special_tokens_encoder:
a = self.special_tokens_encoder[token]
elif token in self.added_tokens_encoder:
a = self.added_tokens_encoder[token]
elif len(__magic_name__ ) != 1:
a = self.unk_token_id
else:
a = ord(__magic_name__ ) + self._num_special_tokens
return token_id
def lowerCamelCase__ ( self :List[str] , __magic_name__ :Dict ):
'''simple docstring'''
if index in self.special_tokens_decoder:
a = self.special_tokens_decoder[index]
else:
a = chr(index - self._num_special_tokens )
return token
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Optional[int] ):
'''simple docstring'''
a = b""""""
for token in tokens:
if token in self.special_tokens_decoder:
a = self.special_tokens_decoder[token].encode("""utf-8""" )
elif token in self.added_tokens_decoder:
a = self.special_tokens_decoder[token].encode("""utf-8""" )
elif token in self.special_tokens_encoder:
a = token.encode("""utf-8""" )
elif token in self.added_tokens_encoder:
a = token.encode("""utf-8""" )
else:
a = bytes([ord(__magic_name__ )] )
bstring += tok_string
a = bstring.decode("""utf-8""" , errors="""ignore""" )
return string
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :str , __magic_name__ :Optional[str] = None ):
'''simple docstring'''
return ()
| 347 | 1 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__UpperCamelCase : str = logging.get_logger(__name__)
__UpperCamelCase : str = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.linear_k": "encoder.layers.*.self_attn.linear_k",
"self_attn.linear_v": "encoder.layers.*.self_attn.linear_v",
"self_attn.linear_q": "encoder.layers.*.self_attn.linear_q",
"self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u",
"self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v",
"self_attn.linear_out": "encoder.layers.*.self_attn.linear_out",
"self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos",
"self_attn.rotary_emb": "encoder.embed_positions",
"self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm",
"conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1",
"conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2",
"conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv",
"conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm",
"conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm",
"ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense",
"ffn1.w_2": "encoder.layers.*.ffn1.output_dense",
"ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm",
"ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense",
"ffn2.w_2": "encoder.layers.*.ffn2.output_dense",
"ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
__UpperCamelCase : str = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
for attribute in key.split(""".""" ):
a = getattr(__lowerCamelCase , __lowerCamelCase )
if weight_type is not None:
a = getattr(__lowerCamelCase , __lowerCamelCase ).shape
else:
a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
a = value
elif weight_type == "weight_g":
a = value
elif weight_type == "weight_v":
a = value
elif weight_type == "bias":
a = value
elif weight_type == "running_mean":
a = value
elif weight_type == "running_var":
a = value
elif weight_type == "num_batches_tracked":
a = value
elif weight_type == "inv_freq":
a = value
else:
a = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple:
a = []
a = fairseq_model.state_dict()
a = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
a = False
if "conv_layers" in name:
load_conv_layer(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , )
a = True
else:
for key, mapped_key in MAPPING.items():
a = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
a = True
if "*" in mapped_key:
a = name.split(__lowerCamelCase )[0].split(""".""" )[-2]
a = mapped_key.replace("""*""" , __lowerCamelCase )
if "pos_bias_u" in name:
a = None
elif "pos_bias_v" in name:
a = None
elif "weight_g" in name:
a = """weight_g"""
elif "weight_v" in name:
a = """weight_v"""
elif "bias" in name:
a = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
a = """weight"""
elif "running_mean" in name:
a = """running_mean"""
elif "inv_freq" in name:
a = """inv_freq"""
elif "running_var" in name:
a = """running_var"""
elif "num_batches_tracked" in name:
a = """num_batches_tracked"""
else:
a = None
set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
continue
if not is_used:
unused_weights.append(__lowerCamelCase )
logger.warning(f'Unused weights: {unused_weights}' )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple:
a = full_name.split("""conv_layers.""" )[-1]
a = name.split(""".""" )
a = int(items[0] )
a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(__lowerCamelCase )
@torch.no_grad()
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=True ) -> Optional[int]:
if config_path is not None:
a = WavaVecaConformerConfig.from_pretrained(__lowerCamelCase , hidden_act="""swish""" )
else:
a = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
a = """rotary"""
if is_finetuned:
if dict_path:
a = Dictionary.load(__lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
a = target_dict.pad_index
a = target_dict.bos_index
a = target_dict.eos_index
a = len(target_dict.symbols )
a = os.path.join(__lowerCamelCase , """vocab.json""" )
if not os.path.isdir(__lowerCamelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) )
return
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
a = target_dict.indices
# fairseq has the <pad> and <s> switched
a = 0
a = 1
with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(__lowerCamelCase , __lowerCamelCase )
a = WavaVecaCTCTokenizer(
__lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , )
a = True if config.feat_extract_norm == """layer""" else False
a = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
a = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase )
processor.save_pretrained(__lowerCamelCase )
a = WavaVecaConformerForCTC(__lowerCamelCase )
else:
a = WavaVecaConformerForPreTraining(__lowerCamelCase )
if is_finetuned:
a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
a = argparse.Namespace(task="""audio_pretraining""" )
a = fairseq.tasks.setup_task(__lowerCamelCase )
a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase )
a = model[0].eval()
recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned )
hf_wavavec.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__UpperCamelCase : Optional[Any] = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 347 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __lowerCAmelCase :
def __init__( self :Optional[int] , __magic_name__ :str , __magic_name__ :int=2 , __magic_name__ :List[str]=3 , __magic_name__ :Optional[int]=4 , __magic_name__ :str=2 , __magic_name__ :Any=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Dict=True , __magic_name__ :List[Any]=99 , __magic_name__ :Dict=36 , __magic_name__ :Optional[Any]=3 , __magic_name__ :str=4 , __magic_name__ :Optional[Any]=37 , __magic_name__ :Dict="gelu" , __magic_name__ :Any=0.1 , __magic_name__ :Union[str, Any]=0.1 , __magic_name__ :Dict=512 , __magic_name__ :str=16 , __magic_name__ :List[Any]=2 , __magic_name__ :Tuple=0.02 , __magic_name__ :Any=6 , __magic_name__ :Optional[int]=6 , __magic_name__ :Tuple=3 , __magic_name__ :str=4 , __magic_name__ :List[str]=None , __magic_name__ :str=1000 , ):
'''simple docstring'''
a = parent
a = batch_size
a = num_channels
a = image_size
a = patch_size
a = text_seq_length
a = is_training
a = use_input_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = coordinate_size
a = shape_size
a = num_labels
a = num_choices
a = scope
a = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
a = text_seq_length
a = (image_size // patch_size) ** 2 + 1
a = self.text_seq_length + self.image_seq_length
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
a = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
a = bbox[i, j, 3]
a = bbox[i, j, 1]
a = t
if bbox[i, j, 2] < bbox[i, j, 0]:
a = bbox[i, j, 2]
a = bbox[i, j, 0]
a = t
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = None
if self.use_input_mask:
a = random_attention_mask([self.batch_size, self.text_seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
a = None
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
a = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCamelCase__ ( self :int , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :List[str] , __magic_name__ :int , __magic_name__ :Tuple , __magic_name__ :int , __magic_name__ :Tuple , __magic_name__ :int ):
'''simple docstring'''
a = LayoutLMvaModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# text + image
a = model(__magic_name__ , pixel_values=__magic_name__ )
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
a = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , token_type_ids=__magic_name__ )
a = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
a = model(__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
a = model(pixel_values=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :List[Any] , __magic_name__ :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Union[str, Any] , __magic_name__ :int , __magic_name__ :Optional[int] , __magic_name__ :List[str] , __magic_name__ :List[str] ):
'''simple docstring'''
a = self.num_labels
a = LayoutLMvaForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Dict , __magic_name__ :Optional[Any] , __magic_name__ :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Dict , __magic_name__ :int , __magic_name__ :List[str] , __magic_name__ :Tuple ):
'''simple docstring'''
a = self.num_labels
a = LayoutLMvaForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :str , __magic_name__ :int , __magic_name__ :Optional[int] , __magic_name__ :str , __magic_name__ :List[str] , __magic_name__ :Optional[int] , __magic_name__ :Optional[Any] ):
'''simple docstring'''
a = LayoutLMvaForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
(
(
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) ,
) = config_and_inputs
a = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
UpperCamelCase__ = (
{'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel}
if is_torch_available()
else {}
)
def lowerCamelCase__ ( self :List[str] , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :Optional[Any] , __magic_name__ :List[str] , __magic_name__ :List[Any] ):
'''simple docstring'''
return True
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = LayoutLMvaModelTester(self )
a = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Dict , __magic_name__ :Any=False ):
'''simple docstring'''
a = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
a = {
k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous()
if isinstance(__magic_name__ , torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
a = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in get_values(__magic_name__ ):
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in [
*get_values(__magic_name__ ),
]:
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in [
*get_values(__magic_name__ ),
]:
a = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__magic_name__ , )
return inputs_dict
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
a = type
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a = LayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def __A ( ) -> str:
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
@cached_property
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(__magic_name__ )
a = self.default_image_processor
a = prepare_img()
a = image_processor(images=__magic_name__ , return_tensors="""pt""" ).pixel_values.to(__magic_name__ )
a = torch.tensor([[1, 2]] )
a = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
a = model(
input_ids=input_ids.to(__magic_name__ ) , bbox=bbox.to(__magic_name__ ) , pixel_values=pixel_values.to(__magic_name__ ) , )
# verify the logits
a = torch.Size((1, 199, 768) )
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
a = torch.tensor(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 347 | 1 |
from math import factorial
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> float:
if successes > trials:
raise ValueError("""successes must be lower or equal to trials""" )
if trials < 0 or successes < 0:
raise ValueError("""the function is defined for non-negative integers""" )
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not isinstance(__lowerCamelCase , __lowerCamelCase ):
raise ValueError("""the function is defined for non-negative integers""" )
if not 0 < prob < 1:
raise ValueError("""prob has to be in range of 1 - 0""" )
a = (prob**successes) * ((1 - prob) ** (trials - successes))
# Calculate the binomial coefficient: n! / k!(n-k)!
a = float(factorial(__lowerCamelCase ) )
coefficient /= factorial(__lowerCamelCase ) * factorial(trials - successes )
return probability * coefficient
if __name__ == "__main__":
from doctest import testmod
testmod()
print("Probability of 2 successes out of 4 trails")
print("with probability of 0.75 is:", end=" ")
print(binomial_distribution(2, 4, 0.75))
| 347 |
from copy import deepcopy
class __lowerCAmelCase :
def __init__( self :Union[str, Any] , __magic_name__ :list[int] | None = None , __magic_name__ :int | None = None ):
'''simple docstring'''
if arr is None and size is not None:
a = size
a = [0] * size
elif arr is not None:
self.init(__magic_name__ )
else:
raise ValueError("""Either arr or size must be specified""" )
def lowerCamelCase__ ( self :Dict , __magic_name__ :list[int] ):
'''simple docstring'''
a = len(__magic_name__ )
a = deepcopy(__magic_name__ )
for i in range(1 , self.size ):
a = self.next_(__magic_name__ )
if j < self.size:
self.tree[j] += self.tree[i]
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
a = self.next_(__magic_name__ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def lowerCamelCase__ ( __magic_name__ :int ):
'''simple docstring'''
return index + (index & (-index))
@staticmethod
def lowerCamelCase__ ( __magic_name__ :int ):
'''simple docstring'''
return index - (index & (-index))
def lowerCamelCase__ ( self :Any , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
a = self.next_(__magic_name__ )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
self.add(__magic_name__ , value - self.get(__magic_name__ ) )
def lowerCamelCase__ ( self :int , __magic_name__ :int ):
'''simple docstring'''
if right == 0:
return 0
a = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
a = self.prev(__magic_name__ )
return result
def lowerCamelCase__ ( self :int , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
return self.prefix(__magic_name__ ) - self.prefix(__magic_name__ )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :int ):
'''simple docstring'''
return self.query(__magic_name__ , index + 1 )
def lowerCamelCase__ ( self :Dict , __magic_name__ :int ):
'''simple docstring'''
value -= self.tree[0]
if value < 0:
return -1
a = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
a = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 1 |
import copy
import fnmatch
import json
import os
import pickle as pkl
import shutil
import sys
import tarfile
import tempfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from hashlib import shaaaa
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile
import cva
import numpy as np
import requests
import wget
from filelock import FileLock
from PIL import Image
from tqdm.auto import tqdm
from yaml import Loader, dump, load
try:
import torch
__UpperCamelCase : int = True
except ImportError:
__UpperCamelCase : Dict = False
try:
from torch.hub import _get_torch_home
__UpperCamelCase : Any = _get_torch_home()
except ImportError:
__UpperCamelCase : Any = os.path.expanduser(
os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch"))
)
__UpperCamelCase : Optional[int] = os.path.join(torch_cache_home, "transformers")
__UpperCamelCase : Any = "https://cdn.huggingface.co"
__UpperCamelCase : int = "https://s3.amazonaws.com/models.huggingface.co/bert"
__UpperCamelCase : Optional[Any] = "/".join(str(Path(__file__).resolve()).split("/")[:-1])
__UpperCamelCase : Optional[Any] = os.path.join(PATH, "config.yaml")
__UpperCamelCase : Any = os.path.join(PATH, "attributes.txt")
__UpperCamelCase : Union[str, Any] = os.path.join(PATH, "objects.txt")
__UpperCamelCase : Union[str, Any] = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path)
__UpperCamelCase : List[str] = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE)
__UpperCamelCase : Dict = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE)
__UpperCamelCase : List[Any] = "pytorch_model.bin"
__UpperCamelCase : List[Any] = "config.yaml"
def __A ( __lowerCamelCase=OBJECTS , __lowerCamelCase=ATTRIBUTES ) -> Dict:
a = []
with open(__lowerCamelCase ) as f:
for object in f.readlines():
vg_classes.append(object.split(""",""" )[0].lower().strip() )
a = []
with open(__lowerCamelCase ) as f:
for object in f.readlines():
vg_attrs.append(object.split(""",""" )[0].lower().strip() )
return vg_classes, vg_attrs
def __A ( __lowerCamelCase ) -> List[str]:
a = OrderedDict()
with open(__lowerCamelCase , """rb""" ) as f:
a = pkl.load(__lowerCamelCase )["""model"""]
for k in copy.deepcopy(list(ckp.keys() ) ):
a = ckp.pop(__lowerCamelCase )
if isinstance(__lowerCamelCase , np.ndarray ):
a = torch.tensor(__lowerCamelCase )
else:
assert isinstance(__lowerCamelCase , torch.tensor ), type(__lowerCamelCase )
a = v
return r
class __lowerCAmelCase :
UpperCamelCase__ = {}
def __init__( self :Optional[int] , __magic_name__ :dict , __magic_name__ :str = "root" , __magic_name__ :List[str]=0 ):
'''simple docstring'''
a = name
a = level
a = {}
for k, v in dictionary.items():
if v is None:
raise ValueError()
a = copy.deepcopy(__magic_name__ )
a = copy.deepcopy(__magic_name__ )
if isinstance(__magic_name__ , __magic_name__ ):
a = Config(__magic_name__ , name=__magic_name__ , level=level + 1 )
a = v
setattr(self , __magic_name__ , __magic_name__ )
a = d
def __repr__( self :int ):
'''simple docstring'''
return str(list((self._pointer.keys()) ) )
def __setattr__( self :Any , __magic_name__ :Tuple , __magic_name__ :List[str] ):
'''simple docstring'''
a = val
a = val
a = key.split(""".""" )
a = len(__magic_name__ ) - 1
a = self._pointer
if len(__magic_name__ ) > 1:
for i, l in enumerate(__magic_name__ ):
if hasattr(self , __magic_name__ ) and isinstance(getattr(self , __magic_name__ ) , __magic_name__ ):
setattr(getattr(self , __magic_name__ ) , """.""".join(levels[i:] ) , __magic_name__ )
if l == last_level:
a = val
else:
a = pointer[l]
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
return self._pointer
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :Union[str, Any] , __magic_name__ :Optional[Any] ):
'''simple docstring'''
with open(F'{file_name}' , """w""" ) as stream:
dump(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Any , __magic_name__ :Dict , __magic_name__ :Optional[Any] ):
'''simple docstring'''
with open(F'{file_name}' , """w""" ) as stream:
json.dump(__magic_name__ , __magic_name__ )
@staticmethod
def lowerCamelCase__ ( __magic_name__ :int ):
'''simple docstring'''
with open(__magic_name__ ) as stream:
a = load(__magic_name__ , Loader=__magic_name__ )
return data
def __str__( self :List[str] ):
'''simple docstring'''
a = """ """
if self._name != "root":
a = F'{t * (self._level-1)}{self._name}:\n'
else:
a = """"""
a = self._level
for i, (k, v) in enumerate(self._pointer.items() ):
if isinstance(__magic_name__ , __magic_name__ ):
r += F'{t * (self._level)}{v}\n'
self._level += 1
else:
r += F'{t * (self._level)}{k}: {v} ({type(__magic_name__ ).__name__})\n'
a = level
return r[:-1]
@classmethod
def lowerCamelCase__ ( cls :Union[str, Any] , __magic_name__ :str , **__magic_name__ :Dict ):
'''simple docstring'''
a , a = cls.get_config_dict(__magic_name__ , **__magic_name__ )
return cls(__magic_name__ )
@classmethod
def lowerCamelCase__ ( cls :int , __magic_name__ :str , **__magic_name__ :Union[str, Any] ):
'''simple docstring'''
a = kwargs.pop("""cache_dir""" , __magic_name__ )
a = kwargs.pop("""force_download""" , __magic_name__ )
a = kwargs.pop("""resume_download""" , __magic_name__ )
a = kwargs.pop("""proxies""" , __magic_name__ )
a = kwargs.pop("""local_files_only""" , __magic_name__ )
if os.path.isdir(__magic_name__ ):
a = os.path.join(__magic_name__ , __magic_name__ )
elif os.path.isfile(__magic_name__ ) or is_remote_url(__magic_name__ ):
a = pretrained_model_name_or_path
else:
a = hf_bucket_url(__magic_name__ , filename=__magic_name__ , use_cdn=__magic_name__ )
try:
# Load from URL or cache if already cached
a = cached_path(
__magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , proxies=__magic_name__ , resume_download=__magic_name__ , local_files_only=__magic_name__ , )
# Load config dict
if resolved_config_file is None:
raise EnvironmentError
a = Config.load_yaml(__magic_name__ )
except EnvironmentError:
a = """Can't load config for"""
raise EnvironmentError(__magic_name__ )
if resolved_config_file == config_file:
print("""loading configuration file from path""" )
else:
print("""loading configuration file cache""" )
return Config.load_yaml(__magic_name__ ), kwargs
def __A ( __lowerCamelCase ) -> Any:
a = torch.load("""dump.pt""" , map_location=in_tensor.device )
a = in_tensor.numpy()
a = out_tensor.numpy()[0]
print(na.shape , na[0, 0, :5] )
print(na.shape , na[0, 0, :5] )
assert np.allclose(__lowerCamelCase , __lowerCamelCase , rtol=0.01 , atol=0.1 ), (
f'{sum([1 for x in np.isclose(__lowerCamelCase , __lowerCamelCase , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %'
" element-wise mismatch"
)
raise Exception("""tensors are all good""" )
# Hugging face functions below
def __A ( __lowerCamelCase ) -> Union[str, Any]:
a = urlparse(__lowerCamelCase )
return parsed.scheme in ("http", "https")
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=True ) -> str:
a = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
a = """/""" not in model_id
if legacy_format:
return f'{endpoint}/{model_id}-{filename}'
else:
return f'{endpoint}/{model_id}/{filename}'
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=0 , __lowerCamelCase=None , ) -> List[str]:
a = """python/{}""".format(sys.version.split()[0] )
if _torch_available:
ua += "; torch/{}".format(torch.__version__ )
if isinstance(__lowerCamelCase , __lowerCamelCase ):
ua += "; " + "; ".join("""{}/{}""".format(__lowerCamelCase , __lowerCamelCase ) for k, v in user_agent.items() )
elif isinstance(__lowerCamelCase , __lowerCamelCase ):
ua += "; " + user_agent
a = {"""user-agent""": ua}
if resume_size > 0:
a = """bytes=%d-""" % (resume_size,)
a = requests.get(__lowerCamelCase , stream=__lowerCamelCase , proxies=__lowerCamelCase , headers=__lowerCamelCase )
if response.status_code == 416: # Range not satisfiable
return
a = response.headers.get("""Content-Length""" )
a = resume_size + int(__lowerCamelCase ) if content_length is not None else None
a = tqdm(
unit="""B""" , unit_scale=__lowerCamelCase , total=__lowerCamelCase , initial=__lowerCamelCase , desc="""Downloading""" , )
for chunk in response.iter_content(chunk_size=1024 ):
if chunk: # filter out keep-alive new chunks
progress.update(len(__lowerCamelCase ) )
temp_file.write(__lowerCamelCase )
progress.close()
def __A ( __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=False , __lowerCamelCase=None , __lowerCamelCase=10 , __lowerCamelCase=False , __lowerCamelCase=None , __lowerCamelCase=False , ) -> Optional[int]:
if cache_dir is None:
a = TRANSFORMERS_CACHE
if isinstance(__lowerCamelCase , __lowerCamelCase ):
a = str(__lowerCamelCase )
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
a = None
if not local_files_only:
try:
a = requests.head(__lowerCamelCase , allow_redirects=__lowerCamelCase , proxies=__lowerCamelCase , timeout=__lowerCamelCase )
if response.status_code == 200:
a = response.headers.get("""ETag""" )
except (EnvironmentError, requests.exceptions.Timeout):
# etag is already None
pass
a = url_to_filename(__lowerCamelCase , __lowerCamelCase )
# get cache path to put the file
a = os.path.join(__lowerCamelCase , __lowerCamelCase )
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if etag is None:
if os.path.exists(__lowerCamelCase ):
return cache_path
else:
a = [
file
for file in fnmatch.filter(os.listdir(__lowerCamelCase ) , filename + """.*""" )
if not file.endswith(""".json""" ) and not file.endswith(""".lock""" )
]
if len(__lowerCamelCase ) > 0:
return os.path.join(__lowerCamelCase , matching_files[-1] )
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise ValueError(
"""Cannot find the requested files in the cached path and outgoing traffic has been"""
""" disabled. To enable model look-ups and downloads online, set 'local_files_only'"""
""" to False.""" )
return None
# From now on, etag is not None.
if os.path.exists(__lowerCamelCase ) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
a = cache_path + """.lock"""
with FileLock(__lowerCamelCase ):
# If the download just completed while the lock was activated.
if os.path.exists(__lowerCamelCase ) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
a = cache_path + """.incomplete"""
@contextmanager
def _resumable_file_manager():
with open(__lowerCamelCase , """a+b""" ) as f:
yield f
a = _resumable_file_manager
if os.path.exists(__lowerCamelCase ):
a = os.stat(__lowerCamelCase ).st_size
else:
a = 0
else:
a = partial(tempfile.NamedTemporaryFile , dir=__lowerCamelCase , delete=__lowerCamelCase )
a = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
print(
"""%s not found in cache or force_download set to True, downloading to %s""" , __lowerCamelCase , temp_file.name , )
http_get(
__lowerCamelCase , __lowerCamelCase , proxies=__lowerCamelCase , resume_size=__lowerCamelCase , user_agent=__lowerCamelCase , )
os.replace(temp_file.name , __lowerCamelCase )
a = {"""url""": url, """etag""": etag}
a = cache_path + """.json"""
with open(__lowerCamelCase , """w""" ) as meta_file:
json.dump(__lowerCamelCase , __lowerCamelCase )
return cache_path
def __A ( __lowerCamelCase , __lowerCamelCase=None ) -> List[str]:
a = url.encode("""utf-8""" )
a = shaaaa(__lowerCamelCase )
a = url_hash.hexdigest()
if etag:
a = etag.encode("""utf-8""" )
a = shaaaa(__lowerCamelCase )
filename += "." + etag_hash.hexdigest()
if url.endswith(""".h5""" ):
filename += ".h5"
return filename
def __A ( __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=False , __lowerCamelCase=None , __lowerCamelCase=False , __lowerCamelCase=None , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=False , ) -> Union[str, Any]:
if cache_dir is None:
a = TRANSFORMERS_CACHE
if isinstance(__lowerCamelCase , __lowerCamelCase ):
a = str(__lowerCamelCase )
if isinstance(__lowerCamelCase , __lowerCamelCase ):
a = str(__lowerCamelCase )
if is_remote_url(__lowerCamelCase ):
# URL, so get it from the cache (downloading if necessary)
a = get_from_cache(
__lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , proxies=__lowerCamelCase , resume_download=__lowerCamelCase , user_agent=__lowerCamelCase , local_files_only=__lowerCamelCase , )
elif os.path.exists(__lowerCamelCase ):
# File, and it exists.
a = url_or_filename
elif urlparse(__lowerCamelCase ).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError("""file {} not found""".format(__lowerCamelCase ) )
else:
# Something unknown
raise ValueError("""unable to parse {} as a URL or as a local path""".format(__lowerCamelCase ) )
if extract_compressed_file:
if not is_zipfile(__lowerCamelCase ) and not tarfile.is_tarfile(__lowerCamelCase ):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
a , a = os.path.split(__lowerCamelCase )
a = output_file.replace(""".""" , """-""" ) + """-extracted"""
a = os.path.join(__lowerCamelCase , __lowerCamelCase )
if os.path.isdir(__lowerCamelCase ) and os.listdir(__lowerCamelCase ) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
a = output_path + """.lock"""
with FileLock(__lowerCamelCase ):
shutil.rmtree(__lowerCamelCase , ignore_errors=__lowerCamelCase )
os.makedirs(__lowerCamelCase )
if is_zipfile(__lowerCamelCase ):
with ZipFile(__lowerCamelCase , """r""" ) as zip_file:
zip_file.extractall(__lowerCamelCase )
zip_file.close()
elif tarfile.is_tarfile(__lowerCamelCase ):
a = tarfile.open(__lowerCamelCase )
tar_file.extractall(__lowerCamelCase )
tar_file.close()
else:
raise EnvironmentError("""Archive format of {} could not be identified""".format(__lowerCamelCase ) )
return output_path_extracted
return output_path
def __A ( __lowerCamelCase , __lowerCamelCase="," ) -> Optional[Any]:
assert isinstance(__lowerCamelCase , __lowerCamelCase )
if os.path.isfile(__lowerCamelCase ):
with open(__lowerCamelCase ) as f:
a = eval(f.read() )
else:
a = requests.get(__lowerCamelCase )
try:
a = requests.json()
except Exception:
a = req.content.decode()
assert data is not None, "could not connect"
try:
a = eval(__lowerCamelCase )
except Exception:
a = data.split("""\n""" )
req.close()
return data
def __A ( __lowerCamelCase ) -> Any:
a = requests.get(__lowerCamelCase )
a = np.array(Image.open(BytesIO(response.content ) ) )
return img
def __A ( __lowerCamelCase ) -> List[str]:
a = url.split("""/""" )[-1]
if fn not in os.listdir(os.getcwd() ):
wget.download(__lowerCamelCase )
with open(__lowerCamelCase , """rb""" ) as stream:
a = pkl.load(__lowerCamelCase )
a = weights.pop("""model""" )
a = {}
for k, v in model.items():
a = torch.from_numpy(__lowerCamelCase )
if "running_var" in k:
a = torch.tensor([0] )
a = k.replace("""running_var""" , """num_batches_tracked""" )
a = zero
return new
def __A ( ) -> str:
print(f'{os.path.abspath(os.path.join(__lowerCamelCase , os.pardir ) )}/demo.ipynb' )
def __A ( __lowerCamelCase , __lowerCamelCase="RGB" ) -> List[Any]:
assert isinstance(__lowerCamelCase , __lowerCamelCase )
if os.path.isfile(__lowerCamelCase ):
a = cva.imread(__lowerCamelCase )
else:
a = get_image_from_url(__lowerCamelCase )
assert img is not None, f'could not connect to: {im}'
a = cva.cvtColor(__lowerCamelCase , cva.COLOR_BGR2RGB )
if input_format == "RGB":
a = img[:, :, ::-1]
return img
def __A ( __lowerCamelCase , __lowerCamelCase=1 ) -> List[str]:
return (images[i : i + batch] for i in range(0 , len(__lowerCamelCase ) , __lowerCamelCase ))
| 347 |
from __future__ import annotations
from typing import Generic, TypeVar
__UpperCamelCase : Union[str, Any] = TypeVar("T")
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Tuple , __magic_name__ :T ):
'''simple docstring'''
a = data
a = self
a = 0
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Tuple ):
'''simple docstring'''
a = {}
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T ):
'''simple docstring'''
a = DisjointSetTreeNode(__magic_name__ )
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :T ):
'''simple docstring'''
a = self.map[data]
if elem_ref != elem_ref.parent:
a = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :DisjointSetTreeNode[T] , __magic_name__ :DisjointSetTreeNode[T] ):
'''simple docstring'''
if nodea.rank > nodea.rank:
a = nodea
else:
a = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T , __magic_name__ :T ):
'''simple docstring'''
self.link(self.find_set(__magic_name__ ) , self.find_set(__magic_name__ ) )
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Union[str, Any] ):
'''simple docstring'''
a = {}
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :T ):
'''simple docstring'''
if node not in self.connections:
a = {}
def lowerCamelCase__ ( self :Any , __magic_name__ :T , __magic_name__ :T , __magic_name__ :int ):
'''simple docstring'''
self.add_node(__magic_name__ )
self.add_node(__magic_name__ )
a = weight
a = weight
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = []
a = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda __magic_name__ : x[2] )
# creating the disjoint set
a = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(__magic_name__ )
# MST generation
a = 0
a = 0
a = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
a , a , a = edges[index]
index += 1
a = disjoint_set.find_set(__magic_name__ )
a = disjoint_set.find_set(__magic_name__ )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(__magic_name__ , __magic_name__ , __magic_name__ )
disjoint_set.union(__magic_name__ , __magic_name__ )
return graph
| 347 | 1 |
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :str , __magic_name__ :List[str] , __magic_name__ :List[Any]=3 , __magic_name__ :Dict=32 , __magic_name__ :Optional[Any]=3 , __magic_name__ :Dict=10 , __magic_name__ :List[Any]=[10, 20, 30, 40] , __magic_name__ :Dict=[1, 1, 2, 1] , __magic_name__ :Dict=True , __magic_name__ :Tuple=True , __magic_name__ :Optional[Any]="relu" , __magic_name__ :Optional[int]=3 , __magic_name__ :List[Any]=None , ):
'''simple docstring'''
a = parent
a = batch_size
a = image_size
a = num_channels
a = embeddings_size
a = hidden_sizes
a = depths
a = is_training
a = use_labels
a = hidden_act
a = num_labels
a = scope
a = len(__magic_name__ )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = self.get_config()
return config, pixel_values
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Any , __magic_name__ :str ):
'''simple docstring'''
a = FlaxRegNetModel(config=__magic_name__ )
a = model(__magic_name__ )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCamelCase__ ( self :Dict , __magic_name__ :Optional[Any] , __magic_name__ :Tuple ):
'''simple docstring'''
a = self.num_labels
a = FlaxRegNetForImageClassification(config=__magic_name__ )
a = model(__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a = config_and_inputs
a = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = FlaxRegNetModelTester(self )
a = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
return
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__magic_name__ )
@unittest.skip(reason="""RegNet does not use inputs_embeds""" )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
@unittest.skip(reason="""RegNet does not support input and output embeddings""" )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(__magic_name__ )
a = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a = [*signature.parameters.keys()]
a = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
def check_hidden_states_output(__magic_name__ :str , __magic_name__ :Optional[int] , __magic_name__ :Optional[int] ):
a = model_class(__magic_name__ )
a = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) )
a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
a = self.model_tester.num_stages
self.assertEqual(len(__magic_name__ ) , expected_num_stages + 1 )
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
a = True
check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
a = self._prepare_for_class(__magic_name__ , __magic_name__ )
a = model_class(__magic_name__ )
@jax.jit
def model_jitted(__magic_name__ :Dict , **__magic_name__ :Union[str, Any] ):
return model(pixel_values=__magic_name__ , **__magic_name__ )
with self.subTest("""JIT Enabled""" ):
a = model_jitted(**__magic_name__ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
a = model_jitted(**__magic_name__ ).to_tuple()
self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) )
for jitted_output, output in zip(__magic_name__ , __magic_name__ ):
self.assertEqual(jitted_output.shape , output.shape )
def __A ( ) -> str:
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
@cached_property
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None
@slow
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" )
a = self.default_image_processor
a = prepare_img()
a = image_processor(images=__magic_name__ , return_tensors="""np""" )
a = model(**__magic_name__ )
# verify the logits
a = (1, 1000)
self.assertEqual(outputs.logits.shape , __magic_name__ )
a = jnp.array([-0.4180, -1.5051, -3.4836] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
| 347 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = tempfile.mkdtemp()
a = BlipImageProcessor()
a = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" )
a = BlipProcessor(__magic_name__ , __magic_name__ )
processor.save_pretrained(self.tmpdirname )
def lowerCamelCase__ ( self :List[Any] , **__magic_name__ :Union[str, Any] ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer
def lowerCamelCase__ ( self :str , **__magic_name__ :List[str] ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
a = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
a = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
a = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 )
a = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__magic_name__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __magic_name__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __magic_name__ )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = self.prepare_image_inputs()
a = image_processor(__magic_name__ , return_tensors="""np""" )
a = processor(images=__magic_name__ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = processor(text=__magic_name__ )
a = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = self.prepare_image_inputs()
a = processor(text=__magic_name__ , images=__magic_name__ )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
# test if it raises when no input is passed
with pytest.raises(__magic_name__ ):
processor()
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
a = processor.batch_decode(__magic_name__ )
a = tokenizer.batch_decode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = self.prepare_image_inputs()
a = processor(text=__magic_name__ , images=__magic_name__ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
| 347 | 1 |
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class __lowerCAmelCase ( __magic_name__ ):
def __init__( self :str , __magic_name__ :Any , __magic_name__ :Union[str, Any] , __magic_name__ :Tuple ):
'''simple docstring'''
a = dataset
a = process
a = params
def __len__( self :int ):
'''simple docstring'''
return len(self.dataset )
def __getitem__( self :Union[str, Any] , __magic_name__ :Union[str, Any] ):
'''simple docstring'''
a = self.dataset[i]
a = self.process(__magic_name__ , **self.params )
return processed
class __lowerCAmelCase ( __magic_name__ ):
def __init__( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Dict , __magic_name__ :str , __magic_name__ :int=None ):
'''simple docstring'''
a = loader
a = infer
a = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
a = None
a = loader_batch_size
# Internal bookkeeping
a = None
a = None
def __len__( self :List[Any] ):
'''simple docstring'''
return len(self.loader )
def __iter__( self :Any ):
'''simple docstring'''
a = iter(self.loader )
return self
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
a = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
a = {}
for k, element in self._loader_batch_data.items():
if isinstance(__magic_name__ , __magic_name__ ):
# Convert ModelOutput to tuple first
a = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
a = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
a = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(__magic_name__ , __magic_name__ ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
a = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
a = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
a = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
a = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
a = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
a = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
a = self._loader_batch_data.__class__(__magic_name__ )
self._loader_batch_index += 1
return result
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
a = next(self.iterator )
a = self.infer(__magic_name__ , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(__magic_name__ , torch.Tensor ):
a = processed
else:
a = list(processed.keys() )[0]
a = processed[key]
if isinstance(__magic_name__ , __magic_name__ ):
a = len(__magic_name__ )
else:
a = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
a = observed_batch_size
# Setting internal index to unwrap the batch
a = processed
a = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class __lowerCAmelCase ( __magic_name__ ):
def __init__( self :Dict , __magic_name__ :int , __magic_name__ :Any , __magic_name__ :Tuple , __magic_name__ :List[str]=None ):
'''simple docstring'''
super().__init__(__magic_name__ , __magic_name__ , __magic_name__ )
def __iter__( self :int ):
'''simple docstring'''
a = iter(self.loader )
a = None
return self
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
if self.subiterator is None:
a = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
a = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
a = self.infer(next(self.iterator ) , **self.params )
a = next(self.subiterator )
return processed
class __lowerCAmelCase ( __magic_name__ ):
def __iter__( self :Optional[Any] ):
'''simple docstring'''
a = iter(self.loader )
return self
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = False
a = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
a = self.loader_batch_item()
a = item.pop("""is_last""" )
accumulator.append(__magic_name__ )
if is_last:
return accumulator
while not is_last:
a = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(__magic_name__ , torch.Tensor ):
a = processed
else:
a = list(processed.keys() )[0]
a = processed[key]
if isinstance(__magic_name__ , __magic_name__ ):
a = len(__magic_name__ )
else:
a = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
a = observed_batch_size
a = processed
a = 0
while self._loader_batch_index < self.loader_batch_size:
a = self.loader_batch_item()
a = item.pop("""is_last""" )
accumulator.append(__magic_name__ )
if is_last:
return accumulator
else:
a = processed
a = item.pop("""is_last""" )
accumulator.append(__magic_name__ )
return accumulator
class __lowerCAmelCase ( __magic_name__ ):
def __init__( self :Any , __magic_name__ :Dataset , __magic_name__ :str ):
'''simple docstring'''
a = dataset
a = key
def __len__( self :Tuple ):
'''simple docstring'''
return len(self.dataset )
def __getitem__( self :Union[str, Any] , __magic_name__ :Optional[Any] ):
'''simple docstring'''
return self.dataset[i][self.key]
class __lowerCAmelCase ( __magic_name__ ):
def __init__( self :List[Any] , __magic_name__ :Dataset , __magic_name__ :str , __magic_name__ :str ):
'''simple docstring'''
a = dataset
a = keya
a = keya
def __len__( self :Union[str, Any] ):
'''simple docstring'''
return len(self.dataset )
def __getitem__( self :Optional[Any] , __magic_name__ :Tuple ):
'''simple docstring'''
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 347 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCamelCase : int = {
"shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
UpperCamelCase__ = '''nat'''
UpperCamelCase__ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self :Any , __magic_name__ :int=4 , __magic_name__ :Dict=3 , __magic_name__ :List[str]=64 , __magic_name__ :Optional[int]=[3, 4, 6, 5] , __magic_name__ :int=[2, 4, 8, 16] , __magic_name__ :str=7 , __magic_name__ :Tuple=3.0 , __magic_name__ :Dict=True , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.1 , __magic_name__ :Optional[Any]="gelu" , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :Tuple=1E-5 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :int=None , __magic_name__ :Any=None , **__magic_name__ :Dict , ):
'''simple docstring'''
super().__init__(**__magic_name__ )
a = patch_size
a = num_channels
a = embed_dim
a = depths
a = len(__magic_name__ )
a = num_heads
a = kernel_size
a = mlp_ratio
a = qkv_bias
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = drop_path_rate
a = hidden_act
a = layer_norm_eps
a = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
a = int(embed_dim * 2 ** (len(__magic_name__ ) - 1) )
a = layer_scale_init_value
a = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(__magic_name__ ) + 1 )]
a , a = get_aligned_output_features_output_indices(
out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
| 347 | 1 |
import copy
import inspect
import unittest
from transformers import AutoBackbone
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import require_timm, require_torch, torch_device
from transformers.utils.import_utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
if is_torch_available():
import torch
from transformers import TimmBackbone, TimmBackboneConfig
from ...test_pipeline_mixin import PipelineTesterMixin
class __lowerCAmelCase :
def __init__( self :Tuple , __magic_name__ :List[str] , __magic_name__ :int=None , __magic_name__ :str=None , __magic_name__ :Dict=None , __magic_name__ :Union[str, Any]="resnet50" , __magic_name__ :int=3 , __magic_name__ :str=32 , __magic_name__ :int=3 , __magic_name__ :List[Any]=True , __magic_name__ :str=True , ):
'''simple docstring'''
a = parent
a = out_indices if out_indices is not None else [4]
a = stage_names
a = out_features
a = backbone
a = batch_size
a = image_size
a = num_channels
a = use_pretrained_backbone
a = is_training
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = self.get_config()
return config, pixel_values
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
return TimmBackboneConfig(
image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , )
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[Any] , __magic_name__ :Union[str, Any] ):
'''simple docstring'''
a = TimmBackbone(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
with torch.no_grad():
a = model(__magic_name__ )
self.parent.assertEqual(
result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a = config_and_inputs
a = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
@require_timm
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = (TimmBackbone,) if is_torch_available() else ()
UpperCamelCase__ = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {}
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = TimmBackboneModelTester(self )
a = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = """resnet18"""
a = """microsoft/resnet-18"""
a = AutoBackbone.from_pretrained(__magic_name__ , use_timm_backbone=__magic_name__ )
a = AutoBackbone.from_pretrained(__magic_name__ )
self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) )
self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) )
self.assertEqual(timm_model.channels , transformers_model.channels )
# Out indices are set to the last layer by default. For timm models, we don't know
# the number of layers in advance, so we set it to (-1,), whereas for transformers
# models, we set it to [len(stage_names) - 1] (kept for backward compatibility).
self.assertEqual(timm_model.out_indices , (-1,) )
self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] )
a = AutoBackbone.from_pretrained(__magic_name__ , use_timm_backbone=__magic_name__ , out_indices=[1, 2, 3] )
a = AutoBackbone.from_pretrained(__magic_name__ , out_indices=[1, 2, 3] )
self.assertEqual(timm_model.out_indices , transformers_model.out_indices )
self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) )
self.assertEqual(timm_model.channels , transformers_model.channels )
@unittest.skip("""TimmBackbone doesn't support feed forward chunking""" )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
pass
@unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
@unittest.skip("""TimmBackbone initialization is managed on the timm side""" )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
pass
@unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
pass
@unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
@unittest.skip("""model weights aren't tied in TimmBackbone.""" )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
@unittest.skip("""model weights aren't tied in TimmBackbone.""" )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
pass
@unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
pass
@unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
pass
@unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
@unittest.skip("""TimmBackbone doesn't support output_attentions.""" )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
pass
@unittest.skip("""Safetensors is not supported by timm.""" )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(__magic_name__ )
a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a = [*signature.parameters.keys()]
a = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __magic_name__ )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = True
a = self.has_attentions
# no need to test all models as different heads yield the same functionality
a = self.all_model_classes[0]
a = model_class(__magic_name__ )
model.to(__magic_name__ )
a = self._prepare_for_class(__magic_name__ , __magic_name__ )
a = model(**__magic_name__ )
a = outputs[0][-1]
# Encoder-/Decoder-only models
a = outputs.hidden_states[0]
hidden_states.retain_grad()
if self.has_attentions:
a = outputs.attentions[0]
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=__magic_name__ )
self.assertIsNotNone(hidden_states.grad )
if self.has_attentions:
self.assertIsNotNone(attentions.grad )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(**__magic_name__ )
self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) )
self.assertEqual(len(model.channels ) , len(config.out_indices ) )
# Check output of last stage is taken if out_features=None, out_indices=None
a = copy.deepcopy(__magic_name__ )
a = None
a = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(**__magic_name__ )
self.assertEqual(len(result.feature_maps ) , 1 )
self.assertEqual(len(model.channels ) , 1 )
# Check backbone can be initialized with fresh weights
a = copy.deepcopy(__magic_name__ )
a = False
a = model_class(__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(**__magic_name__ )
| 347 |
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = torch.permute(__lowerCamelCase , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ):
# linear layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
a = flax_key_tuple[:-1] + ("""weight""",)
return flax_key_tuple, flax_tensor
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
if "metadata" in layer:
a = layer.split("""metadata""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )]
elif "kvstore" in layer:
a = layer.split("""kvstore""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )]
else:
a = layer.split("""/""" )
a = """/""".join(split_layer[:-1] )
a = (split_layer[-1],)
if "kvstore/path" in layer:
a = f'{switch_checkpoint_path}/{checkpoint_info[layer]}'
elif "kvstore/driver" in layer:
a = """file"""
else:
a = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
a = rename_keys(__lowerCamelCase )
a = {}
for k, v in current_block.items():
a = v
a = new_current_block
torch.save(__lowerCamelCase , __lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = WEIGHTS_NAME ) -> List[str]:
a = convert_file_size_to_int(__lowerCamelCase )
a = []
a = {}
a = 0
a = 0
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp:
a = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""]
a = flatten_dict(__lowerCamelCase , sep="""/""" )
a = {}
for layer in checkpoint_info.keys():
a , a , a = get_key_and_tensorstore_dict(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if curr_real_layer_name in all_layers:
a = content
else:
a = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
a = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
a = torch.tensor(__lowerCamelCase )
a = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
a , a = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __lowerCamelCase )
a = """/""".join(__lowerCamelCase )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
a = os.path.join(
__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
del current_block
a = {}
a = 0
a = raw_weights.to(getattr(__lowerCamelCase , __lowerCamelCase ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(__lowerCamelCase ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
a = {}
a = {}
for idx, shard in enumerate(__lowerCamelCase ):
a = weights_name.replace(
""".bin""" , f'-{idx+1:05d}-of-{len(__lowerCamelCase ):05d}.bin' ) # len(sharded_state_dicts):05d}
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{idx+1:05d}-of-???.bin' ) )
os.rename(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
a = shard
for key in shard:
a = shard_file
# Add the metadata
a = {"""total_size""": total_size}
a = {"""metadata""": metadata, """weight_map""": weight_map}
with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f:
a = json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase ) + """\n"""
f.write(__lowerCamelCase )
return metadata, index
if __name__ == "__main__":
__UpperCamelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--switch_t5x_checkpoint_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size")
parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted",
type=str,
required=False,
help="Path to the output pytorch model.",
)
__UpperCamelCase : Any = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def __A ( ) -> Tuple:
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
a = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" )
config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" )
a = SwitchTransformersForConditionalGeneration.from_pretrained(
"""/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" )
a = TaTokenizer.from_pretrained("""t5-small""" )
a = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."""
a = tokenizer(__lowerCamelCase , return_tensors="""pt""" ).input_ids
a = model.generate(__lowerCamelCase , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 347 | 1 |
import os
import re
import warnings
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_ta import TaTokenizer
else:
__UpperCamelCase : Tuple = None
__UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
__UpperCamelCase : List[str] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
__UpperCamelCase : Dict = {
"vocab_file": {
"t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model",
"t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model",
"t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model",
},
"tokenizer_file": {
"t5-small": "https://huggingface.co/t5-small/resolve/main/tokenizer.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/tokenizer.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/tokenizer.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/tokenizer.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/tokenizer.json",
},
}
# TODO(PVP) - this should be removed in Transformers v5
__UpperCamelCase : str = {
"t5-small": 512,
"t5-base": 512,
"t5-large": 512,
"t5-3b": 512,
"t5-11b": 512,
}
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = VOCAB_FILES_NAMES
UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase__ = ['''input_ids''', '''attention_mask''']
UpperCamelCase__ = TaTokenizer
UpperCamelCase__ = []
def __init__( self :int , __magic_name__ :List[str]=None , __magic_name__ :Any=None , __magic_name__ :Dict="</s>" , __magic_name__ :str="<unk>" , __magic_name__ :int="<pad>" , __magic_name__ :int=100 , __magic_name__ :List[str]=None , **__magic_name__ :Optional[int] , ):
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
a = [F'<extra_id_{i}>' for i in range(__magic_name__ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra special tokens
a = len(set(filter(lambda __magic_name__ : bool("""extra_id_""" in str(__magic_name__ ) ) , __magic_name__ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'
""" provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids"""
""" tokens""" )
super().__init__(
__magic_name__ , tokenizer_file=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , extra_ids=__magic_name__ , additional_special_tokens=__magic_name__ , **__magic_name__ , )
a = vocab_file
a = False if not self.vocab_file else True
a = extra_ids
@staticmethod
def lowerCamelCase__ ( __magic_name__ :Tuple , __magic_name__ :int , __magic_name__ :List[str] ):
'''simple docstring'''
if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes:
a = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
"""This tokenizer was incorrectly instantiated with a model max length of"""
F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this'
""" behavior is kept to avoid breaking backwards compatibility when padding/encoding with"""
""" `truncation is True`.\n- Be aware that you SHOULD NOT rely on"""
F' {pretrained_model_name_or_path} automatically truncating your input to'
F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences'
F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with'
""" `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please"""
""" instantiate this tokenizer with `model_max_length` set to your preferred value.""" , __magic_name__ , )
return max_model_length
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :str , __magic_name__ :Optional[str] = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(__magic_name__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
a = os.path.join(
__magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ):
copyfile(self.vocab_file , __magic_name__ )
logger.info(F'Copy vocab file to {out_vocab_file}' )
return (out_vocab_file,)
def lowerCamelCase__ ( self :int , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return self.prefix_tokens + token_ids_a
else:
a = token_ids_a + [self.eos_token_id]
return self.prefix_tokens + token_ids_a + token_ids_a
def lowerCamelCase__ ( self :Tuple , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
return list(
set(filter(lambda __magic_name__ : bool(re.search(r"""<extra_id_\d+>""" , __magic_name__ ) ) is not None , self.additional_special_tokens ) ) )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
return [self.convert_tokens_to_ids(__magic_name__ ) for token in self.get_sentinel_tokens()]
| 347 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
__UpperCamelCase : Union[str, Any] = (720, 1_280) # Height, Width
__UpperCamelCase : Any = (0.4, 0.6) # if height or width lower than this scale, drop it.
__UpperCamelCase : str = 1 / 100
__UpperCamelCase : Optional[int] = ""
__UpperCamelCase : List[Any] = ""
__UpperCamelCase : Union[str, Any] = ""
__UpperCamelCase : Tuple = 250
def __A ( ) -> None:
a , a = get_dataset(__lowerCamelCase , __lowerCamelCase )
for index in range(__lowerCamelCase ):
a = random.sample(range(len(__lowerCamelCase ) ) , 4 )
a , a , a = update_image_and_anno(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , filter_scale=__lowerCamelCase , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
a = random_chars(32 )
a = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
a = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}'
cva.imwrite(f'{file_root}.jpg' , __lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' )
a = []
for anno in new_annos:
a = anno[3] - anno[1]
a = anno[4] - anno[2]
a = anno[1] + width / 2
a = anno[2] + height / 2
a = f'{anno[0]} {x_center} {y_center} {width} {height}'
annos_list.append(__lowerCamelCase )
with open(f'{file_root}.txt' , """w""" ) as outfile:
outfile.write("""\n""".join(line for line in annos_list ) )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> tuple[list, list]:
a = []
a = []
for label_file in glob.glob(os.path.join(__lowerCamelCase , """*.txt""" ) ):
a = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
with open(__lowerCamelCase ) as in_file:
a = in_file.readlines()
a = os.path.join(__lowerCamelCase , f'{label_name}.jpg' )
a = []
for obj_list in obj_lists:
a = obj_list.rstrip("""\n""" ).split(""" """ )
a = float(obj[1] ) - float(obj[3] ) / 2
a = float(obj[2] ) - float(obj[4] ) / 2
a = float(obj[1] ) + float(obj[3] ) / 2
a = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(__lowerCamelCase )
labels.append(__lowerCamelCase )
return img_paths, labels
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 0.0 , ) -> tuple[list, list, str]:
a = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
a = int(scale_x * output_size[1] )
a = int(scale_y * output_size[0] )
a = []
a = []
for i, index in enumerate(__lowerCamelCase ):
a = all_img_list[index]
path_list.append(__lowerCamelCase )
a = all_annos[index]
a = cva.imread(__lowerCamelCase )
if i == 0: # top-left
a = cva.resize(__lowerCamelCase , (divid_point_x, divid_point_y) )
a = img
for bbox in img_annos:
a = bbox[1] * scale_x
a = bbox[2] * scale_y
a = bbox[3] * scale_x
a = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
a = cva.resize(__lowerCamelCase , (output_size[1] - divid_point_x, divid_point_y) )
a = img
for bbox in img_annos:
a = scale_x + bbox[1] * (1 - scale_x)
a = bbox[2] * scale_y
a = scale_x + bbox[3] * (1 - scale_x)
a = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
a = cva.resize(__lowerCamelCase , (divid_point_x, output_size[0] - divid_point_y) )
a = img
for bbox in img_annos:
a = bbox[1] * scale_x
a = scale_y + bbox[2] * (1 - scale_y)
a = bbox[3] * scale_x
a = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
a = cva.resize(
__lowerCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
a = img
for bbox in img_annos:
a = scale_x + bbox[1] * (1 - scale_x)
a = scale_y + bbox[2] * (1 - scale_y)
a = scale_x + bbox[3] * (1 - scale_x)
a = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
a = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def __A ( __lowerCamelCase ) -> str:
assert number_char > 1, "The number of character should greater than 1"
a = ascii_lowercase + digits
return "".join(random.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 347 | 1 |
from ..utils import DummyObject, requires_backends
class __lowerCAmelCase ( metaclass=__magic_name__ ):
UpperCamelCase__ = ['''keras_nlp''']
def __init__( self :Union[str, Any] , *__magic_name__ :Union[str, Any] , **__magic_name__ :str ):
'''simple docstring'''
requires_backends(self , ["""keras_nlp"""] )
| 347 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase : Optional[Any] = {
"configuration_mobilenet_v2": [
"MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP",
"MobileNetV2Config",
"MobileNetV2OnnxConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = ["MobileNetV2FeatureExtractor"]
__UpperCamelCase : Tuple = ["MobileNetV2ImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
"MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
"MobileNetV2ForImageClassification",
"MobileNetV2ForSemanticSegmentation",
"MobileNetV2Model",
"MobileNetV2PreTrainedModel",
"load_tf_weights_in_mobilenet_v2",
]
if TYPE_CHECKING:
from .configuration_mobilenet_va import (
MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileNetVaConfig,
MobileNetVaOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor
from .image_processing_mobilenet_va import MobileNetVaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilenet_va import (
MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileNetVaForImageClassification,
MobileNetVaForSemanticSegmentation,
MobileNetVaModel,
MobileNetVaPreTrainedModel,
load_tf_weights_in_mobilenet_va,
)
else:
import sys
__UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 1 |
import argparse
import csv
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from tqdm import tqdm, trange
from transformers import (
CONFIG_NAME,
WEIGHTS_NAME,
AdamW,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTTokenizer,
get_linear_schedule_with_warmup,
)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
__UpperCamelCase : Any = logging.getLogger(__name__)
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]:
a = np.argmax(__lowerCamelCase , axis=1 )
return np.sum(outputs == labels )
def __A ( __lowerCamelCase ) -> int:
with open(__lowerCamelCase , encoding="""utf_8""" ) as f:
a = csv.reader(__lowerCamelCase )
a = []
next(__lowerCamelCase ) # skip the first line
for line in tqdm(__lowerCamelCase ):
output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) )
return output
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any:
a = []
for dataset in encoded_datasets:
a = len(__lowerCamelCase )
a = np.zeros((n_batch, 2, input_len) , dtype=np.intaa )
a = np.zeros((n_batch, 2) , dtype=np.intaa )
a = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa )
a = np.zeros((n_batch,) , dtype=np.intaa )
for (
i,
(story, conta, conta, mc_label),
) in enumerate(__lowerCamelCase ):
a = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
a = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
a = with_conta
a = with_conta
a = len(__lowerCamelCase ) - 1
a = len(__lowerCamelCase ) - 1
a = with_conta
a = with_conta
a = mc_label
a = (input_ids, mc_token_ids, lm_labels, mc_labels)
tensor_datasets.append(tuple(torch.tensor(__lowerCamelCase ) for t in all_inputs ) )
return tensor_datasets
def __A ( ) -> Union[str, Any]:
a = argparse.ArgumentParser()
parser.add_argument("""--model_name""" , type=__lowerCamelCase , default="""openai-gpt""" , help="""pretrained model name""" )
parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" )
parser.add_argument("""--do_eval""" , action="""store_true""" , help="""Whether to run eval on the dev set.""" )
parser.add_argument(
"""--output_dir""" , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help="""The output directory where the model predictions and checkpoints will be written.""" , )
parser.add_argument("""--train_dataset""" , type=__lowerCamelCase , default="""""" )
parser.add_argument("""--eval_dataset""" , type=__lowerCamelCase , default="""""" )
parser.add_argument("""--seed""" , type=__lowerCamelCase , default=42 )
parser.add_argument("""--num_train_epochs""" , type=__lowerCamelCase , default=3 )
parser.add_argument("""--train_batch_size""" , type=__lowerCamelCase , default=8 )
parser.add_argument("""--eval_batch_size""" , type=__lowerCamelCase , default=16 )
parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=__lowerCamelCase , help="""Epsilon for Adam optimizer.""" )
parser.add_argument("""--max_grad_norm""" , type=__lowerCamelCase , default=1 )
parser.add_argument(
"""--max_steps""" , default=-1 , type=__lowerCamelCase , help=(
"""If > 0: set total number of training steps to perform. Override num_train_epochs."""
) , )
parser.add_argument(
"""--gradient_accumulation_steps""" , type=__lowerCamelCase , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , )
parser.add_argument("""--learning_rate""" , type=__lowerCamelCase , default=6.2_5E-5 )
parser.add_argument("""--warmup_steps""" , default=0 , type=__lowerCamelCase , help="""Linear warmup over warmup_steps.""" )
parser.add_argument("""--lr_schedule""" , type=__lowerCamelCase , default="""warmup_linear""" )
parser.add_argument("""--weight_decay""" , type=__lowerCamelCase , default=0.01 )
parser.add_argument("""--lm_coef""" , type=__lowerCamelCase , default=0.9 )
parser.add_argument("""--n_valid""" , type=__lowerCamelCase , default=374 )
parser.add_argument("""--server_ip""" , type=__lowerCamelCase , default="""""" , help="""Can be used for distant debugging.""" )
parser.add_argument("""--server_port""" , type=__lowerCamelCase , default="""""" , help="""Can be used for distant debugging.""" )
a = parser.parse_args()
print(__lowerCamelCase )
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("""Waiting for debugger attach""" )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCamelCase )
ptvsd.wait_for_attach()
random.seed(args.seed )
np.random.seed(args.seed )
torch.manual_seed(args.seed )
torch.cuda.manual_seed_all(args.seed )
a = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
a = torch.cuda.device_count()
logger.info("""device: {}, n_gpu {}""".format(__lowerCamelCase , __lowerCamelCase ) )
if not args.do_train and not args.do_eval:
raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" )
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
# Load tokenizer and model
# This loading functions also add new tokens and embeddings called `special tokens`
# These new embeddings will be fine-tuned on the RocStories dataset
a = ["""_start_""", """_delimiter_""", """_classify_"""]
a = OpenAIGPTTokenizer.from_pretrained(args.model_name )
tokenizer.add_tokens(__lowerCamelCase )
a = tokenizer.convert_tokens_to_ids(__lowerCamelCase )
a = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name )
model.resize_token_embeddings(len(__lowerCamelCase ) )
model.to(__lowerCamelCase )
# Load and encode the datasets
def tokenize_and_encode(__lowerCamelCase ):
if isinstance(__lowerCamelCase , __lowerCamelCase ):
return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__lowerCamelCase ) )
elif isinstance(__lowerCamelCase , __lowerCamelCase ):
return obj
return [tokenize_and_encode(__lowerCamelCase ) for o in obj]
logger.info("""Encoding dataset...""" )
a = load_rocstories_dataset(args.train_dataset )
a = load_rocstories_dataset(args.eval_dataset )
a = (train_dataset, eval_dataset)
a = tokenize_and_encode(__lowerCamelCase )
# Compute the max input length for the Transformer
a = model.config.n_positions // 2 - 2
a = max(
len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3
for dataset in encoded_datasets
for story, conta, conta, _ in dataset )
a = min(__lowerCamelCase , model.config.n_positions ) # Max size of input for the pre-trained model
# Prepare inputs tensors and dataloaders
a = pre_process_datasets(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , *__lowerCamelCase )
a , a = tensor_datasets[0], tensor_datasets[1]
a = TensorDataset(*__lowerCamelCase )
a = RandomSampler(__lowerCamelCase )
a = DataLoader(__lowerCamelCase , sampler=__lowerCamelCase , batch_size=args.train_batch_size )
a = TensorDataset(*__lowerCamelCase )
a = SequentialSampler(__lowerCamelCase )
a = DataLoader(__lowerCamelCase , sampler=__lowerCamelCase , batch_size=args.eval_batch_size )
# Prepare optimizer
if args.do_train:
if args.max_steps > 0:
a = args.max_steps
a = args.max_steps // (len(__lowerCamelCase ) // args.gradient_accumulation_steps) + 1
else:
a = len(__lowerCamelCase ) // args.gradient_accumulation_steps * args.num_train_epochs
a = list(model.named_parameters() )
a = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""]
a = [
{
"""params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )],
"""weight_decay""": args.weight_decay,
},
{"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0},
]
a = AdamW(__lowerCamelCase , lr=args.learning_rate , eps=args.adam_epsilon )
a = get_linear_schedule_with_warmup(
__lowerCamelCase , num_warmup_steps=args.warmup_steps , num_training_steps=__lowerCamelCase )
if args.do_train:
a , a , a = 0, 0, None
model.train()
for _ in trange(int(args.num_train_epochs ) , desc="""Epoch""" ):
a = 0
a = 0
a = tqdm(__lowerCamelCase , desc="""Training""" )
for step, batch in enumerate(__lowerCamelCase ):
a = tuple(t.to(__lowerCamelCase ) for t in batch )
a , a , a , a = batch
a = model(__lowerCamelCase , mc_token_ids=__lowerCamelCase , lm_labels=__lowerCamelCase , mc_labels=__lowerCamelCase )
a = args.lm_coef * losses[0] + losses[1]
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
tr_loss += loss.item()
a = (
loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item()
)
nb_tr_steps += 1
a = """Training loss: {:.2e} lr: {:.2e}""".format(__lowerCamelCase , scheduler.get_lr()[0] )
# Save a trained model
if args.do_train:
# Save a trained model, configuration and tokenizer
a = model.module if hasattr(__lowerCamelCase , """module""" ) else model # Only save the model itself
# If we save using the predefined names, we can load using `from_pretrained`
a = os.path.join(args.output_dir , __lowerCamelCase )
a = os.path.join(args.output_dir , __lowerCamelCase )
torch.save(model_to_save.state_dict() , __lowerCamelCase )
model_to_save.config.to_json_file(__lowerCamelCase )
tokenizer.save_vocabulary(args.output_dir )
# Load a trained model and vocabulary that you have fine-tuned
a = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir )
a = OpenAIGPTTokenizer.from_pretrained(args.output_dir )
model.to(__lowerCamelCase )
if args.do_eval:
model.eval()
a , a = 0, 0
a , a = 0, 0
for batch in tqdm(__lowerCamelCase , desc="""Evaluating""" ):
a = tuple(t.to(__lowerCamelCase ) for t in batch )
a , a , a , a = batch
with torch.no_grad():
a , a , a , a = model(
__lowerCamelCase , mc_token_ids=__lowerCamelCase , lm_labels=__lowerCamelCase , mc_labels=__lowerCamelCase )
a = mc_logits.detach().cpu().numpy()
a = mc_labels.to("""cpu""" ).numpy()
a = accuracy(__lowerCamelCase , __lowerCamelCase )
eval_loss += mc_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0 )
nb_eval_steps += 1
a = eval_loss / nb_eval_steps
a = eval_accuracy / nb_eval_examples
a = tr_loss / nb_tr_steps if args.do_train else None
a = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss}
a = os.path.join(args.output_dir , """eval_results.txt""" )
with open(__lowerCamelCase , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key in sorted(result.keys() ):
logger.info(""" %s = %s""" , __lowerCamelCase , str(result[key] ) )
writer.write("""%s = %s\n""" % (key, str(result[key] )) )
if __name__ == "__main__":
main()
| 347 |
def __A ( __lowerCamelCase ) -> bool:
if num < 0:
return False
a = num
a = 0
while num > 0:
a = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 1 |
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available
from . import BaseDiffusersCLICommand
def __A ( __lowerCamelCase ) -> Optional[Any]:
return EnvironmentCommand()
class __lowerCAmelCase ( __magic_name__ ):
@staticmethod
def lowerCamelCase__ ( __magic_name__ :ArgumentParser ):
'''simple docstring'''
a = parser.add_parser("""env""" )
download_parser.set_defaults(func=__magic_name__ )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = huggingface_hub.__version__
a = """not installed"""
a = """NA"""
if is_torch_available():
import torch
a = torch.__version__
a = torch.cuda.is_available()
a = """not installed"""
if is_transformers_available():
import transformers
a = transformers.__version__
a = """not installed"""
if is_accelerate_available():
import accelerate
a = accelerate.__version__
a = """not installed"""
if is_xformers_available():
import xformers
a = xformers.__version__
a = {
"""`diffusers` version""": version,
"""Platform""": platform.platform(),
"""Python version""": platform.python_version(),
"""PyTorch version (GPU?)""": F'{pt_version} ({pt_cuda_available})',
"""Huggingface_hub version""": hub_version,
"""Transformers version""": transformers_version,
"""Accelerate version""": accelerate_version,
"""xFormers version""": xformers_version,
"""Using GPU in script?""": """<fill in>""",
"""Using distributed or parallel set-up in script?""": """<fill in>""",
}
print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" )
print(self.format_dict(__magic_name__ ) )
return info
@staticmethod
def lowerCamelCase__ ( __magic_name__ :Union[str, Any] ):
'''simple docstring'''
return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
| 347 |
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = CanineTokenizer
UpperCamelCase__ = False
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
super().setUp()
a = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def lowerCamelCase__ ( self :Tuple , **__magic_name__ :Dict ):
'''simple docstring'''
a = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
a = 1024
return tokenizer
@require_torch
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.canine_tokenizer
a = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
a = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0]
# fmt: on
a = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
self.assertIsInstance(__magic_name__ , __magic_name__ )
a = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.canine_tokenizer
a = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
a = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , __magic_name__ )
self.assertIn("""attention_mask""" , __magic_name__ )
self.assertIn("""token_type_ids""" , __magic_name__ )
@require_torch
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.canine_tokenizer
a = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
a = tokenizer(
text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
a = tempfile.mkdtemp()
a = """ He is very happy, UNwant\u00E9d,running"""
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
a = tokenizer.__class__.from_pretrained(__magic_name__ )
a = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
shutil.rmtree(__magic_name__ )
a = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
a = tempfile.mkdtemp()
a = """ He is very happy, UNwant\u00E9d,running"""
a = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
a = chr(0Xe_0_0_7 )
additional_special_tokens.append(__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
a = tokenizer.__class__.from_pretrained(__magic_name__ )
a = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
a = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__magic_name__ )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a , a = self.get_clean_sequence(__magic_name__ )
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_5
a = chr(__magic_name__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
a = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , input_encoded + special_token_id )
a = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = chr(0Xe_0_0_5 )
a = chr(0Xe_0_0_6 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
a = tokenizer.tokenize(__magic_name__ )
a = tokenizer.tokenize(__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(token_a[0] , __magic_name__ )
self.assertEqual(token_a[0] , __magic_name__ )
@require_tokenizers
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_6
a = chr(__magic_name__ )
a = AddedToken(__magic_name__ , lstrip=__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__magic_name__ )
tokenizer.from_pretrained(__magic_name__ )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__magic_name__ )
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
a = json.load(__magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
a = json.load(__magic_name__ )
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_6
a = chr(__magic_name__ )
a = [new_token_a]
a = [new_token_a]
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
a = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
a = 0Xe_0_0_7
a = chr(__magic_name__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
a = [AddedToken(__magic_name__ , lstrip=__magic_name__ )]
a = tokenizer_class.from_pretrained(
__magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = """hello world"""
if self.space_between_special_tokens:
a = """[CLS] hello world [SEP]"""
else:
a = input
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__magic_name__ , [output, output.lower()] )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
a = """a"""
a = ord(__magic_name__ )
for attr in attributes_list:
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] )
a = 0Xe_0_0_6
a = chr(__magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
| 347 | 1 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
@slow
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=__magic_name__ ).to(__magic_name__ )
a = AutoTokenizer.from_pretrained("""google/mt5-small""" )
a = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids
a = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids
a = model(input_ids.to(__magic_name__ ) , labels=labels.to(__magic_name__ ) ).loss
a = -(labels.shape[-1] * loss.item())
a = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 347 |
def __A ( __lowerCamelCase ) -> bool:
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 1 |
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class __lowerCAmelCase ( __magic_name__ ):
def __init__( self :Tuple , __magic_name__ :Any , __magic_name__ :Optional[int] ):
'''simple docstring'''
a = params
a = np.array(__magic_name__ )
a = np.array([len(__magic_name__ ) for t in data] )
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self :List[Any] , __magic_name__ :str ):
'''simple docstring'''
return (self.token_ids[index], self.lengths[index])
def __len__( self :int ):
'''simple docstring'''
return len(self.lengths )
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
assert len(self.token_ids ) == len(self.lengths )
assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.params.max_model_input_size
a = self.lengths > max_len
logger.info(F'Splitting {sum(__magic_name__ )} too long sequences.' )
def divide_chunks(__magic_name__ :List[Any] , __magic_name__ :str ):
return [l[i : i + n] for i in range(0 , len(__magic_name__ ) , __magic_name__ )]
a = []
a = []
if self.params.mlm:
a , a = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""]
else:
a , a = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""]
for seq_, len_ in zip(self.token_ids , self.lengths ):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_ )
new_lengths.append(len_ )
else:
a = []
for sub_s in divide_chunks(seq_ , max_len - 2 ):
if sub_s[0] != cls_id:
a = np.insert(__magic_name__ , 0 , __magic_name__ )
if sub_s[-1] != sep_id:
a = np.insert(__magic_name__ , len(__magic_name__ ) , __magic_name__ )
assert len(__magic_name__ ) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(__magic_name__ )
new_tok_ids.extend(__magic_name__ )
new_lengths.extend([len(__magic_name__ ) for l in sub_seqs] )
a = np.array(__magic_name__ )
a = np.array(__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = len(self )
a = self.lengths > 11
a = self.token_ids[indices]
a = self.lengths[indices]
a = len(self )
logger.info(F'Remove {init_size - new_size} too short (<=11 tokens) sequences.' )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
if "unk_token" not in self.params.special_tok_ids:
return
else:
a = self.params.special_tok_ids["""unk_token"""]
a = len(self )
a = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] )
a = (unk_occs / self.lengths) < 0.5
a = self.token_ids[indices]
a = self.lengths[indices]
a = len(self )
logger.info(F'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).' )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
if not self.params.is_master:
return
logger.info(F'{len(self )} sequences' )
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def lowerCamelCase__ ( self :Any , __magic_name__ :Optional[int] ):
'''simple docstring'''
a = [t[0] for t in batch]
a = [t[1] for t in batch]
assert len(__magic_name__ ) == len(__magic_name__ )
# Max for paddings
a = max(__magic_name__ )
# Pad token ids
if self.params.mlm:
a = self.params.special_tok_ids["""pad_token"""]
else:
a = self.params.special_tok_ids["""unk_token"""]
a = [list(t.astype(__magic_name__ ) ) + [pad_idx] * (max_seq_len_ - len(__magic_name__ )) for t in token_ids]
assert len(tk_ ) == len(__magic_name__ )
assert all(len(__magic_name__ ) == max_seq_len_ for t in tk_ )
a = torch.tensor(tk_ ) # (bs, max_seq_len_)
a = torch.tensor(__magic_name__ ) # (bs)
return tk_t, lg_t
| 347 |
def __A ( __lowerCamelCase ) -> int:
if not numbers:
return 0
if not isinstance(__lowerCamelCase , (list, tuple) ) or not all(
isinstance(__lowerCamelCase , __lowerCamelCase ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
a = a = a = numbers[0]
for i in range(1 , len(__lowerCamelCase ) ):
# update the maximum and minimum subarray products
a = numbers[i]
if number < 0:
a , a = min_till_now, max_till_now
a = max(__lowerCamelCase , max_till_now * number )
a = min(__lowerCamelCase , min_till_now * number )
# update the maximum product found till now
a = max(__lowerCamelCase , __lowerCamelCase )
return max_prod
| 347 | 1 |
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 347 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__UpperCamelCase : Optional[Any] = {
"configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"],
"feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"],
"processing_wav2vec2": ["Wav2Vec2Processor"],
"tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : str = [
"WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Wav2Vec2ForAudioFrameClassification",
"Wav2Vec2ForCTC",
"Wav2Vec2ForMaskedLM",
"Wav2Vec2ForPreTraining",
"Wav2Vec2ForSequenceClassification",
"Wav2Vec2ForXVector",
"Wav2Vec2Model",
"Wav2Vec2PreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Dict = [
"TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWav2Vec2ForCTC",
"TFWav2Vec2Model",
"TFWav2Vec2PreTrainedModel",
"TFWav2Vec2ForSequenceClassification",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
"FlaxWav2Vec2ForCTC",
"FlaxWav2Vec2ForPreTraining",
"FlaxWav2Vec2Model",
"FlaxWav2Vec2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
__UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 1 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class __lowerCAmelCase :
def __init__( self :List[Any] , __magic_name__ :Tuple , __magic_name__ :List[str]=14 , __magic_name__ :List[Any]=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :str=True , __magic_name__ :List[str]=False , __magic_name__ :Any=True , __magic_name__ :Optional[int]=99 , __magic_name__ :Dict=32 , __magic_name__ :int=4 , __magic_name__ :int=4 , __magic_name__ :str=4 , __magic_name__ :Any=37 , __magic_name__ :List[Any]="gelu" , __magic_name__ :Any=0.1 , __magic_name__ :Optional[int]=0.1 , __magic_name__ :List[str]=512 , __magic_name__ :Any=0.02 , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_input_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = rotary_dim
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = initializer_range
a = None
a = vocab_size - 1
a = vocab_size - 1
a = vocab_size - 1
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_input_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__magic_name__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a = config_and_inputs
a = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowerCamelCase__ ( self :int , __magic_name__ :int , __magic_name__ :str , __magic_name__ :str , __magic_name__ :Dict ):
'''simple docstring'''
a = 20
a = model_class_name(__magic_name__ )
a = model.init_cache(input_ids.shape[0] , __magic_name__ )
a = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
a = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
a = model(
input_ids[:, :-1] , attention_mask=__magic_name__ , past_key_values=__magic_name__ , position_ids=__magic_name__ , )
a = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
a = model(
input_ids[:, -1:] , attention_mask=__magic_name__ , past_key_values=outputs_cache.past_key_values , position_ids=__magic_name__ , )
a = model(__magic_name__ )
a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' )
def lowerCamelCase__ ( self :Any , __magic_name__ :Tuple , __magic_name__ :List[str] , __magic_name__ :int , __magic_name__ :Any ):
'''simple docstring'''
a = 20
a = model_class_name(__magic_name__ )
a = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
a = model.init_cache(input_ids.shape[0] , __magic_name__ )
a = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
a = model(
input_ids[:, :-1] , attention_mask=__magic_name__ , past_key_values=__magic_name__ , position_ids=__magic_name__ , )
a = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
a = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__magic_name__ , position_ids=__magic_name__ , )
a = model(__magic_name__ , attention_mask=__magic_name__ )
a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' )
@require_flax
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
UpperCamelCase__ = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = FlaxGPTJModelTester(self )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a , a , a = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a , a , a = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
@tooslow
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" )
a = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=__magic_name__ , truncation=__magic_name__ )
a = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" )
a = False
a = model.config.eos_token_id
a = jax.jit(model.generate )
a = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences
a = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )
a = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(__magic_name__ , __magic_name__ )
@is_pt_flax_cross_test
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
a = self._prepare_for_class(__magic_name__ , __magic_name__ )
a = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
a = model_class.__name__[4:] # Skip the "Flax" at the beginning
a = getattr(__magic_name__ , __magic_name__ )
a , a = pt_inputs["""input_ids"""].shape
a = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(__magic_name__ ):
a = 0
a = 1
a = 0
a = 1
a = pt_model_class(__magic_name__ ).eval()
a = model_class(__magic_name__ , dtype=jnp.floataa )
a = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __magic_name__ )
a = fx_state
with torch.no_grad():
a = pt_model(**__magic_name__ ).to_tuple()
a = fx_model(**__magic_name__ ).to_tuple()
self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(__magic_name__ , __magic_name__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(__magic_name__ )
a = model_class.from_pretrained(__magic_name__ , from_pt=__magic_name__ )
a = fx_model_loaded(**__magic_name__ ).to_tuple()
self.assertEqual(
len(__magic_name__ ) , len(__magic_name__ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output_loaded, pt_output in zip(__magic_name__ , __magic_name__ ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@is_pt_flax_cross_test
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
a = self._prepare_for_class(__magic_name__ , __magic_name__ )
a = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
a = model_class.__name__[4:] # Skip the "Flax" at the beginning
a = getattr(__magic_name__ , __magic_name__ )
a = pt_model_class(__magic_name__ ).eval()
a = model_class(__magic_name__ , dtype=jnp.floataa )
a = load_flax_weights_in_pytorch_model(__magic_name__ , fx_model.params )
a , a = pt_inputs["""input_ids"""].shape
a = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(__magic_name__ ):
a = 0
a = 1
a = 0
a = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
a = pt_model(**__magic_name__ ).to_tuple()
a = fx_model(**__magic_name__ ).to_tuple()
self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(__magic_name__ , __magic_name__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(__magic_name__ )
a = pt_model_class.from_pretrained(__magic_name__ , from_flax=__magic_name__ )
with torch.no_grad():
a = pt_model_loaded(**__magic_name__ ).to_tuple()
self.assertEqual(
len(__magic_name__ ) , len(__magic_name__ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(__magic_name__ , __magic_name__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@tooslow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
| 347 |
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any:
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , __lowerCamelCase )
a = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
a = dataset_size < in_memory_max_size
else:
a = False
a = is_small_dataset(__lowerCamelCase )
assert result == expected
| 347 | 1 |
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = DebertaTokenizer
UpperCamelCase__ = True
UpperCamelCase__ = DebertaTokenizerFast
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
a = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""[UNK]""",
]
a = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
a = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
a = {"""unk_token""": """[UNK]"""}
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__magic_name__ ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(__magic_name__ ) )
def lowerCamelCase__ ( self :str , **__magic_name__ :Any ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
def lowerCamelCase__ ( self :str , __magic_name__ :int ):
'''simple docstring'''
a = """lower newer"""
a = """lower newer"""
return input_text, output_text
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.get_tokenizer()
a = """lower newer"""
a = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
a = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
a = tokens + [tokenizer.unk_token]
a = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.get_tokenizer()
a = tokenizer("""Hello""" , """World""" )
a = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd["""token_type_ids"""] , __magic_name__ )
@slow
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" )
a = tokenizer.encode("""sequence builders""" , add_special_tokens=__magic_name__ )
a = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__magic_name__ )
a = tokenizer.encode(
"""sequence builders""" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ )
a = tokenizer.encode(
"""sequence builders""" , """multi-sequence build""" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ )
a = tokenizer.build_inputs_with_special_tokens(__magic_name__ )
a = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
a = tokenizer_class.from_pretrained("""microsoft/deberta-base""" )
a = [
"""ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""",
"""ALBERT incorporates two parameter reduction techniques""",
"""The first one is a factorized embedding parameterization. By decomposing the large vocabulary"""
""" embedding matrix into two small matrices, we separate the size of the hidden layers from the size of"""
""" vocabulary embedding.""",
]
a = tokenizer(__magic_name__ , padding=__magic_name__ )
a = [tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) for seq in encoding["""input_ids"""]]
# fmt: off
a = {
"""input_ids""": [
[1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2]
],
"""token_type_ids""": [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
"""attention_mask""": [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
a = [
"""ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""",
"""ALBERT incorporates two parameter reduction techniques""",
"""The first one is a factorized embedding parameterization. By decomposing the large vocabulary"""
""" embedding matrix into two small matrices, we separate the size of the hidden layers from the size of"""
""" vocabulary embedding.""",
]
self.assertDictEqual(encoding.data , __magic_name__ )
for expected, decoded in zip(__magic_name__ , __magic_name__ ):
self.assertEqual(__magic_name__ , __magic_name__ )
| 347 |
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def __A ( __lowerCamelCase ) -> bool:
a = int(number**0.5 )
return number == sq * sq
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple[int, int]:
a = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
a = x_den * y_den * z_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
top //= hcf
bottom //= hcf
return top, bottom
def __A ( __lowerCamelCase = 35 ) -> int:
a = set()
a = 42
a = Fraction(0 )
a = 42
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
a = x_num * y_den + x_den * y_num
a = x_den * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
a = x_den * x_den * y_den * y_den
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=-1
a = x_num * y_num
a = x_den * y_num + x_num * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = x_num * x_num * y_num * y_num
a = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
for num, den in unique_s:
total += Fraction(__lowerCamelCase , __lowerCamelCase )
return total.denominator + total.numerator
if __name__ == "__main__":
print(F'{solution() = }')
| 347 | 1 |
import sys
from collections import defaultdict
class __lowerCAmelCase :
def __init__( self :List[str] ):
'''simple docstring'''
a = []
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :int ):
'''simple docstring'''
return self.node_position[vertex]
def lowerCamelCase__ ( self :Any , __magic_name__ :Dict , __magic_name__ :Union[str, Any] ):
'''simple docstring'''
a = pos
def lowerCamelCase__ ( self :Dict , __magic_name__ :Optional[int] , __magic_name__ :Union[str, Any] , __magic_name__ :List[Any] , __magic_name__ :Any ):
'''simple docstring'''
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
a = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
a = 2 * start + 1
else:
a = 2 * start + 2
if heap[smallest_child] < heap[start]:
a , a = heap[smallest_child], positions[smallest_child]
a , a = (
heap[start],
positions[start],
)
a , a = temp, tempa
a = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , __magic_name__ )
self.top_to_bottom(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :str , __magic_name__ :Tuple , __magic_name__ :Optional[Any] , __magic_name__ :List[str] , __magic_name__ :List[Any] ):
'''simple docstring'''
a = position[index]
while index != 0:
a = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
a = heap[parent]
a = position[parent]
self.set_position(position[parent] , __magic_name__ )
else:
a = val
a = temp
self.set_position(__magic_name__ , __magic_name__ )
break
a = parent
else:
a = val
a = temp
self.set_position(__magic_name__ , 0 )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Optional[Any] , __magic_name__ :str ):
'''simple docstring'''
a = len(__magic_name__ ) // 2 - 1
for i in range(__magic_name__ , -1 , -1 ):
self.top_to_bottom(__magic_name__ , __magic_name__ , len(__magic_name__ ) , __magic_name__ )
def lowerCamelCase__ ( self :int , __magic_name__ :Optional[int] , __magic_name__ :Optional[int] ):
'''simple docstring'''
a = positions[0]
a = sys.maxsize
self.top_to_bottom(__magic_name__ , 0 , len(__magic_name__ ) , __magic_name__ )
return temp
def __A ( __lowerCamelCase ) -> Tuple:
a = Heap()
a = [0] * len(__lowerCamelCase )
a = [-1] * len(__lowerCamelCase ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
a = [] # Heap of Distance of vertices from their neighboring vertex
a = []
for vertex in range(len(__lowerCamelCase ) ):
distance_tv.append(sys.maxsize )
positions.append(__lowerCamelCase )
heap.node_position.append(__lowerCamelCase )
a = []
a = 1
a = sys.maxsize
for neighbor, distance in adjacency_list[0]:
a = 0
a = distance
heap.heapify(__lowerCamelCase , __lowerCamelCase )
for _ in range(1 , len(__lowerCamelCase ) ):
a = heap.delete_minimum(__lowerCamelCase , __lowerCamelCase )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
a = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(__lowerCamelCase )]
):
a = distance
heap.bottom_to_top(
__lowerCamelCase , heap.get_position(__lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase )
a = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
__UpperCamelCase : Optional[int] = int(input("Enter number of edges: ").strip())
__UpperCamelCase : Union[str, Any] = defaultdict(list)
for _ in range(edges_number):
__UpperCamelCase : int = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 347 |
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :List[str] , __magic_name__ :List[str] , __magic_name__ :List[Any]=13 , __magic_name__ :Any=7 , __magic_name__ :Optional[int]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :Any=99 , __magic_name__ :List[str]=32 , __magic_name__ :List[str]=5 , __magic_name__ :str=4 , __magic_name__ :str=37 , __magic_name__ :Optional[int]="gelu" , __magic_name__ :int=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :List[str]=512 , __magic_name__ :Tuple=16 , __magic_name__ :Tuple=2 , __magic_name__ :List[str]=0.02 , __magic_name__ :Any=4 , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_attention_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_choices
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_attention_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = True
UpperCamelCase__ = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = FlaxRoFormerModelTester(self )
@slow
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__magic_name__ )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
@slow
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
a = jnp.array([[0, 1, 2, 3, 4, 5]] )
a = model(__magic_name__ )[0]
a = 5_0000
a = (1, 6, vocab_size)
self.assertEqual(output.shape , __magic_name__ )
a = jnp.array(
[[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 347 | 1 |
from __future__ import annotations
from collections.abc import Callable
__UpperCamelCase : List[Any] = list[list[float | int]]
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Matrix:
a = len(__lowerCamelCase )
a = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )]
a = 42
a = 42
a = 42
a = 42
a = 42
a = 42
for row in range(__lowerCamelCase ):
for col in range(__lowerCamelCase ):
a = matrix[row][col]
a = vector[row][0]
a = 0
a = 0
while row < size and col < size:
# pivoting
a = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase , __lowerCamelCase ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
a , a = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , __lowerCamelCase ):
a = augmented[rowa][col] / augmented[row][col]
a = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , __lowerCamelCase ):
for row in range(__lowerCamelCase ):
a = augmented[row][col] / augmented[col][col]
for cola in range(__lowerCamelCase , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCamelCase )
]
def __A ( __lowerCamelCase ) -> Callable[[int], int]:
a = len(__lowerCamelCase )
a = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )]
a = [[0] for _ in range(__lowerCamelCase )]
a = 42
a = 42
a = 42
a = 42
for x_val, y_val in enumerate(__lowerCamelCase ):
for col in range(__lowerCamelCase ):
a = (x_val + 1) ** (size - col - 1)
a = y_val
a = solve(__lowerCamelCase , __lowerCamelCase )
def interpolated_func(__lowerCamelCase ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(__lowerCamelCase ) )
return interpolated_func
def __A ( __lowerCamelCase ) -> int:
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def __A ( __lowerCamelCase = question_function , __lowerCamelCase = 10 ) -> int:
a = [func(__lowerCamelCase ) for x_val in range(1 , order + 1 )]
a = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
a = 0
a = 42
a = 42
for poly in polynomials:
a = 1
while func(__lowerCamelCase ) == poly(__lowerCamelCase ):
x_val += 1
ret += poly(__lowerCamelCase )
return ret
if __name__ == "__main__":
print(F'{solution() = }')
| 347 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCamelCase : Optional[int] = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
__UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 1 |
def __A ( __lowerCamelCase ) -> bool:
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 |
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = (IPNDMScheduler,)
UpperCamelCase__ = (('''num_inference_steps''', 50),)
def lowerCamelCase__ ( self :Any , **__magic_name__ :Optional[Any] ):
'''simple docstring'''
a = {"""num_train_timesteps""": 1000}
config.update(**__magic_name__ )
return config
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple=0 , **__magic_name__ :Optional[int] ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config(**__magic_name__ )
a = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals
a = dummy_past_residuals[:]
if time_step is None:
a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__magic_name__ )
a = scheduler_class.from_pretrained(__magic_name__ )
new_scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals
a = dummy_past_residuals[:]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :List[Any]=0 , **__magic_name__ :Any ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__magic_name__ )
scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residuals (must be after setting timesteps)
a = dummy_past_residuals[:]
if time_step is None:
a = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__magic_name__ )
a = scheduler_class.from_pretrained(__magic_name__ )
# copy over dummy past residuals
new_scheduler.set_timesteps(__magic_name__ )
# copy over dummy past residual (must be after setting timesteps)
a = dummy_past_residuals[:]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCamelCase__ ( self :Optional[Any] , **__magic_name__ :Optional[int] ):
'''simple docstring'''
a = self.scheduler_classes[0]
a = self.get_scheduler_config(**__magic_name__ )
a = scheduler_class(**__magic_name__ )
a = 10
a = self.dummy_model()
a = self.dummy_sample_deter
scheduler.set_timesteps(__magic_name__ )
for i, t in enumerate(scheduler.timesteps ):
a = model(__magic_name__ , __magic_name__ )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
a = model(__magic_name__ , __magic_name__ )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
return sample
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = dict(self.forward_default_kwargs )
a = kwargs.pop("""num_inference_steps""" , __magic_name__ )
for scheduler_class in self.scheduler_classes:
a = self.get_scheduler_config()
a = scheduler_class(**__magic_name__ )
a = self.dummy_sample
a = 0.1 * sample
if num_inference_steps is not None and hasattr(__magic_name__ , """set_timesteps""" ):
scheduler.set_timesteps(__magic_name__ )
elif num_inference_steps is not None and not hasattr(__magic_name__ , """set_timesteps""" ):
a = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
a = dummy_past_residuals[:]
a = scheduler.timesteps[5]
a = scheduler.timesteps[6]
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=__magic_name__ , time_step=__magic_name__ )
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=__magic_name__ , time_step=__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.full_loop()
a = torch.mean(torch.abs(__magic_name__ ) )
assert abs(result_mean.item() - 254_0529 ) < 10
| 347 | 1 |
import argparse
from collections import defaultdict
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]:
a = f'{file}_{class_name}_{test_name}'
done_test[_id] += 1
with open(__lowerCamelCase , """r""" ) as f:
a = f.readlines()
a = f'class {class_name}('
a = f'{4 * " "}def {test_name}('
a = f'{8 * " "}{correct_line.split()[0]}'
a = f'{16 * " "}{correct_line.split()[0]}'
a = False
a = False
a = False
a = False
a = 0
a = 0
a = []
for line in lines:
if line.startswith(__lowerCamelCase ):
a = True
elif in_class and line.startswith(__lowerCamelCase ):
a = True
elif in_class and in_func and (line.startswith(__lowerCamelCase ) or line.startswith(__lowerCamelCase )):
a = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
a = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
a = True
if in_class and in_func and in_line and insert_line:
new_lines.append(f'{spaces * " "}{correct_line}' )
a = a = a = a = False
else:
new_lines.append(__lowerCamelCase )
with open(__lowerCamelCase , """w""" ) as f:
for line in new_lines:
f.write(__lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase=None ) -> List[Any]:
if fail is not None:
with open(__lowerCamelCase , """r""" ) as f:
a = {l.strip() for l in f.readlines()}
else:
a = None
with open(__lowerCamelCase , """r""" ) as f:
a = f.readlines()
a = defaultdict(__lowerCamelCase )
for line in correct_lines:
a , a , a , a = line.split(""";""" )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("--correct_filename", help="filename of tests with expected result")
parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None)
__UpperCamelCase : Optional[Any] = parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 347 |
__UpperCamelCase : Dict = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def __A ( ) -> None:
a = input("""Enter message: """ )
a = input("""Enter key [alphanumeric]: """ )
a = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
a = """encrypt"""
a = encrypt_message(__lowerCamelCase , __lowerCamelCase )
elif mode.lower().startswith("""d""" ):
a = """decrypt"""
a = decrypt_message(__lowerCamelCase , __lowerCamelCase )
print(f'\n{mode.title()}ed message:' )
print(__lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
return translate_message(__lowerCamelCase , __lowerCamelCase , """encrypt""" )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str:
return translate_message(__lowerCamelCase , __lowerCamelCase , """decrypt""" )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
a = []
a = 0
a = key.upper()
for symbol in message:
a = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(__lowerCamelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(__lowerCamelCase ):
a = 0
else:
translated.append(__lowerCamelCase )
return "".join(__lowerCamelCase )
if __name__ == "__main__":
main()
| 347 | 1 |
import os
import re
import warnings
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
if TYPE_CHECKING:
from ...tokenization_utils_base import TextInput
from ...utils import logging
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCamelCase : Tuple = {"vocab_file": "spiece.model"}
__UpperCamelCase : Optional[int] = {
"vocab_file": {
"t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model",
"t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model",
"t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model",
}
}
# TODO(PVP) - this should be removed in Transformers v5
__UpperCamelCase : Optional[int] = {
"t5-small": 512,
"t5-base": 512,
"t5-large": 512,
"t5-3b": 512,
"t5-11b": 512,
}
__UpperCamelCase : Tuple = "▁"
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = VOCAB_FILES_NAMES
UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase__ = ['''input_ids''', '''attention_mask''']
def __init__( self :Optional[Any] , __magic_name__ :str , __magic_name__ :Tuple="</s>" , __magic_name__ :Any="<unk>" , __magic_name__ :Dict="<pad>" , __magic_name__ :Optional[Any]=100 , __magic_name__ :str=None , __magic_name__ :Optional[Dict[str, Any]] = None , __magic_name__ :Optional[Any]=True , **__magic_name__ :Optional[int] , ):
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
a = [F'<extra_id_{i}>' for i in range(__magic_name__ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
a = len(set(filter(lambda __magic_name__ : bool("""extra_id""" in str(__magic_name__ ) ) , __magic_name__ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'
""" provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids"""
""" tokens""" )
if legacy:
logger.warning_once(
F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to'
""" read the related pull request available at https://github.com/huggingface/transformers/pull/24565""" )
a = legacy
a = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , extra_ids=__magic_name__ , additional_special_tokens=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , legacy=__magic_name__ , **__magic_name__ , )
a = vocab_file
a = extra_ids
a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__magic_name__ )
@staticmethod
def lowerCamelCase__ ( __magic_name__ :Dict , __magic_name__ :List[Any] , __magic_name__ :Any ):
'''simple docstring'''
if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes:
a = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
"""This tokenizer was incorrectly instantiated with a model max length of"""
F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this'
""" behavior is kept to avoid breaking backwards compatibility when padding/encoding with"""
""" `truncation is True`.\n- Be aware that you SHOULD NOT rely on"""
F' {pretrained_model_name_or_path} automatically truncating your input to'
F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences'
F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with'
""" `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please"""
""" instantiate this tokenizer with `model_max_length` set to your preferred value.""" , __magic_name__ , )
return max_model_length
@property
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
return self.sp_model.get_piece_size() + self._extra_ids
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None , __magic_name__ :bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(__magic_name__ )) + [1]
return ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1]
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
return list(
set(filter(lambda __magic_name__ : bool(re.search(r"""<extra_id_\d+>""" , __magic_name__ ) ) is not None , self.additional_special_tokens ) ) )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
return [self._convert_token_to_id(__magic_name__ ) for token in self.get_sentinel_tokens()]
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :List[int] ):
'''simple docstring'''
if len(__magic_name__ ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'
""" eos tokens being added.""" )
return token_ids
else:
return token_ids + [self.eos_token_id]
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def lowerCamelCase__ ( self :str , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = self._add_eos_if_not_present(__magic_name__ )
if token_ids_a is None:
return token_ids_a
else:
a = self._add_eos_if_not_present(__magic_name__ )
return token_ids_a + token_ids_a
def __getstate__( self :Dict ):
'''simple docstring'''
a = self.__dict__.copy()
a = None
return state
def __setstate__( self :str , __magic_name__ :List[str] ):
'''simple docstring'''
a = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
a = {}
a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCamelCase__ ( self :Any , __magic_name__ :"TextInput" , **__magic_name__ :int ):
'''simple docstring'''
if not self.legacy:
a = SPIECE_UNDERLINE + text.replace(__magic_name__ , """ """ )
return super().tokenize(__magic_name__ , **__magic_name__ )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Any , **__magic_name__ :Any ):
'''simple docstring'''
if not self.legacy:
a = text.startswith(__magic_name__ )
if is_first:
a = text[1:]
a = self.sp_model.encode(__magic_name__ , out_type=__magic_name__ )
if not self.legacy and not is_first and not text.startswith(""" """ ) and tokens[0].startswith(__magic_name__ ):
a = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:]
return tokens
def lowerCamelCase__ ( self :str , __magic_name__ :Tuple ):
'''simple docstring'''
if token.startswith("""<extra_id_""" ):
a = re.match(r"""<extra_id_(\d+)>""" , __magic_name__ )
a = int(match.group(1 ) )
return self.vocab_size - num - 1
return self.sp_model.piece_to_id(__magic_name__ )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Any ):
'''simple docstring'''
if index < self.sp_model.get_piece_size():
a = self.sp_model.IdToPiece(__magic_name__ )
else:
a = F'<extra_id_{self.vocab_size - 1 - index}>'
return token
def lowerCamelCase__ ( self :Dict , __magic_name__ :Tuple ):
'''simple docstring'''
a = []
a = """"""
a = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__magic_name__ ) + token
a = True
a = []
else:
current_sub_tokens.append(__magic_name__ )
a = False
out_string += self.sp_model.decode(__magic_name__ )
return out_string.strip()
def lowerCamelCase__ ( self :Any , __magic_name__ :str , __magic_name__ :Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(__magic_name__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
a = os.path.join(
__magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __magic_name__ )
elif not os.path.isfile(self.vocab_file ):
with open(__magic_name__ , """wb""" ) as fi:
a = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (out_vocab_file,)
| 347 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Tuple=13 , __magic_name__ :List[Any]=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :List[str]=True , __magic_name__ :str=99 , __magic_name__ :Optional[Any]=32 , __magic_name__ :Union[str, Any]=5 , __magic_name__ :Any=4 , __magic_name__ :int=37 , __magic_name__ :Tuple="gelu" , __magic_name__ :List[str]=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :Tuple=512 , __magic_name__ :Dict=16 , __magic_name__ :Optional[int]=2 , __magic_name__ :Optional[int]=0.02 , __magic_name__ :Optional[Any]=4 , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_attention_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_choices
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_attention_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = True
a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = True
UpperCamelCase__ = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = FlaxRobertaModelTester(self )
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained("""roberta-base""" , from_pt=__magic_name__ )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
| 347 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__UpperCamelCase : Optional[int] = {
"configuration_swiftformer": [
"SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SwiftFormerConfig",
"SwiftFormerOnnxConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[int] = [
"SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"SwiftFormerForImageClassification",
"SwiftFormerModel",
"SwiftFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_swiftformer import (
SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
SwiftFormerConfig,
SwiftFormerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swiftformer import (
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SwiftFormerForImageClassification,
SwiftFormerModel,
SwiftFormerPreTrainedModel,
)
else:
import sys
__UpperCamelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
__UpperCamelCase : Any = datasets.utils.logging.get_logger(__name__)
@dataclass
class __lowerCAmelCase ( datasets.BuilderConfig ):
UpperCamelCase__ = None
UpperCamelCase__ = "utf-8"
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = True # deprecated
UpperCamelCase__ = None # deprecated
UpperCamelCase__ = 10 << 20 # 10MB
UpperCamelCase__ = None
class __lowerCAmelCase ( datasets.ArrowBasedBuilder ):
UpperCamelCase__ = JsonConfig
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
if self.config.block_size is not None:
logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" )
a = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
"""The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" )
if self.config.newlines_in_values is not None:
raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" )
return datasets.DatasetInfo(features=self.config.features )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' )
a = dl_manager.download_and_extract(self.config.data_files )
if isinstance(__magic_name__ , (str, list, tuple) ):
a = data_files
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )]
a = []
for split_name, files in data_files.items():
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"""files""": files} ) )
return splits
def lowerCamelCase__ ( self :List[str] , __magic_name__ :pa.Table ):
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
a = self.config.features.arrow_schema.field(__magic_name__ ).type
a = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
a = table_cast(__magic_name__ , self.config.features.arrow_schema )
return pa_table
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Union[str, Any] ):
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
# We keep only the field we are interested in
a = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(__magic_name__ , (list, tuple) ):
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
else:
a = dataset
a = pa.Table.from_pydict(__magic_name__ )
yield file_idx, self._cast_table(__magic_name__ )
# If the file has one json object per line
else:
with open(__magic_name__ , """rb""" ) as f:
a = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
a = max(self.config.chunksize // 32 , 16 << 10 )
a = (
self.config.encoding_errors if self.config.encoding_errors is not None else """strict"""
)
while True:
a = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(__magic_name__ )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
a = batch.decode(self.config.encoding , errors=__magic_name__ ).encode("""utf-8""" )
try:
while True:
try:
a = paj.read_json(
io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(__magic_name__ , pa.ArrowInvalid )
and "straddling" not in str(__magic_name__ )
or block_size > len(__magic_name__ )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
F'Batch of {len(__magic_name__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
except json.JSONDecodeError:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON
try:
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
a = pa.Table.from_pydict(__magic_name__ )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(F'Not able to read records in the JSON file at {file}.' ) from None
yield file_idx, self._cast_table(__magic_name__ )
break
else:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(
F'Not able to read records in the JSON file at {file}. '
F'You should probably indicate the field of the JSON file containing your records. '
F'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. '
F'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(__magic_name__ )
batch_idx += 1
| 347 | 1 |
from __future__ import annotations
import queue
class __lowerCAmelCase :
def __init__( self :Union[str, Any] , __magic_name__ :Optional[Any] ):
'''simple docstring'''
a = data
a = None
a = None
def __A ( ) -> TreeNode:
print("""\n********Press N to stop entering at any point of time********\n""" )
a = input("""Enter the value of the root node: """ ).strip().lower()
a = queue.Queue()
a = TreeNode(int(__lowerCamelCase ) )
q.put(__lowerCamelCase )
while not q.empty():
a = q.get()
a = f'Enter the left node of {node_found.data}: '
a = input(__lowerCamelCase ).strip().lower() or """n"""
if check == "n":
return tree_node
a = TreeNode(int(__lowerCamelCase ) )
a = left_node
q.put(__lowerCamelCase )
a = f'Enter the right node of {node_found.data}: '
a = input(__lowerCamelCase ).strip().lower() or """n"""
if check == "n":
return tree_node
a = TreeNode(int(__lowerCamelCase ) )
a = right_node
q.put(__lowerCamelCase )
raise
def __A ( __lowerCamelCase ) -> None:
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not node:
return
print(node.data , end=""",""" )
pre_order(node.left )
pre_order(node.right )
def __A ( __lowerCamelCase ) -> None:
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not node:
return
in_order(node.left )
print(node.data , end=""",""" )
in_order(node.right )
def __A ( __lowerCamelCase ) -> None:
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=""",""" )
def __A ( __lowerCamelCase ) -> None:
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not node:
return
a = queue.Queue()
q.put(__lowerCamelCase )
while not q.empty():
a = q.get()
print(node_dequeued.data , end=""",""" )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def __A ( __lowerCamelCase ) -> None:
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not node:
return
a = queue.Queue()
q.put(__lowerCamelCase )
while not q.empty():
a = []
while not q.empty():
a = q.get()
print(node_dequeued.data , end=""",""" )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(__lowerCamelCase )
def __A ( __lowerCamelCase ) -> None:
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not node:
return
a = []
a = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=""",""" )
stack.append(__lowerCamelCase )
a = n.left
# end of while means current node doesn't have left child
a = stack.pop()
# start to traverse its right child
a = n.right
def __A ( __lowerCamelCase ) -> None:
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not node:
return
a = []
a = node
while n or stack:
while n:
stack.append(__lowerCamelCase )
a = n.left
a = stack.pop()
print(n.data , end=""",""" )
a = n.right
def __A ( __lowerCamelCase ) -> None:
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not node:
return
a , a = [], []
a = node
stacka.append(__lowerCamelCase )
while stacka: # to find the reversed order of post order, store it in stack2
a = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(__lowerCamelCase )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=""",""" )
def __A ( __lowerCamelCase = "" , __lowerCamelCase=50 , __lowerCamelCase="*" ) -> str:
if not s:
return "\n" + width * char
a , a = divmod(width - len(__lowerCamelCase ) - 2 , 2 )
return f'{left * char} {s} {(left + extra) * char}'
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("Binary Tree Traversals"))
__UpperCamelCase : TreeNode = build_tree()
print(prompt("Pre Order Traversal"))
pre_order(node)
print(prompt() + "\n")
print(prompt("In Order Traversal"))
in_order(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal"))
post_order(node)
print(prompt() + "\n")
print(prompt("Level Order Traversal"))
level_order(node)
print(prompt() + "\n")
print(prompt("Actual Level Order Traversal"))
level_order_actual(node)
print("*" * 50 + "\n")
print(prompt("Pre Order Traversal - Iteration Version"))
pre_order_iter(node)
print(prompt() + "\n")
print(prompt("In Order Traversal - Iteration Version"))
in_order_iter(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal - Iteration Version"))
post_order_iter(node)
print(prompt())
| 347 |
import warnings
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase : Dict = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = ['''input_ids''', '''attention_mask''']
def __init__( self :List[str] , __magic_name__ :int="</s>" , __magic_name__ :List[Any]="<unk>" , __magic_name__ :Optional[Any]="<pad>" , __magic_name__ :Optional[int]=125 , __magic_name__ :List[str]=None , **__magic_name__ :List[str] , ):
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
a = [F'<extra_id_{i}>' for i in range(__magic_name__ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
a = len(set(filter(lambda __magic_name__ : bool("""extra_id""" in str(__magic_name__ ) ) , __magic_name__ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'
""" provided to ByT5Tokenizer. In this case the additional_special_tokens must include the"""
""" extra_ids tokens""" )
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else pad_token
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else eos_token
a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else unk_token
super().__init__(
eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , extra_ids=__magic_name__ , additional_special_tokens=__magic_name__ , **__magic_name__ , )
a = extra_ids
a = 2**8 # utf is 8 bits
# define special tokens dict
a = {
self.pad_token: 0,
self.eos_token: 1,
self.unk_token: 2,
}
a = len(self.special_tokens_encoder )
a = len(__magic_name__ )
for i, token in enumerate(__magic_name__ ):
a = self.vocab_size + i - n
a = {v: k for k, v in self.special_tokens_encoder.items()}
@property
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
return self._utf_vocab_size + self._num_special_tokens + self._extra_ids
def lowerCamelCase__ ( self :Any , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None , __magic_name__ :bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(__magic_name__ )) + [1]
return ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1]
def lowerCamelCase__ ( self :str , __magic_name__ :List[int] ):
'''simple docstring'''
if len(__magic_name__ ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'
""" eos tokens being added.""" )
return token_ids
else:
return token_ids + [self.eos_token_id]
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ):
'''simple docstring'''
a = self._add_eos_if_not_present(__magic_name__ )
if token_ids_a is None:
return token_ids_a
else:
a = self._add_eos_if_not_present(__magic_name__ )
return token_ids_a + token_ids_a
def lowerCamelCase__ ( self :List[str] , __magic_name__ :str ):
'''simple docstring'''
a = [chr(__magic_name__ ) for i in text.encode("""utf-8""" )]
return tokens
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
if token in self.special_tokens_encoder:
a = self.special_tokens_encoder[token]
elif token in self.added_tokens_encoder:
a = self.added_tokens_encoder[token]
elif len(__magic_name__ ) != 1:
a = self.unk_token_id
else:
a = ord(__magic_name__ ) + self._num_special_tokens
return token_id
def lowerCamelCase__ ( self :List[str] , __magic_name__ :Dict ):
'''simple docstring'''
if index in self.special_tokens_decoder:
a = self.special_tokens_decoder[index]
else:
a = chr(index - self._num_special_tokens )
return token
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Optional[int] ):
'''simple docstring'''
a = b""""""
for token in tokens:
if token in self.special_tokens_decoder:
a = self.special_tokens_decoder[token].encode("""utf-8""" )
elif token in self.added_tokens_decoder:
a = self.special_tokens_decoder[token].encode("""utf-8""" )
elif token in self.special_tokens_encoder:
a = token.encode("""utf-8""" )
elif token in self.added_tokens_encoder:
a = token.encode("""utf-8""" )
else:
a = bytes([ord(__magic_name__ )] )
bstring += tok_string
a = bstring.decode("""utf-8""" , errors="""ignore""" )
return string
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :str , __magic_name__ :Optional[str] = None ):
'''simple docstring'''
return ()
| 347 | 1 |
def __A ( __lowerCamelCase ) -> bool:
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" )
if len(__lowerCamelCase ) == 0:
raise ValueError("""Input list must be a non empty list""" )
if len(__lowerCamelCase ) == 1:
return True
a = series[1] - series[0]
for index in range(len(__lowerCamelCase ) - 1 ):
if series[index + 1] - series[index] != common_diff:
return False
return True
def __A ( __lowerCamelCase ) -> float:
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" )
if len(__lowerCamelCase ) == 0:
raise ValueError("""Input list must be a non empty list""" )
a = 0
for val in series:
answer += val
return answer / len(__lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __lowerCAmelCase :
def __init__( self :Optional[int] , __magic_name__ :str , __magic_name__ :int=2 , __magic_name__ :List[str]=3 , __magic_name__ :Optional[int]=4 , __magic_name__ :str=2 , __magic_name__ :Any=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Dict=True , __magic_name__ :List[Any]=99 , __magic_name__ :Dict=36 , __magic_name__ :Optional[Any]=3 , __magic_name__ :str=4 , __magic_name__ :Optional[Any]=37 , __magic_name__ :Dict="gelu" , __magic_name__ :Any=0.1 , __magic_name__ :Union[str, Any]=0.1 , __magic_name__ :Dict=512 , __magic_name__ :str=16 , __magic_name__ :List[Any]=2 , __magic_name__ :Tuple=0.02 , __magic_name__ :Any=6 , __magic_name__ :Optional[int]=6 , __magic_name__ :Tuple=3 , __magic_name__ :str=4 , __magic_name__ :List[str]=None , __magic_name__ :str=1000 , ):
'''simple docstring'''
a = parent
a = batch_size
a = num_channels
a = image_size
a = patch_size
a = text_seq_length
a = is_training
a = use_input_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = coordinate_size
a = shape_size
a = num_labels
a = num_choices
a = scope
a = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
a = text_seq_length
a = (image_size // patch_size) ** 2 + 1
a = self.text_seq_length + self.image_seq_length
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
a = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
a = bbox[i, j, 3]
a = bbox[i, j, 1]
a = t
if bbox[i, j, 2] < bbox[i, j, 0]:
a = bbox[i, j, 2]
a = bbox[i, j, 0]
a = t
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = None
if self.use_input_mask:
a = random_attention_mask([self.batch_size, self.text_seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
a = None
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
a = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCamelCase__ ( self :int , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :List[str] , __magic_name__ :int , __magic_name__ :Tuple , __magic_name__ :int , __magic_name__ :Tuple , __magic_name__ :int ):
'''simple docstring'''
a = LayoutLMvaModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# text + image
a = model(__magic_name__ , pixel_values=__magic_name__ )
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
a = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , token_type_ids=__magic_name__ )
a = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
a = model(__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
a = model(pixel_values=__magic_name__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :List[Any] , __magic_name__ :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Union[str, Any] , __magic_name__ :int , __magic_name__ :Optional[int] , __magic_name__ :List[str] , __magic_name__ :List[str] ):
'''simple docstring'''
a = self.num_labels
a = LayoutLMvaForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Dict , __magic_name__ :Optional[Any] , __magic_name__ :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Dict , __magic_name__ :int , __magic_name__ :List[str] , __magic_name__ :Tuple ):
'''simple docstring'''
a = self.num_labels
a = LayoutLMvaForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :str , __magic_name__ :int , __magic_name__ :Optional[int] , __magic_name__ :str , __magic_name__ :List[str] , __magic_name__ :Optional[int] , __magic_name__ :Optional[Any] ):
'''simple docstring'''
a = LayoutLMvaForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
a = model(
__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
(
(
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) ,
) = config_and_inputs
a = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
UpperCamelCase__ = (
{'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel}
if is_torch_available()
else {}
)
def lowerCamelCase__ ( self :List[str] , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :Optional[Any] , __magic_name__ :List[str] , __magic_name__ :List[Any] ):
'''simple docstring'''
return True
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = LayoutLMvaModelTester(self )
a = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Dict , __magic_name__ :Any=False ):
'''simple docstring'''
a = copy.deepcopy(__magic_name__ )
if model_class in get_values(__magic_name__ ):
a = {
k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous()
if isinstance(__magic_name__ , torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__magic_name__ ):
a = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in get_values(__magic_name__ ):
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in [
*get_values(__magic_name__ ),
]:
a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ )
elif model_class in [
*get_values(__magic_name__ ),
]:
a = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__magic_name__ , )
return inputs_dict
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
a = type
self.model_tester.create_and_check_model(*__magic_name__ )
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a = LayoutLMvaModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def __A ( ) -> str:
a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
@cached_property
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None
@slow
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(__magic_name__ )
a = self.default_image_processor
a = prepare_img()
a = image_processor(images=__magic_name__ , return_tensors="""pt""" ).pixel_values.to(__magic_name__ )
a = torch.tensor([[1, 2]] )
a = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
a = model(
input_ids=input_ids.to(__magic_name__ ) , bbox=bbox.to(__magic_name__ ) , pixel_values=pixel_values.to(__magic_name__ ) , )
# verify the logits
a = torch.Size((1, 199, 768) )
self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ )
a = torch.tensor(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(__magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 347 | 1 |
from collections import Counter
from timeit import timeit
def __A ( __lowerCamelCase = "" , ) -> bool:
return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2
def __A ( __lowerCamelCase = "" ) -> bool:
if len(__lowerCamelCase ) == 0:
return True
a = input_str.replace(""" """ , """""" ).lower()
# character_freq_dict: Stores the frequency of every character in the input string
a = {}
for character in lower_case_input_str:
a = character_freq_dict.get(__lowerCamelCase , 0 ) + 1
a = 0
for character_count in character_freq_dict.values():
if character_count % 2:
odd_char += 1
if odd_char > 1:
return False
return True
def __A ( __lowerCamelCase = "" ) -> None:
print("""\nFor string = """ , __lowerCamelCase , """:""" )
print(
"""> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(__lowerCamelCase ) , """\ttime =""" , timeit(
"""z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , )
print(
"""> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(__lowerCamelCase ) , """\ttime =""" , timeit(
"""z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , )
if __name__ == "__main__":
__UpperCamelCase : Tuple = input(
"Enter string to determine if it can be rearranged as a palindrome or not: "
).strip()
benchmark(check_str)
__UpperCamelCase : str = can_string_be_rearranged_as_palindrome_counter(check_str)
print(F'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
| 347 |
from copy import deepcopy
class __lowerCAmelCase :
def __init__( self :Union[str, Any] , __magic_name__ :list[int] | None = None , __magic_name__ :int | None = None ):
'''simple docstring'''
if arr is None and size is not None:
a = size
a = [0] * size
elif arr is not None:
self.init(__magic_name__ )
else:
raise ValueError("""Either arr or size must be specified""" )
def lowerCamelCase__ ( self :Dict , __magic_name__ :list[int] ):
'''simple docstring'''
a = len(__magic_name__ )
a = deepcopy(__magic_name__ )
for i in range(1 , self.size ):
a = self.next_(__magic_name__ )
if j < self.size:
self.tree[j] += self.tree[i]
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
a = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
a = self.next_(__magic_name__ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def lowerCamelCase__ ( __magic_name__ :int ):
'''simple docstring'''
return index + (index & (-index))
@staticmethod
def lowerCamelCase__ ( __magic_name__ :int ):
'''simple docstring'''
return index - (index & (-index))
def lowerCamelCase__ ( self :Any , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
a = self.next_(__magic_name__ )
def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
self.add(__magic_name__ , value - self.get(__magic_name__ ) )
def lowerCamelCase__ ( self :int , __magic_name__ :int ):
'''simple docstring'''
if right == 0:
return 0
a = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
a = self.prev(__magic_name__ )
return result
def lowerCamelCase__ ( self :int , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
return self.prefix(__magic_name__ ) - self.prefix(__magic_name__ )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :int ):
'''simple docstring'''
return self.query(__magic_name__ , index + 1 )
def lowerCamelCase__ ( self :Dict , __magic_name__ :int ):
'''simple docstring'''
value -= self.tree[0]
if value < 0:
return -1
a = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
a = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 1 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
__UpperCamelCase : Any = datasets.utils.logging.get_logger(__name__)
@dataclass
class __lowerCAmelCase ( datasets.BuilderConfig ):
UpperCamelCase__ = None
UpperCamelCase__ = "utf-8"
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = True # deprecated
UpperCamelCase__ = None # deprecated
UpperCamelCase__ = 10 << 20 # 10MB
UpperCamelCase__ = None
class __lowerCAmelCase ( datasets.ArrowBasedBuilder ):
UpperCamelCase__ = JsonConfig
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
if self.config.block_size is not None:
logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" )
a = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
"""The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" )
if self.config.newlines_in_values is not None:
raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" )
return datasets.DatasetInfo(features=self.config.features )
def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ):
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' )
a = dl_manager.download_and_extract(self.config.data_files )
if isinstance(__magic_name__ , (str, list, tuple) ):
a = data_files
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )]
a = []
for split_name, files in data_files.items():
if isinstance(__magic_name__ , __magic_name__ ):
a = [files]
a = [dl_manager.iter_files(__magic_name__ ) for file in files]
splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"""files""": files} ) )
return splits
def lowerCamelCase__ ( self :List[str] , __magic_name__ :pa.Table ):
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
a = self.config.features.arrow_schema.field(__magic_name__ ).type
a = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
a = table_cast(__magic_name__ , self.config.features.arrow_schema )
return pa_table
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Union[str, Any] ):
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
# We keep only the field we are interested in
a = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(__magic_name__ , (list, tuple) ):
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
else:
a = dataset
a = pa.Table.from_pydict(__magic_name__ )
yield file_idx, self._cast_table(__magic_name__ )
# If the file has one json object per line
else:
with open(__magic_name__ , """rb""" ) as f:
a = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
a = max(self.config.chunksize // 32 , 16 << 10 )
a = (
self.config.encoding_errors if self.config.encoding_errors is not None else """strict"""
)
while True:
a = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(__magic_name__ )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
a = batch.decode(self.config.encoding , errors=__magic_name__ ).encode("""utf-8""" )
try:
while True:
try:
a = paj.read_json(
io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(__magic_name__ , pa.ArrowInvalid )
and "straddling" not in str(__magic_name__ )
or block_size > len(__magic_name__ )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
F'Batch of {len(__magic_name__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
a = json.load(__magic_name__ )
except json.JSONDecodeError:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON
try:
a = set().union(*[row.keys() for row in dataset] )
a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys}
a = pa.Table.from_pydict(__magic_name__ )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(F'Not able to read records in the JSON file at {file}.' ) from None
yield file_idx, self._cast_table(__magic_name__ )
break
else:
logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' )
raise ValueError(
F'Not able to read records in the JSON file at {file}. '
F'You should probably indicate the field of the JSON file containing your records. '
F'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. '
F'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(__magic_name__ )
batch_idx += 1
| 347 |
from __future__ import annotations
from typing import Generic, TypeVar
__UpperCamelCase : Union[str, Any] = TypeVar("T")
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Tuple , __magic_name__ :T ):
'''simple docstring'''
a = data
a = self
a = 0
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Tuple ):
'''simple docstring'''
a = {}
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T ):
'''simple docstring'''
a = DisjointSetTreeNode(__magic_name__ )
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :T ):
'''simple docstring'''
a = self.map[data]
if elem_ref != elem_ref.parent:
a = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :DisjointSetTreeNode[T] , __magic_name__ :DisjointSetTreeNode[T] ):
'''simple docstring'''
if nodea.rank > nodea.rank:
a = nodea
else:
a = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :T , __magic_name__ :T ):
'''simple docstring'''
self.link(self.find_set(__magic_name__ ) , self.find_set(__magic_name__ ) )
class __lowerCAmelCase ( Generic[T] ):
def __init__( self :Union[str, Any] ):
'''simple docstring'''
a = {}
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :T ):
'''simple docstring'''
if node not in self.connections:
a = {}
def lowerCamelCase__ ( self :Any , __magic_name__ :T , __magic_name__ :T , __magic_name__ :int ):
'''simple docstring'''
self.add_node(__magic_name__ )
self.add_node(__magic_name__ )
a = weight
a = weight
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = []
a = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda __magic_name__ : x[2] )
# creating the disjoint set
a = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(__magic_name__ )
# MST generation
a = 0
a = 0
a = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
a , a , a = edges[index]
index += 1
a = disjoint_set.find_set(__magic_name__ )
a = disjoint_set.find_set(__magic_name__ )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(__magic_name__ , __magic_name__ , __magic_name__ )
disjoint_set.union(__magic_name__ , __magic_name__ )
return graph
| 347 | 1 |
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxCrossAttnUpBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
FlaxUpBlockaD,
)
@flax.struct.dataclass
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = 42
@flax_register_to_config
class __lowerCAmelCase ( nn.Module , __magic_name__ , __magic_name__ ):
UpperCamelCase__ = 32
UpperCamelCase__ = 4
UpperCamelCase__ = 4
UpperCamelCase__ = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
UpperCamelCase__ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
UpperCamelCase__ = False
UpperCamelCase__ = (320, 640, 1280, 1280)
UpperCamelCase__ = 2
UpperCamelCase__ = 8
UpperCamelCase__ = None
UpperCamelCase__ = 1280
UpperCamelCase__ = 0.0
UpperCamelCase__ = False
UpperCamelCase__ = jnp.floataa
UpperCamelCase__ = True
UpperCamelCase__ = 0
UpperCamelCase__ = False
def lowerCamelCase__ ( self :List[str] , __magic_name__ :jax.random.KeyArray ):
'''simple docstring'''
a = (1, self.in_channels, self.sample_size, self.sample_size)
a = jnp.zeros(__magic_name__ , dtype=jnp.floataa )
a = jnp.ones((1,) , dtype=jnp.intaa )
a = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
a , a = jax.random.split(__magic_name__ )
a = {"""params""": params_rng, """dropout""": dropout_rng}
return self.init(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )["params"]
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = self.block_out_channels
a = block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
"""At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.""" )
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
a = self.num_attention_heads or self.attention_head_dim
# input
a = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
a = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
a = FlaxTimestepEmbedding(__magic_name__ , dtype=self.dtype )
a = self.only_cross_attention
if isinstance(__magic_name__ , __magic_name__ ):
a = (only_cross_attention,) * len(self.down_block_types )
if isinstance(__magic_name__ , __magic_name__ ):
a = (num_attention_heads,) * len(self.down_block_types )
# down
a = []
a = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types ):
a = output_channel
a = block_out_channels[i]
a = i == len(__magic_name__ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
a = FlaxCrossAttnDownBlockaD(
in_channels=__magic_name__ , out_channels=__magic_name__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
a = FlaxDownBlockaD(
in_channels=__magic_name__ , out_channels=__magic_name__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(__magic_name__ )
a = down_blocks
# mid
a = FlaxUNetMidBlockaDCrossAttn(
in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
# up
a = []
a = list(reversed(__magic_name__ ) )
a = list(reversed(__magic_name__ ) )
a = list(reversed(__magic_name__ ) )
a = reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types ):
a = output_channel
a = reversed_block_out_channels[i]
a = reversed_block_out_channels[min(i + 1 , len(__magic_name__ ) - 1 )]
a = i == len(__magic_name__ ) - 1
if up_block_type == "CrossAttnUpBlock2D":
a = FlaxCrossAttnUpBlockaD(
in_channels=__magic_name__ , out_channels=__magic_name__ , prev_output_channel=__magic_name__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
a = FlaxUpBlockaD(
in_channels=__magic_name__ , out_channels=__magic_name__ , prev_output_channel=__magic_name__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , )
up_blocks.append(__magic_name__ )
a = output_channel
a = up_blocks
# out
a = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
a = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self :List[str] , __magic_name__ :Union[str, Any] , __magic_name__ :Optional[Any] , __magic_name__ :str , __magic_name__ :Tuple=None , __magic_name__ :List[str]=None , __magic_name__ :bool = True , __magic_name__ :bool = False , ):
'''simple docstring'''
if not isinstance(__magic_name__ , jnp.ndarray ):
a = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(__magic_name__ , jnp.ndarray ) and len(timesteps.shape ) == 0:
a = timesteps.astype(dtype=jnp.floataa )
a = jnp.expand_dims(__magic_name__ , 0 )
a = self.time_proj(__magic_name__ )
a = self.time_embedding(__magic_name__ )
# 2. pre-process
a = jnp.transpose(__magic_name__ , (0, 2, 3, 1) )
a = self.conv_in(__magic_name__ )
# 3. down
a = (sample,)
for down_block in self.down_blocks:
if isinstance(__magic_name__ , __magic_name__ ):
a , a = down_block(__magic_name__ , __magic_name__ , __magic_name__ , deterministic=not train )
else:
a , a = down_block(__magic_name__ , __magic_name__ , deterministic=not train )
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
a = ()
for down_block_res_sample, down_block_additional_residual in zip(
__magic_name__ , __magic_name__ ):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
a = new_down_block_res_samples
# 4. mid
a = self.mid_block(__magic_name__ , __magic_name__ , __magic_name__ , deterministic=not train )
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
a = down_block_res_samples[-(self.layers_per_block + 1) :]
a = down_block_res_samples[: -(self.layers_per_block + 1)]
if isinstance(__magic_name__ , __magic_name__ ):
a = up_block(
__magic_name__ , temb=__magic_name__ , encoder_hidden_states=__magic_name__ , res_hidden_states_tuple=__magic_name__ , deterministic=not train , )
else:
a = up_block(__magic_name__ , temb=__magic_name__ , res_hidden_states_tuple=__magic_name__ , deterministic=not train )
# 6. post-process
a = self.conv_norm_out(__magic_name__ )
a = nn.silu(__magic_name__ )
a = self.conv_out(__magic_name__ )
a = jnp.transpose(__magic_name__ , (0, 3, 1, 2) )
if not return_dict:
return (sample,)
return FlaxUNetaDConditionOutput(sample=__magic_name__ )
| 347 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = tempfile.mkdtemp()
a = BlipImageProcessor()
a = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" )
a = BlipProcessor(__magic_name__ , __magic_name__ )
processor.save_pretrained(self.tmpdirname )
def lowerCamelCase__ ( self :List[Any] , **__magic_name__ :Union[str, Any] ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer
def lowerCamelCase__ ( self :str , **__magic_name__ :List[str] ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
a = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
a = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
a = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 )
a = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__magic_name__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __magic_name__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __magic_name__ )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = self.prepare_image_inputs()
a = image_processor(__magic_name__ , return_tensors="""np""" )
a = processor(images=__magic_name__ , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = processor(text=__magic_name__ )
a = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = self.prepare_image_inputs()
a = processor(text=__magic_name__ , images=__magic_name__ )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
# test if it raises when no input is passed
with pytest.raises(__magic_name__ ):
processor()
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
a = processor.batch_decode(__magic_name__ )
a = tokenizer.batch_decode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ )
a = """lower newer"""
a = self.prepare_image_inputs()
a = processor(text=__magic_name__ , images=__magic_name__ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
| 347 | 1 |
def __A ( __lowerCamelCase ) -> bool:
a = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def __A ( __lowerCamelCase = 5000 ) -> int:
a = [(i * (3 * i - 1)) // 2 for i in range(1 , __lowerCamelCase )]
for i, pentagonal_i in enumerate(__lowerCamelCase ):
for j in range(__lowerCamelCase , len(__lowerCamelCase ) ):
a = pentagonal_nums[j]
a = pentagonal_i + pentagonal_j
a = pentagonal_j - pentagonal_i
if is_pentagonal(__lowerCamelCase ) and is_pentagonal(__lowerCamelCase ):
return b
return -1
if __name__ == "__main__":
print(F'{solution() = }')
| 347 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCamelCase : int = {
"shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
UpperCamelCase__ = '''nat'''
UpperCamelCase__ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self :Any , __magic_name__ :int=4 , __magic_name__ :Dict=3 , __magic_name__ :List[str]=64 , __magic_name__ :Optional[int]=[3, 4, 6, 5] , __magic_name__ :int=[2, 4, 8, 16] , __magic_name__ :str=7 , __magic_name__ :Tuple=3.0 , __magic_name__ :Dict=True , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.1 , __magic_name__ :Optional[Any]="gelu" , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :Tuple=1E-5 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :int=None , __magic_name__ :Any=None , **__magic_name__ :Dict , ):
'''simple docstring'''
super().__init__(**__magic_name__ )
a = patch_size
a = num_channels
a = embed_dim
a = depths
a = len(__magic_name__ )
a = num_heads
a = kernel_size
a = mlp_ratio
a = qkv_bias
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = drop_path_rate
a = hidden_act
a = layer_norm_eps
a = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
a = int(embed_dim * 2 ** (len(__magic_name__ ) - 1) )
a = layer_scale_init_value
a = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(__magic_name__ ) + 1 )]
a , a = get_aligned_output_features_output_indices(
out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
| 347 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import GLPNImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :List[Any] , __magic_name__ :int , __magic_name__ :int=7 , __magic_name__ :Optional[Any]=3 , __magic_name__ :Dict=18 , __magic_name__ :Optional[Any]=30 , __magic_name__ :Optional[Any]=400 , __magic_name__ :Dict=True , __magic_name__ :List[str]=32 , __magic_name__ :Union[str, Any]=True , ):
'''simple docstring'''
a = parent
a = batch_size
a = num_channels
a = image_size
a = min_resolution
a = max_resolution
a = do_resize
a = size_divisor
a = do_rescale
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size_divisor": self.size_divisor,
"do_rescale": self.do_rescale,
}
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = GLPNImageProcessor if is_vision_available() else None
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = GLPNImageProcessingTester(self )
@property
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__magic_name__ , """do_resize""" ) )
self.assertTrue(hasattr(__magic_name__ , """size_divisor""" ) )
self.assertTrue(hasattr(__magic_name__ , """resample""" ) )
self.assertTrue(hasattr(__magic_name__ , """do_rescale""" ) )
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , Image.Image )
# Test not batched input (GLPNImageProcessor doesn't support batching)
a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , np.ndarray )
# Test not batched input (GLPNImageProcessor doesn't support batching)
a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , torch.Tensor )
# Test not batched input (GLPNImageProcessor doesn't support batching)
a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
| 347 |
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = torch.permute(__lowerCamelCase , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ):
# linear layer
a = flax_key_tuple[:-1] + ("""weight""",)
a = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
a = flax_key_tuple[:-1] + ("""weight""",)
return flax_key_tuple, flax_tensor
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]:
if "metadata" in layer:
a = layer.split("""metadata""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )]
elif "kvstore" in layer:
a = layer.split("""kvstore""" )
a = """""".join(split_layer[0] )[:-1]
a = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )]
else:
a = layer.split("""/""" )
a = """/""".join(split_layer[:-1] )
a = (split_layer[-1],)
if "kvstore/path" in layer:
a = f'{switch_checkpoint_path}/{checkpoint_info[layer]}'
elif "kvstore/driver" in layer:
a = """file"""
else:
a = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def __A ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
a = rename_keys(__lowerCamelCase )
a = {}
for k, v in current_block.items():
a = v
a = new_current_block
torch.save(__lowerCamelCase , __lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = WEIGHTS_NAME ) -> List[str]:
a = convert_file_size_to_int(__lowerCamelCase )
a = []
a = {}
a = 0
a = 0
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp:
a = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""]
a = flatten_dict(__lowerCamelCase , sep="""/""" )
a = {}
for layer in checkpoint_info.keys():
a , a , a = get_key_and_tensorstore_dict(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if curr_real_layer_name in all_layers:
a = content
else:
a = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
a = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
a = torch.tensor(__lowerCamelCase )
a = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
a , a = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __lowerCamelCase )
a = """/""".join(__lowerCamelCase )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
a = os.path.join(
__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
del current_block
a = {}
a = 0
a = raw_weights.to(getattr(__lowerCamelCase , __lowerCamelCase ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) )
rename_and_save_block(__lowerCamelCase , __lowerCamelCase )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(__lowerCamelCase ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
a = {}
a = {}
for idx, shard in enumerate(__lowerCamelCase ):
a = weights_name.replace(
""".bin""" , f'-{idx+1:05d}-of-{len(__lowerCamelCase ):05d}.bin' ) # len(sharded_state_dicts):05d}
a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{idx+1:05d}-of-???.bin' ) )
os.rename(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) )
a = shard
for key in shard:
a = shard_file
# Add the metadata
a = {"""total_size""": total_size}
a = {"""metadata""": metadata, """weight_map""": weight_map}
with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f:
a = json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase ) + """\n"""
f.write(__lowerCamelCase )
return metadata, index
if __name__ == "__main__":
__UpperCamelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--switch_t5x_checkpoint_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size")
parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted",
type=str,
required=False,
help="Path to the output pytorch model.",
)
__UpperCamelCase : Any = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def __A ( ) -> Tuple:
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
a = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" )
config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" )
a = SwitchTransformersForConditionalGeneration.from_pretrained(
"""/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" )
a = TaTokenizer.from_pretrained("""t5-small""" )
a = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."""
a = tokenizer(__lowerCamelCase , return_tensors="""pt""" ).input_ids
a = model.generate(__lowerCamelCase , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 347 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCamelCase : Optional[int] = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
__UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
__UpperCamelCase : Union[str, Any] = (720, 1_280) # Height, Width
__UpperCamelCase : Any = (0.4, 0.6) # if height or width lower than this scale, drop it.
__UpperCamelCase : str = 1 / 100
__UpperCamelCase : Optional[int] = ""
__UpperCamelCase : List[Any] = ""
__UpperCamelCase : Union[str, Any] = ""
__UpperCamelCase : Tuple = 250
def __A ( ) -> None:
a , a = get_dataset(__lowerCamelCase , __lowerCamelCase )
for index in range(__lowerCamelCase ):
a = random.sample(range(len(__lowerCamelCase ) ) , 4 )
a , a , a = update_image_and_anno(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , filter_scale=__lowerCamelCase , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
a = random_chars(32 )
a = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
a = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}'
cva.imwrite(f'{file_root}.jpg' , __lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' )
a = []
for anno in new_annos:
a = anno[3] - anno[1]
a = anno[4] - anno[2]
a = anno[1] + width / 2
a = anno[2] + height / 2
a = f'{anno[0]} {x_center} {y_center} {width} {height}'
annos_list.append(__lowerCamelCase )
with open(f'{file_root}.txt' , """w""" ) as outfile:
outfile.write("""\n""".join(line for line in annos_list ) )
def __A ( __lowerCamelCase , __lowerCamelCase ) -> tuple[list, list]:
a = []
a = []
for label_file in glob.glob(os.path.join(__lowerCamelCase , """*.txt""" ) ):
a = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0]
with open(__lowerCamelCase ) as in_file:
a = in_file.readlines()
a = os.path.join(__lowerCamelCase , f'{label_name}.jpg' )
a = []
for obj_list in obj_lists:
a = obj_list.rstrip("""\n""" ).split(""" """ )
a = float(obj[1] ) - float(obj[3] ) / 2
a = float(obj[2] ) - float(obj[4] ) / 2
a = float(obj[1] ) + float(obj[3] ) / 2
a = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(__lowerCamelCase )
labels.append(__lowerCamelCase )
return img_paths, labels
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 0.0 , ) -> tuple[list, list, str]:
a = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
a = int(scale_x * output_size[1] )
a = int(scale_y * output_size[0] )
a = []
a = []
for i, index in enumerate(__lowerCamelCase ):
a = all_img_list[index]
path_list.append(__lowerCamelCase )
a = all_annos[index]
a = cva.imread(__lowerCamelCase )
if i == 0: # top-left
a = cva.resize(__lowerCamelCase , (divid_point_x, divid_point_y) )
a = img
for bbox in img_annos:
a = bbox[1] * scale_x
a = bbox[2] * scale_y
a = bbox[3] * scale_x
a = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
a = cva.resize(__lowerCamelCase , (output_size[1] - divid_point_x, divid_point_y) )
a = img
for bbox in img_annos:
a = scale_x + bbox[1] * (1 - scale_x)
a = bbox[2] * scale_y
a = scale_x + bbox[3] * (1 - scale_x)
a = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
a = cva.resize(__lowerCamelCase , (divid_point_x, output_size[0] - divid_point_y) )
a = img
for bbox in img_annos:
a = bbox[1] * scale_x
a = scale_y + bbox[2] * (1 - scale_y)
a = bbox[3] * scale_x
a = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
a = cva.resize(
__lowerCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
a = img
for bbox in img_annos:
a = scale_x + bbox[1] * (1 - scale_x)
a = scale_y + bbox[2] * (1 - scale_y)
a = scale_x + bbox[3] * (1 - scale_x)
a = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
a = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def __A ( __lowerCamelCase ) -> str:
assert number_char > 1, "The number of character should greater than 1"
a = ascii_lowercase + digits
return "".join(random.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 347 | 1 |
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
__UpperCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--original_config_file",
type=str,
required=True,
help="The YAML config file corresponding to the original architecture.",
)
parser.add_argument(
"--num_in_channels",
default=None,
type=int,
help="The number of input channels. If `None` number of input channels will be automatically inferred.",
)
parser.add_argument(
"--image_size",
default=512,
type=int,
help=(
"The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"
" Base. Use 768 for Stable Diffusion v2."
),
)
parser.add_argument(
"--extract_ema",
action="store_true",
help=(
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
),
)
parser.add_argument(
"--upcast_attention",
action="store_true",
help=(
"Whether the attention computation should always be upcasted. This is necessary when running stable"
" diffusion 2.1."
),
)
parser.add_argument(
"--from_safetensors",
action="store_true",
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.",
)
parser.add_argument(
"--to_safetensors",
action="store_true",
help="Whether to store pipeline in safetensors format or not.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
def __A ( __lowerCamelCase ) -> Union[str, Any]:
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(f'could not parse string as bool {string}' )
parser.add_argument(
"--use_linear_projection", help="Override for use linear projection", required=False, type=parse_bool
)
parser.add_argument("--cross_attention_dim", help="Override for cross attention_dim", required=False, type=int)
__UpperCamelCase : Optional[Any] = parser.parse_args()
__UpperCamelCase : Dict = download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 347 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase : Optional[Any] = {
"configuration_mobilenet_v2": [
"MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP",
"MobileNetV2Config",
"MobileNetV2OnnxConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = ["MobileNetV2FeatureExtractor"]
__UpperCamelCase : Tuple = ["MobileNetV2ImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
"MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
"MobileNetV2ForImageClassification",
"MobileNetV2ForSemanticSegmentation",
"MobileNetV2Model",
"MobileNetV2PreTrainedModel",
"load_tf_weights_in_mobilenet_v2",
]
if TYPE_CHECKING:
from .configuration_mobilenet_va import (
MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileNetVaConfig,
MobileNetVaOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor
from .image_processing_mobilenet_va import MobileNetVaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilenet_va import (
MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileNetVaForImageClassification,
MobileNetVaForSemanticSegmentation,
MobileNetVaModel,
MobileNetVaPreTrainedModel,
load_tf_weights_in_mobilenet_va,
)
else:
import sys
__UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 1 |
from collections.abc import Callable
import numpy as np
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> np.array:
a = int(np.ceil((x_end - xa) / step_size ) )
a = np.zeros((n + 1,) )
a = ya
a = xa
for k in range(__lowerCamelCase ):
a = y[k] + step_size * ode_func(__lowerCamelCase , y[k] )
a = y[k] + (
(step_size / 2) * (ode_func(__lowerCamelCase , y[k] ) + ode_func(x + step_size , __lowerCamelCase ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 |
def __A ( __lowerCamelCase ) -> bool:
if num < 0:
return False
a = num
a = 0
while num > 0:
a = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 1 |
from collections.abc import Iterable
from typing import Any
class __lowerCAmelCase :
def __init__( self :List[Any] , __magic_name__ :int | None = None ):
'''simple docstring'''
a = value
a = None # Added in order to delete a node easier
a = None
a = None
def __repr__( self :Any ):
'''simple docstring'''
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value )
return pformat({F'{self.value}': (self.left, self.right)} , indent=1 )
class __lowerCAmelCase :
def __init__( self :Optional[Any] , __magic_name__ :Node | None = None ):
'''simple docstring'''
a = root
def __str__( self :Optional[int] ):
'''simple docstring'''
return str(self.root )
def lowerCamelCase__ ( self :Dict , __magic_name__ :Node , __magic_name__ :Node | None ):
'''simple docstring'''
if new_children is not None: # reset its kids
a = node.parent
if node.parent is not None: # reset its parent
if self.is_right(__magic_name__ ): # If it is the right children
a = new_children
else:
a = new_children
else:
a = new_children
def lowerCamelCase__ ( self :int , __magic_name__ :Node ):
'''simple docstring'''
if node.parent and node.parent.right:
return node == node.parent.right
return False
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
return self.root is None
def lowerCamelCase__ ( self :str , __magic_name__ :List[Any] ):
'''simple docstring'''
a = Node(__magic_name__ ) # create a new Node
if self.empty(): # if Tree is empty
a = new_node # set its root
else: # Tree is not empty
a = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
a = new_node # We insert the new node in a leaf
break
else:
a = parent_node.left
else:
if parent_node.right is None:
a = new_node
break
else:
a = parent_node.right
a = parent_node
def lowerCamelCase__ ( self :Optional[int] , *__magic_name__ :Optional[int] ):
'''simple docstring'''
for value in values:
self.__insert(__magic_name__ )
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :str ):
'''simple docstring'''
if self.empty():
raise IndexError("""Warning: Tree is empty! please use another.""" )
else:
a = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
a = node.left if value < node.value else node.right
return node
def lowerCamelCase__ ( self :Any , __magic_name__ :Node | None = None ):
'''simple docstring'''
if node is None:
if self.root is None:
return None
a = self.root
if not self.empty():
while node.right is not None:
a = node.right
return node
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :Node | None = None ):
'''simple docstring'''
if node is None:
a = self.root
if self.root is None:
return None
if not self.empty():
a = self.root
while node.left is not None:
a = node.left
return node
def lowerCamelCase__ ( self :Tuple , __magic_name__ :int ):
'''simple docstring'''
a = self.search(__magic_name__ ) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(__magic_name__ , __magic_name__ )
elif node.left is None: # Has only right children
self.__reassign_nodes(__magic_name__ , node.right )
elif node.right is None: # Has only left children
self.__reassign_nodes(__magic_name__ , node.left )
else:
a = self.get_max(
node.left ) # Gets the max value of the left branch
self.remove(tmp_node.value ) # type: ignore
a = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :Node | None ):
'''simple docstring'''
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left )
yield from self.preorder_traverse(node.right )
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :Any=None ):
'''simple docstring'''
if traversal_function is None:
return self.preorder_traverse(self.root )
else:
return traversal_function(self.root )
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :list , __magic_name__ :Node | None ):
'''simple docstring'''
if node:
self.inorder(__magic_name__ , node.left )
arr.append(node.value )
self.inorder(__magic_name__ , node.right )
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :int , __magic_name__ :Node ):
'''simple docstring'''
a = []
self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal
return arr[k - 1]
def __A ( __lowerCamelCase ) -> list[Node]:
a = []
if curr_node is not None:
a = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node]
return node_list
def __A ( ) -> None:
a = (8, 3, 6, 1, 10, 14, 13, 4, 7)
a = BinarySearchTree()
for i in testlist:
t.insert(__lowerCamelCase )
# Prints all the elements of the list in order traversal
print(__lowerCamelCase )
if t.search(6 ) is not None:
print("""The value 6 exists""" )
else:
print("""The value 6 doesn't exist""" )
if t.search(-1 ) is not None:
print("""The value -1 exists""" )
else:
print("""The value -1 doesn't exist""" )
if not t.empty():
print("""Max Value: """ , t.get_max().value ) # type: ignore
print("""Min Value: """ , t.get_min().value ) # type: ignore
for i in testlist:
t.remove(__lowerCamelCase )
print(__lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 347 |
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = CanineTokenizer
UpperCamelCase__ = False
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
super().setUp()
a = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
return CanineTokenizer.from_pretrained("""google/canine-s""" )
def lowerCamelCase__ ( self :Tuple , **__magic_name__ :Dict ):
'''simple docstring'''
a = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ )
a = 1024
return tokenizer
@require_torch
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.canine_tokenizer
a = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""]
# fmt: off
a = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0]
# fmt: on
a = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
self.assertIsInstance(__magic_name__ , __magic_name__ )
a = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.canine_tokenizer
a = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""]
a = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("""input_ids""" , __magic_name__ )
self.assertIn("""attention_mask""" , __magic_name__ )
self.assertIn("""token_type_ids""" , __magic_name__ )
@require_torch
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
a = self.canine_tokenizer
a = [
"""What's the weater?""",
"""It's about 25 degrees.""",
]
a = tokenizer(
text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
a = tempfile.mkdtemp()
a = """ He is very happy, UNwant\u00E9d,running"""
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
a = tokenizer.__class__.from_pretrained(__magic_name__ )
a = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
shutil.rmtree(__magic_name__ )
a = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
a = tempfile.mkdtemp()
a = """ He is very happy, UNwant\u00E9d,running"""
a = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
a = chr(0Xe_0_0_7 )
additional_special_tokens.append(__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
a = tokenizer.__class__.from_pretrained(__magic_name__ )
a = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
a = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__magic_name__ )
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a , a = self.get_clean_sequence(__magic_name__ )
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_5
a = chr(__magic_name__ )
tokenizer.add_special_tokens({"""cls_token""": special_token} )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
a = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertEqual(__magic_name__ , input_encoded + special_token_id )
a = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ )
self.assertTrue(special_token not in decoded )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = chr(0Xe_0_0_5 )
a = chr(0Xe_0_0_6 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} )
a = tokenizer.tokenize(__magic_name__ )
a = tokenizer.tokenize(__magic_name__ )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(len(__magic_name__ ) , 1 )
self.assertEqual(token_a[0] , __magic_name__ )
self.assertEqual(token_a[0] , __magic_name__ )
@require_tokenizers
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_6
a = chr(__magic_name__ )
a = AddedToken(__magic_name__ , lstrip=__magic_name__ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__magic_name__ )
tokenizer.from_pretrained(__magic_name__ )
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__magic_name__ )
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
a = json.load(__magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
a = json.load(__magic_name__ )
# a special token for Canine can be defined as follows:
a = 0Xe_0_0_6
a = chr(__magic_name__ )
a = [new_token_a]
a = [new_token_a]
with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__magic_name__ , __magic_name__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
a = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
a = 0Xe_0_0_7
a = chr(__magic_name__ )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
a = [AddedToken(__magic_name__ , lstrip=__magic_name__ )]
a = tokenizer_class.from_pretrained(
__magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 )
self.assertIn(__magic_name__ , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.get_tokenizers(do_lower_case=__magic_name__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = """hello world"""
if self.space_between_special_tokens:
a = """[CLS] hello world [SEP]"""
else:
a = input
a = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
a = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__magic_name__ , [output, output.lower()] )
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
a = [
"""bos_token""",
"""eos_token""",
"""unk_token""",
"""sep_token""",
"""pad_token""",
"""cls_token""",
"""mask_token""",
]
a = """a"""
a = ord(__magic_name__ )
for attr in attributes_list:
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , attr + """_id""" , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] )
a = 0Xe_0_0_6
a = chr(__magic_name__ )
setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] )
self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] )
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
pass
| 347 | 1 |
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def __A ( __lowerCamelCase ) -> float:
return np.dot(__lowerCamelCase , __lowerCamelCase )
class __lowerCAmelCase :
def __init__( self :Optional[int] , *,
__magic_name__ :float = np.inf , __magic_name__ :str = "linear" , __magic_name__ :float = 0.0 , ):
'''simple docstring'''
a = regularization
a = gamma
if kernel == "linear":
a = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError("""rbf kernel requires gamma""" )
if not isinstance(self.gamma , (float, int) ):
raise ValueError("""gamma must be float or int""" )
if not self.gamma > 0:
raise ValueError("""gamma must be > 0""" )
a = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
a = F'Unknown kernel: {kernel}'
raise ValueError(__magic_name__ )
def lowerCamelCase__ ( self :str , __magic_name__ :ndarray , __magic_name__ :ndarray ):
'''simple docstring'''
return np.dot(__magic_name__ , __magic_name__ )
def lowerCamelCase__ ( self :Any , __magic_name__ :ndarray , __magic_name__ :ndarray ):
'''simple docstring'''
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def lowerCamelCase__ ( self :List[str] , __magic_name__ :list[ndarray] , __magic_name__ :ndarray ):
'''simple docstring'''
a = observations
a = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((a) , ) = np.shape(__magic_name__ )
def to_minimize(__magic_name__ :ndarray ) -> float:
a = 0
((a) , ) = np.shape(__magic_name__ )
for i in range(__magic_name__ ):
for j in range(__magic_name__ ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j] )
)
return 1 / 2 * s - sum(__magic_name__ )
a = LinearConstraint(__magic_name__ , 0 , 0 )
a = Bounds(0 , self.regularization )
a = minimize(
__magic_name__ , np.ones(__magic_name__ ) , bounds=__magic_name__ , constraints=[ly_contraint] ).x
a = l_star
# calculating mean offset of separation plane to points
a = 0
for i in range(__magic_name__ ):
for j in range(__magic_name__ ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j] )
a = s / n
def lowerCamelCase__ ( self :Any , __magic_name__ :ndarray ):
'''simple docstring'''
a = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , __magic_name__ )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 |
def __A ( __lowerCamelCase ) -> bool:
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCamelCase : List[str] = {
"configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"],
"tokenization_roformer": ["RoFormerTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : str = ["RoFormerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
"ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoFormerForCausalLM",
"RoFormerForMaskedLM",
"RoFormerForMultipleChoice",
"RoFormerForQuestionAnswering",
"RoFormerForSequenceClassification",
"RoFormerForTokenClassification",
"RoFormerLayer",
"RoFormerModel",
"RoFormerPreTrainedModel",
"load_tf_weights_in_roformer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = [
"TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRoFormerForCausalLM",
"TFRoFormerForMaskedLM",
"TFRoFormerForMultipleChoice",
"TFRoFormerForQuestionAnswering",
"TFRoFormerForSequenceClassification",
"TFRoFormerForTokenClassification",
"TFRoFormerLayer",
"TFRoFormerModel",
"TFRoFormerPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Any = [
"FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlaxRoFormerForMaskedLM",
"FlaxRoFormerForMultipleChoice",
"FlaxRoFormerForQuestionAnswering",
"FlaxRoFormerForSequenceClassification",
"FlaxRoFormerForTokenClassification",
"FlaxRoFormerModel",
"FlaxRoFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
__UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 |
def __A ( __lowerCamelCase ) -> int:
if not numbers:
return 0
if not isinstance(__lowerCamelCase , (list, tuple) ) or not all(
isinstance(__lowerCamelCase , __lowerCamelCase ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
a = a = a = numbers[0]
for i in range(1 , len(__lowerCamelCase ) ):
# update the maximum and minimum subarray products
a = numbers[i]
if number < 0:
a , a = min_till_now, max_till_now
a = max(__lowerCamelCase , max_till_now * number )
a = min(__lowerCamelCase , min_till_now * number )
# update the maximum product found till now
a = max(__lowerCamelCase , __lowerCamelCase )
return max_prod
| 347 | 1 |
def __A ( __lowerCamelCase = 5000_0000 ) -> int:
a = set()
a = int((limit - 24) ** (1 / 2) )
a = set(range(3 , prime_square_limit + 1 , 2 ) )
primes.add(2 )
for p in range(3 , prime_square_limit + 1 , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , prime_square_limit + 1 , __lowerCamelCase ) ) )
for primea in primes:
a = primea * primea
for primea in primes:
a = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
a = primea * primea * primea * primea
a = square + cube + tetr
if total >= limit:
break
ret.add(__lowerCamelCase )
return len(__lowerCamelCase )
if __name__ == "__main__":
print(F'{solution() = }')
| 347 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__UpperCamelCase : Optional[Any] = {
"configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"],
"feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"],
"processing_wav2vec2": ["Wav2Vec2Processor"],
"tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : str = [
"WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Wav2Vec2ForAudioFrameClassification",
"Wav2Vec2ForCTC",
"Wav2Vec2ForMaskedLM",
"Wav2Vec2ForPreTraining",
"Wav2Vec2ForSequenceClassification",
"Wav2Vec2ForXVector",
"Wav2Vec2Model",
"Wav2Vec2PreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Dict = [
"TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWav2Vec2ForCTC",
"TFWav2Vec2Model",
"TFWav2Vec2PreTrainedModel",
"TFWav2Vec2ForSequenceClassification",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
"FlaxWav2Vec2ForCTC",
"FlaxWav2Vec2ForPreTraining",
"FlaxWav2Vec2Model",
"FlaxWav2Vec2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
__UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionInstructPixaPixPipeline,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import floats_tensor, load_image, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline
UpperCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''}
UpperCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
UpperCamelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS
UpperCamelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
torch.manual_seed(0 )
a = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
a = PNDMScheduler(skip_prk_steps=__magic_name__ )
torch.manual_seed(0 )
a = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
a = CLIPTextModel(__magic_name__ )
a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
a = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :Union[str, Any] , __magic_name__ :Union[str, Any]=0 ):
'''simple docstring'''
a = floats_tensor((1, 3, 32, 32) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ )
a = image.cpu().permute(0 , 2 , 3 , 1 )[0]
a = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" )
if str(__magic_name__ ).startswith("""mps""" ):
a = torch.manual_seed(__magic_name__ )
else:
a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
a = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""image_guidance_scale""": 1,
"""output_type""": """numpy""",
}
return inputs
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = """cpu""" # ensure determinism for the device-dependent torch.Generator
a = self.get_dummy_components()
a = StableDiffusionInstructPixaPixPipeline(**__magic_name__ )
a = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
a = self.get_dummy_inputs(__magic_name__ )
a = sd_pipe(**__magic_name__ ).images
a = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
a = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = """cpu""" # ensure determinism for the device-dependent torch.Generator
a = self.get_dummy_components()
a = StableDiffusionInstructPixaPixPipeline(**__magic_name__ )
a = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
a = self.get_dummy_inputs(__magic_name__ )
a = """french fries"""
a = sd_pipe(**__magic_name__ , negative_prompt=__magic_name__ )
a = output.images
a = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
a = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def lowerCamelCase__ ( self :Dict ):
'''simple docstring'''
a = """cpu""" # ensure determinism for the device-dependent torch.Generator
a = self.get_dummy_components()
a = StableDiffusionInstructPixaPixPipeline(**__magic_name__ )
a = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
a = self.get_dummy_inputs(__magic_name__ )
a = [inputs["""prompt"""]] * 2
a = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0
a = torch.from_numpy(__magic_name__ ).unsqueeze(0 ).to(__magic_name__ )
a = image / 2 + 0.5
a = image.permute(0 , 3 , 1 , 2 )
a = image.repeat(2 , 1 , 1 , 1 )
a = sd_pipe(**__magic_name__ ).images
a = image[-1, -3:, -3:, -1]
assert image.shape == (2, 32, 32, 3)
a = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = """cpu""" # ensure determinism for the device-dependent torch.Generator
a = self.get_dummy_components()
a = EulerAncestralDiscreteScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" )
a = StableDiffusionInstructPixaPixPipeline(**__magic_name__ )
a = sd_pipe.to(__magic_name__ )
sd_pipe.set_progress_bar_config(disable=__magic_name__ )
a = self.get_dummy_inputs(__magic_name__ )
a = sd_pipe(**__magic_name__ ).images
a = image[0, -3:, -3:, -1]
a = [round(__magic_name__ , 4 ) for x in image_slice.flatten().tolist()]
print(""",""".join([str(__magic_name__ ) for x in slice] ) )
assert image.shape == (1, 32, 32, 3)
a = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = self.get_dummy_components()
a = StableDiffusionInstructPixaPixPipeline(**__magic_name__ )
a = VaeImageProcessor(do_resize=__magic_name__ , do_normalize=__magic_name__ )
a = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
a = pipe(**self.get_dummy_inputs_by_type(__magic_name__ , input_image_type="""pt""" ) )[0]
a = components["""vae"""]
a = self.get_dummy_inputs_by_type(__magic_name__ , input_image_type="""pt""" )
for image_param in self.image_latents_params:
if image_param in inputs.keys():
a = vae.encode(inputs[image_param] ).latent_dist.mode()
a = pipe(**__magic_name__ )[0]
a = np.abs(out - out_latents_inputs ).max()
self.assertLess(__magic_name__ , 1E-4 , """passing latents as image input generate different result from passing image""" )
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase__ ( self :Tuple , __magic_name__ :Optional[Any]=0 ):
'''simple docstring'''
a = torch.manual_seed(__magic_name__ )
a = load_image(
"""https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" )
a = {
"""prompt""": """turn him into a cyborg""",
"""image""": image,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 7.5,
"""image_guidance_scale""": 1.0,
"""output_type""": """numpy""",
}
return inputs
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
pipe.enable_attention_slicing()
a = self.get_inputs()
a = pipe(**__magic_name__ ).images
a = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
a = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] )
assert np.abs(expected_slice - image_slice ).max() < 1E-3
def lowerCamelCase__ ( self :str ):
'''simple docstring'''
a = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=__magic_name__ )
a = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
pipe.enable_attention_slicing()
a = self.get_inputs()
a = pipe(**__magic_name__ ).images
a = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
a = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] )
assert np.abs(expected_slice - image_slice ).max() < 1E-3
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=__magic_name__ )
a = DDIMScheduler.from_config(pipe.scheduler.config )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
pipe.enable_attention_slicing()
a = self.get_inputs()
a = pipe(**__magic_name__ ).images
a = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
a = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] )
assert np.abs(expected_slice - image_slice ).max() < 1E-3
def lowerCamelCase__ ( self :int ):
'''simple docstring'''
a = 0
def callback_fn(__magic_name__ :int , __magic_name__ :int , __magic_name__ :torch.FloatTensor ) -> None:
a = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
a = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
a = latents[0, -3:, -3:, -1]
a = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2
elif step == 2:
a = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
a = latents[0, -3:, -3:, -1]
a = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2
a = False
a = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=__magic_name__ , torch_dtype=torch.floataa )
a = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
pipe.enable_attention_slicing()
a = self.get_inputs()
pipe(**__magic_name__ , callback=__magic_name__ , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
a = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=__magic_name__ , torch_dtype=torch.floataa )
a = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
a = self.get_inputs()
a = pipe(**__magic_name__ )
a = torch.cuda.max_memory_allocated()
# make sure that less than 2.2 GB is allocated
assert mem_bytes < 2.2 * 10**9
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = self.get_inputs()
# resize to resolution that is divisible by 8 but not 16 or 32
a = inputs["""image"""].resize((504, 504) )
a = """timbrooks/instruct-pix2pix"""
a = StableDiffusionInstructPixaPixPipeline.from_pretrained(
__magic_name__ , safety_checker=__magic_name__ , )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
pipe.enable_attention_slicing()
a = pipe(**__magic_name__ )
a = output.images[0]
a = image[255:258, 383:386, -1]
assert image.shape == (504, 504, 3)
a = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
| 347 |
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any:
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , __lowerCamelCase )
a = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
a = dataset_size < in_memory_max_size
else:
a = False
a = is_small_dataset(__lowerCamelCase )
assert result == expected
| 347 | 1 |
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> list[float]:
a , a = coefficient_matrix.shape
a , a = constant_matrix.shape
if rowsa != colsa:
a = f'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}'
raise ValueError(__lowerCamelCase )
if colsa != 1:
a = f'Constant matrix must be nx1 but received {rowsa}x{colsa}'
raise ValueError(__lowerCamelCase )
if rowsa != rowsa:
a = (
"""Coefficient and constant matrices dimensions must be nxn and nx1 but """
f'received {rowsa}x{colsa} and {rowsa}x{colsa}'
)
raise ValueError(__lowerCamelCase )
if len(__lowerCamelCase ) != rowsa:
a = (
"""Number of initial values must be equal to number of rows in coefficient """
f'matrix but received {len(__lowerCamelCase )} and {rowsa}'
)
raise ValueError(__lowerCamelCase )
if iterations <= 0:
raise ValueError("""Iterations must be at least 1""" )
a = np.concatenate(
(coefficient_matrix, constant_matrix) , axis=1 )
a , a = table.shape
strictly_diagonally_dominant(__lowerCamelCase )
# Iterates the whole matrix for given number of times
for _ in range(__lowerCamelCase ):
a = []
for row in range(__lowerCamelCase ):
a = 0
for col in range(__lowerCamelCase ):
if col == row:
a = table[row][col]
elif col == cols - 1:
a = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
a = (temp + val) / denom
new_val.append(__lowerCamelCase )
a = new_val
return [float(__lowerCamelCase ) for i in new_val]
def __A ( __lowerCamelCase ) -> bool:
a , a = table.shape
a = True
for i in range(0 , __lowerCamelCase ):
a = 0
for j in range(0 , cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 347 |
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def __A ( __lowerCamelCase ) -> bool:
a = int(number**0.5 )
return number == sq * sq
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple[int, int]:
a = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
a = x_den * y_den * z_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
top //= hcf
bottom //= hcf
return top, bottom
def __A ( __lowerCamelCase = 35 ) -> int:
a = set()
a = 42
a = Fraction(0 )
a = 42
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
a = x_num * y_den + x_den * y_num
a = x_den * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
a = x_den * x_den * y_den * y_den
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=-1
a = x_num * y_num
a = x_den * y_num + x_num * y_den
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
# n=2
a = x_num * x_num * y_num * y_num
a = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ):
a = int(sqrt(__lowerCamelCase ) )
a = int(sqrt(__lowerCamelCase ) )
a = gcd(__lowerCamelCase , __lowerCamelCase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
a = add_three(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
unique_s.add(__lowerCamelCase )
for num, den in unique_s:
total += Fraction(__lowerCamelCase , __lowerCamelCase )
return total.denominator + total.numerator
if __name__ == "__main__":
print(F'{solution() = }')
| 347 | 1 |
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = KandinskyVaaPriorPipeline
UpperCamelCase__ = ['''prompt''']
UpperCamelCase__ = ['''prompt''', '''negative_prompt''']
UpperCamelCase__ = [
'''num_images_per_prompt''',
'''generator''',
'''num_inference_steps''',
'''latents''',
'''negative_prompt''',
'''guidance_scale''',
'''output_type''',
'''return_dict''',
]
UpperCamelCase__ = False
@property
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
return 32
@property
def lowerCamelCase__ ( self :Any ):
'''simple docstring'''
return 32
@property
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
return 100
@property
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
return tokenizer
@property
def lowerCamelCase__ ( self :Tuple ):
'''simple docstring'''
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModelWithProjection(__magic_name__ )
@property
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
torch.manual_seed(0 )
a = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 12,
"""embedding_dim""": self.text_embedder_hidden_size,
"""num_layers""": 1,
}
a = PriorTransformer(**__magic_name__ )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
a = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
torch.manual_seed(0 )
a = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
a = CLIPVisionModelWithProjection(__magic_name__ )
return model
@property
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = CLIPImageProcessor(
crop_size=224 , do_center_crop=__magic_name__ , do_normalize=__magic_name__ , do_resize=__magic_name__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , )
return image_processor
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = self.dummy_prior
a = self.dummy_image_encoder
a = self.dummy_text_encoder
a = self.dummy_tokenizer
a = self.dummy_image_processor
a = UnCLIPScheduler(
variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__magic_name__ , clip_sample_range=10.0 , )
a = {
"""prior""": prior,
"""image_encoder""": image_encoder,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""scheduler""": scheduler,
"""image_processor""": image_processor,
}
return components
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :Optional[int] , __magic_name__ :List[Any]=0 ):
'''simple docstring'''
if str(__magic_name__ ).startswith("""mps""" ):
a = torch.manual_seed(__magic_name__ )
else:
a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ )
a = {
"""prompt""": """horse""",
"""generator""": generator,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
a = """cpu"""
a = self.get_dummy_components()
a = self.pipeline_class(**__magic_name__ )
a = pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
a = pipe(**self.get_dummy_inputs(__magic_name__ ) )
a = output.image_embeds
a = pipe(
**self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0]
a = image[0, -10:]
a = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
a = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = torch_device == """cpu"""
a = True
a = False
self._test_inference_batch_single_identical(
test_max_difference=__magic_name__ , relax_max_difference=__magic_name__ , test_mean_pixel_difference=__magic_name__ , )
@skip_mps
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = torch_device == """cpu"""
a = False
self._test_attention_slicing_forward_pass(
test_max_difference=__magic_name__ , test_mean_pixel_difference=__magic_name__ , )
| 347 |
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
def __init__( self :List[str] , __magic_name__ :List[str] , __magic_name__ :List[Any]=13 , __magic_name__ :Any=7 , __magic_name__ :Optional[int]=True , __magic_name__ :List[Any]=True , __magic_name__ :Optional[int]=True , __magic_name__ :Union[str, Any]=True , __magic_name__ :Any=99 , __magic_name__ :List[str]=32 , __magic_name__ :List[str]=5 , __magic_name__ :str=4 , __magic_name__ :str=37 , __magic_name__ :Optional[int]="gelu" , __magic_name__ :int=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :List[str]=512 , __magic_name__ :Tuple=16 , __magic_name__ :Tuple=2 , __magic_name__ :List[str]=0.02 , __magic_name__ :Any=4 , ):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_attention_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_choices
def lowerCamelCase__ ( self :Optional[int] ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a = None
if self.use_attention_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCamelCase__ ( self :Optional[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a , a = config_and_inputs
a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
UpperCamelCase__ = True
UpperCamelCase__ = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCamelCase__ ( self :List[Any] ):
'''simple docstring'''
a = FlaxRoFormerModelTester(self )
@slow
def lowerCamelCase__ ( self :List[str] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
a = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__magic_name__ )
a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__magic_name__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
@slow
def lowerCamelCase__ ( self :Union[str, Any] ):
'''simple docstring'''
a = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
a = jnp.array([[0, 1, 2, 3, 4, 5]] )
a = model(__magic_name__ )[0]
a = 5_0000
a = (1, 6, vocab_size)
self.assertEqual(output.shape , __magic_name__ )
a = jnp.array(
[[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
| 347 | 1 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCamelCase : List[str] = logging.get_logger(__name__)
def __A ( __lowerCamelCase , __lowerCamelCase=False ) -> str:
a = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """vit.embeddings.cls_token"""),
("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
("""pre_logits.fc.weight""", """pooler.dense.weight"""),
("""pre_logits.fc.bias""", """pooler.dense.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
a = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> int:
for i in range(config.num_hidden_layers ):
if base_model:
a = """"""
else:
a = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
a = state_dict.pop(f'blocks.{i}.attn.qkv.weight' )
a = state_dict.pop(f'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
a = in_proj_weight[
: config.hidden_size, :
]
a = in_proj_bias[: config.hidden_size]
a = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
a = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
a = in_proj_weight[
-config.hidden_size :, :
]
a = in_proj_bias[-config.hidden_size :]
def __A ( __lowerCamelCase ) -> Dict:
a = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(__lowerCamelCase , __lowerCamelCase )
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple:
a = dct.pop(__lowerCamelCase )
a = val
def __A ( ) -> List[Any]:
a = """http://images.cocodataset.org/val2017/000000039769.jpg"""
a = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw )
return im
@torch.no_grad()
def __A ( __lowerCamelCase , __lowerCamelCase ) -> int:
a = ViTConfig()
a = False
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
if vit_name[-5:] == "in21k":
a = True
a = int(vit_name[-12:-10] )
a = int(vit_name[-9:-6] )
else:
a = 1000
a = """huggingface/label-files"""
a = """imagenet-1k-id2label.json"""
a = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) )
a = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
a = idalabel
a = {v: k for k, v in idalabel.items()}
a = int(vit_name[-6:-4] )
a = int(vit_name[-3:] )
# size of the architecture
if "deit" in vit_name:
if vit_name[9:].startswith("""tiny""" ):
a = 192
a = 768
a = 12
a = 3
elif vit_name[9:].startswith("""small""" ):
a = 384
a = 1536
a = 12
a = 6
else:
pass
else:
if vit_name[4:].startswith("""small""" ):
a = 768
a = 2304
a = 8
a = 8
elif vit_name[4:].startswith("""base""" ):
pass
elif vit_name[4:].startswith("""large""" ):
a = 1024
a = 4096
a = 24
a = 16
elif vit_name[4:].startswith("""huge""" ):
a = 1280
a = 5120
a = 32
a = 16
# load original model from timm
a = timm.create_model(__lowerCamelCase , pretrained=__lowerCamelCase )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
a = timm_model.state_dict()
if base_model:
remove_classification_head_(__lowerCamelCase )
a = create_rename_keys(__lowerCamelCase , __lowerCamelCase )
for src, dest in rename_keys:
rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
read_in_q_k_v(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# load HuggingFace model
if vit_name[-5:] == "in21k":
a = ViTModel(__lowerCamelCase ).eval()
else:
a = ViTForImageClassification(__lowerCamelCase ).eval()
model.load_state_dict(__lowerCamelCase )
# Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor
if "deit" in vit_name:
a = DeiTImageProcessor(size=config.image_size )
else:
a = ViTImageProcessor(size=config.image_size )
a = image_processor(images=prepare_img() , return_tensors="""pt""" )
a = encoding["""pixel_values"""]
a = model(__lowerCamelCase )
if base_model:
a = timm_model.forward_features(__lowerCamelCase )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(__lowerCamelCase , outputs.pooler_output , atol=1E-3 )
else:
a = timm_model(__lowerCamelCase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__lowerCamelCase , outputs.logits , atol=1E-3 )
Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase )
print(f'Saving model {vit_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(__lowerCamelCase )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
__UpperCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--vit_name",
default="vit_base_patch16_224",
type=str,
help="Name of the ViT timm model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
__UpperCamelCase : Union[str, Any] = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
| 347 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCamelCase : Optional[int] = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
__UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 347 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.