code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {"vocab_file": "vocab.json"} lowerCAmelCase__ = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowerCAmelCase__ = {"mgp-str": 27} class __magic_name__ ( _snake_case ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict="[GO]" , lowerCAmelCase__ : List[str]="[GO]" , lowerCAmelCase__ : Tuple="[s]" , lowerCAmelCase__ : Union[str, Any]="[GO]" , **lowerCAmelCase__ : List[str] ) -> Optional[int]: super().__init__( unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8" ) as vocab_handle: UpperCAmelCase = json.load(lowerCAmelCase__ ) UpperCAmelCase = {v: k for k, v in self.vocab.items()} @property def _UpperCamelCase ( self : List[str] ) -> List[Any]: return len(self.vocab ) def _UpperCamelCase ( self : Any ) -> Any: return dict(self.vocab , **self.added_tokens_encoder ) def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : str ) -> Union[str, Any]: UpperCAmelCase = [] for s in text: char_tokens.extend(lowerCAmelCase__ ) return char_tokens def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ) -> Any: return self.vocab.get(lowerCAmelCase__ , self.vocab.get(self.unk_token ) ) def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : Dict ) -> int: return self.decoder.get(lowerCAmelCase__ ) def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error("Vocabulary path ({}) should be a directory".format(lowerCAmelCase__ ) ) return UpperCAmelCase = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + "\n" ) return (vocab_file,)
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase__ = get_tests_dir("fixtures") class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: # A mock response for an HTTP head request to emulate server down UpperCAmelCase = mock.Mock() UpperCAmelCase = 5_0_0 UpperCAmelCase = {} UpperCAmelCase = HTTPError UpperCAmelCase = {} # Download this model to make sure it's in the cache. UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCAmelCase__ ) as mock_head: UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def _UpperCamelCase ( self : List[Any] ) -> Dict: # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class __magic_name__ ( unittest.TestCase ): @classmethod def _UpperCamelCase ( cls : List[str] ) -> List[Any]: UpperCAmelCase = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def _UpperCamelCase ( cls : Optional[int] ) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def _UpperCamelCase ( self : Any ) -> Any: UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ ) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase__ , repo_id="test-feature-extractor" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def _UpperCamelCase ( self : List[Any] ) -> Tuple: UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase__ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def _UpperCamelCase ( self : Dict ) -> List[str]: CustomFeatureExtractor.register_for_auto_class() UpperCAmelCase = CustomFeatureExtractor.from_pretrained(lowerCAmelCase__ ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) UpperCAmelCase = AutoFeatureExtractor.from_pretrained( f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=lowerCAmelCase__ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
1
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _lowerCAmelCase( __A , __A , __A , __A , __A ): for attribute in key.split("." ): UpperCAmelCase = getattr(__A , __A ) if weight_type is not None: UpperCAmelCase = getattr(__A , __A ).shape else: UpperCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCAmelCase = value elif weight_type == "weight_g": UpperCAmelCase = value elif weight_type == "weight_v": UpperCAmelCase = value elif weight_type == "bias": UpperCAmelCase = value else: UpperCAmelCase = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _lowerCAmelCase( __A , __A , __A ): UpperCAmelCase = [] UpperCAmelCase = fairseq_model.state_dict() UpperCAmelCase = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase = True if "*" in mapped_key: UpperCAmelCase = name.split(__A )[0].split("." )[-2] UpperCAmelCase = mapped_key.replace("*" , __A ) if "weight_g" in name: UpperCAmelCase = "weight_g" elif "weight_v" in name: UpperCAmelCase = "weight_v" elif "weight" in name: UpperCAmelCase = "weight" elif "bias" in name: UpperCAmelCase = "bias" else: UpperCAmelCase = None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(F"Unused weights: {unused_weights}" ) def _lowerCAmelCase( __A , __A , __A , __A , __A ): UpperCAmelCase = full_name.split("conv_layers." )[-1] UpperCAmelCase = name.split("." ) UpperCAmelCase = int(items[0] ) UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCAmelCase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCAmelCase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) UpperCAmelCase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) UpperCAmelCase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__A ) def _lowerCAmelCase( __A , __A ): UpperCAmelCase = SEWConfig() if is_finetuned: UpperCAmelCase = model.wav_encoder.wav_model.cfg else: UpperCAmelCase = model.cfg UpperCAmelCase = fs_config.conv_bias UpperCAmelCase = eval(fs_config.conv_feature_layers ) UpperCAmelCase = [x[0] for x in conv_layers] UpperCAmelCase = [x[1] for x in conv_layers] UpperCAmelCase = [x[2] for x in conv_layers] UpperCAmelCase = "gelu" UpperCAmelCase = "layer" if fs_config.extractor_mode == "layer_norm" else "group" UpperCAmelCase = 0.0 UpperCAmelCase = fs_config.activation_fn.name UpperCAmelCase = fs_config.encoder_embed_dim UpperCAmelCase = 0.02 UpperCAmelCase = fs_config.encoder_ffn_embed_dim UpperCAmelCase = 1E-5 UpperCAmelCase = fs_config.encoder_layerdrop UpperCAmelCase = fs_config.encoder_attention_heads UpperCAmelCase = fs_config.conv_pos_groups UpperCAmelCase = fs_config.conv_pos UpperCAmelCase = len(__A ) UpperCAmelCase = fs_config.encoder_layers UpperCAmelCase = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: UpperCAmelCase = model.cfg UpperCAmelCase = fs_config.final_dropout UpperCAmelCase = fs_config.layerdrop UpperCAmelCase = fs_config.activation_dropout UpperCAmelCase = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 UpperCAmelCase = fs_config.attention_dropout UpperCAmelCase = fs_config.dropout_input UpperCAmelCase = fs_config.dropout UpperCAmelCase = fs_config.mask_channel_length UpperCAmelCase = fs_config.mask_channel_prob UpperCAmelCase = fs_config.mask_length UpperCAmelCase = fs_config.mask_prob UpperCAmelCase = "Wav2Vec2FeatureExtractor" UpperCAmelCase = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def _lowerCAmelCase( __A , __A , __A=None , __A=None , __A=True ): if is_finetuned: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: UpperCAmelCase = SEWConfig.from_pretrained(__A ) else: UpperCAmelCase = convert_config(model[0] , __A ) UpperCAmelCase = model[0].eval() UpperCAmelCase = True if config.feat_extract_norm == "layer" else False UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) if is_finetuned: if dict_path: UpperCAmelCase = Dictionary.load(__A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase = target_dict.pad_index UpperCAmelCase = target_dict.bos_index UpperCAmelCase = target_dict.pad_index UpperCAmelCase = target_dict.bos_index UpperCAmelCase = target_dict.eos_index UpperCAmelCase = len(target_dict.symbols ) UpperCAmelCase = os.path.join(__A , "vocab.json" ) if not os.path.isdir(__A ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__A ) ) return os.makedirs(__A , exist_ok=__A ) with open(__A , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , __A ) UpperCAmelCase = WavaVecaCTCTokenizer( __A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__A , ) UpperCAmelCase = WavaVecaProcessor(feature_extractor=__A , tokenizer=__A ) processor.save_pretrained(__A ) UpperCAmelCase = SEWForCTC(__A ) else: UpperCAmelCase = SEWModel(__A ) feature_extractor.save_pretrained(__A ) recursively_load_weights(__A , __A , __A ) hf_model.save_pretrained(__A ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowerCAmelCase__ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCAmelCase__ = "src/diffusers" # Matches is_xxx_available() lowerCAmelCase__ = re.compile(r"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla lowerCAmelCase__ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") lowerCAmelCase__ = "\n{0} = None\n" lowerCAmelCase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" lowerCAmelCase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def _lowerCAmelCase( __A ): UpperCAmelCase = _re_backend.findall(__A ) if len(__A ) == 0: return None return "_and_".join(__A ) def _lowerCAmelCase( ): with open(os.path.join(__A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase = f.readlines() # Get to the point we do the actual imports for type checking UpperCAmelCase = 0 UpperCAmelCase = {} # Go through the end of the file while line_index < len(__A ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCAmelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 UpperCAmelCase = [] # Until we unindent, add backend objects to the list while line_index < len(__A ) and len(lines[line_index] ) > 1: UpperCAmelCase = lines[line_index] UpperCAmelCase = _re_single_line_import.search(__A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__A ) > 0: UpperCAmelCase = objects else: line_index += 1 return backend_specific_objects def _lowerCAmelCase( __A , __A ): if name.isupper(): return DUMMY_CONSTANT.format(__A ) elif name.islower(): return DUMMY_FUNCTION.format(__A , __A ) else: return DUMMY_CLASS.format(__A , __A ) def _lowerCAmelCase( __A=None ): if backend_specific_objects is None: UpperCAmelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCAmelCase = {} for backend, objects in backend_specific_objects.items(): UpperCAmelCase = "[" + ", ".join(F"\"{b}\"" for b in backend.split("_and_" ) ) + "]" UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__A , __A ) for o in objects] ) UpperCAmelCase = dummy_file return dummy_files def _lowerCAmelCase( __A=False ): UpperCAmelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCAmelCase = {"torch": "pt"} # Locate actual dummy modules and read their content. UpperCAmelCase = os.path.join(__A , "utils" ) UpperCAmelCase = { backend: os.path.join(__A , F"dummy_{short_names.get(__A , __A )}_objects.py" ) for backend in dummy_files.keys() } UpperCAmelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__A ): with open(__A , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase = f.read() else: UpperCAmelCase = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"Updating diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py as the main " "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F"diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py. Run `make fix-copies` " "to fix this." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCAmelCase__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
1
1
import inspect import unittest class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : Dict ) -> Tuple: try: import diffusers # noqa: F401 except ImportError: assert False def _UpperCamelCase ( self : Tuple ) -> List[Any]: import diffusers from diffusers.dependency_versions_table import deps UpperCAmelCase = inspect.getmembers(lowerCAmelCase__ , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": UpperCAmelCase = "k-diffusion" elif backend == "invisible_watermark": UpperCAmelCase = "invisible-watermark" assert backend in deps, f"{backend} is not in the deps table!"
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class __magic_name__ ( _snake_case , _snake_case ): UpperCAmelCase = """convnextv2""" def __init__( self : Optional[Any] , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Dict=1e-1_2 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : str=2_2_4 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[Any] , ) -> List[Any]: super().__init__(**lowerCAmelCase__ ) UpperCAmelCase = num_channels UpperCAmelCase = patch_size UpperCAmelCase = num_stages UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes UpperCAmelCase = [3, 3, 9, 3] if depths is None else depths UpperCAmelCase = hidden_act UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = drop_path_rate UpperCAmelCase = image_size UpperCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
1
1
def _lowerCAmelCase( __A = 10**9 ): UpperCAmelCase = 1 UpperCAmelCase = 2 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"{solution() = }")
1
lowerCAmelCase__ = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCAmelCase__ = [{"type": "code", "content": INSTALL_CONTENT}] lowerCAmelCase__ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
1
1
from __future__ import annotations def _lowerCAmelCase( __A , __A ): UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = 0 UpperCAmelCase = sum(__A ) create_state_space_tree(__A , __A , __A , __A , __A , __A ) return result def _lowerCAmelCase( __A , __A , __A , __A , __A , __A , ): if sum(__A ) > max_sum or (remaining_nums_sum + sum(__A )) < max_sum: return if sum(__A ) == max_sum: result.append(__A ) return for index in range(__A , len(__A ) ): create_state_space_tree( __A , __A , index + 1 , [*path, nums[index]] , __A , remaining_nums_sum - nums[index] , ) lowerCAmelCase__ = [3, 34, 4, 12, 5, 2] lowerCAmelCase__ = 9 lowerCAmelCase__ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ ( _snake_case , unittest.TestCase ): UpperCAmelCase = KandinskyInpaintPipeline UpperCAmelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCAmelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCAmelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCAmelCase = False @property def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple: return 3_2 @property def _UpperCamelCase ( self : int ) -> List[Any]: return 3_2 @property def _UpperCamelCase ( self : List[Any] ) -> List[Any]: return self.time_input_dim @property def _UpperCamelCase ( self : Tuple ) -> Tuple: return self.time_input_dim * 4 @property def _UpperCamelCase ( self : Any ) -> Optional[int]: return 1_0_0 @property def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]: UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def _UpperCamelCase ( self : int ) -> Dict: torch.manual_seed(0 ) UpperCAmelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) UpperCAmelCase = MultilingualCLIP(lowerCAmelCase__ ) UpperCAmelCase = text_encoder.eval() return text_encoder @property def _UpperCamelCase ( self : Dict ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def _UpperCamelCase ( self : str ) -> Optional[Any]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _UpperCamelCase ( self : Dict ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCamelCase ( self : Tuple ) -> Any: UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = self.dummy_tokenizer UpperCAmelCase = self.dummy_unet UpperCAmelCase = self.dummy_movq UpperCAmelCase = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCAmelCase__ , ) UpperCAmelCase = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=0 ) -> str: UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase__ ) # create init_image UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) # create mask UpperCAmelCase = np.ones((6_4, 6_4) , dtype=np.floataa ) UpperCAmelCase = 0 if str(lowerCAmelCase__ ).startswith("mps" ): UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ ) else: UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) UpperCAmelCase = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def _UpperCamelCase ( self : Dict ) -> List[str]: UpperCAmelCase = "cpu" UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__ ) UpperCAmelCase = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) UpperCAmelCase = output.images UpperCAmelCase = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase = np.array( [0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def _UpperCamelCase ( self : str ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : str ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : Tuple ) -> int: UpperCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) UpperCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) UpperCAmelCase = 0 UpperCAmelCase = "a hat" UpperCAmelCase = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) UpperCAmelCase = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) UpperCAmelCase = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase = pipeline( lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="np" , ) UpperCAmelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
1
1
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : int ) -> Optional[Any]: UpperCAmelCase = "hf-internal-testing/tiny-random-t5" UpperCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase = tokenizer("This is me" , return_tensors="pt" ) UpperCAmelCase = model.to_bettertransformer() self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) UpperCAmelCase = model.generate(**lowerCAmelCase__ ) UpperCAmelCase = model.reverse_bettertransformer() self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ ) self.assertFalse( any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) UpperCAmelCase = model_reloaded.generate(**lowerCAmelCase__ ) self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) ) def _UpperCamelCase ( self : str ) -> List[str]: UpperCAmelCase = "hf-internal-testing/tiny-random-t5" UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(lowerCAmelCase__ ): model.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase = model.reverse_bettertransformer() model.save_pretrained(lowerCAmelCase__ )
1
def _lowerCAmelCase( __A , __A ): return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def _lowerCAmelCase( __A , __A=0 ): return sorted(__A , key=lambda __A : x[column] ) def _lowerCAmelCase( __A , __A , __A=float("inf" ) ): for i in range(points_counts - 1 ): for j in range(i + 1 , __A ): UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase = current_dis return min_dis def _lowerCAmelCase( __A , __A , __A=float("inf" ) ): for i in range(min(6 , points_counts - 1 ) , __A ): for j in range(max(0 , i - 6 ) , __A ): UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase = current_dis return min_dis def _lowerCAmelCase( __A , __A , __A ): # base case if points_counts <= 3: return dis_between_closest_pair(__A , __A ) # recursion UpperCAmelCase = points_counts // 2 UpperCAmelCase = closest_pair_of_points_sqr( __A , points_sorted_on_y[:mid] , __A ) UpperCAmelCase = closest_pair_of_points_sqr( __A , points_sorted_on_y[mid:] , points_counts - mid ) UpperCAmelCase = min(__A , __A ) UpperCAmelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(__A ) UpperCAmelCase = dis_between_closest_in_strip( __A , len(__A ) , __A ) return min(__A , __A ) def _lowerCAmelCase( __A , __A ): UpperCAmelCase = column_based_sort(__A , column=0 ) UpperCAmelCase = column_based_sort(__A , column=1 ) return ( closest_pair_of_points_sqr( __A , __A , __A ) ) ** 0.5 if __name__ == "__main__": lowerCAmelCase__ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
1
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __magic_name__ : def __init__( self : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : Optional[int]=3_2 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : str=1_0 , lowerCAmelCase__ : Optional[Any]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase__ : List[str]=[1, 1, 2, 1] , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Optional[int]="relu" , lowerCAmelCase__ : str=3 , lowerCAmelCase__ : Optional[int]=None , ) -> Optional[Any]: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase__ ) def _UpperCamelCase ( self : Tuple ) -> List[str]: UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self : Any ) -> Dict: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] ) -> Optional[int]: UpperCAmelCase = TFResNetModel(config=lowerCAmelCase__ ) UpperCAmelCase = model(lowerCAmelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : int ) -> Optional[int]: UpperCAmelCase = self.num_labels UpperCAmelCase = TFResNetForImageClassification(lowerCAmelCase__ ) UpperCAmelCase = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : str ) -> Any: UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class __magic_name__ ( _snake_case , _snake_case , unittest.TestCase ): UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCAmelCase = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def _UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase = TFResNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def _UpperCamelCase ( self : Dict ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def _UpperCamelCase ( self : int ) -> Any: pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def _UpperCamelCase ( self : str ) -> Dict: pass def _UpperCamelCase ( self : Dict ) -> int: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase__ ) UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _UpperCamelCase ( self : int ) -> str: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _UpperCamelCase ( self : Optional[Any] ) -> List[Any]: def check_hidden_states_output(lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] ): UpperCAmelCase = model_class(lowerCAmelCase__ ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase = layer_type UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _UpperCamelCase ( self : Tuple ) -> Optional[Any]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def _UpperCamelCase ( self : Union[str, Any] ) -> int: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = TFResNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _lowerCAmelCase( ): UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class __magic_name__ ( unittest.TestCase ): @cached_property def _UpperCamelCase ( self : Optional[Any] ) -> Any: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _UpperCamelCase ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase__ , return_tensors="tf" ) # forward pass UpperCAmelCase = model(**lowerCAmelCase__ ) # verify the logits UpperCAmelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) UpperCAmelCase = tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCAmelCase__ , atol=1e-4 ) )
1
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __magic_name__ : def __init__( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase = "" UpperCAmelCase = "" UpperCAmelCase = [] UpperCAmelCase = 0 UpperCAmelCase = 2_5_6 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Optional[Any] ) -> List[str]: UpperCAmelCase = cva.imread(lowerCAmelCase__ , 0 ) UpperCAmelCase = copy.deepcopy(self.img ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="x" ) UpperCAmelCase = np.sum(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase = x[i] / self.k self.sk += prk UpperCAmelCase = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase = int(last % last ) UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCAmelCase__ ) UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def _UpperCamelCase ( self : str ) -> int: plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def _UpperCamelCase ( self : Dict ) -> Optional[Any]: cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase__ = os.path.join(os.path.basename(__file__), "image_data/input.jpg") lowerCAmelCase__ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
1
1
from statistics import mean, stdev def _lowerCAmelCase( __A , __A = 3 ): UpperCAmelCase = min(__A ) UpperCAmelCase = max(__A ) # normalize data return [round((x - x_min) / (x_max - x_min) , __A ) for x in data] def _lowerCAmelCase( __A , __A = 3 ): UpperCAmelCase = mean(__A ) UpperCAmelCase = stdev(__A ) # standardize data return [round((x - mu) / (sigma) , __A ) for x in data]
1
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( _snake_case , unittest.TestCase ): UpperCAmelCase = LEDTokenizer UpperCAmelCase = LEDTokenizerFast UpperCAmelCase = True def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: super().setUp() UpperCAmelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCAmelCase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) UpperCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCAmelCase = {"unk_token": "<unk>"} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def _UpperCamelCase ( self : Union[str, Any] , **lowerCAmelCase__ : Optional[int] ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _UpperCamelCase ( self : str , **lowerCAmelCase__ : str ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[Any] ) -> List[Any]: return "lower newer", "lower newer" @cached_property def _UpperCamelCase ( self : Dict ) -> str: return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def _UpperCamelCase ( self : int ) -> Tuple: return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def _UpperCamelCase ( self : Tuple ) -> List[str]: UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCAmelCase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @require_torch def _UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt" ) self.assertIn("input_ids" , lowerCAmelCase__ ) self.assertIn("attention_mask" , lowerCAmelCase__ ) self.assertNotIn("labels" , lowerCAmelCase__ ) self.assertNotIn("decoder_attention_mask" , lowerCAmelCase__ ) @require_torch def _UpperCamelCase ( self : int ) -> int: UpperCAmelCase = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , max_length=3_2 , padding="max_length" , return_tensors="pt" ) self.assertEqual(3_2 , targets["input_ids"].shape[1] ) @require_torch def _UpperCamelCase ( self : Any ) -> int: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer( ["I am a small frog" * 1_0_2_4, "I am a small frog"] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) ) @require_torch def _UpperCamelCase ( self : Dict ) -> Tuple: UpperCAmelCase = ["A long paragraph for summarization."] UpperCAmelCase = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase = inputs["input_ids"] UpperCAmelCase = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = ["Summary of the text.", "Another summary."] UpperCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ ) UpperCAmelCase = [[0] * len(lowerCAmelCase__ ) for x in encoded_output["input_ids"]] UpperCAmelCase = tokenizer.pad(lowerCAmelCase__ ) self.assertSequenceEqual(outputs["global_attention_mask"] , lowerCAmelCase__ ) def _UpperCamelCase ( self : List[str] ) -> int: pass def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCAmelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCAmelCase = "A, <mask> AllenNLP sentence." UpperCAmelCase = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) UpperCAmelCase = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
1
1
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets lowerCAmelCase__ = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" lowerCAmelCase__ = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" lowerCAmelCase__ = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def _UpperCamelCase ( self : Optional[Any] ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] , ) def _UpperCamelCase ( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : int=True , lowerCAmelCase__ : List[Any]=False ) -> Optional[Any]: if rouge_types is None: UpperCAmelCase = ["rouge1", "rouge2", "rougeL", "rougeLsum"] UpperCAmelCase = rouge_scorer.RougeScorer(rouge_types=lowerCAmelCase__ , use_stemmer=lowerCAmelCase__ ) if use_aggregator: UpperCAmelCase = scoring.BootstrapAggregator() else: UpperCAmelCase = [] for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase = scorer.score(lowerCAmelCase__ , lowerCAmelCase__ ) if use_aggregator: aggregator.add_scores(lowerCAmelCase__ ) else: scores.append(lowerCAmelCase__ ) if use_aggregator: UpperCAmelCase = aggregator.aggregate() else: UpperCAmelCase = {} for key in scores[0]: UpperCAmelCase = [score[key] for score in scores] return result
1
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase__ = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowerCAmelCase__ = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowerCAmelCase__ = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowerCAmelCase__ = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def _UpperCamelCase ( self : int ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : List[Any] ) -> Dict: import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=0.9 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Optional[int]=0.5 ) -> Any: if NLTK_VERSION >= version.Version("3.6.5" ): UpperCAmelCase = [ meteor_score.single_meteor_score( word_tokenize(lowerCAmelCase__ ) , word_tokenize(lowerCAmelCase__ ) , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ ) for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] else: UpperCAmelCase = [ meteor_score.single_meteor_score(lowerCAmelCase__ , lowerCAmelCase__ , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ ) for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] return {"meteor": np.mean(lowerCAmelCase__ )}
1
1
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase__ = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } lowerCAmelCase__ = {"allegro/herbert-base-cased": 514} lowerCAmelCase__ = {} class __magic_name__ ( _snake_case ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = HerbertTokenizer def __init__( self : str , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Optional[int]="<s>" , lowerCAmelCase__ : int="<unk>" , lowerCAmelCase__ : List[str]="<pad>" , lowerCAmelCase__ : int="<mask>" , lowerCAmelCase__ : Any="</s>" , **lowerCAmelCase__ : Any , ) -> Union[str, Any]: super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class __magic_name__ ( _snake_case ): UpperCAmelCase = """lxmert""" UpperCAmelCase = {} def __init__( self : int , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : List[str]=7_6_8 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : List[Any]=9_5_0_0 , lowerCAmelCase__ : Any=1_6_0_0 , lowerCAmelCase__ : Union[str, Any]=4_0_0 , lowerCAmelCase__ : Tuple=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : str=1e-1_2 , lowerCAmelCase__ : str=9 , lowerCAmelCase__ : int=5 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : List[Any]=2_0_4_8 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Dict=6.67 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Tuple=True , **lowerCAmelCase__ : List[Any] , ) -> Dict: UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = num_qa_labels UpperCAmelCase = num_object_labels UpperCAmelCase = num_attr_labels UpperCAmelCase = l_layers UpperCAmelCase = x_layers UpperCAmelCase = r_layers UpperCAmelCase = visual_feat_dim UpperCAmelCase = visual_pos_dim UpperCAmelCase = visual_loss_normalizer UpperCAmelCase = task_matched UpperCAmelCase = task_mask_lm UpperCAmelCase = task_obj_predict UpperCAmelCase = task_qa UpperCAmelCase = visual_obj_loss UpperCAmelCase = visual_attr_loss UpperCAmelCase = visual_feat_loss UpperCAmelCase = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**lowerCAmelCase__ )
1
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available lowerCAmelCase__ = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
1
def _lowerCAmelCase( __A ): UpperCAmelCase = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def _lowerCAmelCase( __A = 100 ): UpperCAmelCase = 1 UpperCAmelCase = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase = pre_numerator UpperCAmelCase = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase = cur_numerator UpperCAmelCase = e_cont * pre_numerator + temp return sum_digits(__A ) if __name__ == "__main__": print(f"{solution() = }")
1
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ ( _snake_case , unittest.TestCase ): UpperCAmelCase = KandinskyInpaintPipeline UpperCAmelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCAmelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCAmelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCAmelCase = False @property def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple: return 3_2 @property def _UpperCamelCase ( self : int ) -> List[Any]: return 3_2 @property def _UpperCamelCase ( self : List[Any] ) -> List[Any]: return self.time_input_dim @property def _UpperCamelCase ( self : Tuple ) -> Tuple: return self.time_input_dim * 4 @property def _UpperCamelCase ( self : Any ) -> Optional[int]: return 1_0_0 @property def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]: UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def _UpperCamelCase ( self : int ) -> Dict: torch.manual_seed(0 ) UpperCAmelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) UpperCAmelCase = MultilingualCLIP(lowerCAmelCase__ ) UpperCAmelCase = text_encoder.eval() return text_encoder @property def _UpperCamelCase ( self : Dict ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def _UpperCamelCase ( self : str ) -> Optional[Any]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _UpperCamelCase ( self : Dict ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCamelCase ( self : Tuple ) -> Any: UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = self.dummy_tokenizer UpperCAmelCase = self.dummy_unet UpperCAmelCase = self.dummy_movq UpperCAmelCase = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCAmelCase__ , ) UpperCAmelCase = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=0 ) -> str: UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase__ ) # create init_image UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) # create mask UpperCAmelCase = np.ones((6_4, 6_4) , dtype=np.floataa ) UpperCAmelCase = 0 if str(lowerCAmelCase__ ).startswith("mps" ): UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ ) else: UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) UpperCAmelCase = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def _UpperCamelCase ( self : Dict ) -> List[str]: UpperCAmelCase = "cpu" UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__ ) UpperCAmelCase = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) UpperCAmelCase = output.images UpperCAmelCase = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase = np.array( [0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def _UpperCamelCase ( self : str ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : str ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : Tuple ) -> int: UpperCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) UpperCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) UpperCAmelCase = 0 UpperCAmelCase = "a hat" UpperCAmelCase = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) UpperCAmelCase = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) UpperCAmelCase = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase = pipeline( lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="np" , ) UpperCAmelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
1
1
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _lowerCAmelCase( __A , __A , __A ): # Construct model if openai_config_file == "": UpperCAmelCase = OpenAIGPTConfig() else: UpperCAmelCase = OpenAIGPTConfig.from_json_file(__A ) UpperCAmelCase = OpenAIGPTModel(__A ) # Load weights from numpy load_tf_weights_in_openai_gpt(__A , __A , __A ) # Save pytorch-model UpperCAmelCase = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCAmelCase = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , __A ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) lowerCAmelCase__ = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
1
import numpy # List of input, output pairs lowerCAmelCase__ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) lowerCAmelCase__ = (((515, 22, 13), 555), ((61, 35, 49), 150)) lowerCAmelCase__ = [2, 4, 1, 5] lowerCAmelCase__ = len(train_data) lowerCAmelCase__ = 0.0_0_9 def _lowerCAmelCase( __A , __A="train" ): return calculate_hypothesis_value(__A , __A ) - output( __A , __A ) def _lowerCAmelCase( __A ): UpperCAmelCase = 0 for i in range(len(__A ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _lowerCAmelCase( __A , __A ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _lowerCAmelCase( __A , __A ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _lowerCAmelCase( __A , __A=m ): UpperCAmelCase = 0 for i in range(__A ): if index == -1: summation_value += _error(__A ) else: summation_value += _error(__A ) * train_data[i][0][index] return summation_value def _lowerCAmelCase( __A ): UpperCAmelCase = summation_of_cost_derivative(__A , __A ) / m return cost_derivative_value def _lowerCAmelCase( ): global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase = 0.000002 UpperCAmelCase = 0 UpperCAmelCase = 0 while True: j += 1 UpperCAmelCase = [0, 0, 0, 0] for i in range(0 , len(__A ) ): UpperCAmelCase = get_cost_derivative(i - 1 ) UpperCAmelCase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __A , __A , atol=__A , rtol=__A , ): break UpperCAmelCase = temp_parameter_vector print(("Number of iterations:", j) ) def _lowerCAmelCase( ): for i in range(len(__A ) ): print(("Actual output value:", output(__A , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(__A , "test" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
1
1
def _lowerCAmelCase( __A ): if number > 0: raise ValueError("input must be a negative integer" ) UpperCAmelCase = len(bin(__A )[3:] ) UpperCAmelCase = bin(abs(__A ) - (1 << binary_number_length) )[3:] UpperCAmelCase = ( ( "1" + "0" * (binary_number_length - len(__A )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
1
def _lowerCAmelCase( __A , __A , __A ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__A , n - 1 , __A ) * a) % mod else: UpperCAmelCase = binary_exponentiation(__A , n / 2 , __A ) return (b * b) % mod # a prime number lowerCAmelCase__ = 701 lowerCAmelCase__ = 1000000000 lowerCAmelCase__ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
1
1
import pickle import numpy as np from matplotlib import pyplot as plt class __magic_name__ : def __init__( self : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=0.2 , lowerCAmelCase__ : Union[str, Any]=0.2 ) -> Tuple: UpperCAmelCase = bp_numa UpperCAmelCase = bp_numa UpperCAmelCase = bp_numa UpperCAmelCase = conva_get[:2] UpperCAmelCase = conva_get[2] UpperCAmelCase = size_pa UpperCAmelCase = rate_w UpperCAmelCase = rate_t UpperCAmelCase = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] UpperCAmelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) UpperCAmelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) UpperCAmelCase = -2 * np.random.rand(self.conva[1] ) + 1 UpperCAmelCase = -2 * np.random.rand(self.num_bpa ) + 1 UpperCAmelCase = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : str ) -> Tuple: # save model dict with pickle UpperCAmelCase = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(lowerCAmelCase__ , "wb" ) as f: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__ ) print(f"Model saved: {save_path}" ) @classmethod def _UpperCamelCase ( cls : int , lowerCAmelCase__ : Dict ) -> Optional[Any]: # read saved model with open(lowerCAmelCase__ , "rb" ) as f: UpperCAmelCase = pickle.load(lowerCAmelCase__ ) # noqa: S301 UpperCAmelCase = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) UpperCAmelCase = model_dic.get("size_pooling1" ) UpperCAmelCase = model_dic.get("num_bp1" ) UpperCAmelCase = model_dic.get("num_bp2" ) UpperCAmelCase = model_dic.get("num_bp3" ) UpperCAmelCase = model_dic.get("rate_weight" ) UpperCAmelCase = model_dic.get("rate_thre" ) # create model instance UpperCAmelCase = CNN(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # modify model parameter UpperCAmelCase = model_dic.get("w_conv1" ) UpperCAmelCase = model_dic.get("wkj" ) UpperCAmelCase = model_dic.get("vji" ) UpperCAmelCase = model_dic.get("thre_conv1" ) UpperCAmelCase = model_dic.get("thre_bp2" ) UpperCAmelCase = model_dic.get("thre_bp3" ) return conv_ins def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : str ) -> Tuple: return 1 / (1 + np.exp(-1 * x )) def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : int ) -> Optional[int]: return round(lowerCAmelCase__ , 3 ) def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple ) -> str: # convolution process UpperCAmelCase = convs[0] UpperCAmelCase = convs[1] UpperCAmelCase = np.shape(lowerCAmelCase__ )[0] # get the data slice of original image data, data_focus UpperCAmelCase = [] for i_focus in range(0 , size_data - size_conv + 1 , lowerCAmelCase__ ): for j_focus in range(0 , size_data - size_conv + 1 , lowerCAmelCase__ ): UpperCAmelCase = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowerCAmelCase__ ) # calculate the feature map of every single kernel, and saved as list of matrix UpperCAmelCase = [] UpperCAmelCase = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowerCAmelCase__ ): UpperCAmelCase = [] for i_focus in range(len(lowerCAmelCase__ ) ): UpperCAmelCase = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowerCAmelCase__ ) ) UpperCAmelCase = np.asmatrix(lowerCAmelCase__ ).reshape( lowerCAmelCase__ , lowerCAmelCase__ ) data_featuremap.append(lowerCAmelCase__ ) # expanding the data slice to One dimenssion UpperCAmelCase = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowerCAmelCase__ ) ) UpperCAmelCase = np.asarray(lowerCAmelCase__ ) return focus_list, data_featuremap def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int]="average_pool" ) -> List[Any]: # pooling process UpperCAmelCase = len(featuremaps[0] ) UpperCAmelCase = int(size_map / size_pooling ) UpperCAmelCase = [] for i_map in range(len(lowerCAmelCase__ ) ): UpperCAmelCase = featuremaps[i_map] UpperCAmelCase = [] for i_focus in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): for j_focus in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowerCAmelCase__ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowerCAmelCase__ ) ) UpperCAmelCase = np.asmatrix(lowerCAmelCase__ ).reshape(lowerCAmelCase__ , lowerCAmelCase__ ) featuremap_pooled.append(lowerCAmelCase__ ) return featuremap_pooled def _UpperCamelCase ( self : str , lowerCAmelCase__ : List[str] ) -> Union[str, Any]: # expanding three dimension data to one dimension list UpperCAmelCase = [] for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase = np.shape(data[i] ) UpperCAmelCase = data[i].reshape(1 , shapes[0] * shapes[1] ) UpperCAmelCase = data_listed.getA().tolist()[0] data_expanded.extend(lowerCAmelCase__ ) UpperCAmelCase = np.asarray(lowerCAmelCase__ ) return data_expanded def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Dict ) -> str: # expanding matrix to one dimension list UpperCAmelCase = np.asarray(lowerCAmelCase__ ) UpperCAmelCase = np.shape(lowerCAmelCase__ ) UpperCAmelCase = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] ) -> List[Any]: UpperCAmelCase = [] UpperCAmelCase = 0 for i_map in range(lowerCAmelCase__ ): UpperCAmelCase = np.ones((size_map, size_map) ) for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): for j in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase = pd_pool[ i_pool ] UpperCAmelCase = i_pool + 1 UpperCAmelCase = np.multiply( lowerCAmelCase__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(lowerCAmelCase__ ) return pd_all def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int]=bool ) -> List[str]: # model traning print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(lowerCAmelCase__ )) ) print((" - - Shape: Teach_Data ", np.shape(lowerCAmelCase__ )) ) UpperCAmelCase = 0 UpperCAmelCase = [] UpperCAmelCase = 1_0_0_0_0 while rp < n_repeat and mse >= error_accuracy: UpperCAmelCase = 0 print(f"-------------Learning Time {rp}--------------" ) for p in range(len(lowerCAmelCase__ ) ): # print('------------Learning Image: %d--------------'%p) UpperCAmelCase = np.asmatrix(datas_train[p] ) UpperCAmelCase = np.asarray(datas_teach[p] ) UpperCAmelCase , UpperCAmelCase = self.convolute( lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCAmelCase = self.pooling(lowerCAmelCase__ , self.size_poolinga ) UpperCAmelCase = np.shape(lowerCAmelCase__ ) UpperCAmelCase = self._expand(lowerCAmelCase__ ) UpperCAmelCase = data_bp_input UpperCAmelCase = np.dot(lowerCAmelCase__ , self.vji.T ) - self.thre_bpa UpperCAmelCase = self.sig(lowerCAmelCase__ ) UpperCAmelCase = np.dot(lowerCAmelCase__ , self.wkj.T ) - self.thre_bpa UpperCAmelCase = self.sig(lowerCAmelCase__ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- UpperCAmelCase = np.multiply( (data_teach - bp_outa) , np.multiply(lowerCAmelCase__ , (1 - bp_outa) ) ) UpperCAmelCase = np.multiply( np.dot(lowerCAmelCase__ , self.wkj ) , np.multiply(lowerCAmelCase__ , (1 - bp_outa) ) ) UpperCAmelCase = np.dot(lowerCAmelCase__ , self.vji ) UpperCAmelCase = pd_i_all / (self.size_poolinga * self.size_poolinga) UpperCAmelCase = pd_conva_pooled.T.getA().tolist() UpperCAmelCase = self._calculate_gradient_from_pool( lowerCAmelCase__ , lowerCAmelCase__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): UpperCAmelCase = self._expand_mat(pd_conva_all[k_conv] ) UpperCAmelCase = self.rate_weight * np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) UpperCAmelCase = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer UpperCAmelCase = self.wkj + pd_k_all.T * bp_outa * self.rate_weight UpperCAmelCase = self.vji + pd_j_all.T * bp_outa * self.rate_weight UpperCAmelCase = self.thre_bpa - pd_k_all * self.rate_thre UpperCAmelCase = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image UpperCAmelCase = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) UpperCAmelCase = rp + 1 UpperCAmelCase = error_count / patterns all_mse.append(lowerCAmelCase__ ) def draw_error(): UpperCAmelCase = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowerCAmelCase__ , "+-" ) plt.plot(lowerCAmelCase__ , "r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(lowerCAmelCase__ , alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, f" - - Mse: {mse:.6f}") ) if draw_e: draw_error() return mse def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Union[str, Any]: # model predict UpperCAmelCase = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(lowerCAmelCase__ )) ) for p in range(len(lowerCAmelCase__ ) ): UpperCAmelCase = np.asmatrix(datas_test[p] ) UpperCAmelCase , UpperCAmelCase = self.convolute( lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCAmelCase = self.pooling(lowerCAmelCase__ , self.size_poolinga ) UpperCAmelCase = self._expand(lowerCAmelCase__ ) UpperCAmelCase = data_bp_input UpperCAmelCase = bp_outa * self.vji.T - self.thre_bpa UpperCAmelCase = self.sig(lowerCAmelCase__ ) UpperCAmelCase = bp_outa * self.wkj.T - self.thre_bpa UpperCAmelCase = self.sig(lowerCAmelCase__ ) produce_out.extend(bp_outa.getA().tolist() ) UpperCAmelCase = [list(map(self.do_round , lowerCAmelCase__ ) ) for each in produce_out] return np.asarray(lowerCAmelCase__ ) def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: # return the data of image after convoluting process so we can check it out UpperCAmelCase = np.asmatrix(lowerCAmelCase__ ) UpperCAmelCase , UpperCAmelCase = self.convolute( lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCAmelCase = self.pooling(lowerCAmelCase__ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
1
lowerCAmelCase__ = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } lowerCAmelCase__ = {value: key for key, value in encode_dict.items()} def _lowerCAmelCase( __A ): UpperCAmelCase = "" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces" ) return encoded def _lowerCAmelCase( __A ): if set(__A ) - {"A", "B", " "} != set(): raise Exception("decode() accepts only 'A', 'B' and spaces" ) UpperCAmelCase = "" for word in coded.split(): while len(__A ) != 0: decoded += decode_dict[word[:5]] UpperCAmelCase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
1
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class __magic_name__ : def __init__( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = False ) -> Tuple: UpperCAmelCase = scheduler UpperCAmelCase = optimizers if isinstance(lowerCAmelCase__ , (list, tuple) ) else [optimizers] UpperCAmelCase = split_batches UpperCAmelCase = step_with_optimizer UpperCAmelCase = GradientState() def _UpperCamelCase ( self : int , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*lowerCAmelCase__ , **lowerCAmelCase__ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*lowerCAmelCase__ , **lowerCAmelCase__ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step UpperCAmelCase = AcceleratorState().num_processes for _ in range(lowerCAmelCase__ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , "total_steps" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*lowerCAmelCase__ , **lowerCAmelCase__ ) else: self.scheduler.step(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _UpperCamelCase ( self : Dict ) -> List[Any]: return self.scheduler.get_last_lr() def _UpperCamelCase ( self : Optional[int] ) -> str: return self.scheduler.state_dict() def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : str ) -> Union[str, Any]: self.scheduler.load_state_dict(lowerCAmelCase__ ) def _UpperCamelCase ( self : Dict ) -> str: return self.scheduler.get_lr() def _UpperCamelCase ( self : Union[str, Any] , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : List[str] ) -> List[Any]: return self.scheduler.print_lr(*lowerCAmelCase__ , **lowerCAmelCase__ )
1
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase__ = {"UserAgent": UserAgent().random} def _lowerCAmelCase( __A ): UpperCAmelCase = script.contents[0] UpperCAmelCase = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __magic_name__ : def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Any: UpperCAmelCase = f"https://www.instagram.com/{username}/" UpperCAmelCase = self.get_json() def _UpperCamelCase ( self : List[str] ) -> dict: UpperCAmelCase = requests.get(self.url , headers=lowerCAmelCase__ ).text UpperCAmelCase = BeautifulSoup(lowerCAmelCase__ , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Tuple ) -> str: return f"{self.__class__.__name__}('{self.username}')" def __str__( self : Optional[int] ) -> str: return f"{self.fullname} ({self.username}) is {self.biography}" @property def _UpperCamelCase ( self : Any ) -> str: return self.user_data["username"] @property def _UpperCamelCase ( self : List[Any] ) -> str: return self.user_data["full_name"] @property def _UpperCamelCase ( self : List[str] ) -> str: return self.user_data["biography"] @property def _UpperCamelCase ( self : Optional[int] ) -> str: return self.user_data["business_email"] @property def _UpperCamelCase ( self : str ) -> str: return self.user_data["external_url"] @property def _UpperCamelCase ( self : int ) -> int: return self.user_data["edge_followed_by"]["count"] @property def _UpperCamelCase ( self : List[Any] ) -> int: return self.user_data["edge_follow"]["count"] @property def _UpperCamelCase ( self : List[str] ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _UpperCamelCase ( self : Tuple ) -> str: return self.user_data["profile_pic_url_hd"] @property def _UpperCamelCase ( self : Optional[int] ) -> bool: return self.user_data["is_verified"] @property def _UpperCamelCase ( self : Optional[Any] ) -> bool: return self.user_data["is_private"] def _lowerCAmelCase( __A = "github" ): import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCAmelCase = InstagramUser(__A ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __A ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = InstagramUser("github") print(instagram_user) print(f"{instagram_user.number_of_posts = }") print(f"{instagram_user.number_of_followers = }") print(f"{instagram_user.number_of_followings = }") print(f"{instagram_user.email = }") print(f"{instagram_user.website = }") print(f"{instagram_user.profile_picture_url = }") print(f"{instagram_user.is_verified = }") print(f"{instagram_user.is_private = }")
1
1
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class __magic_name__ ( _snake_case ): UpperCAmelCase = (DPMSolverSDEScheduler,) UpperCAmelCase = 10 def _UpperCamelCase ( self : int , **lowerCAmelCase__ : Any ) -> int: UpperCAmelCase = { "num_train_timesteps": 1_1_0_0, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "noise_sampler_seed": 0, } config.update(**lowerCAmelCase__ ) return config def _UpperCamelCase ( self : Optional[Any] ) -> Dict: for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _UpperCamelCase ( self : Dict ) -> Any: for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _UpperCamelCase ( self : List[str] ) -> Optional[int]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _UpperCamelCase ( self : List[str] ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _UpperCamelCase ( self : int ) -> Optional[int]: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = model(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase__ ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_821_044_921_875 ) < 1e-2 assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_352_111_816_406 ) < 1e-2 assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1e-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1e-3 def _UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" ) UpperCAmelCase = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = model(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase__ ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_149_200_439_453 ) < 1e-2 assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_663_360_595_703 ) < 1e-2 assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8_487_548_828_125 ) < 1e-2 assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1e-3 def _UpperCamelCase ( self : int ) -> Optional[Any]: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter.to(lowerCAmelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = model(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase__ ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_957_397_460_938 ) < 1e-2 assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_353_637_695_312 ) < 1e-2 assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1e-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1e-3 def _UpperCamelCase ( self : Optional[Any] ) -> int: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter.to(lowerCAmelCase__ ) * scheduler.init_noise_sigma UpperCAmelCase = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = model(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase__ ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_974_135_742_188 ) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_653_564_453_125 ) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3_135_223_388_672 ) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2
1
import unittest import numpy as np def _lowerCAmelCase( __A , __A , __A , __A = None , ): UpperCAmelCase = np.shape(__A ) UpperCAmelCase = np.shape(__A ) UpperCAmelCase = np.shape(__A ) if shape_a[0] != shape_b[0]: UpperCAmelCase = ( "Expected the same number of rows for A and B. " F"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(__A ) if shape_b[1] != shape_c[1]: UpperCAmelCase = ( "Expected the same number of columns for B and C. " F"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(__A ) UpperCAmelCase = pseudo_inv if a_inv is None: try: UpperCAmelCase = np.linalg.inv(__A ) except np.linalg.LinAlgError: raise ValueError( "Input matrix A is not invertible. Cannot compute Schur complement." ) return mat_c - mat_b.T @ a_inv @ mat_b class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : List[str] ) -> None: UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase = np.array([[2, 1], [6, 3]] ) UpperCAmelCase = schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = np.block([[a, b], [b.T, c]] ) UpperCAmelCase = np.linalg.det(lowerCAmelCase__ ) UpperCAmelCase = np.linalg.det(lowerCAmelCase__ ) UpperCAmelCase = np.linalg.det(lowerCAmelCase__ ) self.assertAlmostEqual(lowerCAmelCase__ , det_a * det_s ) def _UpperCamelCase ( self : str ) -> None: UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase = np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowerCAmelCase__ ): schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _UpperCamelCase ( self : Dict ) -> None: UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowerCAmelCase__ ): schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
1
1
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCAmelCase__ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__ = logging.getLogger() def _lowerCAmelCase( ): UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase = parser.parse_args() return args.f def _lowerCAmelCase( __A , __A="eval" ): UpperCAmelCase = os.path.join(__A , F"{split}_results.json" ) if os.path.exists(__A ): with open(__A , "r" ) as f: return json.load(__A ) raise ValueError(F"can't find {path}" ) lowerCAmelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __magic_name__ ( _snake_case ): def _UpperCamelCase ( self : Any ) -> List[str]: UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ): run_flax_glue.main() UpperCAmelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def _UpperCamelCase ( self : Any ) -> List[str]: UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ): run_clm_flax.main() UpperCAmelCase = get_results(lowerCAmelCase__ ) self.assertLess(result["eval_perplexity"] , 1_0_0 ) @slow def _UpperCamelCase ( self : Union[str, Any] ) -> Any: UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ): run_summarization_flax.main() UpperCAmelCase = get_results(lowerCAmelCase__ , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 1_0 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ): run_mlm_flax.main() UpperCAmelCase = get_results(lowerCAmelCase__ ) self.assertLess(result["eval_perplexity"] , 4_2 ) @slow def _UpperCamelCase ( self : int ) -> Dict: UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ): run_ta_mlm_flax.main() UpperCAmelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def _UpperCamelCase ( self : int ) -> Any: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu UpperCAmelCase = 7 if get_gpu_count() > 1 else 2 UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ): run_flax_ner.main() UpperCAmelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def _UpperCamelCase ( self : Optional[Any] ) -> int: UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ): run_qa.main() UpperCAmelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result["eval_f1"] , 3_0 ) self.assertGreaterEqual(result["eval_exact"] , 3_0 )
1
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _lowerCAmelCase( __A ): UpperCAmelCase = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" , __A ).groups()[0] class __magic_name__ ( _snake_case ): def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : int=None ) -> Optional[Any]: UpperCAmelCase = file_names UpperCAmelCase = image_transform UpperCAmelCase = label_to_id def __len__( self : Tuple ) -> List[str]: return len(self.file_names ) def __getitem__( self : Optional[int] , lowerCAmelCase__ : Tuple ) -> Dict: UpperCAmelCase = self.file_names[idx] UpperCAmelCase = PIL.Image.open(lowerCAmelCase__ ) UpperCAmelCase = raw_image.convert("RGB" ) if self.image_transform is not None: UpperCAmelCase = self.image_transform(lowerCAmelCase__ ) UpperCAmelCase = extract_label(lowerCAmelCase__ ) if self.label_to_id is not None: UpperCAmelCase = self.label_to_id[label] return {"image": image, "label": label} def _lowerCAmelCase( __A , __A ): # Initialize accelerator if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config["lr"] UpperCAmelCase = int(config["num_epochs"] ) UpperCAmelCase = int(config["seed"] ) UpperCAmelCase = int(config["batch_size"] ) UpperCAmelCase = config["image_size"] if not isinstance(__A , (list, tuple) ): UpperCAmelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": UpperCAmelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): UpperCAmelCase = int(args.checkpointing_steps ) else: raise ValueError( F"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." ) else: UpperCAmelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: UpperCAmelCase = os.path.split(__A )[-1].split("." )[0] accelerator.init_trackers(__A , __A ) # Grab all the image filenames UpperCAmelCase = [os.path.join(args.data_dir , __A ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences UpperCAmelCase = [extract_label(__A ) for fname in file_names] UpperCAmelCase = list(set(__A ) ) id_to_label.sort() UpperCAmelCase = {lbl: i for i, lbl in enumerate(__A )} # Set the seed before splitting the data. np.random.seed(__A ) torch.manual_seed(__A ) torch.cuda.manual_seed_all(__A ) # Split our filenames between train and validation UpperCAmelCase = np.random.permutation(len(__A ) ) UpperCAmelCase = int(0.8 * len(__A ) ) UpperCAmelCase = random_perm[:cut] UpperCAmelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop UpperCAmelCase = Compose([RandomResizedCrop(__A , scale=(0.5, 1.0) ), ToTensor()] ) UpperCAmelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=__A , label_to_id=__A ) # For evaluation, we use a deterministic Resize UpperCAmelCase = Compose([Resize(__A ), ToTensor()] ) UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=__A , label_to_id=__A ) # Instantiate dataloaders. UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = create_model("resnet50d" , pretrained=__A , num_classes=len(__A ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): UpperCAmelCase = False for param in model.get_classifier().parameters(): UpperCAmelCase = True # We normalize the batches of images to be a bit faster. UpperCAmelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) UpperCAmelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler UpperCAmelCase = OneCycleLR(optimizer=__A , max_lr=__A , epochs=__A , steps_per_epoch=len(__A ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( __A , __A , __A , __A , __A ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase = 0 # We also need to keep track of the starting epoch so files are named properly UpperCAmelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"Resumed from checkpoint: {args.resume_from_checkpoint}" ) accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` UpperCAmelCase = os.path.splitext(__A )[0] if "epoch" in training_difference: UpperCAmelCase = int(training_difference.replace("epoch_" , "" ) ) + 1 UpperCAmelCase = None else: UpperCAmelCase = int(training_difference.replace("step_" , "" ) ) UpperCAmelCase = resume_step // len(__A ) resume_step -= starting_epoch * len(__A ) # Now we train the model for epoch in range(__A , __A ): model.train() if args.with_tracking: UpperCAmelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step UpperCAmelCase = accelerator.skip_first_batches(__A , __A ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader UpperCAmelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch["image"] - mean) / std UpperCAmelCase = model(__A ) UpperCAmelCase = torch.nn.functional.cross_entropy(__A , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__A , __A ): UpperCAmelCase = F"step_{overall_step}" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) model.eval() UpperCAmelCase = 0 UpperCAmelCase = 0 for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch["image"] - mean) / std with torch.no_grad(): UpperCAmelCase = model(__A ) UpperCAmelCase = outputs.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["label"]) ) UpperCAmelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() UpperCAmelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}: {100 * eval_metric:.2f}" ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(__A ), "epoch": epoch, } , step=__A , ) if checkpointing_steps == "epoch": UpperCAmelCase = F"epoch_{epoch}" if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) if args.with_tracking: accelerator.end_training() def _lowerCAmelCase( ): UpperCAmelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=__A , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=__A , default=__A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=__A , default=__A , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , ) parser.add_argument( "--output_dir" , type=__A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__A , default=__A , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=__A , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(__A , __A ) if __name__ == "__main__": main()
1
1
def _lowerCAmelCase( __A = 1000000 ): UpperCAmelCase = set(range(3 , __A , 2 ) ) primes.add(2 ) for p in range(3 , __A , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , __A , __A ) ) ) UpperCAmelCase = [float(__A ) for n in range(limit + 1 )] for p in primes: for n in range(__A , limit + 1 , __A ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"{solution() = }")
1
import glob import os import random from string import ascii_lowercase, digits import cva lowerCAmelCase__ = "" lowerCAmelCase__ = "" lowerCAmelCase__ = "" lowerCAmelCase__ = 1 # (0 is vertical, 1 is horizontal) def _lowerCAmelCase( ): UpperCAmelCase , UpperCAmelCase = get_dataset(__A , __A ) print("Processing..." ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = update_image_and_anno(__A , __A , __A ) for index, image in enumerate(__A ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCAmelCase = random_chars(32 ) UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] UpperCAmelCase = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(F"/{file_root}.jpg" , __A , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Success {index+1}/{len(__A )} with {file_name}" ) UpperCAmelCase = [] for anno in new_annos[index]: UpperCAmelCase = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(__A ) with open(F"/{file_root}.txt" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def _lowerCAmelCase( __A , __A ): UpperCAmelCase = [] UpperCAmelCase = [] for label_file in glob.glob(os.path.join(__A , "*.txt" ) ): UpperCAmelCase = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(__A ) as in_file: UpperCAmelCase = in_file.readlines() UpperCAmelCase = os.path.join(__A , F"{label_name}.jpg" ) UpperCAmelCase = [] for obj_list in obj_lists: UpperCAmelCase = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__A ) labels.append(__A ) return img_paths, labels def _lowerCAmelCase( __A , __A , __A = 1 ): UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = [] for idx in range(len(__A ) ): UpperCAmelCase = [] UpperCAmelCase = img_list[idx] path_list.append(__A ) UpperCAmelCase = anno_list[idx] UpperCAmelCase = cva.imread(__A ) if flip_type == 1: UpperCAmelCase = cva.flip(__A , __A ) for bbox in img_annos: UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: UpperCAmelCase = cva.flip(__A , __A ) for bbox in img_annos: UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__A ) new_imgs_list.append(__A ) return new_imgs_list, new_annos_lists, path_list def _lowerCAmelCase( __A = 32 ): assert number_char > 1, "The number of character should greater than 1" UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(__A ) for _ in range(__A ) ) if __name__ == "__main__": main() print("DONE ✅")
1
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch lowerCAmelCase__ = logging.get_logger(__name__) @dataclass class __magic_name__ : def __init__( self : Union[str, Any] , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : str=6.0 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Any="fp4" , lowerCAmelCase__ : List[Any]=False , **lowerCAmelCase__ : Any , ) -> Optional[int]: UpperCAmelCase = load_in_abit UpperCAmelCase = load_in_abit UpperCAmelCase = llm_inta_threshold UpperCAmelCase = llm_inta_skip_modules UpperCAmelCase = llm_inta_enable_fpaa_cpu_offload UpperCAmelCase = llm_inta_has_fpaa_weight UpperCAmelCase = bnb_abit_quant_type UpperCAmelCase = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: UpperCAmelCase = torch.floataa elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , torch.dtype ): UpperCAmelCase = bnb_abit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype" ) self.post_init() def _UpperCamelCase ( self : str ) -> int: if not isinstance(self.llm_inta_threshold , lowerCAmelCase__ ): raise ValueError("llm_int8_threshold must be a float" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , lowerCAmelCase__ ): raise ValueError("llm_int8_skip_modules must be a list of strings" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , lowerCAmelCase__ ): raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean" ) if not isinstance(self.llm_inta_has_fpaa_weight , lowerCAmelCase__ ): raise ValueError("llm_int8_has_fp16_weight must be a boolean" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError("bnb_4bit_compute_dtype must be torch.dtype" ) if not isinstance(self.bnb_abit_quant_type , lowerCAmelCase__ ): raise ValueError("bnb_4bit_quant_type must be a string" ) if not isinstance(self.bnb_abit_use_double_quant , lowerCAmelCase__ ): raise ValueError("bnb_4bit_use_double_quant must be a boolean" ) if self.load_in_abit and not version.parse(importlib.metadata.version("bitsandbytes" ) ) >= version.parse( "0.39.0" ): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" ) def _UpperCamelCase ( self : str ) -> Tuple: return self.load_in_abit or self.load_in_abit def _UpperCamelCase ( self : str ) -> List[str]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _UpperCamelCase ( cls : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Any ) -> List[str]: UpperCAmelCase = cls(**lowerCAmelCase__ ) UpperCAmelCase = [] for key, value in kwargs.items(): if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) to_remove.append(lowerCAmelCase__ ) for key in to_remove: kwargs.pop(lowerCAmelCase__ , lowerCAmelCase__ ) if return_unused_kwargs: return config, kwargs else: return config def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : Union[str, os.PathLike] ) -> Optional[int]: with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as writer: UpperCAmelCase = self.to_dict() UpperCAmelCase = json.dumps(lowerCAmelCase__ , indent=2 , sort_keys=lowerCAmelCase__ ) + "\n" writer.write(lowerCAmelCase__ ) def _UpperCamelCase ( self : List[Any] ) -> Dict[str, Any]: UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = str(output["bnb_4bit_compute_dtype"] ).split("." )[1] return output def __repr__( self : Union[str, Any] ) -> int: return f"{self.__class__.__name__} {self.to_json_string()}" def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : bool = True ) -> str: if use_diff is True: UpperCAmelCase = self.to_diff_dict() else: UpperCAmelCase = self.to_dict() return json.dumps(lowerCAmelCase__ , indent=2 , sort_keys=lowerCAmelCase__ ) + "\n" def _UpperCamelCase ( self : int ) -> Dict[str, Any]: UpperCAmelCase = self.to_dict() # get the default config dict UpperCAmelCase = BitsAndBytesConfig().to_dict() UpperCAmelCase = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: UpperCAmelCase = value return serializable_config_dict
1
def _lowerCAmelCase( __A ): if not isinstance(__A , __A ): raise TypeError("only integers accepted as input" ) else: UpperCAmelCase = str(abs(__A ) ) UpperCAmelCase = [list(__A ) for char in range(len(__A ) )] for index in range(len(__A ) ): num_transpositions[index].pop(__A ) return max( int("".join(list(__A ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
1
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCAmelCase__ = ["bert-base-uncased", "bert-base-cased"] lowerCAmelCase__ = "hf-internal-testing/tiny-bert-tf-only" if is_tf_available(): class __magic_name__ ( tf.keras.Model ): def __init__( self : Any , lowerCAmelCase__ : Dict ) -> Any: super().__init__() UpperCAmelCase = tokenizer UpperCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase = TFAutoModel.from_config(lowerCAmelCase__ ) def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : Any ) -> Any: UpperCAmelCase = self.tokenizer(lowerCAmelCase__ ) UpperCAmelCase = self.bert(**lowerCAmelCase__ ) return out["pooler_output"] @require_tf @require_tensorflow_text class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : Union[str, Any] ) -> List[str]: super().setUp() UpperCAmelCase = [ BertTokenizer.from_pretrained(lowerCAmelCase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCAmelCase = [TFBertTokenizer.from_pretrained(lowerCAmelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(lowerCAmelCase__ , use_fast_bert_tokenizer=lowerCAmelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCAmelCase = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] UpperCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _UpperCamelCase ( self : List[str] ) -> Optional[int]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCAmelCase = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding="longest" ) UpperCAmelCase = tf_tokenizer(lowerCAmelCase__ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def _UpperCamelCase ( self : Any ) -> Optional[int]: for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase = tf_tokenizer(self.paired_sentences ) UpperCAmelCase = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def _UpperCamelCase ( self : List[Any] ) -> Optional[int]: for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase = tf.function(lowerCAmelCase__ ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCAmelCase = tf.constant(lowerCAmelCase__ ) UpperCAmelCase = compiled_tokenizer(lowerCAmelCase__ ) UpperCAmelCase = tf_tokenizer(lowerCAmelCase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase = ModelToSave(tokenizer=lowerCAmelCase__ ) UpperCAmelCase = tf.convert_to_tensor(self.test_sentences ) UpperCAmelCase = model(lowerCAmelCase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCAmelCase = Path(lowerCAmelCase__ ) / "saved.model" model.save(lowerCAmelCase__ ) UpperCAmelCase = tf.keras.models.load_model(lowerCAmelCase__ ) UpperCAmelCase = loaded_model(lowerCAmelCase__ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
1
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor lowerCAmelCase__ = logging.getLogger(__name__) lowerCAmelCase__ = 50 # max width of layer names lowerCAmelCase__ = 70 # max width of quantizer names def _lowerCAmelCase( __A ): UpperCAmelCase = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=__A , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=__A , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=__A , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=__A , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=__A , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=__A , type=__A , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=__A , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def _lowerCAmelCase( __A ): if args.calibrator == "max": UpperCAmelCase = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) UpperCAmelCase = "histogram" elif args.calibrator == "mse": UpperCAmelCase = "histogram" else: raise ValueError(F"Invalid calibrator {args.calibrator}" ) UpperCAmelCase = QuantDescriptor(num_bits=args.aprec , calib_method=__A ) UpperCAmelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__A ) quant_nn.QuantLinear.set_default_quant_desc_weight(__A ) def _lowerCAmelCase( __A , __A , __A=False , __A=False ): logger.info("Configuring Model for Quantization" ) logger.info(F"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__A , ["embeddings"] , which="weight" , _disabled=__A ) if args.quant_disable: set_quantizer_by_name(__A , [""] , _disabled=__A ) if args.quant_disable_keyword: set_quantizer_by_name(__A , args.quant_disable_keyword , _disabled=__A ) if args.quant_disable_layer_module: set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=__A ) if args.quant_enable_layer_module: set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=__A ) if args.recalibrate_weights: recalibrate_weights(__A ) if args.fuse_qkv: fuse_qkv(__A , __A ) if args.clip_gelu: clip_gelu(__A , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__A ) def _lowerCAmelCase( __A ): logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:80}: {module}" ) def _lowerCAmelCase( __A , __A ): logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__A ) def _lowerCAmelCase( __A , __A ): def fusea(__A , __A , __A ): for mod in [qq, qk, qv]: if not hasattr(__A , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return UpperCAmelCase = qq._amax.detach().item() UpperCAmelCase = qk._amax.detach().item() UpperCAmelCase = qv._amax.detach().item() UpperCAmelCase = max(__A , __A , __A ) qq._amax.fill_(__A ) qk._amax.fill_(__A ) qv._amax.fill_(__A ) logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(F"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _lowerCAmelCase( __A , __A ): for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__A ) UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def _lowerCAmelCase( __A ): for name, mod in model.named_modules(): if hasattr(__A , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: UpperCAmelCase = mod.weight.shape[0] UpperCAmelCase = mod._weight_quantizer._amax.detach() UpperCAmelCase = torch.ones(__A , dtype=amax.dtype , device=amax.device ) * amax print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def _lowerCAmelCase( __A ): for name, mod in model.named_modules(): if hasattr(__A , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCAmelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) UpperCAmelCase = set(range(len(mod.weight.size() ) ) ) - axis_set UpperCAmelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__A , keepdims=__A ).detach() logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) UpperCAmelCase = amax def _lowerCAmelCase( __A , __A=25 , __A=180 , __A=None ): if ignore is None: UpperCAmelCase = [] elif not isinstance(__A , __A ): UpperCAmelCase = [ignore] UpperCAmelCase = 0 for name, mod in model.named_modules(): if not hasattr(__A , "weight" ): continue UpperCAmelCase = max(__A , len(__A ) ) for name, mod in model.named_modules(): UpperCAmelCase = getattr(__A , "_input_quantizer" , __A ) UpperCAmelCase = getattr(__A , "_weight_quantizer" , __A ) if not hasattr(__A , "weight" ): continue if type(__A ) in ignore: continue if [True for s in ignore if type(__A ) is str and s in name]: continue UpperCAmelCase = F"Act:{input_q.extra_repr()}" UpperCAmelCase = F"Wgt:{weight_q.extra_repr()}" UpperCAmelCase = F"{name:{name_width}} {act_str} {wgt_str}" if len(__A ) <= line_width: logger.info(__A ) else: logger.info(F"{name:{name_width}} {act_str}" ) logger.info(F"{' ':{name_width}} {wgt_str}" ) def _lowerCAmelCase( __A ): UpperCAmelCase = 0 for name, mod in model.named_modules(): if isinstance(__A , pytorch_quantization.nn.TensorQuantizer ): print(F"{name:80} {mod}" ) count += 1 print(F"{count} TensorQuantizers found in model" ) def _lowerCAmelCase( __A , __A , __A , __A , __A ): UpperCAmelCase = getattr(__A , __A , __A ) if quantizer_mod is not None: assert hasattr(__A , __A ) setattr(__A , __A , __A ) else: logger.warning(F"{name} has no {quantizer}" ) def _lowerCAmelCase( __A , __A , __A="both" , **__A ): UpperCAmelCase = F"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += F" {k}={v}" if which in ["input", "both"]: set_quantizer(__A , __A , "_input_quantizer" , __A , __A ) if which in ["weight", "both"]: set_quantizer(__A , __A , "_weight_quantizer" , __A , __A ) logger.info(__A ) def _lowerCAmelCase( __A , __A , **__A ): for name, mod in model.named_modules(): if hasattr(__A , "_input_quantizer" ) or hasattr(__A , "_weight_quantizer" ): for n in names: if re.search(__A , __A ): set_quantizers(__A , __A , **__A ) elif name.endswith("_quantizer" ): for n in names: if re.search(__A , __A ): UpperCAmelCase = F"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += F" {k}={v}" setattr(__A , __A , __A ) logger.info(__A )
1
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowerCAmelCase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] lowerCAmelCase__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class __magic_name__ ( _snake_case ): UpperCAmelCase = """whisper""" UpperCAmelCase = ["""past_key_values"""] UpperCAmelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[str] , lowerCAmelCase__ : List[str]=5_1_8_6_5 , lowerCAmelCase__ : int=8_0 , lowerCAmelCase__ : Optional[int]=6 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Tuple=6 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : int=1_5_3_6 , lowerCAmelCase__ : Any=1_5_3_6 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : Optional[Any]=5_0_2_5_7 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : List[str]=2_5_6 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Dict=1_5_0_0 , lowerCAmelCase__ : List[Any]=4_4_8 , lowerCAmelCase__ : str=5_0_2_5_6 , lowerCAmelCase__ : Union[str, Any]=5_0_2_5_6 , lowerCAmelCase__ : Any=5_0_2_5_6 , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Tuple=[2_2_0, 5_0_2_5_6] , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : List[Any]=2_5_6 , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : int=0.05 , lowerCAmelCase__ : Any=1_0 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[str]=0.0 , lowerCAmelCase__ : Tuple=1_0 , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : Optional[int]=7 , **lowerCAmelCase__ : Tuple , ) -> Optional[Any]: UpperCAmelCase = vocab_size UpperCAmelCase = num_mel_bins UpperCAmelCase = d_model UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = max_source_positions UpperCAmelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase = classifier_proj_size UpperCAmelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks UpperCAmelCase = median_filter_width super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , suppress_tokens=lowerCAmelCase__ , begin_suppress_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , ) class __magic_name__ ( _snake_case ): @property def _UpperCamelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: UpperCAmelCase = {0: "batch"} else: UpperCAmelCase = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction="inputs" ) return common_inputs def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional["TensorType"] = None , lowerCAmelCase__ : int = 2_2_0_5_0 , lowerCAmelCase__ : float = 5.0 , lowerCAmelCase__ : int = 2_2_0 , ) -> Mapping[str, Any]: UpperCAmelCase = OrderedDict() UpperCAmelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCAmelCase__ , framework=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , time_duration=lowerCAmelCase__ , frequency=lowerCAmelCase__ , ) UpperCAmelCase = encoder_inputs["input_features"].shape[2] UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase = super().generate_dummy_inputs( preprocessor.tokenizer , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = encoder_inputs.pop("input_features" ) UpperCAmelCase = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: UpperCAmelCase = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def _UpperCamelCase ( self : List[str] ) -> float: return 1e-3
1
def _lowerCAmelCase( __A ): assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(__A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , __A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
1
1
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration lowerCAmelCase__ = pytest.mark.integration lowerCAmelCase__ = {"comet"} lowerCAmelCase__ = importlib.util.find_spec("fairseq") is not None lowerCAmelCase__ = {"code_eval"} lowerCAmelCase__ = os.name == "nt" lowerCAmelCase__ = {"bertscore", "frugalscore", "perplexity"} lowerCAmelCase__ = importlib.util.find_spec("transformers") is not None def _lowerCAmelCase( __A ): @wraps(__A ) def wrapper(self , __A ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , __A ) return wrapper def _lowerCAmelCase( __A ): @wraps(__A ) def wrapper(self , __A ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , __A ) return wrapper def _lowerCAmelCase( __A ): @wraps(__A ) def wrapper(self , __A ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , __A ) return wrapper def _lowerCAmelCase( ): UpperCAmelCase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _snake_case , _snake_case , _snake_case ) @local class __magic_name__ ( parameterized.TestCase ): UpperCAmelCase = {} UpperCAmelCase = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Tuple ) -> Dict: UpperCAmelCase = "[...]" UpperCAmelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , lowerCAmelCase__ ) ).module_path ) UpperCAmelCase = datasets.load.import_main_class(metric_module.__name__ , dataset=lowerCAmelCase__ ) # check parameters UpperCAmelCase = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(lowerCAmelCase__ , metric_module.__name__ ): with self.use_local_metrics(): try: UpperCAmelCase = doctest.testmod(lowerCAmelCase__ , verbose=lowerCAmelCase__ , raise_on_error=lowerCAmelCase__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def _UpperCamelCase ( self : str , lowerCAmelCase__ : Optional[int] ) -> str: UpperCAmelCase = "[...]" UpperCAmelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , lowerCAmelCase__ ) ).module_path ) # run doctest with self.use_local_metrics(): UpperCAmelCase = doctest.testmod(lowerCAmelCase__ , verbose=lowerCAmelCase__ , raise_on_error=lowerCAmelCase__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict: if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](lowerCAmelCase__ ): yield else: yield @contextmanager def _UpperCamelCase ( self : List[str] ) -> int: def load_local_metric(lowerCAmelCase__ : Tuple , *lowerCAmelCase__ : str , **lowerCAmelCase__ : Dict ): return load_metric(os.path.join("metrics" , lowerCAmelCase__ ) , *lowerCAmelCase__ , **lowerCAmelCase__ ) with patch("datasets.load_metric" ) as mock_load_metric: UpperCAmelCase = load_local_metric yield @classmethod def _UpperCamelCase ( cls : List[Any] , lowerCAmelCase__ : Any ) -> str: def wrapper(lowerCAmelCase__ : List[Any] ): UpperCAmelCase = contextmanager(lowerCAmelCase__ ) UpperCAmelCase = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def _lowerCAmelCase( __A ): import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class __magic_name__ ( _snake_case ): def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : Any ) -> int: assert len(input_dict["input_ids"] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: UpperCAmelCase = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def _lowerCAmelCase( __A ): import torch def bert_cos_score_idf(__A , __A , *__A , **__A ): return torch.tensor([[1.0, 1.0, 1.0]] * len(__A ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: UpperCAmelCase = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def _lowerCAmelCase( __A ): def load_from_checkpoint(__A ): class __magic_name__ : def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : str ) -> Dict: assert len(lowerCAmelCase__ ) == 2 UpperCAmelCase = [0.19, 0.92] return scores, sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: UpperCAmelCase = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: UpperCAmelCase = load_from_checkpoint yield def _lowerCAmelCase( ): UpperCAmelCase = load_metric(os.path.join("metrics" , "seqeval" ) ) UpperCAmelCase = "ERROR" UpperCAmelCase = F"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}" with pytest.raises(__A , match=re.escape(__A ) ): metric.compute(predictions=[] , references=[] , scheme=__A )
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase__ = get_tests_dir("fixtures") class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: # A mock response for an HTTP head request to emulate server down UpperCAmelCase = mock.Mock() UpperCAmelCase = 5_0_0 UpperCAmelCase = {} UpperCAmelCase = HTTPError UpperCAmelCase = {} # Download this model to make sure it's in the cache. UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCAmelCase__ ) as mock_head: UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def _UpperCamelCase ( self : List[Any] ) -> Dict: # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class __magic_name__ ( unittest.TestCase ): @classmethod def _UpperCamelCase ( cls : List[str] ) -> List[Any]: UpperCAmelCase = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def _UpperCamelCase ( cls : Optional[int] ) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def _UpperCamelCase ( self : Any ) -> Any: UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ ) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase__ , repo_id="test-feature-extractor" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def _UpperCamelCase ( self : List[Any] ) -> Tuple: UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase__ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def _UpperCamelCase ( self : Dict ) -> List[str]: CustomFeatureExtractor.register_for_auto_class() UpperCAmelCase = CustomFeatureExtractor.from_pretrained(lowerCAmelCase__ ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) UpperCAmelCase = AutoFeatureExtractor.from_pretrained( f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=lowerCAmelCase__ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
1
1
import requests from bsa import BeautifulSoup def _lowerCAmelCase( __A , __A ): UpperCAmelCase = BeautifulSoup(requests.get(__A , params=__A ).content , "html.parser" ) UpperCAmelCase = soup.find("div" , attrs={"class": "gs_ri"} ) UpperCAmelCase = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": lowerCAmelCase__ = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCAmelCase__ = "src/diffusers" # Matches is_xxx_available() lowerCAmelCase__ = re.compile(r"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla lowerCAmelCase__ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") lowerCAmelCase__ = "\n{0} = None\n" lowerCAmelCase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" lowerCAmelCase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def _lowerCAmelCase( __A ): UpperCAmelCase = _re_backend.findall(__A ) if len(__A ) == 0: return None return "_and_".join(__A ) def _lowerCAmelCase( ): with open(os.path.join(__A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase = f.readlines() # Get to the point we do the actual imports for type checking UpperCAmelCase = 0 UpperCAmelCase = {} # Go through the end of the file while line_index < len(__A ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCAmelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 UpperCAmelCase = [] # Until we unindent, add backend objects to the list while line_index < len(__A ) and len(lines[line_index] ) > 1: UpperCAmelCase = lines[line_index] UpperCAmelCase = _re_single_line_import.search(__A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__A ) > 0: UpperCAmelCase = objects else: line_index += 1 return backend_specific_objects def _lowerCAmelCase( __A , __A ): if name.isupper(): return DUMMY_CONSTANT.format(__A ) elif name.islower(): return DUMMY_FUNCTION.format(__A , __A ) else: return DUMMY_CLASS.format(__A , __A ) def _lowerCAmelCase( __A=None ): if backend_specific_objects is None: UpperCAmelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCAmelCase = {} for backend, objects in backend_specific_objects.items(): UpperCAmelCase = "[" + ", ".join(F"\"{b}\"" for b in backend.split("_and_" ) ) + "]" UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__A , __A ) for o in objects] ) UpperCAmelCase = dummy_file return dummy_files def _lowerCAmelCase( __A=False ): UpperCAmelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCAmelCase = {"torch": "pt"} # Locate actual dummy modules and read their content. UpperCAmelCase = os.path.join(__A , "utils" ) UpperCAmelCase = { backend: os.path.join(__A , F"dummy_{short_names.get(__A , __A )}_objects.py" ) for backend in dummy_files.keys() } UpperCAmelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__A ): with open(__A , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase = f.read() else: UpperCAmelCase = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"Updating diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py as the main " "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F"diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py. Run `make fix-copies` " "to fix this." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCAmelCase__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
1
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase__ = logging.get_logger(__name__) class __magic_name__ ( _snake_case ): UpperCAmelCase = ["""pixel_values"""] def __init__( self : List[str] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : int = 0.9 , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ : Dict , ) -> None: super().__init__(**lowerCAmelCase__ ) UpperCAmelCase = size if size is not None else {"shortest_edge": 2_2_4} UpperCAmelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) UpperCAmelCase = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} UpperCAmelCase = get_size_dict(lowerCAmelCase__ , param_name="crop_size" ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = crop_pct UpperCAmelCase = resample UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple , ) -> np.ndarray: UpperCAmelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) if crop_pct is not None: if "shortest_edge" in size: UpperCAmelCase = int(size["shortest_edge"] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: UpperCAmelCase = int(size["height"] / crop_pct ) else: UpperCAmelCase = (int(size["height"] / crop_pct ), int(size["width"] / crop_pct )) else: raise ValueError("Invalid size for resize: {}".format(lowerCAmelCase__ ) ) UpperCAmelCase = get_resize_output_image_size(lowerCAmelCase__ , size=lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) else: if "shortest_edge" in size: UpperCAmelCase = get_resize_output_image_size(lowerCAmelCase__ , size=size["shortest_edge"] , default_to_square=lowerCAmelCase__ ) elif "height" in size and "width" in size: UpperCAmelCase = (size["height"], size["width"]) else: raise ValueError("Invalid size for resize: {}".format(lowerCAmelCase__ ) ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Dict , ) -> np.ndarray: UpperCAmelCase = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"size must contain 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(lowerCAmelCase__ , size=(size["height"], size["width"]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[int, float] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[int] , ) -> Any: return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[int] , ) -> np.ndarray: return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _UpperCamelCase ( self : Any , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : int = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : float = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase__ : str , ) -> PIL.Image.Image: UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(lowerCAmelCase__ , param_name="crop_size" ) UpperCAmelCase = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_pct is None: raise ValueError("Crop_pct must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , crop_pct=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: UpperCAmelCase = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] UpperCAmelCase = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] UpperCAmelCase = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class __magic_name__ ( _snake_case , _snake_case ): UpperCAmelCase = """convnextv2""" def __init__( self : Optional[Any] , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Dict=1e-1_2 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : str=2_2_4 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[Any] , ) -> List[Any]: super().__init__(**lowerCAmelCase__ ) UpperCAmelCase = num_channels UpperCAmelCase = patch_size UpperCAmelCase = num_stages UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes UpperCAmelCase = [3, 3, 9, 3] if depths is None else depths UpperCAmelCase = hidden_act UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = drop_path_rate UpperCAmelCase = image_size UpperCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
1
1
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata lowerCAmelCase__ = "" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class __magic_name__ ( tr.AbstractTransform ): def __init__( self : Union[str, Any] , lowerCAmelCase__ : str = " " ) -> str: UpperCAmelCase = sentence_delimiter def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : str ) -> List[str]: return list(lowerCAmelCase__ ) def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Any: UpperCAmelCase = [] for sent_idx, sentence in enumerate(lowerCAmelCase__ ): chars.extend(self.process_string(lowerCAmelCase__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCAmelCase__ ) - 1: chars.append(self.sentence_delimiter ) return chars lowerCAmelCase__ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowerCAmelCase__ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowerCAmelCase__ = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" lowerCAmelCase__ = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n" lowerCAmelCase__ = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def _UpperCamelCase ( self : List[str] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ] , ) def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict=False ) -> Union[str, Any]: if concatenate_texts: return jiwer.compute_measures( lowerCAmelCase__ , lowerCAmelCase__ , truth_transform=lowerCAmelCase__ , hypothesis_transform=lowerCAmelCase__ , )["wer"] UpperCAmelCase = 0 UpperCAmelCase = 0 for prediction, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase = jiwer.compute_measures( lowerCAmelCase__ , lowerCAmelCase__ , truth_transform=lowerCAmelCase__ , hypothesis_transform=lowerCAmelCase__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
1
lowerCAmelCase__ = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCAmelCase__ = [{"type": "code", "content": INSTALL_CONTENT}] lowerCAmelCase__ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
1
1
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters lowerCAmelCase__ = (720, 1280) # Height, Width lowerCAmelCase__ = (0.4, 0.6) # if height or width lower than this scale, drop it. lowerCAmelCase__ = 1 / 100 lowerCAmelCase__ = "" lowerCAmelCase__ = "" lowerCAmelCase__ = "" lowerCAmelCase__ = 250 def _lowerCAmelCase( ): UpperCAmelCase , UpperCAmelCase = get_dataset(__A , __A ) for index in range(__A ): UpperCAmelCase = random.sample(range(len(__A ) ) , 4 ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = update_image_and_anno( __A , __A , __A , __A , __A , filter_scale=__A , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCAmelCase = random_chars(32 ) UpperCAmelCase = path.split(os.sep )[-1].rsplit("." , 1 )[0] UpperCAmelCase = F"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}" cva.imwrite(F"{file_root}.jpg" , __A , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}" ) UpperCAmelCase = [] for anno in new_annos: UpperCAmelCase = anno[3] - anno[1] UpperCAmelCase = anno[4] - anno[2] UpperCAmelCase = anno[1] + width / 2 UpperCAmelCase = anno[2] + height / 2 UpperCAmelCase = F"{anno[0]} {x_center} {y_center} {width} {height}" annos_list.append(__A ) with open(F"{file_root}.txt" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def _lowerCAmelCase( __A , __A ): UpperCAmelCase = [] UpperCAmelCase = [] for label_file in glob.glob(os.path.join(__A , "*.txt" ) ): UpperCAmelCase = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(__A ) as in_file: UpperCAmelCase = in_file.readlines() UpperCAmelCase = os.path.join(__A , F"{label_name}.jpg" ) UpperCAmelCase = [] for obj_list in obj_lists: UpperCAmelCase = obj_list.rstrip("\n" ).split(" " ) UpperCAmelCase = float(obj[1] ) - float(obj[3] ) / 2 UpperCAmelCase = float(obj[2] ) - float(obj[4] ) / 2 UpperCAmelCase = float(obj[1] ) + float(obj[3] ) / 2 UpperCAmelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__A ) labels.append(__A ) return img_paths, labels def _lowerCAmelCase( __A , __A , __A , __A , __A , __A = 0.0 , ): UpperCAmelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) UpperCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) UpperCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) UpperCAmelCase = int(scale_x * output_size[1] ) UpperCAmelCase = int(scale_y * output_size[0] ) UpperCAmelCase = [] UpperCAmelCase = [] for i, index in enumerate(__A ): UpperCAmelCase = all_img_list[index] path_list.append(__A ) UpperCAmelCase = all_annos[index] UpperCAmelCase = cva.imread(__A ) if i == 0: # top-left UpperCAmelCase = cva.resize(__A , (divid_point_x, divid_point_y) ) UpperCAmelCase = img for bbox in img_annos: UpperCAmelCase = bbox[1] * scale_x UpperCAmelCase = bbox[2] * scale_y UpperCAmelCase = bbox[3] * scale_x UpperCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right UpperCAmelCase = cva.resize(__A , (output_size[1] - divid_point_x, divid_point_y) ) UpperCAmelCase = img for bbox in img_annos: UpperCAmelCase = scale_x + bbox[1] * (1 - scale_x) UpperCAmelCase = bbox[2] * scale_y UpperCAmelCase = scale_x + bbox[3] * (1 - scale_x) UpperCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left UpperCAmelCase = cva.resize(__A , (divid_point_x, output_size[0] - divid_point_y) ) UpperCAmelCase = img for bbox in img_annos: UpperCAmelCase = bbox[1] * scale_x UpperCAmelCase = scale_y + bbox[2] * (1 - scale_y) UpperCAmelCase = bbox[3] * scale_x UpperCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right UpperCAmelCase = cva.resize( __A , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) UpperCAmelCase = img for bbox in img_annos: UpperCAmelCase = scale_x + bbox[1] * (1 - scale_x) UpperCAmelCase = scale_y + bbox[2] * (1 - scale_y) UpperCAmelCase = scale_x + bbox[3] * (1 - scale_x) UpperCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: UpperCAmelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def _lowerCAmelCase( __A ): assert number_char > 1, "The number of character should greater than 1" UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(__A ) for _ in range(__A ) ) if __name__ == "__main__": main() print("DONE ✅")
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ ( _snake_case , unittest.TestCase ): UpperCAmelCase = KandinskyInpaintPipeline UpperCAmelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCAmelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCAmelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCAmelCase = False @property def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple: return 3_2 @property def _UpperCamelCase ( self : int ) -> List[Any]: return 3_2 @property def _UpperCamelCase ( self : List[Any] ) -> List[Any]: return self.time_input_dim @property def _UpperCamelCase ( self : Tuple ) -> Tuple: return self.time_input_dim * 4 @property def _UpperCamelCase ( self : Any ) -> Optional[int]: return 1_0_0 @property def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]: UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def _UpperCamelCase ( self : int ) -> Dict: torch.manual_seed(0 ) UpperCAmelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) UpperCAmelCase = MultilingualCLIP(lowerCAmelCase__ ) UpperCAmelCase = text_encoder.eval() return text_encoder @property def _UpperCamelCase ( self : Dict ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def _UpperCamelCase ( self : str ) -> Optional[Any]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _UpperCamelCase ( self : Dict ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCamelCase ( self : Tuple ) -> Any: UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = self.dummy_tokenizer UpperCAmelCase = self.dummy_unet UpperCAmelCase = self.dummy_movq UpperCAmelCase = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCAmelCase__ , ) UpperCAmelCase = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=0 ) -> str: UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase__ ) # create init_image UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) # create mask UpperCAmelCase = np.ones((6_4, 6_4) , dtype=np.floataa ) UpperCAmelCase = 0 if str(lowerCAmelCase__ ).startswith("mps" ): UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ ) else: UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) UpperCAmelCase = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def _UpperCamelCase ( self : Dict ) -> List[str]: UpperCAmelCase = "cpu" UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__ ) UpperCAmelCase = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) UpperCAmelCase = output.images UpperCAmelCase = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase = np.array( [0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def _UpperCamelCase ( self : str ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : str ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : Tuple ) -> int: UpperCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) UpperCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) UpperCAmelCase = 0 UpperCAmelCase = "a hat" UpperCAmelCase = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) UpperCAmelCase = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) UpperCAmelCase = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase = pipeline( lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="np" , ) UpperCAmelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
1
1
import numpy # List of input, output pairs lowerCAmelCase__ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) lowerCAmelCase__ = (((515, 22, 13), 555), ((61, 35, 49), 150)) lowerCAmelCase__ = [2, 4, 1, 5] lowerCAmelCase__ = len(train_data) lowerCAmelCase__ = 0.0_0_9 def _lowerCAmelCase( __A , __A="train" ): return calculate_hypothesis_value(__A , __A ) - output( __A , __A ) def _lowerCAmelCase( __A ): UpperCAmelCase = 0 for i in range(len(__A ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _lowerCAmelCase( __A , __A ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _lowerCAmelCase( __A , __A ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _lowerCAmelCase( __A , __A=m ): UpperCAmelCase = 0 for i in range(__A ): if index == -1: summation_value += _error(__A ) else: summation_value += _error(__A ) * train_data[i][0][index] return summation_value def _lowerCAmelCase( __A ): UpperCAmelCase = summation_of_cost_derivative(__A , __A ) / m return cost_derivative_value def _lowerCAmelCase( ): global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase = 0.000002 UpperCAmelCase = 0 UpperCAmelCase = 0 while True: j += 1 UpperCAmelCase = [0, 0, 0, 0] for i in range(0 , len(__A ) ): UpperCAmelCase = get_cost_derivative(i - 1 ) UpperCAmelCase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __A , __A , atol=__A , rtol=__A , ): break UpperCAmelCase = temp_parameter_vector print(("Number of iterations:", j) ) def _lowerCAmelCase( ): for i in range(len(__A ) ): print(("Actual output value:", output(__A , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(__A , "test" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
1
def _lowerCAmelCase( __A , __A ): return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def _lowerCAmelCase( __A , __A=0 ): return sorted(__A , key=lambda __A : x[column] ) def _lowerCAmelCase( __A , __A , __A=float("inf" ) ): for i in range(points_counts - 1 ): for j in range(i + 1 , __A ): UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase = current_dis return min_dis def _lowerCAmelCase( __A , __A , __A=float("inf" ) ): for i in range(min(6 , points_counts - 1 ) , __A ): for j in range(max(0 , i - 6 ) , __A ): UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase = current_dis return min_dis def _lowerCAmelCase( __A , __A , __A ): # base case if points_counts <= 3: return dis_between_closest_pair(__A , __A ) # recursion UpperCAmelCase = points_counts // 2 UpperCAmelCase = closest_pair_of_points_sqr( __A , points_sorted_on_y[:mid] , __A ) UpperCAmelCase = closest_pair_of_points_sqr( __A , points_sorted_on_y[mid:] , points_counts - mid ) UpperCAmelCase = min(__A , __A ) UpperCAmelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(__A ) UpperCAmelCase = dis_between_closest_in_strip( __A , len(__A ) , __A ) return min(__A , __A ) def _lowerCAmelCase( __A , __A ): UpperCAmelCase = column_based_sort(__A , column=0 ) UpperCAmelCase = column_based_sort(__A , column=1 ) return ( closest_pair_of_points_sqr( __A , __A , __A ) ) ** 0.5 if __name__ == "__main__": lowerCAmelCase__ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
1
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __magic_name__ ( _snake_case ): @slow @require_torch def _UpperCamelCase ( self : List[Any] ) -> List[str]: UpperCAmelCase = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) UpperCAmelCase = BertTokenizer.from_pretrained("bert-base-uncased" ) UpperCAmelCase = bertabert.config.encoder.vocab_size UpperCAmelCase = tokenizer.sep_token_id UpperCAmelCase = tokenizer.cls_token_id UpperCAmelCase = 1_2_8 UpperCAmelCase = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) UpperCAmelCase = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) UpperCAmelCase = train_dataset.select(range(3_2 ) ) UpperCAmelCase = val_dataset.select(range(1_6 ) ) UpperCAmelCase = 4 def _map_to_encoder_decoder_inputs(lowerCAmelCase__ : int ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCAmelCase = tokenizer(batch["article"] , padding="max_length" , truncation=lowerCAmelCase__ , max_length=5_1_2 ) UpperCAmelCase = tokenizer(batch["highlights"] , padding="max_length" , truncation=lowerCAmelCase__ , max_length=1_2_8 ) UpperCAmelCase = inputs.input_ids UpperCAmelCase = inputs.attention_mask UpperCAmelCase = outputs.input_ids UpperCAmelCase = outputs.input_ids.copy() UpperCAmelCase = [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] UpperCAmelCase = outputs.attention_mask assert all(len(lowerCAmelCase__ ) == 5_1_2 for x in inputs.input_ids ) assert all(len(lowerCAmelCase__ ) == 1_2_8 for x in outputs.input_ids ) return batch def _compute_metrics(lowerCAmelCase__ : Optional[Any] ): UpperCAmelCase = pred.label_ids UpperCAmelCase = pred.predictions # all unnecessary tokens are removed UpperCAmelCase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) UpperCAmelCase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) UpperCAmelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(lowerCAmelCase__ ) )] ) / len(lowerCAmelCase__ ) return {"accuracy": accuracy} # map train dataset UpperCAmelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset UpperCAmelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = SeqaSeqTrainingArguments( output_dir=lowerCAmelCase__ , per_device_train_batch_size=lowerCAmelCase__ , per_device_eval_batch_size=lowerCAmelCase__ , predict_with_generate=lowerCAmelCase__ , evaluation_strategy="steps" , do_train=lowerCAmelCase__ , do_eval=lowerCAmelCase__ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCAmelCase = SeqaSeqTrainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , compute_metrics=_compute_metrics , train_dataset=lowerCAmelCase__ , eval_dataset=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , ) # start training trainer.train()
1
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __magic_name__ : def __init__( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase = "" UpperCAmelCase = "" UpperCAmelCase = [] UpperCAmelCase = 0 UpperCAmelCase = 2_5_6 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Optional[Any] ) -> List[str]: UpperCAmelCase = cva.imread(lowerCAmelCase__ , 0 ) UpperCAmelCase = copy.deepcopy(self.img ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="x" ) UpperCAmelCase = np.sum(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase = x[i] / self.k self.sk += prk UpperCAmelCase = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase = int(last % last ) UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCAmelCase__ ) UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def _UpperCamelCase ( self : str ) -> int: plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def _UpperCamelCase ( self : Dict ) -> Optional[Any]: cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase__ = os.path.join(os.path.basename(__file__), "image_data/input.jpg") lowerCAmelCase__ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
1
1
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _lowerCAmelCase( __A , __A ): # Load checkpoint UpperCAmelCase = torch.load(__A , map_location="cpu" ) UpperCAmelCase = chkpt["model"] # We have the base model one level deeper than the original XLM repository UpperCAmelCase = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase = v else: UpperCAmelCase = v UpperCAmelCase = chkpt["params"] UpperCAmelCase = {n: v for n, v in config.items() if not isinstance(__A , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase = chkpt["dico_word2id"] UpperCAmelCase = {s + "</w>" if s.find("@@" ) == -1 and i > 13 else s.replace("@@" , "" ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCAmelCase = pytorch_dump_folder_path + "/" + CONFIG_NAME UpperCAmelCase = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(__A , __A ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__A , indent=2 ) + "\n" ) print(F"Save vocab file to {pytorch_config_dump_path}" ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__A , indent=2 ) + "\n" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase__ = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
1
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( _snake_case , unittest.TestCase ): UpperCAmelCase = LEDTokenizer UpperCAmelCase = LEDTokenizerFast UpperCAmelCase = True def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: super().setUp() UpperCAmelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCAmelCase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) UpperCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCAmelCase = {"unk_token": "<unk>"} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def _UpperCamelCase ( self : Union[str, Any] , **lowerCAmelCase__ : Optional[int] ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _UpperCamelCase ( self : str , **lowerCAmelCase__ : str ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[Any] ) -> List[Any]: return "lower newer", "lower newer" @cached_property def _UpperCamelCase ( self : Dict ) -> str: return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def _UpperCamelCase ( self : int ) -> Tuple: return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def _UpperCamelCase ( self : Tuple ) -> List[str]: UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCAmelCase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @require_torch def _UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt" ) self.assertIn("input_ids" , lowerCAmelCase__ ) self.assertIn("attention_mask" , lowerCAmelCase__ ) self.assertNotIn("labels" , lowerCAmelCase__ ) self.assertNotIn("decoder_attention_mask" , lowerCAmelCase__ ) @require_torch def _UpperCamelCase ( self : int ) -> int: UpperCAmelCase = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , max_length=3_2 , padding="max_length" , return_tensors="pt" ) self.assertEqual(3_2 , targets["input_ids"].shape[1] ) @require_torch def _UpperCamelCase ( self : Any ) -> int: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer( ["I am a small frog" * 1_0_2_4, "I am a small frog"] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) ) @require_torch def _UpperCamelCase ( self : Dict ) -> Tuple: UpperCAmelCase = ["A long paragraph for summarization."] UpperCAmelCase = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase = inputs["input_ids"] UpperCAmelCase = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = ["Summary of the text.", "Another summary."] UpperCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ ) UpperCAmelCase = [[0] * len(lowerCAmelCase__ ) for x in encoded_output["input_ids"]] UpperCAmelCase = tokenizer.pad(lowerCAmelCase__ ) self.assertSequenceEqual(outputs["global_attention_mask"] , lowerCAmelCase__ ) def _UpperCamelCase ( self : List[str] ) -> int: pass def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCAmelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCAmelCase = "A, <mask> AllenNLP sentence." UpperCAmelCase = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) UpperCAmelCase = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
1
1
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def _lowerCAmelCase( __A , __A , __A=0 ): # Format the message. if name is None: UpperCAmelCase = None else: UpperCAmelCase = "." * max(0 , spaces - 2 ) + "# {:" + str(50 - spaces ) + "s}" UpperCAmelCase = fmt.format(__A ) # Print and recurse (if needed). if isinstance(__A , __A ): if msg is not None: print(__A ) for k in val.keys(): recursive_print(__A , val[k] , spaces + 2 ) elif isinstance(__A , torch.Tensor ): print(__A , ":" , val.size() ) else: print(__A , ":" , __A ) def _lowerCAmelCase( __A , __A , __A , __A , __A ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. UpperCAmelCase = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] UpperCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:] UpperCAmelCase = param.view(*__A ) UpperCAmelCase = param.transpose(0 , 2 ) UpperCAmelCase = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] UpperCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:] UpperCAmelCase = param.view(*__A ) UpperCAmelCase = param.transpose(0 , 1 ).contiguous() UpperCAmelCase = param.view(*__A ) return param def _lowerCAmelCase( __A , __A , __A ): # The converted output model. UpperCAmelCase = {} # old versions did not store training args UpperCAmelCase = input_state_dict.get("args" , __A ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) UpperCAmelCase = ds_args.padded_vocab_size UpperCAmelCase = ds_args.max_position_embeddings UpperCAmelCase = ds_args.hidden_size UpperCAmelCase = ds_args.num_layers UpperCAmelCase = ds_args.num_attention_heads UpperCAmelCase = ds_args.ffn_hidden_size # pprint(config) # The number of heads. UpperCAmelCase = config.n_head # The hidden_size per head. UpperCAmelCase = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): UpperCAmelCase = input_state_dict["checkpoint_version"] else: UpperCAmelCase = 0.0 # The model. UpperCAmelCase = input_state_dict["model"] # The language model. UpperCAmelCase = model["language_model"] # The embeddings. UpperCAmelCase = lm["embedding"] # The word embeddings. UpperCAmelCase = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. UpperCAmelCase = word_embeddings[: config.vocab_size, :] UpperCAmelCase = word_embeddings # The position embeddings. UpperCAmelCase = embeddings["position_embeddings"]["weight"] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] UpperCAmelCase = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. UpperCAmelCase = pos_embeddings # The transformer. UpperCAmelCase = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. UpperCAmelCase = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" ) # The simple map of names for "automated" rules. UpperCAmelCase = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } # Extract the layers. for key, val in transformer.items(): # Match the name. UpperCAmelCase = layer_re.match(__A ) # Stop if that's not a layer if m is None: break # The index of the layer. UpperCAmelCase = int(m.group(1 ) ) # The name of the operation. UpperCAmelCase = m.group(2 ) # Is it a weight or a bias? UpperCAmelCase = m.group(3 ) # The name of the layer. UpperCAmelCase = F"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm" ): UpperCAmelCase = "ln_1" if op_name.startswith("input" ) else "ln_2" UpperCAmelCase = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. UpperCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __A , __A ) UpperCAmelCase = causal_mask # Insert a "dummy" tensor for masked_bias. UpperCAmelCase = torch.tensor(-1E4 , dtype=torch.floataa ) UpperCAmelCase = masked_bias UpperCAmelCase = fix_query_key_value_ordering(__A , __A , 3 , __A , __A ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. UpperCAmelCase = out_val.transpose(0 , 1 ).contiguous() # Store. UpperCAmelCase = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": UpperCAmelCase = fix_query_key_value_ordering(__A , __A , 3 , __A , __A ) # Store. No change of shape. UpperCAmelCase = out_val # Transpose the weights. elif weight_or_bias == "weight": UpperCAmelCase = megatron_to_transformers[op_name] UpperCAmelCase = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": UpperCAmelCase = megatron_to_transformers[op_name] UpperCAmelCase = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. UpperCAmelCase = transformer["final_layernorm.weight"] UpperCAmelCase = transformer["final_layernorm.bias"] # For LM head, transformers' wants the matrix to weight embeddings. UpperCAmelCase = word_embeddings # It should be done! return output_state_dict def _lowerCAmelCase( ): # Create the argument parser. UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure" , action="store_true" ) parser.add_argument( "path_to_checkpoint" , type=__A , help="Path to the checkpoint file (.zip archive or direct .pt file)" , ) parser.add_argument( "--config_file" , default="" , type=__A , help="An optional config json file describing the pre-trained model." , ) UpperCAmelCase = parser.parse_args() # Extract the basename. UpperCAmelCase = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith(".zip" ): with zipfile.ZipFile(args.path_to_checkpoint , "r" ) as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict: UpperCAmelCase = torch.load(__A , map_location="cpu" ) else: UpperCAmelCase = torch.load(args.path_to_checkpoint , map_location="cpu" ) UpperCAmelCase = input_state_dict.get("args" , __A ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: UpperCAmelCase = "gelu_fast" elif ds_args.openai_gelu: UpperCAmelCase = "gelu_new" else: UpperCAmelCase = "gelu" else: # in the very early days this used to be "gelu_new" UpperCAmelCase = "gelu_new" # Spell out all parameters in case the defaults change. UpperCAmelCase = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=__A , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="cls_index" , summary_use_proj=__A , summary_activation=__A , summary_proj_to_labels=__A , summary_first_dropout=0.1 , scale_attn_weights=__A , use_cache=__A , bos_token_id=50256 , eos_token_id=50256 , ) else: UpperCAmelCase = GPTaConfig.from_json_file(args.config_file ) UpperCAmelCase = ["GPT2LMHeadModel"] # Convert. print("Converting" ) UpperCAmelCase = convert_megatron_checkpoint(__A , __A , __A ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__A , __A ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: UpperCAmelCase = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": UpperCAmelCase = "gpt2" elif tokenizer_type == "PretrainedFromHF": UpperCAmelCase = ds_args.tokenizer_name_or_path else: raise ValueError(F"Unrecognized tokenizer_type {tokenizer_type}" ) else: UpperCAmelCase = "gpt2" UpperCAmelCase = AutoTokenizer.from_pretrained(__A ) UpperCAmelCase = type(__A ).__name__ UpperCAmelCase = tokenizer_class # Store the config to file. print("Saving config" ) config.save_pretrained(__A ) # Save tokenizer based on args print(F"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(__A ) # Store the state_dict to file. UpperCAmelCase = os.path.join(__A , "pytorch_model.bin" ) print(F"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(__A , __A ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
1
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase__ = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowerCAmelCase__ = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowerCAmelCase__ = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowerCAmelCase__ = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def _UpperCamelCase ( self : int ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : List[Any] ) -> Dict: import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=0.9 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Optional[int]=0.5 ) -> Any: if NLTK_VERSION >= version.Version("3.6.5" ): UpperCAmelCase = [ meteor_score.single_meteor_score( word_tokenize(lowerCAmelCase__ ) , word_tokenize(lowerCAmelCase__ ) , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ ) for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] else: UpperCAmelCase = [ meteor_score.single_meteor_score(lowerCAmelCase__ , lowerCAmelCase__ , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ ) for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] return {"meteor": np.mean(lowerCAmelCase__ )}
1
1
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __magic_name__ ( _snake_case , _snake_case ): @register_to_config def __init__( self : Optional[Any] , *, lowerCAmelCase__ : int = 4 , lowerCAmelCase__ : int = 7_6_8 , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , ) -> Optional[int]: super().__init__() UpperCAmelCase = nn.Parameter(torch.zeros(lowerCAmelCase__ ) ) # parameters for additional clip time embeddings UpperCAmelCase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) # parameters for encoder hidden states UpperCAmelCase = clip_extra_context_tokens UpperCAmelCase = nn.Linear( lowerCAmelCase__ , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = nn.LayerNorm(lowerCAmelCase__ ) def _UpperCamelCase ( self : str , *, lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] ) -> List[Any]: if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase = image_embeddings.shape[0] UpperCAmelCase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase = classifier_free_guidance_embeddings.expand( lowerCAmelCase__ , -1 ) UpperCAmelCase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase = self.embedding_proj(lowerCAmelCase__ ) UpperCAmelCase = self.clip_image_embeddings_project_to_time_embeddings(lowerCAmelCase__ ) UpperCAmelCase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase = self.clip_extra_context_tokens_proj(lowerCAmelCase__ ) UpperCAmelCase = clip_extra_context_tokens.reshape(lowerCAmelCase__ , -1 , self.clip_extra_context_tokens ) UpperCAmelCase = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase = self.encoder_hidden_states_proj(lowerCAmelCase__ ) UpperCAmelCase = self.text_encoder_hidden_states_norm(lowerCAmelCase__ ) UpperCAmelCase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class __magic_name__ ( _snake_case ): UpperCAmelCase = """lxmert""" UpperCAmelCase = {} def __init__( self : int , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : List[str]=7_6_8 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : List[Any]=9_5_0_0 , lowerCAmelCase__ : Any=1_6_0_0 , lowerCAmelCase__ : Union[str, Any]=4_0_0 , lowerCAmelCase__ : Tuple=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : str=1e-1_2 , lowerCAmelCase__ : str=9 , lowerCAmelCase__ : int=5 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : List[Any]=2_0_4_8 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Dict=6.67 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Tuple=True , **lowerCAmelCase__ : List[Any] , ) -> Dict: UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = num_qa_labels UpperCAmelCase = num_object_labels UpperCAmelCase = num_attr_labels UpperCAmelCase = l_layers UpperCAmelCase = x_layers UpperCAmelCase = r_layers UpperCAmelCase = visual_feat_dim UpperCAmelCase = visual_pos_dim UpperCAmelCase = visual_loss_normalizer UpperCAmelCase = task_matched UpperCAmelCase = task_mask_lm UpperCAmelCase = task_obj_predict UpperCAmelCase = task_qa UpperCAmelCase = visual_obj_loss UpperCAmelCase = visual_attr_loss UpperCAmelCase = visual_feat_loss UpperCAmelCase = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**lowerCAmelCase__ )
1
1
import glob import os import random from string import ascii_lowercase, digits import cva lowerCAmelCase__ = "" lowerCAmelCase__ = "" lowerCAmelCase__ = "" lowerCAmelCase__ = 1 # (0 is vertical, 1 is horizontal) def _lowerCAmelCase( ): UpperCAmelCase , UpperCAmelCase = get_dataset(__A , __A ) print("Processing..." ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = update_image_and_anno(__A , __A , __A ) for index, image in enumerate(__A ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCAmelCase = random_chars(32 ) UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] UpperCAmelCase = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(F"/{file_root}.jpg" , __A , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Success {index+1}/{len(__A )} with {file_name}" ) UpperCAmelCase = [] for anno in new_annos[index]: UpperCAmelCase = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(__A ) with open(F"/{file_root}.txt" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def _lowerCAmelCase( __A , __A ): UpperCAmelCase = [] UpperCAmelCase = [] for label_file in glob.glob(os.path.join(__A , "*.txt" ) ): UpperCAmelCase = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(__A ) as in_file: UpperCAmelCase = in_file.readlines() UpperCAmelCase = os.path.join(__A , F"{label_name}.jpg" ) UpperCAmelCase = [] for obj_list in obj_lists: UpperCAmelCase = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__A ) labels.append(__A ) return img_paths, labels def _lowerCAmelCase( __A , __A , __A = 1 ): UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = [] for idx in range(len(__A ) ): UpperCAmelCase = [] UpperCAmelCase = img_list[idx] path_list.append(__A ) UpperCAmelCase = anno_list[idx] UpperCAmelCase = cva.imread(__A ) if flip_type == 1: UpperCAmelCase = cva.flip(__A , __A ) for bbox in img_annos: UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: UpperCAmelCase = cva.flip(__A , __A ) for bbox in img_annos: UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__A ) new_imgs_list.append(__A ) return new_imgs_list, new_annos_lists, path_list def _lowerCAmelCase( __A = 32 ): assert number_char > 1, "The number of character should greater than 1" UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(__A ) for _ in range(__A ) ) if __name__ == "__main__": main() print("DONE ✅")
1
def _lowerCAmelCase( __A ): UpperCAmelCase = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def _lowerCAmelCase( __A = 100 ): UpperCAmelCase = 1 UpperCAmelCase = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase = pre_numerator UpperCAmelCase = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase = cur_numerator UpperCAmelCase = e_cont * pre_numerator + temp return sum_digits(__A ) if __name__ == "__main__": print(f"{solution() = }")
1
1
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowerCAmelCase__ = random.Random() if is_torch_available(): import torch def _lowerCAmelCase( __A , __A=1.0 , __A=None , __A=None ): if rng is None: UpperCAmelCase = global_rng UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __magic_name__ ( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]=7 , lowerCAmelCase__ : Union[str, Any]=4_0_0 , lowerCAmelCase__ : List[Any]=2_0_0_0 , lowerCAmelCase__ : Any=1 , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : Optional[int]=1_6_0_0_0 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : List[str]=True , ) -> Union[str, Any]: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = min_seq_length UpperCAmelCase = max_seq_length UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase = feature_size UpperCAmelCase = padding_value UpperCAmelCase = sampling_rate UpperCAmelCase = return_attention_mask UpperCAmelCase = do_normalize def _UpperCamelCase ( self : Dict ) -> Optional[int]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Optional[int]=False ) -> Optional[Any]: def _flatten(lowerCAmelCase__ : Optional[int] ): return list(itertools.chain(*lowerCAmelCase__ ) ) if equal_length: UpperCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase = [np.asarray(lowerCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __magic_name__ ( _snake_case , unittest.TestCase ): UpperCAmelCase = ASTFeatureExtractor def _UpperCamelCase ( self : Dict ) -> str: UpperCAmelCase = ASTFeatureExtractionTester(self ) def _UpperCamelCase ( self : Any ) -> List[str]: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values UpperCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) # Test batched UpperCAmelCase = feat_extract(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="np" ).input_values UpperCAmelCase = feat_extract(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] UpperCAmelCase = np.asarray(lowerCAmelCase__ ) UpperCAmelCase = feat_extract(lowerCAmelCase__ , return_tensors="np" ).input_values UpperCAmelCase = feat_extract(lowerCAmelCase__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) @require_torch def _UpperCamelCase ( self : int ) -> Optional[int]: import torch UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : List[Any] ) -> Dict: from datasets import load_dataset UpperCAmelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech UpperCAmelCase = ds.sort("id" ).select(range(lowerCAmelCase__ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def _UpperCamelCase ( self : Any ) -> int: # fmt: off UpperCAmelCase = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on UpperCAmelCase = self._load_datasamples(1 ) UpperCAmelCase = ASTFeatureExtractor() UpperCAmelCase = feature_extractor(lowerCAmelCase__ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , lowerCAmelCase__ , atol=1e-4 ) )
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
1
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
1
import numpy # List of input, output pairs lowerCAmelCase__ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) lowerCAmelCase__ = (((515, 22, 13), 555), ((61, 35, 49), 150)) lowerCAmelCase__ = [2, 4, 1, 5] lowerCAmelCase__ = len(train_data) lowerCAmelCase__ = 0.0_0_9 def _lowerCAmelCase( __A , __A="train" ): return calculate_hypothesis_value(__A , __A ) - output( __A , __A ) def _lowerCAmelCase( __A ): UpperCAmelCase = 0 for i in range(len(__A ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _lowerCAmelCase( __A , __A ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _lowerCAmelCase( __A , __A ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _lowerCAmelCase( __A , __A=m ): UpperCAmelCase = 0 for i in range(__A ): if index == -1: summation_value += _error(__A ) else: summation_value += _error(__A ) * train_data[i][0][index] return summation_value def _lowerCAmelCase( __A ): UpperCAmelCase = summation_of_cost_derivative(__A , __A ) / m return cost_derivative_value def _lowerCAmelCase( ): global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase = 0.000002 UpperCAmelCase = 0 UpperCAmelCase = 0 while True: j += 1 UpperCAmelCase = [0, 0, 0, 0] for i in range(0 , len(__A ) ): UpperCAmelCase = get_cost_derivative(i - 1 ) UpperCAmelCase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __A , __A , atol=__A , rtol=__A , ): break UpperCAmelCase = temp_parameter_vector print(("Number of iterations:", j) ) def _lowerCAmelCase( ): for i in range(len(__A ) ): print(("Actual output value:", output(__A , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(__A , "test" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
1
1
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase = 3 UpperCAmelCase = 2_5_0 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase__ ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase__ , dtype=torch.float ) / length return input_ids, scores def _UpperCamelCase ( self : Optional[int] ) -> List[Any]: UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(1_0 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) def _UpperCamelCase ( self : List[str] ) -> List[Any]: UpperCAmelCase = MaxLengthCriteria(max_length=1_0 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(1_0 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) def _UpperCamelCase ( self : Any ) -> Union[str, Any]: UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(1_0 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 1_0 ) def _UpperCamelCase ( self : Dict ) -> Any: UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) ) def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 ) with self.assertWarns(lowerCAmelCase__ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 1_1 ) self.assertEqual(len(lowerCAmelCase__ ) , 1 )
1
def _lowerCAmelCase( __A , __A , __A ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__A , n - 1 , __A ) * a) % mod else: UpperCAmelCase = binary_exponentiation(__A , n / 2 , __A ) return (b * b) % mod # a prime number lowerCAmelCase__ = 701 lowerCAmelCase__ = 1000000000 lowerCAmelCase__ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
1
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowerCAmelCase__ = None lowerCAmelCase__ = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowerCAmelCase__ = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class __magic_name__ : UpperCAmelCase = True UpperCAmelCase = None # Automatically constructed UpperCAmelCase = "PIL.Image.Image" UpperCAmelCase = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) UpperCAmelCase = field(default="""Image""" , init=_snake_case , repr=_snake_case ) def __call__( self : Tuple ) -> Dict: return self.pa_type def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase = np.array(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return {"path": value, "bytes": None} elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return {"path": None, "bytes": value} elif isinstance(lowerCAmelCase__ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowerCAmelCase__ ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : dict , lowerCAmelCase__ : List[Any]=None ) -> "PIL.Image.Image": if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: UpperCAmelCase = {} UpperCAmelCase , UpperCAmelCase = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f"An image should have one of 'path' or 'bytes' but both are None in {value}." ) else: if is_local_path(lowerCAmelCase__ ): UpperCAmelCase = PIL.Image.open(lowerCAmelCase__ ) else: UpperCAmelCase = path.split("::" )[-1] try: UpperCAmelCase = string_to_dict(lowerCAmelCase__ , config.HUB_DATASETS_URL )["repo_id"] UpperCAmelCase = token_per_repo_id.get(lowerCAmelCase__ ) except ValueError: UpperCAmelCase = None with xopen(lowerCAmelCase__ , "rb" , use_auth_token=lowerCAmelCase__ ) as f: UpperCAmelCase = BytesIO(f.read() ) UpperCAmelCase = PIL.Image.open(bytes_ ) else: UpperCAmelCase = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def _UpperCamelCase ( self : Tuple ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray: if pa.types.is_string(storage.type ): UpperCAmelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.binary() ) UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() ) UpperCAmelCase = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCAmelCase = storage.field("bytes" ) else: UpperCAmelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCAmelCase = storage.field("path" ) else: UpperCAmelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() ) UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCAmelCase = pa.array( [encode_np_array(np.array(lowerCAmelCase__ ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) UpperCAmelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() ) UpperCAmelCase = pa.StructArray.from_arrays( [bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase__ , self.pa_type ) def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : pa.StructArray ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(lowerCAmelCase__ : Union[str, Any] ): with xopen(lowerCAmelCase__ , "rb" ) as f: UpperCAmelCase = f.read() return bytes_ UpperCAmelCase = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase = pa.array( [os.path.basename(lowerCAmelCase__ ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase__ , self.pa_type ) def _lowerCAmelCase( ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCAmelCase = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def _lowerCAmelCase( __A ): UpperCAmelCase = BytesIO() if image.format in list_image_compression_formats(): UpperCAmelCase = image.format else: UpperCAmelCase = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(__A , format=__A ) return buffer.getvalue() def _lowerCAmelCase( __A ): if hasattr(__A , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__A )} def _lowerCAmelCase( __A ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) UpperCAmelCase = array.dtype UpperCAmelCase = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER UpperCAmelCase = dtype.kind UpperCAmelCase = dtype.itemsize UpperCAmelCase = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCAmelCase = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( F"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." ) if dtype is not dest_dtype: warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCAmelCase = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCAmelCase = dtype_byteorder + dtype_kind + str(__A ) UpperCAmelCase = np.dtype(__A ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" ) UpperCAmelCase = PIL.Image.fromarray(array.astype(__A ) ) return {"path": None, "bytes": image_to_bytes(__A )} def _lowerCAmelCase( __A ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: UpperCAmelCase , UpperCAmelCase = first_non_null_value(__A ) if isinstance(__A , __A ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__A , np.ndarray ): UpperCAmelCase = no_op_if_value_is_null(__A ) return [obj_to_image_dict_func(__A ) for obj in objs] elif isinstance(__A , PIL.Image.Image ): UpperCAmelCase = no_op_if_value_is_null(__A ) return [obj_to_image_dict_func(__A ) for obj in objs] else: return objs else: return objs
1
lowerCAmelCase__ = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } lowerCAmelCase__ = {value: key for key, value in encode_dict.items()} def _lowerCAmelCase( __A ): UpperCAmelCase = "" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces" ) return encoded def _lowerCAmelCase( __A ): if set(__A ) - {"A", "B", " "} != set(): raise Exception("decode() accepts only 'A', 'B' and spaces" ) UpperCAmelCase = "" for word in coded.split(): while len(__A ) != 0: decoded += decode_dict[word[:5]] UpperCAmelCase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
1
1
from typing import Any class __magic_name__ : def __init__( self : int , lowerCAmelCase__ : Any ) -> Tuple: UpperCAmelCase = data UpperCAmelCase = None class __magic_name__ : def __init__( self : Tuple ) -> Tuple: UpperCAmelCase = None def _UpperCamelCase ( self : Dict ) -> List[str]: UpperCAmelCase = self.head while temp is not None: print(temp.data , end=" " ) UpperCAmelCase = temp.next print() def _UpperCamelCase ( self : str , lowerCAmelCase__ : Any ) -> Optional[int]: UpperCAmelCase = Node(lowerCAmelCase__ ) UpperCAmelCase = self.head UpperCAmelCase = new_node def _UpperCamelCase ( self : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : int ) -> str: if node_data_a == node_data_a: return else: UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: UpperCAmelCase = node_a.next UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: UpperCAmelCase = node_a.next if node_a is None or node_a is None: return UpperCAmelCase , UpperCAmelCase = node_a.data, node_a.data if __name__ == "__main__": lowerCAmelCase__ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
1
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase__ = {"UserAgent": UserAgent().random} def _lowerCAmelCase( __A ): UpperCAmelCase = script.contents[0] UpperCAmelCase = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __magic_name__ : def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Any: UpperCAmelCase = f"https://www.instagram.com/{username}/" UpperCAmelCase = self.get_json() def _UpperCamelCase ( self : List[str] ) -> dict: UpperCAmelCase = requests.get(self.url , headers=lowerCAmelCase__ ).text UpperCAmelCase = BeautifulSoup(lowerCAmelCase__ , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Tuple ) -> str: return f"{self.__class__.__name__}('{self.username}')" def __str__( self : Optional[int] ) -> str: return f"{self.fullname} ({self.username}) is {self.biography}" @property def _UpperCamelCase ( self : Any ) -> str: return self.user_data["username"] @property def _UpperCamelCase ( self : List[Any] ) -> str: return self.user_data["full_name"] @property def _UpperCamelCase ( self : List[str] ) -> str: return self.user_data["biography"] @property def _UpperCamelCase ( self : Optional[int] ) -> str: return self.user_data["business_email"] @property def _UpperCamelCase ( self : str ) -> str: return self.user_data["external_url"] @property def _UpperCamelCase ( self : int ) -> int: return self.user_data["edge_followed_by"]["count"] @property def _UpperCamelCase ( self : List[Any] ) -> int: return self.user_data["edge_follow"]["count"] @property def _UpperCamelCase ( self : List[str] ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _UpperCamelCase ( self : Tuple ) -> str: return self.user_data["profile_pic_url_hd"] @property def _UpperCamelCase ( self : Optional[int] ) -> bool: return self.user_data["is_verified"] @property def _UpperCamelCase ( self : Optional[Any] ) -> bool: return self.user_data["is_private"] def _lowerCAmelCase( __A = "github" ): import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCAmelCase = InstagramUser(__A ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __A ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = InstagramUser("github") print(instagram_user) print(f"{instagram_user.number_of_posts = }") print(f"{instagram_user.number_of_followers = }") print(f"{instagram_user.number_of_followings = }") print(f"{instagram_user.email = }") print(f"{instagram_user.website = }") print(f"{instagram_user.profile_picture_url = }") print(f"{instagram_user.is_verified = }") print(f"{instagram_user.is_private = }")
1
1
def _lowerCAmelCase( __A ): UpperCAmelCase = len(__A ) for i in range(1 , __A ): UpperCAmelCase = collection[i] UpperCAmelCase = 0 UpperCAmelCase = i - 1 while low <= high: UpperCAmelCase = (low + high) // 2 if val < collection[mid]: UpperCAmelCase = mid - 1 else: UpperCAmelCase = mid + 1 for j in range(__A , __A , -1 ): UpperCAmelCase = collection[j - 1] UpperCAmelCase = val return collection if __name__ == "__main__": lowerCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
1
import unittest import numpy as np def _lowerCAmelCase( __A , __A , __A , __A = None , ): UpperCAmelCase = np.shape(__A ) UpperCAmelCase = np.shape(__A ) UpperCAmelCase = np.shape(__A ) if shape_a[0] != shape_b[0]: UpperCAmelCase = ( "Expected the same number of rows for A and B. " F"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(__A ) if shape_b[1] != shape_c[1]: UpperCAmelCase = ( "Expected the same number of columns for B and C. " F"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(__A ) UpperCAmelCase = pseudo_inv if a_inv is None: try: UpperCAmelCase = np.linalg.inv(__A ) except np.linalg.LinAlgError: raise ValueError( "Input matrix A is not invertible. Cannot compute Schur complement." ) return mat_c - mat_b.T @ a_inv @ mat_b class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : List[str] ) -> None: UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase = np.array([[2, 1], [6, 3]] ) UpperCAmelCase = schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = np.block([[a, b], [b.T, c]] ) UpperCAmelCase = np.linalg.det(lowerCAmelCase__ ) UpperCAmelCase = np.linalg.det(lowerCAmelCase__ ) UpperCAmelCase = np.linalg.det(lowerCAmelCase__ ) self.assertAlmostEqual(lowerCAmelCase__ , det_a * det_s ) def _UpperCamelCase ( self : str ) -> None: UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase = np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowerCAmelCase__ ): schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _UpperCamelCase ( self : Dict ) -> None: UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowerCAmelCase__ ): schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
1
1
import re from filelock import FileLock try: import nltk lowerCAmelCase__ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase__ = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def _lowerCAmelCase( __A ): re.sub("<n>" , "" , __A ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__A ) )
1
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _lowerCAmelCase( __A ): UpperCAmelCase = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" , __A ).groups()[0] class __magic_name__ ( _snake_case ): def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : int=None ) -> Optional[Any]: UpperCAmelCase = file_names UpperCAmelCase = image_transform UpperCAmelCase = label_to_id def __len__( self : Tuple ) -> List[str]: return len(self.file_names ) def __getitem__( self : Optional[int] , lowerCAmelCase__ : Tuple ) -> Dict: UpperCAmelCase = self.file_names[idx] UpperCAmelCase = PIL.Image.open(lowerCAmelCase__ ) UpperCAmelCase = raw_image.convert("RGB" ) if self.image_transform is not None: UpperCAmelCase = self.image_transform(lowerCAmelCase__ ) UpperCAmelCase = extract_label(lowerCAmelCase__ ) if self.label_to_id is not None: UpperCAmelCase = self.label_to_id[label] return {"image": image, "label": label} def _lowerCAmelCase( __A , __A ): # Initialize accelerator if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config["lr"] UpperCAmelCase = int(config["num_epochs"] ) UpperCAmelCase = int(config["seed"] ) UpperCAmelCase = int(config["batch_size"] ) UpperCAmelCase = config["image_size"] if not isinstance(__A , (list, tuple) ): UpperCAmelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": UpperCAmelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): UpperCAmelCase = int(args.checkpointing_steps ) else: raise ValueError( F"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." ) else: UpperCAmelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: UpperCAmelCase = os.path.split(__A )[-1].split("." )[0] accelerator.init_trackers(__A , __A ) # Grab all the image filenames UpperCAmelCase = [os.path.join(args.data_dir , __A ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences UpperCAmelCase = [extract_label(__A ) for fname in file_names] UpperCAmelCase = list(set(__A ) ) id_to_label.sort() UpperCAmelCase = {lbl: i for i, lbl in enumerate(__A )} # Set the seed before splitting the data. np.random.seed(__A ) torch.manual_seed(__A ) torch.cuda.manual_seed_all(__A ) # Split our filenames between train and validation UpperCAmelCase = np.random.permutation(len(__A ) ) UpperCAmelCase = int(0.8 * len(__A ) ) UpperCAmelCase = random_perm[:cut] UpperCAmelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop UpperCAmelCase = Compose([RandomResizedCrop(__A , scale=(0.5, 1.0) ), ToTensor()] ) UpperCAmelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=__A , label_to_id=__A ) # For evaluation, we use a deterministic Resize UpperCAmelCase = Compose([Resize(__A ), ToTensor()] ) UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=__A , label_to_id=__A ) # Instantiate dataloaders. UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = create_model("resnet50d" , pretrained=__A , num_classes=len(__A ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): UpperCAmelCase = False for param in model.get_classifier().parameters(): UpperCAmelCase = True # We normalize the batches of images to be a bit faster. UpperCAmelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) UpperCAmelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler UpperCAmelCase = OneCycleLR(optimizer=__A , max_lr=__A , epochs=__A , steps_per_epoch=len(__A ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( __A , __A , __A , __A , __A ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase = 0 # We also need to keep track of the starting epoch so files are named properly UpperCAmelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"Resumed from checkpoint: {args.resume_from_checkpoint}" ) accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` UpperCAmelCase = os.path.splitext(__A )[0] if "epoch" in training_difference: UpperCAmelCase = int(training_difference.replace("epoch_" , "" ) ) + 1 UpperCAmelCase = None else: UpperCAmelCase = int(training_difference.replace("step_" , "" ) ) UpperCAmelCase = resume_step // len(__A ) resume_step -= starting_epoch * len(__A ) # Now we train the model for epoch in range(__A , __A ): model.train() if args.with_tracking: UpperCAmelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step UpperCAmelCase = accelerator.skip_first_batches(__A , __A ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader UpperCAmelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch["image"] - mean) / std UpperCAmelCase = model(__A ) UpperCAmelCase = torch.nn.functional.cross_entropy(__A , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__A , __A ): UpperCAmelCase = F"step_{overall_step}" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) model.eval() UpperCAmelCase = 0 UpperCAmelCase = 0 for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch["image"] - mean) / std with torch.no_grad(): UpperCAmelCase = model(__A ) UpperCAmelCase = outputs.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["label"]) ) UpperCAmelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() UpperCAmelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}: {100 * eval_metric:.2f}" ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(__A ), "epoch": epoch, } , step=__A , ) if checkpointing_steps == "epoch": UpperCAmelCase = F"epoch_{epoch}" if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) if args.with_tracking: accelerator.end_training() def _lowerCAmelCase( ): UpperCAmelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=__A , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=__A , default=__A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=__A , default=__A , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , ) parser.add_argument( "--output_dir" , type=__A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__A , default=__A , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=__A , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(__A , __A ) if __name__ == "__main__": main()
1
1
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : str ) -> Union[str, Any]: UpperCAmelCase = 1_0 def _UpperCamelCase ( self : int ) -> Any: UpperCAmelCase = [1, 2, 3, 4] UpperCAmelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowerCAmelCase__ , self.block_size , 0 ) , lowerCAmelCase__ ) def _UpperCamelCase ( self : Tuple ) -> str: UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(lowerCAmelCase__ , self.block_size , 0 ) , lowerCAmelCase__ ) def _UpperCamelCase ( self : Optional[int] ) -> str: UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(lowerCAmelCase__ , self.block_size , 0 ) , lowerCAmelCase__ ) def _UpperCamelCase ( self : Tuple ) -> List[str]: UpperCAmelCase = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." UpperCAmelCase , UpperCAmelCase = process_story(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , [] ) def _UpperCamelCase ( self : str ) -> List[str]: UpperCAmelCase = "" UpperCAmelCase , UpperCAmelCase = process_story(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , [] ) self.assertEqual(lowerCAmelCase__ , [] ) def _UpperCamelCase ( self : Optional[int] ) -> str: UpperCAmelCase = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) UpperCAmelCase , UpperCAmelCase = process_story(lowerCAmelCase__ ) UpperCAmelCase = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = ["It was the best of times."] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase = torch.tensor([1, 2, 3, 4] ) UpperCAmelCase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase__ , 0 ).numpy() , expected.numpy() ) def _UpperCamelCase ( self : str ) -> Dict: UpperCAmelCase = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) UpperCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase__ , 2_3 ).numpy() , expected.numpy() ) def _UpperCamelCase ( self : Optional[int] ) -> int: UpperCAmelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) UpperCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase__ , 1 ).numpy() , expected.numpy() ) def _UpperCamelCase ( self : Dict ) -> int: UpperCAmelCase = 1_0_1 UpperCAmelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) UpperCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) UpperCAmelCase = compute_token_type_ids(lowerCAmelCase__ , lowerCAmelCase__ ) np.testing.assert_array_equal(lowerCAmelCase__ , lowerCAmelCase__ )
1
import glob import os import random from string import ascii_lowercase, digits import cva lowerCAmelCase__ = "" lowerCAmelCase__ = "" lowerCAmelCase__ = "" lowerCAmelCase__ = 1 # (0 is vertical, 1 is horizontal) def _lowerCAmelCase( ): UpperCAmelCase , UpperCAmelCase = get_dataset(__A , __A ) print("Processing..." ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = update_image_and_anno(__A , __A , __A ) for index, image in enumerate(__A ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCAmelCase = random_chars(32 ) UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] UpperCAmelCase = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(F"/{file_root}.jpg" , __A , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Success {index+1}/{len(__A )} with {file_name}" ) UpperCAmelCase = [] for anno in new_annos[index]: UpperCAmelCase = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(__A ) with open(F"/{file_root}.txt" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def _lowerCAmelCase( __A , __A ): UpperCAmelCase = [] UpperCAmelCase = [] for label_file in glob.glob(os.path.join(__A , "*.txt" ) ): UpperCAmelCase = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(__A ) as in_file: UpperCAmelCase = in_file.readlines() UpperCAmelCase = os.path.join(__A , F"{label_name}.jpg" ) UpperCAmelCase = [] for obj_list in obj_lists: UpperCAmelCase = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__A ) labels.append(__A ) return img_paths, labels def _lowerCAmelCase( __A , __A , __A = 1 ): UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = [] for idx in range(len(__A ) ): UpperCAmelCase = [] UpperCAmelCase = img_list[idx] path_list.append(__A ) UpperCAmelCase = anno_list[idx] UpperCAmelCase = cva.imread(__A ) if flip_type == 1: UpperCAmelCase = cva.flip(__A , __A ) for bbox in img_annos: UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: UpperCAmelCase = cva.flip(__A , __A ) for bbox in img_annos: UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__A ) new_imgs_list.append(__A ) return new_imgs_list, new_annos_lists, path_list def _lowerCAmelCase( __A = 32 ): assert number_char > 1, "The number of character should greater than 1" UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(__A ) for _ in range(__A ) ) if __name__ == "__main__": main() print("DONE ✅")
1
1
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __magic_name__ ( _snake_case ): def __init__( self : Any , lowerCAmelCase__ : str = "▁" , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[str, AddedToken] = "<unk>" , lowerCAmelCase__ : Union[str, AddedToken] = "</s>" , lowerCAmelCase__ : Union[str, AddedToken] = "<pad>" , ) -> Optional[Any]: UpperCAmelCase = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } UpperCAmelCase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): UpperCAmelCase = token_dict["token"] UpperCAmelCase = Tokenizer(Unigram() ) UpperCAmelCase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ) , " " ), normalizers.Lowercase(), ] ) UpperCAmelCase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ), pre_tokenizers.Digits(individual_digits=lowerCAmelCase__ ), pre_tokenizers.Punctuation(), ] ) UpperCAmelCase = decoders.Metaspace(replacement=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) UpperCAmelCase = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) UpperCAmelCase = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Union[str, List[str]] , lowerCAmelCase__ : int = 8_0_0_0 , lowerCAmelCase__ : bool = True , ) -> List[str]: UpperCAmelCase = trainers.UnigramTrainer( vocab_size=lowerCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=lowerCAmelCase__ , ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase = [files] self._tokenizer.train(lowerCAmelCase__ , trainer=lowerCAmelCase__ ) self.add_unk_id() def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : Union[Iterator[str], Iterator[Iterator[str]]] , lowerCAmelCase__ : int = 8_0_0_0 , lowerCAmelCase__ : bool = True , ) -> List[Any]: UpperCAmelCase = trainers.UnigramTrainer( vocab_size=lowerCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=lowerCAmelCase__ , ) self._tokenizer.train_from_iterator(lowerCAmelCase__ , trainer=lowerCAmelCase__ ) self.add_unk_id() def _UpperCamelCase ( self : List[Any] ) -> Dict: UpperCAmelCase = json.loads(self._tokenizer.to_str() ) UpperCAmelCase = self.special_tokens["unk"]["id"] UpperCAmelCase = Tokenizer.from_str(json.dumps(lowerCAmelCase__ ) )
1
def _lowerCAmelCase( __A ): if not isinstance(__A , __A ): raise TypeError("only integers accepted as input" ) else: UpperCAmelCase = str(abs(__A ) ) UpperCAmelCase = [list(__A ) for char in range(len(__A ) )] for index in range(len(__A ) ): num_transpositions[index].pop(__A ) return max( int("".join(list(__A ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
1
1
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __magic_name__ : def __init__( self : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[Any]=9_9 , lowerCAmelCase__ : Union[str, Any]=3_2 , lowerCAmelCase__ : Optional[Any]=5 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Tuple=3_7 , lowerCAmelCase__ : Optional[int]="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : List[str]=5_1_2 , lowerCAmelCase__ : Any=1_6 , lowerCAmelCase__ : Any=2 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Optional[int]=None , ) -> Dict: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope def _UpperCamelCase ( self : int ) -> Tuple: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : List[Any] ) -> Tuple: return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=lowerCAmelCase__ , ) def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] ) -> Dict: UpperCAmelCase = FalconModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) UpperCAmelCase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , ) -> Tuple: UpperCAmelCase = True UpperCAmelCase = FalconModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , ) UpperCAmelCase = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , ) UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , ) -> str: UpperCAmelCase = FalconForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict , ) -> Optional[Any]: UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = FalconForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() # first forward pass UpperCAmelCase = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ , ) UpperCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0] UpperCAmelCase = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0] # select random slice UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) def _UpperCamelCase ( self : List[str] ) -> str: UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __magic_name__ ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): UpperCAmelCase = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase = (FalconForCausalLM,) if is_torch_available() else () UpperCAmelCase = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False def _UpperCamelCase ( self : Any ) -> Dict: UpperCAmelCase = FalconModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 ) def _UpperCamelCase ( self : List[str] ) -> Any: self.config_tester.run_common_tests() def _UpperCamelCase ( self : List[str] ) -> int: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _UpperCamelCase ( self : Any ) -> Union[str, Any]: UpperCAmelCase , *UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: UpperCAmelCase = alibi self.model_tester.create_and_check_model(lowerCAmelCase__ , *lowerCAmelCase__ ) def _UpperCamelCase ( self : Dict ) -> Dict: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = 3 UpperCAmelCase = input_dict["input_ids"] UpperCAmelCase = input_ids.ne(1 ).to(lowerCAmelCase__ ) UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase = FalconForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self : Optional[Any] ) -> Any: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = 3 UpperCAmelCase = "single_label_classification" UpperCAmelCase = input_dict["input_ids"] UpperCAmelCase = input_ids.ne(1 ).to(lowerCAmelCase__ ) UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase = FalconForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self : List[str] ) -> Any: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = input_dict["input_ids"] UpperCAmelCase = FalconForCausalLM(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase = model(lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) UpperCAmelCase = input_ids.shape[0] UpperCAmelCase = model._convert_to_rw_cache(result.past_key_values ) UpperCAmelCase = model._convert_cache_to_standard_format(lowerCAmelCase__ , lowerCAmelCase__ ) for layer in range(len(lowerCAmelCase__ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def _UpperCamelCase ( self : List[str] ) -> Dict: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = 3 UpperCAmelCase = "multi_label_classification" UpperCAmelCase = input_dict["input_ids"] UpperCAmelCase = input_ids.ne(1 ).to(lowerCAmelCase__ ) UpperCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase = FalconForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple: # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(lowerCAmelCase__ , "use_cache" ): return UpperCAmelCase = model_class(lowerCAmelCase__ ).to(lowerCAmelCase__ ) if "use_cache" not in inputs: UpperCAmelCase = True UpperCAmelCase = model(**lowerCAmelCase__ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return UpperCAmelCase = ( getattr(lowerCAmelCase__ , "decoder_layers" , lowerCAmelCase__ ) or getattr(lowerCAmelCase__ , "num_decoder_layers" , lowerCAmelCase__ ) or config.num_hidden_layers ) UpperCAmelCase = getattr(lowerCAmelCase__ , "num_kv_heads" , config.num_attention_heads ) UpperCAmelCase = getattr(lowerCAmelCase__ , "d_model" , config.hidden_size ) UpperCAmelCase = embed_dim // num_attention_heads UpperCAmelCase = outputs["past_key_values"] self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) UpperCAmelCase , UpperCAmelCase = inputs["input_ids"].shape for i in range(lowerCAmelCase__ ): if config.new_decoder_architecture: UpperCAmelCase = config.num_attention_heads elif config.multi_query: UpperCAmelCase = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b" ) UpperCAmelCase = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b" ) model.eval() model.to(lowerCAmelCase__ ) UpperCAmelCase = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCAmelCase__ ) UpperCAmelCase = ( "My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday." ) UpperCAmelCase = model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=1_9 ) UpperCAmelCase = tokenizer.batch_decode(lowerCAmelCase__ )[0] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: UpperCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase = FalconForCausalLM.from_pretrained(lowerCAmelCase__ ) model.eval() model.to(lowerCAmelCase__ ) UpperCAmelCase = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCAmelCase__ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=4 ) model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=4 ) model.generate(**lowerCAmelCase__ , num_beams=2 , max_new_tokens=4 ) @slow def _UpperCamelCase ( self : List[str] ) -> Tuple: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: UpperCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase = FalconForCausalLM.from_pretrained(lowerCAmelCase__ ) model.eval() model.to(device=lowerCAmelCase__ ) UpperCAmelCase = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCAmelCase__ ) # Test results are the same with and without cache UpperCAmelCase = model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=2_0 , use_cache=lowerCAmelCase__ ) UpperCAmelCase = model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=2_0 , use_cache=lowerCAmelCase__ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
1
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor lowerCAmelCase__ = logging.getLogger(__name__) lowerCAmelCase__ = 50 # max width of layer names lowerCAmelCase__ = 70 # max width of quantizer names def _lowerCAmelCase( __A ): UpperCAmelCase = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=__A , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=__A , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=__A , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=__A , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=__A , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=__A , type=__A , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=__A , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def _lowerCAmelCase( __A ): if args.calibrator == "max": UpperCAmelCase = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) UpperCAmelCase = "histogram" elif args.calibrator == "mse": UpperCAmelCase = "histogram" else: raise ValueError(F"Invalid calibrator {args.calibrator}" ) UpperCAmelCase = QuantDescriptor(num_bits=args.aprec , calib_method=__A ) UpperCAmelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__A ) quant_nn.QuantLinear.set_default_quant_desc_weight(__A ) def _lowerCAmelCase( __A , __A , __A=False , __A=False ): logger.info("Configuring Model for Quantization" ) logger.info(F"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__A , ["embeddings"] , which="weight" , _disabled=__A ) if args.quant_disable: set_quantizer_by_name(__A , [""] , _disabled=__A ) if args.quant_disable_keyword: set_quantizer_by_name(__A , args.quant_disable_keyword , _disabled=__A ) if args.quant_disable_layer_module: set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=__A ) if args.quant_enable_layer_module: set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=__A ) if args.recalibrate_weights: recalibrate_weights(__A ) if args.fuse_qkv: fuse_qkv(__A , __A ) if args.clip_gelu: clip_gelu(__A , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__A ) def _lowerCAmelCase( __A ): logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:80}: {module}" ) def _lowerCAmelCase( __A , __A ): logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__A ) def _lowerCAmelCase( __A , __A ): def fusea(__A , __A , __A ): for mod in [qq, qk, qv]: if not hasattr(__A , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return UpperCAmelCase = qq._amax.detach().item() UpperCAmelCase = qk._amax.detach().item() UpperCAmelCase = qv._amax.detach().item() UpperCAmelCase = max(__A , __A , __A ) qq._amax.fill_(__A ) qk._amax.fill_(__A ) qv._amax.fill_(__A ) logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(F"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _lowerCAmelCase( __A , __A ): for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__A ) UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def _lowerCAmelCase( __A ): for name, mod in model.named_modules(): if hasattr(__A , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: UpperCAmelCase = mod.weight.shape[0] UpperCAmelCase = mod._weight_quantizer._amax.detach() UpperCAmelCase = torch.ones(__A , dtype=amax.dtype , device=amax.device ) * amax print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def _lowerCAmelCase( __A ): for name, mod in model.named_modules(): if hasattr(__A , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCAmelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) UpperCAmelCase = set(range(len(mod.weight.size() ) ) ) - axis_set UpperCAmelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__A , keepdims=__A ).detach() logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) UpperCAmelCase = amax def _lowerCAmelCase( __A , __A=25 , __A=180 , __A=None ): if ignore is None: UpperCAmelCase = [] elif not isinstance(__A , __A ): UpperCAmelCase = [ignore] UpperCAmelCase = 0 for name, mod in model.named_modules(): if not hasattr(__A , "weight" ): continue UpperCAmelCase = max(__A , len(__A ) ) for name, mod in model.named_modules(): UpperCAmelCase = getattr(__A , "_input_quantizer" , __A ) UpperCAmelCase = getattr(__A , "_weight_quantizer" , __A ) if not hasattr(__A , "weight" ): continue if type(__A ) in ignore: continue if [True for s in ignore if type(__A ) is str and s in name]: continue UpperCAmelCase = F"Act:{input_q.extra_repr()}" UpperCAmelCase = F"Wgt:{weight_q.extra_repr()}" UpperCAmelCase = F"{name:{name_width}} {act_str} {wgt_str}" if len(__A ) <= line_width: logger.info(__A ) else: logger.info(F"{name:{name_width}} {act_str}" ) logger.info(F"{' ':{name_width}} {wgt_str}" ) def _lowerCAmelCase( __A ): UpperCAmelCase = 0 for name, mod in model.named_modules(): if isinstance(__A , pytorch_quantization.nn.TensorQuantizer ): print(F"{name:80} {mod}" ) count += 1 print(F"{count} TensorQuantizers found in model" ) def _lowerCAmelCase( __A , __A , __A , __A , __A ): UpperCAmelCase = getattr(__A , __A , __A ) if quantizer_mod is not None: assert hasattr(__A , __A ) setattr(__A , __A , __A ) else: logger.warning(F"{name} has no {quantizer}" ) def _lowerCAmelCase( __A , __A , __A="both" , **__A ): UpperCAmelCase = F"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += F" {k}={v}" if which in ["input", "both"]: set_quantizer(__A , __A , "_input_quantizer" , __A , __A ) if which in ["weight", "both"]: set_quantizer(__A , __A , "_weight_quantizer" , __A , __A ) logger.info(__A ) def _lowerCAmelCase( __A , __A , **__A ): for name, mod in model.named_modules(): if hasattr(__A , "_input_quantizer" ) or hasattr(__A , "_weight_quantizer" ): for n in names: if re.search(__A , __A ): set_quantizers(__A , __A , **__A ) elif name.endswith("_quantizer" ): for n in names: if re.search(__A , __A ): UpperCAmelCase = F"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += F" {k}={v}" setattr(__A , __A , __A ) logger.info(__A )
1
1
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : List[Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCamelCase ( self : Tuple ) -> List[str]: UpperCAmelCase = 1 UpperCAmelCase = 3 UpperCAmelCase = (3_2, 3_2) UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def _UpperCamelCase ( self : List[str] ) -> Any: torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) return model @property def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple: torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _UpperCamelCase ( self : Dict ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(lowerCAmelCase__ ) @property def _UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: def extract(*lowerCAmelCase__ : Any , **lowerCAmelCase__ : List[Any] ): class __magic_name__ : def __init__( self : List[Any] ) -> List[str]: UpperCAmelCase = torch.ones([0] ) def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] ) -> str: self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def _UpperCamelCase ( self : Any ) -> Union[str, Any]: UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.dummy_cond_unet UpperCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk UpperCAmelCase = StableDiffusionPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) UpperCAmelCase = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = "A painting of a squirrel eating a burger" UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) UpperCAmelCase = sd_pipe([prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) UpperCAmelCase = output.images UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=lowerCAmelCase__ , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self : List[str] ) -> Optional[int]: UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.dummy_cond_unet UpperCAmelCase = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk UpperCAmelCase = StableDiffusionPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) UpperCAmelCase = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = "A painting of a squirrel eating a burger" UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) UpperCAmelCase = sd_pipe([prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) UpperCAmelCase = output.images UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=lowerCAmelCase__ , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=lowerCAmelCase__ ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert isinstance(pipe.scheduler , lowerCAmelCase__ ) assert pipe.safety_checker is None UpperCAmelCase = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase = StableDiffusionPipeline.from_pretrained(lowerCAmelCase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _UpperCamelCase ( self : List[str] ) -> Optional[Any]: UpperCAmelCase = self.dummy_cond_unet UpperCAmelCase = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 UpperCAmelCase = unet.half() UpperCAmelCase = vae.half() UpperCAmelCase = bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase = StableDiffusionPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) UpperCAmelCase = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = "A painting of a squirrel eating a burger" UpperCAmelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : int ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : str ) -> Any: UpperCAmelCase = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=lowerCAmelCase__ ) UpperCAmelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) UpperCAmelCase = 4_0_0_3_6_6_0_3_4_6 UpperCAmelCase = 7 # without safety guidance (sld_guidance_scale = 0) UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self : List[str] ) -> Tuple: UpperCAmelCase = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=lowerCAmelCase__ ) UpperCAmelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = "padme amidala taking a bath artwork, safe for work, no nudity" UpperCAmelCase = 2_7_3_4_9_7_1_7_5_5 UpperCAmelCase = 7 UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self : Optional[Any] ) -> Any: UpperCAmelCase = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) UpperCAmelCase = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) UpperCAmelCase = 1_0_4_4_3_5_5_2_3_4 UpperCAmelCase = 1_2 UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
1
def _lowerCAmelCase( __A ): assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(__A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , __A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
1
1
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase( __A , __A , __A ): def get_masked_lm_array(__A ): UpperCAmelCase = F"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE" UpperCAmelCase = tf.train.load_variable(__A , __A ) if "kernel" in name: UpperCAmelCase = array.transpose() return torch.from_numpy(__A ) def get_encoder_array(__A ): UpperCAmelCase = F"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE" UpperCAmelCase = tf.train.load_variable(__A , __A ) if "kernel" in name: UpperCAmelCase = array.transpose() return torch.from_numpy(__A ) def get_encoder_layer_array(__A , __A ): UpperCAmelCase = F"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE" UpperCAmelCase = tf.train.load_variable(__A , __A ) if "kernel" in name: UpperCAmelCase = array.transpose() return torch.from_numpy(__A ) def get_encoder_attention_layer_array(__A , __A , __A ): UpperCAmelCase = F"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE" UpperCAmelCase = tf.train.load_variable(__A , __A ) UpperCAmelCase = array.reshape(__A ) if "kernel" in name: UpperCAmelCase = array.transpose() return torch.from_numpy(__A ) print(F"Loading model based on config from {config_path}..." ) UpperCAmelCase = BertConfig.from_json_file(__A ) UpperCAmelCase = BertForMaskedLM(__A ) # Layers for layer_index in range(0 , config.num_hidden_layers ): UpperCAmelCase = model.bert.encoder.layer[layer_index] # Self-attention UpperCAmelCase = layer.attention.self UpperCAmelCase = get_encoder_attention_layer_array( __A , "_query_dense/kernel" , self_attn.query.weight.data.shape ) UpperCAmelCase = get_encoder_attention_layer_array( __A , "_query_dense/bias" , self_attn.query.bias.data.shape ) UpperCAmelCase = get_encoder_attention_layer_array( __A , "_key_dense/kernel" , self_attn.key.weight.data.shape ) UpperCAmelCase = get_encoder_attention_layer_array( __A , "_key_dense/bias" , self_attn.key.bias.data.shape ) UpperCAmelCase = get_encoder_attention_layer_array( __A , "_value_dense/kernel" , self_attn.value.weight.data.shape ) UpperCAmelCase = get_encoder_attention_layer_array( __A , "_value_dense/bias" , self_attn.value.bias.data.shape ) # Self-attention Output UpperCAmelCase = layer.attention.output UpperCAmelCase = get_encoder_attention_layer_array( __A , "_output_dense/kernel" , self_output.dense.weight.data.shape ) UpperCAmelCase = get_encoder_attention_layer_array( __A , "_output_dense/bias" , self_output.dense.bias.data.shape ) UpperCAmelCase = get_encoder_layer_array(__A , "_attention_layer_norm/gamma" ) UpperCAmelCase = get_encoder_layer_array(__A , "_attention_layer_norm/beta" ) # Intermediate UpperCAmelCase = layer.intermediate UpperCAmelCase = get_encoder_layer_array(__A , "_intermediate_dense/kernel" ) UpperCAmelCase = get_encoder_layer_array(__A , "_intermediate_dense/bias" ) # Output UpperCAmelCase = layer.output UpperCAmelCase = get_encoder_layer_array(__A , "_output_dense/kernel" ) UpperCAmelCase = get_encoder_layer_array(__A , "_output_dense/bias" ) UpperCAmelCase = get_encoder_layer_array(__A , "_output_layer_norm/gamma" ) UpperCAmelCase = get_encoder_layer_array(__A , "_output_layer_norm/beta" ) # Embeddings UpperCAmelCase = get_encoder_array("_position_embedding_layer/embeddings" ) UpperCAmelCase = get_encoder_array("_type_embedding_layer/embeddings" ) UpperCAmelCase = get_encoder_array("_embedding_norm_layer/gamma" ) UpperCAmelCase = get_encoder_array("_embedding_norm_layer/beta" ) # LM Head UpperCAmelCase = model.cls.predictions.transform UpperCAmelCase = get_masked_lm_array("dense/kernel" ) UpperCAmelCase = get_masked_lm_array("dense/bias" ) UpperCAmelCase = get_masked_lm_array("layer_norm/gamma" ) UpperCAmelCase = get_masked_lm_array("layer_norm/beta" ) UpperCAmelCase = get_masked_lm_array("embedding_table" ) # Pooling UpperCAmelCase = BertPooler(config=__A ) UpperCAmelCase = get_encoder_array("_pooler_layer/kernel" ) UpperCAmelCase = get_encoder_array("_pooler_layer/bias" ) # Export final model model.save_pretrained(__A ) # Integration test - should load without any errors ;) UpperCAmelCase = BertForMaskedLM.from_pretrained(__A ) print(new_model.eval() ) print("Model conversion was done sucessfully!" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) lowerCAmelCase__ = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase__ = get_tests_dir("fixtures") class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: # A mock response for an HTTP head request to emulate server down UpperCAmelCase = mock.Mock() UpperCAmelCase = 5_0_0 UpperCAmelCase = {} UpperCAmelCase = HTTPError UpperCAmelCase = {} # Download this model to make sure it's in the cache. UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCAmelCase__ ) as mock_head: UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def _UpperCamelCase ( self : List[Any] ) -> Dict: # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class __magic_name__ ( unittest.TestCase ): @classmethod def _UpperCamelCase ( cls : List[str] ) -> List[Any]: UpperCAmelCase = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def _UpperCamelCase ( cls : Optional[int] ) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def _UpperCamelCase ( self : Any ) -> Any: UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ ) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase__ , repo_id="test-feature-extractor" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def _UpperCamelCase ( self : List[Any] ) -> Tuple: UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase__ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def _UpperCamelCase ( self : Dict ) -> List[str]: CustomFeatureExtractor.register_for_auto_class() UpperCAmelCase = CustomFeatureExtractor.from_pretrained(lowerCAmelCase__ ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) UpperCAmelCase = AutoFeatureExtractor.from_pretrained( f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=lowerCAmelCase__ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
1
1
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean lowerCAmelCase__ = 0 lowerCAmelCase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCAmelCase__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right lowerCAmelCase__ = tuple[int, int] class __magic_name__ : def __init__( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Node | None , ) -> None: UpperCAmelCase = pos_x UpperCAmelCase = pos_y UpperCAmelCase = (pos_y, pos_x) UpperCAmelCase = goal_x UpperCAmelCase = goal_y UpperCAmelCase = g_cost UpperCAmelCase = parent UpperCAmelCase = self.calculate_heuristic() UpperCAmelCase = self.g_cost + self.h_cost def _UpperCamelCase ( self : Union[str, Any] ) -> float: UpperCAmelCase = self.pos_x - self.goal_x UpperCAmelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowerCAmelCase__ ) + abs(lowerCAmelCase__ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : int , lowerCAmelCase__ : Node ) -> bool: return self.f_cost < other.f_cost class __magic_name__ : def __init__( self : List[Any] , lowerCAmelCase__ : TPosition , lowerCAmelCase__ : TPosition ) -> Dict: UpperCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCAmelCase__ ) UpperCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , lowerCAmelCase__ ) UpperCAmelCase = [self.start] UpperCAmelCase = [] UpperCAmelCase = False def _UpperCamelCase ( self : Any ) -> list[TPosition]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowerCAmelCase__ ) self.closed_nodes.append(lowerCAmelCase__ ) UpperCAmelCase = self.get_successors(lowerCAmelCase__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCAmelCase__ ) else: # retrieve the best current path UpperCAmelCase = self.open_nodes.pop(self.open_nodes.index(lowerCAmelCase__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCAmelCase__ ) else: self.open_nodes.append(lowerCAmelCase__ ) return [self.start.pos] def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : Node ) -> list[Node]: UpperCAmelCase = [] for action in delta: UpperCAmelCase = parent.pos_x + action[1] UpperCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCAmelCase__ , lowerCAmelCase__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCAmelCase__ , ) ) return successors def _UpperCamelCase ( self : int , lowerCAmelCase__ : Node | None ) -> list[TPosition]: UpperCAmelCase = node UpperCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase = current_node.parent path.reverse() return path class __magic_name__ : def __init__( self : List[Any] , lowerCAmelCase__ : TPosition , lowerCAmelCase__ : TPosition ) -> None: UpperCAmelCase = AStar(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = AStar(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = False def _UpperCamelCase ( self : Union[str, Any] ) -> list[TPosition]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase = self.fwd_astar.open_nodes.pop(0 ) UpperCAmelCase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowerCAmelCase__ , lowerCAmelCase__ ) self.fwd_astar.closed_nodes.append(lowerCAmelCase__ ) self.bwd_astar.closed_nodes.append(lowerCAmelCase__ ) UpperCAmelCase = current_bwd_node UpperCAmelCase = current_fwd_node UpperCAmelCase = { self.fwd_astar: self.fwd_astar.get_successors(lowerCAmelCase__ ), self.bwd_astar: self.bwd_astar.get_successors(lowerCAmelCase__ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowerCAmelCase__ ) else: # retrieve the best current path UpperCAmelCase = astar.open_nodes.pop( astar.open_nodes.index(lowerCAmelCase__ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowerCAmelCase__ ) else: astar.open_nodes.append(lowerCAmelCase__ ) return [self.fwd_astar.start.pos] def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : Node , lowerCAmelCase__ : Node ) -> list[TPosition]: UpperCAmelCase = self.fwd_astar.retrace_path(lowerCAmelCase__ ) UpperCAmelCase = self.bwd_astar.retrace_path(lowerCAmelCase__ ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] lowerCAmelCase__ = (0, 0) lowerCAmelCase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCAmelCase__ = time.time() lowerCAmelCase__ = AStar(init, goal) lowerCAmelCase__ = a_star.search() lowerCAmelCase__ = time.time() - start_time print(f"AStar execution time = {end_time:f} seconds") lowerCAmelCase__ = time.time() lowerCAmelCase__ = BidirectionalAStar(init, goal) lowerCAmelCase__ = time.time() - bd_start_time print(f"BidirectionalAStar execution time = {bd_end_time:f} seconds")
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCAmelCase__ = "src/diffusers" # Matches is_xxx_available() lowerCAmelCase__ = re.compile(r"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla lowerCAmelCase__ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") lowerCAmelCase__ = "\n{0} = None\n" lowerCAmelCase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" lowerCAmelCase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def _lowerCAmelCase( __A ): UpperCAmelCase = _re_backend.findall(__A ) if len(__A ) == 0: return None return "_and_".join(__A ) def _lowerCAmelCase( ): with open(os.path.join(__A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase = f.readlines() # Get to the point we do the actual imports for type checking UpperCAmelCase = 0 UpperCAmelCase = {} # Go through the end of the file while line_index < len(__A ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCAmelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 UpperCAmelCase = [] # Until we unindent, add backend objects to the list while line_index < len(__A ) and len(lines[line_index] ) > 1: UpperCAmelCase = lines[line_index] UpperCAmelCase = _re_single_line_import.search(__A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__A ) > 0: UpperCAmelCase = objects else: line_index += 1 return backend_specific_objects def _lowerCAmelCase( __A , __A ): if name.isupper(): return DUMMY_CONSTANT.format(__A ) elif name.islower(): return DUMMY_FUNCTION.format(__A , __A ) else: return DUMMY_CLASS.format(__A , __A ) def _lowerCAmelCase( __A=None ): if backend_specific_objects is None: UpperCAmelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCAmelCase = {} for backend, objects in backend_specific_objects.items(): UpperCAmelCase = "[" + ", ".join(F"\"{b}\"" for b in backend.split("_and_" ) ) + "]" UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__A , __A ) for o in objects] ) UpperCAmelCase = dummy_file return dummy_files def _lowerCAmelCase( __A=False ): UpperCAmelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCAmelCase = {"torch": "pt"} # Locate actual dummy modules and read their content. UpperCAmelCase = os.path.join(__A , "utils" ) UpperCAmelCase = { backend: os.path.join(__A , F"dummy_{short_names.get(__A , __A )}_objects.py" ) for backend in dummy_files.keys() } UpperCAmelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__A ): with open(__A , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase = f.read() else: UpperCAmelCase = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"Updating diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py as the main " "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F"diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py. Run `make fix-copies` " "to fix this." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCAmelCase__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
1
1
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCAmelCase__ = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def _lowerCAmelCase( __A , __A=None ): require_version(deps[pkg] , __A )
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class __magic_name__ ( _snake_case , _snake_case ): UpperCAmelCase = """convnextv2""" def __init__( self : Optional[Any] , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Dict=1e-1_2 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : str=2_2_4 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[Any] , ) -> List[Any]: super().__init__(**lowerCAmelCase__ ) UpperCAmelCase = num_channels UpperCAmelCase = patch_size UpperCAmelCase = num_stages UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes UpperCAmelCase = [3, 3, 9, 3] if depths is None else depths UpperCAmelCase = hidden_act UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = drop_path_rate UpperCAmelCase = image_size UpperCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
1
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } lowerCAmelCase__ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def _lowerCAmelCase( __A ): UpperCAmelCase = {} with open(__A , "r" ) as file: for line_number, line in enumerate(__A ): UpperCAmelCase = line.strip() if line: UpperCAmelCase = line.split() UpperCAmelCase = line_number UpperCAmelCase = words[0] UpperCAmelCase = value return result def _lowerCAmelCase( __A , __A , __A , __A , __A ): for attribute in key.split("." ): UpperCAmelCase = getattr(__A , __A ) UpperCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__A ): UpperCAmelCase = PARAM_MAPPING[full_name.split("." )[-1]] UpperCAmelCase = "param" if weight_type is not None and weight_type != "param": UpperCAmelCase = getattr(__A , __A ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase = hf_pointer for attribute in hf_param_name.split("." ): UpperCAmelCase = getattr(__A , __A ) UpperCAmelCase = shape_pointer.shape # let's reduce dimension UpperCAmelCase = value[0] else: UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCAmelCase = value elif weight_type == "weight_g": UpperCAmelCase = value elif weight_type == "weight_v": UpperCAmelCase = value elif weight_type == "bias": UpperCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split("." ): UpperCAmelCase = getattr(__A , __A ) UpperCAmelCase = value else: UpperCAmelCase = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _lowerCAmelCase( __A , __A , __A , __A , __A ): UpperCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__A ): UpperCAmelCase = PARAM_MAPPING[full_name.split("." )[-1]] UpperCAmelCase = "param" if weight_type is not None and weight_type != "param": UpperCAmelCase = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase = ".".join([key, hf_param_name] ) else: UpperCAmelCase = key UpperCAmelCase = value if "lm_head" in full_key else value[0] lowerCAmelCase__ = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def _lowerCAmelCase( __A , __A , __A=None , __A=None ): UpperCAmelCase = False for key, mapped_key in MAPPING.items(): UpperCAmelCase = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase = True if "*" in mapped_key: UpperCAmelCase = name.split(__A )[0].split("." )[-2] UpperCAmelCase = mapped_key.replace("*" , __A ) if "weight_g" in name: UpperCAmelCase = "weight_g" elif "weight_v" in name: UpperCAmelCase = "weight_v" elif "bias" in name: UpperCAmelCase = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase = "weight" else: UpperCAmelCase = None if hf_dict is not None: rename_dict(__A , __A , __A , __A , __A ) else: set_recursively(__A , __A , __A , __A , __A ) return is_used return is_used def _lowerCAmelCase( __A , __A , __A ): UpperCAmelCase = [] UpperCAmelCase = fairseq_model.state_dict() UpperCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase = True else: UpperCAmelCase = load_wavaveca_layer(__A , __A , __A ) if not is_used: unused_weights.append(__A ) logger.warning(F"Unused weights: {unused_weights}" ) def _lowerCAmelCase( __A , __A , __A , __A , __A ): UpperCAmelCase = full_name.split("conv_layers." )[-1] UpperCAmelCase = name.split("." ) UpperCAmelCase = int(items[0] ) UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCAmelCase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCAmelCase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) UpperCAmelCase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) UpperCAmelCase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__A ) @torch.no_grad() def _lowerCAmelCase( __A , __A , __A=None , __A=None , __A=True , __A=False ): if config_path is not None: UpperCAmelCase = WavaVecaConfig.from_pretrained(__A ) else: UpperCAmelCase = WavaVecaConfig() if is_seq_class: UpperCAmelCase = read_txt_into_dict(__A ) UpperCAmelCase = idalabel UpperCAmelCase = WavaVecaForSequenceClassification(__A ) UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) feature_extractor.save_pretrained(__A ) elif is_finetuned: if dict_path: UpperCAmelCase = Dictionary.load(__A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase = target_dict.pad_index UpperCAmelCase = target_dict.bos_index UpperCAmelCase = target_dict.eos_index UpperCAmelCase = len(target_dict.symbols ) UpperCAmelCase = os.path.join(__A , "vocab.json" ) if not os.path.isdir(__A ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__A ) ) return os.makedirs(__A , exist_ok=__A ) UpperCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase = 0 UpperCAmelCase = 1 with open(__A , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__A , __A ) UpperCAmelCase = WavaVecaCTCTokenizer( __A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__A , ) UpperCAmelCase = True if config.feat_extract_norm == "layer" else False UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) UpperCAmelCase = WavaVecaProcessor(feature_extractor=__A , tokenizer=__A ) processor.save_pretrained(__A ) UpperCAmelCase = WavaVecaForCTC(__A ) else: UpperCAmelCase = WavaVecaForPreTraining(__A ) if is_finetuned or is_seq_class: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase = fairseq.tasks.setup_task(__A ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__A ) UpperCAmelCase = model[0].eval() recursively_load_weights(__A , __A , not is_finetuned ) hf_wavavec.save_pretrained(__A ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
1
lowerCAmelCase__ = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCAmelCase__ = [{"type": "code", "content": INSTALL_CONTENT}] lowerCAmelCase__ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
1
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __magic_name__ ( _snake_case , unittest.TestCase ): UpperCAmelCase = ShapEImgaImgPipeline UpperCAmelCase = ["""image"""] UpperCAmelCase = ["""image"""] UpperCAmelCase = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] UpperCAmelCase = False @property def _UpperCamelCase ( self : Union[str, Any] ) -> Any: return 3_2 @property def _UpperCamelCase ( self : Union[str, Any] ) -> List[str]: return 3_2 @property def _UpperCamelCase ( self : List[Any] ) -> List[Any]: return self.time_input_dim * 4 @property def _UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: return 8 @property def _UpperCamelCase ( self : Tuple ) -> int: torch.manual_seed(0 ) UpperCAmelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=6_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) UpperCAmelCase = CLIPVisionModel(lowerCAmelCase__ ) return model @property def _UpperCamelCase ( self : Dict ) -> Optional[int]: UpperCAmelCase = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ , do_resize=lowerCAmelCase__ , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=2_2_4 , ) return image_processor @property def _UpperCamelCase ( self : Dict ) -> Any: torch.manual_seed(0 ) UpperCAmelCase = { "num_attention_heads": 2, "attention_head_dim": 1_6, "embedding_dim": self.time_input_dim, "num_embeddings": 3_2, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } UpperCAmelCase = PriorTransformer(**lowerCAmelCase__ ) return model @property def _UpperCamelCase ( self : str ) -> int: torch.manual_seed(0 ) UpperCAmelCase = { "param_shapes": ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 1_2, "background": ( 0.1, 0.1, 0.1, ), } UpperCAmelCase = ShapERenderer(**lowerCAmelCase__ ) return model def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase = self.dummy_prior UpperCAmelCase = self.dummy_image_encoder UpperCAmelCase = self.dummy_image_processor UpperCAmelCase = self.dummy_renderer UpperCAmelCase = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1_0_2_4 , prediction_type="sample" , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) UpperCAmelCase = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict=0 ) -> Optional[Any]: UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) if str(lowerCAmelCase__ ).startswith("mps" ): UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ ) else: UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) UpperCAmelCase = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 3_2, "output_type": "np", } return inputs def _UpperCamelCase ( self : Dict ) -> Dict: UpperCAmelCase = "cpu" UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__ ) UpperCAmelCase = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) UpperCAmelCase = output.images[0] UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) UpperCAmelCase = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase = torch_device == "cpu" UpperCAmelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def _UpperCamelCase ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__ ) UpperCAmelCase = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = 1 UpperCAmelCase = 2 UpperCAmelCase = self.get_dummy_inputs(lowerCAmelCase__ ) for key in inputs.keys(): if key in self.batch_params: UpperCAmelCase = batch_size * [inputs[key]] UpperCAmelCase = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : int ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png" ) UpperCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_img2img_out.npy" ) UpperCAmelCase = ShapEImgaImgPipeline.from_pretrained("openai/shap-e-img2img" ) UpperCAmelCase = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) UpperCAmelCase = pipe( lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=3.0 , num_inference_steps=6_4 , frame_size=6_4 , output_type="np" , ).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ ( _snake_case , unittest.TestCase ): UpperCAmelCase = KandinskyInpaintPipeline UpperCAmelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCAmelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCAmelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCAmelCase = False @property def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple: return 3_2 @property def _UpperCamelCase ( self : int ) -> List[Any]: return 3_2 @property def _UpperCamelCase ( self : List[Any] ) -> List[Any]: return self.time_input_dim @property def _UpperCamelCase ( self : Tuple ) -> Tuple: return self.time_input_dim * 4 @property def _UpperCamelCase ( self : Any ) -> Optional[int]: return 1_0_0 @property def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]: UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def _UpperCamelCase ( self : int ) -> Dict: torch.manual_seed(0 ) UpperCAmelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) UpperCAmelCase = MultilingualCLIP(lowerCAmelCase__ ) UpperCAmelCase = text_encoder.eval() return text_encoder @property def _UpperCamelCase ( self : Dict ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def _UpperCamelCase ( self : str ) -> Optional[Any]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _UpperCamelCase ( self : Dict ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCamelCase ( self : Tuple ) -> Any: UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = self.dummy_tokenizer UpperCAmelCase = self.dummy_unet UpperCAmelCase = self.dummy_movq UpperCAmelCase = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCAmelCase__ , ) UpperCAmelCase = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=0 ) -> str: UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase__ ) # create init_image UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) # create mask UpperCAmelCase = np.ones((6_4, 6_4) , dtype=np.floataa ) UpperCAmelCase = 0 if str(lowerCAmelCase__ ).startswith("mps" ): UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ ) else: UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) UpperCAmelCase = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def _UpperCamelCase ( self : Dict ) -> List[str]: UpperCAmelCase = "cpu" UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__ ) UpperCAmelCase = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) UpperCAmelCase = output.images UpperCAmelCase = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase = np.array( [0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def _UpperCamelCase ( self : str ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : str ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : Tuple ) -> int: UpperCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) UpperCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) UpperCAmelCase = 0 UpperCAmelCase = "a hat" UpperCAmelCase = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) UpperCAmelCase = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) UpperCAmelCase = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase = pipeline( lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="np" , ) UpperCAmelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
1
1
from typing import Any class __magic_name__ : def __init__( self : Dict , lowerCAmelCase__ : Any ) -> int: UpperCAmelCase = data UpperCAmelCase = None def __repr__( self : Dict ) -> str: return f"Node({self.data})" class __magic_name__ : def __init__( self : Optional[int] ) -> List[str]: UpperCAmelCase = None def __iter__( self : str ) -> Any: UpperCAmelCase = self.head while node: yield node.data UpperCAmelCase = node.next def __len__( self : Union[str, Any] ) -> int: return sum(1 for _ in self ) def __repr__( self : int ) -> str: return "->".join([str(lowerCAmelCase__ ) for item in self] ) def __getitem__( self : List[Any] , lowerCAmelCase__ : int ) -> Any: if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any ) -> None: if not 0 <= index < len(self ): raise ValueError("list index out of range." ) UpperCAmelCase = self.head for _ in range(lowerCAmelCase__ ): UpperCAmelCase = current.next UpperCAmelCase = data def _UpperCamelCase ( self : int , lowerCAmelCase__ : Any ) -> None: self.insert_nth(len(self ) , lowerCAmelCase__ ) def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : Any ) -> None: self.insert_nth(0 , lowerCAmelCase__ ) def _UpperCamelCase ( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Any ) -> None: if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) UpperCAmelCase = Node(lowerCAmelCase__ ) if self.head is None: UpperCAmelCase = new_node elif index == 0: UpperCAmelCase = self.head # link new_node to head UpperCAmelCase = new_node else: UpperCAmelCase = self.head for _ in range(index - 1 ): UpperCAmelCase = temp.next UpperCAmelCase = temp.next UpperCAmelCase = new_node def _UpperCamelCase ( self : int ) -> None: # print every node data print(self ) def _UpperCamelCase ( self : Dict ) -> Any: return self.delete_nth(0 ) def _UpperCamelCase ( self : Optional[int] ) -> Any: # delete from tail return self.delete_nth(len(self ) - 1 ) def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : int = 0 ) -> Any: if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) UpperCAmelCase = self.head # default first node if index == 0: UpperCAmelCase = self.head.next else: UpperCAmelCase = self.head for _ in range(index - 1 ): UpperCAmelCase = temp.next UpperCAmelCase = temp.next UpperCAmelCase = temp.next.next return delete_node.data def _UpperCamelCase ( self : Any ) -> bool: return self.head is None def _UpperCamelCase ( self : Union[str, Any] ) -> None: UpperCAmelCase = None UpperCAmelCase = self.head while current: # Store the current node's next node. UpperCAmelCase = current.next # Make the current node's next point backwards UpperCAmelCase = prev # Make the previous node be the current node UpperCAmelCase = current # Make the current node the next node (to progress iteration) UpperCAmelCase = next_node # Return prev in order to put the head at the end UpperCAmelCase = prev def _lowerCAmelCase( ): UpperCAmelCase = LinkedList() assert linked_list.is_empty() is True assert str(__A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__A ) == i linked_list.insert_nth(__A , i + 1 ) assert str(__A ) == "->".join(str(__A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__A ) == "->".join(str(__A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__A ) == 9 assert str(__A ) == "->".join(str(__A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): UpperCAmelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(__A ) == "->".join(str(__A ) for i in range(-8 , 1 ) ) def _lowerCAmelCase( ): UpperCAmelCase = [ -9, 100, Node(77345112 ), "dlrow olleH", 7, 5555, 0, -192.55555, "Hello, world!", 77.9, Node(10 ), None, None, 12.20, ] UpperCAmelCase = LinkedList() for i in test_input: linked_list.insert_tail(__A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head UpperCAmelCase = linked_list.delete_head() assert result == -9 assert ( str(__A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail UpperCAmelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(__A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list UpperCAmelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(__A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(__A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__A ) assert ( str(__A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _lowerCAmelCase( ): from doctest import testmod testmod() UpperCAmelCase = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(__A ) print("\nReading/changing Node data using indexing:" ) print(F"Element at Position 1: {linked_list[1]}" ) UpperCAmelCase = input("Enter New Value: " ).strip() print("New list:" ) print(__A ) print(F"length of linked_list is : {len(__A )}" ) if __name__ == "__main__": main()
1
def _lowerCAmelCase( __A , __A ): return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def _lowerCAmelCase( __A , __A=0 ): return sorted(__A , key=lambda __A : x[column] ) def _lowerCAmelCase( __A , __A , __A=float("inf" ) ): for i in range(points_counts - 1 ): for j in range(i + 1 , __A ): UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase = current_dis return min_dis def _lowerCAmelCase( __A , __A , __A=float("inf" ) ): for i in range(min(6 , points_counts - 1 ) , __A ): for j in range(max(0 , i - 6 ) , __A ): UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase = current_dis return min_dis def _lowerCAmelCase( __A , __A , __A ): # base case if points_counts <= 3: return dis_between_closest_pair(__A , __A ) # recursion UpperCAmelCase = points_counts // 2 UpperCAmelCase = closest_pair_of_points_sqr( __A , points_sorted_on_y[:mid] , __A ) UpperCAmelCase = closest_pair_of_points_sqr( __A , points_sorted_on_y[mid:] , points_counts - mid ) UpperCAmelCase = min(__A , __A ) UpperCAmelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(__A ) UpperCAmelCase = dis_between_closest_in_strip( __A , len(__A ) , __A ) return min(__A , __A ) def _lowerCAmelCase( __A , __A ): UpperCAmelCase = column_based_sort(__A , column=0 ) UpperCAmelCase = column_based_sort(__A , column=1 ) return ( closest_pair_of_points_sqr( __A , __A , __A ) ) ** 0.5 if __name__ == "__main__": lowerCAmelCase__ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
1
1
lowerCAmelCase__ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowerCAmelCase__ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowerCAmelCase__ = { 0: "Sunday", 1: "Monday", 2: "Tuesday", 3: "Wednesday", 4: "Thursday", 5: "Friday", 6: "Saturday", } def _lowerCAmelCase( __A , __A , __A ): assert len(str(__A ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: UpperCAmelCase = year // 100 UpperCAmelCase = (5 * (century % 4) + 2) % 7 UpperCAmelCase = year % 100 UpperCAmelCase = centurian % 12 UpperCAmelCase = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 UpperCAmelCase = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) UpperCAmelCase = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
1
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __magic_name__ : def __init__( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase = "" UpperCAmelCase = "" UpperCAmelCase = [] UpperCAmelCase = 0 UpperCAmelCase = 2_5_6 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Optional[Any] ) -> List[str]: UpperCAmelCase = cva.imread(lowerCAmelCase__ , 0 ) UpperCAmelCase = copy.deepcopy(self.img ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="x" ) UpperCAmelCase = np.sum(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase = x[i] / self.k self.sk += prk UpperCAmelCase = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase = int(last % last ) UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCAmelCase__ ) UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def _UpperCamelCase ( self : str ) -> int: plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def _UpperCamelCase ( self : Dict ) -> Optional[Any]: cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase__ = os.path.join(os.path.basename(__file__), "image_data/input.jpg") lowerCAmelCase__ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
1
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class __magic_name__ ( _snake_case ): UpperCAmelCase = """roformer""" def __init__( self : Optional[int] , lowerCAmelCase__ : List[str]=5_0_0_0_0 , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Union[str, Any]=7_6_8 , lowerCAmelCase__ : Dict=1_2 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : Tuple=3_0_7_2 , lowerCAmelCase__ : Tuple="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : Dict=1_5_3_6 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : Tuple=1e-1_2 , lowerCAmelCase__ : Any=0 , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : Tuple=True , **lowerCAmelCase__ : int , ) -> Dict: super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size if embedding_size is None else embedding_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = rotary_value UpperCAmelCase = use_cache class __magic_name__ ( _snake_case ): @property def _UpperCamelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase = {0: "batch", 1: "sequence"} UpperCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
1
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( _snake_case , unittest.TestCase ): UpperCAmelCase = LEDTokenizer UpperCAmelCase = LEDTokenizerFast UpperCAmelCase = True def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: super().setUp() UpperCAmelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCAmelCase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) UpperCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCAmelCase = {"unk_token": "<unk>"} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def _UpperCamelCase ( self : Union[str, Any] , **lowerCAmelCase__ : Optional[int] ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _UpperCamelCase ( self : str , **lowerCAmelCase__ : str ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[Any] ) -> List[Any]: return "lower newer", "lower newer" @cached_property def _UpperCamelCase ( self : Dict ) -> str: return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def _UpperCamelCase ( self : int ) -> Tuple: return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def _UpperCamelCase ( self : Tuple ) -> List[str]: UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCAmelCase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @require_torch def _UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt" ) self.assertIn("input_ids" , lowerCAmelCase__ ) self.assertIn("attention_mask" , lowerCAmelCase__ ) self.assertNotIn("labels" , lowerCAmelCase__ ) self.assertNotIn("decoder_attention_mask" , lowerCAmelCase__ ) @require_torch def _UpperCamelCase ( self : int ) -> int: UpperCAmelCase = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , max_length=3_2 , padding="max_length" , return_tensors="pt" ) self.assertEqual(3_2 , targets["input_ids"].shape[1] ) @require_torch def _UpperCamelCase ( self : Any ) -> int: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer( ["I am a small frog" * 1_0_2_4, "I am a small frog"] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) ) @require_torch def _UpperCamelCase ( self : Dict ) -> Tuple: UpperCAmelCase = ["A long paragraph for summarization."] UpperCAmelCase = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase = inputs["input_ids"] UpperCAmelCase = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = ["Summary of the text.", "Another summary."] UpperCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ ) UpperCAmelCase = [[0] * len(lowerCAmelCase__ ) for x in encoded_output["input_ids"]] UpperCAmelCase = tokenizer.pad(lowerCAmelCase__ ) self.assertSequenceEqual(outputs["global_attention_mask"] , lowerCAmelCase__ ) def _UpperCamelCase ( self : List[str] ) -> int: pass def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCAmelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCAmelCase = "A, <mask> AllenNLP sentence." UpperCAmelCase = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) UpperCAmelCase = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
1
1
def _lowerCAmelCase( __A ): return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def _lowerCAmelCase( __A ): UpperCAmelCase = credit_card_number UpperCAmelCase = 0 UpperCAmelCase = len(__A ) - 2 for i in range(__A , -1 , -2 ): # double the value of every second digit UpperCAmelCase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 UpperCAmelCase = cc_number[:i] + str(__A ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__A ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def _lowerCAmelCase( __A ): UpperCAmelCase = F"{credit_card_number} is an invalid credit card number because" if not credit_card_number.isdigit(): print(F"{error_message} it has nonnumerical characters." ) return False if not 13 <= len(__A ) <= 16: print(F"{error_message} of its length." ) return False if not validate_initial_digits(__A ): print(F"{error_message} of its first two digits." ) return False if not luhn_validation(__A ): print(F"{error_message} it fails the Luhn check." ) return False print(F"{credit_card_number} is a valid credit card number." ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
1
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase__ = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowerCAmelCase__ = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowerCAmelCase__ = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowerCAmelCase__ = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def _UpperCamelCase ( self : int ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : List[Any] ) -> Dict: import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=0.9 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Optional[int]=0.5 ) -> Any: if NLTK_VERSION >= version.Version("3.6.5" ): UpperCAmelCase = [ meteor_score.single_meteor_score( word_tokenize(lowerCAmelCase__ ) , word_tokenize(lowerCAmelCase__ ) , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ ) for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] else: UpperCAmelCase = [ meteor_score.single_meteor_score(lowerCAmelCase__ , lowerCAmelCase__ , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ ) for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] return {"meteor": np.mean(lowerCAmelCase__ )}
1
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class __magic_name__ ( _snake_case ): def __init__( self : str , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : int ) -> Any: super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : Union[str, Any]=None ) -> int: UpperCAmelCase = {} if top_k is not None: UpperCAmelCase = top_k return {}, {}, postprocess_params def __call__( self : Tuple , lowerCAmelCase__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCAmelCase__ : str ) -> Union[str, Any]: return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : Any ) -> Optional[Any]: UpperCAmelCase = load_image(lowerCAmelCase__ ) UpperCAmelCase = self.image_processor(images=lowerCAmelCase__ , return_tensors=self.framework ) return model_inputs def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Any ) -> Union[str, Any]: UpperCAmelCase = self.model(**lowerCAmelCase__ ) return model_outputs def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=5 ) -> Union[str, Any]: if top_k > self.model.config.num_labels: UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase = model_outputs.logits.softmax(-1 )[0] UpperCAmelCase , UpperCAmelCase = probs.topk(lowerCAmelCase__ ) elif self.framework == "tf": UpperCAmelCase = stable_softmax(model_outputs.logits , axis=-1 )[0] UpperCAmelCase = tf.math.top_k(lowerCAmelCase__ , k=lowerCAmelCase__ ) UpperCAmelCase , UpperCAmelCase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}" ) UpperCAmelCase = scores.tolist() UpperCAmelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase__ , lowerCAmelCase__ )]
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class __magic_name__ ( _snake_case ): UpperCAmelCase = """lxmert""" UpperCAmelCase = {} def __init__( self : int , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : List[str]=7_6_8 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : List[Any]=9_5_0_0 , lowerCAmelCase__ : Any=1_6_0_0 , lowerCAmelCase__ : Union[str, Any]=4_0_0 , lowerCAmelCase__ : Tuple=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : str=1e-1_2 , lowerCAmelCase__ : str=9 , lowerCAmelCase__ : int=5 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : List[Any]=2_0_4_8 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Dict=6.67 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Tuple=True , **lowerCAmelCase__ : List[Any] , ) -> Dict: UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = num_qa_labels UpperCAmelCase = num_object_labels UpperCAmelCase = num_attr_labels UpperCAmelCase = l_layers UpperCAmelCase = x_layers UpperCAmelCase = r_layers UpperCAmelCase = visual_feat_dim UpperCAmelCase = visual_pos_dim UpperCAmelCase = visual_loss_normalizer UpperCAmelCase = task_matched UpperCAmelCase = task_mask_lm UpperCAmelCase = task_obj_predict UpperCAmelCase = task_qa UpperCAmelCase = visual_obj_loss UpperCAmelCase = visual_attr_loss UpperCAmelCase = visual_feat_loss UpperCAmelCase = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**lowerCAmelCase__ )
1
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase__ = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" lowerCAmelCase__ = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" lowerCAmelCase__ = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def _UpperCamelCase ( self : Optional[Any] ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def _UpperCamelCase ( self : Any , lowerCAmelCase__ : List[List[List[str]]] , lowerCAmelCase__ : List[List[str]] , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : int = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase__ , hypotheses=lowerCAmelCase__ , min_len=lowerCAmelCase__ , max_len=lowerCAmelCase__ ) }
1
def _lowerCAmelCase( __A ): UpperCAmelCase = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def _lowerCAmelCase( __A = 100 ): UpperCAmelCase = 1 UpperCAmelCase = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase = pre_numerator UpperCAmelCase = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase = cur_numerator UpperCAmelCase = e_cont * pre_numerator + temp return sum_digits(__A ) if __name__ == "__main__": print(f"{solution() = }")
1
1
from PIL import Image def _lowerCAmelCase( __A ): UpperCAmelCase , UpperCAmelCase = image.size UpperCAmelCase = 0 UpperCAmelCase = image.load() for i in range(__A ): for j in range(__A ): UpperCAmelCase = pixels[j, i] mean += pixel mean //= width * height for j in range(__A ): for i in range(__A ): UpperCAmelCase = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": lowerCAmelCase__ = mean_threshold(Image.open("path_to_image").convert("L")) image.save("output_image_path")
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
1
1
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def _lowerCAmelCase( __A ): if "model" in orig_key: UpperCAmelCase = orig_key.replace("model." , "" ) if "norm1" in orig_key: UpperCAmelCase = orig_key.replace("norm1" , "attention.output.LayerNorm" ) if "norm2" in orig_key: UpperCAmelCase = orig_key.replace("norm2" , "output.LayerNorm" ) if "norm" in orig_key: UpperCAmelCase = orig_key.replace("norm" , "LayerNorm" ) if "transformer" in orig_key: UpperCAmelCase = orig_key.split("." )[0].split("_" )[-1] UpperCAmelCase = orig_key.replace(F"transformer_{layer_num}" , F"encoder.layer.{layer_num}" ) if "mha.attn" in orig_key: UpperCAmelCase = orig_key.replace("mha.attn" , "attention.self" ) if "mha" in orig_key: UpperCAmelCase = orig_key.replace("mha" , "attention" ) if "W_q" in orig_key: UpperCAmelCase = orig_key.replace("W_q" , "self.query" ) if "W_k" in orig_key: UpperCAmelCase = orig_key.replace("W_k" , "self.key" ) if "W_v" in orig_key: UpperCAmelCase = orig_key.replace("W_v" , "self.value" ) if "ff1" in orig_key: UpperCAmelCase = orig_key.replace("ff1" , "intermediate.dense" ) if "ff2" in orig_key: UpperCAmelCase = orig_key.replace("ff2" , "output.dense" ) if "ff" in orig_key: UpperCAmelCase = orig_key.replace("ff" , "output.dense" ) if "mlm_class" in orig_key: UpperCAmelCase = orig_key.replace("mlm.mlm_class" , "cls.predictions.decoder" ) if "mlm" in orig_key: UpperCAmelCase = orig_key.replace("mlm" , "cls.predictions.transform" ) if "cls" not in orig_key: UpperCAmelCase = "yoso." + orig_key return orig_key def _lowerCAmelCase( __A , __A ): for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(__A ) if ("pooler" in key) or ("sen_class" in key): continue else: UpperCAmelCase = val UpperCAmelCase = orig_state_dict["cls.predictions.decoder.bias"] UpperCAmelCase = torch.arange(__A ).expand((1, -1) ) + 2 return orig_state_dict def _lowerCAmelCase( __A , __A , __A ): UpperCAmelCase = torch.load(__A , map_location="cpu" )["model_state_dict"] UpperCAmelCase = YosoConfig.from_json_file(__A ) UpperCAmelCase = YosoForMaskedLM(__A ) UpperCAmelCase = convert_checkpoint_helper(config.max_position_embeddings , __A ) print(model.load_state_dict(__A ) ) model.eval() model.save_pretrained(__A ) print(F"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase__ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
1
import numpy # List of input, output pairs lowerCAmelCase__ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) lowerCAmelCase__ = (((515, 22, 13), 555), ((61, 35, 49), 150)) lowerCAmelCase__ = [2, 4, 1, 5] lowerCAmelCase__ = len(train_data) lowerCAmelCase__ = 0.0_0_9 def _lowerCAmelCase( __A , __A="train" ): return calculate_hypothesis_value(__A , __A ) - output( __A , __A ) def _lowerCAmelCase( __A ): UpperCAmelCase = 0 for i in range(len(__A ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _lowerCAmelCase( __A , __A ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _lowerCAmelCase( __A , __A ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _lowerCAmelCase( __A , __A=m ): UpperCAmelCase = 0 for i in range(__A ): if index == -1: summation_value += _error(__A ) else: summation_value += _error(__A ) * train_data[i][0][index] return summation_value def _lowerCAmelCase( __A ): UpperCAmelCase = summation_of_cost_derivative(__A , __A ) / m return cost_derivative_value def _lowerCAmelCase( ): global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase = 0.000002 UpperCAmelCase = 0 UpperCAmelCase = 0 while True: j += 1 UpperCAmelCase = [0, 0, 0, 0] for i in range(0 , len(__A ) ): UpperCAmelCase = get_cost_derivative(i - 1 ) UpperCAmelCase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __A , __A , atol=__A , rtol=__A , ): break UpperCAmelCase = temp_parameter_vector print(("Number of iterations:", j) ) def _lowerCAmelCase( ): for i in range(len(__A ) ): print(("Actual output value:", output(__A , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(__A , "test" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
1
1
def _lowerCAmelCase( __A ): UpperCAmelCase = generate_pascal_triangle(__A ) for row_idx in range(__A ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def _lowerCAmelCase( __A ): if not isinstance(__A , __A ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) UpperCAmelCase = [] for current_row_idx in range(__A ): UpperCAmelCase = populate_current_row(__A , __A ) triangle.append(__A ) return triangle def _lowerCAmelCase( __A , __A ): UpperCAmelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 UpperCAmelCase , UpperCAmelCase = 1, 1 for current_col_idx in range(1 , __A ): calculate_current_element( __A , __A , __A , __A ) return current_row def _lowerCAmelCase( __A , __A , __A , __A , ): UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx - 1] UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx] UpperCAmelCase = above_to_left_elt + above_to_right_elt def _lowerCAmelCase( __A ): if not isinstance(__A , __A ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) UpperCAmelCase = [[1]] for row_index in range(1 , __A ): UpperCAmelCase = [0] + result[-1] + [0] UpperCAmelCase = row_index + 1 # Calculate the number of distinct elements in a row UpperCAmelCase = sum(divmod(__A , 2 ) ) UpperCAmelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] UpperCAmelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() UpperCAmelCase = row_first_half + row_second_half result.append(__A ) return result def _lowerCAmelCase( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__A , __A ) -> None: UpperCAmelCase = F"{func.__name__}({value})" UpperCAmelCase = timeit(F"__main__.{call}" , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__A , __A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
1
def _lowerCAmelCase( __A , __A , __A ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__A , n - 1 , __A ) * a) % mod else: UpperCAmelCase = binary_exponentiation(__A , n / 2 , __A ) return (b * b) % mod # a prime number lowerCAmelCase__ = 701 lowerCAmelCase__ = 1000000000 lowerCAmelCase__ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
1
1
import os import sys import unittest lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCAmelCase__ = os.path.join(git_repo_path, "src", "diffusers") class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : Any ) -> Union[str, Any]: UpperCAmelCase = find_backend(" if not is_torch_available():" ) self.assertEqual(lowerCAmelCase__ , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") UpperCAmelCase = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(lowerCAmelCase__ , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") UpperCAmelCase = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(lowerCAmelCase__ , "torch_and_transformers_and_onnx" ) def _UpperCamelCase ( self : Optional[int] ) -> List[str]: UpperCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , lowerCAmelCase__ ) self.assertIn("torch_and_transformers" , lowerCAmelCase__ ) self.assertIn("flax_and_transformers" , lowerCAmelCase__ ) self.assertIn("torch_and_transformers_and_onnx" , lowerCAmelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def _UpperCamelCase ( self : Optional[Any] ) -> int: UpperCAmelCase = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(lowerCAmelCase__ , "\nCONSTANT = None\n" ) UpperCAmelCase = create_dummy_object("function" , "'torch'" ) self.assertEqual( lowerCAmelCase__ , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) UpperCAmelCase = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" UpperCAmelCase = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _UpperCamelCase ( self : Any ) -> int: UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" UpperCAmelCase = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , lowerCAmelCase__ )
1
lowerCAmelCase__ = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } lowerCAmelCase__ = {value: key for key, value in encode_dict.items()} def _lowerCAmelCase( __A ): UpperCAmelCase = "" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces" ) return encoded def _lowerCAmelCase( __A ): if set(__A ) - {"A", "B", " "} != set(): raise Exception("decode() accepts only 'A', 'B' and spaces" ) UpperCAmelCase = "" for word in coded.split(): while len(__A ) != 0: decoded += decode_dict[word[:5]] UpperCAmelCase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
1
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class __magic_name__ ( _snake_case , _snake_case ): UpperCAmelCase = """convnextv2""" def __init__( self : Optional[Any] , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Dict=1e-1_2 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : str=2_2_4 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[Any] , ) -> List[Any]: super().__init__(**lowerCAmelCase__ ) UpperCAmelCase = num_channels UpperCAmelCase = patch_size UpperCAmelCase = num_stages UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes UpperCAmelCase = [3, 3, 9, 3] if depths is None else depths UpperCAmelCase = hidden_act UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = drop_path_rate UpperCAmelCase = image_size UpperCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
1
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase__ = {"UserAgent": UserAgent().random} def _lowerCAmelCase( __A ): UpperCAmelCase = script.contents[0] UpperCAmelCase = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __magic_name__ : def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Any: UpperCAmelCase = f"https://www.instagram.com/{username}/" UpperCAmelCase = self.get_json() def _UpperCamelCase ( self : List[str] ) -> dict: UpperCAmelCase = requests.get(self.url , headers=lowerCAmelCase__ ).text UpperCAmelCase = BeautifulSoup(lowerCAmelCase__ , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Tuple ) -> str: return f"{self.__class__.__name__}('{self.username}')" def __str__( self : Optional[int] ) -> str: return f"{self.fullname} ({self.username}) is {self.biography}" @property def _UpperCamelCase ( self : Any ) -> str: return self.user_data["username"] @property def _UpperCamelCase ( self : List[Any] ) -> str: return self.user_data["full_name"] @property def _UpperCamelCase ( self : List[str] ) -> str: return self.user_data["biography"] @property def _UpperCamelCase ( self : Optional[int] ) -> str: return self.user_data["business_email"] @property def _UpperCamelCase ( self : str ) -> str: return self.user_data["external_url"] @property def _UpperCamelCase ( self : int ) -> int: return self.user_data["edge_followed_by"]["count"] @property def _UpperCamelCase ( self : List[Any] ) -> int: return self.user_data["edge_follow"]["count"] @property def _UpperCamelCase ( self : List[str] ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _UpperCamelCase ( self : Tuple ) -> str: return self.user_data["profile_pic_url_hd"] @property def _UpperCamelCase ( self : Optional[int] ) -> bool: return self.user_data["is_verified"] @property def _UpperCamelCase ( self : Optional[Any] ) -> bool: return self.user_data["is_private"] def _lowerCAmelCase( __A = "github" ): import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCAmelCase = InstagramUser(__A ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __A ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = InstagramUser("github") print(instagram_user) print(f"{instagram_user.number_of_posts = }") print(f"{instagram_user.number_of_followers = }") print(f"{instagram_user.number_of_followings = }") print(f"{instagram_user.email = }") print(f"{instagram_user.website = }") print(f"{instagram_user.profile_picture_url = }") print(f"{instagram_user.is_verified = }") print(f"{instagram_user.is_private = }")
1
1
import string def _lowerCAmelCase( __A ): for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase = "" for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase = string.ascii_uppercase.find(__A ) UpperCAmelCase = num - key if num < 0: UpperCAmelCase = num + len(string.ascii_uppercase ) UpperCAmelCase = translated + string.ascii_uppercase[num] else: UpperCAmelCase = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def _lowerCAmelCase( ): UpperCAmelCase = input("Encrypted message: " ) UpperCAmelCase = message.upper() decrypt(__A ) if __name__ == "__main__": import doctest doctest.testmod() main()
1
import unittest import numpy as np def _lowerCAmelCase( __A , __A , __A , __A = None , ): UpperCAmelCase = np.shape(__A ) UpperCAmelCase = np.shape(__A ) UpperCAmelCase = np.shape(__A ) if shape_a[0] != shape_b[0]: UpperCAmelCase = ( "Expected the same number of rows for A and B. " F"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(__A ) if shape_b[1] != shape_c[1]: UpperCAmelCase = ( "Expected the same number of columns for B and C. " F"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(__A ) UpperCAmelCase = pseudo_inv if a_inv is None: try: UpperCAmelCase = np.linalg.inv(__A ) except np.linalg.LinAlgError: raise ValueError( "Input matrix A is not invertible. Cannot compute Schur complement." ) return mat_c - mat_b.T @ a_inv @ mat_b class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : List[str] ) -> None: UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase = np.array([[2, 1], [6, 3]] ) UpperCAmelCase = schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = np.block([[a, b], [b.T, c]] ) UpperCAmelCase = np.linalg.det(lowerCAmelCase__ ) UpperCAmelCase = np.linalg.det(lowerCAmelCase__ ) UpperCAmelCase = np.linalg.det(lowerCAmelCase__ ) self.assertAlmostEqual(lowerCAmelCase__ , det_a * det_s ) def _UpperCamelCase ( self : str ) -> None: UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase = np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowerCAmelCase__ ): schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _UpperCamelCase ( self : Dict ) -> None: UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowerCAmelCase__ ): schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
1
1
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( _snake_case , unittest.TestCase ): UpperCAmelCase = LEDTokenizer UpperCAmelCase = LEDTokenizerFast UpperCAmelCase = True def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: super().setUp() UpperCAmelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCAmelCase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) UpperCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCAmelCase = {"unk_token": "<unk>"} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def _UpperCamelCase ( self : Union[str, Any] , **lowerCAmelCase__ : Optional[int] ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _UpperCamelCase ( self : str , **lowerCAmelCase__ : str ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[Any] ) -> List[Any]: return "lower newer", "lower newer" @cached_property def _UpperCamelCase ( self : Dict ) -> str: return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def _UpperCamelCase ( self : int ) -> Tuple: return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def _UpperCamelCase ( self : Tuple ) -> List[str]: UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCAmelCase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @require_torch def _UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt" ) self.assertIn("input_ids" , lowerCAmelCase__ ) self.assertIn("attention_mask" , lowerCAmelCase__ ) self.assertNotIn("labels" , lowerCAmelCase__ ) self.assertNotIn("decoder_attention_mask" , lowerCAmelCase__ ) @require_torch def _UpperCamelCase ( self : int ) -> int: UpperCAmelCase = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , max_length=3_2 , padding="max_length" , return_tensors="pt" ) self.assertEqual(3_2 , targets["input_ids"].shape[1] ) @require_torch def _UpperCamelCase ( self : Any ) -> int: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer( ["I am a small frog" * 1_0_2_4, "I am a small frog"] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) ) @require_torch def _UpperCamelCase ( self : Dict ) -> Tuple: UpperCAmelCase = ["A long paragraph for summarization."] UpperCAmelCase = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase = inputs["input_ids"] UpperCAmelCase = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = ["Summary of the text.", "Another summary."] UpperCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ ) UpperCAmelCase = [[0] * len(lowerCAmelCase__ ) for x in encoded_output["input_ids"]] UpperCAmelCase = tokenizer.pad(lowerCAmelCase__ ) self.assertSequenceEqual(outputs["global_attention_mask"] , lowerCAmelCase__ ) def _UpperCamelCase ( self : List[str] ) -> int: pass def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCAmelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCAmelCase = "A, <mask> AllenNLP sentence." UpperCAmelCase = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) UpperCAmelCase = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
1
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _lowerCAmelCase( __A ): UpperCAmelCase = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" , __A ).groups()[0] class __magic_name__ ( _snake_case ): def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : int=None ) -> Optional[Any]: UpperCAmelCase = file_names UpperCAmelCase = image_transform UpperCAmelCase = label_to_id def __len__( self : Tuple ) -> List[str]: return len(self.file_names ) def __getitem__( self : Optional[int] , lowerCAmelCase__ : Tuple ) -> Dict: UpperCAmelCase = self.file_names[idx] UpperCAmelCase = PIL.Image.open(lowerCAmelCase__ ) UpperCAmelCase = raw_image.convert("RGB" ) if self.image_transform is not None: UpperCAmelCase = self.image_transform(lowerCAmelCase__ ) UpperCAmelCase = extract_label(lowerCAmelCase__ ) if self.label_to_id is not None: UpperCAmelCase = self.label_to_id[label] return {"image": image, "label": label} def _lowerCAmelCase( __A , __A ): # Initialize accelerator if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config["lr"] UpperCAmelCase = int(config["num_epochs"] ) UpperCAmelCase = int(config["seed"] ) UpperCAmelCase = int(config["batch_size"] ) UpperCAmelCase = config["image_size"] if not isinstance(__A , (list, tuple) ): UpperCAmelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": UpperCAmelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): UpperCAmelCase = int(args.checkpointing_steps ) else: raise ValueError( F"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." ) else: UpperCAmelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: UpperCAmelCase = os.path.split(__A )[-1].split("." )[0] accelerator.init_trackers(__A , __A ) # Grab all the image filenames UpperCAmelCase = [os.path.join(args.data_dir , __A ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences UpperCAmelCase = [extract_label(__A ) for fname in file_names] UpperCAmelCase = list(set(__A ) ) id_to_label.sort() UpperCAmelCase = {lbl: i for i, lbl in enumerate(__A )} # Set the seed before splitting the data. np.random.seed(__A ) torch.manual_seed(__A ) torch.cuda.manual_seed_all(__A ) # Split our filenames between train and validation UpperCAmelCase = np.random.permutation(len(__A ) ) UpperCAmelCase = int(0.8 * len(__A ) ) UpperCAmelCase = random_perm[:cut] UpperCAmelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop UpperCAmelCase = Compose([RandomResizedCrop(__A , scale=(0.5, 1.0) ), ToTensor()] ) UpperCAmelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=__A , label_to_id=__A ) # For evaluation, we use a deterministic Resize UpperCAmelCase = Compose([Resize(__A ), ToTensor()] ) UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=__A , label_to_id=__A ) # Instantiate dataloaders. UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = create_model("resnet50d" , pretrained=__A , num_classes=len(__A ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): UpperCAmelCase = False for param in model.get_classifier().parameters(): UpperCAmelCase = True # We normalize the batches of images to be a bit faster. UpperCAmelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) UpperCAmelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler UpperCAmelCase = OneCycleLR(optimizer=__A , max_lr=__A , epochs=__A , steps_per_epoch=len(__A ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( __A , __A , __A , __A , __A ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase = 0 # We also need to keep track of the starting epoch so files are named properly UpperCAmelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"Resumed from checkpoint: {args.resume_from_checkpoint}" ) accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` UpperCAmelCase = os.path.splitext(__A )[0] if "epoch" in training_difference: UpperCAmelCase = int(training_difference.replace("epoch_" , "" ) ) + 1 UpperCAmelCase = None else: UpperCAmelCase = int(training_difference.replace("step_" , "" ) ) UpperCAmelCase = resume_step // len(__A ) resume_step -= starting_epoch * len(__A ) # Now we train the model for epoch in range(__A , __A ): model.train() if args.with_tracking: UpperCAmelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step UpperCAmelCase = accelerator.skip_first_batches(__A , __A ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader UpperCAmelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch["image"] - mean) / std UpperCAmelCase = model(__A ) UpperCAmelCase = torch.nn.functional.cross_entropy(__A , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__A , __A ): UpperCAmelCase = F"step_{overall_step}" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) model.eval() UpperCAmelCase = 0 UpperCAmelCase = 0 for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch["image"] - mean) / std with torch.no_grad(): UpperCAmelCase = model(__A ) UpperCAmelCase = outputs.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["label"]) ) UpperCAmelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() UpperCAmelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}: {100 * eval_metric:.2f}" ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(__A ), "epoch": epoch, } , step=__A , ) if checkpointing_steps == "epoch": UpperCAmelCase = F"epoch_{epoch}" if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) if args.with_tracking: accelerator.end_training() def _lowerCAmelCase( ): UpperCAmelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=__A , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=__A , default=__A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=__A , default=__A , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , ) parser.add_argument( "--output_dir" , type=__A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__A , default=__A , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=__A , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(__A , __A ) if __name__ == "__main__": main()
1
1
from datetime import datetime import requests def _lowerCAmelCase( __A ): UpperCAmelCase = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" UpperCAmelCase = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(__A ).content if __name__ == "__main__": lowerCAmelCase__ = input("Enter Video/IGTV url: ").strip() lowerCAmelCase__ = f"{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4" with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f"Done. Video saved to disk as {file_name}.")
1
import glob import os import random from string import ascii_lowercase, digits import cva lowerCAmelCase__ = "" lowerCAmelCase__ = "" lowerCAmelCase__ = "" lowerCAmelCase__ = 1 # (0 is vertical, 1 is horizontal) def _lowerCAmelCase( ): UpperCAmelCase , UpperCAmelCase = get_dataset(__A , __A ) print("Processing..." ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = update_image_and_anno(__A , __A , __A ) for index, image in enumerate(__A ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCAmelCase = random_chars(32 ) UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] UpperCAmelCase = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(F"/{file_root}.jpg" , __A , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Success {index+1}/{len(__A )} with {file_name}" ) UpperCAmelCase = [] for anno in new_annos[index]: UpperCAmelCase = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(__A ) with open(F"/{file_root}.txt" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def _lowerCAmelCase( __A , __A ): UpperCAmelCase = [] UpperCAmelCase = [] for label_file in glob.glob(os.path.join(__A , "*.txt" ) ): UpperCAmelCase = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(__A ) as in_file: UpperCAmelCase = in_file.readlines() UpperCAmelCase = os.path.join(__A , F"{label_name}.jpg" ) UpperCAmelCase = [] for obj_list in obj_lists: UpperCAmelCase = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__A ) labels.append(__A ) return img_paths, labels def _lowerCAmelCase( __A , __A , __A = 1 ): UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = [] for idx in range(len(__A ) ): UpperCAmelCase = [] UpperCAmelCase = img_list[idx] path_list.append(__A ) UpperCAmelCase = anno_list[idx] UpperCAmelCase = cva.imread(__A ) if flip_type == 1: UpperCAmelCase = cva.flip(__A , __A ) for bbox in img_annos: UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: UpperCAmelCase = cva.flip(__A , __A ) for bbox in img_annos: UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__A ) new_imgs_list.append(__A ) return new_imgs_list, new_annos_lists, path_list def _lowerCAmelCase( __A = 32 ): assert number_char > 1, "The number of character should greater than 1" UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(__A ) for _ in range(__A ) ) if __name__ == "__main__": main() print("DONE ✅")
1
1
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput lowerCAmelCase__ = "scheduler_config.json" class __magic_name__ ( _snake_case ): UpperCAmelCase = 1 UpperCAmelCase = 2 UpperCAmelCase = 3 UpperCAmelCase = 4 UpperCAmelCase = 5 @dataclass class __magic_name__ ( _snake_case ): UpperCAmelCase = 42 class __magic_name__ : UpperCAmelCase = SCHEDULER_CONFIG_NAME UpperCAmelCase = ["""dtype"""] UpperCAmelCase = [] UpperCAmelCase = True @classmethod def _UpperCamelCase ( cls : Union[str, Any] , lowerCAmelCase__ : Dict[str, Any] = None , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : str=False , **lowerCAmelCase__ : Optional[int] , ) -> Tuple: UpperCAmelCase , UpperCAmelCase = cls.load_config( pretrained_model_name_or_path=lowerCAmelCase__ , subfolder=lowerCAmelCase__ , return_unused_kwargs=lowerCAmelCase__ , **lowerCAmelCase__ , ) UpperCAmelCase , UpperCAmelCase = cls.from_config(lowerCAmelCase__ , return_unused_kwargs=lowerCAmelCase__ , **lowerCAmelCase__ ) if hasattr(lowerCAmelCase__ , "create_state" ) and getattr(lowerCAmelCase__ , "has_state" , lowerCAmelCase__ ): UpperCAmelCase = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : Union[str, os.PathLike] , lowerCAmelCase__ : bool = False , **lowerCAmelCase__ : int ) -> Union[str, Any]: self.save_config(save_directory=lowerCAmelCase__ , push_to_hub=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _UpperCamelCase ( self : Any ) -> List[Any]: return self._get_compatibles() @classmethod def _UpperCamelCase ( cls : str ) -> Optional[Any]: UpperCAmelCase = list(set([cls.__name__] + cls._compatibles ) ) UpperCAmelCase = importlib.import_module(__name__.split("." )[0] ) UpperCAmelCase = [ getattr(lowerCAmelCase__ , lowerCAmelCase__ ) for c in compatible_classes_str if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ] return compatible_classes def _lowerCAmelCase( __A , __A ): assert len(__A ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(__A ) - x.ndim) ) , __A ) def _lowerCAmelCase( __A , __A=0.999 , __A=jnp.floataa ): def alpha_bar(__A ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 UpperCAmelCase = [] for i in range(__A ): UpperCAmelCase = i / num_diffusion_timesteps UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(__A ) / alpha_bar(__A ) , __A ) ) return jnp.array(__A , dtype=__A ) @flax.struct.dataclass class __magic_name__ : UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 @classmethod def _UpperCamelCase ( cls : int , lowerCAmelCase__ : int ) -> Any: UpperCAmelCase = scheduler.config if config.trained_betas is not None: UpperCAmelCase = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": UpperCAmelCase = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCAmelCase = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCAmelCase = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f"beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}" ) UpperCAmelCase = 1.0 - betas UpperCAmelCase = jnp.cumprod(lowerCAmelCase__ , axis=0 ) return cls( alphas=lowerCAmelCase__ , betas=lowerCAmelCase__ , alphas_cumprod=lowerCAmelCase__ , ) def _lowerCAmelCase( __A , __A , __A , __A ): UpperCAmelCase = state.alphas_cumprod UpperCAmelCase = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase = sqrt_alpha_prod.flatten() UpperCAmelCase = broadcast_to_shape_from_left(__A , original_samples.shape ) UpperCAmelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase = sqrt_one_minus_alpha_prod.flatten() UpperCAmelCase = broadcast_to_shape_from_left(__A , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _lowerCAmelCase( __A , __A , __A , __A ): UpperCAmelCase , UpperCAmelCase = get_sqrt_alpha_prod(__A , __A , __A , __A ) UpperCAmelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _lowerCAmelCase( __A , __A , __A , __A ): UpperCAmelCase , UpperCAmelCase = get_sqrt_alpha_prod(__A , __A , __A , __A ) UpperCAmelCase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
1
def _lowerCAmelCase( __A ): if not isinstance(__A , __A ): raise TypeError("only integers accepted as input" ) else: UpperCAmelCase = str(abs(__A ) ) UpperCAmelCase = [list(__A ) for char in range(len(__A ) )] for index in range(len(__A ) ): num_transpositions[index].pop(__A ) return max( int("".join(list(__A ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
1
1
from __future__ import annotations lowerCAmelCase__ = "#" class __magic_name__ : def __init__( self : List[str] ) -> None: UpperCAmelCase = {} def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : str ) -> None: UpperCAmelCase = self._trie for char in text: if char not in trie: UpperCAmelCase = {} UpperCAmelCase = trie[char] UpperCAmelCase = True def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : str ) -> tuple | list: UpperCAmelCase = self._trie for char in prefix: if char in trie: UpperCAmelCase = trie[char] else: return [] return self._elements(lowerCAmelCase__ ) def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : dict ) -> tuple: UpperCAmelCase = [] for c, v in d.items(): UpperCAmelCase = [" "] if c == END else [(c + s) for s in self._elements(lowerCAmelCase__ )] result.extend(lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) lowerCAmelCase__ = Trie() lowerCAmelCase__ = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def _lowerCAmelCase( __A ): UpperCAmelCase = trie.find_word(__A ) return tuple(string + word for word in suffixes ) def _lowerCAmelCase( ): print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
1
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor lowerCAmelCase__ = logging.getLogger(__name__) lowerCAmelCase__ = 50 # max width of layer names lowerCAmelCase__ = 70 # max width of quantizer names def _lowerCAmelCase( __A ): UpperCAmelCase = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=__A , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=__A , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=__A , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=__A , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=__A , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=__A , type=__A , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=__A , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def _lowerCAmelCase( __A ): if args.calibrator == "max": UpperCAmelCase = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) UpperCAmelCase = "histogram" elif args.calibrator == "mse": UpperCAmelCase = "histogram" else: raise ValueError(F"Invalid calibrator {args.calibrator}" ) UpperCAmelCase = QuantDescriptor(num_bits=args.aprec , calib_method=__A ) UpperCAmelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__A ) quant_nn.QuantLinear.set_default_quant_desc_weight(__A ) def _lowerCAmelCase( __A , __A , __A=False , __A=False ): logger.info("Configuring Model for Quantization" ) logger.info(F"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__A , ["embeddings"] , which="weight" , _disabled=__A ) if args.quant_disable: set_quantizer_by_name(__A , [""] , _disabled=__A ) if args.quant_disable_keyword: set_quantizer_by_name(__A , args.quant_disable_keyword , _disabled=__A ) if args.quant_disable_layer_module: set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=__A ) if args.quant_enable_layer_module: set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=__A ) if args.recalibrate_weights: recalibrate_weights(__A ) if args.fuse_qkv: fuse_qkv(__A , __A ) if args.clip_gelu: clip_gelu(__A , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__A ) def _lowerCAmelCase( __A ): logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:80}: {module}" ) def _lowerCAmelCase( __A , __A ): logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__A ) def _lowerCAmelCase( __A , __A ): def fusea(__A , __A , __A ): for mod in [qq, qk, qv]: if not hasattr(__A , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return UpperCAmelCase = qq._amax.detach().item() UpperCAmelCase = qk._amax.detach().item() UpperCAmelCase = qv._amax.detach().item() UpperCAmelCase = max(__A , __A , __A ) qq._amax.fill_(__A ) qk._amax.fill_(__A ) qv._amax.fill_(__A ) logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(F"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _lowerCAmelCase( __A , __A ): for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__A ) UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def _lowerCAmelCase( __A ): for name, mod in model.named_modules(): if hasattr(__A , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: UpperCAmelCase = mod.weight.shape[0] UpperCAmelCase = mod._weight_quantizer._amax.detach() UpperCAmelCase = torch.ones(__A , dtype=amax.dtype , device=amax.device ) * amax print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def _lowerCAmelCase( __A ): for name, mod in model.named_modules(): if hasattr(__A , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCAmelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) UpperCAmelCase = set(range(len(mod.weight.size() ) ) ) - axis_set UpperCAmelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__A , keepdims=__A ).detach() logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) UpperCAmelCase = amax def _lowerCAmelCase( __A , __A=25 , __A=180 , __A=None ): if ignore is None: UpperCAmelCase = [] elif not isinstance(__A , __A ): UpperCAmelCase = [ignore] UpperCAmelCase = 0 for name, mod in model.named_modules(): if not hasattr(__A , "weight" ): continue UpperCAmelCase = max(__A , len(__A ) ) for name, mod in model.named_modules(): UpperCAmelCase = getattr(__A , "_input_quantizer" , __A ) UpperCAmelCase = getattr(__A , "_weight_quantizer" , __A ) if not hasattr(__A , "weight" ): continue if type(__A ) in ignore: continue if [True for s in ignore if type(__A ) is str and s in name]: continue UpperCAmelCase = F"Act:{input_q.extra_repr()}" UpperCAmelCase = F"Wgt:{weight_q.extra_repr()}" UpperCAmelCase = F"{name:{name_width}} {act_str} {wgt_str}" if len(__A ) <= line_width: logger.info(__A ) else: logger.info(F"{name:{name_width}} {act_str}" ) logger.info(F"{' ':{name_width}} {wgt_str}" ) def _lowerCAmelCase( __A ): UpperCAmelCase = 0 for name, mod in model.named_modules(): if isinstance(__A , pytorch_quantization.nn.TensorQuantizer ): print(F"{name:80} {mod}" ) count += 1 print(F"{count} TensorQuantizers found in model" ) def _lowerCAmelCase( __A , __A , __A , __A , __A ): UpperCAmelCase = getattr(__A , __A , __A ) if quantizer_mod is not None: assert hasattr(__A , __A ) setattr(__A , __A , __A ) else: logger.warning(F"{name} has no {quantizer}" ) def _lowerCAmelCase( __A , __A , __A="both" , **__A ): UpperCAmelCase = F"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += F" {k}={v}" if which in ["input", "both"]: set_quantizer(__A , __A , "_input_quantizer" , __A , __A ) if which in ["weight", "both"]: set_quantizer(__A , __A , "_weight_quantizer" , __A , __A ) logger.info(__A ) def _lowerCAmelCase( __A , __A , **__A ): for name, mod in model.named_modules(): if hasattr(__A , "_input_quantizer" ) or hasattr(__A , "_weight_quantizer" ): for n in names: if re.search(__A , __A ): set_quantizers(__A , __A , **__A ) elif name.endswith("_quantizer" ): for n in names: if re.search(__A , __A ): UpperCAmelCase = F"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += F" {k}={v}" setattr(__A , __A , __A ) logger.info(__A )
1
1
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCAmelCase__ = "\\n\n" lowerCAmelCase__ = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" lowerCAmelCase__ = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def _UpperCamelCase ( self : Any ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "input_texts": datasets.Value("string" ), } ) , reference_urls=["https://huggingface.co/docs/transformers/perplexity"] , ) def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int = 1_6 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Any]=None ) -> int: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCAmelCase = "cuda" else: UpperCAmelCase = "cuda" if torch.cuda.is_available() else "cpu" UpperCAmelCase = AutoModelForCausalLM.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase = model.to(lowerCAmelCase__ ) UpperCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(lowerCAmelCase__ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCAmelCase = model.config.max_length - 1 else: UpperCAmelCase = model.config.max_length UpperCAmelCase = tokenizer( lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors="pt" , return_attention_mask=lowerCAmelCase__ , ).to(lowerCAmelCase__ ) UpperCAmelCase = encodings["input_ids"] UpperCAmelCase = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCAmelCase = [] UpperCAmelCase = CrossEntropyLoss(reduction="none" ) for start_index in logging.tqdm(range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) ): UpperCAmelCase = min(start_index + batch_size , len(lowerCAmelCase__ ) ) UpperCAmelCase = encoded_texts[start_index:end_index] UpperCAmelCase = attn_masks[start_index:end_index] if add_start_token: UpperCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(lowerCAmelCase__ ) UpperCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(lowerCAmelCase__ ), attn_mask] , dim=1 ) UpperCAmelCase = encoded_batch with torch.no_grad(): UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ).logits UpperCAmelCase = out_logits[..., :-1, :].contiguous() UpperCAmelCase = labels[..., 1:].contiguous() UpperCAmelCase = attn_mask[..., 1:].contiguous() UpperCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , lowerCAmelCase__ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(lowerCAmelCase__ )}
1
def _lowerCAmelCase( __A ): assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(__A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , __A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
1
1
from __future__ import annotations from collections.abc import Callable lowerCAmelCase__ = list[list[float | int]] def _lowerCAmelCase( __A , __A ): UpperCAmelCase = len(__A ) UpperCAmelCase = [[0 for _ in range(size + 1 )] for _ in range(__A )] UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 for row in range(__A ): for col in range(__A ): UpperCAmelCase = matrix[row][col] UpperCAmelCase = vector[row][0] UpperCAmelCase = 0 UpperCAmelCase = 0 while row < size and col < size: # pivoting UpperCAmelCase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__A , __A ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: UpperCAmelCase , UpperCAmelCase = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __A ): UpperCAmelCase = augmented[rowa][col] / augmented[row][col] UpperCAmelCase = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __A ): for row in range(__A ): UpperCAmelCase = augmented[row][col] / augmented[col][col] for cola in range(__A , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__A ) ] def _lowerCAmelCase( __A ): UpperCAmelCase = len(__A ) UpperCAmelCase = [[0 for _ in range(__A )] for _ in range(__A )] UpperCAmelCase = [[0] for _ in range(__A )] UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 for x_val, y_val in enumerate(__A ): for col in range(__A ): UpperCAmelCase = (x_val + 1) ** (size - col - 1) UpperCAmelCase = y_val UpperCAmelCase = solve(__A , __A ) def interpolated_func(__A ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__A ) ) return interpolated_func def _lowerCAmelCase( __A ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def _lowerCAmelCase( __A = question_function , __A = 10 ): UpperCAmelCase = [func(__A ) for x_val in range(1 , order + 1 )] UpperCAmelCase = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] UpperCAmelCase = 0 UpperCAmelCase = 42 UpperCAmelCase = 42 for poly in polynomials: UpperCAmelCase = 1 while func(__A ) == poly(__A ): x_val += 1 ret += poly(__A ) return ret if __name__ == "__main__": print(f"{solution() = }")
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase__ = get_tests_dir("fixtures") class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: # A mock response for an HTTP head request to emulate server down UpperCAmelCase = mock.Mock() UpperCAmelCase = 5_0_0 UpperCAmelCase = {} UpperCAmelCase = HTTPError UpperCAmelCase = {} # Download this model to make sure it's in the cache. UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCAmelCase__ ) as mock_head: UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def _UpperCamelCase ( self : List[Any] ) -> Dict: # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class __magic_name__ ( unittest.TestCase ): @classmethod def _UpperCamelCase ( cls : List[str] ) -> List[Any]: UpperCAmelCase = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def _UpperCamelCase ( cls : Optional[int] ) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def _UpperCamelCase ( self : Any ) -> Any: UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ ) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase__ , repo_id="test-feature-extractor" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def _UpperCamelCase ( self : List[Any] ) -> Tuple: UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase__ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def _UpperCamelCase ( self : Dict ) -> List[str]: CustomFeatureExtractor.register_for_auto_class() UpperCAmelCase = CustomFeatureExtractor.from_pretrained(lowerCAmelCase__ ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) UpperCAmelCase = AutoFeatureExtractor.from_pretrained( f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=lowerCAmelCase__ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
1
1
from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=_snake_case ): UpperCAmelCase = ["""flax""", """transformers"""] def __init__( self : str , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Any ) -> Union[str, Any]: requires_backends(self , ["flax", "transformers"] ) @classmethod def _UpperCamelCase ( cls : Union[str, Any] , *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : Tuple ) -> Optional[int]: requires_backends(cls , ["flax", "transformers"] ) @classmethod def _UpperCamelCase ( cls : List[str] , *lowerCAmelCase__ : str , **lowerCAmelCase__ : Union[str, Any] ) -> Any: requires_backends(cls , ["flax", "transformers"] ) class __magic_name__ ( metaclass=_snake_case ): UpperCAmelCase = ["""flax""", """transformers"""] def __init__( self : List[str] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ["flax", "transformers"] ) @classmethod def _UpperCamelCase ( cls : List[str] , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Any ) -> Optional[Any]: requires_backends(cls , ["flax", "transformers"] ) @classmethod def _UpperCamelCase ( cls : List[str] , *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : Tuple ) -> int: requires_backends(cls , ["flax", "transformers"] ) class __magic_name__ ( metaclass=_snake_case ): UpperCAmelCase = ["""flax""", """transformers"""] def __init__( self : Dict , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : List[Any] ) -> Optional[int]: requires_backends(self , ["flax", "transformers"] ) @classmethod def _UpperCamelCase ( cls : Tuple , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : List[Any] ) -> Tuple: requires_backends(cls , ["flax", "transformers"] ) @classmethod def _UpperCamelCase ( cls : Any , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Any ) -> Optional[int]: requires_backends(cls , ["flax", "transformers"] ) class __magic_name__ ( metaclass=_snake_case ): UpperCAmelCase = ["""flax""", """transformers"""] def __init__( self : Optional[int] , *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : List[Any] ) -> int: requires_backends(self , ["flax", "transformers"] ) @classmethod def _UpperCamelCase ( cls : List[Any] , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Optional[Any] ) -> List[Any]: requires_backends(cls , ["flax", "transformers"] ) @classmethod def _UpperCamelCase ( cls : Optional[Any] , *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : int ) -> List[str]: requires_backends(cls , ["flax", "transformers"] )
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCAmelCase__ = "src/diffusers" # Matches is_xxx_available() lowerCAmelCase__ = re.compile(r"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla lowerCAmelCase__ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") lowerCAmelCase__ = "\n{0} = None\n" lowerCAmelCase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" lowerCAmelCase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def _lowerCAmelCase( __A ): UpperCAmelCase = _re_backend.findall(__A ) if len(__A ) == 0: return None return "_and_".join(__A ) def _lowerCAmelCase( ): with open(os.path.join(__A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase = f.readlines() # Get to the point we do the actual imports for type checking UpperCAmelCase = 0 UpperCAmelCase = {} # Go through the end of the file while line_index < len(__A ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCAmelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 UpperCAmelCase = [] # Until we unindent, add backend objects to the list while line_index < len(__A ) and len(lines[line_index] ) > 1: UpperCAmelCase = lines[line_index] UpperCAmelCase = _re_single_line_import.search(__A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__A ) > 0: UpperCAmelCase = objects else: line_index += 1 return backend_specific_objects def _lowerCAmelCase( __A , __A ): if name.isupper(): return DUMMY_CONSTANT.format(__A ) elif name.islower(): return DUMMY_FUNCTION.format(__A , __A ) else: return DUMMY_CLASS.format(__A , __A ) def _lowerCAmelCase( __A=None ): if backend_specific_objects is None: UpperCAmelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCAmelCase = {} for backend, objects in backend_specific_objects.items(): UpperCAmelCase = "[" + ", ".join(F"\"{b}\"" for b in backend.split("_and_" ) ) + "]" UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__A , __A ) for o in objects] ) UpperCAmelCase = dummy_file return dummy_files def _lowerCAmelCase( __A=False ): UpperCAmelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCAmelCase = {"torch": "pt"} # Locate actual dummy modules and read their content. UpperCAmelCase = os.path.join(__A , "utils" ) UpperCAmelCase = { backend: os.path.join(__A , F"dummy_{short_names.get(__A , __A )}_objects.py" ) for backend in dummy_files.keys() } UpperCAmelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__A ): with open(__A , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase = f.read() else: UpperCAmelCase = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"Updating diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py as the main " "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F"diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py. Run `make fix-copies` " "to fix this." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCAmelCase__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
1
1
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowerCAmelCase__ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowerCAmelCase__ = [ord(letter) for letter in string.ascii_lowercase] lowerCAmelCase__ = {ord(char) for char in VALID_CHARS} lowerCAmelCase__ = ["the", "be", "to", "of", "and", "in", "that", "have"] def _lowerCAmelCase( __A , __A ): UpperCAmelCase = "" UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 for keychar, cipherchar in zip(cycle(__A ) , __A ): UpperCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__A ) return decoded def _lowerCAmelCase( __A ): UpperCAmelCase = [] for key in product(__A , repeat=3 ): UpperCAmelCase = try_key(__A , __A ) if encoded is not None: possibles.append(__A ) return possibles def _lowerCAmelCase( __A , __A ): return [possible for possible in possibles if common_word in possible.lower()] def _lowerCAmelCase( __A = "p059_cipher.txt" ): UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = Path(__A ).parent.joinpath(__A ).read_text(encoding="utf-8" ) UpperCAmelCase = [int(__A ) for number in data.strip().split("," )] UpperCAmelCase = filter_valid_chars(__A ) for common_word in COMMON_WORDS: UpperCAmelCase = filter_common_word(__A , __A ) if len(__A ) == 1: break UpperCAmelCase = possibles[0] return sum(ord(__A ) for char in decoded_text ) if __name__ == "__main__": print(f"{solution() = }")
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class __magic_name__ ( _snake_case , _snake_case ): UpperCAmelCase = """convnextv2""" def __init__( self : Optional[Any] , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Dict=1e-1_2 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : str=2_2_4 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[Any] , ) -> List[Any]: super().__init__(**lowerCAmelCase__ ) UpperCAmelCase = num_channels UpperCAmelCase = patch_size UpperCAmelCase = num_stages UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes UpperCAmelCase = [3, 3, 9, 3] if depths is None else depths UpperCAmelCase = hidden_act UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = drop_path_rate UpperCAmelCase = image_size UpperCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
1
1
# flake8: noqa # Lint as: python3 lowerCAmelCase__ = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
1
lowerCAmelCase__ = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCAmelCase__ = [{"type": "code", "content": INSTALL_CONTENT}] lowerCAmelCase__ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
1
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCAmelCase__ = "src/diffusers" # Matches is_xxx_available() lowerCAmelCase__ = re.compile(r"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla lowerCAmelCase__ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") lowerCAmelCase__ = "\n{0} = None\n" lowerCAmelCase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" lowerCAmelCase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def _lowerCAmelCase( __A ): UpperCAmelCase = _re_backend.findall(__A ) if len(__A ) == 0: return None return "_and_".join(__A ) def _lowerCAmelCase( ): with open(os.path.join(__A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase = f.readlines() # Get to the point we do the actual imports for type checking UpperCAmelCase = 0 UpperCAmelCase = {} # Go through the end of the file while line_index < len(__A ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCAmelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 UpperCAmelCase = [] # Until we unindent, add backend objects to the list while line_index < len(__A ) and len(lines[line_index] ) > 1: UpperCAmelCase = lines[line_index] UpperCAmelCase = _re_single_line_import.search(__A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__A ) > 0: UpperCAmelCase = objects else: line_index += 1 return backend_specific_objects def _lowerCAmelCase( __A , __A ): if name.isupper(): return DUMMY_CONSTANT.format(__A ) elif name.islower(): return DUMMY_FUNCTION.format(__A , __A ) else: return DUMMY_CLASS.format(__A , __A ) def _lowerCAmelCase( __A=None ): if backend_specific_objects is None: UpperCAmelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCAmelCase = {} for backend, objects in backend_specific_objects.items(): UpperCAmelCase = "[" + ", ".join(F"\"{b}\"" for b in backend.split("_and_" ) ) + "]" UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__A , __A ) for o in objects] ) UpperCAmelCase = dummy_file return dummy_files def _lowerCAmelCase( __A=False ): UpperCAmelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCAmelCase = {"torch": "pt"} # Locate actual dummy modules and read their content. UpperCAmelCase = os.path.join(__A , "utils" ) UpperCAmelCase = { backend: os.path.join(__A , F"dummy_{short_names.get(__A , __A )}_objects.py" ) for backend in dummy_files.keys() } UpperCAmelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__A ): with open(__A , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase = f.read() else: UpperCAmelCase = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"Updating diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py as the main " "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F"diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py. Run `make fix-copies` " "to fix this." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCAmelCase__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ ( _snake_case , unittest.TestCase ): UpperCAmelCase = KandinskyInpaintPipeline UpperCAmelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCAmelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCAmelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCAmelCase = False @property def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple: return 3_2 @property def _UpperCamelCase ( self : int ) -> List[Any]: return 3_2 @property def _UpperCamelCase ( self : List[Any] ) -> List[Any]: return self.time_input_dim @property def _UpperCamelCase ( self : Tuple ) -> Tuple: return self.time_input_dim * 4 @property def _UpperCamelCase ( self : Any ) -> Optional[int]: return 1_0_0 @property def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]: UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def _UpperCamelCase ( self : int ) -> Dict: torch.manual_seed(0 ) UpperCAmelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) UpperCAmelCase = MultilingualCLIP(lowerCAmelCase__ ) UpperCAmelCase = text_encoder.eval() return text_encoder @property def _UpperCamelCase ( self : Dict ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def _UpperCamelCase ( self : str ) -> Optional[Any]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _UpperCamelCase ( self : Dict ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCamelCase ( self : Tuple ) -> Any: UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = self.dummy_tokenizer UpperCAmelCase = self.dummy_unet UpperCAmelCase = self.dummy_movq UpperCAmelCase = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCAmelCase__ , ) UpperCAmelCase = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=0 ) -> str: UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase__ ) # create init_image UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) # create mask UpperCAmelCase = np.ones((6_4, 6_4) , dtype=np.floataa ) UpperCAmelCase = 0 if str(lowerCAmelCase__ ).startswith("mps" ): UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ ) else: UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) UpperCAmelCase = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def _UpperCamelCase ( self : Dict ) -> List[str]: UpperCAmelCase = "cpu" UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__ ) UpperCAmelCase = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) UpperCAmelCase = output.images UpperCAmelCase = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase = np.array( [0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def _UpperCamelCase ( self : str ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : str ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : Tuple ) -> int: UpperCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) UpperCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) UpperCAmelCase = 0 UpperCAmelCase = "a hat" UpperCAmelCase = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) UpperCAmelCase = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) UpperCAmelCase = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase = pipeline( lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="np" , ) UpperCAmelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
1
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
1
def _lowerCAmelCase( __A , __A ): return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def _lowerCAmelCase( __A , __A=0 ): return sorted(__A , key=lambda __A : x[column] ) def _lowerCAmelCase( __A , __A , __A=float("inf" ) ): for i in range(points_counts - 1 ): for j in range(i + 1 , __A ): UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase = current_dis return min_dis def _lowerCAmelCase( __A , __A , __A=float("inf" ) ): for i in range(min(6 , points_counts - 1 ) , __A ): for j in range(max(0 , i - 6 ) , __A ): UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase = current_dis return min_dis def _lowerCAmelCase( __A , __A , __A ): # base case if points_counts <= 3: return dis_between_closest_pair(__A , __A ) # recursion UpperCAmelCase = points_counts // 2 UpperCAmelCase = closest_pair_of_points_sqr( __A , points_sorted_on_y[:mid] , __A ) UpperCAmelCase = closest_pair_of_points_sqr( __A , points_sorted_on_y[mid:] , points_counts - mid ) UpperCAmelCase = min(__A , __A ) UpperCAmelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(__A ) UpperCAmelCase = dis_between_closest_in_strip( __A , len(__A ) , __A ) return min(__A , __A ) def _lowerCAmelCase( __A , __A ): UpperCAmelCase = column_based_sort(__A , column=0 ) UpperCAmelCase = column_based_sort(__A , column=1 ) return ( closest_pair_of_points_sqr( __A , __A , __A ) ) ** 0.5 if __name__ == "__main__": lowerCAmelCase__ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
1
1
def _lowerCAmelCase( __A ): UpperCAmelCase = [] UpperCAmelCase = set({"(", "[", "{"} ) UpperCAmelCase = set({")", "]", "}"} ) UpperCAmelCase = {"{": "}", "[": "]", "(": ")"} for i in range(len(__A ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(__A ) == 0 or (len(__A ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(__A ) == 0 def _lowerCAmelCase( ): UpperCAmelCase = input("Enter sequence of brackets: " ) if is_balanced(__A ): print(__A , "is balanced" ) else: print(__A , "is not balanced" ) if __name__ == "__main__": main()
1
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __magic_name__ : def __init__( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase = "" UpperCAmelCase = "" UpperCAmelCase = [] UpperCAmelCase = 0 UpperCAmelCase = 2_5_6 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Optional[Any] ) -> List[str]: UpperCAmelCase = cva.imread(lowerCAmelCase__ , 0 ) UpperCAmelCase = copy.deepcopy(self.img ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="x" ) UpperCAmelCase = np.sum(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase = x[i] / self.k self.sk += prk UpperCAmelCase = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase = int(last % last ) UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCAmelCase__ ) UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def _UpperCamelCase ( self : str ) -> int: plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def _UpperCamelCase ( self : Dict ) -> Optional[Any]: cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase__ = os.path.join(os.path.basename(__file__), "image_data/input.jpg") lowerCAmelCase__ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
1
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} lowerCAmelCase__ = { "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } lowerCAmelCase__ = { "allenai/longformer-base-4096": 4096, "allenai/longformer-large-4096": 4096, "allenai/longformer-large-4096-finetuned-triviaqa": 4096, "allenai/longformer-base-4096-extra.pos.embd.only": 4096, "allenai/longformer-large-4096-extra.pos.embd.only": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _lowerCAmelCase( ): UpperCAmelCase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) UpperCAmelCase = bs[:] UpperCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 UpperCAmelCase = [chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def _lowerCAmelCase( __A ): UpperCAmelCase = set() UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase = char return pairs class __magic_name__ ( _snake_case ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple="replace" , lowerCAmelCase__ : str="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Dict="<s>" , lowerCAmelCase__ : Dict="<unk>" , lowerCAmelCase__ : Optional[Any]="<pad>" , lowerCAmelCase__ : int="<mask>" , lowerCAmelCase__ : str=False , **lowerCAmelCase__ : List[Any] , ) -> List[str]: UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8" ) as vocab_handle: UpperCAmelCase = json.load(lowerCAmelCase__ ) UpperCAmelCase = {v: k for k, v in self.encoder.items()} UpperCAmelCase = errors # how to handle errors in decoding UpperCAmelCase = bytes_to_unicode() UpperCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8" ) as merges_handle: UpperCAmelCase = merges_handle.read().split("\n" )[1:-1] UpperCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) UpperCAmelCase = {} UpperCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _UpperCamelCase ( self : List[Any] ) -> Optional[int]: return len(self.encoder ) def _UpperCamelCase ( self : Optional[int] ) -> str: return dict(self.encoder , **self.added_tokens_encoder ) def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Optional[int] ) -> int: if token in self.cache: return self.cache[token] UpperCAmelCase = tuple(lowerCAmelCase__ ) UpperCAmelCase = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: UpperCAmelCase = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase = bigram UpperCAmelCase = [] UpperCAmelCase = 0 while i < len(lowerCAmelCase__ ): try: UpperCAmelCase = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase = tuple(lowerCAmelCase__ ) UpperCAmelCase = new_word if len(lowerCAmelCase__ ) == 1: break else: UpperCAmelCase = get_pairs(lowerCAmelCase__ ) UpperCAmelCase = " ".join(lowerCAmelCase__ ) UpperCAmelCase = word return word def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : List[str] ) -> str: UpperCAmelCase = [] for token in re.findall(self.pat , lowerCAmelCase__ ): UpperCAmelCase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def _UpperCamelCase ( self : str , lowerCAmelCase__ : List[str] ) -> str: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : Dict ) -> Tuple: return self.decoder.get(lowerCAmelCase__ ) def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Dict ) -> Tuple: UpperCAmelCase = "".join(lowerCAmelCase__ ) UpperCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _UpperCamelCase ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + "\n" ) UpperCAmelCase = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) UpperCAmelCase = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def _UpperCamelCase ( self : Any , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCamelCase ( self : str , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int]=False , **lowerCAmelCase__ : List[Any] ) -> str: UpperCAmelCase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): UpperCAmelCase = " " + text return (text, kwargs)
1
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( _snake_case , unittest.TestCase ): UpperCAmelCase = LEDTokenizer UpperCAmelCase = LEDTokenizerFast UpperCAmelCase = True def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: super().setUp() UpperCAmelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCAmelCase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) UpperCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCAmelCase = {"unk_token": "<unk>"} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def _UpperCamelCase ( self : Union[str, Any] , **lowerCAmelCase__ : Optional[int] ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _UpperCamelCase ( self : str , **lowerCAmelCase__ : str ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[Any] ) -> List[Any]: return "lower newer", "lower newer" @cached_property def _UpperCamelCase ( self : Dict ) -> str: return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def _UpperCamelCase ( self : int ) -> Tuple: return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def _UpperCamelCase ( self : Tuple ) -> List[str]: UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCAmelCase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @require_torch def _UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt" ) self.assertIn("input_ids" , lowerCAmelCase__ ) self.assertIn("attention_mask" , lowerCAmelCase__ ) self.assertNotIn("labels" , lowerCAmelCase__ ) self.assertNotIn("decoder_attention_mask" , lowerCAmelCase__ ) @require_torch def _UpperCamelCase ( self : int ) -> int: UpperCAmelCase = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , max_length=3_2 , padding="max_length" , return_tensors="pt" ) self.assertEqual(3_2 , targets["input_ids"].shape[1] ) @require_torch def _UpperCamelCase ( self : Any ) -> int: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer( ["I am a small frog" * 1_0_2_4, "I am a small frog"] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) ) @require_torch def _UpperCamelCase ( self : Dict ) -> Tuple: UpperCAmelCase = ["A long paragraph for summarization."] UpperCAmelCase = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase = inputs["input_ids"] UpperCAmelCase = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = ["Summary of the text.", "Another summary."] UpperCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ ) UpperCAmelCase = [[0] * len(lowerCAmelCase__ ) for x in encoded_output["input_ids"]] UpperCAmelCase = tokenizer.pad(lowerCAmelCase__ ) self.assertSequenceEqual(outputs["global_attention_mask"] , lowerCAmelCase__ ) def _UpperCamelCase ( self : List[str] ) -> int: pass def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCAmelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCAmelCase = "A, <mask> AllenNLP sentence." UpperCAmelCase = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) UpperCAmelCase = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
1
1
def _lowerCAmelCase( __A = 4000000 ): UpperCAmelCase = [] UpperCAmelCase , UpperCAmelCase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__A ) UpperCAmelCase , UpperCAmelCase = b, a + b return sum(__A ) if __name__ == "__main__": print(f"{solution() = }")
1
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase__ = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowerCAmelCase__ = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowerCAmelCase__ = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowerCAmelCase__ = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def _UpperCamelCase ( self : int ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : List[Any] ) -> Dict: import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=0.9 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Optional[int]=0.5 ) -> Any: if NLTK_VERSION >= version.Version("3.6.5" ): UpperCAmelCase = [ meteor_score.single_meteor_score( word_tokenize(lowerCAmelCase__ ) , word_tokenize(lowerCAmelCase__ ) , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ ) for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] else: UpperCAmelCase = [ meteor_score.single_meteor_score(lowerCAmelCase__ , lowerCAmelCase__ , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ ) for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] return {"meteor": np.mean(lowerCAmelCase__ )}
1
1
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor lowerCAmelCase__ = logging.getLogger(__name__) lowerCAmelCase__ = 50 # max width of layer names lowerCAmelCase__ = 70 # max width of quantizer names def _lowerCAmelCase( __A ): UpperCAmelCase = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=__A , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=__A , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=__A , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=__A , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=__A , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=__A , type=__A , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=__A , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def _lowerCAmelCase( __A ): if args.calibrator == "max": UpperCAmelCase = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) UpperCAmelCase = "histogram" elif args.calibrator == "mse": UpperCAmelCase = "histogram" else: raise ValueError(F"Invalid calibrator {args.calibrator}" ) UpperCAmelCase = QuantDescriptor(num_bits=args.aprec , calib_method=__A ) UpperCAmelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__A ) quant_nn.QuantLinear.set_default_quant_desc_weight(__A ) def _lowerCAmelCase( __A , __A , __A=False , __A=False ): logger.info("Configuring Model for Quantization" ) logger.info(F"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__A , ["embeddings"] , which="weight" , _disabled=__A ) if args.quant_disable: set_quantizer_by_name(__A , [""] , _disabled=__A ) if args.quant_disable_keyword: set_quantizer_by_name(__A , args.quant_disable_keyword , _disabled=__A ) if args.quant_disable_layer_module: set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=__A ) if args.quant_enable_layer_module: set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=__A ) if args.recalibrate_weights: recalibrate_weights(__A ) if args.fuse_qkv: fuse_qkv(__A , __A ) if args.clip_gelu: clip_gelu(__A , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__A ) def _lowerCAmelCase( __A ): logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:80}: {module}" ) def _lowerCAmelCase( __A , __A ): logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__A ) def _lowerCAmelCase( __A , __A ): def fusea(__A , __A , __A ): for mod in [qq, qk, qv]: if not hasattr(__A , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return UpperCAmelCase = qq._amax.detach().item() UpperCAmelCase = qk._amax.detach().item() UpperCAmelCase = qv._amax.detach().item() UpperCAmelCase = max(__A , __A , __A ) qq._amax.fill_(__A ) qk._amax.fill_(__A ) qv._amax.fill_(__A ) logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(F"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _lowerCAmelCase( __A , __A ): for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__A ) UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def _lowerCAmelCase( __A ): for name, mod in model.named_modules(): if hasattr(__A , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: UpperCAmelCase = mod.weight.shape[0] UpperCAmelCase = mod._weight_quantizer._amax.detach() UpperCAmelCase = torch.ones(__A , dtype=amax.dtype , device=amax.device ) * amax print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def _lowerCAmelCase( __A ): for name, mod in model.named_modules(): if hasattr(__A , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCAmelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) UpperCAmelCase = set(range(len(mod.weight.size() ) ) ) - axis_set UpperCAmelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__A , keepdims=__A ).detach() logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) UpperCAmelCase = amax def _lowerCAmelCase( __A , __A=25 , __A=180 , __A=None ): if ignore is None: UpperCAmelCase = [] elif not isinstance(__A , __A ): UpperCAmelCase = [ignore] UpperCAmelCase = 0 for name, mod in model.named_modules(): if not hasattr(__A , "weight" ): continue UpperCAmelCase = max(__A , len(__A ) ) for name, mod in model.named_modules(): UpperCAmelCase = getattr(__A , "_input_quantizer" , __A ) UpperCAmelCase = getattr(__A , "_weight_quantizer" , __A ) if not hasattr(__A , "weight" ): continue if type(__A ) in ignore: continue if [True for s in ignore if type(__A ) is str and s in name]: continue UpperCAmelCase = F"Act:{input_q.extra_repr()}" UpperCAmelCase = F"Wgt:{weight_q.extra_repr()}" UpperCAmelCase = F"{name:{name_width}} {act_str} {wgt_str}" if len(__A ) <= line_width: logger.info(__A ) else: logger.info(F"{name:{name_width}} {act_str}" ) logger.info(F"{' ':{name_width}} {wgt_str}" ) def _lowerCAmelCase( __A ): UpperCAmelCase = 0 for name, mod in model.named_modules(): if isinstance(__A , pytorch_quantization.nn.TensorQuantizer ): print(F"{name:80} {mod}" ) count += 1 print(F"{count} TensorQuantizers found in model" ) def _lowerCAmelCase( __A , __A , __A , __A , __A ): UpperCAmelCase = getattr(__A , __A , __A ) if quantizer_mod is not None: assert hasattr(__A , __A ) setattr(__A , __A , __A ) else: logger.warning(F"{name} has no {quantizer}" ) def _lowerCAmelCase( __A , __A , __A="both" , **__A ): UpperCAmelCase = F"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += F" {k}={v}" if which in ["input", "both"]: set_quantizer(__A , __A , "_input_quantizer" , __A , __A ) if which in ["weight", "both"]: set_quantizer(__A , __A , "_weight_quantizer" , __A , __A ) logger.info(__A ) def _lowerCAmelCase( __A , __A , **__A ): for name, mod in model.named_modules(): if hasattr(__A , "_input_quantizer" ) or hasattr(__A , "_weight_quantizer" ): for n in names: if re.search(__A , __A ): set_quantizers(__A , __A , **__A ) elif name.endswith("_quantizer" ): for n in names: if re.search(__A , __A ): UpperCAmelCase = F"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += F" {k}={v}" setattr(__A , __A , __A ) logger.info(__A )
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class __magic_name__ ( _snake_case ): UpperCAmelCase = """lxmert""" UpperCAmelCase = {} def __init__( self : int , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : List[str]=7_6_8 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : List[Any]=9_5_0_0 , lowerCAmelCase__ : Any=1_6_0_0 , lowerCAmelCase__ : Union[str, Any]=4_0_0 , lowerCAmelCase__ : Tuple=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : str=1e-1_2 , lowerCAmelCase__ : str=9 , lowerCAmelCase__ : int=5 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : List[Any]=2_0_4_8 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Dict=6.67 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Tuple=True , **lowerCAmelCase__ : List[Any] , ) -> Dict: UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = num_qa_labels UpperCAmelCase = num_object_labels UpperCAmelCase = num_attr_labels UpperCAmelCase = l_layers UpperCAmelCase = x_layers UpperCAmelCase = r_layers UpperCAmelCase = visual_feat_dim UpperCAmelCase = visual_pos_dim UpperCAmelCase = visual_loss_normalizer UpperCAmelCase = task_matched UpperCAmelCase = task_mask_lm UpperCAmelCase = task_obj_predict UpperCAmelCase = task_qa UpperCAmelCase = visual_obj_loss UpperCAmelCase = visual_attr_loss UpperCAmelCase = visual_feat_loss UpperCAmelCase = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**lowerCAmelCase__ )
1
1
def _lowerCAmelCase( __A ): UpperCAmelCase = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def _lowerCAmelCase( __A = 100 ): UpperCAmelCase = 1 UpperCAmelCase = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase = pre_numerator UpperCAmelCase = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase = cur_numerator UpperCAmelCase = e_cont * pre_numerator + temp return sum_digits(__A ) if __name__ == "__main__": print(f"{solution() = }")
1
def _lowerCAmelCase( __A ): UpperCAmelCase = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def _lowerCAmelCase( __A = 100 ): UpperCAmelCase = 1 UpperCAmelCase = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase = pre_numerator UpperCAmelCase = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase = cur_numerator UpperCAmelCase = e_cont * pre_numerator + temp return sum_digits(__A ) if __name__ == "__main__": print(f"{solution() = }")
1
1
def _lowerCAmelCase( __A = "The quick brown fox jumps over the lazy dog" , ): UpperCAmelCase = set() # Replace all the whitespace in our sentence UpperCAmelCase = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__A ) == 26 def _lowerCAmelCase( __A = "The quick brown fox jumps over the lazy dog" , ): UpperCAmelCase = [False] * 26 for char in input_str: if char.islower(): UpperCAmelCase = True elif char.isupper(): UpperCAmelCase = True return all(__A ) def _lowerCAmelCase( __A = "The quick brown fox jumps over the lazy dog" , ): return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _lowerCAmelCase( ): from timeit import timeit UpperCAmelCase = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=__A ) ) print(timeit("is_pangram_faster()" , setup=__A ) ) print(timeit("is_pangram_fastest()" , setup=__A ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
1
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class __magic_name__ ( _snake_case ): UpperCAmelCase = """mgp-str""" def __init__( self : Union[str, Any] , lowerCAmelCase__ : str=[3_2, 1_2_8] , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[str]=2_7 , lowerCAmelCase__ : int=3_8 , lowerCAmelCase__ : List[Any]=5_0_2_5_7 , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : Optional[int]=7_6_8 , lowerCAmelCase__ : Optional[int]=1_2 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : Optional[int]=4.0 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Tuple=1e-5 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : int=0.0 , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : Optional[int]=0.02 , **lowerCAmelCase__ : str , ) -> Dict: super().__init__(**lowerCAmelCase__ ) UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = max_token_length UpperCAmelCase = num_character_labels UpperCAmelCase = num_bpe_labels UpperCAmelCase = num_wordpiece_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = mlp_ratio UpperCAmelCase = distilled UpperCAmelCase = layer_norm_eps UpperCAmelCase = drop_rate UpperCAmelCase = qkv_bias UpperCAmelCase = attn_drop_rate UpperCAmelCase = drop_path_rate UpperCAmelCase = output_aa_attentions UpperCAmelCase = initializer_range
1
import numpy # List of input, output pairs lowerCAmelCase__ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) lowerCAmelCase__ = (((515, 22, 13), 555), ((61, 35, 49), 150)) lowerCAmelCase__ = [2, 4, 1, 5] lowerCAmelCase__ = len(train_data) lowerCAmelCase__ = 0.0_0_9 def _lowerCAmelCase( __A , __A="train" ): return calculate_hypothesis_value(__A , __A ) - output( __A , __A ) def _lowerCAmelCase( __A ): UpperCAmelCase = 0 for i in range(len(__A ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _lowerCAmelCase( __A , __A ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _lowerCAmelCase( __A , __A ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _lowerCAmelCase( __A , __A=m ): UpperCAmelCase = 0 for i in range(__A ): if index == -1: summation_value += _error(__A ) else: summation_value += _error(__A ) * train_data[i][0][index] return summation_value def _lowerCAmelCase( __A ): UpperCAmelCase = summation_of_cost_derivative(__A , __A ) / m return cost_derivative_value def _lowerCAmelCase( ): global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase = 0.000002 UpperCAmelCase = 0 UpperCAmelCase = 0 while True: j += 1 UpperCAmelCase = [0, 0, 0, 0] for i in range(0 , len(__A ) ): UpperCAmelCase = get_cost_derivative(i - 1 ) UpperCAmelCase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __A , __A , atol=__A , rtol=__A , ): break UpperCAmelCase = temp_parameter_vector print(("Number of iterations:", j) ) def _lowerCAmelCase( ): for i in range(len(__A ) ): print(("Actual output value:", output(__A , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(__A , "test" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
1
1
from collections.abc import Generator from math import sin def _lowerCAmelCase( __A ): if len(__A ) != 32: raise ValueError("Input must be of length 32" ) UpperCAmelCase = B"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _lowerCAmelCase( __A ): if i < 0: raise ValueError("Input must be non-negative" ) UpperCAmelCase = format(__A , "08x" )[-8:] UpperCAmelCase = B"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def _lowerCAmelCase( __A ): UpperCAmelCase = B"" for char in message: bit_string += format(__A , "08b" ).encode("utf-8" ) UpperCAmelCase = format(len(__A ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__A ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _lowerCAmelCase( __A ): if len(__A ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(__A ) , 512 ): UpperCAmelCase = bit_string[pos : pos + 512] UpperCAmelCase = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _lowerCAmelCase( __A ): if i < 0: raise ValueError("Input must be non-negative" ) UpperCAmelCase = format(__A , "032b" ) UpperCAmelCase = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(__A , 2 ) def _lowerCAmelCase( __A , __A ): return (a + b) % 2**32 def _lowerCAmelCase( __A , __A ): if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _lowerCAmelCase( __A ): UpperCAmelCase = preprocess(__A ) UpperCAmelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states UpperCAmelCase = 0x6_7_4_5_2_3_0_1 UpperCAmelCase = 0xE_F_C_D_A_B_8_9 UpperCAmelCase = 0x9_8_B_A_D_C_F_E UpperCAmelCase = 0x1_0_3_2_5_4_7_6 UpperCAmelCase = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__A ): UpperCAmelCase = aa UpperCAmelCase = ba UpperCAmelCase = ca UpperCAmelCase = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f UpperCAmelCase = d ^ (b & (c ^ d)) UpperCAmelCase = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f UpperCAmelCase = c ^ (d & (b ^ c)) UpperCAmelCase = (5 * i + 1) % 16 elif i <= 47: UpperCAmelCase = b ^ c ^ d UpperCAmelCase = (3 * i + 5) % 16 else: UpperCAmelCase = c ^ (b | not_aa(__A )) UpperCAmelCase = (7 * i) % 16 UpperCAmelCase = (f + a + added_consts[i] + block_words[g]) % 2**32 UpperCAmelCase = d UpperCAmelCase = c UpperCAmelCase = b UpperCAmelCase = sum_aa(__A , left_rotate_aa(__A , shift_amounts[i] ) ) # Add hashed chunk to running total UpperCAmelCase = sum_aa(__A , __A ) UpperCAmelCase = sum_aa(__A , __A ) UpperCAmelCase = sum_aa(__A , __A ) UpperCAmelCase = sum_aa(__A , __A ) UpperCAmelCase = reformat_hex(__A ) + reformat_hex(__A ) + reformat_hex(__A ) + reformat_hex(__A ) return digest if __name__ == "__main__": import doctest doctest.testmod()
1
def _lowerCAmelCase( __A , __A , __A ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__A , n - 1 , __A ) * a) % mod else: UpperCAmelCase = binary_exponentiation(__A , n / 2 , __A ) return (b * b) % mod # a prime number lowerCAmelCase__ = 701 lowerCAmelCase__ = 1000000000 lowerCAmelCase__ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
1
1
from __future__ import annotations from collections.abc import Callable def _lowerCAmelCase( __A , __A , __A , __A = 100 , ): UpperCAmelCase = x_start UpperCAmelCase = fnc(__A ) UpperCAmelCase = 0.0 for _ in range(__A ): # Approximates small segments of curve as linear and solve # for trapezoidal area UpperCAmelCase = (x_end - x_start) / steps + xa UpperCAmelCase = fnc(__A ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step UpperCAmelCase = xa UpperCAmelCase = fxa return area if __name__ == "__main__": def _lowerCAmelCase( __A ): return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") lowerCAmelCase__ = 10 while i <= 100000: print(f"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 10
1
lowerCAmelCase__ = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } lowerCAmelCase__ = {value: key for key, value in encode_dict.items()} def _lowerCAmelCase( __A ): UpperCAmelCase = "" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces" ) return encoded def _lowerCAmelCase( __A ): if set(__A ) - {"A", "B", " "} != set(): raise Exception("decode() accepts only 'A', 'B' and spaces" ) UpperCAmelCase = "" for word in coded.split(): while len(__A ) != 0: decoded += decode_dict[word[:5]] UpperCAmelCase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
1
1
def _lowerCAmelCase( __A ): assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(__A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , __A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
1
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase__ = {"UserAgent": UserAgent().random} def _lowerCAmelCase( __A ): UpperCAmelCase = script.contents[0] UpperCAmelCase = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __magic_name__ : def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Any: UpperCAmelCase = f"https://www.instagram.com/{username}/" UpperCAmelCase = self.get_json() def _UpperCamelCase ( self : List[str] ) -> dict: UpperCAmelCase = requests.get(self.url , headers=lowerCAmelCase__ ).text UpperCAmelCase = BeautifulSoup(lowerCAmelCase__ , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Tuple ) -> str: return f"{self.__class__.__name__}('{self.username}')" def __str__( self : Optional[int] ) -> str: return f"{self.fullname} ({self.username}) is {self.biography}" @property def _UpperCamelCase ( self : Any ) -> str: return self.user_data["username"] @property def _UpperCamelCase ( self : List[Any] ) -> str: return self.user_data["full_name"] @property def _UpperCamelCase ( self : List[str] ) -> str: return self.user_data["biography"] @property def _UpperCamelCase ( self : Optional[int] ) -> str: return self.user_data["business_email"] @property def _UpperCamelCase ( self : str ) -> str: return self.user_data["external_url"] @property def _UpperCamelCase ( self : int ) -> int: return self.user_data["edge_followed_by"]["count"] @property def _UpperCamelCase ( self : List[Any] ) -> int: return self.user_data["edge_follow"]["count"] @property def _UpperCamelCase ( self : List[str] ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _UpperCamelCase ( self : Tuple ) -> str: return self.user_data["profile_pic_url_hd"] @property def _UpperCamelCase ( self : Optional[int] ) -> bool: return self.user_data["is_verified"] @property def _UpperCamelCase ( self : Optional[Any] ) -> bool: return self.user_data["is_private"] def _lowerCAmelCase( __A = "github" ): import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCAmelCase = InstagramUser(__A ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __A ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = InstagramUser("github") print(instagram_user) print(f"{instagram_user.number_of_posts = }") print(f"{instagram_user.number_of_followers = }") print(f"{instagram_user.number_of_followings = }") print(f"{instagram_user.email = }") print(f"{instagram_user.website = }") print(f"{instagram_user.profile_picture_url = }") print(f"{instagram_user.is_verified = }") print(f"{instagram_user.is_private = }")
1
1
def _lowerCAmelCase( __A , __A ): return 1 if input_a == input_a else 0 def _lowerCAmelCase( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
1
import unittest import numpy as np def _lowerCAmelCase( __A , __A , __A , __A = None , ): UpperCAmelCase = np.shape(__A ) UpperCAmelCase = np.shape(__A ) UpperCAmelCase = np.shape(__A ) if shape_a[0] != shape_b[0]: UpperCAmelCase = ( "Expected the same number of rows for A and B. " F"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(__A ) if shape_b[1] != shape_c[1]: UpperCAmelCase = ( "Expected the same number of columns for B and C. " F"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(__A ) UpperCAmelCase = pseudo_inv if a_inv is None: try: UpperCAmelCase = np.linalg.inv(__A ) except np.linalg.LinAlgError: raise ValueError( "Input matrix A is not invertible. Cannot compute Schur complement." ) return mat_c - mat_b.T @ a_inv @ mat_b class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : List[str] ) -> None: UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase = np.array([[2, 1], [6, 3]] ) UpperCAmelCase = schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = np.block([[a, b], [b.T, c]] ) UpperCAmelCase = np.linalg.det(lowerCAmelCase__ ) UpperCAmelCase = np.linalg.det(lowerCAmelCase__ ) UpperCAmelCase = np.linalg.det(lowerCAmelCase__ ) self.assertAlmostEqual(lowerCAmelCase__ , det_a * det_s ) def _UpperCamelCase ( self : str ) -> None: UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase = np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowerCAmelCase__ ): schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _UpperCamelCase ( self : Dict ) -> None: UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowerCAmelCase__ ): schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
1
1
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __magic_name__ : def __init__( self : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any]=9_9 , lowerCAmelCase__ : int=1_3 , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : Optional[int]=9 , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[int]=3_2 , lowerCAmelCase__ : Union[str, Any]=5 , lowerCAmelCase__ : Tuple=4 , lowerCAmelCase__ : int=3_7 , lowerCAmelCase__ : Any=8 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : Tuple=0.002 , lowerCAmelCase__ : Any=1 , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : List[str]=0 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[str]=None , ) -> List[str]: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = encoder_seq_length UpperCAmelCase = decoder_seq_length # For common tests UpperCAmelCase = self.decoder_seq_length UpperCAmelCase = is_training UpperCAmelCase = use_attention_mask UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = d_ff UpperCAmelCase = relative_attention_num_buckets UpperCAmelCase = dropout_rate UpperCAmelCase = initializer_factor UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = decoder_start_token_id UpperCAmelCase = None UpperCAmelCase = decoder_layers def _UpperCamelCase ( self : int ) -> List[Any]: return TaConfig.from_pretrained("google/umt5-base" ) def _UpperCamelCase ( self : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Optional[int]=None , ) -> str: if attention_mask is None: UpperCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=lowerCAmelCase__ ) if decoder_head_mask is None: UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=lowerCAmelCase__ ) if cross_attn_head_mask is None: UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=lowerCAmelCase__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _UpperCamelCase ( self : Dict ) -> Any: UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase = self.get_config() UpperCAmelCase = config.num_attention_heads UpperCAmelCase = self.prepare_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, input_dict def _UpperCamelCase ( self : Union[str, Any] ) -> Any: UpperCAmelCase , UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCamelCase ( self : Dict ) -> List[str]: return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCamelCase ( self : Optional[Any] ) -> List[str]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCamelCase ( self : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , ) -> List[str]: UpperCAmelCase = UMTaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase = model( input_ids=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , ) UpperCAmelCase = model(input_ids=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) UpperCAmelCase = result.last_hidden_state UpperCAmelCase = result.past_key_values UpperCAmelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(lowerCAmelCase__ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _UpperCamelCase ( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , ) -> Optional[Any]: UpperCAmelCase = UMTaModel(config=lowerCAmelCase__ ).get_decoder().to(lowerCAmelCase__ ).eval() # first forward pass UpperCAmelCase = model(lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) UpperCAmelCase = model(lowerCAmelCase__ ) UpperCAmelCase = model(lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) self.parent.assertTrue(len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) ) self.parent.assertTrue(len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) + 1 ) UpperCAmelCase , UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase = model(lowerCAmelCase__ )["last_hidden_state"] UpperCAmelCase = model(lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )["last_hidden_state"] # select random slice UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , ) -> Optional[int]: UpperCAmelCase = UMTaModel(config=lowerCAmelCase__ ).to(lowerCAmelCase__ ).half().eval() UpperCAmelCase = model(**lowerCAmelCase__ )["last_hidden_state"] self.parent.assertFalse(torch.isnan(lowerCAmelCase__ ).any().item() ) @require_torch class __magic_name__ ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): UpperCAmelCase = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCAmelCase = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = True UpperCAmelCase = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCAmelCase = [0.8, 0.9] def _UpperCamelCase ( self : Union[str, Any] ) -> Any: UpperCAmelCase = UMTaModelTester(self ) @unittest.skip("Test has a segmentation fault on torch 1.8.0" ) def _UpperCamelCase ( self : Tuple ) -> List[str]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() UpperCAmelCase = UMTaModel(config_and_inputs[0] ).to(lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( lowerCAmelCase__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"{tmpdirname}/t5_test.onnx" , export_params=lowerCAmelCase__ , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def _UpperCamelCase ( self : Optional[Any] ) -> int: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*lowerCAmelCase__ ) def _UpperCamelCase ( self : int ) -> Optional[Any]: UpperCAmelCase = ["encoder_attentions", "decoder_attentions", "cross_attentions"] UpperCAmelCase = self.model_tester.prepare_config_and_inputs() UpperCAmelCase = config_and_inputs[0] UpperCAmelCase = UMTaForConditionalGeneration(lowerCAmelCase__ ).eval() model.to(lowerCAmelCase__ ) UpperCAmelCase = { "head_mask": torch.zeros(config.num_layers , config.num_heads , device=lowerCAmelCase__ ), "decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=lowerCAmelCase__ ), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=lowerCAmelCase__ ), } for attn_name, (name, mask) in zip(lowerCAmelCase__ , head_masking.items() ): UpperCAmelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=lowerCAmelCase__ ) UpperCAmelCase = model.generate( config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=lowerCAmelCase__ , return_dict_in_generate=lowerCAmelCase__ , **lowerCAmelCase__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases." ) def _UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: pass @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): @slow @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def _UpperCamelCase ( self : Tuple ) -> str: UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=lowerCAmelCase__ ).to(lowerCAmelCase__ ) UpperCAmelCase = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=lowerCAmelCase__ , legacy=lowerCAmelCase__ ) UpperCAmelCase = [ "Bonjour monsieur <extra_id_0> bien <extra_id_1>.", "No se como puedo <extra_id_0>.", "This is the reason why we <extra_id_0> them.", "The <extra_id_0> walks in <extra_id_1>, seats", "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", ] UpperCAmelCase = tokenizer(lowerCAmelCase__ , return_tensors="pt" , padding=lowerCAmelCase__ ).input_ids # fmt: off UpperCAmelCase = torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ] ) # fmt: on torch.testing.assert_allclose(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = model.generate(input_ids.to(lowerCAmelCase__ ) ) UpperCAmelCase = [ "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>", "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", ] UpperCAmelCase = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
1
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _lowerCAmelCase( __A ): UpperCAmelCase = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" , __A ).groups()[0] class __magic_name__ ( _snake_case ): def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : int=None ) -> Optional[Any]: UpperCAmelCase = file_names UpperCAmelCase = image_transform UpperCAmelCase = label_to_id def __len__( self : Tuple ) -> List[str]: return len(self.file_names ) def __getitem__( self : Optional[int] , lowerCAmelCase__ : Tuple ) -> Dict: UpperCAmelCase = self.file_names[idx] UpperCAmelCase = PIL.Image.open(lowerCAmelCase__ ) UpperCAmelCase = raw_image.convert("RGB" ) if self.image_transform is not None: UpperCAmelCase = self.image_transform(lowerCAmelCase__ ) UpperCAmelCase = extract_label(lowerCAmelCase__ ) if self.label_to_id is not None: UpperCAmelCase = self.label_to_id[label] return {"image": image, "label": label} def _lowerCAmelCase( __A , __A ): # Initialize accelerator if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config["lr"] UpperCAmelCase = int(config["num_epochs"] ) UpperCAmelCase = int(config["seed"] ) UpperCAmelCase = int(config["batch_size"] ) UpperCAmelCase = config["image_size"] if not isinstance(__A , (list, tuple) ): UpperCAmelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": UpperCAmelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): UpperCAmelCase = int(args.checkpointing_steps ) else: raise ValueError( F"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." ) else: UpperCAmelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: UpperCAmelCase = os.path.split(__A )[-1].split("." )[0] accelerator.init_trackers(__A , __A ) # Grab all the image filenames UpperCAmelCase = [os.path.join(args.data_dir , __A ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences UpperCAmelCase = [extract_label(__A ) for fname in file_names] UpperCAmelCase = list(set(__A ) ) id_to_label.sort() UpperCAmelCase = {lbl: i for i, lbl in enumerate(__A )} # Set the seed before splitting the data. np.random.seed(__A ) torch.manual_seed(__A ) torch.cuda.manual_seed_all(__A ) # Split our filenames between train and validation UpperCAmelCase = np.random.permutation(len(__A ) ) UpperCAmelCase = int(0.8 * len(__A ) ) UpperCAmelCase = random_perm[:cut] UpperCAmelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop UpperCAmelCase = Compose([RandomResizedCrop(__A , scale=(0.5, 1.0) ), ToTensor()] ) UpperCAmelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=__A , label_to_id=__A ) # For evaluation, we use a deterministic Resize UpperCAmelCase = Compose([Resize(__A ), ToTensor()] ) UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=__A , label_to_id=__A ) # Instantiate dataloaders. UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = create_model("resnet50d" , pretrained=__A , num_classes=len(__A ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): UpperCAmelCase = False for param in model.get_classifier().parameters(): UpperCAmelCase = True # We normalize the batches of images to be a bit faster. UpperCAmelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) UpperCAmelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler UpperCAmelCase = OneCycleLR(optimizer=__A , max_lr=__A , epochs=__A , steps_per_epoch=len(__A ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( __A , __A , __A , __A , __A ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase = 0 # We also need to keep track of the starting epoch so files are named properly UpperCAmelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"Resumed from checkpoint: {args.resume_from_checkpoint}" ) accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` UpperCAmelCase = os.path.splitext(__A )[0] if "epoch" in training_difference: UpperCAmelCase = int(training_difference.replace("epoch_" , "" ) ) + 1 UpperCAmelCase = None else: UpperCAmelCase = int(training_difference.replace("step_" , "" ) ) UpperCAmelCase = resume_step // len(__A ) resume_step -= starting_epoch * len(__A ) # Now we train the model for epoch in range(__A , __A ): model.train() if args.with_tracking: UpperCAmelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step UpperCAmelCase = accelerator.skip_first_batches(__A , __A ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader UpperCAmelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch["image"] - mean) / std UpperCAmelCase = model(__A ) UpperCAmelCase = torch.nn.functional.cross_entropy(__A , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__A , __A ): UpperCAmelCase = F"step_{overall_step}" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) model.eval() UpperCAmelCase = 0 UpperCAmelCase = 0 for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch["image"] - mean) / std with torch.no_grad(): UpperCAmelCase = model(__A ) UpperCAmelCase = outputs.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["label"]) ) UpperCAmelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() UpperCAmelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}: {100 * eval_metric:.2f}" ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(__A ), "epoch": epoch, } , step=__A , ) if checkpointing_steps == "epoch": UpperCAmelCase = F"epoch_{epoch}" if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) if args.with_tracking: accelerator.end_training() def _lowerCAmelCase( ): UpperCAmelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=__A , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=__A , default=__A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=__A , default=__A , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , ) parser.add_argument( "--output_dir" , type=__A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__A , default=__A , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=__A , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(__A , __A ) if __name__ == "__main__": main()
1
1
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput lowerCAmelCase__ = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __magic_name__ ( _snake_case ): def __init__( self : str , *lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : List[str]=None , **lowerCAmelCase__ : List[str] ) -> Optional[Any]: super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCAmelCase = eval_examples UpperCAmelCase = post_process_function UpperCAmelCase = quant_trainer_args UpperCAmelCase = 1_2_8 # default number of calibration samples def _UpperCamelCase ( self : int , lowerCAmelCase__ : Dict=None ) -> Optional[int]: if calib_dataset is None and self.calib_dataset is None: raise ValueError("Trainer: calibration requires an calib_dataset." ) UpperCAmelCase = calib_dataset if calib_dataset is not None else self.calib_dataset UpperCAmelCase = self._remove_unused_columns(lowerCAmelCase__ , description="Calibration" ) return DataLoader( lowerCAmelCase__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=lowerCAmelCase__ , ) def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : Any=None ) -> int: UpperCAmelCase = self.train_dataset if calib_dataset is None else calib_dataset UpperCAmelCase = self.get_calib_dataloader(lowerCAmelCase__ ) UpperCAmelCase = self.model quant_trainer.configure_model(lowerCAmelCase__ , self.quant_trainer_args , calib=lowerCAmelCase__ ) model.eval() quant_trainer.enable_calibration(lowerCAmelCase__ ) logger.info("***** Running calibration *****" ) logger.info(f" Num examples = {self.calib_num}" ) logger.info(f" Batch size = {calib_dataloader.batch_size}" ) for step, inputs in enumerate(lowerCAmelCase__ ): # Prediction step UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self.prediction_step(lowerCAmelCase__ , lowerCAmelCase__ , prediction_loss_only=lowerCAmelCase__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(lowerCAmelCase__ , self.quant_trainer_args ) UpperCAmelCase = model def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str = "eval" ) -> List[Any]: UpperCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase = self.get_eval_dataloader(lowerCAmelCase__ ) UpperCAmelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase = eval_loop( lowerCAmelCase__ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , ) finally: UpperCAmelCase = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: UpperCAmelCase = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , output.predictions ) UpperCAmelCase = self.compute_metrics(lowerCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): UpperCAmelCase = metrics.pop(lowerCAmelCase__ ) self.log(lowerCAmelCase__ ) else: UpperCAmelCase = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCAmelCase__ ) return metrics def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : str=None , lowerCAmelCase__ : str = "test" ) -> Any: UpperCAmelCase = self.get_test_dataloader(lowerCAmelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase = eval_loop( lowerCAmelCase__ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , ) finally: UpperCAmelCase = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , output.predictions , "predict" ) UpperCAmelCase = self.compute_metrics(lowerCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): UpperCAmelCase = metrics.pop(lowerCAmelCase__ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCAmelCase__ ) def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[int]="./" ) -> Optional[int]: UpperCAmelCase = self.eval_dataset UpperCAmelCase = self.get_eval_dataloader(lowerCAmelCase__ ) UpperCAmelCase = next(iter(lowerCAmelCase__ ) ) # saving device - to make it consistent UpperCAmelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) # convert to tuple UpperCAmelCase = tuple(v.to(lowerCAmelCase__ ) for k, v in batch.items() ) logger.info("Converting model to be onnx compatible" ) from pytorch_quantization.nn import TensorQuantizer UpperCAmelCase = True UpperCAmelCase = self.model.to(lowerCAmelCase__ ) model.eval() model.float() UpperCAmelCase = model.module if hasattr(lowerCAmelCase__ , "module" ) else model quant_trainer.configure_model(lowerCAmelCase__ , self.quant_trainer_args ) UpperCAmelCase = os.path.join(lowerCAmelCase__ , "model.onnx" ) logger.info(f"exporting model to {output_model_file}" ) UpperCAmelCase = {0: "batch_size", 1: "seq_len"} torch.onnx.export( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , export_params=lowerCAmelCase__ , opset_version=1_3 , do_constant_folding=lowerCAmelCase__ , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={ "input_ids": axes, "attention_mask": axes, "token_type_ids": axes, "output_start_logits": axes, "output_end_logits": axes, } , verbose=lowerCAmelCase__ , ) logger.info("onnx export finished" )
1
import glob import os import random from string import ascii_lowercase, digits import cva lowerCAmelCase__ = "" lowerCAmelCase__ = "" lowerCAmelCase__ = "" lowerCAmelCase__ = 1 # (0 is vertical, 1 is horizontal) def _lowerCAmelCase( ): UpperCAmelCase , UpperCAmelCase = get_dataset(__A , __A ) print("Processing..." ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = update_image_and_anno(__A , __A , __A ) for index, image in enumerate(__A ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCAmelCase = random_chars(32 ) UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] UpperCAmelCase = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(F"/{file_root}.jpg" , __A , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Success {index+1}/{len(__A )} with {file_name}" ) UpperCAmelCase = [] for anno in new_annos[index]: UpperCAmelCase = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(__A ) with open(F"/{file_root}.txt" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def _lowerCAmelCase( __A , __A ): UpperCAmelCase = [] UpperCAmelCase = [] for label_file in glob.glob(os.path.join(__A , "*.txt" ) ): UpperCAmelCase = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(__A ) as in_file: UpperCAmelCase = in_file.readlines() UpperCAmelCase = os.path.join(__A , F"{label_name}.jpg" ) UpperCAmelCase = [] for obj_list in obj_lists: UpperCAmelCase = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__A ) labels.append(__A ) return img_paths, labels def _lowerCAmelCase( __A , __A , __A = 1 ): UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = [] for idx in range(len(__A ) ): UpperCAmelCase = [] UpperCAmelCase = img_list[idx] path_list.append(__A ) UpperCAmelCase = anno_list[idx] UpperCAmelCase = cva.imread(__A ) if flip_type == 1: UpperCAmelCase = cva.flip(__A , __A ) for bbox in img_annos: UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: UpperCAmelCase = cva.flip(__A , __A ) for bbox in img_annos: UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__A ) new_imgs_list.append(__A ) return new_imgs_list, new_annos_lists, path_list def _lowerCAmelCase( __A = 32 ): assert number_char > 1, "The number of character should greater than 1" UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(__A ) for _ in range(__A ) ) if __name__ == "__main__": main() print("DONE ✅")
1
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCAmelCase__ = "Create a default config file for Accelerate with only a few flags set." def _lowerCAmelCase( __A="no" , __A = default_json_config_file , __A = False ): UpperCAmelCase = Path(__A ) path.parent.mkdir(parents=__A , exist_ok=__A ) if path.exists(): print( F"Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`." ) return False UpperCAmelCase = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}" ) UpperCAmelCase = { "compute_environment": "LOCAL_MACHINE", "mixed_precision": mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase = torch.cuda.device_count() UpperCAmelCase = num_gpus UpperCAmelCase = False if num_gpus > 1: UpperCAmelCase = "MULTI_GPU" else: UpperCAmelCase = "NO" elif is_xpu_available() and use_xpu: UpperCAmelCase = torch.xpu.device_count() UpperCAmelCase = num_xpus UpperCAmelCase = False if num_xpus > 1: UpperCAmelCase = "MULTI_XPU" else: UpperCAmelCase = "NO" elif is_npu_available(): UpperCAmelCase = torch.npu.device_count() UpperCAmelCase = num_npus UpperCAmelCase = False if num_npus > 1: UpperCAmelCase = "MULTI_NPU" else: UpperCAmelCase = "NO" else: UpperCAmelCase = 0 UpperCAmelCase = True UpperCAmelCase = 1 UpperCAmelCase = "NO" UpperCAmelCase = ClusterConfig(**__A ) config.to_json_file(__A ) return path def _lowerCAmelCase( __A , __A ): UpperCAmelCase = parser.add_parser("default" , parents=__A , help=__A , formatter_class=__A ) parser.add_argument( "--config_file" , default=__A , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , dest="save_location" , ) parser.add_argument( "--mixed_precision" , choices=["no", "fp16", "bf16"] , type=__A , help="Whether or not to use mixed precision training. " "Choose between FP16 and BF16 (bfloat16) training. " "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later." , default="no" , ) parser.set_defaults(func=__A ) return parser def _lowerCAmelCase( __A ): UpperCAmelCase = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"accelerate configuration saved at {config_file}" )
1
def _lowerCAmelCase( __A ): if not isinstance(__A , __A ): raise TypeError("only integers accepted as input" ) else: UpperCAmelCase = str(abs(__A ) ) UpperCAmelCase = [list(__A ) for char in range(len(__A ) )] for index in range(len(__A ) ): num_transpositions[index].pop(__A ) return max( int("".join(list(__A ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
1
1
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __magic_name__ ( unittest.TestCase ): @parameterized.expand([(None,), ("foo.json",)] ) def _UpperCamelCase ( self : str , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: UpperCAmelCase = GenerationConfig( do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ , config_name=lowerCAmelCase__ ) UpperCAmelCase = GenerationConfig.from_pretrained(lowerCAmelCase__ , config_name=lowerCAmelCase__ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowerCAmelCase__ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , lowerCAmelCase__ ) def _UpperCamelCase ( self : Dict ) -> Optional[Any]: UpperCAmelCase = AutoConfig.from_pretrained("gpt2" ) UpperCAmelCase = GenerationConfig.from_model_config(lowerCAmelCase__ ) UpperCAmelCase = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def _UpperCamelCase ( self : int ) -> int: UpperCAmelCase = GenerationConfig() UpperCAmelCase = { "max_new_tokens": 1_0_2_4, "foo": "bar", } UpperCAmelCase = copy.deepcopy(lowerCAmelCase__ ) UpperCAmelCase = generation_config.update(**lowerCAmelCase__ ) # update_kwargs was not modified (no side effects) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowerCAmelCase__ , {"foo": "bar"} ) def _UpperCamelCase ( self : List[Any] ) -> Dict: UpperCAmelCase = GenerationConfig() UpperCAmelCase = "bar" with tempfile.TemporaryDirectory("test-generation-config" ) as tmp_dir: generation_config.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase = GenerationConfig.from_pretrained(lowerCAmelCase__ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar" ) UpperCAmelCase = GenerationConfig.from_model_config(lowerCAmelCase__ ) assert not hasattr(lowerCAmelCase__ , "foo" ) # no new kwargs should be initialized if from config def _UpperCamelCase ( self : Tuple ) -> Dict: UpperCAmelCase = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , lowerCAmelCase__ ) self.assertEqual(default_config.num_beams , 1 ) UpperCAmelCase = GenerationConfig( do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , lowerCAmelCase__ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase = GenerationConfig.from_pretrained(lowerCAmelCase__ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , lowerCAmelCase__ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __magic_name__ ( unittest.TestCase ): @classmethod def _UpperCamelCase ( cls : Optional[int] ) -> Union[str, Any]: UpperCAmelCase = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def _UpperCamelCase ( cls : List[str] ) -> int: try: delete_repo(token=cls._token , repo_id="test-generation-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org" ) except HTTPError: pass def _UpperCamelCase ( self : List[Any] ) -> Any: UpperCAmelCase = GenerationConfig( do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token ) UpperCAmelCase = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCAmelCase__ , repo_id="test-generation-config" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) UpperCAmelCase = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def _UpperCamelCase ( self : Any ) -> Dict: UpperCAmelCase = GenerationConfig( do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token ) UpperCAmelCase = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCAmelCase__ , repo_id="valid_org/test-generation-config-org" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) UpperCAmelCase = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
1
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor lowerCAmelCase__ = logging.getLogger(__name__) lowerCAmelCase__ = 50 # max width of layer names lowerCAmelCase__ = 70 # max width of quantizer names def _lowerCAmelCase( __A ): UpperCAmelCase = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=__A , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=__A , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=__A , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=__A , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=__A , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=__A , type=__A , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=__A , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def _lowerCAmelCase( __A ): if args.calibrator == "max": UpperCAmelCase = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) UpperCAmelCase = "histogram" elif args.calibrator == "mse": UpperCAmelCase = "histogram" else: raise ValueError(F"Invalid calibrator {args.calibrator}" ) UpperCAmelCase = QuantDescriptor(num_bits=args.aprec , calib_method=__A ) UpperCAmelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__A ) quant_nn.QuantLinear.set_default_quant_desc_weight(__A ) def _lowerCAmelCase( __A , __A , __A=False , __A=False ): logger.info("Configuring Model for Quantization" ) logger.info(F"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__A , ["embeddings"] , which="weight" , _disabled=__A ) if args.quant_disable: set_quantizer_by_name(__A , [""] , _disabled=__A ) if args.quant_disable_keyword: set_quantizer_by_name(__A , args.quant_disable_keyword , _disabled=__A ) if args.quant_disable_layer_module: set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=__A ) if args.quant_enable_layer_module: set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=__A ) if args.recalibrate_weights: recalibrate_weights(__A ) if args.fuse_qkv: fuse_qkv(__A , __A ) if args.clip_gelu: clip_gelu(__A , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__A ) def _lowerCAmelCase( __A ): logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:80}: {module}" ) def _lowerCAmelCase( __A , __A ): logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__A ) def _lowerCAmelCase( __A , __A ): def fusea(__A , __A , __A ): for mod in [qq, qk, qv]: if not hasattr(__A , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return UpperCAmelCase = qq._amax.detach().item() UpperCAmelCase = qk._amax.detach().item() UpperCAmelCase = qv._amax.detach().item() UpperCAmelCase = max(__A , __A , __A ) qq._amax.fill_(__A ) qk._amax.fill_(__A ) qv._amax.fill_(__A ) logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(F"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _lowerCAmelCase( __A , __A ): for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__A ) UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def _lowerCAmelCase( __A ): for name, mod in model.named_modules(): if hasattr(__A , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: UpperCAmelCase = mod.weight.shape[0] UpperCAmelCase = mod._weight_quantizer._amax.detach() UpperCAmelCase = torch.ones(__A , dtype=amax.dtype , device=amax.device ) * amax print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def _lowerCAmelCase( __A ): for name, mod in model.named_modules(): if hasattr(__A , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCAmelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) UpperCAmelCase = set(range(len(mod.weight.size() ) ) ) - axis_set UpperCAmelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__A , keepdims=__A ).detach() logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) UpperCAmelCase = amax def _lowerCAmelCase( __A , __A=25 , __A=180 , __A=None ): if ignore is None: UpperCAmelCase = [] elif not isinstance(__A , __A ): UpperCAmelCase = [ignore] UpperCAmelCase = 0 for name, mod in model.named_modules(): if not hasattr(__A , "weight" ): continue UpperCAmelCase = max(__A , len(__A ) ) for name, mod in model.named_modules(): UpperCAmelCase = getattr(__A , "_input_quantizer" , __A ) UpperCAmelCase = getattr(__A , "_weight_quantizer" , __A ) if not hasattr(__A , "weight" ): continue if type(__A ) in ignore: continue if [True for s in ignore if type(__A ) is str and s in name]: continue UpperCAmelCase = F"Act:{input_q.extra_repr()}" UpperCAmelCase = F"Wgt:{weight_q.extra_repr()}" UpperCAmelCase = F"{name:{name_width}} {act_str} {wgt_str}" if len(__A ) <= line_width: logger.info(__A ) else: logger.info(F"{name:{name_width}} {act_str}" ) logger.info(F"{' ':{name_width}} {wgt_str}" ) def _lowerCAmelCase( __A ): UpperCAmelCase = 0 for name, mod in model.named_modules(): if isinstance(__A , pytorch_quantization.nn.TensorQuantizer ): print(F"{name:80} {mod}" ) count += 1 print(F"{count} TensorQuantizers found in model" ) def _lowerCAmelCase( __A , __A , __A , __A , __A ): UpperCAmelCase = getattr(__A , __A , __A ) if quantizer_mod is not None: assert hasattr(__A , __A ) setattr(__A , __A , __A ) else: logger.warning(F"{name} has no {quantizer}" ) def _lowerCAmelCase( __A , __A , __A="both" , **__A ): UpperCAmelCase = F"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += F" {k}={v}" if which in ["input", "both"]: set_quantizer(__A , __A , "_input_quantizer" , __A , __A ) if which in ["weight", "both"]: set_quantizer(__A , __A , "_weight_quantizer" , __A , __A ) logger.info(__A ) def _lowerCAmelCase( __A , __A , **__A ): for name, mod in model.named_modules(): if hasattr(__A , "_input_quantizer" ) or hasattr(__A , "_weight_quantizer" ): for n in names: if re.search(__A , __A ): set_quantizers(__A , __A , **__A ) elif name.endswith("_quantizer" ): for n in names: if re.search(__A , __A ): UpperCAmelCase = F"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += F" {k}={v}" setattr(__A , __A , __A ) logger.info(__A )
1
1
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def _lowerCAmelCase( __A ): UpperCAmelCase = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) UpperCAmelCase = re.match(r"^mobilenet_v1_([^_]*)_([^_]*)$" , __A ) if matches: UpperCAmelCase = float(matches[1] ) UpperCAmelCase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". UpperCAmelCase = 1001 UpperCAmelCase = "imagenet-1k-id2label.json" UpperCAmelCase = "huggingface/label-files" UpperCAmelCase = json.load(open(hf_hub_download(__A , __A , repo_type="dataset" ) , "r" ) ) UpperCAmelCase = {int(__A ) + 1: v for k, v in idalabel.items()} UpperCAmelCase = "background" UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase( ): UpperCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def _lowerCAmelCase( __A , __A , __A , __A=False ): UpperCAmelCase = get_mobilenet_va_config(__A ) # Load 🤗 model UpperCAmelCase = MobileNetVaForImageClassification(__A ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(__A , __A , __A ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor UpperCAmelCase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors="pt" ) UpperCAmelCase = model(**__A ) UpperCAmelCase = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": UpperCAmelCase = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": UpperCAmelCase = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: UpperCAmelCase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , __A , atol=1E-4 ) Path(__A ).mkdir(exist_ok=__A ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__A ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__A ) if push_to_hub: print("Pushing to the hub..." ) UpperCAmelCase = "google/" + model_name image_processor.push_to_hub(__A ) model.push_to_hub(__A ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCAmelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
1
def _lowerCAmelCase( __A ): assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(__A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , __A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
1
1
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def _lowerCAmelCase( __A , __A , __A , __A ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})" def _lowerCAmelCase( __A , __A , __A , __A , __A=True ): model.train() UpperCAmelCase = model(__A ) UpperCAmelCase = F.mse_loss(__A , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__A ) def _lowerCAmelCase( __A , __A=False ): set_seed(42 ) UpperCAmelCase = RegressionModel() UpperCAmelCase = deepcopy(__A ) UpperCAmelCase = RegressionDataset(length=80 ) UpperCAmelCase = DataLoader(__A , batch_size=16 ) model.to(accelerator.device ) if sched: UpperCAmelCase = AdamW(params=model.parameters() , lr=1E-3 ) UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1E-3 ) UpperCAmelCase = LambdaLR(__A , lr_lambda=lambda __A : epoch**0.65 ) UpperCAmelCase = LambdaLR(__A , lr_lambda=lambda __A : epoch**0.65 ) # Make a copy of `model` if sched: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare(__A , __A , __A , __A ) else: UpperCAmelCase , UpperCAmelCase = accelerator.prepare(__A , __A ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def _lowerCAmelCase( __A ): # Test when on a single CPU or GPU that the context manager does nothing UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = get_training_setup(__A ) # Use a single batch UpperCAmelCase , UpperCAmelCase = next(iter(__A ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase , UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase , UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__A , __A , __A , __A ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__A ): step_model(__A , __A , __A , __A ) else: # Sync grads step_model(__A , __A , __A , __A ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__A , __A , __A , __A ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase = ddp_input[torch.randperm(len(__A ) )] def _lowerCAmelCase( __A ): # Test on distributed setup that context manager behaves properly UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = get_training_setup(__A ) # Use a single batch UpperCAmelCase , UpperCAmelCase = next(iter(__A ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase , UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase , UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__A , __A , __A , __A ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__A ): step_model(__A , __A , __A , __A ) else: # Sync grads step_model(__A , __A , __A , __A ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase = ddp_input[torch.randperm(len(__A ) )] def _lowerCAmelCase( __A=False , __A=False ): UpperCAmelCase = Accelerator( split_batches=__A , dispatch_batches=__A , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = get_training_setup(__A ) for iteration, batch in enumerate(__A ): UpperCAmelCase , UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase , UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase , UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__A , __A , __A , __A , __A ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__A ): step_model(__A , __A , __A , __A ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__A ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase = ddp_input[torch.randperm(len(__A ) )] GradientState._reset_state() def _lowerCAmelCase( __A=False , __A=False ): UpperCAmelCase = Accelerator( split_batches=__A , dispatch_batches=__A , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = get_training_setup(__A , __A ) for iteration, batch in enumerate(__A ): UpperCAmelCase , UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase , UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase , UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__A , __A , __A , __A , __A ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__A )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__A ): step_model(__A , __A , __A , __A ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n" UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__A )) if accelerator.num_processes > 1: check_model_parameters(__A , __A , __A , __A ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def _lowerCAmelCase( ): UpperCAmelCase = Accelerator() UpperCAmelCase = RegressionDataset(length=80 ) UpperCAmelCase = DataLoader(__A , batch_size=16 ) UpperCAmelCase = RegressionDataset(length=96 ) UpperCAmelCase = DataLoader(__A , batch_size=16 ) UpperCAmelCase , UpperCAmelCase = accelerator.prepare(__A , __A ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__A ): assert id(accelerator.gradient_state.active_dataloader ) == id(__A ) if iteration < len(__A ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__A ): assert id(accelerator.gradient_state.active_dataloader ) == id(__A ) if batch_num < len(__A ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def _lowerCAmelCase( ): UpperCAmelCase = Accelerator() UpperCAmelCase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(__A ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(__A ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation(__A , __A ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation_with_opt_and_scheduler(__A , __A ) def _lowerCAmelCase( __A ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase__ = get_tests_dir("fixtures") class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: # A mock response for an HTTP head request to emulate server down UpperCAmelCase = mock.Mock() UpperCAmelCase = 5_0_0 UpperCAmelCase = {} UpperCAmelCase = HTTPError UpperCAmelCase = {} # Download this model to make sure it's in the cache. UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCAmelCase__ ) as mock_head: UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def _UpperCamelCase ( self : List[Any] ) -> Dict: # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class __magic_name__ ( unittest.TestCase ): @classmethod def _UpperCamelCase ( cls : List[str] ) -> List[Any]: UpperCAmelCase = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def _UpperCamelCase ( cls : Optional[int] ) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def _UpperCamelCase ( self : Any ) -> Any: UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ ) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase__ , repo_id="test-feature-extractor" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def _UpperCamelCase ( self : List[Any] ) -> Tuple: UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase__ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def _UpperCamelCase ( self : Dict ) -> List[str]: CustomFeatureExtractor.register_for_auto_class() UpperCAmelCase = CustomFeatureExtractor.from_pretrained(lowerCAmelCase__ ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) UpperCAmelCase = AutoFeatureExtractor.from_pretrained( f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=lowerCAmelCase__ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
1
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowerCAmelCase__ = datasets.utils.logging.get_logger(__name__) lowerCAmelCase__ = ["names", "prefix"] lowerCAmelCase__ = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] lowerCAmelCase__ = ["encoding_errors", "on_bad_lines"] lowerCAmelCase__ = ["date_format"] @dataclass class __magic_name__ ( datasets.BuilderConfig ): UpperCAmelCase = "," UpperCAmelCase = None UpperCAmelCase = "infer" UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = False UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = "." UpperCAmelCase = None UpperCAmelCase = '"' UpperCAmelCase = 0 UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = 0 UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = None UpperCAmelCase = 10_000 UpperCAmelCase = None UpperCAmelCase = "strict" UpperCAmelCase = "error" UpperCAmelCase = None def _UpperCamelCase ( self : Optional[int] ) -> Tuple: if self.delimiter is not None: UpperCAmelCase = self.delimiter if self.column_names is not None: UpperCAmelCase = self.column_names @property def _UpperCamelCase ( self : Optional[int] ) -> List[Any]: UpperCAmelCase = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class __magic_name__ ( datasets.ArrowBasedBuilder ): UpperCAmelCase = CsvConfig def _UpperCamelCase ( self : Dict ) -> Tuple: return datasets.DatasetInfo(features=self.config.features ) def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : Tuple ) -> List[Any]: if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) UpperCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): UpperCAmelCase = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase = [files] UpperCAmelCase = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] UpperCAmelCase = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase = [files] UpperCAmelCase = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : pa.Table ) -> pa.Table: if self.config.features is not None: UpperCAmelCase = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast UpperCAmelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example UpperCAmelCase = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str UpperCAmelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): UpperCAmelCase = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): UpperCAmelCase = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(f"Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}" ) raise
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCAmelCase__ = "src/diffusers" # Matches is_xxx_available() lowerCAmelCase__ = re.compile(r"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla lowerCAmelCase__ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") lowerCAmelCase__ = "\n{0} = None\n" lowerCAmelCase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" lowerCAmelCase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def _lowerCAmelCase( __A ): UpperCAmelCase = _re_backend.findall(__A ) if len(__A ) == 0: return None return "_and_".join(__A ) def _lowerCAmelCase( ): with open(os.path.join(__A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase = f.readlines() # Get to the point we do the actual imports for type checking UpperCAmelCase = 0 UpperCAmelCase = {} # Go through the end of the file while line_index < len(__A ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCAmelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 UpperCAmelCase = [] # Until we unindent, add backend objects to the list while line_index < len(__A ) and len(lines[line_index] ) > 1: UpperCAmelCase = lines[line_index] UpperCAmelCase = _re_single_line_import.search(__A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__A ) > 0: UpperCAmelCase = objects else: line_index += 1 return backend_specific_objects def _lowerCAmelCase( __A , __A ): if name.isupper(): return DUMMY_CONSTANT.format(__A ) elif name.islower(): return DUMMY_FUNCTION.format(__A , __A ) else: return DUMMY_CLASS.format(__A , __A ) def _lowerCAmelCase( __A=None ): if backend_specific_objects is None: UpperCAmelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCAmelCase = {} for backend, objects in backend_specific_objects.items(): UpperCAmelCase = "[" + ", ".join(F"\"{b}\"" for b in backend.split("_and_" ) ) + "]" UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__A , __A ) for o in objects] ) UpperCAmelCase = dummy_file return dummy_files def _lowerCAmelCase( __A=False ): UpperCAmelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCAmelCase = {"torch": "pt"} # Locate actual dummy modules and read their content. UpperCAmelCase = os.path.join(__A , "utils" ) UpperCAmelCase = { backend: os.path.join(__A , F"dummy_{short_names.get(__A , __A )}_objects.py" ) for backend in dummy_files.keys() } UpperCAmelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__A ): with open(__A , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase = f.read() else: UpperCAmelCase = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"Updating diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py as the main " "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F"diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py. Run `make fix-copies` " "to fix this." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCAmelCase__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
1
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_snake_case ) class __magic_name__ ( _snake_case ): UpperCAmelCase = field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) UpperCAmelCase = Features({"""audio""": Audio()} ) UpperCAmelCase = Features({"""labels""": ClassLabel} ) UpperCAmelCase = "audio" UpperCAmelCase = "labels" def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> List[str]: if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , lowerCAmelCase__ ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) UpperCAmelCase = copy.deepcopy(self ) UpperCAmelCase = self.label_schema.copy() UpperCAmelCase = features[self.label_column] UpperCAmelCase = label_schema return task_template @property def _UpperCamelCase ( self : int ) -> Dict[str, str]: return { self.audio_column: "audio", self.label_column: "labels", }
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class __magic_name__ ( _snake_case , _snake_case ): UpperCAmelCase = """convnextv2""" def __init__( self : Optional[Any] , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Dict=1e-1_2 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : str=2_2_4 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[Any] , ) -> List[Any]: super().__init__(**lowerCAmelCase__ ) UpperCAmelCase = num_channels UpperCAmelCase = patch_size UpperCAmelCase = num_stages UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes UpperCAmelCase = [3, 3, 9, 3] if depths is None else depths UpperCAmelCase = hidden_act UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = drop_path_rate UpperCAmelCase = image_size UpperCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
1
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class __magic_name__ ( _snake_case ): UpperCAmelCase = """bert""" def __init__( self : Optional[int] , lowerCAmelCase__ : int=3_0_5_2_2 , lowerCAmelCase__ : Union[str, Any]=7_6_8 , lowerCAmelCase__ : Dict=1_2 , lowerCAmelCase__ : Optional[Any]=1_2 , lowerCAmelCase__ : List[Any]=3_0_7_2 , lowerCAmelCase__ : Union[str, Any]="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : str=5_1_2 , lowerCAmelCase__ : Union[str, Any]=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Optional[Any]=1e-1_2 , lowerCAmelCase__ : str=0 , lowerCAmelCase__ : List[str]="absolute" , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Any=None , **lowerCAmelCase__ : str , ) -> Dict: super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache UpperCAmelCase = classifier_dropout class __magic_name__ ( _snake_case ): @property def _UpperCamelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
1
lowerCAmelCase__ = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCAmelCase__ = [{"type": "code", "content": INSTALL_CONTENT}] lowerCAmelCase__ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
1
1
def _lowerCAmelCase( __A , __A ): if not (isinstance(__A , __A ) and isinstance(__A , __A )): raise ValueError("longest_common_substring() takes two strings for inputs" ) UpperCAmelCase = len(__A ) UpperCAmelCase = len(__A ) UpperCAmelCase = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] UpperCAmelCase = 0 UpperCAmelCase = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: UpperCAmelCase = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: UpperCAmelCase = i UpperCAmelCase = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ ( _snake_case , unittest.TestCase ): UpperCAmelCase = KandinskyInpaintPipeline UpperCAmelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCAmelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCAmelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCAmelCase = False @property def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple: return 3_2 @property def _UpperCamelCase ( self : int ) -> List[Any]: return 3_2 @property def _UpperCamelCase ( self : List[Any] ) -> List[Any]: return self.time_input_dim @property def _UpperCamelCase ( self : Tuple ) -> Tuple: return self.time_input_dim * 4 @property def _UpperCamelCase ( self : Any ) -> Optional[int]: return 1_0_0 @property def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]: UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def _UpperCamelCase ( self : int ) -> Dict: torch.manual_seed(0 ) UpperCAmelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) UpperCAmelCase = MultilingualCLIP(lowerCAmelCase__ ) UpperCAmelCase = text_encoder.eval() return text_encoder @property def _UpperCamelCase ( self : Dict ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def _UpperCamelCase ( self : str ) -> Optional[Any]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _UpperCamelCase ( self : Dict ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCamelCase ( self : Tuple ) -> Any: UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = self.dummy_tokenizer UpperCAmelCase = self.dummy_unet UpperCAmelCase = self.dummy_movq UpperCAmelCase = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCAmelCase__ , ) UpperCAmelCase = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=0 ) -> str: UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase__ ) # create init_image UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) # create mask UpperCAmelCase = np.ones((6_4, 6_4) , dtype=np.floataa ) UpperCAmelCase = 0 if str(lowerCAmelCase__ ).startswith("mps" ): UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ ) else: UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) UpperCAmelCase = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def _UpperCamelCase ( self : Dict ) -> List[str]: UpperCAmelCase = "cpu" UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__ ) UpperCAmelCase = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) UpperCAmelCase = output.images UpperCAmelCase = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase = np.array( [0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def _UpperCamelCase ( self : str ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : str ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : Tuple ) -> int: UpperCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) UpperCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) UpperCAmelCase = 0 UpperCAmelCase = "a hat" UpperCAmelCase = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) UpperCAmelCase = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) UpperCAmelCase = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase = pipeline( lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="np" , ) UpperCAmelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
1
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase__ = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } lowerCAmelCase__ = { "roberta-base": 512, "roberta-large": 512, "roberta-large-mnli": 512, "distilroberta-base": 512, "roberta-base-openai-detector": 512, "roberta-large-openai-detector": 512, } class __magic_name__ ( _snake_case ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ["""input_ids""", """attention_mask"""] UpperCAmelCase = RobertaTokenizer def __init__( self : Dict , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : List[str]="replace" , lowerCAmelCase__ : List[Any]="<s>" , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : Optional[int]="</s>" , lowerCAmelCase__ : Dict="<s>" , lowerCAmelCase__ : Tuple="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Union[str, Any]=True , **lowerCAmelCase__ : Tuple , ) -> Tuple: super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ , **lowerCAmelCase__ , ) UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCAmelCase__ ) != add_prefix_space: UpperCAmelCase = getattr(lowerCAmelCase__ , pre_tok_state.pop("type" ) ) UpperCAmelCase = add_prefix_space UpperCAmelCase = pre_tok_class(**lowerCAmelCase__ ) UpperCAmelCase = add_prefix_space UpperCAmelCase = "post_processor" UpperCAmelCase = getattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ ) if tokenizer_component_instance: UpperCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase = tuple(state["sep"] ) if "cls" in state: UpperCAmelCase = tuple(state["cls"] ) UpperCAmelCase = False if state.get("add_prefix_space" , lowerCAmelCase__ ) != add_prefix_space: UpperCAmelCase = add_prefix_space UpperCAmelCase = True if state.get("trim_offsets" , lowerCAmelCase__ ) != trim_offsets: UpperCAmelCase = trim_offsets UpperCAmelCase = True if changes_to_apply: UpperCAmelCase = getattr(lowerCAmelCase__ , state.pop("type" ) ) UpperCAmelCase = component_class(**lowerCAmelCase__ ) setattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ ) @property def _UpperCamelCase ( self : str ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] ) -> int: UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else value UpperCAmelCase = value def _UpperCamelCase ( self : Tuple , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : List[Any] ) -> BatchEncoding: UpperCAmelCase = kwargs.get("is_split_into_words" , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _UpperCamelCase ( self : Optional[Any] , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : str ) -> BatchEncoding: UpperCAmelCase = kwargs.get("is_split_into_words" , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any]=None ) -> List[Any]: UpperCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
1
def _lowerCAmelCase( __A , __A ): return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def _lowerCAmelCase( __A , __A=0 ): return sorted(__A , key=lambda __A : x[column] ) def _lowerCAmelCase( __A , __A , __A=float("inf" ) ): for i in range(points_counts - 1 ): for j in range(i + 1 , __A ): UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase = current_dis return min_dis def _lowerCAmelCase( __A , __A , __A=float("inf" ) ): for i in range(min(6 , points_counts - 1 ) , __A ): for j in range(max(0 , i - 6 ) , __A ): UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase = current_dis return min_dis def _lowerCAmelCase( __A , __A , __A ): # base case if points_counts <= 3: return dis_between_closest_pair(__A , __A ) # recursion UpperCAmelCase = points_counts // 2 UpperCAmelCase = closest_pair_of_points_sqr( __A , points_sorted_on_y[:mid] , __A ) UpperCAmelCase = closest_pair_of_points_sqr( __A , points_sorted_on_y[mid:] , points_counts - mid ) UpperCAmelCase = min(__A , __A ) UpperCAmelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(__A ) UpperCAmelCase = dis_between_closest_in_strip( __A , len(__A ) , __A ) return min(__A , __A ) def _lowerCAmelCase( __A , __A ): UpperCAmelCase = column_based_sort(__A , column=0 ) UpperCAmelCase = column_based_sort(__A , column=1 ) return ( closest_pair_of_points_sqr( __A , __A , __A ) ) ** 0.5 if __name__ == "__main__": lowerCAmelCase__ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
1
1
def _lowerCAmelCase( __A , __A , __A ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__A , n - 1 , __A ) * a) % mod else: UpperCAmelCase = binary_exponentiation(__A , n / 2 , __A ) return (b * b) % mod # a prime number lowerCAmelCase__ = 701 lowerCAmelCase__ = 1000000000 lowerCAmelCase__ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
1
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __magic_name__ : def __init__( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase = "" UpperCAmelCase = "" UpperCAmelCase = [] UpperCAmelCase = 0 UpperCAmelCase = 2_5_6 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Optional[Any] ) -> List[str]: UpperCAmelCase = cva.imread(lowerCAmelCase__ , 0 ) UpperCAmelCase = copy.deepcopy(self.img ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="x" ) UpperCAmelCase = np.sum(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase = x[i] / self.k self.sk += prk UpperCAmelCase = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase = int(last % last ) UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCAmelCase__ ) UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def _UpperCamelCase ( self : str ) -> int: plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def _UpperCamelCase ( self : Dict ) -> Optional[Any]: cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase__ = os.path.join(os.path.basename(__file__), "image_data/input.jpg") lowerCAmelCase__ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
1
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( _snake_case ): def __init__( self : Optional[Any] , lowerCAmelCase__ : WhisperForConditionalGeneration , lowerCAmelCase__ : WhisperProcessor , lowerCAmelCase__ : AutoencoderKL , lowerCAmelCase__ : CLIPTextModel , lowerCAmelCase__ : CLIPTokenizer , lowerCAmelCase__ : UNetaDConditionModel , lowerCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase__ : StableDiffusionSafetyChecker , lowerCAmelCase__ : CLIPImageProcessor , ) -> int: super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=lowerCAmelCase__ , speech_processor=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , ) def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : Optional[Union[str, int]] = "auto" ) -> int: if slice_size == "auto": UpperCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase__ ) def _UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: self.enable_attention_slicing(lowerCAmelCase__ ) @torch.no_grad() def __call__( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str]=1_6_0_0_0 , lowerCAmelCase__ : int = 5_1_2 , lowerCAmelCase__ : int = 5_1_2 , lowerCAmelCase__ : int = 5_0 , lowerCAmelCase__ : float = 7.5 , lowerCAmelCase__ : Optional[Union[str, List[str]]] = None , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : Optional[torch.Generator] = None , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[str] = "pil" , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase__ : int = 1 , **lowerCAmelCase__ : Any , ) -> Optional[Any]: UpperCAmelCase = self.speech_processor.feature_extractor( lowerCAmelCase__ , return_tensors="pt" , sampling_rate=lowerCAmelCase__ ).input_features.to(self.device ) UpperCAmelCase = self.speech_model.generate(lowerCAmelCase__ , max_length=4_8_0_0_0_0 ) UpperCAmelCase = self.speech_processor.tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , normalize=lowerCAmelCase__ )[ 0 ] if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase = 1 elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase = len(lowerCAmelCase__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(lowerCAmelCase__ )}." ) # get prompt text embeddings UpperCAmelCase = self.tokenizer( lowerCAmelCase__ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) UpperCAmelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) UpperCAmelCase = text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = text_embeddings.shape UpperCAmelCase = text_embeddings.repeat(1 , lowerCAmelCase__ , 1 ) UpperCAmelCase = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCAmelCase__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase = 42 if negative_prompt is None: UpperCAmelCase = [""] * batch_size elif type(lowerCAmelCase__ ) is not type(lowerCAmelCase__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(lowerCAmelCase__ )} !=" f" {type(lowerCAmelCase__ )}." ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase = [negative_prompt] elif batch_size != len(lowerCAmelCase__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(lowerCAmelCase__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: UpperCAmelCase = negative_prompt UpperCAmelCase = text_input_ids.shape[-1] UpperCAmelCase = self.tokenizer( lowerCAmelCase__ , padding="max_length" , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" , ) UpperCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase = uncond_embeddings.shape[1] UpperCAmelCase = uncond_embeddings.repeat(1 , lowerCAmelCase__ , 1 ) UpperCAmelCase = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCAmelCase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCAmelCase = torch.randn(lowerCAmelCase__ , generator=lowerCAmelCase__ , device="cpu" , dtype=lowerCAmelCase__ ).to( self.device ) else: UpperCAmelCase = torch.randn(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=lowerCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) UpperCAmelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCAmelCase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase = {} if accepts_eta: UpperCAmelCase = eta for i, t in enumerate(self.progress_bar(lowerCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) # predict the noise residual UpperCAmelCase = self.unet(lowerCAmelCase__ , lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ ).sample # perform guidance if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase = noise_pred.chunk(2 ) UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = 1 / 0.18_215 * latents UpperCAmelCase = self.vae.decode(lowerCAmelCase__ ).sample UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCAmelCase__ , nsfw_content_detected=lowerCAmelCase__ )
1
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( _snake_case , unittest.TestCase ): UpperCAmelCase = LEDTokenizer UpperCAmelCase = LEDTokenizerFast UpperCAmelCase = True def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: super().setUp() UpperCAmelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCAmelCase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) UpperCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCAmelCase = {"unk_token": "<unk>"} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def _UpperCamelCase ( self : Union[str, Any] , **lowerCAmelCase__ : Optional[int] ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _UpperCamelCase ( self : str , **lowerCAmelCase__ : str ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[Any] ) -> List[Any]: return "lower newer", "lower newer" @cached_property def _UpperCamelCase ( self : Dict ) -> str: return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def _UpperCamelCase ( self : int ) -> Tuple: return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def _UpperCamelCase ( self : Tuple ) -> List[str]: UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCAmelCase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @require_torch def _UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt" ) self.assertIn("input_ids" , lowerCAmelCase__ ) self.assertIn("attention_mask" , lowerCAmelCase__ ) self.assertNotIn("labels" , lowerCAmelCase__ ) self.assertNotIn("decoder_attention_mask" , lowerCAmelCase__ ) @require_torch def _UpperCamelCase ( self : int ) -> int: UpperCAmelCase = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , max_length=3_2 , padding="max_length" , return_tensors="pt" ) self.assertEqual(3_2 , targets["input_ids"].shape[1] ) @require_torch def _UpperCamelCase ( self : Any ) -> int: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer( ["I am a small frog" * 1_0_2_4, "I am a small frog"] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) ) @require_torch def _UpperCamelCase ( self : Dict ) -> Tuple: UpperCAmelCase = ["A long paragraph for summarization."] UpperCAmelCase = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase = inputs["input_ids"] UpperCAmelCase = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = ["Summary of the text.", "Another summary."] UpperCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ ) UpperCAmelCase = [[0] * len(lowerCAmelCase__ ) for x in encoded_output["input_ids"]] UpperCAmelCase = tokenizer.pad(lowerCAmelCase__ ) self.assertSequenceEqual(outputs["global_attention_mask"] , lowerCAmelCase__ ) def _UpperCamelCase ( self : List[str] ) -> int: pass def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCAmelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCAmelCase = "A, <mask> AllenNLP sentence." UpperCAmelCase = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) UpperCAmelCase = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
1
1
import math def _lowerCAmelCase( __A , __A ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(__A ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowerCAmelCase__ = "Enter the base and the power separated by a comma: " lowerCAmelCase__, lowerCAmelCase__ = map(int, input(prompt).split(",")) lowerCAmelCase__, lowerCAmelCase__ = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. lowerCAmelCase__ = res(xa, ya) lowerCAmelCase__ = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
1
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase__ = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowerCAmelCase__ = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowerCAmelCase__ = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowerCAmelCase__ = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def _UpperCamelCase ( self : int ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : List[Any] ) -> Dict: import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=0.9 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Optional[int]=0.5 ) -> Any: if NLTK_VERSION >= version.Version("3.6.5" ): UpperCAmelCase = [ meteor_score.single_meteor_score( word_tokenize(lowerCAmelCase__ ) , word_tokenize(lowerCAmelCase__ ) , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ ) for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] else: UpperCAmelCase = [ meteor_score.single_meteor_score(lowerCAmelCase__ , lowerCAmelCase__ , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ ) for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] return {"meteor": np.mean(lowerCAmelCase__ )}
1
1
import os from datetime import datetime as dt from github import Github lowerCAmelCase__ = [ "good first issue", "feature request", "wip", ] def _lowerCAmelCase( ): UpperCAmelCase = Github(os.environ["GITHUB_TOKEN"] ) UpperCAmelCase = g.get_repo("huggingface/accelerate" ) UpperCAmelCase = repo.get_issues(state="open" ) for issue in open_issues: UpperCAmelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __A : i.created_at , reverse=__A ) UpperCAmelCase = comments[0] if len(__A ) > 0 else None UpperCAmelCase = dt.utcnow() UpperCAmelCase = (current_time - issue.updated_at).days UpperCAmelCase = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="closed" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class __magic_name__ ( _snake_case ): UpperCAmelCase = """lxmert""" UpperCAmelCase = {} def __init__( self : int , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : List[str]=7_6_8 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : List[Any]=9_5_0_0 , lowerCAmelCase__ : Any=1_6_0_0 , lowerCAmelCase__ : Union[str, Any]=4_0_0 , lowerCAmelCase__ : Tuple=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : str=1e-1_2 , lowerCAmelCase__ : str=9 , lowerCAmelCase__ : int=5 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : List[Any]=2_0_4_8 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Dict=6.67 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Tuple=True , **lowerCAmelCase__ : List[Any] , ) -> Dict: UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = num_qa_labels UpperCAmelCase = num_object_labels UpperCAmelCase = num_attr_labels UpperCAmelCase = l_layers UpperCAmelCase = x_layers UpperCAmelCase = r_layers UpperCAmelCase = visual_feat_dim UpperCAmelCase = visual_pos_dim UpperCAmelCase = visual_loss_normalizer UpperCAmelCase = task_matched UpperCAmelCase = task_mask_lm UpperCAmelCase = task_obj_predict UpperCAmelCase = task_qa UpperCAmelCase = visual_obj_loss UpperCAmelCase = visual_attr_loss UpperCAmelCase = visual_feat_loss UpperCAmelCase = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**lowerCAmelCase__ )
1
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __magic_name__ : UpperCAmelCase = 42 UpperCAmelCase = 42 class __magic_name__ : def __init__( self : List[str] , lowerCAmelCase__ : int ) -> str: UpperCAmelCase = [[] for _ in range(lowerCAmelCase__ )] UpperCAmelCase = size def __getitem__( self : str , lowerCAmelCase__ : int ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: return self._size def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> Tuple: if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(lowerCAmelCase__ , lowerCAmelCase__ ) ) def _UpperCamelCase ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int | None: UpperCAmelCase = deque([start_vertex] ) UpperCAmelCase = [None] * self.size UpperCAmelCase = 0 while queue: UpperCAmelCase = queue.popleft() UpperCAmelCase = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: UpperCAmelCase = current_distance + edge.weight UpperCAmelCase = distances[edge.destination_vertex] if ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and new_distance >= dest_vertex_distance ): continue UpperCAmelCase = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
1
def _lowerCAmelCase( __A ): UpperCAmelCase = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def _lowerCAmelCase( __A = 100 ): UpperCAmelCase = 1 UpperCAmelCase = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase = pre_numerator UpperCAmelCase = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase = cur_numerator UpperCAmelCase = e_cont * pre_numerator + temp return sum_digits(__A ) if __name__ == "__main__": print(f"{solution() = }")
1
1
from copy import deepcopy class __magic_name__ : def __init__( self : List[str] , lowerCAmelCase__ : list[int] | None = None , lowerCAmelCase__ : int | None = None ) -> None: if arr is None and size is not None: UpperCAmelCase = size UpperCAmelCase = [0] * size elif arr is not None: self.init(lowerCAmelCase__ ) else: raise ValueError("Either arr or size must be specified" ) def _UpperCamelCase ( self : int , lowerCAmelCase__ : list[int] ) -> None: UpperCAmelCase = len(lowerCAmelCase__ ) UpperCAmelCase = deepcopy(lowerCAmelCase__ ) for i in range(1 , self.size ): UpperCAmelCase = self.next_(lowerCAmelCase__ ) if j < self.size: self.tree[j] += self.tree[i] def _UpperCamelCase ( self : Dict ) -> list[int]: UpperCAmelCase = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCAmelCase = self.next_(lowerCAmelCase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _UpperCamelCase ( lowerCAmelCase__ : int ) -> int: return index + (index & (-index)) @staticmethod def _UpperCamelCase ( lowerCAmelCase__ : int ) -> int: return index - (index & (-index)) def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCAmelCase = self.next_(lowerCAmelCase__ ) def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> None: self.add(lowerCAmelCase__ , value - self.get(lowerCAmelCase__ ) ) def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : int ) -> int: if right == 0: return 0 UpperCAmelCase = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCAmelCase = self.prev(lowerCAmelCase__ ) return result def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: return self.prefix(lowerCAmelCase__ ) - self.prefix(lowerCAmelCase__ ) def _UpperCamelCase ( self : int , lowerCAmelCase__ : int ) -> int: return self.query(lowerCAmelCase__ , index + 1 ) def _UpperCamelCase ( self : Any , lowerCAmelCase__ : int ) -> int: value -= self.tree[0] if value < 0: return -1 UpperCAmelCase = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCAmelCase = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
1
1