code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {"vocab_file": "vocab.json"}
lowerCAmelCase__ = {
"vocab_file": {
"mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json",
}
}
lowerCAmelCase__ = {"mgp-str": 27}
class __magic_name__ ( _snake_case ):
UpperCAmelCase = VOCAB_FILES_NAMES
UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict="[GO]" , lowerCAmelCase__ : List[str]="[GO]" , lowerCAmelCase__ : Tuple="[s]" , lowerCAmelCase__ : Union[str, Any]="[GO]" , **lowerCAmelCase__ : List[str] ) -> Optional[int]:
super().__init__(
unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
with open(lowerCAmelCase__ , encoding="utf-8" ) as vocab_handle:
UpperCAmelCase = json.load(lowerCAmelCase__ )
UpperCAmelCase = {v: k for k, v in self.vocab.items()}
@property
def _UpperCamelCase ( self : List[str] ) -> List[Any]:
return len(self.vocab )
def _UpperCamelCase ( self : Any ) -> Any:
return dict(self.vocab , **self.added_tokens_encoder )
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : str ) -> Union[str, Any]:
UpperCAmelCase = []
for s in text:
char_tokens.extend(lowerCAmelCase__ )
return char_tokens
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ) -> Any:
return self.vocab.get(lowerCAmelCase__ , self.vocab.get(self.unk_token ) )
def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : Dict ) -> int:
return self.decoder.get(lowerCAmelCase__ )
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(lowerCAmelCase__ ):
logger.error("Vocabulary path ({}) should be a directory".format(lowerCAmelCase__ ) )
return
UpperCAmelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + "\n" )
return (vocab_file,)
| 1 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
lowerCAmelCase__ = get_tests_dir("fixtures")
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
# A mock response for an HTTP head request to emulate server down
UpperCAmelCase = mock.Mock()
UpperCAmelCase = 5_0_0
UpperCAmelCase = {}
UpperCAmelCase = HTTPError
UpperCAmelCase = {}
# Download this model to make sure it's in the cache.
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request" , return_value=lowerCAmelCase__ ) as mock_head:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# This check we did call the fake head request
mock_head.assert_called()
def _UpperCamelCase ( self : List[Any] ) -> Dict:
# This test is for deprecated behavior and can be removed in v5
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" )
@is_staging_test
class __magic_name__ ( unittest.TestCase ):
@classmethod
def _UpperCamelCase ( cls : List[str] ) -> List[Any]:
UpperCAmelCase = TOKEN
HfFolder.save_token(lowerCAmelCase__ )
@classmethod
def _UpperCamelCase ( cls : Optional[int] ) -> Union[str, Any]:
try:
delete_repo(token=cls._token , repo_id="test-feature-extractor" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" )
except HTTPError:
pass
def _UpperCamelCase ( self : Any ) -> Any:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
lowerCAmelCase__ , repo_id="test-feature-extractor" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : List[Any] ) -> Tuple:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
lowerCAmelCase__ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Dict ) -> List[str]:
CustomFeatureExtractor.register_for_auto_class()
UpperCAmelCase = CustomFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , )
UpperCAmelCase = AutoFeatureExtractor.from_pretrained(
f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=lowerCAmelCase__ )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
| 1 | 1 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
for attribute in key.split("." ):
UpperCAmelCase = getattr(__A , __A )
if weight_type is not None:
UpperCAmelCase = getattr(__A , __A ).shape
else:
UpperCAmelCase = hf_pointer.shape
assert hf_shape == value.shape, (
F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
F" {value.shape} for {full_name}"
)
if weight_type == "weight":
UpperCAmelCase = value
elif weight_type == "weight_g":
UpperCAmelCase = value
elif weight_type == "weight_v":
UpperCAmelCase = value
elif weight_type == "bias":
UpperCAmelCase = value
else:
UpperCAmelCase = value
logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." )
def _lowerCAmelCase( __A , __A , __A ):
UpperCAmelCase = []
UpperCAmelCase = fairseq_model.state_dict()
UpperCAmelCase = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase = False
if "conv_layers" in name:
load_conv_layer(
__A , __A , __A , __A , hf_model.config.feat_extract_norm == "group" , )
UpperCAmelCase = True
else:
for key, mapped_key in MAPPING.items():
UpperCAmelCase = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
UpperCAmelCase = True
if "*" in mapped_key:
UpperCAmelCase = name.split(__A )[0].split("." )[-2]
UpperCAmelCase = mapped_key.replace("*" , __A )
if "weight_g" in name:
UpperCAmelCase = "weight_g"
elif "weight_v" in name:
UpperCAmelCase = "weight_v"
elif "weight" in name:
UpperCAmelCase = "weight"
elif "bias" in name:
UpperCAmelCase = "bias"
else:
UpperCAmelCase = None
set_recursively(__A , __A , __A , __A , __A )
continue
if not is_used:
unused_weights.append(__A )
logger.warning(F"Unused weights: {unused_weights}" )
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
UpperCAmelCase = full_name.split("conv_layers." )[-1]
UpperCAmelCase = name.split("." )
UpperCAmelCase = int(items[0] )
UpperCAmelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."
)
UpperCAmelCase = value
logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."
)
UpperCAmelCase = value
logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"
" found."
)
UpperCAmelCase = value
logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"{full_name} has size {value.shape}, but"
F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."
)
UpperCAmelCase = value
logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(__A )
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = SEWConfig()
if is_finetuned:
UpperCAmelCase = model.wav_encoder.wav_model.cfg
else:
UpperCAmelCase = model.cfg
UpperCAmelCase = fs_config.conv_bias
UpperCAmelCase = eval(fs_config.conv_feature_layers )
UpperCAmelCase = [x[0] for x in conv_layers]
UpperCAmelCase = [x[1] for x in conv_layers]
UpperCAmelCase = [x[2] for x in conv_layers]
UpperCAmelCase = "gelu"
UpperCAmelCase = "layer" if fs_config.extractor_mode == "layer_norm" else "group"
UpperCAmelCase = 0.0
UpperCAmelCase = fs_config.activation_fn.name
UpperCAmelCase = fs_config.encoder_embed_dim
UpperCAmelCase = 0.02
UpperCAmelCase = fs_config.encoder_ffn_embed_dim
UpperCAmelCase = 1E-5
UpperCAmelCase = fs_config.encoder_layerdrop
UpperCAmelCase = fs_config.encoder_attention_heads
UpperCAmelCase = fs_config.conv_pos_groups
UpperCAmelCase = fs_config.conv_pos
UpperCAmelCase = len(__A )
UpperCAmelCase = fs_config.encoder_layers
UpperCAmelCase = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
UpperCAmelCase = model.cfg
UpperCAmelCase = fs_config.final_dropout
UpperCAmelCase = fs_config.layerdrop
UpperCAmelCase = fs_config.activation_dropout
UpperCAmelCase = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
UpperCAmelCase = fs_config.attention_dropout
UpperCAmelCase = fs_config.dropout_input
UpperCAmelCase = fs_config.dropout
UpperCAmelCase = fs_config.mask_channel_length
UpperCAmelCase = fs_config.mask_channel_prob
UpperCAmelCase = fs_config.mask_length
UpperCAmelCase = fs_config.mask_prob
UpperCAmelCase = "Wav2Vec2FeatureExtractor"
UpperCAmelCase = "Wav2Vec2CTCTokenizer"
return config
@torch.no_grad()
def _lowerCAmelCase( __A , __A , __A=None , __A=None , __A=True ):
if is_finetuned:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
UpperCAmelCase = SEWConfig.from_pretrained(__A )
else:
UpperCAmelCase = convert_config(model[0] , __A )
UpperCAmelCase = model[0].eval()
UpperCAmelCase = True if config.feat_extract_norm == "layer" else False
UpperCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , )
if is_finetuned:
if dict_path:
UpperCAmelCase = Dictionary.load(__A )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase = target_dict.pad_index
UpperCAmelCase = target_dict.bos_index
UpperCAmelCase = target_dict.pad_index
UpperCAmelCase = target_dict.bos_index
UpperCAmelCase = target_dict.eos_index
UpperCAmelCase = len(target_dict.symbols )
UpperCAmelCase = os.path.join(__A , "vocab.json" )
if not os.path.isdir(__A ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__A ) )
return
os.makedirs(__A , exist_ok=__A )
with open(__A , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(target_dict.indices , __A )
UpperCAmelCase = WavaVecaCTCTokenizer(
__A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__A , )
UpperCAmelCase = WavaVecaProcessor(feature_extractor=__A , tokenizer=__A )
processor.save_pretrained(__A )
UpperCAmelCase = SEWForCTC(__A )
else:
UpperCAmelCase = SEWModel(__A )
feature_extractor.save_pretrained(__A )
recursively_load_weights(__A , __A , __A )
hf_model.save_pretrained(__A )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
lowerCAmelCase__ = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 1 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
lowerCAmelCase__ = "src/diffusers"
# Matches is_xxx_available()
lowerCAmelCase__ = re.compile(r"is\_([a-z_]*)_available\(\)")
# Matches from xxx import bla
lowerCAmelCase__ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
lowerCAmelCase__ = "\n{0} = None\n"
lowerCAmelCase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n"
lowerCAmelCase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n"
def _lowerCAmelCase( __A ):
UpperCAmelCase = _re_backend.findall(__A )
if len(__A ) == 0:
return None
return "_and_".join(__A )
def _lowerCAmelCase( ):
with open(os.path.join(__A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.readlines()
# Get to the point we do the actual imports for type checking
UpperCAmelCase = 0
UpperCAmelCase = {}
# Go through the end of the file
while line_index < len(__A ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
UpperCAmelCase = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("else:" ):
line_index += 1
line_index += 1
UpperCAmelCase = []
# Until we unindent, add backend objects to the list
while line_index < len(__A ) and len(lines[line_index] ) > 1:
UpperCAmelCase = lines[line_index]
UpperCAmelCase = _re_single_line_import.search(__A )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__A ) > 0:
UpperCAmelCase = objects
else:
line_index += 1
return backend_specific_objects
def _lowerCAmelCase( __A , __A ):
if name.isupper():
return DUMMY_CONSTANT.format(__A )
elif name.islower():
return DUMMY_FUNCTION.format(__A , __A )
else:
return DUMMY_CLASS.format(__A , __A )
def _lowerCAmelCase( __A=None ):
if backend_specific_objects is None:
UpperCAmelCase = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
UpperCAmelCase = {}
for backend, objects in backend_specific_objects.items():
UpperCAmelCase = "[" + ", ".join(F"\"{b}\"" for b in backend.split("_and_" ) ) + "]"
UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__A , __A ) for o in objects] )
UpperCAmelCase = dummy_file
return dummy_files
def _lowerCAmelCase( __A=False ):
UpperCAmelCase = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
UpperCAmelCase = {"torch": "pt"}
# Locate actual dummy modules and read their content.
UpperCAmelCase = os.path.join(__A , "utils" )
UpperCAmelCase = {
backend: os.path.join(__A , F"dummy_{short_names.get(__A , __A )}_objects.py" )
for backend in dummy_files.keys()
}
UpperCAmelCase = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__A ):
with open(__A , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.read()
else:
UpperCAmelCase = ""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F"Updating diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py as the main "
"__init__ has new objects." )
with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"The main __init__ has objects that are not present in "
F"diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py. Run `make fix-copies` "
"to fix this." )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowerCAmelCase__ = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 1 | 1 |
import inspect
import unittest
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : Dict ) -> Tuple:
try:
import diffusers # noqa: F401
except ImportError:
assert False
def _UpperCamelCase ( self : Tuple ) -> List[Any]:
import diffusers
from diffusers.dependency_versions_table import deps
UpperCAmelCase = inspect.getmembers(lowerCAmelCase__ , inspect.isclass )
for cls_name, cls_module in all_classes:
if "dummy_" in cls_module.__module__:
for backend in cls_module._backends:
if backend == "k_diffusion":
UpperCAmelCase = "k-diffusion"
elif backend == "invisible_watermark":
UpperCAmelCase = "invisible-watermark"
assert backend in deps, f"{backend} is not in the deps table!"
| 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json",
}
class __magic_name__ ( _snake_case , _snake_case ):
UpperCAmelCase = """convnextv2"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Dict=1e-1_2 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : str=2_2_4 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[Any] , ) -> List[Any]:
super().__init__(**lowerCAmelCase__ )
UpperCAmelCase = num_channels
UpperCAmelCase = patch_size
UpperCAmelCase = num_stages
UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes
UpperCAmelCase = [3, 3, 9, 3] if depths is None else depths
UpperCAmelCase = hidden_act
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = drop_path_rate
UpperCAmelCase = image_size
UpperCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )]
UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
| 1 | 1 |
def _lowerCAmelCase( __A = 10**9 ):
UpperCAmelCase = 1
UpperCAmelCase = 2
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
UpperCAmelCase = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(f"{solution() = }")
| 1 |
lowerCAmelCase__ = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCAmelCase__ = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCAmelCase__ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 1 | 1 |
from __future__ import annotations
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = []
UpperCAmelCase = []
UpperCAmelCase = 0
UpperCAmelCase = sum(__A )
create_state_space_tree(__A , __A , __A , __A , __A , __A )
return result
def _lowerCAmelCase( __A , __A , __A , __A , __A , __A , ):
if sum(__A ) > max_sum or (remaining_nums_sum + sum(__A )) < max_sum:
return
if sum(__A ) == max_sum:
result.append(__A )
return
for index in range(__A , len(__A ) ):
create_state_space_tree(
__A , __A , index + 1 , [*path, nums[index]] , __A , remaining_nums_sum - nums[index] , )
lowerCAmelCase__ = [3, 34, 4, 12, 5, 2]
lowerCAmelCase__ = 9
lowerCAmelCase__ = generate_sum_of_subsets_soln(nums, max_sum)
print(*result)
| 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = KandinskyInpaintPipeline
UpperCAmelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
UpperCAmelCase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
UpperCAmelCase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
UpperCAmelCase = False
@property
def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple:
return 3_2
@property
def _UpperCamelCase ( self : int ) -> List[Any]:
return 3_2
@property
def _UpperCamelCase ( self : List[Any] ) -> List[Any]:
return self.time_input_dim
@property
def _UpperCamelCase ( self : Tuple ) -> Tuple:
return self.time_input_dim * 4
@property
def _UpperCamelCase ( self : Any ) -> Optional[int]:
return 1_0_0
@property
def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]:
UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" )
return tokenizer
@property
def _UpperCamelCase ( self : int ) -> Dict:
torch.manual_seed(0 )
UpperCAmelCase = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , )
UpperCAmelCase = MultilingualCLIP(lowerCAmelCase__ )
UpperCAmelCase = text_encoder.eval()
return text_encoder
@property
def _UpperCamelCase ( self : Dict ) -> Optional[int]:
torch.manual_seed(0 )
UpperCAmelCase = {
"in_channels": 9,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "text_image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "text_image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
UpperCAmelCase = UNetaDConditionModel(**lowerCAmelCase__ )
return model
@property
def _UpperCamelCase ( self : str ) -> Optional[Any]:
return {
"block_out_channels": [3_2, 6_4],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def _UpperCamelCase ( self : Dict ) -> List[Any]:
torch.manual_seed(0 )
UpperCAmelCase = VQModel(**self.dummy_movq_kwargs )
return model
def _UpperCamelCase ( self : Tuple ) -> Any:
UpperCAmelCase = self.dummy_text_encoder
UpperCAmelCase = self.dummy_tokenizer
UpperCAmelCase = self.dummy_unet
UpperCAmelCase = self.dummy_movq
UpperCAmelCase = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCAmelCase__ , )
UpperCAmelCase = {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=0 ) -> str:
UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase__ )
# create init_image
UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) )
# create mask
UpperCAmelCase = np.ones((6_4, 6_4) , dtype=np.floataa )
UpperCAmelCase = 0
if str(lowerCAmelCase__ ).startswith("mps" ):
UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ )
else:
UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
UpperCAmelCase = {
"prompt": "horse",
"image": init_image,
"mask_image": mask,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 6_4,
"width": 6_4,
"num_inference_steps": 2,
"guidance_scale": 4.0,
"output_type": "np",
}
return inputs
def _UpperCamelCase ( self : Dict ) -> List[str]:
UpperCAmelCase = "cpu"
UpperCAmelCase = self.get_dummy_components()
UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__ )
UpperCAmelCase = pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) )
UpperCAmelCase = output.images
UpperCAmelCase = pipe(
**self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0]
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
print(f"image.shape {image.shape}" )
assert image.shape == (1, 6_4, 6_4, 3)
UpperCAmelCase = np.array(
[0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def _UpperCamelCase ( self : str ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : str ) -> str:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCamelCase ( self : Tuple ) -> int:
UpperCAmelCase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" )
UpperCAmelCase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
UpperCAmelCase = np.ones((7_6_8, 7_6_8) , dtype=np.floataa )
UpperCAmelCase = 0
UpperCAmelCase = "a hat"
UpperCAmelCase = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa )
pipe_prior.to(lowerCAmelCase__ )
UpperCAmelCase = KandinskyInpaintPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa )
UpperCAmelCase = pipeline.to(lowerCAmelCase__ )
pipeline.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase , UpperCAmelCase = pipe_prior(
lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
UpperCAmelCase = pipeline(
lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="np" , )
UpperCAmelCase = output.images[0]
assert image.shape == (7_6_8, 7_6_8, 3)
assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
| 1 | 1 |
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : int ) -> Optional[Any]:
UpperCAmelCase = "hf-internal-testing/tiny-random-t5"
UpperCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ )
UpperCAmelCase = tokenizer("This is me" , return_tensors="pt" )
UpperCAmelCase = model.to_bettertransformer()
self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
UpperCAmelCase = model.generate(**lowerCAmelCase__ )
UpperCAmelCase = model.reverse_bettertransformer()
self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowerCAmelCase__ )
UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ )
self.assertFalse(
any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
UpperCAmelCase = model_reloaded.generate(**lowerCAmelCase__ )
self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : str ) -> List[str]:
UpperCAmelCase = "hf-internal-testing/tiny-random-t5"
UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ )
UpperCAmelCase = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(lowerCAmelCase__ ):
model.save_pretrained(lowerCAmelCase__ )
UpperCAmelCase = model.reverse_bettertransformer()
model.save_pretrained(lowerCAmelCase__ )
| 1 |
def _lowerCAmelCase( __A , __A ):
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def _lowerCAmelCase( __A , __A=0 ):
return sorted(__A , key=lambda __A : x[column] )
def _lowerCAmelCase( __A , __A , __A=float("inf" ) ):
for i in range(points_counts - 1 ):
for j in range(i + 1 , __A ):
UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
UpperCAmelCase = current_dis
return min_dis
def _lowerCAmelCase( __A , __A , __A=float("inf" ) ):
for i in range(min(6 , points_counts - 1 ) , __A ):
for j in range(max(0 , i - 6 ) , __A ):
UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
UpperCAmelCase = current_dis
return min_dis
def _lowerCAmelCase( __A , __A , __A ):
# base case
if points_counts <= 3:
return dis_between_closest_pair(__A , __A )
# recursion
UpperCAmelCase = points_counts // 2
UpperCAmelCase = closest_pair_of_points_sqr(
__A , points_sorted_on_y[:mid] , __A )
UpperCAmelCase = closest_pair_of_points_sqr(
__A , points_sorted_on_y[mid:] , points_counts - mid )
UpperCAmelCase = min(__A , __A )
UpperCAmelCase = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(__A )
UpperCAmelCase = dis_between_closest_in_strip(
__A , len(__A ) , __A )
return min(__A , __A )
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = column_based_sort(__A , column=0 )
UpperCAmelCase = column_based_sort(__A , column=1 )
return (
closest_pair_of_points_sqr(
__A , __A , __A )
) ** 0.5
if __name__ == "__main__":
lowerCAmelCase__ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
print("Distance:", closest_pair_of_points(points, len(points)))
| 1 | 1 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __magic_name__ :
def __init__( self : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : Optional[int]=3_2 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : str=1_0 , lowerCAmelCase__ : Optional[Any]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase__ : List[str]=[1, 1, 2, 1] , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Optional[int]="relu" , lowerCAmelCase__ : str=3 , lowerCAmelCase__ : Optional[int]=None , ) -> Optional[Any]:
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = image_size
UpperCAmelCase = num_channels
UpperCAmelCase = embeddings_size
UpperCAmelCase = hidden_sizes
UpperCAmelCase = depths
UpperCAmelCase = is_training
UpperCAmelCase = use_labels
UpperCAmelCase = hidden_act
UpperCAmelCase = num_labels
UpperCAmelCase = scope
UpperCAmelCase = len(lowerCAmelCase__ )
def _UpperCamelCase ( self : Tuple ) -> List[str]:
UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase = None
if self.use_labels:
UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def _UpperCamelCase ( self : Any ) -> Dict:
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] ) -> Optional[int]:
UpperCAmelCase = TFResNetModel(config=lowerCAmelCase__ )
UpperCAmelCase = model(lowerCAmelCase__ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : int ) -> Optional[int]:
UpperCAmelCase = self.num_labels
UpperCAmelCase = TFResNetForImageClassification(lowerCAmelCase__ )
UpperCAmelCase = model(lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCamelCase ( self : str ) -> Any:
UpperCAmelCase = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs
UpperCAmelCase = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class __magic_name__ ( _snake_case , _snake_case , unittest.TestCase ):
UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
UpperCAmelCase = (
{"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification}
if is_tf_available()
else {}
)
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = False
def _UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase = TFResNetModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ )
def _UpperCamelCase ( self : Dict ) -> Union[str, Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _UpperCamelCase ( self : Optional[Any] ) -> Optional[int]:
return
@unittest.skip(reason="ResNet does not use inputs_embeds" )
def _UpperCamelCase ( self : int ) -> Any:
pass
@unittest.skip(reason="ResNet does not support input and output embeddings" )
def _UpperCamelCase ( self : str ) -> Dict:
pass
def _UpperCamelCase ( self : Dict ) -> int:
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase = model_class(lowerCAmelCase__ )
UpperCAmelCase = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase = [*signature.parameters.keys()]
UpperCAmelCase = ["pixel_values"]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def _UpperCamelCase ( self : int ) -> str:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def _UpperCamelCase ( self : Optional[Any] ) -> List[Any]:
def check_hidden_states_output(lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] ):
UpperCAmelCase = model_class(lowerCAmelCase__ )
UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase = self.model_tester.num_stages
self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 )
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = ["basic", "bottleneck"]
for model_class in self.all_model_classes:
for layer_type in layers_type:
UpperCAmelCase = layer_type
UpperCAmelCase = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def _UpperCamelCase ( self : Tuple ) -> Optional[Any]:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ )
@slow
def _UpperCamelCase ( self : Union[str, Any] ) -> int:
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase = TFResNetModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def _lowerCAmelCase( ):
UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class __magic_name__ ( unittest.TestCase ):
@cached_property
def _UpperCamelCase ( self : Optional[Any] ) -> Any:
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def _UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
UpperCAmelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
UpperCAmelCase = self.default_image_processor
UpperCAmelCase = prepare_img()
UpperCAmelCase = image_processor(images=lowerCAmelCase__ , return_tensors="tf" )
# forward pass
UpperCAmelCase = model(**lowerCAmelCase__ )
# verify the logits
UpperCAmelCase = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
UpperCAmelCase = tf.constant([-11.1_069, -9.7_877, -8.3_777] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCAmelCase__ , atol=1e-4 ) )
| 1 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class __magic_name__ :
def __init__( self : Optional[int] ) -> Optional[Any]:
UpperCAmelCase = ""
UpperCAmelCase = ""
UpperCAmelCase = []
UpperCAmelCase = 0
UpperCAmelCase = 2_5_6
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Optional[Any] ) -> List[str]:
UpperCAmelCase = cva.imread(lowerCAmelCase__ , 0 )
UpperCAmelCase = copy.deepcopy(self.img )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="x" )
UpperCAmelCase = np.sum(lowerCAmelCase__ )
for i in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase = x[i] / self.k
self.sk += prk
UpperCAmelCase = (self.L - 1) * self.sk
if self.rem != 0:
UpperCAmelCase = int(last % last )
UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(lowerCAmelCase__ )
UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size )
UpperCAmelCase = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCAmelCase = self.img[j][i]
if num != self.last_list[num]:
UpperCAmelCase = self.last_list[num]
cva.imwrite("output_data/output.jpg" , self.img )
def _UpperCamelCase ( self : str ) -> int:
plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] )
def _UpperCamelCase ( self : Dict ) -> Optional[Any]:
cva.imshow("Output-Image" , self.img )
cva.imshow("Input-Image" , self.original_image )
cva.waitKey(5_0_0_0 )
cva.destroyAllWindows()
if __name__ == "__main__":
lowerCAmelCase__ = os.path.join(os.path.basename(__file__), "image_data/input.jpg")
lowerCAmelCase__ = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 1 | 1 |
from statistics import mean, stdev
def _lowerCAmelCase( __A , __A = 3 ):
UpperCAmelCase = min(__A )
UpperCAmelCase = max(__A )
# normalize data
return [round((x - x_min) / (x_max - x_min) , __A ) for x in data]
def _lowerCAmelCase( __A , __A = 3 ):
UpperCAmelCase = mean(__A )
UpperCAmelCase = stdev(__A )
# standardize data
return [round((x - mu) / (sigma) , __A ) for x in data]
| 1 |
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = LEDTokenizer
UpperCAmelCase = LEDTokenizerFast
UpperCAmelCase = True
def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
super().setUp()
UpperCAmelCase = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
UpperCAmelCase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
UpperCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
UpperCAmelCase = {"unk_token": "<unk>"}
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Union[str, Any] , **lowerCAmelCase__ : Optional[int] ) -> Optional[int]:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _UpperCamelCase ( self : str , **lowerCAmelCase__ : str ) -> Optional[int]:
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
return "lower newer", "lower newer"
@cached_property
def _UpperCamelCase ( self : Dict ) -> str:
return LEDTokenizer.from_pretrained("allenai/led-base-16384" )
@cached_property
def _UpperCamelCase ( self : int ) -> Tuple:
return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" )
@require_torch
def _UpperCamelCase ( self : Tuple ) -> List[str]:
UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
UpperCAmelCase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@require_torch
def _UpperCamelCase ( self : Union[str, Any] ) -> List[Any]:
UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt" )
self.assertIn("input_ids" , lowerCAmelCase__ )
self.assertIn("attention_mask" , lowerCAmelCase__ )
self.assertNotIn("labels" , lowerCAmelCase__ )
self.assertNotIn("decoder_attention_mask" , lowerCAmelCase__ )
@require_torch
def _UpperCamelCase ( self : int ) -> int:
UpperCAmelCase = [
"Summary of the text.",
"Another summary.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , max_length=3_2 , padding="max_length" , return_tensors="pt" )
self.assertEqual(3_2 , targets["input_ids"].shape[1] )
@require_torch
def _UpperCamelCase ( self : Any ) -> int:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(
["I am a small frog" * 1_0_2_4, "I am a small frog"] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) )
@require_torch
def _UpperCamelCase ( self : Dict ) -> Tuple:
UpperCAmelCase = ["A long paragraph for summarization."]
UpperCAmelCase = [
"Summary of the text.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase = inputs["input_ids"]
UpperCAmelCase = targets["input_ids"]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = ["Summary of the text.", "Another summary."]
UpperCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ )
UpperCAmelCase = [[0] * len(lowerCAmelCase__ ) for x in encoded_output["input_ids"]]
UpperCAmelCase = tokenizer.pad(lowerCAmelCase__ )
self.assertSequenceEqual(outputs["global_attention_mask"] , lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] ) -> int:
pass
def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = "A, <mask> AllenNLP sentence."
UpperCAmelCase = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
UpperCAmelCase = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) )
self.assertEqual(
sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , )
UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] )
UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] )
self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(
lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
self.assertSequenceEqual(
lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
| 1 | 1 |
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
lowerCAmelCase__ = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n"
lowerCAmelCase__ = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n"
lowerCAmelCase__ = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __magic_name__ ( datasets.Metric ):
def _UpperCamelCase ( self : Optional[Any] ) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[
"https://en.wikipedia.org/wiki/ROUGE_(metric)",
"https://github.com/google-research/google-research/tree/master/rouge",
] , )
def _UpperCamelCase ( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : int=True , lowerCAmelCase__ : List[Any]=False ) -> Optional[Any]:
if rouge_types is None:
UpperCAmelCase = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
UpperCAmelCase = rouge_scorer.RougeScorer(rouge_types=lowerCAmelCase__ , use_stemmer=lowerCAmelCase__ )
if use_aggregator:
UpperCAmelCase = scoring.BootstrapAggregator()
else:
UpperCAmelCase = []
for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase = scorer.score(lowerCAmelCase__ , lowerCAmelCase__ )
if use_aggregator:
aggregator.add_scores(lowerCAmelCase__ )
else:
scores.append(lowerCAmelCase__ )
if use_aggregator:
UpperCAmelCase = aggregator.aggregate()
else:
UpperCAmelCase = {}
for key in scores[0]:
UpperCAmelCase = [score[key] for score in scores]
return result
| 1 |
import numpy as np
from nltk.translate import meteor_score
import datasets
from datasets.config import importlib_metadata, version
lowerCAmelCase__ = version.parse(importlib_metadata.version("nltk"))
if NLTK_VERSION >= version.Version("3.6.4"):
from nltk import word_tokenize
lowerCAmelCase__ = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n"
lowerCAmelCase__ = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n"
lowerCAmelCase__ = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __magic_name__ ( datasets.Metric ):
def _UpperCamelCase ( self : int ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[
"https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score",
"https://en.wikipedia.org/wiki/METEOR",
] , )
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : List[Any] ) -> Dict:
import nltk
nltk.download("wordnet" )
if NLTK_VERSION >= version.Version("3.6.5" ):
nltk.download("punkt" )
if NLTK_VERSION >= version.Version("3.6.6" ):
nltk.download("omw-1.4" )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=0.9 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Optional[int]=0.5 ) -> Any:
if NLTK_VERSION >= version.Version("3.6.5" ):
UpperCAmelCase = [
meteor_score.single_meteor_score(
word_tokenize(lowerCAmelCase__ ) , word_tokenize(lowerCAmelCase__ ) , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ )
for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
else:
UpperCAmelCase = [
meteor_score.single_meteor_score(lowerCAmelCase__ , lowerCAmelCase__ , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ )
for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
return {"meteor": np.mean(lowerCAmelCase__ )}
| 1 | 1 |
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
lowerCAmelCase__ = {
"vocab_file": {
"allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json"
},
"merges_file": {
"allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt"
},
}
lowerCAmelCase__ = {"allegro/herbert-base-cased": 514}
lowerCAmelCase__ = {}
class __magic_name__ ( _snake_case ):
UpperCAmelCase = VOCAB_FILES_NAMES
UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase = HerbertTokenizer
def __init__( self : str , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Optional[int]="<s>" , lowerCAmelCase__ : int="<unk>" , lowerCAmelCase__ : List[str]="<pad>" , lowerCAmelCase__ : int="<mask>" , lowerCAmelCase__ : Any="</s>" , **lowerCAmelCase__ : Any , ) -> Union[str, Any]:
super().__init__(
lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
UpperCAmelCase = [self.cls_token_id]
UpperCAmelCase = [self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
UpperCAmelCase = [self.sep_token_id]
UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
UpperCAmelCase = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ )
return tuple(lowerCAmelCase__ )
| 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json",
}
class __magic_name__ ( _snake_case ):
UpperCAmelCase = """lxmert"""
UpperCAmelCase = {}
def __init__( self : int , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : List[str]=7_6_8 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : List[Any]=9_5_0_0 , lowerCAmelCase__ : Any=1_6_0_0 , lowerCAmelCase__ : Union[str, Any]=4_0_0 , lowerCAmelCase__ : Tuple=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : str=1e-1_2 , lowerCAmelCase__ : str=9 , lowerCAmelCase__ : int=5 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : List[Any]=2_0_4_8 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Dict=6.67 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Tuple=True , **lowerCAmelCase__ : List[Any] , ) -> Dict:
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = num_qa_labels
UpperCAmelCase = num_object_labels
UpperCAmelCase = num_attr_labels
UpperCAmelCase = l_layers
UpperCAmelCase = x_layers
UpperCAmelCase = r_layers
UpperCAmelCase = visual_feat_dim
UpperCAmelCase = visual_pos_dim
UpperCAmelCase = visual_loss_normalizer
UpperCAmelCase = task_matched
UpperCAmelCase = task_mask_lm
UpperCAmelCase = task_obj_predict
UpperCAmelCase = task_qa
UpperCAmelCase = visual_obj_loss
UpperCAmelCase = visual_attr_loss
UpperCAmelCase = visual_feat_loss
UpperCAmelCase = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers}
super().__init__(**lowerCAmelCase__ )
| 1 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available
lowerCAmelCase__ = {
"configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
"ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST",
"ErnieForCausalLM",
"ErnieForMaskedLM",
"ErnieForMultipleChoice",
"ErnieForNextSentencePrediction",
"ErnieForPreTraining",
"ErnieForQuestionAnswering",
"ErnieForSequenceClassification",
"ErnieForTokenClassification",
"ErnieModel",
"ErniePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ernie import (
ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST,
ErnieForCausalLM,
ErnieForMaskedLM,
ErnieForMultipleChoice,
ErnieForNextSentencePrediction,
ErnieForPreTraining,
ErnieForQuestionAnswering,
ErnieForSequenceClassification,
ErnieForTokenClassification,
ErnieModel,
ErniePreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 1 |
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def _lowerCAmelCase( __A = 100 ):
UpperCAmelCase = 1
UpperCAmelCase = 2
for i in range(2 , max_n + 1 ):
UpperCAmelCase = pre_numerator
UpperCAmelCase = 2 * i // 3 if i % 3 == 0 else 1
UpperCAmelCase = cur_numerator
UpperCAmelCase = e_cont * pre_numerator + temp
return sum_digits(__A )
if __name__ == "__main__":
print(f"{solution() = }")
| 1 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = KandinskyInpaintPipeline
UpperCAmelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
UpperCAmelCase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
UpperCAmelCase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
UpperCAmelCase = False
@property
def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple:
return 3_2
@property
def _UpperCamelCase ( self : int ) -> List[Any]:
return 3_2
@property
def _UpperCamelCase ( self : List[Any] ) -> List[Any]:
return self.time_input_dim
@property
def _UpperCamelCase ( self : Tuple ) -> Tuple:
return self.time_input_dim * 4
@property
def _UpperCamelCase ( self : Any ) -> Optional[int]:
return 1_0_0
@property
def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]:
UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" )
return tokenizer
@property
def _UpperCamelCase ( self : int ) -> Dict:
torch.manual_seed(0 )
UpperCAmelCase = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , )
UpperCAmelCase = MultilingualCLIP(lowerCAmelCase__ )
UpperCAmelCase = text_encoder.eval()
return text_encoder
@property
def _UpperCamelCase ( self : Dict ) -> Optional[int]:
torch.manual_seed(0 )
UpperCAmelCase = {
"in_channels": 9,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "text_image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "text_image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
UpperCAmelCase = UNetaDConditionModel(**lowerCAmelCase__ )
return model
@property
def _UpperCamelCase ( self : str ) -> Optional[Any]:
return {
"block_out_channels": [3_2, 6_4],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def _UpperCamelCase ( self : Dict ) -> List[Any]:
torch.manual_seed(0 )
UpperCAmelCase = VQModel(**self.dummy_movq_kwargs )
return model
def _UpperCamelCase ( self : Tuple ) -> Any:
UpperCAmelCase = self.dummy_text_encoder
UpperCAmelCase = self.dummy_tokenizer
UpperCAmelCase = self.dummy_unet
UpperCAmelCase = self.dummy_movq
UpperCAmelCase = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCAmelCase__ , )
UpperCAmelCase = {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=0 ) -> str:
UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase__ )
# create init_image
UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) )
# create mask
UpperCAmelCase = np.ones((6_4, 6_4) , dtype=np.floataa )
UpperCAmelCase = 0
if str(lowerCAmelCase__ ).startswith("mps" ):
UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ )
else:
UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
UpperCAmelCase = {
"prompt": "horse",
"image": init_image,
"mask_image": mask,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 6_4,
"width": 6_4,
"num_inference_steps": 2,
"guidance_scale": 4.0,
"output_type": "np",
}
return inputs
def _UpperCamelCase ( self : Dict ) -> List[str]:
UpperCAmelCase = "cpu"
UpperCAmelCase = self.get_dummy_components()
UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__ )
UpperCAmelCase = pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) )
UpperCAmelCase = output.images
UpperCAmelCase = pipe(
**self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0]
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
print(f"image.shape {image.shape}" )
assert image.shape == (1, 6_4, 6_4, 3)
UpperCAmelCase = np.array(
[0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def _UpperCamelCase ( self : str ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : str ) -> str:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCamelCase ( self : Tuple ) -> int:
UpperCAmelCase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" )
UpperCAmelCase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
UpperCAmelCase = np.ones((7_6_8, 7_6_8) , dtype=np.floataa )
UpperCAmelCase = 0
UpperCAmelCase = "a hat"
UpperCAmelCase = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa )
pipe_prior.to(lowerCAmelCase__ )
UpperCAmelCase = KandinskyInpaintPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa )
UpperCAmelCase = pipeline.to(lowerCAmelCase__ )
pipeline.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase , UpperCAmelCase = pipe_prior(
lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
UpperCAmelCase = pipeline(
lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="np" , )
UpperCAmelCase = output.images[0]
assert image.shape == (7_6_8, 7_6_8, 3)
assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
| 1 |
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 1 | 1 |
import argparse
import torch
from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def _lowerCAmelCase( __A , __A , __A ):
# Construct model
if openai_config_file == "":
UpperCAmelCase = OpenAIGPTConfig()
else:
UpperCAmelCase = OpenAIGPTConfig.from_json_file(__A )
UpperCAmelCase = OpenAIGPTModel(__A )
# Load weights from numpy
load_tf_weights_in_openai_gpt(__A , __A , __A )
# Save pytorch-model
UpperCAmelCase = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
UpperCAmelCase = pytorch_dump_folder_path + "/" + CONFIG_NAME
print(F"Save PyTorch model to {pytorch_weights_dump_path}" )
torch.save(model.state_dict() , __A )
print(F"Save configuration file to {pytorch_config_dump_path}" )
with open(__A , "w" , encoding="utf-8" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--openai_checkpoint_folder_path",
default=None,
type=str,
required=True,
help="Path to the TensorFlow checkpoint path.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--openai_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained OpenAI model. \n"
"This specifies the model architecture."
),
)
lowerCAmelCase__ = parser.parse_args()
convert_openai_checkpoint_to_pytorch(
args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path
)
| 1 |
import numpy
# List of input, output pairs
lowerCAmelCase__ = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
lowerCAmelCase__ = (((515, 22, 13), 555), ((61, 35, 49), 150))
lowerCAmelCase__ = [2, 4, 1, 5]
lowerCAmelCase__ = len(train_data)
lowerCAmelCase__ = 0.0_0_9
def _lowerCAmelCase( __A , __A="train" ):
return calculate_hypothesis_value(__A , __A ) - output(
__A , __A )
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
for i in range(len(__A ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def _lowerCAmelCase( __A , __A ):
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def _lowerCAmelCase( __A , __A ):
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def _lowerCAmelCase( __A , __A=m ):
UpperCAmelCase = 0
for i in range(__A ):
if index == -1:
summation_value += _error(__A )
else:
summation_value += _error(__A ) * train_data[i][0][index]
return summation_value
def _lowerCAmelCase( __A ):
UpperCAmelCase = summation_of_cost_derivative(__A , __A ) / m
return cost_derivative_value
def _lowerCAmelCase( ):
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCAmelCase = 0.000002
UpperCAmelCase = 0
UpperCAmelCase = 0
while True:
j += 1
UpperCAmelCase = [0, 0, 0, 0]
for i in range(0 , len(__A ) ):
UpperCAmelCase = get_cost_derivative(i - 1 )
UpperCAmelCase = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
__A , __A , atol=__A , rtol=__A , ):
break
UpperCAmelCase = temp_parameter_vector
print(("Number of iterations:", j) )
def _lowerCAmelCase( ):
for i in range(len(__A ) ):
print(("Actual output value:", output(__A , "test" )) )
print(("Hypothesis output:", calculate_hypothesis_value(__A , "test" )) )
if __name__ == "__main__":
run_gradient_descent()
print("\nTesting gradient descent for a linear hypothesis function.\n")
test_gradient_descent()
| 1 | 1 |
def _lowerCAmelCase( __A ):
if number > 0:
raise ValueError("input must be a negative integer" )
UpperCAmelCase = len(bin(__A )[3:] )
UpperCAmelCase = bin(abs(__A ) - (1 << binary_number_length) )[3:]
UpperCAmelCase = (
(
"1"
+ "0" * (binary_number_length - len(__A ))
+ twos_complement_number
)
if number < 0
else "0"
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |
def _lowerCAmelCase( __A , __A , __A ):
if n == 0:
return 1
elif n % 2 == 1:
return (binary_exponentiation(__A , n - 1 , __A ) * a) % mod
else:
UpperCAmelCase = binary_exponentiation(__A , n / 2 , __A )
return (b * b) % mod
# a prime number
lowerCAmelCase__ = 701
lowerCAmelCase__ = 1000000000
lowerCAmelCase__ = 10
# using binary exponentiation function, O(log(p)):
print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p)
print((a / b) % p == (a * b ** (p - 2)) % p)
| 1 | 1 |
import pickle
import numpy as np
from matplotlib import pyplot as plt
class __magic_name__ :
def __init__( self : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=0.2 , lowerCAmelCase__ : Union[str, Any]=0.2 ) -> Tuple:
UpperCAmelCase = bp_numa
UpperCAmelCase = bp_numa
UpperCAmelCase = bp_numa
UpperCAmelCase = conva_get[:2]
UpperCAmelCase = conva_get[2]
UpperCAmelCase = size_pa
UpperCAmelCase = rate_w
UpperCAmelCase = rate_t
UpperCAmelCase = [
np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
UpperCAmelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
UpperCAmelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
UpperCAmelCase = -2 * np.random.rand(self.conva[1] ) + 1
UpperCAmelCase = -2 * np.random.rand(self.num_bpa ) + 1
UpperCAmelCase = -2 * np.random.rand(self.num_bpa ) + 1
def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : str ) -> Tuple:
# save model dict with pickle
UpperCAmelCase = {
"num_bp1": self.num_bpa,
"num_bp2": self.num_bpa,
"num_bp3": self.num_bpa,
"conv1": self.conva,
"step_conv1": self.step_conva,
"size_pooling1": self.size_poolinga,
"rate_weight": self.rate_weight,
"rate_thre": self.rate_thre,
"w_conv1": self.w_conva,
"wkj": self.wkj,
"vji": self.vji,
"thre_conv1": self.thre_conva,
"thre_bp2": self.thre_bpa,
"thre_bp3": self.thre_bpa,
}
with open(lowerCAmelCase__ , "wb" ) as f:
pickle.dump(lowerCAmelCase__ , lowerCAmelCase__ )
print(f"Model saved: {save_path}" )
@classmethod
def _UpperCamelCase ( cls : int , lowerCAmelCase__ : Dict ) -> Optional[Any]:
# read saved model
with open(lowerCAmelCase__ , "rb" ) as f:
UpperCAmelCase = pickle.load(lowerCAmelCase__ ) # noqa: S301
UpperCAmelCase = model_dic.get("conv1" )
conv_get.append(model_dic.get("step_conv1" ) )
UpperCAmelCase = model_dic.get("size_pooling1" )
UpperCAmelCase = model_dic.get("num_bp1" )
UpperCAmelCase = model_dic.get("num_bp2" )
UpperCAmelCase = model_dic.get("num_bp3" )
UpperCAmelCase = model_dic.get("rate_weight" )
UpperCAmelCase = model_dic.get("rate_thre" )
# create model instance
UpperCAmelCase = CNN(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# modify model parameter
UpperCAmelCase = model_dic.get("w_conv1" )
UpperCAmelCase = model_dic.get("wkj" )
UpperCAmelCase = model_dic.get("vji" )
UpperCAmelCase = model_dic.get("thre_conv1" )
UpperCAmelCase = model_dic.get("thre_bp2" )
UpperCAmelCase = model_dic.get("thre_bp3" )
return conv_ins
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : str ) -> Tuple:
return 1 / (1 + np.exp(-1 * x ))
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : int ) -> Optional[int]:
return round(lowerCAmelCase__ , 3 )
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple ) -> str:
# convolution process
UpperCAmelCase = convs[0]
UpperCAmelCase = convs[1]
UpperCAmelCase = np.shape(lowerCAmelCase__ )[0]
# get the data slice of original image data, data_focus
UpperCAmelCase = []
for i_focus in range(0 , size_data - size_conv + 1 , lowerCAmelCase__ ):
for j_focus in range(0 , size_data - size_conv + 1 , lowerCAmelCase__ ):
UpperCAmelCase = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(lowerCAmelCase__ )
# calculate the feature map of every single kernel, and saved as list of matrix
UpperCAmelCase = []
UpperCAmelCase = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(lowerCAmelCase__ ):
UpperCAmelCase = []
for i_focus in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase = (
np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(lowerCAmelCase__ ) )
UpperCAmelCase = np.asmatrix(lowerCAmelCase__ ).reshape(
lowerCAmelCase__ , lowerCAmelCase__ )
data_featuremap.append(lowerCAmelCase__ )
# expanding the data slice to One dimenssion
UpperCAmelCase = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(lowerCAmelCase__ ) )
UpperCAmelCase = np.asarray(lowerCAmelCase__ )
return focus_list, data_featuremap
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int]="average_pool" ) -> List[Any]:
# pooling process
UpperCAmelCase = len(featuremaps[0] )
UpperCAmelCase = int(size_map / size_pooling )
UpperCAmelCase = []
for i_map in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase = featuremaps[i_map]
UpperCAmelCase = []
for i_focus in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ):
for j_focus in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(lowerCAmelCase__ ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(lowerCAmelCase__ ) )
UpperCAmelCase = np.asmatrix(lowerCAmelCase__ ).reshape(lowerCAmelCase__ , lowerCAmelCase__ )
featuremap_pooled.append(lowerCAmelCase__ )
return featuremap_pooled
def _UpperCamelCase ( self : str , lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
# expanding three dimension data to one dimension list
UpperCAmelCase = []
for i in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase = np.shape(data[i] )
UpperCAmelCase = data[i].reshape(1 , shapes[0] * shapes[1] )
UpperCAmelCase = data_listed.getA().tolist()[0]
data_expanded.extend(lowerCAmelCase__ )
UpperCAmelCase = np.asarray(lowerCAmelCase__ )
return data_expanded
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Dict ) -> str:
# expanding matrix to one dimension list
UpperCAmelCase = np.asarray(lowerCAmelCase__ )
UpperCAmelCase = np.shape(lowerCAmelCase__ )
UpperCAmelCase = data_mat.reshape(1 , shapes[0] * shapes[1] )
return data_expanded
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] ) -> List[Any]:
UpperCAmelCase = []
UpperCAmelCase = 0
for i_map in range(lowerCAmelCase__ ):
UpperCAmelCase = np.ones((size_map, size_map) )
for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ):
for j in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase = pd_pool[
i_pool
]
UpperCAmelCase = i_pool + 1
UpperCAmelCase = np.multiply(
lowerCAmelCase__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) )
pd_all.append(lowerCAmelCase__ )
return pd_all
def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int]=bool ) -> List[str]:
# model traning
print("----------------------Start Training-------------------------" )
print((" - - Shape: Train_Data ", np.shape(lowerCAmelCase__ )) )
print((" - - Shape: Teach_Data ", np.shape(lowerCAmelCase__ )) )
UpperCAmelCase = 0
UpperCAmelCase = []
UpperCAmelCase = 1_0_0_0_0
while rp < n_repeat and mse >= error_accuracy:
UpperCAmelCase = 0
print(f"-------------Learning Time {rp}--------------" )
for p in range(len(lowerCAmelCase__ ) ):
# print('------------Learning Image: %d--------------'%p)
UpperCAmelCase = np.asmatrix(datas_train[p] )
UpperCAmelCase = np.asarray(datas_teach[p] )
UpperCAmelCase , UpperCAmelCase = self.convolute(
lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
UpperCAmelCase = self.pooling(lowerCAmelCase__ , self.size_poolinga )
UpperCAmelCase = np.shape(lowerCAmelCase__ )
UpperCAmelCase = self._expand(lowerCAmelCase__ )
UpperCAmelCase = data_bp_input
UpperCAmelCase = np.dot(lowerCAmelCase__ , self.vji.T ) - self.thre_bpa
UpperCAmelCase = self.sig(lowerCAmelCase__ )
UpperCAmelCase = np.dot(lowerCAmelCase__ , self.wkj.T ) - self.thre_bpa
UpperCAmelCase = self.sig(lowerCAmelCase__ )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
UpperCAmelCase = np.multiply(
(data_teach - bp_outa) , np.multiply(lowerCAmelCase__ , (1 - bp_outa) ) )
UpperCAmelCase = np.multiply(
np.dot(lowerCAmelCase__ , self.wkj ) , np.multiply(lowerCAmelCase__ , (1 - bp_outa) ) )
UpperCAmelCase = np.dot(lowerCAmelCase__ , self.vji )
UpperCAmelCase = pd_i_all / (self.size_poolinga * self.size_poolinga)
UpperCAmelCase = pd_conva_pooled.T.getA().tolist()
UpperCAmelCase = self._calculate_gradient_from_pool(
lowerCAmelCase__ , lowerCAmelCase__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , )
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
UpperCAmelCase = self._expand_mat(pd_conva_all[k_conv] )
UpperCAmelCase = self.rate_weight * np.dot(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
UpperCAmelCase = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
UpperCAmelCase = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
UpperCAmelCase = self.vji + pd_j_all.T * bp_outa * self.rate_weight
UpperCAmelCase = self.thre_bpa - pd_k_all * self.rate_thre
UpperCAmelCase = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
UpperCAmelCase = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
UpperCAmelCase = rp + 1
UpperCAmelCase = error_count / patterns
all_mse.append(lowerCAmelCase__ )
def draw_error():
UpperCAmelCase = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(lowerCAmelCase__ , "+-" )
plt.plot(lowerCAmelCase__ , "r--" )
plt.xlabel("Learning Times" )
plt.ylabel("All_mse" )
plt.grid(lowerCAmelCase__ , alpha=0.5 )
plt.show()
print("------------------Training Complished---------------------" )
print((" - - Training epoch: ", rp, f" - - Mse: {mse:.6f}") )
if draw_e:
draw_error()
return mse
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Union[str, Any]:
# model predict
UpperCAmelCase = []
print("-------------------Start Testing-------------------------" )
print((" - - Shape: Test_Data ", np.shape(lowerCAmelCase__ )) )
for p in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase = np.asmatrix(datas_test[p] )
UpperCAmelCase , UpperCAmelCase = self.convolute(
lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
UpperCAmelCase = self.pooling(lowerCAmelCase__ , self.size_poolinga )
UpperCAmelCase = self._expand(lowerCAmelCase__ )
UpperCAmelCase = data_bp_input
UpperCAmelCase = bp_outa * self.vji.T - self.thre_bpa
UpperCAmelCase = self.sig(lowerCAmelCase__ )
UpperCAmelCase = bp_outa * self.wkj.T - self.thre_bpa
UpperCAmelCase = self.sig(lowerCAmelCase__ )
produce_out.extend(bp_outa.getA().tolist() )
UpperCAmelCase = [list(map(self.do_round , lowerCAmelCase__ ) ) for each in produce_out]
return np.asarray(lowerCAmelCase__ )
def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]:
# return the data of image after convoluting process so we can check it out
UpperCAmelCase = np.asmatrix(lowerCAmelCase__ )
UpperCAmelCase , UpperCAmelCase = self.convolute(
lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
UpperCAmelCase = self.pooling(lowerCAmelCase__ , self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 1 |
lowerCAmelCase__ = {
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
lowerCAmelCase__ = {value: key for key, value in encode_dict.items()}
def _lowerCAmelCase( __A ):
UpperCAmelCase = ""
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception("encode() accepts only letters of the alphabet and spaces" )
return encoded
def _lowerCAmelCase( __A ):
if set(__A ) - {"A", "B", " "} != set():
raise Exception("decode() accepts only 'A', 'B' and spaces" )
UpperCAmelCase = ""
for word in coded.split():
while len(__A ) != 0:
decoded += decode_dict[word[:5]]
UpperCAmelCase = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler")
class __magic_name__ :
def __init__( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = False ) -> Tuple:
UpperCAmelCase = scheduler
UpperCAmelCase = optimizers if isinstance(lowerCAmelCase__ , (list, tuple) ) else [optimizers]
UpperCAmelCase = split_batches
UpperCAmelCase = step_with_optimizer
UpperCAmelCase = GradientState()
def _UpperCamelCase ( self : int , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]:
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*lowerCAmelCase__ , **lowerCAmelCase__ )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*lowerCAmelCase__ , **lowerCAmelCase__ )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
UpperCAmelCase = AcceleratorState().num_processes
for _ in range(lowerCAmelCase__ ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , "total_steps" ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*lowerCAmelCase__ , **lowerCAmelCase__ )
else:
self.scheduler.step(*lowerCAmelCase__ , **lowerCAmelCase__ )
def _UpperCamelCase ( self : Dict ) -> List[Any]:
return self.scheduler.get_last_lr()
def _UpperCamelCase ( self : Optional[int] ) -> str:
return self.scheduler.state_dict()
def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : str ) -> Union[str, Any]:
self.scheduler.load_state_dict(lowerCAmelCase__ )
def _UpperCamelCase ( self : Dict ) -> str:
return self.scheduler.get_lr()
def _UpperCamelCase ( self : Union[str, Any] , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : List[str] ) -> List[Any]:
return self.scheduler.print_lr(*lowerCAmelCase__ , **lowerCAmelCase__ )
| 1 |
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
lowerCAmelCase__ = {"UserAgent": UserAgent().random}
def _lowerCAmelCase( __A ):
UpperCAmelCase = script.contents[0]
UpperCAmelCase = json.loads(data[data.find("{\"config\"" ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class __magic_name__ :
def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Any:
UpperCAmelCase = f"https://www.instagram.com/{username}/"
UpperCAmelCase = self.get_json()
def _UpperCamelCase ( self : List[str] ) -> dict:
UpperCAmelCase = requests.get(self.url , headers=lowerCAmelCase__ ).text
UpperCAmelCase = BeautifulSoup(lowerCAmelCase__ , "html.parser" ).find_all("script" )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self : Tuple ) -> str:
return f"{self.__class__.__name__}('{self.username}')"
def __str__( self : Optional[int] ) -> str:
return f"{self.fullname} ({self.username}) is {self.biography}"
@property
def _UpperCamelCase ( self : Any ) -> str:
return self.user_data["username"]
@property
def _UpperCamelCase ( self : List[Any] ) -> str:
return self.user_data["full_name"]
@property
def _UpperCamelCase ( self : List[str] ) -> str:
return self.user_data["biography"]
@property
def _UpperCamelCase ( self : Optional[int] ) -> str:
return self.user_data["business_email"]
@property
def _UpperCamelCase ( self : str ) -> str:
return self.user_data["external_url"]
@property
def _UpperCamelCase ( self : int ) -> int:
return self.user_data["edge_followed_by"]["count"]
@property
def _UpperCamelCase ( self : List[Any] ) -> int:
return self.user_data["edge_follow"]["count"]
@property
def _UpperCamelCase ( self : List[str] ) -> int:
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def _UpperCamelCase ( self : Tuple ) -> str:
return self.user_data["profile_pic_url_hd"]
@property
def _UpperCamelCase ( self : Optional[int] ) -> bool:
return self.user_data["is_verified"]
@property
def _UpperCamelCase ( self : Optional[Any] ) -> bool:
return self.user_data["is_private"]
def _lowerCAmelCase( __A = "github" ):
import os
if os.environ.get("CI" ):
return # test failing on GitHub Actions
UpperCAmelCase = InstagramUser(__A )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , __A )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 150
assert instagram_user.number_of_followers > 120000
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "[email protected]"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith("https://instagram." )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase__ = InstagramUser("github")
print(instagram_user)
print(f"{instagram_user.number_of_posts = }")
print(f"{instagram_user.number_of_followers = }")
print(f"{instagram_user.number_of_followings = }")
print(f"{instagram_user.email = }")
print(f"{instagram_user.website = }")
print(f"{instagram_user.profile_picture_url = }")
print(f"{instagram_user.is_verified = }")
print(f"{instagram_user.is_private = }")
| 1 | 1 |
import torch
from diffusers import DPMSolverSDEScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import require_torchsde
from .test_schedulers import SchedulerCommonTest
@require_torchsde
class __magic_name__ ( _snake_case ):
UpperCAmelCase = (DPMSolverSDEScheduler,)
UpperCAmelCase = 10
def _UpperCamelCase ( self : int , **lowerCAmelCase__ : Any ) -> int:
UpperCAmelCase = {
"num_train_timesteps": 1_1_0_0,
"beta_start": 0.0_001,
"beta_end": 0.02,
"beta_schedule": "linear",
"noise_sampler_seed": 0,
}
config.update(**lowerCAmelCase__ )
return config
def _UpperCamelCase ( self : Optional[Any] ) -> Dict:
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase__ )
def _UpperCamelCase ( self : Dict ) -> Any:
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] ) -> Optional[int]:
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase__ )
def _UpperCamelCase ( self : int ) -> Optional[int]:
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase = sample.to(lowerCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = model(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase__ ) )
UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase__ ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.47_821_044_921_875 ) < 1e-2
assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59_352_111_816_406 ) < 1e-2
assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1e-3
else:
assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1e-2
assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1e-3
def _UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]:
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" )
UpperCAmelCase = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase = sample.to(lowerCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = model(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase__ ) )
UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase__ ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 124.77_149_200_439_453 ) < 1e-2
assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 128.1_663_360_595_703 ) < 1e-2
assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1e-3
else:
assert abs(result_sum.item() - 119.8_487_548_828_125 ) < 1e-2
assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1e-3
def _UpperCamelCase ( self : int ) -> Optional[Any]:
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter.to(lowerCAmelCase__ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
UpperCAmelCase = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = model(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase__ ) )
UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase__ ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.46_957_397_460_938 ) < 1e-2
assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59_353_637_695_312 ) < 1e-2
assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1e-3
else:
assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1e-2
assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1e-3
def _UpperCamelCase ( self : Optional[Any] ) -> int:
UpperCAmelCase = self.scheduler_classes[0]
UpperCAmelCase = self.get_scheduler_config()
UpperCAmelCase = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ )
UpperCAmelCase = self.dummy_model()
UpperCAmelCase = self.dummy_sample_deter.to(lowerCAmelCase__ ) * scheduler.init_noise_sigma
UpperCAmelCase = sample.to(lowerCAmelCase__ )
for t in scheduler.timesteps:
UpperCAmelCase = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = model(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = output.prev_sample
UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase__ ) )
UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase__ ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 176.66_974_135_742_188 ) < 1e-2
assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 177.63_653_564_453_125 ) < 1e-2
assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2
else:
assert abs(result_sum.item() - 170.3_135_223_388_672 ) < 1e-2
assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2
| 1 |
import unittest
import numpy as np
def _lowerCAmelCase( __A , __A , __A , __A = None , ):
UpperCAmelCase = np.shape(__A )
UpperCAmelCase = np.shape(__A )
UpperCAmelCase = np.shape(__A )
if shape_a[0] != shape_b[0]:
UpperCAmelCase = (
"Expected the same number of rows for A and B. "
F"Instead found A of size {shape_a} and B of size {shape_b}"
)
raise ValueError(__A )
if shape_b[1] != shape_c[1]:
UpperCAmelCase = (
"Expected the same number of columns for B and C. "
F"Instead found B of size {shape_b} and C of size {shape_c}"
)
raise ValueError(__A )
UpperCAmelCase = pseudo_inv
if a_inv is None:
try:
UpperCAmelCase = np.linalg.inv(__A )
except np.linalg.LinAlgError:
raise ValueError(
"Input matrix A is not invertible. Cannot compute Schur complement." )
return mat_c - mat_b.T @ a_inv @ mat_b
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : List[str] ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1], [6, 3]] )
UpperCAmelCase = schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = np.block([[a, b], [b.T, c]] )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
self.assertAlmostEqual(lowerCAmelCase__ , det_a * det_s )
def _UpperCamelCase ( self : str ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1], [6, 3]] )
with self.assertRaises(lowerCAmelCase__ ):
schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def _UpperCamelCase ( self : Dict ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(lowerCAmelCase__ ):
schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 1 | 1 |
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
lowerCAmelCase__ = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
"text-classification",
"language-modeling",
"summarization",
"token-classification",
"question-answering",
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
lowerCAmelCase__ = logging.getLogger()
def _lowerCAmelCase( ):
UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument("-f" )
UpperCAmelCase = parser.parse_args()
return args.f
def _lowerCAmelCase( __A , __A="eval" ):
UpperCAmelCase = os.path.join(__A , F"{split}_results.json" )
if os.path.exists(__A ):
with open(__A , "r" ) as f:
return json.load(__A )
raise ValueError(F"can't find {path}" )
lowerCAmelCase__ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __magic_name__ ( _snake_case ):
def _UpperCamelCase ( self : Any ) -> List[str]:
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split()
with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ):
run_flax_glue.main()
UpperCAmelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result["eval_accuracy"] , 0.75 )
@slow
def _UpperCamelCase ( self : Any ) -> List[str]:
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ):
run_clm_flax.main()
UpperCAmelCase = get_results(lowerCAmelCase__ )
self.assertLess(result["eval_perplexity"] , 1_0_0 )
@slow
def _UpperCamelCase ( self : Union[str, Any] ) -> Any:
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split()
with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ):
run_summarization_flax.main()
UpperCAmelCase = get_results(lowerCAmelCase__ , split="test" )
self.assertGreaterEqual(result["test_rouge1"] , 1_0 )
self.assertGreaterEqual(result["test_rouge2"] , 2 )
self.assertGreaterEqual(result["test_rougeL"] , 7 )
self.assertGreaterEqual(result["test_rougeLsum"] , 7 )
@slow
def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split()
with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ):
run_mlm_flax.main()
UpperCAmelCase = get_results(lowerCAmelCase__ )
self.assertLess(result["eval_perplexity"] , 4_2 )
@slow
def _UpperCamelCase ( self : int ) -> Dict:
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ):
run_ta_mlm_flax.main()
UpperCAmelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result["eval_accuracy"] , 0.42 )
@slow
def _UpperCamelCase ( self : int ) -> Any:
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
UpperCAmelCase = 7 if get_gpu_count() > 1 else 2
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split()
with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ):
run_flax_ner.main()
UpperCAmelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result["eval_accuracy"] , 0.75 )
self.assertGreaterEqual(result["eval_f1"] , 0.3 )
@slow
def _UpperCamelCase ( self : Optional[Any] ) -> int:
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split()
with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ):
run_qa.main()
UpperCAmelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result["eval_f1"] , 3_0 )
self.assertGreaterEqual(result["eval_exact"] , 3_0 )
| 1 |
import argparse
import os
import re
import numpy as np
import PIL
import torch
from timm import create_model
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor
from accelerate import Accelerator
def _lowerCAmelCase( __A ):
UpperCAmelCase = fname.split(os.path.sep )[-1]
return re.search(r"^(.*)_\d+\.jpg$" , __A ).groups()[0]
class __magic_name__ ( _snake_case ):
def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : int=None ) -> Optional[Any]:
UpperCAmelCase = file_names
UpperCAmelCase = image_transform
UpperCAmelCase = label_to_id
def __len__( self : Tuple ) -> List[str]:
return len(self.file_names )
def __getitem__( self : Optional[int] , lowerCAmelCase__ : Tuple ) -> Dict:
UpperCAmelCase = self.file_names[idx]
UpperCAmelCase = PIL.Image.open(lowerCAmelCase__ )
UpperCAmelCase = raw_image.convert("RGB" )
if self.image_transform is not None:
UpperCAmelCase = self.image_transform(lowerCAmelCase__ )
UpperCAmelCase = extract_label(lowerCAmelCase__ )
if self.label_to_id is not None:
UpperCAmelCase = self.label_to_id[label]
return {"image": image, "label": label}
def _lowerCAmelCase( __A , __A ):
# Initialize accelerator
if args.with_tracking:
UpperCAmelCase = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir )
else:
UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase = config["lr"]
UpperCAmelCase = int(config["num_epochs"] )
UpperCAmelCase = int(config["seed"] )
UpperCAmelCase = int(config["batch_size"] )
UpperCAmelCase = config["image_size"]
if not isinstance(__A , (list, tuple) ):
UpperCAmelCase = (image_size, image_size)
# Parse out whether we are saving every epoch or after a certain number of batches
if hasattr(args.checkpointing_steps , "isdigit" ):
if args.checkpointing_steps == "epoch":
UpperCAmelCase = args.checkpointing_steps
elif args.checkpointing_steps.isdigit():
UpperCAmelCase = int(args.checkpointing_steps )
else:
raise ValueError(
F"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." )
else:
UpperCAmelCase = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
UpperCAmelCase = os.path.split(__A )[-1].split("." )[0]
accelerator.init_trackers(__A , __A )
# Grab all the image filenames
UpperCAmelCase = [os.path.join(args.data_dir , __A ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )]
# Build the label correspondences
UpperCAmelCase = [extract_label(__A ) for fname in file_names]
UpperCAmelCase = list(set(__A ) )
id_to_label.sort()
UpperCAmelCase = {lbl: i for i, lbl in enumerate(__A )}
# Set the seed before splitting the data.
np.random.seed(__A )
torch.manual_seed(__A )
torch.cuda.manual_seed_all(__A )
# Split our filenames between train and validation
UpperCAmelCase = np.random.permutation(len(__A ) )
UpperCAmelCase = int(0.8 * len(__A ) )
UpperCAmelCase = random_perm[:cut]
UpperCAmelCase = random_perm[cut:]
# For training we use a simple RandomResizedCrop
UpperCAmelCase = Compose([RandomResizedCrop(__A , scale=(0.5, 1.0) ), ToTensor()] )
UpperCAmelCase = PetsDataset(
[file_names[i] for i in train_split] , image_transform=__A , label_to_id=__A )
# For evaluation, we use a deterministic Resize
UpperCAmelCase = Compose([Resize(__A ), ToTensor()] )
UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=__A , label_to_id=__A )
# Instantiate dataloaders.
UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 )
UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase = create_model("resnet50d" , pretrained=__A , num_classes=len(__A ) )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCAmelCase = model.to(accelerator.device )
# Freezing the base model
for param in model.parameters():
UpperCAmelCase = False
for param in model.get_classifier().parameters():
UpperCAmelCase = True
# We normalize the batches of images to be a bit faster.
UpperCAmelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device )
UpperCAmelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device )
# Instantiate optimizer
UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 )
# Instantiate learning rate scheduler
UpperCAmelCase = OneCycleLR(optimizer=__A , max_lr=__A , epochs=__A , steps_per_epoch=len(__A ) )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare(
__A , __A , __A , __A , __A )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase = 0
# We also need to keep track of the starting epoch so files are named properly
UpperCAmelCase = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(F"Resumed from checkpoint: {args.resume_from_checkpoint}" )
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase = os.path.basename(args.resume_from_checkpoint )
else:
# Get the most recent checkpoint
UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()]
dirs.sort(key=os.path.getctime )
UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
UpperCAmelCase = os.path.splitext(__A )[0]
if "epoch" in training_difference:
UpperCAmelCase = int(training_difference.replace("epoch_" , "" ) ) + 1
UpperCAmelCase = None
else:
UpperCAmelCase = int(training_difference.replace("step_" , "" ) )
UpperCAmelCase = resume_step // len(__A )
resume_step -= starting_epoch * len(__A )
# Now we train the model
for epoch in range(__A , __A ):
model.train()
if args.with_tracking:
UpperCAmelCase = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We need to skip steps until we reach the resumed step
UpperCAmelCase = accelerator.skip_first_batches(__A , __A )
overall_step += resume_step
else:
# After the first iteration though, we need to go back to the original dataloader
UpperCAmelCase = train_dataloader
for batch in active_dataloader:
# We could avoid this line since we set the accelerator with `device_placement=True`.
UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()}
UpperCAmelCase = (batch["image"] - mean) / std
UpperCAmelCase = model(__A )
UpperCAmelCase = torch.nn.functional.cross_entropy(__A , batch["label"] )
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(__A )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
if isinstance(__A , __A ):
UpperCAmelCase = F"step_{overall_step}"
if overall_step % checkpointing_steps == 0:
if args.output_dir is not None:
UpperCAmelCase = os.path.join(args.output_dir , __A )
accelerator.save_state(__A )
model.eval()
UpperCAmelCase = 0
UpperCAmelCase = 0
for step, batch in enumerate(__A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()}
UpperCAmelCase = (batch["image"] - mean) / std
with torch.no_grad():
UpperCAmelCase = model(__A )
UpperCAmelCase = outputs.argmax(dim=-1 )
UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["label"]) )
UpperCAmelCase = predictions == references
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
UpperCAmelCase = accurate.item() / num_elems
# Use accelerator.print to print only on the main process.
accelerator.print(F"epoch {epoch}: {100 * eval_metric:.2f}" )
if args.with_tracking:
accelerator.log(
{
"accuracy": 100 * eval_metric,
"train_loss": total_loss.item() / len(__A ),
"epoch": epoch,
} , step=__A , )
if checkpointing_steps == "epoch":
UpperCAmelCase = F"epoch_{epoch}"
if args.output_dir is not None:
UpperCAmelCase = os.path.join(args.output_dir , __A )
accelerator.save_state(__A )
if args.with_tracking:
accelerator.end_training()
def _lowerCAmelCase( ):
UpperCAmelCase = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument("--data_dir" , required=__A , help="The data folder on disk." )
parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." )
parser.add_argument(
"--mixed_precision" , type=__A , default=__A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
parser.add_argument(
"--checkpointing_steps" , type=__A , default=__A , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , )
parser.add_argument(
"--output_dir" , type=__A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , )
parser.add_argument(
"--resume_from_checkpoint" , type=__A , default=__A , help="If the training should continue from a checkpoint folder." , )
parser.add_argument(
"--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , )
parser.add_argument(
"--project_dir" , type=__A , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , )
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224}
training_function(__A , __A )
if __name__ == "__main__":
main()
| 1 | 1 |
def _lowerCAmelCase( __A = 1000000 ):
UpperCAmelCase = set(range(3 , __A , 2 ) )
primes.add(2 )
for p in range(3 , __A , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , __A , __A ) ) )
UpperCAmelCase = [float(__A ) for n in range(limit + 1 )]
for p in primes:
for n in range(__A , limit + 1 , __A ):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:] ) )
if __name__ == "__main__":
print(f"{solution() = }")
| 1 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = 1 # (0 is vertical, 1 is horizontal)
def _lowerCAmelCase( ):
UpperCAmelCase , UpperCAmelCase = get_dataset(__A , __A )
print("Processing..." )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = update_image_and_anno(__A , __A , __A )
for index, image in enumerate(__A ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
UpperCAmelCase = random_chars(32 )
UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0]
UpperCAmelCase = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cva.imwrite(F"/{file_root}.jpg" , __A , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F"Success {index+1}/{len(__A )} with {file_name}" )
UpperCAmelCase = []
for anno in new_annos[index]:
UpperCAmelCase = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(__A )
with open(F"/{file_root}.txt" , "w" ) as outfile:
outfile.write("\n".join(line for line in annos_list ) )
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = []
UpperCAmelCase = []
for label_file in glob.glob(os.path.join(__A , "*.txt" ) ):
UpperCAmelCase = label_file.split(os.sep )[-1].rsplit("." , 1 )[0]
with open(__A ) as in_file:
UpperCAmelCase = in_file.readlines()
UpperCAmelCase = os.path.join(__A , F"{label_name}.jpg" )
UpperCAmelCase = []
for obj_list in obj_lists:
UpperCAmelCase = obj_list.rstrip("\n" ).split(" " )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__A )
labels.append(__A )
return img_paths, labels
def _lowerCAmelCase( __A , __A , __A = 1 ):
UpperCAmelCase = []
UpperCAmelCase = []
UpperCAmelCase = []
for idx in range(len(__A ) ):
UpperCAmelCase = []
UpperCAmelCase = img_list[idx]
path_list.append(__A )
UpperCAmelCase = anno_list[idx]
UpperCAmelCase = cva.imread(__A )
if flip_type == 1:
UpperCAmelCase = cva.flip(__A , __A )
for bbox in img_annos:
UpperCAmelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
UpperCAmelCase = cva.flip(__A , __A )
for bbox in img_annos:
UpperCAmelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__A )
new_imgs_list.append(__A )
return new_imgs_list, new_annos_lists, path_list
def _lowerCAmelCase( __A = 32 ):
assert number_char > 1, "The number of character should greater than 1"
UpperCAmelCase = ascii_lowercase + digits
return "".join(random.choice(__A ) for _ in range(__A ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 1 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import importlib.metadata
import json
import os
from dataclasses import dataclass
from typing import Any, Dict, Union
from packaging import version
from ..utils import is_torch_available, logging
if is_torch_available():
import torch
lowerCAmelCase__ = logging.get_logger(__name__)
@dataclass
class __magic_name__ :
def __init__( self : Union[str, Any] , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : str=6.0 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Any="fp4" , lowerCAmelCase__ : List[Any]=False , **lowerCAmelCase__ : Any , ) -> Optional[int]:
UpperCAmelCase = load_in_abit
UpperCAmelCase = load_in_abit
UpperCAmelCase = llm_inta_threshold
UpperCAmelCase = llm_inta_skip_modules
UpperCAmelCase = llm_inta_enable_fpaa_cpu_offload
UpperCAmelCase = llm_inta_has_fpaa_weight
UpperCAmelCase = bnb_abit_quant_type
UpperCAmelCase = bnb_abit_use_double_quant
if bnb_abit_compute_dtype is None:
UpperCAmelCase = torch.floataa
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
elif isinstance(lowerCAmelCase__ , torch.dtype ):
UpperCAmelCase = bnb_abit_compute_dtype
else:
raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype" )
self.post_init()
def _UpperCamelCase ( self : str ) -> int:
if not isinstance(self.llm_inta_threshold , lowerCAmelCase__ ):
raise ValueError("llm_int8_threshold must be a float" )
if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , lowerCAmelCase__ ):
raise ValueError("llm_int8_skip_modules must be a list of strings" )
if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , lowerCAmelCase__ ):
raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean" )
if not isinstance(self.llm_inta_has_fpaa_weight , lowerCAmelCase__ ):
raise ValueError("llm_int8_has_fp16_weight must be a boolean" )
if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ):
raise ValueError("bnb_4bit_compute_dtype must be torch.dtype" )
if not isinstance(self.bnb_abit_quant_type , lowerCAmelCase__ ):
raise ValueError("bnb_4bit_quant_type must be a string" )
if not isinstance(self.bnb_abit_use_double_quant , lowerCAmelCase__ ):
raise ValueError("bnb_4bit_use_double_quant must be a boolean" )
if self.load_in_abit and not version.parse(importlib.metadata.version("bitsandbytes" ) ) >= version.parse(
"0.39.0" ):
raise ValueError(
"4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" )
def _UpperCamelCase ( self : str ) -> Tuple:
return self.load_in_abit or self.load_in_abit
def _UpperCamelCase ( self : str ) -> List[str]:
if self.load_in_abit:
return "llm_int8"
elif self.load_in_abit and self.bnb_abit_quant_type == "fp4":
return "fp4"
elif self.load_in_abit and self.bnb_abit_quant_type == "nf4":
return "nf4"
else:
return None
@classmethod
def _UpperCamelCase ( cls : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Any ) -> List[str]:
UpperCAmelCase = cls(**lowerCAmelCase__ )
UpperCAmelCase = []
for key, value in kwargs.items():
if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ):
setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
to_remove.append(lowerCAmelCase__ )
for key in to_remove:
kwargs.pop(lowerCAmelCase__ , lowerCAmelCase__ )
if return_unused_kwargs:
return config, kwargs
else:
return config
def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : Union[str, os.PathLike] ) -> Optional[int]:
with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as writer:
UpperCAmelCase = self.to_dict()
UpperCAmelCase = json.dumps(lowerCAmelCase__ , indent=2 , sort_keys=lowerCAmelCase__ ) + "\n"
writer.write(lowerCAmelCase__ )
def _UpperCamelCase ( self : List[Any] ) -> Dict[str, Any]:
UpperCAmelCase = copy.deepcopy(self.__dict__ )
UpperCAmelCase = str(output["bnb_4bit_compute_dtype"] ).split("." )[1]
return output
def __repr__( self : Union[str, Any] ) -> int:
return f"{self.__class__.__name__} {self.to_json_string()}"
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : bool = True ) -> str:
if use_diff is True:
UpperCAmelCase = self.to_diff_dict()
else:
UpperCAmelCase = self.to_dict()
return json.dumps(lowerCAmelCase__ , indent=2 , sort_keys=lowerCAmelCase__ ) + "\n"
def _UpperCamelCase ( self : int ) -> Dict[str, Any]:
UpperCAmelCase = self.to_dict()
# get the default config dict
UpperCAmelCase = BitsAndBytesConfig().to_dict()
UpperCAmelCase = {}
# only serialize values that differ from the default config
for key, value in config_dict.items():
if value != default_config_dict[key]:
UpperCAmelCase = value
return serializable_config_dict
| 1 |
def _lowerCAmelCase( __A ):
if not isinstance(__A , __A ):
raise TypeError("only integers accepted as input" )
else:
UpperCAmelCase = str(abs(__A ) )
UpperCAmelCase = [list(__A ) for char in range(len(__A ) )]
for index in range(len(__A ) ):
num_transpositions[index].pop(__A )
return max(
int("".join(list(__A ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__("doctest").testmod()
| 1 | 1 |
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_tensorflow_text_available():
from transformers.models.bert import TFBertTokenizer
lowerCAmelCase__ = ["bert-base-uncased", "bert-base-cased"]
lowerCAmelCase__ = "hf-internal-testing/tiny-bert-tf-only"
if is_tf_available():
class __magic_name__ ( tf.keras.Model ):
def __init__( self : Any , lowerCAmelCase__ : Dict ) -> Any:
super().__init__()
UpperCAmelCase = tokenizer
UpperCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase__ )
UpperCAmelCase = TFAutoModel.from_config(lowerCAmelCase__ )
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : Any ) -> Any:
UpperCAmelCase = self.tokenizer(lowerCAmelCase__ )
UpperCAmelCase = self.bert(**lowerCAmelCase__ )
return out["pooler_output"]
@require_tf
@require_tensorflow_text
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
super().setUp()
UpperCAmelCase = [
BertTokenizer.from_pretrained(lowerCAmelCase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2)
] # repeat for when fast_bert_tokenizer=false
UpperCAmelCase = [TFBertTokenizer.from_pretrained(lowerCAmelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [
TFBertTokenizer.from_pretrained(lowerCAmelCase__ , use_fast_bert_tokenizer=lowerCAmelCase__ )
for checkpoint in TOKENIZER_CHECKPOINTS
]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
UpperCAmelCase = [
"This is a straightforward English test sentence.",
"This one has some weird characters\rto\nsee\r\nif those\u00E9break things.",
"Now we're going to add some Chinese: 一 二 三 一二三",
"And some much more rare Chinese: 齉 堃 齉堃",
"Je vais aussi écrire en français pour tester les accents",
"Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ",
]
UpperCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def _UpperCamelCase ( self : List[str] ) -> Optional[int]:
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in (self.test_sentences, self.paired_sentences):
UpperCAmelCase = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding="longest" )
UpperCAmelCase = tf_tokenizer(lowerCAmelCase__ )
for key in python_outputs.keys():
self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) )
self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) )
@slow
def _UpperCamelCase ( self : Any ) -> Optional[int]:
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase = tf_tokenizer(self.paired_sentences )
UpperCAmelCase = tf_tokenizer(
text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , )
for key in merged_outputs.keys():
self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) )
@slow
def _UpperCamelCase ( self : List[Any] ) -> Optional[int]:
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase = tf.function(lowerCAmelCase__ )
for test_inputs in (self.test_sentences, self.paired_sentences):
UpperCAmelCase = tf.constant(lowerCAmelCase__ )
UpperCAmelCase = compiled_tokenizer(lowerCAmelCase__ )
UpperCAmelCase = tf_tokenizer(lowerCAmelCase__ )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def _UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]:
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase = ModelToSave(tokenizer=lowerCAmelCase__ )
UpperCAmelCase = tf.convert_to_tensor(self.test_sentences )
UpperCAmelCase = model(lowerCAmelCase__ ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
UpperCAmelCase = Path(lowerCAmelCase__ ) / "saved.model"
model.save(lowerCAmelCase__ )
UpperCAmelCase = tf.keras.models.load_model(lowerCAmelCase__ )
UpperCAmelCase = loaded_model(lowerCAmelCase__ )
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
| 1 |
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
lowerCAmelCase__ = logging.getLogger(__name__)
lowerCAmelCase__ = 50 # max width of layer names
lowerCAmelCase__ = 70 # max width of quantizer names
def _lowerCAmelCase( __A ):
UpperCAmelCase = parser.add_argument_group("quant_trainer arguments" )
group.add_argument("--wprec" , type=__A , default=8 , help="weight precision" )
group.add_argument("--aprec" , type=__A , default=8 , help="activation precision" )
group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" )
group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" )
group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" )
group.add_argument("--quant-disable-keyword" , type=__A , nargs="+" , help="disable quantizers by keyword" )
group.add_argument("--quant-disable-layer-module" , type=__A , help="disable quantizers by keyword under layer." )
group.add_argument("--quant-enable-layer-module" , type=__A , help="enable quantizers by keyword under layer" )
group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" )
group.add_argument("--percentile" , default=__A , type=__A , help="percentile for PercentileCalibrator" )
group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" )
group.add_argument("--clip-gelu" , metavar="N" , type=__A , help="clip gelu output maximum value to N" )
group.add_argument(
"--recalibrate-weights" , action="store_true" , help=(
"recalibrate weight amaxes by taking the max of the weights."
" amaxes will be computed with the current quantization granularity (axis)."
) , )
def _lowerCAmelCase( __A ):
if args.calibrator == "max":
UpperCAmelCase = "max"
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError("Specify --percentile when using percentile calibrator" )
UpperCAmelCase = "histogram"
elif args.calibrator == "mse":
UpperCAmelCase = "histogram"
else:
raise ValueError(F"Invalid calibrator {args.calibrator}" )
UpperCAmelCase = QuantDescriptor(num_bits=args.aprec , calib_method=__A )
UpperCAmelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(__A )
quant_nn.QuantLinear.set_default_quant_desc_weight(__A )
def _lowerCAmelCase( __A , __A , __A=False , __A=False ):
logger.info("Configuring Model for Quantization" )
logger.info(F"using quantization package {pytorch_quantization.__file__}" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(__A , ["embeddings"] , which="weight" , _disabled=__A )
if args.quant_disable:
set_quantizer_by_name(__A , [""] , _disabled=__A )
if args.quant_disable_keyword:
set_quantizer_by_name(__A , args.quant_disable_keyword , _disabled=__A )
if args.quant_disable_layer_module:
set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=__A )
if args.quant_enable_layer_module:
set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=__A )
if args.recalibrate_weights:
recalibrate_weights(__A )
if args.fuse_qkv:
fuse_qkv(__A , __A )
if args.clip_gelu:
clip_gelu(__A , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(__A )
def _lowerCAmelCase( __A ):
logger.info("Enabling Calibration" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(F"{name:80}: {module}" )
def _lowerCAmelCase( __A , __A ):
logger.info("Loading calibrated amax" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax("percentile" , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(__A )
def _lowerCAmelCase( __A , __A ):
def fusea(__A , __A , __A ):
for mod in [qq, qk, qv]:
if not hasattr(__A , "_amax" ):
print(" WARNING: NO AMAX BUFFER" )
return
UpperCAmelCase = qq._amax.detach().item()
UpperCAmelCase = qk._amax.detach().item()
UpperCAmelCase = qv._amax.detach().item()
UpperCAmelCase = max(__A , __A , __A )
qq._amax.fill_(__A )
qk._amax.fill_(__A )
qv._amax.fill_(__A )
logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" )
for name, mod in model.named_modules():
if name.endswith(".attention.self" ):
logger.info(F"FUSE_QKV: {name:{name_width}}" )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _lowerCAmelCase( __A , __A ):
for name, mod in model.named_modules():
if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ):
UpperCAmelCase = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=__A )
UpperCAmelCase = mod._input_quantizer._amax.data.detach().item()
logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" )
def _lowerCAmelCase( __A ):
for name, mod in model.named_modules():
if hasattr(__A , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None:
UpperCAmelCase = mod.weight.shape[0]
UpperCAmelCase = mod._weight_quantizer._amax.detach()
UpperCAmelCase = torch.ones(__A , dtype=amax.dtype , device=amax.device ) * amax
print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" )
def _lowerCAmelCase( __A ):
for name, mod in model.named_modules():
if hasattr(__A , "_weight_quantizer" ):
if not hasattr(mod.weight_quantizer , "_amax" ):
print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
UpperCAmelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
UpperCAmelCase = set(range(len(mod.weight.size() ) ) ) - axis_set
UpperCAmelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__A , keepdims=__A ).detach()
logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" )
UpperCAmelCase = amax
def _lowerCAmelCase( __A , __A=25 , __A=180 , __A=None ):
if ignore is None:
UpperCAmelCase = []
elif not isinstance(__A , __A ):
UpperCAmelCase = [ignore]
UpperCAmelCase = 0
for name, mod in model.named_modules():
if not hasattr(__A , "weight" ):
continue
UpperCAmelCase = max(__A , len(__A ) )
for name, mod in model.named_modules():
UpperCAmelCase = getattr(__A , "_input_quantizer" , __A )
UpperCAmelCase = getattr(__A , "_weight_quantizer" , __A )
if not hasattr(__A , "weight" ):
continue
if type(__A ) in ignore:
continue
if [True for s in ignore if type(__A ) is str and s in name]:
continue
UpperCAmelCase = F"Act:{input_q.extra_repr()}"
UpperCAmelCase = F"Wgt:{weight_q.extra_repr()}"
UpperCAmelCase = F"{name:{name_width}} {act_str} {wgt_str}"
if len(__A ) <= line_width:
logger.info(__A )
else:
logger.info(F"{name:{name_width}} {act_str}" )
logger.info(F"{' ':{name_width}} {wgt_str}" )
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
for name, mod in model.named_modules():
if isinstance(__A , pytorch_quantization.nn.TensorQuantizer ):
print(F"{name:80} {mod}" )
count += 1
print(F"{count} TensorQuantizers found in model" )
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
UpperCAmelCase = getattr(__A , __A , __A )
if quantizer_mod is not None:
assert hasattr(__A , __A )
setattr(__A , __A , __A )
else:
logger.warning(F"{name} has no {quantizer}" )
def _lowerCAmelCase( __A , __A , __A="both" , **__A ):
UpperCAmelCase = F"Warning: changing {which} quantizers of {name:{qname_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
if which in ["input", "both"]:
set_quantizer(__A , __A , "_input_quantizer" , __A , __A )
if which in ["weight", "both"]:
set_quantizer(__A , __A , "_weight_quantizer" , __A , __A )
logger.info(__A )
def _lowerCAmelCase( __A , __A , **__A ):
for name, mod in model.named_modules():
if hasattr(__A , "_input_quantizer" ) or hasattr(__A , "_weight_quantizer" ):
for n in names:
if re.search(__A , __A ):
set_quantizers(__A , __A , **__A )
elif name.endswith("_quantizer" ):
for n in names:
if re.search(__A , __A ):
UpperCAmelCase = F"Warning: changing {name:{name_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
setattr(__A , __A , __A )
logger.info(__A )
| 1 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json",
}
# fmt: off
lowerCAmelCase__ = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377,
1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211,
4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786,
11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791,
17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409,
34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361
]
lowerCAmelCase__ = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627,
3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647,
7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793,
14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675,
22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865,
42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362
]
class __magic_name__ ( _snake_case ):
UpperCAmelCase = """whisper"""
UpperCAmelCase = ["""past_key_values"""]
UpperCAmelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self : List[str] , lowerCAmelCase__ : List[str]=5_1_8_6_5 , lowerCAmelCase__ : int=8_0 , lowerCAmelCase__ : Optional[int]=6 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Tuple=6 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : int=1_5_3_6 , lowerCAmelCase__ : Any=1_5_3_6 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : Optional[Any]=5_0_2_5_7 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : List[str]=2_5_6 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Dict=1_5_0_0 , lowerCAmelCase__ : List[Any]=4_4_8 , lowerCAmelCase__ : str=5_0_2_5_6 , lowerCAmelCase__ : Union[str, Any]=5_0_2_5_6 , lowerCAmelCase__ : Any=5_0_2_5_6 , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Tuple=[2_2_0, 5_0_2_5_6] , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : List[Any]=2_5_6 , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : int=0.05 , lowerCAmelCase__ : Any=1_0 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[str]=0.0 , lowerCAmelCase__ : Tuple=1_0 , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : Optional[int]=7 , **lowerCAmelCase__ : Tuple , ) -> Optional[Any]:
UpperCAmelCase = vocab_size
UpperCAmelCase = num_mel_bins
UpperCAmelCase = d_model
UpperCAmelCase = encoder_layers
UpperCAmelCase = encoder_attention_heads
UpperCAmelCase = decoder_layers
UpperCAmelCase = decoder_attention_heads
UpperCAmelCase = decoder_ffn_dim
UpperCAmelCase = encoder_ffn_dim
UpperCAmelCase = dropout
UpperCAmelCase = attention_dropout
UpperCAmelCase = activation_dropout
UpperCAmelCase = activation_function
UpperCAmelCase = init_std
UpperCAmelCase = encoder_layerdrop
UpperCAmelCase = decoder_layerdrop
UpperCAmelCase = use_cache
UpperCAmelCase = encoder_layers
UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase = max_source_positions
UpperCAmelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase = classifier_proj_size
UpperCAmelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase = apply_spec_augment
UpperCAmelCase = mask_time_prob
UpperCAmelCase = mask_time_length
UpperCAmelCase = mask_time_min_masks
UpperCAmelCase = mask_feature_prob
UpperCAmelCase = mask_feature_length
UpperCAmelCase = mask_feature_min_masks
UpperCAmelCase = median_filter_width
super().__init__(
pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , suppress_tokens=lowerCAmelCase__ , begin_suppress_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , )
class __magic_name__ ( _snake_case ):
@property
def _UpperCamelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
UpperCAmelCase = OrderedDict(
[
("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}),
] )
if self.use_past:
UpperCAmelCase = {0: "batch"}
else:
UpperCAmelCase = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(lowerCAmelCase__ , direction="inputs" )
return common_inputs
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional["TensorType"] = None , lowerCAmelCase__ : int = 2_2_0_5_0 , lowerCAmelCase__ : float = 5.0 , lowerCAmelCase__ : int = 2_2_0 , ) -> Mapping[str, Any]:
UpperCAmelCase = OrderedDict()
UpperCAmelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCAmelCase__ , framework=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , time_duration=lowerCAmelCase__ , frequency=lowerCAmelCase__ , )
UpperCAmelCase = encoder_inputs["input_features"].shape[2]
UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length
UpperCAmelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = encoder_inputs.pop("input_features" )
UpperCAmelCase = decoder_inputs.pop("decoder_input_ids" )
if "past_key_values" in decoder_inputs:
UpperCAmelCase = decoder_inputs.pop("past_key_values" )
return dummy_inputs
@property
def _UpperCamelCase ( self : List[str] ) -> float:
return 1e-3
| 1 |
def _lowerCAmelCase( __A ):
assert column_title.isupper()
UpperCAmelCase = 0
UpperCAmelCase = len(__A ) - 1
UpperCAmelCase = 0
while index >= 0:
UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , __A )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
lowerCAmelCase__ = pytest.mark.integration
lowerCAmelCase__ = {"comet"}
lowerCAmelCase__ = importlib.util.find_spec("fairseq") is not None
lowerCAmelCase__ = {"code_eval"}
lowerCAmelCase__ = os.name == "nt"
lowerCAmelCase__ = {"bertscore", "frugalscore", "perplexity"}
lowerCAmelCase__ = importlib.util.find_spec("transformers") is not None
def _lowerCAmelCase( __A ):
@wraps(__A )
def wrapper(self , __A ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest("\"test requires Fairseq\"" )
else:
test_case(self , __A )
return wrapper
def _lowerCAmelCase( __A ):
@wraps(__A )
def wrapper(self , __A ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest("\"test requires transformers\"" )
else:
test_case(self , __A )
return wrapper
def _lowerCAmelCase( __A ):
@wraps(__A )
def wrapper(self , __A ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest("\"test not supported on Windows\"" )
else:
test_case(self , __A )
return wrapper
def _lowerCAmelCase( ):
UpperCAmelCase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
_snake_case , _snake_case , _snake_case )
@local
class __magic_name__ ( parameterized.TestCase ):
UpperCAmelCase = {}
UpperCAmelCase = None
@pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" )
@pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Tuple ) -> Dict:
UpperCAmelCase = "[...]"
UpperCAmelCase = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics" , lowerCAmelCase__ ) ).module_path )
UpperCAmelCase = datasets.load.import_main_class(metric_module.__name__ , dataset=lowerCAmelCase__ )
# check parameters
UpperCAmelCase = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(lowerCAmelCase__ , metric_module.__name__ ):
with self.use_local_metrics():
try:
UpperCAmelCase = doctest.testmod(lowerCAmelCase__ , verbose=lowerCAmelCase__ , raise_on_error=lowerCAmelCase__ )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def _UpperCamelCase ( self : str , lowerCAmelCase__ : Optional[int] ) -> str:
UpperCAmelCase = "[...]"
UpperCAmelCase = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics" , lowerCAmelCase__ ) ).module_path )
# run doctest
with self.use_local_metrics():
UpperCAmelCase = doctest.testmod(lowerCAmelCase__ , verbose=lowerCAmelCase__ , raise_on_error=lowerCAmelCase__ )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict:
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](lowerCAmelCase__ ):
yield
else:
yield
@contextmanager
def _UpperCamelCase ( self : List[str] ) -> int:
def load_local_metric(lowerCAmelCase__ : Tuple , *lowerCAmelCase__ : str , **lowerCAmelCase__ : Dict ):
return load_metric(os.path.join("metrics" , lowerCAmelCase__ ) , *lowerCAmelCase__ , **lowerCAmelCase__ )
with patch("datasets.load_metric" ) as mock_load_metric:
UpperCAmelCase = load_local_metric
yield
@classmethod
def _UpperCamelCase ( cls : List[Any] , lowerCAmelCase__ : Any ) -> str:
def wrapper(lowerCAmelCase__ : List[Any] ):
UpperCAmelCase = contextmanager(lowerCAmelCase__ )
UpperCAmelCase = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher("bleurt" )
def _lowerCAmelCase( __A ):
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags
class __magic_name__ ( _snake_case ):
def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : Any ) -> int:
assert len(input_dict["input_ids"] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch("bleurt.score._create_predictor" ) as mock_create_predictor:
UpperCAmelCase = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher("bertscore" )
def _lowerCAmelCase( __A ):
import torch
def bert_cos_score_idf(__A , __A , *__A , **__A ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(__A ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch("bert_score.scorer.get_model" ), patch(
"bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf:
UpperCAmelCase = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher("comet" )
def _lowerCAmelCase( __A ):
def load_from_checkpoint(__A ):
class __magic_name__ :
def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : str ) -> Dict:
assert len(lowerCAmelCase__ ) == 2
UpperCAmelCase = [0.19, 0.92]
return scores, sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch("comet.download_model" ) as mock_download_model:
UpperCAmelCase = None
with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint:
UpperCAmelCase = load_from_checkpoint
yield
def _lowerCAmelCase( ):
UpperCAmelCase = load_metric(os.path.join("metrics" , "seqeval" ) )
UpperCAmelCase = "ERROR"
UpperCAmelCase = F"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}"
with pytest.raises(__A , match=re.escape(__A ) ):
metric.compute(predictions=[] , references=[] , scheme=__A )
| 1 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
lowerCAmelCase__ = get_tests_dir("fixtures")
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
# A mock response for an HTTP head request to emulate server down
UpperCAmelCase = mock.Mock()
UpperCAmelCase = 5_0_0
UpperCAmelCase = {}
UpperCAmelCase = HTTPError
UpperCAmelCase = {}
# Download this model to make sure it's in the cache.
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request" , return_value=lowerCAmelCase__ ) as mock_head:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# This check we did call the fake head request
mock_head.assert_called()
def _UpperCamelCase ( self : List[Any] ) -> Dict:
# This test is for deprecated behavior and can be removed in v5
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" )
@is_staging_test
class __magic_name__ ( unittest.TestCase ):
@classmethod
def _UpperCamelCase ( cls : List[str] ) -> List[Any]:
UpperCAmelCase = TOKEN
HfFolder.save_token(lowerCAmelCase__ )
@classmethod
def _UpperCamelCase ( cls : Optional[int] ) -> Union[str, Any]:
try:
delete_repo(token=cls._token , repo_id="test-feature-extractor" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" )
except HTTPError:
pass
def _UpperCamelCase ( self : Any ) -> Any:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
lowerCAmelCase__ , repo_id="test-feature-extractor" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : List[Any] ) -> Tuple:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
lowerCAmelCase__ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Dict ) -> List[str]:
CustomFeatureExtractor.register_for_auto_class()
UpperCAmelCase = CustomFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , )
UpperCAmelCase = AutoFeatureExtractor.from_pretrained(
f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=lowerCAmelCase__ )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
| 1 | 1 |
import requests
from bsa import BeautifulSoup
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = BeautifulSoup(requests.get(__A , params=__A ).content , "html.parser" )
UpperCAmelCase = soup.find("div" , attrs={"class": "gs_ri"} )
UpperCAmelCase = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" )
return anchors[2].get_text()
if __name__ == "__main__":
lowerCAmelCase__ = {
"title": (
"Precisely geometry controlled microsupercapacitors for ultrahigh areal "
"capacitance, volumetric capacitance, and energy density"
),
"journal": "Chem. Mater.",
"volume": 30,
"pages": "3979-3990",
"year": 2018,
"hl": "en",
}
print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
| 1 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
lowerCAmelCase__ = "src/diffusers"
# Matches is_xxx_available()
lowerCAmelCase__ = re.compile(r"is\_([a-z_]*)_available\(\)")
# Matches from xxx import bla
lowerCAmelCase__ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
lowerCAmelCase__ = "\n{0} = None\n"
lowerCAmelCase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n"
lowerCAmelCase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n"
def _lowerCAmelCase( __A ):
UpperCAmelCase = _re_backend.findall(__A )
if len(__A ) == 0:
return None
return "_and_".join(__A )
def _lowerCAmelCase( ):
with open(os.path.join(__A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.readlines()
# Get to the point we do the actual imports for type checking
UpperCAmelCase = 0
UpperCAmelCase = {}
# Go through the end of the file
while line_index < len(__A ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
UpperCAmelCase = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("else:" ):
line_index += 1
line_index += 1
UpperCAmelCase = []
# Until we unindent, add backend objects to the list
while line_index < len(__A ) and len(lines[line_index] ) > 1:
UpperCAmelCase = lines[line_index]
UpperCAmelCase = _re_single_line_import.search(__A )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__A ) > 0:
UpperCAmelCase = objects
else:
line_index += 1
return backend_specific_objects
def _lowerCAmelCase( __A , __A ):
if name.isupper():
return DUMMY_CONSTANT.format(__A )
elif name.islower():
return DUMMY_FUNCTION.format(__A , __A )
else:
return DUMMY_CLASS.format(__A , __A )
def _lowerCAmelCase( __A=None ):
if backend_specific_objects is None:
UpperCAmelCase = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
UpperCAmelCase = {}
for backend, objects in backend_specific_objects.items():
UpperCAmelCase = "[" + ", ".join(F"\"{b}\"" for b in backend.split("_and_" ) ) + "]"
UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__A , __A ) for o in objects] )
UpperCAmelCase = dummy_file
return dummy_files
def _lowerCAmelCase( __A=False ):
UpperCAmelCase = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
UpperCAmelCase = {"torch": "pt"}
# Locate actual dummy modules and read their content.
UpperCAmelCase = os.path.join(__A , "utils" )
UpperCAmelCase = {
backend: os.path.join(__A , F"dummy_{short_names.get(__A , __A )}_objects.py" )
for backend in dummy_files.keys()
}
UpperCAmelCase = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__A ):
with open(__A , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.read()
else:
UpperCAmelCase = ""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F"Updating diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py as the main "
"__init__ has new objects." )
with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"The main __init__ has objects that are not present in "
F"diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py. Run `make fix-copies` "
"to fix this." )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowerCAmelCase__ = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 1 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCAmelCase__ = logging.get_logger(__name__)
class __magic_name__ ( _snake_case ):
UpperCAmelCase = ["""pixel_values"""]
def __init__( self : List[str] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : int = 0.9 , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ : Dict , ) -> None:
super().__init__(**lowerCAmelCase__ )
UpperCAmelCase = size if size is not None else {"shortest_edge": 2_2_4}
UpperCAmelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
UpperCAmelCase = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4}
UpperCAmelCase = get_size_dict(lowerCAmelCase__ , param_name="crop_size" )
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = crop_pct
UpperCAmelCase = resample
UpperCAmelCase = do_center_crop
UpperCAmelCase = crop_size
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple , ) -> np.ndarray:
UpperCAmelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
if "shortest_edge" not in size and ("height" not in size or "width" not in size):
raise ValueError(f"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" )
if crop_pct is not None:
if "shortest_edge" in size:
UpperCAmelCase = int(size["shortest_edge"] / crop_pct )
elif "height" in size and "width" in size:
if size["height"] == size["width"]:
UpperCAmelCase = int(size["height"] / crop_pct )
else:
UpperCAmelCase = (int(size["height"] / crop_pct ), int(size["width"] / crop_pct ))
else:
raise ValueError("Invalid size for resize: {}".format(lowerCAmelCase__ ) )
UpperCAmelCase = get_resize_output_image_size(lowerCAmelCase__ , size=lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
else:
if "shortest_edge" in size:
UpperCAmelCase = get_resize_output_image_size(lowerCAmelCase__ , size=size["shortest_edge"] , default_to_square=lowerCAmelCase__ )
elif "height" in size and "width" in size:
UpperCAmelCase = (size["height"], size["width"])
else:
raise ValueError("Invalid size for resize: {}".format(lowerCAmelCase__ ) )
return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Dict , ) -> np.ndarray:
UpperCAmelCase = get_size_dict(lowerCAmelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(f"size must contain 'height' and 'width' as keys. Got {size.keys()}" )
return center_crop(lowerCAmelCase__ , size=(size["height"], size["width"]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[int, float] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[int] , ) -> Any:
return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[int] , ) -> np.ndarray:
return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : int = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : float = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase__ : str , ) -> PIL.Image.Image:
UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase = crop_pct if crop_pct is not None else self.crop_pct
UpperCAmelCase = resample if resample is not None else self.resample
UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase = image_std if image_std is not None else self.image_std
UpperCAmelCase = size if size is not None else self.size
UpperCAmelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase = get_size_dict(lowerCAmelCase__ , param_name="crop_size" )
UpperCAmelCase = make_list_of_images(lowerCAmelCase__ )
if not valid_images(lowerCAmelCase__ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_pct is None:
raise ValueError("Crop_pct must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase = [to_numpy_array(lowerCAmelCase__ ) for image in images]
if do_resize:
UpperCAmelCase = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , crop_pct=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images]
if do_center_crop:
UpperCAmelCase = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images]
if do_rescale:
UpperCAmelCase = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images]
if do_normalize:
UpperCAmelCase = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images]
UpperCAmelCase = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images]
UpperCAmelCase = {"pixel_values": images}
return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
| 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json",
}
class __magic_name__ ( _snake_case , _snake_case ):
UpperCAmelCase = """convnextv2"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Dict=1e-1_2 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : str=2_2_4 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[Any] , ) -> List[Any]:
super().__init__(**lowerCAmelCase__ )
UpperCAmelCase = num_channels
UpperCAmelCase = patch_size
UpperCAmelCase = num_stages
UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes
UpperCAmelCase = [3, 3, 9, 3] if depths is None else depths
UpperCAmelCase = hidden_act
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = drop_path_rate
UpperCAmelCase = image_size
UpperCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )]
UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
| 1 | 1 |
from typing import List
import jiwer
import jiwer.transforms as tr
from packaging import version
import datasets
from datasets.config import PY_VERSION
if PY_VERSION < version.parse("3.8"):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
lowerCAmelCase__ = ""
if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"):
class __magic_name__ ( tr.AbstractTransform ):
def __init__( self : Union[str, Any] , lowerCAmelCase__ : str = " " ) -> str:
UpperCAmelCase = sentence_delimiter
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : str ) -> List[str]:
return list(lowerCAmelCase__ )
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Any:
UpperCAmelCase = []
for sent_idx, sentence in enumerate(lowerCAmelCase__ ):
chars.extend(self.process_string(lowerCAmelCase__ ) )
if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCAmelCase__ ) - 1:
chars.append(self.sentence_delimiter )
return chars
lowerCAmelCase__ = tr.Compose(
[tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)]
)
else:
lowerCAmelCase__ = tr.Compose(
[
tr.RemoveMultipleSpaces(),
tr.Strip(),
tr.ReduceToSingleSentence(SENTENCE_DELIMITER),
tr.ReduceToListOfListOfChars(),
]
)
lowerCAmelCase__ = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n"
lowerCAmelCase__ = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n"
lowerCAmelCase__ = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __magic_name__ ( datasets.Metric ):
def _UpperCamelCase ( self : List[str] ) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[
"https://en.wikipedia.org/wiki/Word_error_rate",
"https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates",
] , )
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict=False ) -> Union[str, Any]:
if concatenate_texts:
return jiwer.compute_measures(
lowerCAmelCase__ , lowerCAmelCase__ , truth_transform=lowerCAmelCase__ , hypothesis_transform=lowerCAmelCase__ , )["wer"]
UpperCAmelCase = 0
UpperCAmelCase = 0
for prediction, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase = jiwer.compute_measures(
lowerCAmelCase__ , lowerCAmelCase__ , truth_transform=lowerCAmelCase__ , hypothesis_transform=lowerCAmelCase__ , )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 1 |
lowerCAmelCase__ = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCAmelCase__ = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCAmelCase__ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 1 | 1 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
lowerCAmelCase__ = (720, 1280) # Height, Width
lowerCAmelCase__ = (0.4, 0.6) # if height or width lower than this scale, drop it.
lowerCAmelCase__ = 1 / 100
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = 250
def _lowerCAmelCase( ):
UpperCAmelCase , UpperCAmelCase = get_dataset(__A , __A )
for index in range(__A ):
UpperCAmelCase = random.sample(range(len(__A ) ) , 4 )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = update_image_and_anno(
__A , __A , __A , __A , __A , filter_scale=__A , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
UpperCAmelCase = random_chars(32 )
UpperCAmelCase = path.split(os.sep )[-1].rsplit("." , 1 )[0]
UpperCAmelCase = F"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}"
cva.imwrite(F"{file_root}.jpg" , __A , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}" )
UpperCAmelCase = []
for anno in new_annos:
UpperCAmelCase = anno[3] - anno[1]
UpperCAmelCase = anno[4] - anno[2]
UpperCAmelCase = anno[1] + width / 2
UpperCAmelCase = anno[2] + height / 2
UpperCAmelCase = F"{anno[0]} {x_center} {y_center} {width} {height}"
annos_list.append(__A )
with open(F"{file_root}.txt" , "w" ) as outfile:
outfile.write("\n".join(line for line in annos_list ) )
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = []
UpperCAmelCase = []
for label_file in glob.glob(os.path.join(__A , "*.txt" ) ):
UpperCAmelCase = label_file.split(os.sep )[-1].rsplit("." , 1 )[0]
with open(__A ) as in_file:
UpperCAmelCase = in_file.readlines()
UpperCAmelCase = os.path.join(__A , F"{label_name}.jpg" )
UpperCAmelCase = []
for obj_list in obj_lists:
UpperCAmelCase = obj_list.rstrip("\n" ).split(" " )
UpperCAmelCase = float(obj[1] ) - float(obj[3] ) / 2
UpperCAmelCase = float(obj[2] ) - float(obj[4] ) / 2
UpperCAmelCase = float(obj[1] ) + float(obj[3] ) / 2
UpperCAmelCase = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(__A )
labels.append(__A )
return img_paths, labels
def _lowerCAmelCase( __A , __A , __A , __A , __A , __A = 0.0 , ):
UpperCAmelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
UpperCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
UpperCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
UpperCAmelCase = int(scale_x * output_size[1] )
UpperCAmelCase = int(scale_y * output_size[0] )
UpperCAmelCase = []
UpperCAmelCase = []
for i, index in enumerate(__A ):
UpperCAmelCase = all_img_list[index]
path_list.append(__A )
UpperCAmelCase = all_annos[index]
UpperCAmelCase = cva.imread(__A )
if i == 0: # top-left
UpperCAmelCase = cva.resize(__A , (divid_point_x, divid_point_y) )
UpperCAmelCase = img
for bbox in img_annos:
UpperCAmelCase = bbox[1] * scale_x
UpperCAmelCase = bbox[2] * scale_y
UpperCAmelCase = bbox[3] * scale_x
UpperCAmelCase = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
UpperCAmelCase = cva.resize(__A , (output_size[1] - divid_point_x, divid_point_y) )
UpperCAmelCase = img
for bbox in img_annos:
UpperCAmelCase = scale_x + bbox[1] * (1 - scale_x)
UpperCAmelCase = bbox[2] * scale_y
UpperCAmelCase = scale_x + bbox[3] * (1 - scale_x)
UpperCAmelCase = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
UpperCAmelCase = cva.resize(__A , (divid_point_x, output_size[0] - divid_point_y) )
UpperCAmelCase = img
for bbox in img_annos:
UpperCAmelCase = bbox[1] * scale_x
UpperCAmelCase = scale_y + bbox[2] * (1 - scale_y)
UpperCAmelCase = bbox[3] * scale_x
UpperCAmelCase = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
UpperCAmelCase = cva.resize(
__A , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
UpperCAmelCase = img
for bbox in img_annos:
UpperCAmelCase = scale_x + bbox[1] * (1 - scale_x)
UpperCAmelCase = scale_y + bbox[2] * (1 - scale_y)
UpperCAmelCase = scale_x + bbox[3] * (1 - scale_x)
UpperCAmelCase = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
UpperCAmelCase = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def _lowerCAmelCase( __A ):
assert number_char > 1, "The number of character should greater than 1"
UpperCAmelCase = ascii_lowercase + digits
return "".join(random.choice(__A ) for _ in range(__A ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = KandinskyInpaintPipeline
UpperCAmelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
UpperCAmelCase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
UpperCAmelCase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
UpperCAmelCase = False
@property
def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple:
return 3_2
@property
def _UpperCamelCase ( self : int ) -> List[Any]:
return 3_2
@property
def _UpperCamelCase ( self : List[Any] ) -> List[Any]:
return self.time_input_dim
@property
def _UpperCamelCase ( self : Tuple ) -> Tuple:
return self.time_input_dim * 4
@property
def _UpperCamelCase ( self : Any ) -> Optional[int]:
return 1_0_0
@property
def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]:
UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" )
return tokenizer
@property
def _UpperCamelCase ( self : int ) -> Dict:
torch.manual_seed(0 )
UpperCAmelCase = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , )
UpperCAmelCase = MultilingualCLIP(lowerCAmelCase__ )
UpperCAmelCase = text_encoder.eval()
return text_encoder
@property
def _UpperCamelCase ( self : Dict ) -> Optional[int]:
torch.manual_seed(0 )
UpperCAmelCase = {
"in_channels": 9,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "text_image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "text_image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
UpperCAmelCase = UNetaDConditionModel(**lowerCAmelCase__ )
return model
@property
def _UpperCamelCase ( self : str ) -> Optional[Any]:
return {
"block_out_channels": [3_2, 6_4],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def _UpperCamelCase ( self : Dict ) -> List[Any]:
torch.manual_seed(0 )
UpperCAmelCase = VQModel(**self.dummy_movq_kwargs )
return model
def _UpperCamelCase ( self : Tuple ) -> Any:
UpperCAmelCase = self.dummy_text_encoder
UpperCAmelCase = self.dummy_tokenizer
UpperCAmelCase = self.dummy_unet
UpperCAmelCase = self.dummy_movq
UpperCAmelCase = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCAmelCase__ , )
UpperCAmelCase = {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=0 ) -> str:
UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase__ )
# create init_image
UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) )
# create mask
UpperCAmelCase = np.ones((6_4, 6_4) , dtype=np.floataa )
UpperCAmelCase = 0
if str(lowerCAmelCase__ ).startswith("mps" ):
UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ )
else:
UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
UpperCAmelCase = {
"prompt": "horse",
"image": init_image,
"mask_image": mask,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 6_4,
"width": 6_4,
"num_inference_steps": 2,
"guidance_scale": 4.0,
"output_type": "np",
}
return inputs
def _UpperCamelCase ( self : Dict ) -> List[str]:
UpperCAmelCase = "cpu"
UpperCAmelCase = self.get_dummy_components()
UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__ )
UpperCAmelCase = pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) )
UpperCAmelCase = output.images
UpperCAmelCase = pipe(
**self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0]
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
print(f"image.shape {image.shape}" )
assert image.shape == (1, 6_4, 6_4, 3)
UpperCAmelCase = np.array(
[0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def _UpperCamelCase ( self : str ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : str ) -> str:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCamelCase ( self : Tuple ) -> int:
UpperCAmelCase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" )
UpperCAmelCase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
UpperCAmelCase = np.ones((7_6_8, 7_6_8) , dtype=np.floataa )
UpperCAmelCase = 0
UpperCAmelCase = "a hat"
UpperCAmelCase = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa )
pipe_prior.to(lowerCAmelCase__ )
UpperCAmelCase = KandinskyInpaintPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa )
UpperCAmelCase = pipeline.to(lowerCAmelCase__ )
pipeline.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase , UpperCAmelCase = pipe_prior(
lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
UpperCAmelCase = pipeline(
lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="np" , )
UpperCAmelCase = output.images[0]
assert image.shape == (7_6_8, 7_6_8, 3)
assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
| 1 | 1 |
import numpy
# List of input, output pairs
lowerCAmelCase__ = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
lowerCAmelCase__ = (((515, 22, 13), 555), ((61, 35, 49), 150))
lowerCAmelCase__ = [2, 4, 1, 5]
lowerCAmelCase__ = len(train_data)
lowerCAmelCase__ = 0.0_0_9
def _lowerCAmelCase( __A , __A="train" ):
return calculate_hypothesis_value(__A , __A ) - output(
__A , __A )
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
for i in range(len(__A ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def _lowerCAmelCase( __A , __A ):
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def _lowerCAmelCase( __A , __A ):
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def _lowerCAmelCase( __A , __A=m ):
UpperCAmelCase = 0
for i in range(__A ):
if index == -1:
summation_value += _error(__A )
else:
summation_value += _error(__A ) * train_data[i][0][index]
return summation_value
def _lowerCAmelCase( __A ):
UpperCAmelCase = summation_of_cost_derivative(__A , __A ) / m
return cost_derivative_value
def _lowerCAmelCase( ):
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCAmelCase = 0.000002
UpperCAmelCase = 0
UpperCAmelCase = 0
while True:
j += 1
UpperCAmelCase = [0, 0, 0, 0]
for i in range(0 , len(__A ) ):
UpperCAmelCase = get_cost_derivative(i - 1 )
UpperCAmelCase = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
__A , __A , atol=__A , rtol=__A , ):
break
UpperCAmelCase = temp_parameter_vector
print(("Number of iterations:", j) )
def _lowerCAmelCase( ):
for i in range(len(__A ) ):
print(("Actual output value:", output(__A , "test" )) )
print(("Hypothesis output:", calculate_hypothesis_value(__A , "test" )) )
if __name__ == "__main__":
run_gradient_descent()
print("\nTesting gradient descent for a linear hypothesis function.\n")
test_gradient_descent()
| 1 |
def _lowerCAmelCase( __A , __A ):
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def _lowerCAmelCase( __A , __A=0 ):
return sorted(__A , key=lambda __A : x[column] )
def _lowerCAmelCase( __A , __A , __A=float("inf" ) ):
for i in range(points_counts - 1 ):
for j in range(i + 1 , __A ):
UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
UpperCAmelCase = current_dis
return min_dis
def _lowerCAmelCase( __A , __A , __A=float("inf" ) ):
for i in range(min(6 , points_counts - 1 ) , __A ):
for j in range(max(0 , i - 6 ) , __A ):
UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
UpperCAmelCase = current_dis
return min_dis
def _lowerCAmelCase( __A , __A , __A ):
# base case
if points_counts <= 3:
return dis_between_closest_pair(__A , __A )
# recursion
UpperCAmelCase = points_counts // 2
UpperCAmelCase = closest_pair_of_points_sqr(
__A , points_sorted_on_y[:mid] , __A )
UpperCAmelCase = closest_pair_of_points_sqr(
__A , points_sorted_on_y[mid:] , points_counts - mid )
UpperCAmelCase = min(__A , __A )
UpperCAmelCase = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(__A )
UpperCAmelCase = dis_between_closest_in_strip(
__A , len(__A ) , __A )
return min(__A , __A )
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = column_based_sort(__A , column=0 )
UpperCAmelCase = column_based_sort(__A , column=1 )
return (
closest_pair_of_points_sqr(
__A , __A , __A )
) ** 0.5
if __name__ == "__main__":
lowerCAmelCase__ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
print("Distance:", closest_pair_of_points(points, len(points)))
| 1 | 1 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class __magic_name__ ( _snake_case ):
@slow
@require_torch
def _UpperCamelCase ( self : List[Any] ) -> List[str]:
UpperCAmelCase = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" )
UpperCAmelCase = BertTokenizer.from_pretrained("bert-base-uncased" )
UpperCAmelCase = bertabert.config.encoder.vocab_size
UpperCAmelCase = tokenizer.sep_token_id
UpperCAmelCase = tokenizer.cls_token_id
UpperCAmelCase = 1_2_8
UpperCAmelCase = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" )
UpperCAmelCase = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" )
UpperCAmelCase = train_dataset.select(range(3_2 ) )
UpperCAmelCase = val_dataset.select(range(1_6 ) )
UpperCAmelCase = 4
def _map_to_encoder_decoder_inputs(lowerCAmelCase__ : int ):
# Tokenizer will automatically set [BOS] <text> [EOS]
UpperCAmelCase = tokenizer(batch["article"] , padding="max_length" , truncation=lowerCAmelCase__ , max_length=5_1_2 )
UpperCAmelCase = tokenizer(batch["highlights"] , padding="max_length" , truncation=lowerCAmelCase__ , max_length=1_2_8 )
UpperCAmelCase = inputs.input_ids
UpperCAmelCase = inputs.attention_mask
UpperCAmelCase = outputs.input_ids
UpperCAmelCase = outputs.input_ids.copy()
UpperCAmelCase = [
[-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
]
UpperCAmelCase = outputs.attention_mask
assert all(len(lowerCAmelCase__ ) == 5_1_2 for x in inputs.input_ids )
assert all(len(lowerCAmelCase__ ) == 1_2_8 for x in outputs.input_ids )
return batch
def _compute_metrics(lowerCAmelCase__ : Optional[Any] ):
UpperCAmelCase = pred.label_ids
UpperCAmelCase = pred.predictions
# all unnecessary tokens are removed
UpperCAmelCase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
UpperCAmelCase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
UpperCAmelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(lowerCAmelCase__ ) )] ) / len(lowerCAmelCase__ )
return {"accuracy": accuracy}
# map train dataset
UpperCAmelCase = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , remove_columns=["article", "highlights"] , )
train_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
# same for validation dataset
UpperCAmelCase = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , remove_columns=["article", "highlights"] , )
val_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
UpperCAmelCase = self.get_auto_remove_tmp_dir()
UpperCAmelCase = SeqaSeqTrainingArguments(
output_dir=lowerCAmelCase__ , per_device_train_batch_size=lowerCAmelCase__ , per_device_eval_batch_size=lowerCAmelCase__ , predict_with_generate=lowerCAmelCase__ , evaluation_strategy="steps" , do_train=lowerCAmelCase__ , do_eval=lowerCAmelCase__ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
UpperCAmelCase = SeqaSeqTrainer(
model=lowerCAmelCase__ , args=lowerCAmelCase__ , compute_metrics=_compute_metrics , train_dataset=lowerCAmelCase__ , eval_dataset=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , )
# start training
trainer.train()
| 1 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class __magic_name__ :
def __init__( self : Optional[int] ) -> Optional[Any]:
UpperCAmelCase = ""
UpperCAmelCase = ""
UpperCAmelCase = []
UpperCAmelCase = 0
UpperCAmelCase = 2_5_6
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Optional[Any] ) -> List[str]:
UpperCAmelCase = cva.imread(lowerCAmelCase__ , 0 )
UpperCAmelCase = copy.deepcopy(self.img )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="x" )
UpperCAmelCase = np.sum(lowerCAmelCase__ )
for i in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase = x[i] / self.k
self.sk += prk
UpperCAmelCase = (self.L - 1) * self.sk
if self.rem != 0:
UpperCAmelCase = int(last % last )
UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(lowerCAmelCase__ )
UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size )
UpperCAmelCase = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCAmelCase = self.img[j][i]
if num != self.last_list[num]:
UpperCAmelCase = self.last_list[num]
cva.imwrite("output_data/output.jpg" , self.img )
def _UpperCamelCase ( self : str ) -> int:
plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] )
def _UpperCamelCase ( self : Dict ) -> Optional[Any]:
cva.imshow("Output-Image" , self.img )
cva.imshow("Input-Image" , self.original_image )
cva.waitKey(5_0_0_0 )
cva.destroyAllWindows()
if __name__ == "__main__":
lowerCAmelCase__ = os.path.join(os.path.basename(__file__), "image_data/input.jpg")
lowerCAmelCase__ = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 1 | 1 |
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def _lowerCAmelCase( __A , __A ):
# Load checkpoint
UpperCAmelCase = torch.load(__A , map_location="cpu" )
UpperCAmelCase = chkpt["model"]
# We have the base model one level deeper than the original XLM repository
UpperCAmelCase = {}
for k, v in state_dict.items():
if "pred_layer" in k:
UpperCAmelCase = v
else:
UpperCAmelCase = v
UpperCAmelCase = chkpt["params"]
UpperCAmelCase = {n: v for n, v in config.items() if not isinstance(__A , (torch.FloatTensor, numpy.ndarray) )}
UpperCAmelCase = chkpt["dico_word2id"]
UpperCAmelCase = {s + "</w>" if s.find("@@" ) == -1 and i > 13 else s.replace("@@" , "" ): i for s, i in vocab.items()}
# Save pytorch-model
UpperCAmelCase = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
UpperCAmelCase = pytorch_dump_folder_path + "/" + CONFIG_NAME
UpperCAmelCase = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"]
print(F"Save PyTorch model to {pytorch_weights_dump_path}" )
torch.save(__A , __A )
print(F"Save configuration file to {pytorch_config_dump_path}" )
with open(__A , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(__A , indent=2 ) + "\n" )
print(F"Save vocab file to {pytorch_config_dump_path}" )
with open(__A , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(__A , indent=2 ) + "\n" )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowerCAmelCase__ = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 1 |
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = LEDTokenizer
UpperCAmelCase = LEDTokenizerFast
UpperCAmelCase = True
def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
super().setUp()
UpperCAmelCase = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
UpperCAmelCase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
UpperCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
UpperCAmelCase = {"unk_token": "<unk>"}
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Union[str, Any] , **lowerCAmelCase__ : Optional[int] ) -> Optional[int]:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _UpperCamelCase ( self : str , **lowerCAmelCase__ : str ) -> Optional[int]:
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
return "lower newer", "lower newer"
@cached_property
def _UpperCamelCase ( self : Dict ) -> str:
return LEDTokenizer.from_pretrained("allenai/led-base-16384" )
@cached_property
def _UpperCamelCase ( self : int ) -> Tuple:
return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" )
@require_torch
def _UpperCamelCase ( self : Tuple ) -> List[str]:
UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
UpperCAmelCase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@require_torch
def _UpperCamelCase ( self : Union[str, Any] ) -> List[Any]:
UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt" )
self.assertIn("input_ids" , lowerCAmelCase__ )
self.assertIn("attention_mask" , lowerCAmelCase__ )
self.assertNotIn("labels" , lowerCAmelCase__ )
self.assertNotIn("decoder_attention_mask" , lowerCAmelCase__ )
@require_torch
def _UpperCamelCase ( self : int ) -> int:
UpperCAmelCase = [
"Summary of the text.",
"Another summary.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , max_length=3_2 , padding="max_length" , return_tensors="pt" )
self.assertEqual(3_2 , targets["input_ids"].shape[1] )
@require_torch
def _UpperCamelCase ( self : Any ) -> int:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(
["I am a small frog" * 1_0_2_4, "I am a small frog"] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) )
@require_torch
def _UpperCamelCase ( self : Dict ) -> Tuple:
UpperCAmelCase = ["A long paragraph for summarization."]
UpperCAmelCase = [
"Summary of the text.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase = inputs["input_ids"]
UpperCAmelCase = targets["input_ids"]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = ["Summary of the text.", "Another summary."]
UpperCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ )
UpperCAmelCase = [[0] * len(lowerCAmelCase__ ) for x in encoded_output["input_ids"]]
UpperCAmelCase = tokenizer.pad(lowerCAmelCase__ )
self.assertSequenceEqual(outputs["global_attention_mask"] , lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] ) -> int:
pass
def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = "A, <mask> AllenNLP sentence."
UpperCAmelCase = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
UpperCAmelCase = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) )
self.assertEqual(
sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , )
UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] )
UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] )
self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(
lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
self.assertSequenceEqual(
lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
| 1 | 1 |
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def _lowerCAmelCase( __A , __A , __A=0 ):
# Format the message.
if name is None:
UpperCAmelCase = None
else:
UpperCAmelCase = "." * max(0 , spaces - 2 ) + "# {:" + str(50 - spaces ) + "s}"
UpperCAmelCase = fmt.format(__A )
# Print and recurse (if needed).
if isinstance(__A , __A ):
if msg is not None:
print(__A )
for k in val.keys():
recursive_print(__A , val[k] , spaces + 2 )
elif isinstance(__A , torch.Tensor ):
print(__A , ":" , val.size() )
else:
print(__A , ":" , __A )
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
UpperCAmelCase = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
UpperCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:]
UpperCAmelCase = param.view(*__A )
UpperCAmelCase = param.transpose(0 , 2 )
UpperCAmelCase = param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
UpperCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:]
UpperCAmelCase = param.view(*__A )
UpperCAmelCase = param.transpose(0 , 1 ).contiguous()
UpperCAmelCase = param.view(*__A )
return param
def _lowerCAmelCase( __A , __A , __A ):
# The converted output model.
UpperCAmelCase = {}
# old versions did not store training args
UpperCAmelCase = input_state_dict.get("args" , __A )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
UpperCAmelCase = ds_args.padded_vocab_size
UpperCAmelCase = ds_args.max_position_embeddings
UpperCAmelCase = ds_args.hidden_size
UpperCAmelCase = ds_args.num_layers
UpperCAmelCase = ds_args.num_attention_heads
UpperCAmelCase = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
UpperCAmelCase = config.n_head
# The hidden_size per head.
UpperCAmelCase = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
UpperCAmelCase = input_state_dict["checkpoint_version"]
else:
UpperCAmelCase = 0.0
# The model.
UpperCAmelCase = input_state_dict["model"]
# The language model.
UpperCAmelCase = model["language_model"]
# The embeddings.
UpperCAmelCase = lm["embedding"]
# The word embeddings.
UpperCAmelCase = embeddings["word_embeddings"]["weight"]
# Truncate the embedding table to vocab_size rows.
UpperCAmelCase = word_embeddings[: config.vocab_size, :]
UpperCAmelCase = word_embeddings
# The position embeddings.
UpperCAmelCase = embeddings["position_embeddings"]["weight"]
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
UpperCAmelCase = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
F"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" )
# Store the position embeddings.
UpperCAmelCase = pos_embeddings
# The transformer.
UpperCAmelCase = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"]
# The regex to extract layer names.
UpperCAmelCase = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" )
# The simple map of names for "automated" rules.
UpperCAmelCase = {
"attention.dense": ".attn.c_proj.",
"self_attention.dense": ".attn.c_proj.",
"mlp.dense_h_to_4h": ".mlp.c_fc.",
"mlp.dense_4h_to_h": ".mlp.c_proj.",
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
UpperCAmelCase = layer_re.match(__A )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
UpperCAmelCase = int(m.group(1 ) )
# The name of the operation.
UpperCAmelCase = m.group(2 )
# Is it a weight or a bias?
UpperCAmelCase = m.group(3 )
# The name of the layer.
UpperCAmelCase = F"transformer.h.{layer_idx}"
# For layernorm(s), simply store the layer norm.
if op_name.endswith("layernorm" ):
UpperCAmelCase = "ln_1" if op_name.startswith("input" ) else "ln_2"
UpperCAmelCase = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
UpperCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , __A , __A )
UpperCAmelCase = causal_mask
# Insert a "dummy" tensor for masked_bias.
UpperCAmelCase = torch.tensor(-1E4 , dtype=torch.floataa )
UpperCAmelCase = masked_bias
UpperCAmelCase = fix_query_key_value_ordering(__A , __A , 3 , __A , __A )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
UpperCAmelCase = out_val.transpose(0 , 1 ).contiguous()
# Store.
UpperCAmelCase = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
UpperCAmelCase = fix_query_key_value_ordering(__A , __A , 3 , __A , __A )
# Store. No change of shape.
UpperCAmelCase = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
UpperCAmelCase = megatron_to_transformers[op_name]
UpperCAmelCase = val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
UpperCAmelCase = megatron_to_transformers[op_name]
UpperCAmelCase = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
UpperCAmelCase = transformer["final_layernorm.weight"]
UpperCAmelCase = transformer["final_layernorm.bias"]
# For LM head, transformers' wants the matrix to weight embeddings.
UpperCAmelCase = word_embeddings
# It should be done!
return output_state_dict
def _lowerCAmelCase( ):
# Create the argument parser.
UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument("--print-checkpoint-structure" , action="store_true" )
parser.add_argument(
"path_to_checkpoint" , type=__A , help="Path to the checkpoint file (.zip archive or direct .pt file)" , )
parser.add_argument(
"--config_file" , default="" , type=__A , help="An optional config json file describing the pre-trained model." , )
UpperCAmelCase = parser.parse_args()
# Extract the basename.
UpperCAmelCase = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(F"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" )
if args.path_to_checkpoint.endswith(".zip" ):
with zipfile.ZipFile(args.path_to_checkpoint , "r" ) as checkpoint:
with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict:
UpperCAmelCase = torch.load(__A , map_location="cpu" )
else:
UpperCAmelCase = torch.load(args.path_to_checkpoint , map_location="cpu" )
UpperCAmelCase = input_state_dict.get("args" , __A )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
UpperCAmelCase = "gelu_fast"
elif ds_args.openai_gelu:
UpperCAmelCase = "gelu_new"
else:
UpperCAmelCase = "gelu"
else:
# in the very early days this used to be "gelu_new"
UpperCAmelCase = "gelu_new"
# Spell out all parameters in case the defaults change.
UpperCAmelCase = GPTaConfig(
vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=__A , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="cls_index" , summary_use_proj=__A , summary_activation=__A , summary_proj_to_labels=__A , summary_first_dropout=0.1 , scale_attn_weights=__A , use_cache=__A , bos_token_id=50256 , eos_token_id=50256 , )
else:
UpperCAmelCase = GPTaConfig.from_json_file(args.config_file )
UpperCAmelCase = ["GPT2LMHeadModel"]
# Convert.
print("Converting" )
UpperCAmelCase = convert_megatron_checkpoint(__A , __A , __A )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(__A , __A )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
UpperCAmelCase = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
UpperCAmelCase = "gpt2"
elif tokenizer_type == "PretrainedFromHF":
UpperCAmelCase = ds_args.tokenizer_name_or_path
else:
raise ValueError(F"Unrecognized tokenizer_type {tokenizer_type}" )
else:
UpperCAmelCase = "gpt2"
UpperCAmelCase = AutoTokenizer.from_pretrained(__A )
UpperCAmelCase = type(__A ).__name__
UpperCAmelCase = tokenizer_class
# Store the config to file.
print("Saving config" )
config.save_pretrained(__A )
# Save tokenizer based on args
print(F"Adding {tokenizer_class} tokenizer files" )
tokenizer.save_pretrained(__A )
# Store the state_dict to file.
UpperCAmelCase = os.path.join(__A , "pytorch_model.bin" )
print(F"Saving checkpoint to \"{output_checkpoint_file}\"" )
torch.save(__A , __A )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 1 |
import numpy as np
from nltk.translate import meteor_score
import datasets
from datasets.config import importlib_metadata, version
lowerCAmelCase__ = version.parse(importlib_metadata.version("nltk"))
if NLTK_VERSION >= version.Version("3.6.4"):
from nltk import word_tokenize
lowerCAmelCase__ = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n"
lowerCAmelCase__ = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n"
lowerCAmelCase__ = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __magic_name__ ( datasets.Metric ):
def _UpperCamelCase ( self : int ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[
"https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score",
"https://en.wikipedia.org/wiki/METEOR",
] , )
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : List[Any] ) -> Dict:
import nltk
nltk.download("wordnet" )
if NLTK_VERSION >= version.Version("3.6.5" ):
nltk.download("punkt" )
if NLTK_VERSION >= version.Version("3.6.6" ):
nltk.download("omw-1.4" )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=0.9 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Optional[int]=0.5 ) -> Any:
if NLTK_VERSION >= version.Version("3.6.5" ):
UpperCAmelCase = [
meteor_score.single_meteor_score(
word_tokenize(lowerCAmelCase__ ) , word_tokenize(lowerCAmelCase__ ) , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ )
for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
else:
UpperCAmelCase = [
meteor_score.single_meteor_score(lowerCAmelCase__ , lowerCAmelCase__ , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ )
for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
return {"meteor": np.mean(lowerCAmelCase__ )}
| 1 | 1 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class __magic_name__ ( _snake_case , _snake_case ):
@register_to_config
def __init__( self : Optional[Any] , *,
lowerCAmelCase__ : int = 4 , lowerCAmelCase__ : int = 7_6_8 , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , ) -> Optional[int]:
super().__init__()
UpperCAmelCase = nn.Parameter(torch.zeros(lowerCAmelCase__ ) )
# parameters for additional clip time embeddings
UpperCAmelCase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ )
# parameters for encoder hidden states
UpperCAmelCase = clip_extra_context_tokens
UpperCAmelCase = nn.Linear(
lowerCAmelCase__ , self.clip_extra_context_tokens * cross_attention_dim )
UpperCAmelCase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = nn.LayerNorm(lowerCAmelCase__ )
def _UpperCamelCase ( self : str , *, lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] ) -> List[Any]:
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
UpperCAmelCase = image_embeddings.shape[0]
UpperCAmelCase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
UpperCAmelCase = classifier_free_guidance_embeddings.expand(
lowerCAmelCase__ , -1 )
UpperCAmelCase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
UpperCAmelCase = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
UpperCAmelCase = self.embedding_proj(lowerCAmelCase__ )
UpperCAmelCase = self.clip_image_embeddings_project_to_time_embeddings(lowerCAmelCase__ )
UpperCAmelCase = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
UpperCAmelCase = self.clip_extra_context_tokens_proj(lowerCAmelCase__ )
UpperCAmelCase = clip_extra_context_tokens.reshape(lowerCAmelCase__ , -1 , self.clip_extra_context_tokens )
UpperCAmelCase = clip_extra_context_tokens.permute(0 , 2 , 1 )
UpperCAmelCase = self.encoder_hidden_states_proj(lowerCAmelCase__ )
UpperCAmelCase = self.text_encoder_hidden_states_norm(lowerCAmelCase__ )
UpperCAmelCase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json",
}
class __magic_name__ ( _snake_case ):
UpperCAmelCase = """lxmert"""
UpperCAmelCase = {}
def __init__( self : int , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : List[str]=7_6_8 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : List[Any]=9_5_0_0 , lowerCAmelCase__ : Any=1_6_0_0 , lowerCAmelCase__ : Union[str, Any]=4_0_0 , lowerCAmelCase__ : Tuple=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : str=1e-1_2 , lowerCAmelCase__ : str=9 , lowerCAmelCase__ : int=5 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : List[Any]=2_0_4_8 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Dict=6.67 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Tuple=True , **lowerCAmelCase__ : List[Any] , ) -> Dict:
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = num_qa_labels
UpperCAmelCase = num_object_labels
UpperCAmelCase = num_attr_labels
UpperCAmelCase = l_layers
UpperCAmelCase = x_layers
UpperCAmelCase = r_layers
UpperCAmelCase = visual_feat_dim
UpperCAmelCase = visual_pos_dim
UpperCAmelCase = visual_loss_normalizer
UpperCAmelCase = task_matched
UpperCAmelCase = task_mask_lm
UpperCAmelCase = task_obj_predict
UpperCAmelCase = task_qa
UpperCAmelCase = visual_obj_loss
UpperCAmelCase = visual_attr_loss
UpperCAmelCase = visual_feat_loss
UpperCAmelCase = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers}
super().__init__(**lowerCAmelCase__ )
| 1 | 1 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = 1 # (0 is vertical, 1 is horizontal)
def _lowerCAmelCase( ):
UpperCAmelCase , UpperCAmelCase = get_dataset(__A , __A )
print("Processing..." )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = update_image_and_anno(__A , __A , __A )
for index, image in enumerate(__A ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
UpperCAmelCase = random_chars(32 )
UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0]
UpperCAmelCase = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cva.imwrite(F"/{file_root}.jpg" , __A , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F"Success {index+1}/{len(__A )} with {file_name}" )
UpperCAmelCase = []
for anno in new_annos[index]:
UpperCAmelCase = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(__A )
with open(F"/{file_root}.txt" , "w" ) as outfile:
outfile.write("\n".join(line for line in annos_list ) )
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = []
UpperCAmelCase = []
for label_file in glob.glob(os.path.join(__A , "*.txt" ) ):
UpperCAmelCase = label_file.split(os.sep )[-1].rsplit("." , 1 )[0]
with open(__A ) as in_file:
UpperCAmelCase = in_file.readlines()
UpperCAmelCase = os.path.join(__A , F"{label_name}.jpg" )
UpperCAmelCase = []
for obj_list in obj_lists:
UpperCAmelCase = obj_list.rstrip("\n" ).split(" " )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__A )
labels.append(__A )
return img_paths, labels
def _lowerCAmelCase( __A , __A , __A = 1 ):
UpperCAmelCase = []
UpperCAmelCase = []
UpperCAmelCase = []
for idx in range(len(__A ) ):
UpperCAmelCase = []
UpperCAmelCase = img_list[idx]
path_list.append(__A )
UpperCAmelCase = anno_list[idx]
UpperCAmelCase = cva.imread(__A )
if flip_type == 1:
UpperCAmelCase = cva.flip(__A , __A )
for bbox in img_annos:
UpperCAmelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
UpperCAmelCase = cva.flip(__A , __A )
for bbox in img_annos:
UpperCAmelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__A )
new_imgs_list.append(__A )
return new_imgs_list, new_annos_lists, path_list
def _lowerCAmelCase( __A = 32 ):
assert number_char > 1, "The number of character should greater than 1"
UpperCAmelCase = ascii_lowercase + digits
return "".join(random.choice(__A ) for _ in range(__A ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 1 |
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def _lowerCAmelCase( __A = 100 ):
UpperCAmelCase = 1
UpperCAmelCase = 2
for i in range(2 , max_n + 1 ):
UpperCAmelCase = pre_numerator
UpperCAmelCase = 2 * i // 3 if i % 3 == 0 else 1
UpperCAmelCase = cur_numerator
UpperCAmelCase = e_cont * pre_numerator + temp
return sum_digits(__A )
if __name__ == "__main__":
print(f"{solution() = }")
| 1 | 1 |
import itertools
import random
import unittest
import numpy as np
from transformers import ASTFeatureExtractor
from transformers.testing_utils import require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
lowerCAmelCase__ = random.Random()
if is_torch_available():
import torch
def _lowerCAmelCase( __A , __A=1.0 , __A=None , __A=None ):
if rng is None:
UpperCAmelCase = global_rng
UpperCAmelCase = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class __magic_name__ ( unittest.TestCase ):
def __init__( self : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]=7 , lowerCAmelCase__ : Union[str, Any]=4_0_0 , lowerCAmelCase__ : List[Any]=2_0_0_0 , lowerCAmelCase__ : Any=1 , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : Optional[int]=1_6_0_0_0 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : List[str]=True , ) -> Union[str, Any]:
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = min_seq_length
UpperCAmelCase = max_seq_length
UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
UpperCAmelCase = feature_size
UpperCAmelCase = padding_value
UpperCAmelCase = sampling_rate
UpperCAmelCase = return_attention_mask
UpperCAmelCase = do_normalize
def _UpperCamelCase ( self : Dict ) -> Optional[int]:
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Optional[int]=False ) -> Optional[Any]:
def _flatten(lowerCAmelCase__ : Optional[int] ):
return list(itertools.chain(*lowerCAmelCase__ ) )
if equal_length:
UpperCAmelCase = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
UpperCAmelCase = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
UpperCAmelCase = [np.asarray(lowerCAmelCase__ ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = ASTFeatureExtractor
def _UpperCamelCase ( self : Dict ) -> str:
UpperCAmelCase = ASTFeatureExtractionTester(self )
def _UpperCamelCase ( self : Any ) -> List[str]:
# Tests that all call wrap to encode_plus and batch_encode_plus
UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )]
UpperCAmelCase = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs]
# Test not batched input
UpperCAmelCase = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values
UpperCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values
self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) )
# Test batched
UpperCAmelCase = feat_extract(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="np" ).input_values
UpperCAmelCase = feat_extract(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="np" ).input_values
for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
UpperCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)]
UpperCAmelCase = np.asarray(lowerCAmelCase__ )
UpperCAmelCase = feat_extract(lowerCAmelCase__ , return_tensors="np" ).input_values
UpperCAmelCase = feat_extract(lowerCAmelCase__ , return_tensors="np" ).input_values
for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) )
@require_torch
def _UpperCamelCase ( self : int ) -> Optional[int]:
import torch
UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa )
UpperCAmelCase = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
UpperCAmelCase = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
UpperCAmelCase = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : List[Any] ) -> Dict:
from datasets import load_dataset
UpperCAmelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" )
# automatic decoding with librispeech
UpperCAmelCase = ds.sort("id" ).select(range(lowerCAmelCase__ ) )[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
@require_torch
def _UpperCamelCase ( self : Any ) -> int:
# fmt: off
UpperCAmelCase = torch.tensor(
[-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776,
-1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133,
-1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936,
-0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] )
# fmt: on
UpperCAmelCase = self._load_datasamples(1 )
UpperCAmelCase = ASTFeatureExtractor()
UpperCAmelCase = feature_extractor(lowerCAmelCase__ , return_tensors="pt" ).input_values
self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) )
self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , lowerCAmelCase__ , atol=1e-4 ) )
| 1 |
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 1 | 1 |
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 1 |
import numpy
# List of input, output pairs
lowerCAmelCase__ = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
lowerCAmelCase__ = (((515, 22, 13), 555), ((61, 35, 49), 150))
lowerCAmelCase__ = [2, 4, 1, 5]
lowerCAmelCase__ = len(train_data)
lowerCAmelCase__ = 0.0_0_9
def _lowerCAmelCase( __A , __A="train" ):
return calculate_hypothesis_value(__A , __A ) - output(
__A , __A )
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
for i in range(len(__A ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def _lowerCAmelCase( __A , __A ):
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def _lowerCAmelCase( __A , __A ):
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def _lowerCAmelCase( __A , __A=m ):
UpperCAmelCase = 0
for i in range(__A ):
if index == -1:
summation_value += _error(__A )
else:
summation_value += _error(__A ) * train_data[i][0][index]
return summation_value
def _lowerCAmelCase( __A ):
UpperCAmelCase = summation_of_cost_derivative(__A , __A ) / m
return cost_derivative_value
def _lowerCAmelCase( ):
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCAmelCase = 0.000002
UpperCAmelCase = 0
UpperCAmelCase = 0
while True:
j += 1
UpperCAmelCase = [0, 0, 0, 0]
for i in range(0 , len(__A ) ):
UpperCAmelCase = get_cost_derivative(i - 1 )
UpperCAmelCase = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
__A , __A , atol=__A , rtol=__A , ):
break
UpperCAmelCase = temp_parameter_vector
print(("Number of iterations:", j) )
def _lowerCAmelCase( ):
for i in range(len(__A ) ):
print(("Actual output value:", output(__A , "test" )) )
print(("Hypothesis output:", calculate_hypothesis_value(__A , "test" )) )
if __name__ == "__main__":
run_gradient_descent()
print("\nTesting gradient descent for a linear hypothesis function.\n")
test_gradient_descent()
| 1 | 1 |
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase = 3
UpperCAmelCase = 2_5_0
UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase__ )
UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase__ , dtype=torch.float ) / length
return input_ids, scores
def _UpperCamelCase ( self : Optional[int] ) -> List[Any]:
UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 )
UpperCAmelCase = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=1_0 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) )
UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 )
self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) )
UpperCAmelCase , UpperCAmelCase = self._get_tensors(1_0 )
self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : List[str] ) -> List[Any]:
UpperCAmelCase = MaxLengthCriteria(max_length=1_0 )
UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 )
self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) )
UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 )
self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) )
UpperCAmelCase , UpperCAmelCase = self._get_tensors(1_0 )
self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Any ) -> Union[str, Any]:
UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 )
UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 )
self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) )
UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 )
self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) )
UpperCAmelCase , UpperCAmelCase = self._get_tensors(1_0 )
self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) )
UpperCAmelCase = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length , 1_0 )
def _UpperCamelCase ( self : Dict ) -> Any:
UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 )
UpperCAmelCase = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) )
UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 )
with self.assertWarns(lowerCAmelCase__ ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 )
UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 1_1 )
self.assertEqual(len(lowerCAmelCase__ ) , 1 )
| 1 |
def _lowerCAmelCase( __A , __A , __A ):
if n == 0:
return 1
elif n % 2 == 1:
return (binary_exponentiation(__A , n - 1 , __A ) * a) % mod
else:
UpperCAmelCase = binary_exponentiation(__A , n / 2 , __A )
return (b * b) % mod
# a prime number
lowerCAmelCase__ = 701
lowerCAmelCase__ = 1000000000
lowerCAmelCase__ = 10
# using binary exponentiation function, O(log(p)):
print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p)
print((a / b) % p == (a * b ** (p - 2)) % p)
| 1 | 1 |
import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
lowerCAmelCase__ = None
lowerCAmelCase__ = "<" if sys.byteorder == "little" else ">"
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
lowerCAmelCase__ = [
np.dtype("|b1"),
np.dtype("|u1"),
np.dtype("<u2"),
np.dtype(">u2"),
np.dtype("<i2"),
np.dtype(">i2"),
np.dtype("<u4"),
np.dtype(">u4"),
np.dtype("<i4"),
np.dtype(">i4"),
np.dtype("<f4"),
np.dtype(">f4"),
np.dtype("<f8"),
np.dtype(">f8"),
]
@dataclass
class __magic_name__ :
UpperCAmelCase = True
UpperCAmelCase = None
# Automatically constructed
UpperCAmelCase = "PIL.Image.Image"
UpperCAmelCase = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} )
UpperCAmelCase = field(default="""Image""" , init=_snake_case , repr=_snake_case )
def __call__( self : Tuple ) -> Dict:
return self.pa_type
def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support encoding images, please install 'Pillow'." )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase = np.array(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
return {"path": value, "bytes": None}
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
return {"path": None, "bytes": value}
elif isinstance(lowerCAmelCase__ , np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(lowerCAmelCase__ )
elif isinstance(lowerCAmelCase__ , PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(lowerCAmelCase__ )
elif value.get("path" ) is not None and os.path.isfile(value["path"] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get("path" )}
elif value.get("bytes" ) is not None or value.get("path" ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get("bytes" ), "path": value.get("path" )}
else:
raise ValueError(
f"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : dict , lowerCAmelCase__ : List[Any]=None ) -> "PIL.Image.Image":
if not self.decode:
raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support decoding images, please install 'Pillow'." )
if token_per_repo_id is None:
UpperCAmelCase = {}
UpperCAmelCase , UpperCAmelCase = value["path"], value["bytes"]
if bytes_ is None:
if path is None:
raise ValueError(f"An image should have one of 'path' or 'bytes' but both are None in {value}." )
else:
if is_local_path(lowerCAmelCase__ ):
UpperCAmelCase = PIL.Image.open(lowerCAmelCase__ )
else:
UpperCAmelCase = path.split("::" )[-1]
try:
UpperCAmelCase = string_to_dict(lowerCAmelCase__ , config.HUB_DATASETS_URL )["repo_id"]
UpperCAmelCase = token_per_repo_id.get(lowerCAmelCase__ )
except ValueError:
UpperCAmelCase = None
with xopen(lowerCAmelCase__ , "rb" , use_auth_token=lowerCAmelCase__ ) as f:
UpperCAmelCase = BytesIO(f.read() )
UpperCAmelCase = PIL.Image.open(bytes_ )
else:
UpperCAmelCase = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def _UpperCamelCase ( self : Tuple ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
from .features import Value
return (
self
if self.decode
else {
"bytes": Value("binary" ),
"path": Value("string" ),
}
)
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray:
if pa.types.is_string(storage.type ):
UpperCAmelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.binary() )
UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
UpperCAmelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() )
UpperCAmelCase = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("bytes" ) >= 0:
UpperCAmelCase = storage.field("bytes" )
else:
UpperCAmelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.binary() )
if storage.type.get_field_index("path" ) >= 0:
UpperCAmelCase = storage.field("path" )
else:
UpperCAmelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() )
UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
UpperCAmelCase = pa.array(
[encode_np_array(np.array(lowerCAmelCase__ ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
UpperCAmelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() )
UpperCAmelCase = pa.StructArray.from_arrays(
[bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() )
return array_cast(lowerCAmelCase__ , self.pa_type )
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : pa.StructArray ) -> pa.StructArray:
@no_op_if_value_is_null
def path_to_bytes(lowerCAmelCase__ : Union[str, Any] ):
with xopen(lowerCAmelCase__ , "rb" ) as f:
UpperCAmelCase = f.read()
return bytes_
UpperCAmelCase = pa.array(
[
(path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
UpperCAmelCase = pa.array(
[os.path.basename(lowerCAmelCase__ ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , )
UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() )
return array_cast(lowerCAmelCase__ , self.pa_type )
def _lowerCAmelCase( ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support encoding images, please install 'Pillow'." )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
UpperCAmelCase = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def _lowerCAmelCase( __A ):
UpperCAmelCase = BytesIO()
if image.format in list_image_compression_formats():
UpperCAmelCase = image.format
else:
UpperCAmelCase = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF"
image.save(__A , format=__A )
return buffer.getvalue()
def _lowerCAmelCase( __A ):
if hasattr(__A , "filename" ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(__A )}
def _lowerCAmelCase( __A ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support encoding images, please install 'Pillow'." )
UpperCAmelCase = array.dtype
UpperCAmelCase = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER
UpperCAmelCase = dtype.kind
UpperCAmelCase = dtype.itemsize
UpperCAmelCase = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
UpperCAmelCase = np.dtype("|u1" )
if dtype_kind not in ["u", "i"]:
raise TypeError(
F"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." )
if dtype is not dest_dtype:
warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
UpperCAmelCase = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
UpperCAmelCase = dtype_byteorder + dtype_kind + str(__A )
UpperCAmelCase = np.dtype(__A )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
F"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" )
UpperCAmelCase = PIL.Image.fromarray(array.astype(__A ) )
return {"path": None, "bytes": image_to_bytes(__A )}
def _lowerCAmelCase( __A ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support encoding images, please install 'Pillow'." )
if objs:
UpperCAmelCase , UpperCAmelCase = first_non_null_value(__A )
if isinstance(__A , __A ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(__A , np.ndarray ):
UpperCAmelCase = no_op_if_value_is_null(__A )
return [obj_to_image_dict_func(__A ) for obj in objs]
elif isinstance(__A , PIL.Image.Image ):
UpperCAmelCase = no_op_if_value_is_null(__A )
return [obj_to_image_dict_func(__A ) for obj in objs]
else:
return objs
else:
return objs
| 1 |
lowerCAmelCase__ = {
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
lowerCAmelCase__ = {value: key for key, value in encode_dict.items()}
def _lowerCAmelCase( __A ):
UpperCAmelCase = ""
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception("encode() accepts only letters of the alphabet and spaces" )
return encoded
def _lowerCAmelCase( __A ):
if set(__A ) - {"A", "B", " "} != set():
raise Exception("decode() accepts only 'A', 'B' and spaces" )
UpperCAmelCase = ""
for word in coded.split():
while len(__A ) != 0:
decoded += decode_dict[word[:5]]
UpperCAmelCase = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
from typing import Any
class __magic_name__ :
def __init__( self : int , lowerCAmelCase__ : Any ) -> Tuple:
UpperCAmelCase = data
UpperCAmelCase = None
class __magic_name__ :
def __init__( self : Tuple ) -> Tuple:
UpperCAmelCase = None
def _UpperCamelCase ( self : Dict ) -> List[str]:
UpperCAmelCase = self.head
while temp is not None:
print(temp.data , end=" " )
UpperCAmelCase = temp.next
print()
def _UpperCamelCase ( self : str , lowerCAmelCase__ : Any ) -> Optional[int]:
UpperCAmelCase = Node(lowerCAmelCase__ )
UpperCAmelCase = self.head
UpperCAmelCase = new_node
def _UpperCamelCase ( self : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : int ) -> str:
if node_data_a == node_data_a:
return
else:
UpperCAmelCase = self.head
while node_a is not None and node_a.data != node_data_a:
UpperCAmelCase = node_a.next
UpperCAmelCase = self.head
while node_a is not None and node_a.data != node_data_a:
UpperCAmelCase = node_a.next
if node_a is None or node_a is None:
return
UpperCAmelCase , UpperCAmelCase = node_a.data, node_a.data
if __name__ == "__main__":
lowerCAmelCase__ = LinkedList()
for i in range(5, 0, -1):
ll.push(i)
ll.print_list()
ll.swap_nodes(1, 4)
print("After swapping")
ll.print_list()
| 1 |
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
lowerCAmelCase__ = {"UserAgent": UserAgent().random}
def _lowerCAmelCase( __A ):
UpperCAmelCase = script.contents[0]
UpperCAmelCase = json.loads(data[data.find("{\"config\"" ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class __magic_name__ :
def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Any:
UpperCAmelCase = f"https://www.instagram.com/{username}/"
UpperCAmelCase = self.get_json()
def _UpperCamelCase ( self : List[str] ) -> dict:
UpperCAmelCase = requests.get(self.url , headers=lowerCAmelCase__ ).text
UpperCAmelCase = BeautifulSoup(lowerCAmelCase__ , "html.parser" ).find_all("script" )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self : Tuple ) -> str:
return f"{self.__class__.__name__}('{self.username}')"
def __str__( self : Optional[int] ) -> str:
return f"{self.fullname} ({self.username}) is {self.biography}"
@property
def _UpperCamelCase ( self : Any ) -> str:
return self.user_data["username"]
@property
def _UpperCamelCase ( self : List[Any] ) -> str:
return self.user_data["full_name"]
@property
def _UpperCamelCase ( self : List[str] ) -> str:
return self.user_data["biography"]
@property
def _UpperCamelCase ( self : Optional[int] ) -> str:
return self.user_data["business_email"]
@property
def _UpperCamelCase ( self : str ) -> str:
return self.user_data["external_url"]
@property
def _UpperCamelCase ( self : int ) -> int:
return self.user_data["edge_followed_by"]["count"]
@property
def _UpperCamelCase ( self : List[Any] ) -> int:
return self.user_data["edge_follow"]["count"]
@property
def _UpperCamelCase ( self : List[str] ) -> int:
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def _UpperCamelCase ( self : Tuple ) -> str:
return self.user_data["profile_pic_url_hd"]
@property
def _UpperCamelCase ( self : Optional[int] ) -> bool:
return self.user_data["is_verified"]
@property
def _UpperCamelCase ( self : Optional[Any] ) -> bool:
return self.user_data["is_private"]
def _lowerCAmelCase( __A = "github" ):
import os
if os.environ.get("CI" ):
return # test failing on GitHub Actions
UpperCAmelCase = InstagramUser(__A )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , __A )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 150
assert instagram_user.number_of_followers > 120000
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "[email protected]"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith("https://instagram." )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase__ = InstagramUser("github")
print(instagram_user)
print(f"{instagram_user.number_of_posts = }")
print(f"{instagram_user.number_of_followers = }")
print(f"{instagram_user.number_of_followings = }")
print(f"{instagram_user.email = }")
print(f"{instagram_user.website = }")
print(f"{instagram_user.profile_picture_url = }")
print(f"{instagram_user.is_verified = }")
print(f"{instagram_user.is_private = }")
| 1 | 1 |
def _lowerCAmelCase( __A ):
UpperCAmelCase = len(__A )
for i in range(1 , __A ):
UpperCAmelCase = collection[i]
UpperCAmelCase = 0
UpperCAmelCase = i - 1
while low <= high:
UpperCAmelCase = (low + high) // 2
if val < collection[mid]:
UpperCAmelCase = mid - 1
else:
UpperCAmelCase = mid + 1
for j in range(__A , __A , -1 ):
UpperCAmelCase = collection[j - 1]
UpperCAmelCase = val
return collection
if __name__ == "__main__":
lowerCAmelCase__ = input("Enter numbers separated by a comma:\n").strip()
lowerCAmelCase__ = [int(item) for item in user_input.split(",")]
print(binary_insertion_sort(unsorted))
| 1 |
import unittest
import numpy as np
def _lowerCAmelCase( __A , __A , __A , __A = None , ):
UpperCAmelCase = np.shape(__A )
UpperCAmelCase = np.shape(__A )
UpperCAmelCase = np.shape(__A )
if shape_a[0] != shape_b[0]:
UpperCAmelCase = (
"Expected the same number of rows for A and B. "
F"Instead found A of size {shape_a} and B of size {shape_b}"
)
raise ValueError(__A )
if shape_b[1] != shape_c[1]:
UpperCAmelCase = (
"Expected the same number of columns for B and C. "
F"Instead found B of size {shape_b} and C of size {shape_c}"
)
raise ValueError(__A )
UpperCAmelCase = pseudo_inv
if a_inv is None:
try:
UpperCAmelCase = np.linalg.inv(__A )
except np.linalg.LinAlgError:
raise ValueError(
"Input matrix A is not invertible. Cannot compute Schur complement." )
return mat_c - mat_b.T @ a_inv @ mat_b
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : List[str] ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1], [6, 3]] )
UpperCAmelCase = schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = np.block([[a, b], [b.T, c]] )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
self.assertAlmostEqual(lowerCAmelCase__ , det_a * det_s )
def _UpperCamelCase ( self : str ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1], [6, 3]] )
with self.assertRaises(lowerCAmelCase__ ):
schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def _UpperCamelCase ( self : Dict ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(lowerCAmelCase__ ):
schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 1 | 1 |
import re
from filelock import FileLock
try:
import nltk
lowerCAmelCase__ = True
except (ImportError, ModuleNotFoundError):
lowerCAmelCase__ = False
if NLTK_AVAILABLE:
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
def _lowerCAmelCase( __A ):
re.sub("<n>" , "" , __A ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(__A ) )
| 1 |
import argparse
import os
import re
import numpy as np
import PIL
import torch
from timm import create_model
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor
from accelerate import Accelerator
def _lowerCAmelCase( __A ):
UpperCAmelCase = fname.split(os.path.sep )[-1]
return re.search(r"^(.*)_\d+\.jpg$" , __A ).groups()[0]
class __magic_name__ ( _snake_case ):
def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : int=None ) -> Optional[Any]:
UpperCAmelCase = file_names
UpperCAmelCase = image_transform
UpperCAmelCase = label_to_id
def __len__( self : Tuple ) -> List[str]:
return len(self.file_names )
def __getitem__( self : Optional[int] , lowerCAmelCase__ : Tuple ) -> Dict:
UpperCAmelCase = self.file_names[idx]
UpperCAmelCase = PIL.Image.open(lowerCAmelCase__ )
UpperCAmelCase = raw_image.convert("RGB" )
if self.image_transform is not None:
UpperCAmelCase = self.image_transform(lowerCAmelCase__ )
UpperCAmelCase = extract_label(lowerCAmelCase__ )
if self.label_to_id is not None:
UpperCAmelCase = self.label_to_id[label]
return {"image": image, "label": label}
def _lowerCAmelCase( __A , __A ):
# Initialize accelerator
if args.with_tracking:
UpperCAmelCase = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir )
else:
UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase = config["lr"]
UpperCAmelCase = int(config["num_epochs"] )
UpperCAmelCase = int(config["seed"] )
UpperCAmelCase = int(config["batch_size"] )
UpperCAmelCase = config["image_size"]
if not isinstance(__A , (list, tuple) ):
UpperCAmelCase = (image_size, image_size)
# Parse out whether we are saving every epoch or after a certain number of batches
if hasattr(args.checkpointing_steps , "isdigit" ):
if args.checkpointing_steps == "epoch":
UpperCAmelCase = args.checkpointing_steps
elif args.checkpointing_steps.isdigit():
UpperCAmelCase = int(args.checkpointing_steps )
else:
raise ValueError(
F"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." )
else:
UpperCAmelCase = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
UpperCAmelCase = os.path.split(__A )[-1].split("." )[0]
accelerator.init_trackers(__A , __A )
# Grab all the image filenames
UpperCAmelCase = [os.path.join(args.data_dir , __A ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )]
# Build the label correspondences
UpperCAmelCase = [extract_label(__A ) for fname in file_names]
UpperCAmelCase = list(set(__A ) )
id_to_label.sort()
UpperCAmelCase = {lbl: i for i, lbl in enumerate(__A )}
# Set the seed before splitting the data.
np.random.seed(__A )
torch.manual_seed(__A )
torch.cuda.manual_seed_all(__A )
# Split our filenames between train and validation
UpperCAmelCase = np.random.permutation(len(__A ) )
UpperCAmelCase = int(0.8 * len(__A ) )
UpperCAmelCase = random_perm[:cut]
UpperCAmelCase = random_perm[cut:]
# For training we use a simple RandomResizedCrop
UpperCAmelCase = Compose([RandomResizedCrop(__A , scale=(0.5, 1.0) ), ToTensor()] )
UpperCAmelCase = PetsDataset(
[file_names[i] for i in train_split] , image_transform=__A , label_to_id=__A )
# For evaluation, we use a deterministic Resize
UpperCAmelCase = Compose([Resize(__A ), ToTensor()] )
UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=__A , label_to_id=__A )
# Instantiate dataloaders.
UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 )
UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase = create_model("resnet50d" , pretrained=__A , num_classes=len(__A ) )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCAmelCase = model.to(accelerator.device )
# Freezing the base model
for param in model.parameters():
UpperCAmelCase = False
for param in model.get_classifier().parameters():
UpperCAmelCase = True
# We normalize the batches of images to be a bit faster.
UpperCAmelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device )
UpperCAmelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device )
# Instantiate optimizer
UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 )
# Instantiate learning rate scheduler
UpperCAmelCase = OneCycleLR(optimizer=__A , max_lr=__A , epochs=__A , steps_per_epoch=len(__A ) )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare(
__A , __A , __A , __A , __A )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase = 0
# We also need to keep track of the starting epoch so files are named properly
UpperCAmelCase = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(F"Resumed from checkpoint: {args.resume_from_checkpoint}" )
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase = os.path.basename(args.resume_from_checkpoint )
else:
# Get the most recent checkpoint
UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()]
dirs.sort(key=os.path.getctime )
UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
UpperCAmelCase = os.path.splitext(__A )[0]
if "epoch" in training_difference:
UpperCAmelCase = int(training_difference.replace("epoch_" , "" ) ) + 1
UpperCAmelCase = None
else:
UpperCAmelCase = int(training_difference.replace("step_" , "" ) )
UpperCAmelCase = resume_step // len(__A )
resume_step -= starting_epoch * len(__A )
# Now we train the model
for epoch in range(__A , __A ):
model.train()
if args.with_tracking:
UpperCAmelCase = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We need to skip steps until we reach the resumed step
UpperCAmelCase = accelerator.skip_first_batches(__A , __A )
overall_step += resume_step
else:
# After the first iteration though, we need to go back to the original dataloader
UpperCAmelCase = train_dataloader
for batch in active_dataloader:
# We could avoid this line since we set the accelerator with `device_placement=True`.
UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()}
UpperCAmelCase = (batch["image"] - mean) / std
UpperCAmelCase = model(__A )
UpperCAmelCase = torch.nn.functional.cross_entropy(__A , batch["label"] )
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(__A )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
if isinstance(__A , __A ):
UpperCAmelCase = F"step_{overall_step}"
if overall_step % checkpointing_steps == 0:
if args.output_dir is not None:
UpperCAmelCase = os.path.join(args.output_dir , __A )
accelerator.save_state(__A )
model.eval()
UpperCAmelCase = 0
UpperCAmelCase = 0
for step, batch in enumerate(__A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()}
UpperCAmelCase = (batch["image"] - mean) / std
with torch.no_grad():
UpperCAmelCase = model(__A )
UpperCAmelCase = outputs.argmax(dim=-1 )
UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["label"]) )
UpperCAmelCase = predictions == references
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
UpperCAmelCase = accurate.item() / num_elems
# Use accelerator.print to print only on the main process.
accelerator.print(F"epoch {epoch}: {100 * eval_metric:.2f}" )
if args.with_tracking:
accelerator.log(
{
"accuracy": 100 * eval_metric,
"train_loss": total_loss.item() / len(__A ),
"epoch": epoch,
} , step=__A , )
if checkpointing_steps == "epoch":
UpperCAmelCase = F"epoch_{epoch}"
if args.output_dir is not None:
UpperCAmelCase = os.path.join(args.output_dir , __A )
accelerator.save_state(__A )
if args.with_tracking:
accelerator.end_training()
def _lowerCAmelCase( ):
UpperCAmelCase = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument("--data_dir" , required=__A , help="The data folder on disk." )
parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." )
parser.add_argument(
"--mixed_precision" , type=__A , default=__A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
parser.add_argument(
"--checkpointing_steps" , type=__A , default=__A , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , )
parser.add_argument(
"--output_dir" , type=__A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , )
parser.add_argument(
"--resume_from_checkpoint" , type=__A , default=__A , help="If the training should continue from a checkpoint folder." , )
parser.add_argument(
"--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , )
parser.add_argument(
"--project_dir" , type=__A , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , )
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224}
training_function(__A , __A )
if __name__ == "__main__":
main()
| 1 | 1 |
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : str ) -> Union[str, Any]:
UpperCAmelCase = 1_0
def _UpperCamelCase ( self : int ) -> Any:
UpperCAmelCase = [1, 2, 3, 4]
UpperCAmelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(lowerCAmelCase__ , self.block_size , 0 ) , lowerCAmelCase__ )
def _UpperCamelCase ( self : Tuple ) -> str:
UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0]
UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0]
self.assertEqual(truncate_or_pad(lowerCAmelCase__ , self.block_size , 0 ) , lowerCAmelCase__ )
def _UpperCamelCase ( self : Optional[int] ) -> str:
UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3]
UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0]
self.assertEqual(truncate_or_pad(lowerCAmelCase__ , self.block_size , 0 ) , lowerCAmelCase__ )
def _UpperCamelCase ( self : Tuple ) -> List[str]:
UpperCAmelCase = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this."
UpperCAmelCase , UpperCAmelCase = process_story(lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , [] )
def _UpperCamelCase ( self : str ) -> List[str]:
UpperCAmelCase = ""
UpperCAmelCase , UpperCAmelCase = process_story(lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , [] )
self.assertEqual(lowerCAmelCase__ , [] )
def _UpperCamelCase ( self : Optional[int] ) -> str:
UpperCAmelCase = (
"It was the year of Our Lord one thousand seven hundred and "
"seventy-five\n\nSpiritual revelations were conceded to England "
"at that favoured period, as at this.\n@highlight\n\nIt was the best of times"
)
UpperCAmelCase , UpperCAmelCase = process_story(lowerCAmelCase__ )
UpperCAmelCase = [
"It was the year of Our Lord one thousand seven hundred and seventy-five.",
"Spiritual revelations were conceded to England at that favoured period, as at this.",
]
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = ["It was the best of times."]
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase = torch.tensor([1, 2, 3, 4] )
UpperCAmelCase = torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(lowerCAmelCase__ , 0 ).numpy() , expected.numpy() )
def _UpperCamelCase ( self : str ) -> Dict:
UpperCAmelCase = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] )
UpperCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(lowerCAmelCase__ , 2_3 ).numpy() , expected.numpy() )
def _UpperCamelCase ( self : Optional[int] ) -> int:
UpperCAmelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] )
UpperCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(lowerCAmelCase__ , 1 ).numpy() , expected.numpy() )
def _UpperCamelCase ( self : Dict ) -> int:
UpperCAmelCase = 1_0_1
UpperCAmelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] )
UpperCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
UpperCAmelCase = compute_token_type_ids(lowerCAmelCase__ , lowerCAmelCase__ )
np.testing.assert_array_equal(lowerCAmelCase__ , lowerCAmelCase__ )
| 1 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = 1 # (0 is vertical, 1 is horizontal)
def _lowerCAmelCase( ):
UpperCAmelCase , UpperCAmelCase = get_dataset(__A , __A )
print("Processing..." )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = update_image_and_anno(__A , __A , __A )
for index, image in enumerate(__A ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
UpperCAmelCase = random_chars(32 )
UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0]
UpperCAmelCase = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cva.imwrite(F"/{file_root}.jpg" , __A , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F"Success {index+1}/{len(__A )} with {file_name}" )
UpperCAmelCase = []
for anno in new_annos[index]:
UpperCAmelCase = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(__A )
with open(F"/{file_root}.txt" , "w" ) as outfile:
outfile.write("\n".join(line for line in annos_list ) )
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = []
UpperCAmelCase = []
for label_file in glob.glob(os.path.join(__A , "*.txt" ) ):
UpperCAmelCase = label_file.split(os.sep )[-1].rsplit("." , 1 )[0]
with open(__A ) as in_file:
UpperCAmelCase = in_file.readlines()
UpperCAmelCase = os.path.join(__A , F"{label_name}.jpg" )
UpperCAmelCase = []
for obj_list in obj_lists:
UpperCAmelCase = obj_list.rstrip("\n" ).split(" " )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__A )
labels.append(__A )
return img_paths, labels
def _lowerCAmelCase( __A , __A , __A = 1 ):
UpperCAmelCase = []
UpperCAmelCase = []
UpperCAmelCase = []
for idx in range(len(__A ) ):
UpperCAmelCase = []
UpperCAmelCase = img_list[idx]
path_list.append(__A )
UpperCAmelCase = anno_list[idx]
UpperCAmelCase = cva.imread(__A )
if flip_type == 1:
UpperCAmelCase = cva.flip(__A , __A )
for bbox in img_annos:
UpperCAmelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
UpperCAmelCase = cva.flip(__A , __A )
for bbox in img_annos:
UpperCAmelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__A )
new_imgs_list.append(__A )
return new_imgs_list, new_annos_lists, path_list
def _lowerCAmelCase( __A = 32 ):
assert number_char > 1, "The number of character should greater than 1"
UpperCAmelCase = ascii_lowercase + digits
return "".join(random.choice(__A ) for _ in range(__A ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 1 | 1 |
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class __magic_name__ ( _snake_case ):
def __init__( self : Any , lowerCAmelCase__ : str = "▁" , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[str, AddedToken] = "<unk>" , lowerCAmelCase__ : Union[str, AddedToken] = "</s>" , lowerCAmelCase__ : Union[str, AddedToken] = "<pad>" , ) -> Optional[Any]:
UpperCAmelCase = {
"pad": {"id": 0, "token": pad_token},
"eos": {"id": 1, "token": eos_token},
"unk": {"id": 2, "token": unk_token},
}
UpperCAmelCase = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
UpperCAmelCase = token_dict["token"]
UpperCAmelCase = Tokenizer(Unigram() )
UpperCAmelCase = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(" {2,}" ) , " " ),
normalizers.Lowercase(),
] )
UpperCAmelCase = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ),
pre_tokenizers.Digits(individual_digits=lowerCAmelCase__ ),
pre_tokenizers.Punctuation(),
] )
UpperCAmelCase = decoders.Metaspace(replacement=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ )
UpperCAmelCase = TemplateProcessing(
single=f"$A {self.special_tokens['eos']['token']}" , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , )
UpperCAmelCase = {
"model": "SentencePieceUnigram",
"replacement": replacement,
"add_prefix_space": add_prefix_space,
}
super().__init__(lowerCAmelCase__ , lowerCAmelCase__ )
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Union[str, List[str]] , lowerCAmelCase__ : int = 8_0_0_0 , lowerCAmelCase__ : bool = True , ) -> List[str]:
UpperCAmelCase = trainers.UnigramTrainer(
vocab_size=lowerCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=lowerCAmelCase__ , )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase = [files]
self._tokenizer.train(lowerCAmelCase__ , trainer=lowerCAmelCase__ )
self.add_unk_id()
def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : Union[Iterator[str], Iterator[Iterator[str]]] , lowerCAmelCase__ : int = 8_0_0_0 , lowerCAmelCase__ : bool = True , ) -> List[Any]:
UpperCAmelCase = trainers.UnigramTrainer(
vocab_size=lowerCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=lowerCAmelCase__ , )
self._tokenizer.train_from_iterator(lowerCAmelCase__ , trainer=lowerCAmelCase__ )
self.add_unk_id()
def _UpperCamelCase ( self : List[Any] ) -> Dict:
UpperCAmelCase = json.loads(self._tokenizer.to_str() )
UpperCAmelCase = self.special_tokens["unk"]["id"]
UpperCAmelCase = Tokenizer.from_str(json.dumps(lowerCAmelCase__ ) )
| 1 |
def _lowerCAmelCase( __A ):
if not isinstance(__A , __A ):
raise TypeError("only integers accepted as input" )
else:
UpperCAmelCase = str(abs(__A ) )
UpperCAmelCase = [list(__A ) for char in range(len(__A ) )]
for index in range(len(__A ) ):
num_transpositions[index].pop(__A )
return max(
int("".join(list(__A ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__("doctest").testmod()
| 1 | 1 |
import unittest
from transformers import AutoTokenizer, FalconConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
)
class __magic_name__ :
def __init__( self : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[Any]=9_9 , lowerCAmelCase__ : Union[str, Any]=3_2 , lowerCAmelCase__ : Optional[Any]=5 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Tuple=3_7 , lowerCAmelCase__ : Optional[int]="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : List[str]=5_1_2 , lowerCAmelCase__ : Any=1_6 , lowerCAmelCase__ : Any=2 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Optional[int]=None , ) -> Dict:
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_input_mask
UpperCAmelCase = use_token_type_ids
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = type_sequence_label_size
UpperCAmelCase = initializer_range
UpperCAmelCase = num_labels
UpperCAmelCase = num_choices
UpperCAmelCase = scope
def _UpperCamelCase ( self : int ) -> Tuple:
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = None
if self.use_input_mask:
UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
if self.use_labels:
UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCamelCase ( self : List[Any] ) -> Tuple:
return FalconConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=lowerCAmelCase__ , )
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] ) -> Dict:
UpperCAmelCase = FalconModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
UpperCAmelCase = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , ) -> Tuple:
UpperCAmelCase = True
UpperCAmelCase = FalconModel(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
UpperCAmelCase = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , )
UpperCAmelCase = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , )
UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , ) -> str:
UpperCAmelCase = FalconForCausalLM(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict , ) -> Optional[Any]:
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = FalconForCausalLM(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
# first forward pass
UpperCAmelCase = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ , )
UpperCAmelCase = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCAmelCase = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0]
UpperCAmelCase = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0]
# select random slice
UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) )
def _UpperCamelCase ( self : List[str] ) -> str:
UpperCAmelCase = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) = config_and_inputs
UpperCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class __magic_name__ ( _snake_case , _snake_case , _snake_case , unittest.TestCase ):
UpperCAmelCase = (
(
FalconModel,
FalconForCausalLM,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconForQuestionAnswering,
)
if is_torch_available()
else ()
)
UpperCAmelCase = (FalconForCausalLM,) if is_torch_available() else ()
UpperCAmelCase = (
{
"""feature-extraction""": FalconModel,
"""text-classification""": FalconForSequenceClassification,
"""text-generation""": FalconForCausalLM,
"""question-answering""": FalconForQuestionAnswering,
"""token-classification""": FalconForTokenClassification,
"""zero-shot""": FalconForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCAmelCase = False
UpperCAmelCase = False
def _UpperCamelCase ( self : Any ) -> Dict:
UpperCAmelCase = FalconModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 )
def _UpperCamelCase ( self : List[str] ) -> Any:
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : List[str] ) -> int:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def _UpperCamelCase ( self : Any ) -> Union[str, Any]:
UpperCAmelCase , *UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
for alibi in [True, False]:
UpperCAmelCase = alibi
self.model_tester.create_and_check_model(lowerCAmelCase__ , *lowerCAmelCase__ )
def _UpperCamelCase ( self : Dict ) -> Dict:
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = 3
UpperCAmelCase = input_dict["input_ids"]
UpperCAmelCase = input_ids.ne(1 ).to(lowerCAmelCase__ )
UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase = FalconForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _UpperCamelCase ( self : Optional[Any] ) -> Any:
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = 3
UpperCAmelCase = "single_label_classification"
UpperCAmelCase = input_dict["input_ids"]
UpperCAmelCase = input_ids.ne(1 ).to(lowerCAmelCase__ )
UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase = FalconForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _UpperCamelCase ( self : List[str] ) -> Any:
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = input_dict["input_ids"]
UpperCAmelCase = FalconForCausalLM(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
UpperCAmelCase = model(lowerCAmelCase__ , use_cache=lowerCAmelCase__ )
UpperCAmelCase = input_ids.shape[0]
UpperCAmelCase = model._convert_to_rw_cache(result.past_key_values )
UpperCAmelCase = model._convert_cache_to_standard_format(lowerCAmelCase__ , lowerCAmelCase__ )
for layer in range(len(lowerCAmelCase__ ) ):
for tensor_idx in range(2 ):
self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 )
self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 )
self.assertTrue(
torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) )
def _UpperCamelCase ( self : List[str] ) -> Dict:
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase = 3
UpperCAmelCase = "multi_label_classification"
UpperCAmelCase = input_dict["input_ids"]
UpperCAmelCase = input_ids.ne(1 ).to(lowerCAmelCase__ )
UpperCAmelCase = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase = FalconForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple:
# Falcon can have different numbers of KV-heads than the number of query heads, so we need
# to override this test to use the right head counts.
for model_class in self.all_generative_model_classes:
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
# If it doesn't support cache, pass the test
if not hasattr(lowerCAmelCase__ , "use_cache" ):
return
UpperCAmelCase = model_class(lowerCAmelCase__ ).to(lowerCAmelCase__ )
if "use_cache" not in inputs:
UpperCAmelCase = True
UpperCAmelCase = model(**lowerCAmelCase__ )
# If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format)
if "past_key_values" not in outputs:
return
UpperCAmelCase = (
getattr(lowerCAmelCase__ , "decoder_layers" , lowerCAmelCase__ )
or getattr(lowerCAmelCase__ , "num_decoder_layers" , lowerCAmelCase__ )
or config.num_hidden_layers
)
UpperCAmelCase = getattr(lowerCAmelCase__ , "num_kv_heads" , config.num_attention_heads )
UpperCAmelCase = getattr(lowerCAmelCase__ , "d_model" , config.hidden_size )
UpperCAmelCase = embed_dim // num_attention_heads
UpperCAmelCase = outputs["past_key_values"]
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
UpperCAmelCase , UpperCAmelCase = inputs["input_ids"].shape
for i in range(lowerCAmelCase__ ):
if config.new_decoder_architecture:
UpperCAmelCase = config.num_attention_heads
elif config.multi_query:
UpperCAmelCase = 1
self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2
self.assertEqual(
past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) )
self.assertEqual(
past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) )
@require_torch
class __magic_name__ ( unittest.TestCase ):
@slow
def _UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]:
UpperCAmelCase = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b" )
UpperCAmelCase = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b" )
model.eval()
model.to(lowerCAmelCase__ )
UpperCAmelCase = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCAmelCase__ )
UpperCAmelCase = (
"My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday."
)
UpperCAmelCase = model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=1_9 )
UpperCAmelCase = tokenizer.batch_decode(lowerCAmelCase__ )[0]
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]:
# The big models are way too big for the CI, so we use tiny random models that resemble their
# architectures but with much smaller and fewer layers
for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]:
UpperCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
UpperCAmelCase = FalconForCausalLM.from_pretrained(lowerCAmelCase__ )
model.eval()
model.to(lowerCAmelCase__ )
UpperCAmelCase = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCAmelCase__ )
# We just test that these run without errors - the models are randomly initialized
# and so the actual text outputs will be garbage
model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=4 )
model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=4 )
model.generate(**lowerCAmelCase__ , num_beams=2 , max_new_tokens=4 )
@slow
def _UpperCamelCase ( self : List[str] ) -> Tuple:
# The big models are way too big for the CI, so we use tiny random models that resemble their
# architectures but with much smaller and fewer layers
with torch.no_grad():
for repo in [
"Rocketknight1/falcon-rw-1b",
"Rocketknight1/tiny-random-falcon-7b",
"Rocketknight1/tiny-random-falcon-40b",
]:
UpperCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
UpperCAmelCase = FalconForCausalLM.from_pretrained(lowerCAmelCase__ )
model.eval()
model.to(device=lowerCAmelCase__ )
UpperCAmelCase = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCAmelCase__ )
# Test results are the same with and without cache
UpperCAmelCase = model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=2_0 , use_cache=lowerCAmelCase__ )
UpperCAmelCase = model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=2_0 , use_cache=lowerCAmelCase__ )
self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
| 1 |
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
lowerCAmelCase__ = logging.getLogger(__name__)
lowerCAmelCase__ = 50 # max width of layer names
lowerCAmelCase__ = 70 # max width of quantizer names
def _lowerCAmelCase( __A ):
UpperCAmelCase = parser.add_argument_group("quant_trainer arguments" )
group.add_argument("--wprec" , type=__A , default=8 , help="weight precision" )
group.add_argument("--aprec" , type=__A , default=8 , help="activation precision" )
group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" )
group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" )
group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" )
group.add_argument("--quant-disable-keyword" , type=__A , nargs="+" , help="disable quantizers by keyword" )
group.add_argument("--quant-disable-layer-module" , type=__A , help="disable quantizers by keyword under layer." )
group.add_argument("--quant-enable-layer-module" , type=__A , help="enable quantizers by keyword under layer" )
group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" )
group.add_argument("--percentile" , default=__A , type=__A , help="percentile for PercentileCalibrator" )
group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" )
group.add_argument("--clip-gelu" , metavar="N" , type=__A , help="clip gelu output maximum value to N" )
group.add_argument(
"--recalibrate-weights" , action="store_true" , help=(
"recalibrate weight amaxes by taking the max of the weights."
" amaxes will be computed with the current quantization granularity (axis)."
) , )
def _lowerCAmelCase( __A ):
if args.calibrator == "max":
UpperCAmelCase = "max"
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError("Specify --percentile when using percentile calibrator" )
UpperCAmelCase = "histogram"
elif args.calibrator == "mse":
UpperCAmelCase = "histogram"
else:
raise ValueError(F"Invalid calibrator {args.calibrator}" )
UpperCAmelCase = QuantDescriptor(num_bits=args.aprec , calib_method=__A )
UpperCAmelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(__A )
quant_nn.QuantLinear.set_default_quant_desc_weight(__A )
def _lowerCAmelCase( __A , __A , __A=False , __A=False ):
logger.info("Configuring Model for Quantization" )
logger.info(F"using quantization package {pytorch_quantization.__file__}" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(__A , ["embeddings"] , which="weight" , _disabled=__A )
if args.quant_disable:
set_quantizer_by_name(__A , [""] , _disabled=__A )
if args.quant_disable_keyword:
set_quantizer_by_name(__A , args.quant_disable_keyword , _disabled=__A )
if args.quant_disable_layer_module:
set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=__A )
if args.quant_enable_layer_module:
set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=__A )
if args.recalibrate_weights:
recalibrate_weights(__A )
if args.fuse_qkv:
fuse_qkv(__A , __A )
if args.clip_gelu:
clip_gelu(__A , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(__A )
def _lowerCAmelCase( __A ):
logger.info("Enabling Calibration" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(F"{name:80}: {module}" )
def _lowerCAmelCase( __A , __A ):
logger.info("Loading calibrated amax" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax("percentile" , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(__A )
def _lowerCAmelCase( __A , __A ):
def fusea(__A , __A , __A ):
for mod in [qq, qk, qv]:
if not hasattr(__A , "_amax" ):
print(" WARNING: NO AMAX BUFFER" )
return
UpperCAmelCase = qq._amax.detach().item()
UpperCAmelCase = qk._amax.detach().item()
UpperCAmelCase = qv._amax.detach().item()
UpperCAmelCase = max(__A , __A , __A )
qq._amax.fill_(__A )
qk._amax.fill_(__A )
qv._amax.fill_(__A )
logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" )
for name, mod in model.named_modules():
if name.endswith(".attention.self" ):
logger.info(F"FUSE_QKV: {name:{name_width}}" )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _lowerCAmelCase( __A , __A ):
for name, mod in model.named_modules():
if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ):
UpperCAmelCase = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=__A )
UpperCAmelCase = mod._input_quantizer._amax.data.detach().item()
logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" )
def _lowerCAmelCase( __A ):
for name, mod in model.named_modules():
if hasattr(__A , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None:
UpperCAmelCase = mod.weight.shape[0]
UpperCAmelCase = mod._weight_quantizer._amax.detach()
UpperCAmelCase = torch.ones(__A , dtype=amax.dtype , device=amax.device ) * amax
print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" )
def _lowerCAmelCase( __A ):
for name, mod in model.named_modules():
if hasattr(__A , "_weight_quantizer" ):
if not hasattr(mod.weight_quantizer , "_amax" ):
print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
UpperCAmelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
UpperCAmelCase = set(range(len(mod.weight.size() ) ) ) - axis_set
UpperCAmelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__A , keepdims=__A ).detach()
logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" )
UpperCAmelCase = amax
def _lowerCAmelCase( __A , __A=25 , __A=180 , __A=None ):
if ignore is None:
UpperCAmelCase = []
elif not isinstance(__A , __A ):
UpperCAmelCase = [ignore]
UpperCAmelCase = 0
for name, mod in model.named_modules():
if not hasattr(__A , "weight" ):
continue
UpperCAmelCase = max(__A , len(__A ) )
for name, mod in model.named_modules():
UpperCAmelCase = getattr(__A , "_input_quantizer" , __A )
UpperCAmelCase = getattr(__A , "_weight_quantizer" , __A )
if not hasattr(__A , "weight" ):
continue
if type(__A ) in ignore:
continue
if [True for s in ignore if type(__A ) is str and s in name]:
continue
UpperCAmelCase = F"Act:{input_q.extra_repr()}"
UpperCAmelCase = F"Wgt:{weight_q.extra_repr()}"
UpperCAmelCase = F"{name:{name_width}} {act_str} {wgt_str}"
if len(__A ) <= line_width:
logger.info(__A )
else:
logger.info(F"{name:{name_width}} {act_str}" )
logger.info(F"{' ':{name_width}} {wgt_str}" )
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
for name, mod in model.named_modules():
if isinstance(__A , pytorch_quantization.nn.TensorQuantizer ):
print(F"{name:80} {mod}" )
count += 1
print(F"{count} TensorQuantizers found in model" )
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
UpperCAmelCase = getattr(__A , __A , __A )
if quantizer_mod is not None:
assert hasattr(__A , __A )
setattr(__A , __A , __A )
else:
logger.warning(F"{name} has no {quantizer}" )
def _lowerCAmelCase( __A , __A , __A="both" , **__A ):
UpperCAmelCase = F"Warning: changing {which} quantizers of {name:{qname_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
if which in ["input", "both"]:
set_quantizer(__A , __A , "_input_quantizer" , __A , __A )
if which in ["weight", "both"]:
set_quantizer(__A , __A , "_weight_quantizer" , __A , __A )
logger.info(__A )
def _lowerCAmelCase( __A , __A , **__A ):
for name, mod in model.named_modules():
if hasattr(__A , "_input_quantizer" ) or hasattr(__A , "_weight_quantizer" ):
for n in names:
if re.search(__A , __A ):
set_quantizers(__A , __A , **__A )
elif name.endswith("_quantizer" ):
for n in names:
if re.search(__A , __A ):
UpperCAmelCase = F"Warning: changing {name:{name_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
setattr(__A , __A , __A )
logger.info(__A )
| 1 | 1 |
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : List[Any] ) -> Optional[int]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _UpperCamelCase ( self : Tuple ) -> List[str]:
UpperCAmelCase = 1
UpperCAmelCase = 3
UpperCAmelCase = (3_2, 3_2)
UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ )
return image
@property
def _UpperCamelCase ( self : List[str] ) -> Any:
torch.manual_seed(0 )
UpperCAmelCase = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , )
return model
@property
def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple:
torch.manual_seed(0 )
UpperCAmelCase = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
return model
@property
def _UpperCamelCase ( self : Dict ) -> List[Any]:
torch.manual_seed(0 )
UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
return CLIPTextModel(lowerCAmelCase__ )
@property
def _UpperCamelCase ( self : Optional[Any] ) -> Optional[int]:
def extract(*lowerCAmelCase__ : Any , **lowerCAmelCase__ : List[Any] ):
class __magic_name__ :
def __init__( self : List[Any] ) -> List[str]:
UpperCAmelCase = torch.ones([0] )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] ) -> str:
self.pixel_values.to(lowerCAmelCase__ )
return self
return Out()
return extract
def _UpperCamelCase ( self : Any ) -> Union[str, Any]:
UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase = self.dummy_cond_unet
UpperCAmelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , )
UpperCAmelCase = self.dummy_vae
UpperCAmelCase = self.dummy_text_encoder
UpperCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# make sure here that pndm scheduler skips prk
UpperCAmelCase = StableDiffusionPipeline(
unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , )
UpperCAmelCase = sd_pipe.to(lowerCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = "A painting of a squirrel eating a burger"
UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 )
UpperCAmelCase = sd_pipe([prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" )
UpperCAmelCase = output.images
UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 )
UpperCAmelCase = sd_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=lowerCAmelCase__ , )[0]
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
UpperCAmelCase = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _UpperCamelCase ( self : List[str] ) -> Optional[int]:
UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase = self.dummy_cond_unet
UpperCAmelCase = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ )
UpperCAmelCase = self.dummy_vae
UpperCAmelCase = self.dummy_text_encoder
UpperCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# make sure here that pndm scheduler skips prk
UpperCAmelCase = StableDiffusionPipeline(
unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , )
UpperCAmelCase = sd_pipe.to(lowerCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = "A painting of a squirrel eating a burger"
UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 )
UpperCAmelCase = sd_pipe([prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" )
UpperCAmelCase = output.images
UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 )
UpperCAmelCase = sd_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=lowerCAmelCase__ , )[0]
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
UpperCAmelCase = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]:
UpperCAmelCase = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=lowerCAmelCase__ )
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
assert isinstance(pipe.scheduler , lowerCAmelCase__ )
assert pipe.safety_checker is None
UpperCAmelCase = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(lowerCAmelCase__ )
UpperCAmelCase = StableDiffusionPipeline.from_pretrained(lowerCAmelCase__ )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
UpperCAmelCase = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def _UpperCamelCase ( self : List[str] ) -> Optional[Any]:
UpperCAmelCase = self.dummy_cond_unet
UpperCAmelCase = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ )
UpperCAmelCase = self.dummy_vae
UpperCAmelCase = self.dummy_text_encoder
UpperCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# put models in fp16
UpperCAmelCase = unet.half()
UpperCAmelCase = vae.half()
UpperCAmelCase = bert.half()
# make sure here that pndm scheduler skips prk
UpperCAmelCase = StableDiffusionPipeline(
unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , )
UpperCAmelCase = sd_pipe.to(lowerCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = "A painting of a squirrel eating a burger"
UpperCAmelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images
assert image.shape == (1, 6_4, 6_4, 3)
@nightly
@require_torch_gpu
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : int ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCamelCase ( self : str ) -> Any:
UpperCAmelCase = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=lowerCAmelCase__ )
UpperCAmelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
UpperCAmelCase = sd_pipe.to(lowerCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = (
"portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"
" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"
" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"
" children from bahnhof zoo, detailed "
)
UpperCAmelCase = 4_0_0_3_6_6_0_3_4_6
UpperCAmelCase = 7
# without safety guidance (sld_guidance_scale = 0)
UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ )
UpperCAmelCase = sd_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , )
UpperCAmelCase = output.images
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
# without safety guidance (strong configuration)
UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ )
UpperCAmelCase = sd_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCAmelCase = output.images
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _UpperCamelCase ( self : List[str] ) -> Tuple:
UpperCAmelCase = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=lowerCAmelCase__ )
UpperCAmelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
UpperCAmelCase = sd_pipe.to(lowerCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = "padme amidala taking a bath artwork, safe for work, no nudity"
UpperCAmelCase = 2_7_3_4_9_7_1_7_5_5
UpperCAmelCase = 7
UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ )
UpperCAmelCase = sd_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , )
UpperCAmelCase = output.images
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ )
UpperCAmelCase = sd_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCAmelCase = output.images
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _UpperCamelCase ( self : Optional[Any] ) -> Any:
UpperCAmelCase = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" )
UpperCAmelCase = sd_pipe.to(lowerCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = (
"the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."
" leyendecker"
)
UpperCAmelCase = 1_0_4_4_3_5_5_2_3_4
UpperCAmelCase = 1_2
UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ )
UpperCAmelCase = sd_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , )
UpperCAmelCase = output.images
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7
UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ )
UpperCAmelCase = sd_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCAmelCase = output.images
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] )
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 1 |
def _lowerCAmelCase( __A ):
assert column_title.isupper()
UpperCAmelCase = 0
UpperCAmelCase = len(__A ) - 1
UpperCAmelCase = 0
while index >= 0:
UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , __A )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def _lowerCAmelCase( __A , __A , __A ):
def get_masked_lm_array(__A ):
UpperCAmelCase = F"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE"
UpperCAmelCase = tf.train.load_variable(__A , __A )
if "kernel" in name:
UpperCAmelCase = array.transpose()
return torch.from_numpy(__A )
def get_encoder_array(__A ):
UpperCAmelCase = F"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE"
UpperCAmelCase = tf.train.load_variable(__A , __A )
if "kernel" in name:
UpperCAmelCase = array.transpose()
return torch.from_numpy(__A )
def get_encoder_layer_array(__A , __A ):
UpperCAmelCase = F"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE"
UpperCAmelCase = tf.train.load_variable(__A , __A )
if "kernel" in name:
UpperCAmelCase = array.transpose()
return torch.from_numpy(__A )
def get_encoder_attention_layer_array(__A , __A , __A ):
UpperCAmelCase = F"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE"
UpperCAmelCase = tf.train.load_variable(__A , __A )
UpperCAmelCase = array.reshape(__A )
if "kernel" in name:
UpperCAmelCase = array.transpose()
return torch.from_numpy(__A )
print(F"Loading model based on config from {config_path}..." )
UpperCAmelCase = BertConfig.from_json_file(__A )
UpperCAmelCase = BertForMaskedLM(__A )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
UpperCAmelCase = model.bert.encoder.layer[layer_index]
# Self-attention
UpperCAmelCase = layer.attention.self
UpperCAmelCase = get_encoder_attention_layer_array(
__A , "_query_dense/kernel" , self_attn.query.weight.data.shape )
UpperCAmelCase = get_encoder_attention_layer_array(
__A , "_query_dense/bias" , self_attn.query.bias.data.shape )
UpperCAmelCase = get_encoder_attention_layer_array(
__A , "_key_dense/kernel" , self_attn.key.weight.data.shape )
UpperCAmelCase = get_encoder_attention_layer_array(
__A , "_key_dense/bias" , self_attn.key.bias.data.shape )
UpperCAmelCase = get_encoder_attention_layer_array(
__A , "_value_dense/kernel" , self_attn.value.weight.data.shape )
UpperCAmelCase = get_encoder_attention_layer_array(
__A , "_value_dense/bias" , self_attn.value.bias.data.shape )
# Self-attention Output
UpperCAmelCase = layer.attention.output
UpperCAmelCase = get_encoder_attention_layer_array(
__A , "_output_dense/kernel" , self_output.dense.weight.data.shape )
UpperCAmelCase = get_encoder_attention_layer_array(
__A , "_output_dense/bias" , self_output.dense.bias.data.shape )
UpperCAmelCase = get_encoder_layer_array(__A , "_attention_layer_norm/gamma" )
UpperCAmelCase = get_encoder_layer_array(__A , "_attention_layer_norm/beta" )
# Intermediate
UpperCAmelCase = layer.intermediate
UpperCAmelCase = get_encoder_layer_array(__A , "_intermediate_dense/kernel" )
UpperCAmelCase = get_encoder_layer_array(__A , "_intermediate_dense/bias" )
# Output
UpperCAmelCase = layer.output
UpperCAmelCase = get_encoder_layer_array(__A , "_output_dense/kernel" )
UpperCAmelCase = get_encoder_layer_array(__A , "_output_dense/bias" )
UpperCAmelCase = get_encoder_layer_array(__A , "_output_layer_norm/gamma" )
UpperCAmelCase = get_encoder_layer_array(__A , "_output_layer_norm/beta" )
# Embeddings
UpperCAmelCase = get_encoder_array("_position_embedding_layer/embeddings" )
UpperCAmelCase = get_encoder_array("_type_embedding_layer/embeddings" )
UpperCAmelCase = get_encoder_array("_embedding_norm_layer/gamma" )
UpperCAmelCase = get_encoder_array("_embedding_norm_layer/beta" )
# LM Head
UpperCAmelCase = model.cls.predictions.transform
UpperCAmelCase = get_masked_lm_array("dense/kernel" )
UpperCAmelCase = get_masked_lm_array("dense/bias" )
UpperCAmelCase = get_masked_lm_array("layer_norm/gamma" )
UpperCAmelCase = get_masked_lm_array("layer_norm/beta" )
UpperCAmelCase = get_masked_lm_array("embedding_table" )
# Pooling
UpperCAmelCase = BertPooler(config=__A )
UpperCAmelCase = get_encoder_array("_pooler_layer/kernel" )
UpperCAmelCase = get_encoder_array("_pooler_layer/bias" )
# Export final model
model.save_pretrained(__A )
# Integration test - should load without any errors ;)
UpperCAmelCase = BertForMaskedLM.from_pretrained(__A )
print(new_model.eval() )
print("Model conversion was done sucessfully!" )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument(
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path."
)
parser.add_argument(
"--bert_config_file",
type=str,
required=True,
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path",
type=str,
required=True,
help="Path to the output PyTorch model.",
)
lowerCAmelCase__ = parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 1 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
lowerCAmelCase__ = get_tests_dir("fixtures")
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
# A mock response for an HTTP head request to emulate server down
UpperCAmelCase = mock.Mock()
UpperCAmelCase = 5_0_0
UpperCAmelCase = {}
UpperCAmelCase = HTTPError
UpperCAmelCase = {}
# Download this model to make sure it's in the cache.
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request" , return_value=lowerCAmelCase__ ) as mock_head:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# This check we did call the fake head request
mock_head.assert_called()
def _UpperCamelCase ( self : List[Any] ) -> Dict:
# This test is for deprecated behavior and can be removed in v5
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" )
@is_staging_test
class __magic_name__ ( unittest.TestCase ):
@classmethod
def _UpperCamelCase ( cls : List[str] ) -> List[Any]:
UpperCAmelCase = TOKEN
HfFolder.save_token(lowerCAmelCase__ )
@classmethod
def _UpperCamelCase ( cls : Optional[int] ) -> Union[str, Any]:
try:
delete_repo(token=cls._token , repo_id="test-feature-extractor" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" )
except HTTPError:
pass
def _UpperCamelCase ( self : Any ) -> Any:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
lowerCAmelCase__ , repo_id="test-feature-extractor" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : List[Any] ) -> Tuple:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
lowerCAmelCase__ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Dict ) -> List[str]:
CustomFeatureExtractor.register_for_auto_class()
UpperCAmelCase = CustomFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , )
UpperCAmelCase = AutoFeatureExtractor.from_pretrained(
f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=lowerCAmelCase__ )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
| 1 | 1 |
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
lowerCAmelCase__ = 0
lowerCAmelCase__ = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
lowerCAmelCase__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
lowerCAmelCase__ = tuple[int, int]
class __magic_name__ :
def __init__( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Node | None , ) -> None:
UpperCAmelCase = pos_x
UpperCAmelCase = pos_y
UpperCAmelCase = (pos_y, pos_x)
UpperCAmelCase = goal_x
UpperCAmelCase = goal_y
UpperCAmelCase = g_cost
UpperCAmelCase = parent
UpperCAmelCase = self.calculate_heuristic()
UpperCAmelCase = self.g_cost + self.h_cost
def _UpperCamelCase ( self : Union[str, Any] ) -> float:
UpperCAmelCase = self.pos_x - self.goal_x
UpperCAmelCase = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(lowerCAmelCase__ ) + abs(lowerCAmelCase__ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self : int , lowerCAmelCase__ : Node ) -> bool:
return self.f_cost < other.f_cost
class __magic_name__ :
def __init__( self : List[Any] , lowerCAmelCase__ : TPosition , lowerCAmelCase__ : TPosition ) -> Dict:
UpperCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCAmelCase__ )
UpperCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , lowerCAmelCase__ )
UpperCAmelCase = [self.start]
UpperCAmelCase = []
UpperCAmelCase = False
def _UpperCamelCase ( self : Any ) -> list[TPosition]:
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
UpperCAmelCase = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(lowerCAmelCase__ )
self.closed_nodes.append(lowerCAmelCase__ )
UpperCAmelCase = self.get_successors(lowerCAmelCase__ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(lowerCAmelCase__ )
else:
# retrieve the best current path
UpperCAmelCase = self.open_nodes.pop(self.open_nodes.index(lowerCAmelCase__ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(lowerCAmelCase__ )
else:
self.open_nodes.append(lowerCAmelCase__ )
return [self.start.pos]
def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : Node ) -> list[Node]:
UpperCAmelCase = []
for action in delta:
UpperCAmelCase = parent.pos_x + action[1]
UpperCAmelCase = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCAmelCase__ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
lowerCAmelCase__ , lowerCAmelCase__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCAmelCase__ , ) )
return successors
def _UpperCamelCase ( self : int , lowerCAmelCase__ : Node | None ) -> list[TPosition]:
UpperCAmelCase = node
UpperCAmelCase = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
UpperCAmelCase = current_node.parent
path.reverse()
return path
class __magic_name__ :
def __init__( self : List[Any] , lowerCAmelCase__ : TPosition , lowerCAmelCase__ : TPosition ) -> None:
UpperCAmelCase = AStar(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = AStar(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = False
def _UpperCamelCase ( self : Union[str, Any] ) -> list[TPosition]:
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
UpperCAmelCase = self.fwd_astar.open_nodes.pop(0 )
UpperCAmelCase = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
lowerCAmelCase__ , lowerCAmelCase__ )
self.fwd_astar.closed_nodes.append(lowerCAmelCase__ )
self.bwd_astar.closed_nodes.append(lowerCAmelCase__ )
UpperCAmelCase = current_bwd_node
UpperCAmelCase = current_fwd_node
UpperCAmelCase = {
self.fwd_astar: self.fwd_astar.get_successors(lowerCAmelCase__ ),
self.bwd_astar: self.bwd_astar.get_successors(lowerCAmelCase__ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(lowerCAmelCase__ )
else:
# retrieve the best current path
UpperCAmelCase = astar.open_nodes.pop(
astar.open_nodes.index(lowerCAmelCase__ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(lowerCAmelCase__ )
else:
astar.open_nodes.append(lowerCAmelCase__ )
return [self.fwd_astar.start.pos]
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : Node , lowerCAmelCase__ : Node ) -> list[TPosition]:
UpperCAmelCase = self.fwd_astar.retrace_path(lowerCAmelCase__ )
UpperCAmelCase = self.bwd_astar.retrace_path(lowerCAmelCase__ )
bwd_path.pop()
bwd_path.reverse()
UpperCAmelCase = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
lowerCAmelCase__ = (0, 0)
lowerCAmelCase__ = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
lowerCAmelCase__ = time.time()
lowerCAmelCase__ = AStar(init, goal)
lowerCAmelCase__ = a_star.search()
lowerCAmelCase__ = time.time() - start_time
print(f"AStar execution time = {end_time:f} seconds")
lowerCAmelCase__ = time.time()
lowerCAmelCase__ = BidirectionalAStar(init, goal)
lowerCAmelCase__ = time.time() - bd_start_time
print(f"BidirectionalAStar execution time = {bd_end_time:f} seconds")
| 1 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
lowerCAmelCase__ = "src/diffusers"
# Matches is_xxx_available()
lowerCAmelCase__ = re.compile(r"is\_([a-z_]*)_available\(\)")
# Matches from xxx import bla
lowerCAmelCase__ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
lowerCAmelCase__ = "\n{0} = None\n"
lowerCAmelCase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n"
lowerCAmelCase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n"
def _lowerCAmelCase( __A ):
UpperCAmelCase = _re_backend.findall(__A )
if len(__A ) == 0:
return None
return "_and_".join(__A )
def _lowerCAmelCase( ):
with open(os.path.join(__A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.readlines()
# Get to the point we do the actual imports for type checking
UpperCAmelCase = 0
UpperCAmelCase = {}
# Go through the end of the file
while line_index < len(__A ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
UpperCAmelCase = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("else:" ):
line_index += 1
line_index += 1
UpperCAmelCase = []
# Until we unindent, add backend objects to the list
while line_index < len(__A ) and len(lines[line_index] ) > 1:
UpperCAmelCase = lines[line_index]
UpperCAmelCase = _re_single_line_import.search(__A )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__A ) > 0:
UpperCAmelCase = objects
else:
line_index += 1
return backend_specific_objects
def _lowerCAmelCase( __A , __A ):
if name.isupper():
return DUMMY_CONSTANT.format(__A )
elif name.islower():
return DUMMY_FUNCTION.format(__A , __A )
else:
return DUMMY_CLASS.format(__A , __A )
def _lowerCAmelCase( __A=None ):
if backend_specific_objects is None:
UpperCAmelCase = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
UpperCAmelCase = {}
for backend, objects in backend_specific_objects.items():
UpperCAmelCase = "[" + ", ".join(F"\"{b}\"" for b in backend.split("_and_" ) ) + "]"
UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__A , __A ) for o in objects] )
UpperCAmelCase = dummy_file
return dummy_files
def _lowerCAmelCase( __A=False ):
UpperCAmelCase = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
UpperCAmelCase = {"torch": "pt"}
# Locate actual dummy modules and read their content.
UpperCAmelCase = os.path.join(__A , "utils" )
UpperCAmelCase = {
backend: os.path.join(__A , F"dummy_{short_names.get(__A , __A )}_objects.py" )
for backend in dummy_files.keys()
}
UpperCAmelCase = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__A ):
with open(__A , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.read()
else:
UpperCAmelCase = ""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F"Updating diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py as the main "
"__init__ has new objects." )
with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"The main __init__ has objects that are not present in "
F"diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py. Run `make fix-copies` "
"to fix this." )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowerCAmelCase__ = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 1 | 1 |
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
lowerCAmelCase__ = [
"python",
"tqdm",
"regex",
"requests",
"packaging",
"filelock",
"numpy",
"tokenizers",
"huggingface-hub",
"safetensors",
"accelerate",
"pyyaml",
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
def _lowerCAmelCase( __A , __A=None ):
require_version(deps[pkg] , __A )
| 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json",
}
class __magic_name__ ( _snake_case , _snake_case ):
UpperCAmelCase = """convnextv2"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Dict=1e-1_2 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : str=2_2_4 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[Any] , ) -> List[Any]:
super().__init__(**lowerCAmelCase__ )
UpperCAmelCase = num_channels
UpperCAmelCase = patch_size
UpperCAmelCase = num_stages
UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes
UpperCAmelCase = [3, 3, 9, 3] if depths is None else depths
UpperCAmelCase = hidden_act
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = drop_path_rate
UpperCAmelCase = image_size
UpperCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )]
UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
| 1 | 1 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"adapter_layer": "encoder.layers.*.adapter_layer",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
"pooling_layer.linear": "projector",
"pooling_layer.projection": "classifier",
}
lowerCAmelCase__ = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
"projector",
"classifier",
]
def _lowerCAmelCase( __A ):
UpperCAmelCase = {}
with open(__A , "r" ) as file:
for line_number, line in enumerate(__A ):
UpperCAmelCase = line.strip()
if line:
UpperCAmelCase = line.split()
UpperCAmelCase = line_number
UpperCAmelCase = words[0]
UpperCAmelCase = value
return result
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
for attribute in key.split("." ):
UpperCAmelCase = getattr(__A , __A )
UpperCAmelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__A ):
UpperCAmelCase = PARAM_MAPPING[full_name.split("." )[-1]]
UpperCAmelCase = "param"
if weight_type is not None and weight_type != "param":
UpperCAmelCase = getattr(__A , __A ).shape
elif weight_type is not None and weight_type == "param":
UpperCAmelCase = hf_pointer
for attribute in hf_param_name.split("." ):
UpperCAmelCase = getattr(__A , __A )
UpperCAmelCase = shape_pointer.shape
# let's reduce dimension
UpperCAmelCase = value[0]
else:
UpperCAmelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
F" {value.shape} for {full_name}" )
if weight_type == "weight":
UpperCAmelCase = value
elif weight_type == "weight_g":
UpperCAmelCase = value
elif weight_type == "weight_v":
UpperCAmelCase = value
elif weight_type == "bias":
UpperCAmelCase = value
elif weight_type == "param":
for attribute in hf_param_name.split("." ):
UpperCAmelCase = getattr(__A , __A )
UpperCAmelCase = value
else:
UpperCAmelCase = value
logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." )
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
UpperCAmelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__A ):
UpperCAmelCase = PARAM_MAPPING[full_name.split("." )[-1]]
UpperCAmelCase = "param"
if weight_type is not None and weight_type != "param":
UpperCAmelCase = ".".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
UpperCAmelCase = ".".join([key, hf_param_name] )
else:
UpperCAmelCase = key
UpperCAmelCase = value if "lm_head" in full_key else value[0]
lowerCAmelCase__ = {
"W_a": "linear_1.weight",
"W_b": "linear_2.weight",
"b_a": "linear_1.bias",
"b_b": "linear_2.bias",
"ln_W": "norm.weight",
"ln_b": "norm.bias",
}
def _lowerCAmelCase( __A , __A , __A=None , __A=None ):
UpperCAmelCase = False
for key, mapped_key in MAPPING.items():
UpperCAmelCase = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
UpperCAmelCase = True
if "*" in mapped_key:
UpperCAmelCase = name.split(__A )[0].split("." )[-2]
UpperCAmelCase = mapped_key.replace("*" , __A )
if "weight_g" in name:
UpperCAmelCase = "weight_g"
elif "weight_v" in name:
UpperCAmelCase = "weight_v"
elif "bias" in name:
UpperCAmelCase = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase = "weight"
else:
UpperCAmelCase = None
if hf_dict is not None:
rename_dict(__A , __A , __A , __A , __A )
else:
set_recursively(__A , __A , __A , __A , __A )
return is_used
return is_used
def _lowerCAmelCase( __A , __A , __A ):
UpperCAmelCase = []
UpperCAmelCase = fairseq_model.state_dict()
UpperCAmelCase = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase = False
if "conv_layers" in name:
load_conv_layer(
__A , __A , __A , __A , hf_model.config.feat_extract_norm == "group" , )
UpperCAmelCase = True
else:
UpperCAmelCase = load_wavaveca_layer(__A , __A , __A )
if not is_used:
unused_weights.append(__A )
logger.warning(F"Unused weights: {unused_weights}" )
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
UpperCAmelCase = full_name.split("conv_layers." )[-1]
UpperCAmelCase = name.split("." )
UpperCAmelCase = int(items[0] )
UpperCAmelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." )
UpperCAmelCase = value
logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." )
UpperCAmelCase = value
logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." )
UpperCAmelCase = value
logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." )
UpperCAmelCase = value
logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(__A )
@torch.no_grad()
def _lowerCAmelCase( __A , __A , __A=None , __A=None , __A=True , __A=False ):
if config_path is not None:
UpperCAmelCase = WavaVecaConfig.from_pretrained(__A )
else:
UpperCAmelCase = WavaVecaConfig()
if is_seq_class:
UpperCAmelCase = read_txt_into_dict(__A )
UpperCAmelCase = idalabel
UpperCAmelCase = WavaVecaForSequenceClassification(__A )
UpperCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , )
feature_extractor.save_pretrained(__A )
elif is_finetuned:
if dict_path:
UpperCAmelCase = Dictionary.load(__A )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase = target_dict.pad_index
UpperCAmelCase = target_dict.bos_index
UpperCAmelCase = target_dict.eos_index
UpperCAmelCase = len(target_dict.symbols )
UpperCAmelCase = os.path.join(__A , "vocab.json" )
if not os.path.isdir(__A ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__A ) )
return
os.makedirs(__A , exist_ok=__A )
UpperCAmelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase = 0
UpperCAmelCase = 1
with open(__A , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(__A , __A )
UpperCAmelCase = WavaVecaCTCTokenizer(
__A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__A , )
UpperCAmelCase = True if config.feat_extract_norm == "layer" else False
UpperCAmelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , )
UpperCAmelCase = WavaVecaProcessor(feature_extractor=__A , tokenizer=__A )
processor.save_pretrained(__A )
UpperCAmelCase = WavaVecaForCTC(__A )
else:
UpperCAmelCase = WavaVecaForPreTraining(__A )
if is_finetuned or is_seq_class:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
UpperCAmelCase = argparse.Namespace(task="audio_pretraining" )
UpperCAmelCase = fairseq.tasks.setup_task(__A )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__A )
UpperCAmelCase = model[0].eval()
recursively_load_weights(__A , __A , not is_finetuned )
hf_wavavec.save_pretrained(__A )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
parser.add_argument(
"--is_seq_class",
action="store_true",
help="Whether the model to convert is a fine-tuned sequence classification model or not",
)
lowerCAmelCase__ = parser.parse_args()
lowerCAmelCase__ = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 1 |
lowerCAmelCase__ = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCAmelCase__ = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCAmelCase__ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 1 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = ShapEImgaImgPipeline
UpperCAmelCase = ["""image"""]
UpperCAmelCase = ["""image"""]
UpperCAmelCase = [
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
UpperCAmelCase = False
@property
def _UpperCamelCase ( self : Union[str, Any] ) -> Any:
return 3_2
@property
def _UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
return 3_2
@property
def _UpperCamelCase ( self : List[Any] ) -> List[Any]:
return self.time_input_dim * 4
@property
def _UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]:
return 8
@property
def _UpperCamelCase ( self : Tuple ) -> int:
torch.manual_seed(0 )
UpperCAmelCase = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=6_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
UpperCAmelCase = CLIPVisionModel(lowerCAmelCase__ )
return model
@property
def _UpperCamelCase ( self : Dict ) -> Optional[int]:
UpperCAmelCase = CLIPImageProcessor(
crop_size=2_2_4 , do_center_crop=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ , do_resize=lowerCAmelCase__ , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=2_2_4 , )
return image_processor
@property
def _UpperCamelCase ( self : Dict ) -> Any:
torch.manual_seed(0 )
UpperCAmelCase = {
"num_attention_heads": 2,
"attention_head_dim": 1_6,
"embedding_dim": self.time_input_dim,
"num_embeddings": 3_2,
"embedding_proj_dim": self.text_embedder_hidden_size,
"time_embed_dim": self.time_embed_dim,
"num_layers": 1,
"clip_embed_dim": self.time_input_dim * 2,
"additional_embeddings": 0,
"time_embed_act_fn": "gelu",
"norm_in_type": "layer",
"embedding_proj_norm_type": "layer",
"encoder_hid_proj_type": None,
"added_emb_type": None,
}
UpperCAmelCase = PriorTransformer(**lowerCAmelCase__ )
return model
@property
def _UpperCamelCase ( self : str ) -> int:
torch.manual_seed(0 )
UpperCAmelCase = {
"param_shapes": (
(self.renderer_dim, 9_3),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"d_latent": self.time_input_dim,
"d_hidden": self.renderer_dim,
"n_output": 1_2,
"background": (
0.1,
0.1,
0.1,
),
}
UpperCAmelCase = ShapERenderer(**lowerCAmelCase__ )
return model
def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
UpperCAmelCase = self.dummy_prior
UpperCAmelCase = self.dummy_image_encoder
UpperCAmelCase = self.dummy_image_processor
UpperCAmelCase = self.dummy_renderer
UpperCAmelCase = HeunDiscreteScheduler(
beta_schedule="exp" , num_train_timesteps=1_0_2_4 , prediction_type="sample" , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , )
UpperCAmelCase = {
"prior": prior,
"image_encoder": image_encoder,
"image_processor": image_processor,
"renderer": renderer,
"scheduler": scheduler,
}
return components
def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict=0 ) -> Optional[Any]:
UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
if str(lowerCAmelCase__ ).startswith("mps" ):
UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ )
else:
UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
UpperCAmelCase = {
"image": input_image,
"generator": generator,
"num_inference_steps": 1,
"frame_size": 3_2,
"output_type": "np",
}
return inputs
def _UpperCamelCase ( self : Dict ) -> Dict:
UpperCAmelCase = "cpu"
UpperCAmelCase = self.get_dummy_components()
UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__ )
UpperCAmelCase = pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) )
UpperCAmelCase = output.images[0]
UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (2_0, 3_2, 3_2, 3)
UpperCAmelCase = np.array(
[
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _UpperCamelCase ( self : List[Any] ) -> Union[str, Any]:
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]:
UpperCAmelCase = torch_device == "cpu"
UpperCAmelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , )
def _UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
UpperCAmelCase = self.get_dummy_components()
UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__ )
UpperCAmelCase = pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = 1
UpperCAmelCase = 2
UpperCAmelCase = self.get_dummy_inputs(lowerCAmelCase__ )
for key in inputs.keys():
if key in self.batch_params:
UpperCAmelCase = batch_size * [inputs[key]]
UpperCAmelCase = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : int ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]:
UpperCAmelCase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png" )
UpperCAmelCase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/shap_e/test_shap_e_img2img_out.npy" )
UpperCAmelCase = ShapEImgaImgPipeline.from_pretrained("openai/shap-e-img2img" )
UpperCAmelCase = pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 )
UpperCAmelCase = pipe(
lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=3.0 , num_inference_steps=6_4 , frame_size=6_4 , output_type="np" , ).images[0]
assert images.shape == (2_0, 6_4, 6_4, 3)
assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
| 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = KandinskyInpaintPipeline
UpperCAmelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
UpperCAmelCase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
UpperCAmelCase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
UpperCAmelCase = False
@property
def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple:
return 3_2
@property
def _UpperCamelCase ( self : int ) -> List[Any]:
return 3_2
@property
def _UpperCamelCase ( self : List[Any] ) -> List[Any]:
return self.time_input_dim
@property
def _UpperCamelCase ( self : Tuple ) -> Tuple:
return self.time_input_dim * 4
@property
def _UpperCamelCase ( self : Any ) -> Optional[int]:
return 1_0_0
@property
def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]:
UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" )
return tokenizer
@property
def _UpperCamelCase ( self : int ) -> Dict:
torch.manual_seed(0 )
UpperCAmelCase = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , )
UpperCAmelCase = MultilingualCLIP(lowerCAmelCase__ )
UpperCAmelCase = text_encoder.eval()
return text_encoder
@property
def _UpperCamelCase ( self : Dict ) -> Optional[int]:
torch.manual_seed(0 )
UpperCAmelCase = {
"in_channels": 9,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "text_image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "text_image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
UpperCAmelCase = UNetaDConditionModel(**lowerCAmelCase__ )
return model
@property
def _UpperCamelCase ( self : str ) -> Optional[Any]:
return {
"block_out_channels": [3_2, 6_4],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def _UpperCamelCase ( self : Dict ) -> List[Any]:
torch.manual_seed(0 )
UpperCAmelCase = VQModel(**self.dummy_movq_kwargs )
return model
def _UpperCamelCase ( self : Tuple ) -> Any:
UpperCAmelCase = self.dummy_text_encoder
UpperCAmelCase = self.dummy_tokenizer
UpperCAmelCase = self.dummy_unet
UpperCAmelCase = self.dummy_movq
UpperCAmelCase = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCAmelCase__ , )
UpperCAmelCase = {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=0 ) -> str:
UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase__ )
# create init_image
UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) )
# create mask
UpperCAmelCase = np.ones((6_4, 6_4) , dtype=np.floataa )
UpperCAmelCase = 0
if str(lowerCAmelCase__ ).startswith("mps" ):
UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ )
else:
UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
UpperCAmelCase = {
"prompt": "horse",
"image": init_image,
"mask_image": mask,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 6_4,
"width": 6_4,
"num_inference_steps": 2,
"guidance_scale": 4.0,
"output_type": "np",
}
return inputs
def _UpperCamelCase ( self : Dict ) -> List[str]:
UpperCAmelCase = "cpu"
UpperCAmelCase = self.get_dummy_components()
UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__ )
UpperCAmelCase = pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) )
UpperCAmelCase = output.images
UpperCAmelCase = pipe(
**self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0]
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
print(f"image.shape {image.shape}" )
assert image.shape == (1, 6_4, 6_4, 3)
UpperCAmelCase = np.array(
[0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def _UpperCamelCase ( self : str ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : str ) -> str:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCamelCase ( self : Tuple ) -> int:
UpperCAmelCase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" )
UpperCAmelCase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
UpperCAmelCase = np.ones((7_6_8, 7_6_8) , dtype=np.floataa )
UpperCAmelCase = 0
UpperCAmelCase = "a hat"
UpperCAmelCase = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa )
pipe_prior.to(lowerCAmelCase__ )
UpperCAmelCase = KandinskyInpaintPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa )
UpperCAmelCase = pipeline.to(lowerCAmelCase__ )
pipeline.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase , UpperCAmelCase = pipe_prior(
lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
UpperCAmelCase = pipeline(
lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="np" , )
UpperCAmelCase = output.images[0]
assert image.shape == (7_6_8, 7_6_8, 3)
assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
| 1 | 1 |
from typing import Any
class __magic_name__ :
def __init__( self : Dict , lowerCAmelCase__ : Any ) -> int:
UpperCAmelCase = data
UpperCAmelCase = None
def __repr__( self : Dict ) -> str:
return f"Node({self.data})"
class __magic_name__ :
def __init__( self : Optional[int] ) -> List[str]:
UpperCAmelCase = None
def __iter__( self : str ) -> Any:
UpperCAmelCase = self.head
while node:
yield node.data
UpperCAmelCase = node.next
def __len__( self : Union[str, Any] ) -> int:
return sum(1 for _ in self )
def __repr__( self : int ) -> str:
return "->".join([str(lowerCAmelCase__ ) for item in self] )
def __getitem__( self : List[Any] , lowerCAmelCase__ : int ) -> Any:
if not 0 <= index < len(self ):
raise ValueError("list index out of range." )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any ) -> None:
if not 0 <= index < len(self ):
raise ValueError("list index out of range." )
UpperCAmelCase = self.head
for _ in range(lowerCAmelCase__ ):
UpperCAmelCase = current.next
UpperCAmelCase = data
def _UpperCamelCase ( self : int , lowerCAmelCase__ : Any ) -> None:
self.insert_nth(len(self ) , lowerCAmelCase__ )
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : Any ) -> None:
self.insert_nth(0 , lowerCAmelCase__ )
def _UpperCamelCase ( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Any ) -> None:
if not 0 <= index <= len(self ):
raise IndexError("list index out of range" )
UpperCAmelCase = Node(lowerCAmelCase__ )
if self.head is None:
UpperCAmelCase = new_node
elif index == 0:
UpperCAmelCase = self.head # link new_node to head
UpperCAmelCase = new_node
else:
UpperCAmelCase = self.head
for _ in range(index - 1 ):
UpperCAmelCase = temp.next
UpperCAmelCase = temp.next
UpperCAmelCase = new_node
def _UpperCamelCase ( self : int ) -> None: # print every node data
print(self )
def _UpperCamelCase ( self : Dict ) -> Any:
return self.delete_nth(0 )
def _UpperCamelCase ( self : Optional[int] ) -> Any: # delete from tail
return self.delete_nth(len(self ) - 1 )
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : int = 0 ) -> Any:
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError("List index out of range." )
UpperCAmelCase = self.head # default first node
if index == 0:
UpperCAmelCase = self.head.next
else:
UpperCAmelCase = self.head
for _ in range(index - 1 ):
UpperCAmelCase = temp.next
UpperCAmelCase = temp.next
UpperCAmelCase = temp.next.next
return delete_node.data
def _UpperCamelCase ( self : Any ) -> bool:
return self.head is None
def _UpperCamelCase ( self : Union[str, Any] ) -> None:
UpperCAmelCase = None
UpperCAmelCase = self.head
while current:
# Store the current node's next node.
UpperCAmelCase = current.next
# Make the current node's next point backwards
UpperCAmelCase = prev
# Make the previous node be the current node
UpperCAmelCase = current
# Make the current node the next node (to progress iteration)
UpperCAmelCase = next_node
# Return prev in order to put the head at the end
UpperCAmelCase = prev
def _lowerCAmelCase( ):
UpperCAmelCase = LinkedList()
assert linked_list.is_empty() is True
assert str(__A ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(__A ) == i
linked_list.insert_nth(__A , i + 1 )
assert str(__A ) == "->".join(str(__A ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(__A ) == "->".join(str(__A ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(__A ) == 9
assert str(__A ) == "->".join(str(__A ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
UpperCAmelCase = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(__A ) == "->".join(str(__A ) for i in range(-8 , 1 ) )
def _lowerCAmelCase( ):
UpperCAmelCase = [
-9,
100,
Node(77345112 ),
"dlrow olleH",
7,
5555,
0,
-192.55555,
"Hello, world!",
77.9,
Node(10 ),
None,
None,
12.20,
]
UpperCAmelCase = LinkedList()
for i in test_input:
linked_list.insert_tail(__A )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(__A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
UpperCAmelCase = linked_list.delete_head()
assert result == -9
assert (
str(__A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
UpperCAmelCase = linked_list.delete_tail()
assert result == 12.2
assert (
str(__A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
UpperCAmelCase = linked_list.delete_nth(10 )
assert result is None
assert (
str(__A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node("Hello again, world!" ) )
assert (
str(__A )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(__A )
assert (
str(__A )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(__A )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def _lowerCAmelCase( ):
from doctest import testmod
testmod()
UpperCAmelCase = LinkedList()
linked_list.insert_head(input("Inserting 1st at head " ).strip() )
linked_list.insert_head(input("Inserting 2nd at head " ).strip() )
print("\nPrint list:" )
linked_list.print_list()
linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() )
linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() )
print("\nPrint list:" )
linked_list.print_list()
print("\nDelete head" )
linked_list.delete_head()
print("Delete tail" )
linked_list.delete_tail()
print("\nPrint list:" )
linked_list.print_list()
print("\nReverse linked list" )
linked_list.reverse()
print("\nPrint list:" )
linked_list.print_list()
print("\nString representation of linked list:" )
print(__A )
print("\nReading/changing Node data using indexing:" )
print(F"Element at Position 1: {linked_list[1]}" )
UpperCAmelCase = input("Enter New Value: " ).strip()
print("New list:" )
print(__A )
print(F"length of linked_list is : {len(__A )}" )
if __name__ == "__main__":
main()
| 1 |
def _lowerCAmelCase( __A , __A ):
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def _lowerCAmelCase( __A , __A=0 ):
return sorted(__A , key=lambda __A : x[column] )
def _lowerCAmelCase( __A , __A , __A=float("inf" ) ):
for i in range(points_counts - 1 ):
for j in range(i + 1 , __A ):
UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
UpperCAmelCase = current_dis
return min_dis
def _lowerCAmelCase( __A , __A , __A=float("inf" ) ):
for i in range(min(6 , points_counts - 1 ) , __A ):
for j in range(max(0 , i - 6 ) , __A ):
UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
UpperCAmelCase = current_dis
return min_dis
def _lowerCAmelCase( __A , __A , __A ):
# base case
if points_counts <= 3:
return dis_between_closest_pair(__A , __A )
# recursion
UpperCAmelCase = points_counts // 2
UpperCAmelCase = closest_pair_of_points_sqr(
__A , points_sorted_on_y[:mid] , __A )
UpperCAmelCase = closest_pair_of_points_sqr(
__A , points_sorted_on_y[mid:] , points_counts - mid )
UpperCAmelCase = min(__A , __A )
UpperCAmelCase = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(__A )
UpperCAmelCase = dis_between_closest_in_strip(
__A , len(__A ) , __A )
return min(__A , __A )
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = column_based_sort(__A , column=0 )
UpperCAmelCase = column_based_sort(__A , column=1 )
return (
closest_pair_of_points_sqr(
__A , __A , __A )
) ** 0.5
if __name__ == "__main__":
lowerCAmelCase__ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
print("Distance:", closest_pair_of_points(points, len(points)))
| 1 | 1 |
lowerCAmelCase__ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
lowerCAmelCase__ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
lowerCAmelCase__ = {
0: "Sunday",
1: "Monday",
2: "Tuesday",
3: "Wednesday",
4: "Thursday",
5: "Friday",
6: "Saturday",
}
def _lowerCAmelCase( __A , __A , __A ):
assert len(str(__A ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 12, "month should be between 1 to 12"
assert 1 <= day <= 31, "day should be between 1 to 31"
# Doomsday algorithm:
UpperCAmelCase = year // 100
UpperCAmelCase = (5 * (century % 4) + 2) % 7
UpperCAmelCase = year % 100
UpperCAmelCase = centurian % 12
UpperCAmelCase = (
(centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
UpperCAmelCase = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0)
else DOOMSDAY_LEAP[month - 1]
)
UpperCAmelCase = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class __magic_name__ :
def __init__( self : Optional[int] ) -> Optional[Any]:
UpperCAmelCase = ""
UpperCAmelCase = ""
UpperCAmelCase = []
UpperCAmelCase = 0
UpperCAmelCase = 2_5_6
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Optional[Any] ) -> List[str]:
UpperCAmelCase = cva.imread(lowerCAmelCase__ , 0 )
UpperCAmelCase = copy.deepcopy(self.img )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="x" )
UpperCAmelCase = np.sum(lowerCAmelCase__ )
for i in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase = x[i] / self.k
self.sk += prk
UpperCAmelCase = (self.L - 1) * self.sk
if self.rem != 0:
UpperCAmelCase = int(last % last )
UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(lowerCAmelCase__ )
UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size )
UpperCAmelCase = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCAmelCase = self.img[j][i]
if num != self.last_list[num]:
UpperCAmelCase = self.last_list[num]
cva.imwrite("output_data/output.jpg" , self.img )
def _UpperCamelCase ( self : str ) -> int:
plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] )
def _UpperCamelCase ( self : Dict ) -> Optional[Any]:
cva.imshow("Output-Image" , self.img )
cva.imshow("Input-Image" , self.original_image )
cva.waitKey(5_0_0_0 )
cva.destroyAllWindows()
if __name__ == "__main__":
lowerCAmelCase__ = os.path.join(os.path.basename(__file__), "image_data/input.jpg")
lowerCAmelCase__ = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 1 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json"
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class __magic_name__ ( _snake_case ):
UpperCAmelCase = """roformer"""
def __init__( self : Optional[int] , lowerCAmelCase__ : List[str]=5_0_0_0_0 , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Union[str, Any]=7_6_8 , lowerCAmelCase__ : Dict=1_2 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : Tuple=3_0_7_2 , lowerCAmelCase__ : Tuple="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : Dict=1_5_3_6 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : Tuple=1e-1_2 , lowerCAmelCase__ : Any=0 , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : Tuple=True , **lowerCAmelCase__ : int , ) -> Dict:
super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size if embedding_size is None else embedding_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = rotary_value
UpperCAmelCase = use_cache
class __magic_name__ ( _snake_case ):
@property
def _UpperCamelCase ( self : int ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
UpperCAmelCase = {0: "batch", 1: "choice", 2: "sequence"}
else:
UpperCAmelCase = {0: "batch", 1: "sequence"}
UpperCAmelCase = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
] )
| 1 |
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = LEDTokenizer
UpperCAmelCase = LEDTokenizerFast
UpperCAmelCase = True
def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
super().setUp()
UpperCAmelCase = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
UpperCAmelCase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
UpperCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
UpperCAmelCase = {"unk_token": "<unk>"}
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Union[str, Any] , **lowerCAmelCase__ : Optional[int] ) -> Optional[int]:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _UpperCamelCase ( self : str , **lowerCAmelCase__ : str ) -> Optional[int]:
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
return "lower newer", "lower newer"
@cached_property
def _UpperCamelCase ( self : Dict ) -> str:
return LEDTokenizer.from_pretrained("allenai/led-base-16384" )
@cached_property
def _UpperCamelCase ( self : int ) -> Tuple:
return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" )
@require_torch
def _UpperCamelCase ( self : Tuple ) -> List[str]:
UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
UpperCAmelCase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@require_torch
def _UpperCamelCase ( self : Union[str, Any] ) -> List[Any]:
UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt" )
self.assertIn("input_ids" , lowerCAmelCase__ )
self.assertIn("attention_mask" , lowerCAmelCase__ )
self.assertNotIn("labels" , lowerCAmelCase__ )
self.assertNotIn("decoder_attention_mask" , lowerCAmelCase__ )
@require_torch
def _UpperCamelCase ( self : int ) -> int:
UpperCAmelCase = [
"Summary of the text.",
"Another summary.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , max_length=3_2 , padding="max_length" , return_tensors="pt" )
self.assertEqual(3_2 , targets["input_ids"].shape[1] )
@require_torch
def _UpperCamelCase ( self : Any ) -> int:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(
["I am a small frog" * 1_0_2_4, "I am a small frog"] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) )
@require_torch
def _UpperCamelCase ( self : Dict ) -> Tuple:
UpperCAmelCase = ["A long paragraph for summarization."]
UpperCAmelCase = [
"Summary of the text.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase = inputs["input_ids"]
UpperCAmelCase = targets["input_ids"]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = ["Summary of the text.", "Another summary."]
UpperCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ )
UpperCAmelCase = [[0] * len(lowerCAmelCase__ ) for x in encoded_output["input_ids"]]
UpperCAmelCase = tokenizer.pad(lowerCAmelCase__ )
self.assertSequenceEqual(outputs["global_attention_mask"] , lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] ) -> int:
pass
def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = "A, <mask> AllenNLP sentence."
UpperCAmelCase = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
UpperCAmelCase = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) )
self.assertEqual(
sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , )
UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] )
UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] )
self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(
lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
self.assertSequenceEqual(
lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
| 1 | 1 |
def _lowerCAmelCase( __A ):
return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") )
def _lowerCAmelCase( __A ):
UpperCAmelCase = credit_card_number
UpperCAmelCase = 0
UpperCAmelCase = len(__A ) - 2
for i in range(__A , -1 , -2 ):
# double the value of every second digit
UpperCAmelCase = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 10
digit += 1
UpperCAmelCase = cc_number[:i] + str(__A ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(__A ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 10 == 0
def _lowerCAmelCase( __A ):
UpperCAmelCase = F"{credit_card_number} is an invalid credit card number because"
if not credit_card_number.isdigit():
print(F"{error_message} it has nonnumerical characters." )
return False
if not 13 <= len(__A ) <= 16:
print(F"{error_message} of its length." )
return False
if not validate_initial_digits(__A ):
print(F"{error_message} of its first two digits." )
return False
if not luhn_validation(__A ):
print(F"{error_message} it fails the Luhn check." )
return False
print(F"{credit_card_number} is a valid credit card number." )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number("4111111111111111")
validate_credit_card_number("32323")
| 1 |
import numpy as np
from nltk.translate import meteor_score
import datasets
from datasets.config import importlib_metadata, version
lowerCAmelCase__ = version.parse(importlib_metadata.version("nltk"))
if NLTK_VERSION >= version.Version("3.6.4"):
from nltk import word_tokenize
lowerCAmelCase__ = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n"
lowerCAmelCase__ = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n"
lowerCAmelCase__ = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __magic_name__ ( datasets.Metric ):
def _UpperCamelCase ( self : int ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[
"https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score",
"https://en.wikipedia.org/wiki/METEOR",
] , )
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : List[Any] ) -> Dict:
import nltk
nltk.download("wordnet" )
if NLTK_VERSION >= version.Version("3.6.5" ):
nltk.download("punkt" )
if NLTK_VERSION >= version.Version("3.6.6" ):
nltk.download("omw-1.4" )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=0.9 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Optional[int]=0.5 ) -> Any:
if NLTK_VERSION >= version.Version("3.6.5" ):
UpperCAmelCase = [
meteor_score.single_meteor_score(
word_tokenize(lowerCAmelCase__ ) , word_tokenize(lowerCAmelCase__ ) , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ )
for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
else:
UpperCAmelCase = [
meteor_score.single_meteor_score(lowerCAmelCase__ , lowerCAmelCase__ , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ )
for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
return {"meteor": np.mean(lowerCAmelCase__ )}
| 1 | 1 |
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
lowerCAmelCase__ = logging.get_logger(__name__)
@add_end_docstrings(_snake_case )
class __magic_name__ ( _snake_case ):
def __init__( self : str , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : int ) -> Any:
super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
requires_backends(self , "vision" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : Union[str, Any]=None ) -> int:
UpperCAmelCase = {}
if top_k is not None:
UpperCAmelCase = top_k
return {}, {}, postprocess_params
def __call__( self : Tuple , lowerCAmelCase__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCAmelCase__ : str ) -> Union[str, Any]:
return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ )
def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : Any ) -> Optional[Any]:
UpperCAmelCase = load_image(lowerCAmelCase__ )
UpperCAmelCase = self.image_processor(images=lowerCAmelCase__ , return_tensors=self.framework )
return model_inputs
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Any ) -> Union[str, Any]:
UpperCAmelCase = self.model(**lowerCAmelCase__ )
return model_outputs
def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=5 ) -> Union[str, Any]:
if top_k > self.model.config.num_labels:
UpperCAmelCase = self.model.config.num_labels
if self.framework == "pt":
UpperCAmelCase = model_outputs.logits.softmax(-1 )[0]
UpperCAmelCase , UpperCAmelCase = probs.topk(lowerCAmelCase__ )
elif self.framework == "tf":
UpperCAmelCase = stable_softmax(model_outputs.logits , axis=-1 )[0]
UpperCAmelCase = tf.math.top_k(lowerCAmelCase__ , k=lowerCAmelCase__ )
UpperCAmelCase , UpperCAmelCase = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f"Unsupported framework: {self.framework}" )
UpperCAmelCase = scores.tolist()
UpperCAmelCase = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase__ , lowerCAmelCase__ )]
| 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json",
}
class __magic_name__ ( _snake_case ):
UpperCAmelCase = """lxmert"""
UpperCAmelCase = {}
def __init__( self : int , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : List[str]=7_6_8 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : List[Any]=9_5_0_0 , lowerCAmelCase__ : Any=1_6_0_0 , lowerCAmelCase__ : Union[str, Any]=4_0_0 , lowerCAmelCase__ : Tuple=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : str=1e-1_2 , lowerCAmelCase__ : str=9 , lowerCAmelCase__ : int=5 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : List[Any]=2_0_4_8 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Dict=6.67 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Tuple=True , **lowerCAmelCase__ : List[Any] , ) -> Dict:
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = num_qa_labels
UpperCAmelCase = num_object_labels
UpperCAmelCase = num_attr_labels
UpperCAmelCase = l_layers
UpperCAmelCase = x_layers
UpperCAmelCase = r_layers
UpperCAmelCase = visual_feat_dim
UpperCAmelCase = visual_pos_dim
UpperCAmelCase = visual_loss_normalizer
UpperCAmelCase = task_matched
UpperCAmelCase = task_mask_lm
UpperCAmelCase = task_obj_predict
UpperCAmelCase = task_qa
UpperCAmelCase = visual_obj_loss
UpperCAmelCase = visual_attr_loss
UpperCAmelCase = visual_feat_loss
UpperCAmelCase = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers}
super().__init__(**lowerCAmelCase__ )
| 1 | 1 |
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
lowerCAmelCase__ = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n"
lowerCAmelCase__ = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n"
lowerCAmelCase__ = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __magic_name__ ( datasets.Metric ):
def _UpperCamelCase ( self : Optional[Any] ) -> MetricInfo:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , )
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : List[List[List[str]]] , lowerCAmelCase__ : List[List[str]] , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : int = 4 , ) -> Dict[str, float]:
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=lowerCAmelCase__ , hypotheses=lowerCAmelCase__ , min_len=lowerCAmelCase__ , max_len=lowerCAmelCase__ )
}
| 1 |
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def _lowerCAmelCase( __A = 100 ):
UpperCAmelCase = 1
UpperCAmelCase = 2
for i in range(2 , max_n + 1 ):
UpperCAmelCase = pre_numerator
UpperCAmelCase = 2 * i // 3 if i % 3 == 0 else 1
UpperCAmelCase = cur_numerator
UpperCAmelCase = e_cont * pre_numerator + temp
return sum_digits(__A )
if __name__ == "__main__":
print(f"{solution() = }")
| 1 | 1 |
from PIL import Image
def _lowerCAmelCase( __A ):
UpperCAmelCase , UpperCAmelCase = image.size
UpperCAmelCase = 0
UpperCAmelCase = image.load()
for i in range(__A ):
for j in range(__A ):
UpperCAmelCase = pixels[j, i]
mean += pixel
mean //= width * height
for j in range(__A ):
for i in range(__A ):
UpperCAmelCase = 255 if pixels[i, j] > mean else 0
return image
if __name__ == "__main__":
lowerCAmelCase__ = mean_threshold(Image.open("path_to_image").convert("L"))
image.save("output_image_path")
| 1 |
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 1 | 1 |
import argparse
import torch
from transformers import YosoConfig, YosoForMaskedLM
def _lowerCAmelCase( __A ):
if "model" in orig_key:
UpperCAmelCase = orig_key.replace("model." , "" )
if "norm1" in orig_key:
UpperCAmelCase = orig_key.replace("norm1" , "attention.output.LayerNorm" )
if "norm2" in orig_key:
UpperCAmelCase = orig_key.replace("norm2" , "output.LayerNorm" )
if "norm" in orig_key:
UpperCAmelCase = orig_key.replace("norm" , "LayerNorm" )
if "transformer" in orig_key:
UpperCAmelCase = orig_key.split("." )[0].split("_" )[-1]
UpperCAmelCase = orig_key.replace(F"transformer_{layer_num}" , F"encoder.layer.{layer_num}" )
if "mha.attn" in orig_key:
UpperCAmelCase = orig_key.replace("mha.attn" , "attention.self" )
if "mha" in orig_key:
UpperCAmelCase = orig_key.replace("mha" , "attention" )
if "W_q" in orig_key:
UpperCAmelCase = orig_key.replace("W_q" , "self.query" )
if "W_k" in orig_key:
UpperCAmelCase = orig_key.replace("W_k" , "self.key" )
if "W_v" in orig_key:
UpperCAmelCase = orig_key.replace("W_v" , "self.value" )
if "ff1" in orig_key:
UpperCAmelCase = orig_key.replace("ff1" , "intermediate.dense" )
if "ff2" in orig_key:
UpperCAmelCase = orig_key.replace("ff2" , "output.dense" )
if "ff" in orig_key:
UpperCAmelCase = orig_key.replace("ff" , "output.dense" )
if "mlm_class" in orig_key:
UpperCAmelCase = orig_key.replace("mlm.mlm_class" , "cls.predictions.decoder" )
if "mlm" in orig_key:
UpperCAmelCase = orig_key.replace("mlm" , "cls.predictions.transform" )
if "cls" not in orig_key:
UpperCAmelCase = "yoso." + orig_key
return orig_key
def _lowerCAmelCase( __A , __A ):
for key in orig_state_dict.copy().keys():
UpperCAmelCase = orig_state_dict.pop(__A )
if ("pooler" in key) or ("sen_class" in key):
continue
else:
UpperCAmelCase = val
UpperCAmelCase = orig_state_dict["cls.predictions.decoder.bias"]
UpperCAmelCase = torch.arange(__A ).expand((1, -1) ) + 2
return orig_state_dict
def _lowerCAmelCase( __A , __A , __A ):
UpperCAmelCase = torch.load(__A , map_location="cpu" )["model_state_dict"]
UpperCAmelCase = YosoConfig.from_json_file(__A )
UpperCAmelCase = YosoForMaskedLM(__A )
UpperCAmelCase = convert_checkpoint_helper(config.max_position_embeddings , __A )
print(model.load_state_dict(__A ) )
model.eval()
model.save_pretrained(__A )
print(F"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The json file for YOSO model config.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowerCAmelCase__ = parser.parse_args()
convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
| 1 |
import numpy
# List of input, output pairs
lowerCAmelCase__ = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
lowerCAmelCase__ = (((515, 22, 13), 555), ((61, 35, 49), 150))
lowerCAmelCase__ = [2, 4, 1, 5]
lowerCAmelCase__ = len(train_data)
lowerCAmelCase__ = 0.0_0_9
def _lowerCAmelCase( __A , __A="train" ):
return calculate_hypothesis_value(__A , __A ) - output(
__A , __A )
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
for i in range(len(__A ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def _lowerCAmelCase( __A , __A ):
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def _lowerCAmelCase( __A , __A ):
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def _lowerCAmelCase( __A , __A=m ):
UpperCAmelCase = 0
for i in range(__A ):
if index == -1:
summation_value += _error(__A )
else:
summation_value += _error(__A ) * train_data[i][0][index]
return summation_value
def _lowerCAmelCase( __A ):
UpperCAmelCase = summation_of_cost_derivative(__A , __A ) / m
return cost_derivative_value
def _lowerCAmelCase( ):
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCAmelCase = 0.000002
UpperCAmelCase = 0
UpperCAmelCase = 0
while True:
j += 1
UpperCAmelCase = [0, 0, 0, 0]
for i in range(0 , len(__A ) ):
UpperCAmelCase = get_cost_derivative(i - 1 )
UpperCAmelCase = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
__A , __A , atol=__A , rtol=__A , ):
break
UpperCAmelCase = temp_parameter_vector
print(("Number of iterations:", j) )
def _lowerCAmelCase( ):
for i in range(len(__A ) ):
print(("Actual output value:", output(__A , "test" )) )
print(("Hypothesis output:", calculate_hypothesis_value(__A , "test" )) )
if __name__ == "__main__":
run_gradient_descent()
print("\nTesting gradient descent for a linear hypothesis function.\n")
test_gradient_descent()
| 1 | 1 |
def _lowerCAmelCase( __A ):
UpperCAmelCase = generate_pascal_triangle(__A )
for row_idx in range(__A ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=" " )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=" " )
else:
print(triangle[row_idx][col_idx] , end="" )
print()
def _lowerCAmelCase( __A ):
if not isinstance(__A , __A ):
raise TypeError("The input value of 'num_rows' should be 'int'" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"The input value of 'num_rows' should be greater than or equal to 0" )
UpperCAmelCase = []
for current_row_idx in range(__A ):
UpperCAmelCase = populate_current_row(__A , __A )
triangle.append(__A )
return triangle
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
UpperCAmelCase , UpperCAmelCase = 1, 1
for current_col_idx in range(1 , __A ):
calculate_current_element(
__A , __A , __A , __A )
return current_row
def _lowerCAmelCase( __A , __A , __A , __A , ):
UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx - 1]
UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx]
UpperCAmelCase = above_to_left_elt + above_to_right_elt
def _lowerCAmelCase( __A ):
if not isinstance(__A , __A ):
raise TypeError("The input value of 'num_rows' should be 'int'" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"The input value of 'num_rows' should be greater than or equal to 0" )
UpperCAmelCase = [[1]]
for row_index in range(1 , __A ):
UpperCAmelCase = [0] + result[-1] + [0]
UpperCAmelCase = row_index + 1
# Calculate the number of distinct elements in a row
UpperCAmelCase = sum(divmod(__A , 2 ) )
UpperCAmelCase = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
UpperCAmelCase = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
UpperCAmelCase = row_first_half + row_second_half
result.append(__A )
return result
def _lowerCAmelCase( ):
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(__A , __A ) -> None:
UpperCAmelCase = F"{func.__name__}({value})"
UpperCAmelCase = timeit(F"__main__.{call}" , setup="import __main__" )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(F"{call:38} -- {timing:.4f} seconds" )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(__A , __A )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 1 |
def _lowerCAmelCase( __A , __A , __A ):
if n == 0:
return 1
elif n % 2 == 1:
return (binary_exponentiation(__A , n - 1 , __A ) * a) % mod
else:
UpperCAmelCase = binary_exponentiation(__A , n / 2 , __A )
return (b * b) % mod
# a prime number
lowerCAmelCase__ = 701
lowerCAmelCase__ = 1000000000
lowerCAmelCase__ = 10
# using binary exponentiation function, O(log(p)):
print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p)
print((a / b) % p == (a * b ** (p - 2)) % p)
| 1 | 1 |
import os
import sys
import unittest
lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
lowerCAmelCase__ = os.path.join(git_repo_path, "src", "diffusers")
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : Any ) -> Union[str, Any]:
UpperCAmelCase = find_backend(" if not is_torch_available():" )
self.assertEqual(lowerCAmelCase__ , "torch" )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
UpperCAmelCase = find_backend(" if not (is_torch_available() and is_transformers_available()):" )
self.assertEqual(lowerCAmelCase__ , "torch_and_transformers" )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
UpperCAmelCase = find_backend(
" if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" )
self.assertEqual(lowerCAmelCase__ , "torch_and_transformers_and_onnx" )
def _UpperCamelCase ( self : Optional[int] ) -> List[str]:
UpperCAmelCase = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("torch" , lowerCAmelCase__ )
self.assertIn("torch_and_transformers" , lowerCAmelCase__ )
self.assertIn("flax_and_transformers" , lowerCAmelCase__ )
self.assertIn("torch_and_transformers_and_onnx" , lowerCAmelCase__ )
# Likewise, we can't assert on the exact content of a key
self.assertIn("UNet2DModel" , objects["torch"] )
self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] )
self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] )
self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] )
self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] )
self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] )
def _UpperCamelCase ( self : Optional[Any] ) -> int:
UpperCAmelCase = create_dummy_object("CONSTANT" , "'torch'" )
self.assertEqual(lowerCAmelCase__ , "\nCONSTANT = None\n" )
UpperCAmelCase = create_dummy_object("function" , "'torch'" )
self.assertEqual(
lowerCAmelCase__ , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" )
UpperCAmelCase = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n"
UpperCAmelCase = create_dummy_object("FakeClass" , "'torch'" )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def _UpperCamelCase ( self : Any ) -> int:
UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n"
UpperCAmelCase = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} )
self.assertEqual(dummy_files["torch"] , lowerCAmelCase__ )
| 1 |
lowerCAmelCase__ = {
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
lowerCAmelCase__ = {value: key for key, value in encode_dict.items()}
def _lowerCAmelCase( __A ):
UpperCAmelCase = ""
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception("encode() accepts only letters of the alphabet and spaces" )
return encoded
def _lowerCAmelCase( __A ):
if set(__A ) - {"A", "B", " "} != set():
raise Exception("decode() accepts only 'A', 'B' and spaces" )
UpperCAmelCase = ""
for word in coded.split():
while len(__A ) != 0:
decoded += decode_dict[word[:5]]
UpperCAmelCase = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json",
}
class __magic_name__ ( _snake_case , _snake_case ):
UpperCAmelCase = """convnextv2"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Dict=1e-1_2 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : str=2_2_4 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[Any] , ) -> List[Any]:
super().__init__(**lowerCAmelCase__ )
UpperCAmelCase = num_channels
UpperCAmelCase = patch_size
UpperCAmelCase = num_stages
UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes
UpperCAmelCase = [3, 3, 9, 3] if depths is None else depths
UpperCAmelCase = hidden_act
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = drop_path_rate
UpperCAmelCase = image_size
UpperCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )]
UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
| 1 |
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
lowerCAmelCase__ = {"UserAgent": UserAgent().random}
def _lowerCAmelCase( __A ):
UpperCAmelCase = script.contents[0]
UpperCAmelCase = json.loads(data[data.find("{\"config\"" ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class __magic_name__ :
def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Any:
UpperCAmelCase = f"https://www.instagram.com/{username}/"
UpperCAmelCase = self.get_json()
def _UpperCamelCase ( self : List[str] ) -> dict:
UpperCAmelCase = requests.get(self.url , headers=lowerCAmelCase__ ).text
UpperCAmelCase = BeautifulSoup(lowerCAmelCase__ , "html.parser" ).find_all("script" )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self : Tuple ) -> str:
return f"{self.__class__.__name__}('{self.username}')"
def __str__( self : Optional[int] ) -> str:
return f"{self.fullname} ({self.username}) is {self.biography}"
@property
def _UpperCamelCase ( self : Any ) -> str:
return self.user_data["username"]
@property
def _UpperCamelCase ( self : List[Any] ) -> str:
return self.user_data["full_name"]
@property
def _UpperCamelCase ( self : List[str] ) -> str:
return self.user_data["biography"]
@property
def _UpperCamelCase ( self : Optional[int] ) -> str:
return self.user_data["business_email"]
@property
def _UpperCamelCase ( self : str ) -> str:
return self.user_data["external_url"]
@property
def _UpperCamelCase ( self : int ) -> int:
return self.user_data["edge_followed_by"]["count"]
@property
def _UpperCamelCase ( self : List[Any] ) -> int:
return self.user_data["edge_follow"]["count"]
@property
def _UpperCamelCase ( self : List[str] ) -> int:
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def _UpperCamelCase ( self : Tuple ) -> str:
return self.user_data["profile_pic_url_hd"]
@property
def _UpperCamelCase ( self : Optional[int] ) -> bool:
return self.user_data["is_verified"]
@property
def _UpperCamelCase ( self : Optional[Any] ) -> bool:
return self.user_data["is_private"]
def _lowerCAmelCase( __A = "github" ):
import os
if os.environ.get("CI" ):
return # test failing on GitHub Actions
UpperCAmelCase = InstagramUser(__A )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , __A )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 150
assert instagram_user.number_of_followers > 120000
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "[email protected]"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith("https://instagram." )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase__ = InstagramUser("github")
print(instagram_user)
print(f"{instagram_user.number_of_posts = }")
print(f"{instagram_user.number_of_followers = }")
print(f"{instagram_user.number_of_followings = }")
print(f"{instagram_user.email = }")
print(f"{instagram_user.website = }")
print(f"{instagram_user.profile_picture_url = }")
print(f"{instagram_user.is_verified = }")
print(f"{instagram_user.is_private = }")
| 1 | 1 |
import string
def _lowerCAmelCase( __A ):
for key in range(len(string.ascii_uppercase ) ):
UpperCAmelCase = ""
for symbol in message:
if symbol in string.ascii_uppercase:
UpperCAmelCase = string.ascii_uppercase.find(__A )
UpperCAmelCase = num - key
if num < 0:
UpperCAmelCase = num + len(string.ascii_uppercase )
UpperCAmelCase = translated + string.ascii_uppercase[num]
else:
UpperCAmelCase = translated + symbol
print(F"Decryption using Key #{key}: {translated}" )
def _lowerCAmelCase( ):
UpperCAmelCase = input("Encrypted message: " )
UpperCAmelCase = message.upper()
decrypt(__A )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 1 |
import unittest
import numpy as np
def _lowerCAmelCase( __A , __A , __A , __A = None , ):
UpperCAmelCase = np.shape(__A )
UpperCAmelCase = np.shape(__A )
UpperCAmelCase = np.shape(__A )
if shape_a[0] != shape_b[0]:
UpperCAmelCase = (
"Expected the same number of rows for A and B. "
F"Instead found A of size {shape_a} and B of size {shape_b}"
)
raise ValueError(__A )
if shape_b[1] != shape_c[1]:
UpperCAmelCase = (
"Expected the same number of columns for B and C. "
F"Instead found B of size {shape_b} and C of size {shape_c}"
)
raise ValueError(__A )
UpperCAmelCase = pseudo_inv
if a_inv is None:
try:
UpperCAmelCase = np.linalg.inv(__A )
except np.linalg.LinAlgError:
raise ValueError(
"Input matrix A is not invertible. Cannot compute Schur complement." )
return mat_c - mat_b.T @ a_inv @ mat_b
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : List[str] ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1], [6, 3]] )
UpperCAmelCase = schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = np.block([[a, b], [b.T, c]] )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
self.assertAlmostEqual(lowerCAmelCase__ , det_a * det_s )
def _UpperCamelCase ( self : str ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1], [6, 3]] )
with self.assertRaises(lowerCAmelCase__ ):
schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def _UpperCamelCase ( self : Dict ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(lowerCAmelCase__ ):
schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 1 | 1 |
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = LEDTokenizer
UpperCAmelCase = LEDTokenizerFast
UpperCAmelCase = True
def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
super().setUp()
UpperCAmelCase = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
UpperCAmelCase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
UpperCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
UpperCAmelCase = {"unk_token": "<unk>"}
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Union[str, Any] , **lowerCAmelCase__ : Optional[int] ) -> Optional[int]:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _UpperCamelCase ( self : str , **lowerCAmelCase__ : str ) -> Optional[int]:
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
return "lower newer", "lower newer"
@cached_property
def _UpperCamelCase ( self : Dict ) -> str:
return LEDTokenizer.from_pretrained("allenai/led-base-16384" )
@cached_property
def _UpperCamelCase ( self : int ) -> Tuple:
return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" )
@require_torch
def _UpperCamelCase ( self : Tuple ) -> List[str]:
UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
UpperCAmelCase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@require_torch
def _UpperCamelCase ( self : Union[str, Any] ) -> List[Any]:
UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt" )
self.assertIn("input_ids" , lowerCAmelCase__ )
self.assertIn("attention_mask" , lowerCAmelCase__ )
self.assertNotIn("labels" , lowerCAmelCase__ )
self.assertNotIn("decoder_attention_mask" , lowerCAmelCase__ )
@require_torch
def _UpperCamelCase ( self : int ) -> int:
UpperCAmelCase = [
"Summary of the text.",
"Another summary.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , max_length=3_2 , padding="max_length" , return_tensors="pt" )
self.assertEqual(3_2 , targets["input_ids"].shape[1] )
@require_torch
def _UpperCamelCase ( self : Any ) -> int:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(
["I am a small frog" * 1_0_2_4, "I am a small frog"] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) )
@require_torch
def _UpperCamelCase ( self : Dict ) -> Tuple:
UpperCAmelCase = ["A long paragraph for summarization."]
UpperCAmelCase = [
"Summary of the text.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase = inputs["input_ids"]
UpperCAmelCase = targets["input_ids"]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = ["Summary of the text.", "Another summary."]
UpperCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ )
UpperCAmelCase = [[0] * len(lowerCAmelCase__ ) for x in encoded_output["input_ids"]]
UpperCAmelCase = tokenizer.pad(lowerCAmelCase__ )
self.assertSequenceEqual(outputs["global_attention_mask"] , lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] ) -> int:
pass
def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = "A, <mask> AllenNLP sentence."
UpperCAmelCase = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
UpperCAmelCase = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) )
self.assertEqual(
sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , )
UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] )
UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] )
self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(
lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
self.assertSequenceEqual(
lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
| 1 |
import argparse
import os
import re
import numpy as np
import PIL
import torch
from timm import create_model
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor
from accelerate import Accelerator
def _lowerCAmelCase( __A ):
UpperCAmelCase = fname.split(os.path.sep )[-1]
return re.search(r"^(.*)_\d+\.jpg$" , __A ).groups()[0]
class __magic_name__ ( _snake_case ):
def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : int=None ) -> Optional[Any]:
UpperCAmelCase = file_names
UpperCAmelCase = image_transform
UpperCAmelCase = label_to_id
def __len__( self : Tuple ) -> List[str]:
return len(self.file_names )
def __getitem__( self : Optional[int] , lowerCAmelCase__ : Tuple ) -> Dict:
UpperCAmelCase = self.file_names[idx]
UpperCAmelCase = PIL.Image.open(lowerCAmelCase__ )
UpperCAmelCase = raw_image.convert("RGB" )
if self.image_transform is not None:
UpperCAmelCase = self.image_transform(lowerCAmelCase__ )
UpperCAmelCase = extract_label(lowerCAmelCase__ )
if self.label_to_id is not None:
UpperCAmelCase = self.label_to_id[label]
return {"image": image, "label": label}
def _lowerCAmelCase( __A , __A ):
# Initialize accelerator
if args.with_tracking:
UpperCAmelCase = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir )
else:
UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase = config["lr"]
UpperCAmelCase = int(config["num_epochs"] )
UpperCAmelCase = int(config["seed"] )
UpperCAmelCase = int(config["batch_size"] )
UpperCAmelCase = config["image_size"]
if not isinstance(__A , (list, tuple) ):
UpperCAmelCase = (image_size, image_size)
# Parse out whether we are saving every epoch or after a certain number of batches
if hasattr(args.checkpointing_steps , "isdigit" ):
if args.checkpointing_steps == "epoch":
UpperCAmelCase = args.checkpointing_steps
elif args.checkpointing_steps.isdigit():
UpperCAmelCase = int(args.checkpointing_steps )
else:
raise ValueError(
F"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." )
else:
UpperCAmelCase = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
UpperCAmelCase = os.path.split(__A )[-1].split("." )[0]
accelerator.init_trackers(__A , __A )
# Grab all the image filenames
UpperCAmelCase = [os.path.join(args.data_dir , __A ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )]
# Build the label correspondences
UpperCAmelCase = [extract_label(__A ) for fname in file_names]
UpperCAmelCase = list(set(__A ) )
id_to_label.sort()
UpperCAmelCase = {lbl: i for i, lbl in enumerate(__A )}
# Set the seed before splitting the data.
np.random.seed(__A )
torch.manual_seed(__A )
torch.cuda.manual_seed_all(__A )
# Split our filenames between train and validation
UpperCAmelCase = np.random.permutation(len(__A ) )
UpperCAmelCase = int(0.8 * len(__A ) )
UpperCAmelCase = random_perm[:cut]
UpperCAmelCase = random_perm[cut:]
# For training we use a simple RandomResizedCrop
UpperCAmelCase = Compose([RandomResizedCrop(__A , scale=(0.5, 1.0) ), ToTensor()] )
UpperCAmelCase = PetsDataset(
[file_names[i] for i in train_split] , image_transform=__A , label_to_id=__A )
# For evaluation, we use a deterministic Resize
UpperCAmelCase = Compose([Resize(__A ), ToTensor()] )
UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=__A , label_to_id=__A )
# Instantiate dataloaders.
UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 )
UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase = create_model("resnet50d" , pretrained=__A , num_classes=len(__A ) )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCAmelCase = model.to(accelerator.device )
# Freezing the base model
for param in model.parameters():
UpperCAmelCase = False
for param in model.get_classifier().parameters():
UpperCAmelCase = True
# We normalize the batches of images to be a bit faster.
UpperCAmelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device )
UpperCAmelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device )
# Instantiate optimizer
UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 )
# Instantiate learning rate scheduler
UpperCAmelCase = OneCycleLR(optimizer=__A , max_lr=__A , epochs=__A , steps_per_epoch=len(__A ) )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare(
__A , __A , __A , __A , __A )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase = 0
# We also need to keep track of the starting epoch so files are named properly
UpperCAmelCase = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(F"Resumed from checkpoint: {args.resume_from_checkpoint}" )
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase = os.path.basename(args.resume_from_checkpoint )
else:
# Get the most recent checkpoint
UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()]
dirs.sort(key=os.path.getctime )
UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
UpperCAmelCase = os.path.splitext(__A )[0]
if "epoch" in training_difference:
UpperCAmelCase = int(training_difference.replace("epoch_" , "" ) ) + 1
UpperCAmelCase = None
else:
UpperCAmelCase = int(training_difference.replace("step_" , "" ) )
UpperCAmelCase = resume_step // len(__A )
resume_step -= starting_epoch * len(__A )
# Now we train the model
for epoch in range(__A , __A ):
model.train()
if args.with_tracking:
UpperCAmelCase = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We need to skip steps until we reach the resumed step
UpperCAmelCase = accelerator.skip_first_batches(__A , __A )
overall_step += resume_step
else:
# After the first iteration though, we need to go back to the original dataloader
UpperCAmelCase = train_dataloader
for batch in active_dataloader:
# We could avoid this line since we set the accelerator with `device_placement=True`.
UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()}
UpperCAmelCase = (batch["image"] - mean) / std
UpperCAmelCase = model(__A )
UpperCAmelCase = torch.nn.functional.cross_entropy(__A , batch["label"] )
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(__A )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
if isinstance(__A , __A ):
UpperCAmelCase = F"step_{overall_step}"
if overall_step % checkpointing_steps == 0:
if args.output_dir is not None:
UpperCAmelCase = os.path.join(args.output_dir , __A )
accelerator.save_state(__A )
model.eval()
UpperCAmelCase = 0
UpperCAmelCase = 0
for step, batch in enumerate(__A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()}
UpperCAmelCase = (batch["image"] - mean) / std
with torch.no_grad():
UpperCAmelCase = model(__A )
UpperCAmelCase = outputs.argmax(dim=-1 )
UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["label"]) )
UpperCAmelCase = predictions == references
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
UpperCAmelCase = accurate.item() / num_elems
# Use accelerator.print to print only on the main process.
accelerator.print(F"epoch {epoch}: {100 * eval_metric:.2f}" )
if args.with_tracking:
accelerator.log(
{
"accuracy": 100 * eval_metric,
"train_loss": total_loss.item() / len(__A ),
"epoch": epoch,
} , step=__A , )
if checkpointing_steps == "epoch":
UpperCAmelCase = F"epoch_{epoch}"
if args.output_dir is not None:
UpperCAmelCase = os.path.join(args.output_dir , __A )
accelerator.save_state(__A )
if args.with_tracking:
accelerator.end_training()
def _lowerCAmelCase( ):
UpperCAmelCase = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument("--data_dir" , required=__A , help="The data folder on disk." )
parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." )
parser.add_argument(
"--mixed_precision" , type=__A , default=__A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
parser.add_argument(
"--checkpointing_steps" , type=__A , default=__A , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , )
parser.add_argument(
"--output_dir" , type=__A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , )
parser.add_argument(
"--resume_from_checkpoint" , type=__A , default=__A , help="If the training should continue from a checkpoint folder." , )
parser.add_argument(
"--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , )
parser.add_argument(
"--project_dir" , type=__A , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , )
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224}
training_function(__A , __A )
if __name__ == "__main__":
main()
| 1 | 1 |
from datetime import datetime
import requests
def _lowerCAmelCase( __A ):
UpperCAmelCase = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url="
UpperCAmelCase = requests.get(base_url + url ).json()[0]["urls"][0]["src"]
return requests.get(__A ).content
if __name__ == "__main__":
lowerCAmelCase__ = input("Enter Video/IGTV url: ").strip()
lowerCAmelCase__ = f"{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4"
with open(file_name, "wb") as fp:
fp.write(download_video(url))
print(f"Done. Video saved to disk as {file_name}.")
| 1 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = 1 # (0 is vertical, 1 is horizontal)
def _lowerCAmelCase( ):
UpperCAmelCase , UpperCAmelCase = get_dataset(__A , __A )
print("Processing..." )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = update_image_and_anno(__A , __A , __A )
for index, image in enumerate(__A ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
UpperCAmelCase = random_chars(32 )
UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0]
UpperCAmelCase = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cva.imwrite(F"/{file_root}.jpg" , __A , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F"Success {index+1}/{len(__A )} with {file_name}" )
UpperCAmelCase = []
for anno in new_annos[index]:
UpperCAmelCase = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(__A )
with open(F"/{file_root}.txt" , "w" ) as outfile:
outfile.write("\n".join(line for line in annos_list ) )
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = []
UpperCAmelCase = []
for label_file in glob.glob(os.path.join(__A , "*.txt" ) ):
UpperCAmelCase = label_file.split(os.sep )[-1].rsplit("." , 1 )[0]
with open(__A ) as in_file:
UpperCAmelCase = in_file.readlines()
UpperCAmelCase = os.path.join(__A , F"{label_name}.jpg" )
UpperCAmelCase = []
for obj_list in obj_lists:
UpperCAmelCase = obj_list.rstrip("\n" ).split(" " )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__A )
labels.append(__A )
return img_paths, labels
def _lowerCAmelCase( __A , __A , __A = 1 ):
UpperCAmelCase = []
UpperCAmelCase = []
UpperCAmelCase = []
for idx in range(len(__A ) ):
UpperCAmelCase = []
UpperCAmelCase = img_list[idx]
path_list.append(__A )
UpperCAmelCase = anno_list[idx]
UpperCAmelCase = cva.imread(__A )
if flip_type == 1:
UpperCAmelCase = cva.flip(__A , __A )
for bbox in img_annos:
UpperCAmelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
UpperCAmelCase = cva.flip(__A , __A )
for bbox in img_annos:
UpperCAmelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__A )
new_imgs_list.append(__A )
return new_imgs_list, new_annos_lists, path_list
def _lowerCAmelCase( __A = 32 ):
assert number_char > 1, "The number of character should greater than 1"
UpperCAmelCase = ascii_lowercase + digits
return "".join(random.choice(__A ) for _ in range(__A ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 1 | 1 |
import importlib
import math
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Tuple, Union
import flax
import jax.numpy as jnp
from ..utils import BaseOutput
lowerCAmelCase__ = "scheduler_config.json"
class __magic_name__ ( _snake_case ):
UpperCAmelCase = 1
UpperCAmelCase = 2
UpperCAmelCase = 3
UpperCAmelCase = 4
UpperCAmelCase = 5
@dataclass
class __magic_name__ ( _snake_case ):
UpperCAmelCase = 42
class __magic_name__ :
UpperCAmelCase = SCHEDULER_CONFIG_NAME
UpperCAmelCase = ["""dtype"""]
UpperCAmelCase = []
UpperCAmelCase = True
@classmethod
def _UpperCamelCase ( cls : Union[str, Any] , lowerCAmelCase__ : Dict[str, Any] = None , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : str=False , **lowerCAmelCase__ : Optional[int] , ) -> Tuple:
UpperCAmelCase , UpperCAmelCase = cls.load_config(
pretrained_model_name_or_path=lowerCAmelCase__ , subfolder=lowerCAmelCase__ , return_unused_kwargs=lowerCAmelCase__ , **lowerCAmelCase__ , )
UpperCAmelCase , UpperCAmelCase = cls.from_config(lowerCAmelCase__ , return_unused_kwargs=lowerCAmelCase__ , **lowerCAmelCase__ )
if hasattr(lowerCAmelCase__ , "create_state" ) and getattr(lowerCAmelCase__ , "has_state" , lowerCAmelCase__ ):
UpperCAmelCase = scheduler.create_state()
if return_unused_kwargs:
return scheduler, state, unused_kwargs
return scheduler, state
def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : Union[str, os.PathLike] , lowerCAmelCase__ : bool = False , **lowerCAmelCase__ : int ) -> Union[str, Any]:
self.save_config(save_directory=lowerCAmelCase__ , push_to_hub=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def _UpperCamelCase ( self : Any ) -> List[Any]:
return self._get_compatibles()
@classmethod
def _UpperCamelCase ( cls : str ) -> Optional[Any]:
UpperCAmelCase = list(set([cls.__name__] + cls._compatibles ) )
UpperCAmelCase = importlib.import_module(__name__.split("." )[0] )
UpperCAmelCase = [
getattr(lowerCAmelCase__ , lowerCAmelCase__ ) for c in compatible_classes_str if hasattr(lowerCAmelCase__ , lowerCAmelCase__ )
]
return compatible_classes
def _lowerCAmelCase( __A , __A ):
assert len(__A ) >= x.ndim
return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(__A ) - x.ndim) ) , __A )
def _lowerCAmelCase( __A , __A=0.999 , __A=jnp.floataa ):
def alpha_bar(__A ):
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2
UpperCAmelCase = []
for i in range(__A ):
UpperCAmelCase = i / num_diffusion_timesteps
UpperCAmelCase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(__A ) / alpha_bar(__A ) , __A ) )
return jnp.array(__A , dtype=__A )
@flax.struct.dataclass
class __magic_name__ :
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
@classmethod
def _UpperCamelCase ( cls : int , lowerCAmelCase__ : int ) -> Any:
UpperCAmelCase = scheduler.config
if config.trained_betas is not None:
UpperCAmelCase = jnp.asarray(config.trained_betas , dtype=scheduler.dtype )
elif config.beta_schedule == "linear":
UpperCAmelCase = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype )
elif config.beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
UpperCAmelCase = (
jnp.linspace(
config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype )
** 2
)
elif config.beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
UpperCAmelCase = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype )
else:
raise NotImplementedError(
f"beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}" )
UpperCAmelCase = 1.0 - betas
UpperCAmelCase = jnp.cumprod(lowerCAmelCase__ , axis=0 )
return cls(
alphas=lowerCAmelCase__ , betas=lowerCAmelCase__ , alphas_cumprod=lowerCAmelCase__ , )
def _lowerCAmelCase( __A , __A , __A , __A ):
UpperCAmelCase = state.alphas_cumprod
UpperCAmelCase = alphas_cumprod[timesteps] ** 0.5
UpperCAmelCase = sqrt_alpha_prod.flatten()
UpperCAmelCase = broadcast_to_shape_from_left(__A , original_samples.shape )
UpperCAmelCase = (1 - alphas_cumprod[timesteps]) ** 0.5
UpperCAmelCase = sqrt_one_minus_alpha_prod.flatten()
UpperCAmelCase = broadcast_to_shape_from_left(__A , original_samples.shape )
return sqrt_alpha_prod, sqrt_one_minus_alpha_prod
def _lowerCAmelCase( __A , __A , __A , __A ):
UpperCAmelCase , UpperCAmelCase = get_sqrt_alpha_prod(__A , __A , __A , __A )
UpperCAmelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def _lowerCAmelCase( __A , __A , __A , __A ):
UpperCAmelCase , UpperCAmelCase = get_sqrt_alpha_prod(__A , __A , __A , __A )
UpperCAmelCase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
| 1 |
def _lowerCAmelCase( __A ):
if not isinstance(__A , __A ):
raise TypeError("only integers accepted as input" )
else:
UpperCAmelCase = str(abs(__A ) )
UpperCAmelCase = [list(__A ) for char in range(len(__A ) )]
for index in range(len(__A ) ):
num_transpositions[index].pop(__A )
return max(
int("".join(list(__A ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__("doctest").testmod()
| 1 | 1 |
from __future__ import annotations
lowerCAmelCase__ = "#"
class __magic_name__ :
def __init__( self : List[str] ) -> None:
UpperCAmelCase = {}
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : str ) -> None:
UpperCAmelCase = self._trie
for char in text:
if char not in trie:
UpperCAmelCase = {}
UpperCAmelCase = trie[char]
UpperCAmelCase = True
def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : str ) -> tuple | list:
UpperCAmelCase = self._trie
for char in prefix:
if char in trie:
UpperCAmelCase = trie[char]
else:
return []
return self._elements(lowerCAmelCase__ )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : dict ) -> tuple:
UpperCAmelCase = []
for c, v in d.items():
UpperCAmelCase = [" "] if c == END else [(c + s) for s in self._elements(lowerCAmelCase__ )]
result.extend(lowerCAmelCase__ )
return tuple(lowerCAmelCase__ )
lowerCAmelCase__ = Trie()
lowerCAmelCase__ = ("depart", "detergent", "daring", "dog", "deer", "deal")
for word in words:
trie.insert_word(word)
def _lowerCAmelCase( __A ):
UpperCAmelCase = trie.find_word(__A )
return tuple(string + word for word in suffixes )
def _lowerCAmelCase( ):
print(autocomplete_using_trie("de" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 1 |
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
lowerCAmelCase__ = logging.getLogger(__name__)
lowerCAmelCase__ = 50 # max width of layer names
lowerCAmelCase__ = 70 # max width of quantizer names
def _lowerCAmelCase( __A ):
UpperCAmelCase = parser.add_argument_group("quant_trainer arguments" )
group.add_argument("--wprec" , type=__A , default=8 , help="weight precision" )
group.add_argument("--aprec" , type=__A , default=8 , help="activation precision" )
group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" )
group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" )
group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" )
group.add_argument("--quant-disable-keyword" , type=__A , nargs="+" , help="disable quantizers by keyword" )
group.add_argument("--quant-disable-layer-module" , type=__A , help="disable quantizers by keyword under layer." )
group.add_argument("--quant-enable-layer-module" , type=__A , help="enable quantizers by keyword under layer" )
group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" )
group.add_argument("--percentile" , default=__A , type=__A , help="percentile for PercentileCalibrator" )
group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" )
group.add_argument("--clip-gelu" , metavar="N" , type=__A , help="clip gelu output maximum value to N" )
group.add_argument(
"--recalibrate-weights" , action="store_true" , help=(
"recalibrate weight amaxes by taking the max of the weights."
" amaxes will be computed with the current quantization granularity (axis)."
) , )
def _lowerCAmelCase( __A ):
if args.calibrator == "max":
UpperCAmelCase = "max"
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError("Specify --percentile when using percentile calibrator" )
UpperCAmelCase = "histogram"
elif args.calibrator == "mse":
UpperCAmelCase = "histogram"
else:
raise ValueError(F"Invalid calibrator {args.calibrator}" )
UpperCAmelCase = QuantDescriptor(num_bits=args.aprec , calib_method=__A )
UpperCAmelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(__A )
quant_nn.QuantLinear.set_default_quant_desc_weight(__A )
def _lowerCAmelCase( __A , __A , __A=False , __A=False ):
logger.info("Configuring Model for Quantization" )
logger.info(F"using quantization package {pytorch_quantization.__file__}" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(__A , ["embeddings"] , which="weight" , _disabled=__A )
if args.quant_disable:
set_quantizer_by_name(__A , [""] , _disabled=__A )
if args.quant_disable_keyword:
set_quantizer_by_name(__A , args.quant_disable_keyword , _disabled=__A )
if args.quant_disable_layer_module:
set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=__A )
if args.quant_enable_layer_module:
set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=__A )
if args.recalibrate_weights:
recalibrate_weights(__A )
if args.fuse_qkv:
fuse_qkv(__A , __A )
if args.clip_gelu:
clip_gelu(__A , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(__A )
def _lowerCAmelCase( __A ):
logger.info("Enabling Calibration" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(F"{name:80}: {module}" )
def _lowerCAmelCase( __A , __A ):
logger.info("Loading calibrated amax" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax("percentile" , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(__A )
def _lowerCAmelCase( __A , __A ):
def fusea(__A , __A , __A ):
for mod in [qq, qk, qv]:
if not hasattr(__A , "_amax" ):
print(" WARNING: NO AMAX BUFFER" )
return
UpperCAmelCase = qq._amax.detach().item()
UpperCAmelCase = qk._amax.detach().item()
UpperCAmelCase = qv._amax.detach().item()
UpperCAmelCase = max(__A , __A , __A )
qq._amax.fill_(__A )
qk._amax.fill_(__A )
qv._amax.fill_(__A )
logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" )
for name, mod in model.named_modules():
if name.endswith(".attention.self" ):
logger.info(F"FUSE_QKV: {name:{name_width}}" )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _lowerCAmelCase( __A , __A ):
for name, mod in model.named_modules():
if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ):
UpperCAmelCase = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=__A )
UpperCAmelCase = mod._input_quantizer._amax.data.detach().item()
logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" )
def _lowerCAmelCase( __A ):
for name, mod in model.named_modules():
if hasattr(__A , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None:
UpperCAmelCase = mod.weight.shape[0]
UpperCAmelCase = mod._weight_quantizer._amax.detach()
UpperCAmelCase = torch.ones(__A , dtype=amax.dtype , device=amax.device ) * amax
print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" )
def _lowerCAmelCase( __A ):
for name, mod in model.named_modules():
if hasattr(__A , "_weight_quantizer" ):
if not hasattr(mod.weight_quantizer , "_amax" ):
print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
UpperCAmelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
UpperCAmelCase = set(range(len(mod.weight.size() ) ) ) - axis_set
UpperCAmelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__A , keepdims=__A ).detach()
logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" )
UpperCAmelCase = amax
def _lowerCAmelCase( __A , __A=25 , __A=180 , __A=None ):
if ignore is None:
UpperCAmelCase = []
elif not isinstance(__A , __A ):
UpperCAmelCase = [ignore]
UpperCAmelCase = 0
for name, mod in model.named_modules():
if not hasattr(__A , "weight" ):
continue
UpperCAmelCase = max(__A , len(__A ) )
for name, mod in model.named_modules():
UpperCAmelCase = getattr(__A , "_input_quantizer" , __A )
UpperCAmelCase = getattr(__A , "_weight_quantizer" , __A )
if not hasattr(__A , "weight" ):
continue
if type(__A ) in ignore:
continue
if [True for s in ignore if type(__A ) is str and s in name]:
continue
UpperCAmelCase = F"Act:{input_q.extra_repr()}"
UpperCAmelCase = F"Wgt:{weight_q.extra_repr()}"
UpperCAmelCase = F"{name:{name_width}} {act_str} {wgt_str}"
if len(__A ) <= line_width:
logger.info(__A )
else:
logger.info(F"{name:{name_width}} {act_str}" )
logger.info(F"{' ':{name_width}} {wgt_str}" )
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
for name, mod in model.named_modules():
if isinstance(__A , pytorch_quantization.nn.TensorQuantizer ):
print(F"{name:80} {mod}" )
count += 1
print(F"{count} TensorQuantizers found in model" )
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
UpperCAmelCase = getattr(__A , __A , __A )
if quantizer_mod is not None:
assert hasattr(__A , __A )
setattr(__A , __A , __A )
else:
logger.warning(F"{name} has no {quantizer}" )
def _lowerCAmelCase( __A , __A , __A="both" , **__A ):
UpperCAmelCase = F"Warning: changing {which} quantizers of {name:{qname_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
if which in ["input", "both"]:
set_quantizer(__A , __A , "_input_quantizer" , __A , __A )
if which in ["weight", "both"]:
set_quantizer(__A , __A , "_weight_quantizer" , __A , __A )
logger.info(__A )
def _lowerCAmelCase( __A , __A , **__A ):
for name, mod in model.named_modules():
if hasattr(__A , "_input_quantizer" ) or hasattr(__A , "_weight_quantizer" ):
for n in names:
if re.search(__A , __A ):
set_quantizers(__A , __A , **__A )
elif name.endswith("_quantizer" ):
for n in names:
if re.search(__A , __A ):
UpperCAmelCase = F"Warning: changing {name:{name_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
setattr(__A , __A , __A )
logger.info(__A )
| 1 | 1 |
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
lowerCAmelCase__ = "\\n\n"
lowerCAmelCase__ = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n"
lowerCAmelCase__ = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __magic_name__ ( datasets.Metric ):
def _UpperCamelCase ( self : Any ) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"input_texts": datasets.Value("string" ),
} ) , reference_urls=["https://huggingface.co/docs/transformers/perplexity"] , )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int = 1_6 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Any]=None ) -> int:
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
UpperCAmelCase = "cuda"
else:
UpperCAmelCase = "cuda" if torch.cuda.is_available() else "cpu"
UpperCAmelCase = AutoModelForCausalLM.from_pretrained(lowerCAmelCase__ )
UpperCAmelCase = model.to(lowerCAmelCase__ )
UpperCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
UpperCAmelCase = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(lowerCAmelCase__ ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
UpperCAmelCase = model.config.max_length - 1
else:
UpperCAmelCase = model.config.max_length
UpperCAmelCase = tokenizer(
lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors="pt" , return_attention_mask=lowerCAmelCase__ , ).to(lowerCAmelCase__ )
UpperCAmelCase = encodings["input_ids"]
UpperCAmelCase = encodings["attention_mask"]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
UpperCAmelCase = []
UpperCAmelCase = CrossEntropyLoss(reduction="none" )
for start_index in logging.tqdm(range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) ):
UpperCAmelCase = min(start_index + batch_size , len(lowerCAmelCase__ ) )
UpperCAmelCase = encoded_texts[start_index:end_index]
UpperCAmelCase = attn_masks[start_index:end_index]
if add_start_token:
UpperCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(lowerCAmelCase__ )
UpperCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
UpperCAmelCase = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(lowerCAmelCase__ ), attn_mask] , dim=1 )
UpperCAmelCase = encoded_batch
with torch.no_grad():
UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ).logits
UpperCAmelCase = out_logits[..., :-1, :].contiguous()
UpperCAmelCase = labels[..., 1:].contiguous()
UpperCAmelCase = attn_mask[..., 1:].contiguous()
UpperCAmelCase = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , lowerCAmelCase__ ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(lowerCAmelCase__ )}
| 1 |
def _lowerCAmelCase( __A ):
assert column_title.isupper()
UpperCAmelCase = 0
UpperCAmelCase = len(__A ) - 1
UpperCAmelCase = 0
while index >= 0:
UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , __A )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
from __future__ import annotations
from collections.abc import Callable
lowerCAmelCase__ = list[list[float | int]]
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = len(__A )
UpperCAmelCase = [[0 for _ in range(size + 1 )] for _ in range(__A )]
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
for row in range(__A ):
for col in range(__A ):
UpperCAmelCase = matrix[row][col]
UpperCAmelCase = vector[row][0]
UpperCAmelCase = 0
UpperCAmelCase = 0
while row < size and col < size:
# pivoting
UpperCAmelCase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__A , __A ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
UpperCAmelCase , UpperCAmelCase = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , __A ):
UpperCAmelCase = augmented[rowa][col] / augmented[row][col]
UpperCAmelCase = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , __A ):
for row in range(__A ):
UpperCAmelCase = augmented[row][col] / augmented[col][col]
for cola in range(__A , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__A )
]
def _lowerCAmelCase( __A ):
UpperCAmelCase = len(__A )
UpperCAmelCase = [[0 for _ in range(__A )] for _ in range(__A )]
UpperCAmelCase = [[0] for _ in range(__A )]
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
for x_val, y_val in enumerate(__A ):
for col in range(__A ):
UpperCAmelCase = (x_val + 1) ** (size - col - 1)
UpperCAmelCase = y_val
UpperCAmelCase = solve(__A , __A )
def interpolated_func(__A ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(__A ) )
return interpolated_func
def _lowerCAmelCase( __A ):
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def _lowerCAmelCase( __A = question_function , __A = 10 ):
UpperCAmelCase = [func(__A ) for x_val in range(1 , order + 1 )]
UpperCAmelCase = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
UpperCAmelCase = 0
UpperCAmelCase = 42
UpperCAmelCase = 42
for poly in polynomials:
UpperCAmelCase = 1
while func(__A ) == poly(__A ):
x_val += 1
ret += poly(__A )
return ret
if __name__ == "__main__":
print(f"{solution() = }")
| 1 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
lowerCAmelCase__ = get_tests_dir("fixtures")
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
# A mock response for an HTTP head request to emulate server down
UpperCAmelCase = mock.Mock()
UpperCAmelCase = 5_0_0
UpperCAmelCase = {}
UpperCAmelCase = HTTPError
UpperCAmelCase = {}
# Download this model to make sure it's in the cache.
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request" , return_value=lowerCAmelCase__ ) as mock_head:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# This check we did call the fake head request
mock_head.assert_called()
def _UpperCamelCase ( self : List[Any] ) -> Dict:
# This test is for deprecated behavior and can be removed in v5
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" )
@is_staging_test
class __magic_name__ ( unittest.TestCase ):
@classmethod
def _UpperCamelCase ( cls : List[str] ) -> List[Any]:
UpperCAmelCase = TOKEN
HfFolder.save_token(lowerCAmelCase__ )
@classmethod
def _UpperCamelCase ( cls : Optional[int] ) -> Union[str, Any]:
try:
delete_repo(token=cls._token , repo_id="test-feature-extractor" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" )
except HTTPError:
pass
def _UpperCamelCase ( self : Any ) -> Any:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
lowerCAmelCase__ , repo_id="test-feature-extractor" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : List[Any] ) -> Tuple:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
lowerCAmelCase__ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Dict ) -> List[str]:
CustomFeatureExtractor.register_for_auto_class()
UpperCAmelCase = CustomFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , )
UpperCAmelCase = AutoFeatureExtractor.from_pretrained(
f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=lowerCAmelCase__ )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
| 1 | 1 |
from ..utils import DummyObject, requires_backends
class __magic_name__ ( metaclass=_snake_case ):
UpperCAmelCase = ["""flax""", """transformers"""]
def __init__( self : str , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Any ) -> Union[str, Any]:
requires_backends(self , ["flax", "transformers"] )
@classmethod
def _UpperCamelCase ( cls : Union[str, Any] , *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : Tuple ) -> Optional[int]:
requires_backends(cls , ["flax", "transformers"] )
@classmethod
def _UpperCamelCase ( cls : List[str] , *lowerCAmelCase__ : str , **lowerCAmelCase__ : Union[str, Any] ) -> Any:
requires_backends(cls , ["flax", "transformers"] )
class __magic_name__ ( metaclass=_snake_case ):
UpperCAmelCase = ["""flax""", """transformers"""]
def __init__( self : List[str] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Union[str, Any] ) -> Optional[Any]:
requires_backends(self , ["flax", "transformers"] )
@classmethod
def _UpperCamelCase ( cls : List[str] , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Any ) -> Optional[Any]:
requires_backends(cls , ["flax", "transformers"] )
@classmethod
def _UpperCamelCase ( cls : List[str] , *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : Tuple ) -> int:
requires_backends(cls , ["flax", "transformers"] )
class __magic_name__ ( metaclass=_snake_case ):
UpperCAmelCase = ["""flax""", """transformers"""]
def __init__( self : Dict , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : List[Any] ) -> Optional[int]:
requires_backends(self , ["flax", "transformers"] )
@classmethod
def _UpperCamelCase ( cls : Tuple , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : List[Any] ) -> Tuple:
requires_backends(cls , ["flax", "transformers"] )
@classmethod
def _UpperCamelCase ( cls : Any , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Any ) -> Optional[int]:
requires_backends(cls , ["flax", "transformers"] )
class __magic_name__ ( metaclass=_snake_case ):
UpperCAmelCase = ["""flax""", """transformers"""]
def __init__( self : Optional[int] , *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : List[Any] ) -> int:
requires_backends(self , ["flax", "transformers"] )
@classmethod
def _UpperCamelCase ( cls : List[Any] , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Optional[Any] ) -> List[Any]:
requires_backends(cls , ["flax", "transformers"] )
@classmethod
def _UpperCamelCase ( cls : Optional[Any] , *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : int ) -> List[str]:
requires_backends(cls , ["flax", "transformers"] )
| 1 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
lowerCAmelCase__ = "src/diffusers"
# Matches is_xxx_available()
lowerCAmelCase__ = re.compile(r"is\_([a-z_]*)_available\(\)")
# Matches from xxx import bla
lowerCAmelCase__ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
lowerCAmelCase__ = "\n{0} = None\n"
lowerCAmelCase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n"
lowerCAmelCase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n"
def _lowerCAmelCase( __A ):
UpperCAmelCase = _re_backend.findall(__A )
if len(__A ) == 0:
return None
return "_and_".join(__A )
def _lowerCAmelCase( ):
with open(os.path.join(__A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.readlines()
# Get to the point we do the actual imports for type checking
UpperCAmelCase = 0
UpperCAmelCase = {}
# Go through the end of the file
while line_index < len(__A ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
UpperCAmelCase = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("else:" ):
line_index += 1
line_index += 1
UpperCAmelCase = []
# Until we unindent, add backend objects to the list
while line_index < len(__A ) and len(lines[line_index] ) > 1:
UpperCAmelCase = lines[line_index]
UpperCAmelCase = _re_single_line_import.search(__A )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__A ) > 0:
UpperCAmelCase = objects
else:
line_index += 1
return backend_specific_objects
def _lowerCAmelCase( __A , __A ):
if name.isupper():
return DUMMY_CONSTANT.format(__A )
elif name.islower():
return DUMMY_FUNCTION.format(__A , __A )
else:
return DUMMY_CLASS.format(__A , __A )
def _lowerCAmelCase( __A=None ):
if backend_specific_objects is None:
UpperCAmelCase = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
UpperCAmelCase = {}
for backend, objects in backend_specific_objects.items():
UpperCAmelCase = "[" + ", ".join(F"\"{b}\"" for b in backend.split("_and_" ) ) + "]"
UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__A , __A ) for o in objects] )
UpperCAmelCase = dummy_file
return dummy_files
def _lowerCAmelCase( __A=False ):
UpperCAmelCase = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
UpperCAmelCase = {"torch": "pt"}
# Locate actual dummy modules and read their content.
UpperCAmelCase = os.path.join(__A , "utils" )
UpperCAmelCase = {
backend: os.path.join(__A , F"dummy_{short_names.get(__A , __A )}_objects.py" )
for backend in dummy_files.keys()
}
UpperCAmelCase = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__A ):
with open(__A , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.read()
else:
UpperCAmelCase = ""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F"Updating diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py as the main "
"__init__ has new objects." )
with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"The main __init__ has objects that are not present in "
F"diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py. Run `make fix-copies` "
"to fix this." )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowerCAmelCase__ = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 1 | 1 |
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
lowerCAmelCase__ = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
lowerCAmelCase__ = [ord(letter) for letter in string.ascii_lowercase]
lowerCAmelCase__ = {ord(char) for char in VALID_CHARS}
lowerCAmelCase__ = ["the", "be", "to", "of", "and", "in", "that", "have"]
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = ""
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
for keychar, cipherchar in zip(cycle(__A ) , __A ):
UpperCAmelCase = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(__A )
return decoded
def _lowerCAmelCase( __A ):
UpperCAmelCase = []
for key in product(__A , repeat=3 ):
UpperCAmelCase = try_key(__A , __A )
if encoded is not None:
possibles.append(__A )
return possibles
def _lowerCAmelCase( __A , __A ):
return [possible for possible in possibles if common_word in possible.lower()]
def _lowerCAmelCase( __A = "p059_cipher.txt" ):
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = 42
UpperCAmelCase = Path(__A ).parent.joinpath(__A ).read_text(encoding="utf-8" )
UpperCAmelCase = [int(__A ) for number in data.strip().split("," )]
UpperCAmelCase = filter_valid_chars(__A )
for common_word in COMMON_WORDS:
UpperCAmelCase = filter_common_word(__A , __A )
if len(__A ) == 1:
break
UpperCAmelCase = possibles[0]
return sum(ord(__A ) for char in decoded_text )
if __name__ == "__main__":
print(f"{solution() = }")
| 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json",
}
class __magic_name__ ( _snake_case , _snake_case ):
UpperCAmelCase = """convnextv2"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Dict=1e-1_2 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : str=2_2_4 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[Any] , ) -> List[Any]:
super().__init__(**lowerCAmelCase__ )
UpperCAmelCase = num_channels
UpperCAmelCase = patch_size
UpperCAmelCase = num_stages
UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes
UpperCAmelCase = [3, 3, 9, 3] if depths is None else depths
UpperCAmelCase = hidden_act
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = drop_path_rate
UpperCAmelCase = image_size
UpperCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )]
UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
| 1 | 1 |
# flake8: noqa
# Lint as: python3
lowerCAmelCase__ = [
"VerificationMode",
"Version",
"disable_progress_bar",
"enable_progress_bar",
"is_progress_bar_enabled",
"experimental",
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 1 |
lowerCAmelCase__ = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCAmelCase__ = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCAmelCase__ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 1 | 1 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
lowerCAmelCase__ = "src/diffusers"
# Matches is_xxx_available()
lowerCAmelCase__ = re.compile(r"is\_([a-z_]*)_available\(\)")
# Matches from xxx import bla
lowerCAmelCase__ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
lowerCAmelCase__ = "\n{0} = None\n"
lowerCAmelCase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n"
lowerCAmelCase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n"
def _lowerCAmelCase( __A ):
UpperCAmelCase = _re_backend.findall(__A )
if len(__A ) == 0:
return None
return "_and_".join(__A )
def _lowerCAmelCase( ):
with open(os.path.join(__A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.readlines()
# Get to the point we do the actual imports for type checking
UpperCAmelCase = 0
UpperCAmelCase = {}
# Go through the end of the file
while line_index < len(__A ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
UpperCAmelCase = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("else:" ):
line_index += 1
line_index += 1
UpperCAmelCase = []
# Until we unindent, add backend objects to the list
while line_index < len(__A ) and len(lines[line_index] ) > 1:
UpperCAmelCase = lines[line_index]
UpperCAmelCase = _re_single_line_import.search(__A )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__A ) > 0:
UpperCAmelCase = objects
else:
line_index += 1
return backend_specific_objects
def _lowerCAmelCase( __A , __A ):
if name.isupper():
return DUMMY_CONSTANT.format(__A )
elif name.islower():
return DUMMY_FUNCTION.format(__A , __A )
else:
return DUMMY_CLASS.format(__A , __A )
def _lowerCAmelCase( __A=None ):
if backend_specific_objects is None:
UpperCAmelCase = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
UpperCAmelCase = {}
for backend, objects in backend_specific_objects.items():
UpperCAmelCase = "[" + ", ".join(F"\"{b}\"" for b in backend.split("_and_" ) ) + "]"
UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__A , __A ) for o in objects] )
UpperCAmelCase = dummy_file
return dummy_files
def _lowerCAmelCase( __A=False ):
UpperCAmelCase = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
UpperCAmelCase = {"torch": "pt"}
# Locate actual dummy modules and read their content.
UpperCAmelCase = os.path.join(__A , "utils" )
UpperCAmelCase = {
backend: os.path.join(__A , F"dummy_{short_names.get(__A , __A )}_objects.py" )
for backend in dummy_files.keys()
}
UpperCAmelCase = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__A ):
with open(__A , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.read()
else:
UpperCAmelCase = ""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F"Updating diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py as the main "
"__init__ has new objects." )
with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"The main __init__ has objects that are not present in "
F"diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py. Run `make fix-copies` "
"to fix this." )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowerCAmelCase__ = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = KandinskyInpaintPipeline
UpperCAmelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
UpperCAmelCase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
UpperCAmelCase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
UpperCAmelCase = False
@property
def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple:
return 3_2
@property
def _UpperCamelCase ( self : int ) -> List[Any]:
return 3_2
@property
def _UpperCamelCase ( self : List[Any] ) -> List[Any]:
return self.time_input_dim
@property
def _UpperCamelCase ( self : Tuple ) -> Tuple:
return self.time_input_dim * 4
@property
def _UpperCamelCase ( self : Any ) -> Optional[int]:
return 1_0_0
@property
def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]:
UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" )
return tokenizer
@property
def _UpperCamelCase ( self : int ) -> Dict:
torch.manual_seed(0 )
UpperCAmelCase = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , )
UpperCAmelCase = MultilingualCLIP(lowerCAmelCase__ )
UpperCAmelCase = text_encoder.eval()
return text_encoder
@property
def _UpperCamelCase ( self : Dict ) -> Optional[int]:
torch.manual_seed(0 )
UpperCAmelCase = {
"in_channels": 9,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "text_image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "text_image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
UpperCAmelCase = UNetaDConditionModel(**lowerCAmelCase__ )
return model
@property
def _UpperCamelCase ( self : str ) -> Optional[Any]:
return {
"block_out_channels": [3_2, 6_4],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def _UpperCamelCase ( self : Dict ) -> List[Any]:
torch.manual_seed(0 )
UpperCAmelCase = VQModel(**self.dummy_movq_kwargs )
return model
def _UpperCamelCase ( self : Tuple ) -> Any:
UpperCAmelCase = self.dummy_text_encoder
UpperCAmelCase = self.dummy_tokenizer
UpperCAmelCase = self.dummy_unet
UpperCAmelCase = self.dummy_movq
UpperCAmelCase = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCAmelCase__ , )
UpperCAmelCase = {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=0 ) -> str:
UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase__ )
# create init_image
UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) )
# create mask
UpperCAmelCase = np.ones((6_4, 6_4) , dtype=np.floataa )
UpperCAmelCase = 0
if str(lowerCAmelCase__ ).startswith("mps" ):
UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ )
else:
UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
UpperCAmelCase = {
"prompt": "horse",
"image": init_image,
"mask_image": mask,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 6_4,
"width": 6_4,
"num_inference_steps": 2,
"guidance_scale": 4.0,
"output_type": "np",
}
return inputs
def _UpperCamelCase ( self : Dict ) -> List[str]:
UpperCAmelCase = "cpu"
UpperCAmelCase = self.get_dummy_components()
UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__ )
UpperCAmelCase = pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) )
UpperCAmelCase = output.images
UpperCAmelCase = pipe(
**self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0]
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
print(f"image.shape {image.shape}" )
assert image.shape == (1, 6_4, 6_4, 3)
UpperCAmelCase = np.array(
[0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def _UpperCamelCase ( self : str ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : str ) -> str:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCamelCase ( self : Tuple ) -> int:
UpperCAmelCase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" )
UpperCAmelCase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
UpperCAmelCase = np.ones((7_6_8, 7_6_8) , dtype=np.floataa )
UpperCAmelCase = 0
UpperCAmelCase = "a hat"
UpperCAmelCase = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa )
pipe_prior.to(lowerCAmelCase__ )
UpperCAmelCase = KandinskyInpaintPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa )
UpperCAmelCase = pipeline.to(lowerCAmelCase__ )
pipeline.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase , UpperCAmelCase = pipe_prior(
lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
UpperCAmelCase = pipeline(
lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="np" , )
UpperCAmelCase = output.images[0]
assert image.shape == (7_6_8, 7_6_8, 3)
assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
| 1 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
lowerCAmelCase__ = {
"configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"],
"tokenization_tapas": ["TapasTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
"TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST",
"TapasForMaskedLM",
"TapasForQuestionAnswering",
"TapasForSequenceClassification",
"TapasModel",
"TapasPreTrainedModel",
"load_tf_weights_in_tapas",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
"TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFTapasForMaskedLM",
"TFTapasForQuestionAnswering",
"TFTapasForSequenceClassification",
"TFTapasModel",
"TFTapasPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig
from .tokenization_tapas import TapasTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tapas import (
TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasPreTrainedModel,
load_tf_weights_in_tapas,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_tapas import (
TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTapasForMaskedLM,
TFTapasForQuestionAnswering,
TFTapasForSequenceClassification,
TFTapasModel,
TFTapasPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 1 |
def _lowerCAmelCase( __A , __A ):
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def _lowerCAmelCase( __A , __A=0 ):
return sorted(__A , key=lambda __A : x[column] )
def _lowerCAmelCase( __A , __A , __A=float("inf" ) ):
for i in range(points_counts - 1 ):
for j in range(i + 1 , __A ):
UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
UpperCAmelCase = current_dis
return min_dis
def _lowerCAmelCase( __A , __A , __A=float("inf" ) ):
for i in range(min(6 , points_counts - 1 ) , __A ):
for j in range(max(0 , i - 6 ) , __A ):
UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
UpperCAmelCase = current_dis
return min_dis
def _lowerCAmelCase( __A , __A , __A ):
# base case
if points_counts <= 3:
return dis_between_closest_pair(__A , __A )
# recursion
UpperCAmelCase = points_counts // 2
UpperCAmelCase = closest_pair_of_points_sqr(
__A , points_sorted_on_y[:mid] , __A )
UpperCAmelCase = closest_pair_of_points_sqr(
__A , points_sorted_on_y[mid:] , points_counts - mid )
UpperCAmelCase = min(__A , __A )
UpperCAmelCase = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(__A )
UpperCAmelCase = dis_between_closest_in_strip(
__A , len(__A ) , __A )
return min(__A , __A )
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = column_based_sort(__A , column=0 )
UpperCAmelCase = column_based_sort(__A , column=1 )
return (
closest_pair_of_points_sqr(
__A , __A , __A )
) ** 0.5
if __name__ == "__main__":
lowerCAmelCase__ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
print("Distance:", closest_pair_of_points(points, len(points)))
| 1 | 1 |
def _lowerCAmelCase( __A ):
UpperCAmelCase = []
UpperCAmelCase = set({"(", "[", "{"} )
UpperCAmelCase = set({")", "]", "}"} )
UpperCAmelCase = {"{": "}", "[": "]", "(": ")"}
for i in range(len(__A ) ):
if s[i] in open_brackets:
stack.append(s[i] )
elif s[i] in closed_brackets and (
len(__A ) == 0 or (len(__A ) > 0 and open_to_closed[stack.pop()] != s[i])
):
return False
return len(__A ) == 0
def _lowerCAmelCase( ):
UpperCAmelCase = input("Enter sequence of brackets: " )
if is_balanced(__A ):
print(__A , "is balanced" )
else:
print(__A , "is not balanced" )
if __name__ == "__main__":
main()
| 1 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class __magic_name__ :
def __init__( self : Optional[int] ) -> Optional[Any]:
UpperCAmelCase = ""
UpperCAmelCase = ""
UpperCAmelCase = []
UpperCAmelCase = 0
UpperCAmelCase = 2_5_6
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Optional[Any] ) -> List[str]:
UpperCAmelCase = cva.imread(lowerCAmelCase__ , 0 )
UpperCAmelCase = copy.deepcopy(self.img )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="x" )
UpperCAmelCase = np.sum(lowerCAmelCase__ )
for i in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase = x[i] / self.k
self.sk += prk
UpperCAmelCase = (self.L - 1) * self.sk
if self.rem != 0:
UpperCAmelCase = int(last % last )
UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(lowerCAmelCase__ )
UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size )
UpperCAmelCase = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCAmelCase = self.img[j][i]
if num != self.last_list[num]:
UpperCAmelCase = self.last_list[num]
cva.imwrite("output_data/output.jpg" , self.img )
def _UpperCamelCase ( self : str ) -> int:
plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] )
def _UpperCamelCase ( self : Dict ) -> Optional[Any]:
cva.imshow("Output-Image" , self.img )
cva.imshow("Input-Image" , self.original_image )
cva.waitKey(5_0_0_0 )
cva.destroyAllWindows()
if __name__ == "__main__":
lowerCAmelCase__ = os.path.join(os.path.basename(__file__), "image_data/input.jpg")
lowerCAmelCase__ = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 1 | 1 |
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
lowerCAmelCase__ = {
"vocab_file": {
"allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json",
"allenai/longformer-large-4096": (
"https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json"
),
"allenai/longformer-large-4096-finetuned-triviaqa": (
"https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json"
),
"allenai/longformer-base-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json"
),
"allenai/longformer-large-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json"
),
},
"merges_file": {
"allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt",
"allenai/longformer-large-4096": (
"https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt"
),
"allenai/longformer-large-4096-finetuned-triviaqa": (
"https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt"
),
"allenai/longformer-base-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt"
),
"allenai/longformer-large-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt"
),
},
}
lowerCAmelCase__ = {
"allenai/longformer-base-4096": 4096,
"allenai/longformer-large-4096": 4096,
"allenai/longformer-large-4096-finetuned-triviaqa": 4096,
"allenai/longformer-base-4096-extra.pos.embd.only": 4096,
"allenai/longformer-large-4096-extra.pos.embd.only": 4096,
}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def _lowerCAmelCase( ):
UpperCAmelCase = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
UpperCAmelCase = bs[:]
UpperCAmelCase = 0
for b in range(2**8 ):
if b not in bs:
bs.append(__A )
cs.append(2**8 + n )
n += 1
UpperCAmelCase = [chr(__A ) for n in cs]
return dict(zip(__A , __A ) )
def _lowerCAmelCase( __A ):
UpperCAmelCase = set()
UpperCAmelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCAmelCase = char
return pairs
class __magic_name__ ( _snake_case ):
UpperCAmelCase = VOCAB_FILES_NAMES
UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase = ["""input_ids""", """attention_mask"""]
def __init__( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple="replace" , lowerCAmelCase__ : str="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Dict="<s>" , lowerCAmelCase__ : Dict="<unk>" , lowerCAmelCase__ : Optional[Any]="<pad>" , lowerCAmelCase__ : int="<mask>" , lowerCAmelCase__ : str=False , **lowerCAmelCase__ : List[Any] , ) -> List[str]:
UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , )
with open(lowerCAmelCase__ , encoding="utf-8" ) as vocab_handle:
UpperCAmelCase = json.load(lowerCAmelCase__ )
UpperCAmelCase = {v: k for k, v in self.encoder.items()}
UpperCAmelCase = errors # how to handle errors in decoding
UpperCAmelCase = bytes_to_unicode()
UpperCAmelCase = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCAmelCase__ , encoding="utf-8" ) as merges_handle:
UpperCAmelCase = merges_handle.read().split("\n" )[1:-1]
UpperCAmelCase = [tuple(merge.split() ) for merge in bpe_merges]
UpperCAmelCase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
UpperCAmelCase = {}
UpperCAmelCase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCAmelCase = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
def _UpperCamelCase ( self : List[Any] ) -> Optional[int]:
return len(self.encoder )
def _UpperCamelCase ( self : Optional[int] ) -> str:
return dict(self.encoder , **self.added_tokens_encoder )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Optional[int] ) -> int:
if token in self.cache:
return self.cache[token]
UpperCAmelCase = tuple(lowerCAmelCase__ )
UpperCAmelCase = get_pairs(lowerCAmelCase__ )
if not pairs:
return token
while True:
UpperCAmelCase = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
UpperCAmelCase , UpperCAmelCase = bigram
UpperCAmelCase = []
UpperCAmelCase = 0
while i < len(lowerCAmelCase__ ):
try:
UpperCAmelCase = word.index(lowerCAmelCase__ , lowerCAmelCase__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCAmelCase = j
if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCAmelCase = tuple(lowerCAmelCase__ )
UpperCAmelCase = new_word
if len(lowerCAmelCase__ ) == 1:
break
else:
UpperCAmelCase = get_pairs(lowerCAmelCase__ )
UpperCAmelCase = " ".join(lowerCAmelCase__ )
UpperCAmelCase = word
return word
def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : List[str] ) -> str:
UpperCAmelCase = []
for token in re.findall(self.pat , lowerCAmelCase__ ):
UpperCAmelCase = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) )
return bpe_tokens
def _UpperCamelCase ( self : str , lowerCAmelCase__ : List[str] ) -> str:
return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) )
def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : Dict ) -> Tuple:
return self.decoder.get(lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Dict ) -> Tuple:
UpperCAmelCase = "".join(lowerCAmelCase__ )
UpperCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _UpperCamelCase ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
UpperCAmelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + "\n" )
UpperCAmelCase = 0
with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
UpperCAmelCase = token_index
writer.write(" ".join(lowerCAmelCase__ ) + "\n" )
index += 1
return vocab_file, merge_file
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase = [self.cls_token_id]
UpperCAmelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _UpperCamelCase ( self : str , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1]
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
UpperCAmelCase = [self.sep_token_id]
UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _UpperCamelCase ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int]=False , **lowerCAmelCase__ : List[Any] ) -> str:
UpperCAmelCase = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()):
UpperCAmelCase = " " + text
return (text, kwargs)
| 1 |
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = LEDTokenizer
UpperCAmelCase = LEDTokenizerFast
UpperCAmelCase = True
def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
super().setUp()
UpperCAmelCase = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
UpperCAmelCase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
UpperCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
UpperCAmelCase = {"unk_token": "<unk>"}
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Union[str, Any] , **lowerCAmelCase__ : Optional[int] ) -> Optional[int]:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _UpperCamelCase ( self : str , **lowerCAmelCase__ : str ) -> Optional[int]:
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
return "lower newer", "lower newer"
@cached_property
def _UpperCamelCase ( self : Dict ) -> str:
return LEDTokenizer.from_pretrained("allenai/led-base-16384" )
@cached_property
def _UpperCamelCase ( self : int ) -> Tuple:
return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" )
@require_torch
def _UpperCamelCase ( self : Tuple ) -> List[str]:
UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
UpperCAmelCase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@require_torch
def _UpperCamelCase ( self : Union[str, Any] ) -> List[Any]:
UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt" )
self.assertIn("input_ids" , lowerCAmelCase__ )
self.assertIn("attention_mask" , lowerCAmelCase__ )
self.assertNotIn("labels" , lowerCAmelCase__ )
self.assertNotIn("decoder_attention_mask" , lowerCAmelCase__ )
@require_torch
def _UpperCamelCase ( self : int ) -> int:
UpperCAmelCase = [
"Summary of the text.",
"Another summary.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , max_length=3_2 , padding="max_length" , return_tensors="pt" )
self.assertEqual(3_2 , targets["input_ids"].shape[1] )
@require_torch
def _UpperCamelCase ( self : Any ) -> int:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(
["I am a small frog" * 1_0_2_4, "I am a small frog"] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) )
@require_torch
def _UpperCamelCase ( self : Dict ) -> Tuple:
UpperCAmelCase = ["A long paragraph for summarization."]
UpperCAmelCase = [
"Summary of the text.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase = inputs["input_ids"]
UpperCAmelCase = targets["input_ids"]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = ["Summary of the text.", "Another summary."]
UpperCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ )
UpperCAmelCase = [[0] * len(lowerCAmelCase__ ) for x in encoded_output["input_ids"]]
UpperCAmelCase = tokenizer.pad(lowerCAmelCase__ )
self.assertSequenceEqual(outputs["global_attention_mask"] , lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] ) -> int:
pass
def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = "A, <mask> AllenNLP sentence."
UpperCAmelCase = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
UpperCAmelCase = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) )
self.assertEqual(
sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , )
UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] )
UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] )
self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(
lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
self.assertSequenceEqual(
lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
| 1 | 1 |
def _lowerCAmelCase( __A = 4000000 ):
UpperCAmelCase = []
UpperCAmelCase , UpperCAmelCase = 0, 1
while b <= n:
if b % 2 == 0:
even_fibs.append(__A )
UpperCAmelCase , UpperCAmelCase = b, a + b
return sum(__A )
if __name__ == "__main__":
print(f"{solution() = }")
| 1 |
import numpy as np
from nltk.translate import meteor_score
import datasets
from datasets.config import importlib_metadata, version
lowerCAmelCase__ = version.parse(importlib_metadata.version("nltk"))
if NLTK_VERSION >= version.Version("3.6.4"):
from nltk import word_tokenize
lowerCAmelCase__ = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n"
lowerCAmelCase__ = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n"
lowerCAmelCase__ = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __magic_name__ ( datasets.Metric ):
def _UpperCamelCase ( self : int ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[
"https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score",
"https://en.wikipedia.org/wiki/METEOR",
] , )
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : List[Any] ) -> Dict:
import nltk
nltk.download("wordnet" )
if NLTK_VERSION >= version.Version("3.6.5" ):
nltk.download("punkt" )
if NLTK_VERSION >= version.Version("3.6.6" ):
nltk.download("omw-1.4" )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=0.9 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Optional[int]=0.5 ) -> Any:
if NLTK_VERSION >= version.Version("3.6.5" ):
UpperCAmelCase = [
meteor_score.single_meteor_score(
word_tokenize(lowerCAmelCase__ ) , word_tokenize(lowerCAmelCase__ ) , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ )
for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
else:
UpperCAmelCase = [
meteor_score.single_meteor_score(lowerCAmelCase__ , lowerCAmelCase__ , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ )
for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
return {"meteor": np.mean(lowerCAmelCase__ )}
| 1 | 1 |
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
lowerCAmelCase__ = logging.getLogger(__name__)
lowerCAmelCase__ = 50 # max width of layer names
lowerCAmelCase__ = 70 # max width of quantizer names
def _lowerCAmelCase( __A ):
UpperCAmelCase = parser.add_argument_group("quant_trainer arguments" )
group.add_argument("--wprec" , type=__A , default=8 , help="weight precision" )
group.add_argument("--aprec" , type=__A , default=8 , help="activation precision" )
group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" )
group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" )
group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" )
group.add_argument("--quant-disable-keyword" , type=__A , nargs="+" , help="disable quantizers by keyword" )
group.add_argument("--quant-disable-layer-module" , type=__A , help="disable quantizers by keyword under layer." )
group.add_argument("--quant-enable-layer-module" , type=__A , help="enable quantizers by keyword under layer" )
group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" )
group.add_argument("--percentile" , default=__A , type=__A , help="percentile for PercentileCalibrator" )
group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" )
group.add_argument("--clip-gelu" , metavar="N" , type=__A , help="clip gelu output maximum value to N" )
group.add_argument(
"--recalibrate-weights" , action="store_true" , help=(
"recalibrate weight amaxes by taking the max of the weights."
" amaxes will be computed with the current quantization granularity (axis)."
) , )
def _lowerCAmelCase( __A ):
if args.calibrator == "max":
UpperCAmelCase = "max"
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError("Specify --percentile when using percentile calibrator" )
UpperCAmelCase = "histogram"
elif args.calibrator == "mse":
UpperCAmelCase = "histogram"
else:
raise ValueError(F"Invalid calibrator {args.calibrator}" )
UpperCAmelCase = QuantDescriptor(num_bits=args.aprec , calib_method=__A )
UpperCAmelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(__A )
quant_nn.QuantLinear.set_default_quant_desc_weight(__A )
def _lowerCAmelCase( __A , __A , __A=False , __A=False ):
logger.info("Configuring Model for Quantization" )
logger.info(F"using quantization package {pytorch_quantization.__file__}" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(__A , ["embeddings"] , which="weight" , _disabled=__A )
if args.quant_disable:
set_quantizer_by_name(__A , [""] , _disabled=__A )
if args.quant_disable_keyword:
set_quantizer_by_name(__A , args.quant_disable_keyword , _disabled=__A )
if args.quant_disable_layer_module:
set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=__A )
if args.quant_enable_layer_module:
set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=__A )
if args.recalibrate_weights:
recalibrate_weights(__A )
if args.fuse_qkv:
fuse_qkv(__A , __A )
if args.clip_gelu:
clip_gelu(__A , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(__A )
def _lowerCAmelCase( __A ):
logger.info("Enabling Calibration" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(F"{name:80}: {module}" )
def _lowerCAmelCase( __A , __A ):
logger.info("Loading calibrated amax" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax("percentile" , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(__A )
def _lowerCAmelCase( __A , __A ):
def fusea(__A , __A , __A ):
for mod in [qq, qk, qv]:
if not hasattr(__A , "_amax" ):
print(" WARNING: NO AMAX BUFFER" )
return
UpperCAmelCase = qq._amax.detach().item()
UpperCAmelCase = qk._amax.detach().item()
UpperCAmelCase = qv._amax.detach().item()
UpperCAmelCase = max(__A , __A , __A )
qq._amax.fill_(__A )
qk._amax.fill_(__A )
qv._amax.fill_(__A )
logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" )
for name, mod in model.named_modules():
if name.endswith(".attention.self" ):
logger.info(F"FUSE_QKV: {name:{name_width}}" )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _lowerCAmelCase( __A , __A ):
for name, mod in model.named_modules():
if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ):
UpperCAmelCase = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=__A )
UpperCAmelCase = mod._input_quantizer._amax.data.detach().item()
logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" )
def _lowerCAmelCase( __A ):
for name, mod in model.named_modules():
if hasattr(__A , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None:
UpperCAmelCase = mod.weight.shape[0]
UpperCAmelCase = mod._weight_quantizer._amax.detach()
UpperCAmelCase = torch.ones(__A , dtype=amax.dtype , device=amax.device ) * amax
print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" )
def _lowerCAmelCase( __A ):
for name, mod in model.named_modules():
if hasattr(__A , "_weight_quantizer" ):
if not hasattr(mod.weight_quantizer , "_amax" ):
print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
UpperCAmelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
UpperCAmelCase = set(range(len(mod.weight.size() ) ) ) - axis_set
UpperCAmelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__A , keepdims=__A ).detach()
logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" )
UpperCAmelCase = amax
def _lowerCAmelCase( __A , __A=25 , __A=180 , __A=None ):
if ignore is None:
UpperCAmelCase = []
elif not isinstance(__A , __A ):
UpperCAmelCase = [ignore]
UpperCAmelCase = 0
for name, mod in model.named_modules():
if not hasattr(__A , "weight" ):
continue
UpperCAmelCase = max(__A , len(__A ) )
for name, mod in model.named_modules():
UpperCAmelCase = getattr(__A , "_input_quantizer" , __A )
UpperCAmelCase = getattr(__A , "_weight_quantizer" , __A )
if not hasattr(__A , "weight" ):
continue
if type(__A ) in ignore:
continue
if [True for s in ignore if type(__A ) is str and s in name]:
continue
UpperCAmelCase = F"Act:{input_q.extra_repr()}"
UpperCAmelCase = F"Wgt:{weight_q.extra_repr()}"
UpperCAmelCase = F"{name:{name_width}} {act_str} {wgt_str}"
if len(__A ) <= line_width:
logger.info(__A )
else:
logger.info(F"{name:{name_width}} {act_str}" )
logger.info(F"{' ':{name_width}} {wgt_str}" )
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
for name, mod in model.named_modules():
if isinstance(__A , pytorch_quantization.nn.TensorQuantizer ):
print(F"{name:80} {mod}" )
count += 1
print(F"{count} TensorQuantizers found in model" )
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
UpperCAmelCase = getattr(__A , __A , __A )
if quantizer_mod is not None:
assert hasattr(__A , __A )
setattr(__A , __A , __A )
else:
logger.warning(F"{name} has no {quantizer}" )
def _lowerCAmelCase( __A , __A , __A="both" , **__A ):
UpperCAmelCase = F"Warning: changing {which} quantizers of {name:{qname_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
if which in ["input", "both"]:
set_quantizer(__A , __A , "_input_quantizer" , __A , __A )
if which in ["weight", "both"]:
set_quantizer(__A , __A , "_weight_quantizer" , __A , __A )
logger.info(__A )
def _lowerCAmelCase( __A , __A , **__A ):
for name, mod in model.named_modules():
if hasattr(__A , "_input_quantizer" ) or hasattr(__A , "_weight_quantizer" ):
for n in names:
if re.search(__A , __A ):
set_quantizers(__A , __A , **__A )
elif name.endswith("_quantizer" ):
for n in names:
if re.search(__A , __A ):
UpperCAmelCase = F"Warning: changing {name:{name_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
setattr(__A , __A , __A )
logger.info(__A )
| 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json",
}
class __magic_name__ ( _snake_case ):
UpperCAmelCase = """lxmert"""
UpperCAmelCase = {}
def __init__( self : int , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : List[str]=7_6_8 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : List[Any]=9_5_0_0 , lowerCAmelCase__ : Any=1_6_0_0 , lowerCAmelCase__ : Union[str, Any]=4_0_0 , lowerCAmelCase__ : Tuple=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : str=1e-1_2 , lowerCAmelCase__ : str=9 , lowerCAmelCase__ : int=5 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : List[Any]=2_0_4_8 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Dict=6.67 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Tuple=True , **lowerCAmelCase__ : List[Any] , ) -> Dict:
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = num_qa_labels
UpperCAmelCase = num_object_labels
UpperCAmelCase = num_attr_labels
UpperCAmelCase = l_layers
UpperCAmelCase = x_layers
UpperCAmelCase = r_layers
UpperCAmelCase = visual_feat_dim
UpperCAmelCase = visual_pos_dim
UpperCAmelCase = visual_loss_normalizer
UpperCAmelCase = task_matched
UpperCAmelCase = task_mask_lm
UpperCAmelCase = task_obj_predict
UpperCAmelCase = task_qa
UpperCAmelCase = visual_obj_loss
UpperCAmelCase = visual_attr_loss
UpperCAmelCase = visual_feat_loss
UpperCAmelCase = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers}
super().__init__(**lowerCAmelCase__ )
| 1 | 1 |
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def _lowerCAmelCase( __A = 100 ):
UpperCAmelCase = 1
UpperCAmelCase = 2
for i in range(2 , max_n + 1 ):
UpperCAmelCase = pre_numerator
UpperCAmelCase = 2 * i // 3 if i % 3 == 0 else 1
UpperCAmelCase = cur_numerator
UpperCAmelCase = e_cont * pre_numerator + temp
return sum_digits(__A )
if __name__ == "__main__":
print(f"{solution() = }")
| 1 |
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def _lowerCAmelCase( __A = 100 ):
UpperCAmelCase = 1
UpperCAmelCase = 2
for i in range(2 , max_n + 1 ):
UpperCAmelCase = pre_numerator
UpperCAmelCase = 2 * i // 3 if i % 3 == 0 else 1
UpperCAmelCase = cur_numerator
UpperCAmelCase = e_cont * pre_numerator + temp
return sum_digits(__A )
if __name__ == "__main__":
print(f"{solution() = }")
| 1 | 1 |
def _lowerCAmelCase( __A = "The quick brown fox jumps over the lazy dog" , ):
UpperCAmelCase = set()
# Replace all the whitespace in our sentence
UpperCAmelCase = input_str.replace(" " , "" )
for alpha in input_str:
if "a" <= alpha.lower() <= "z":
frequency.add(alpha.lower() )
return len(__A ) == 26
def _lowerCAmelCase( __A = "The quick brown fox jumps over the lazy dog" , ):
UpperCAmelCase = [False] * 26
for char in input_str:
if char.islower():
UpperCAmelCase = True
elif char.isupper():
UpperCAmelCase = True
return all(__A )
def _lowerCAmelCase( __A = "The quick brown fox jumps over the lazy dog" , ):
return len({char for char in input_str.lower() if char.isalpha()} ) == 26
def _lowerCAmelCase( ):
from timeit import timeit
UpperCAmelCase = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest"
print(timeit("is_pangram()" , setup=__A ) )
print(timeit("is_pangram_faster()" , setup=__A ) )
print(timeit("is_pangram_fastest()" , setup=__A ) )
# 5.348480500048026, 2.6477354579837993, 1.8470395830227062
# 5.036091582966037, 2.644472333951853, 1.8869528750656173
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 1 |
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 1 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json",
}
class __magic_name__ ( _snake_case ):
UpperCAmelCase = """mgp-str"""
def __init__( self : Union[str, Any] , lowerCAmelCase__ : str=[3_2, 1_2_8] , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[str]=2_7 , lowerCAmelCase__ : int=3_8 , lowerCAmelCase__ : List[Any]=5_0_2_5_7 , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : Optional[int]=7_6_8 , lowerCAmelCase__ : Optional[int]=1_2 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : Optional[int]=4.0 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Tuple=1e-5 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : int=0.0 , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : Optional[int]=0.02 , **lowerCAmelCase__ : str , ) -> Dict:
super().__init__(**lowerCAmelCase__ )
UpperCAmelCase = image_size
UpperCAmelCase = patch_size
UpperCAmelCase = num_channels
UpperCAmelCase = max_token_length
UpperCAmelCase = num_character_labels
UpperCAmelCase = num_bpe_labels
UpperCAmelCase = num_wordpiece_labels
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = mlp_ratio
UpperCAmelCase = distilled
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = drop_rate
UpperCAmelCase = qkv_bias
UpperCAmelCase = attn_drop_rate
UpperCAmelCase = drop_path_rate
UpperCAmelCase = output_aa_attentions
UpperCAmelCase = initializer_range
| 1 |
import numpy
# List of input, output pairs
lowerCAmelCase__ = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
lowerCAmelCase__ = (((515, 22, 13), 555), ((61, 35, 49), 150))
lowerCAmelCase__ = [2, 4, 1, 5]
lowerCAmelCase__ = len(train_data)
lowerCAmelCase__ = 0.0_0_9
def _lowerCAmelCase( __A , __A="train" ):
return calculate_hypothesis_value(__A , __A ) - output(
__A , __A )
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
for i in range(len(__A ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def _lowerCAmelCase( __A , __A ):
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def _lowerCAmelCase( __A , __A ):
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def _lowerCAmelCase( __A , __A=m ):
UpperCAmelCase = 0
for i in range(__A ):
if index == -1:
summation_value += _error(__A )
else:
summation_value += _error(__A ) * train_data[i][0][index]
return summation_value
def _lowerCAmelCase( __A ):
UpperCAmelCase = summation_of_cost_derivative(__A , __A ) / m
return cost_derivative_value
def _lowerCAmelCase( ):
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCAmelCase = 0.000002
UpperCAmelCase = 0
UpperCAmelCase = 0
while True:
j += 1
UpperCAmelCase = [0, 0, 0, 0]
for i in range(0 , len(__A ) ):
UpperCAmelCase = get_cost_derivative(i - 1 )
UpperCAmelCase = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
__A , __A , atol=__A , rtol=__A , ):
break
UpperCAmelCase = temp_parameter_vector
print(("Number of iterations:", j) )
def _lowerCAmelCase( ):
for i in range(len(__A ) ):
print(("Actual output value:", output(__A , "test" )) )
print(("Hypothesis output:", calculate_hypothesis_value(__A , "test" )) )
if __name__ == "__main__":
run_gradient_descent()
print("\nTesting gradient descent for a linear hypothesis function.\n")
test_gradient_descent()
| 1 | 1 |
from collections.abc import Generator
from math import sin
def _lowerCAmelCase( __A ):
if len(__A ) != 32:
raise ValueError("Input must be of length 32" )
UpperCAmelCase = B""
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def _lowerCAmelCase( __A ):
if i < 0:
raise ValueError("Input must be non-negative" )
UpperCAmelCase = format(__A , "08x" )[-8:]
UpperCAmelCase = B""
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" )
return little_endian_hex
def _lowerCAmelCase( __A ):
UpperCAmelCase = B""
for char in message:
bit_string += format(__A , "08b" ).encode("utf-8" )
UpperCAmelCase = format(len(__A ) , "064b" ).encode("utf-8" )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(__A ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def _lowerCAmelCase( __A ):
if len(__A ) % 512 != 0:
raise ValueError("Input must have length that's a multiple of 512" )
for pos in range(0 , len(__A ) , 512 ):
UpperCAmelCase = bit_string[pos : pos + 512]
UpperCAmelCase = []
for i in range(0 , 512 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def _lowerCAmelCase( __A ):
if i < 0:
raise ValueError("Input must be non-negative" )
UpperCAmelCase = format(__A , "032b" )
UpperCAmelCase = ""
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(__A , 2 )
def _lowerCAmelCase( __A , __A ):
return (a + b) % 2**32
def _lowerCAmelCase( __A , __A ):
if i < 0:
raise ValueError("Input must be non-negative" )
if shift < 0:
raise ValueError("Shift must be non-negative" )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def _lowerCAmelCase( __A ):
UpperCAmelCase = preprocess(__A )
UpperCAmelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
UpperCAmelCase = 0x6_7_4_5_2_3_0_1
UpperCAmelCase = 0xE_F_C_D_A_B_8_9
UpperCAmelCase = 0x9_8_B_A_D_C_F_E
UpperCAmelCase = 0x1_0_3_2_5_4_7_6
UpperCAmelCase = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(__A ):
UpperCAmelCase = aa
UpperCAmelCase = ba
UpperCAmelCase = ca
UpperCAmelCase = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
UpperCAmelCase = d ^ (b & (c ^ d))
UpperCAmelCase = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
UpperCAmelCase = c ^ (d & (b ^ c))
UpperCAmelCase = (5 * i + 1) % 16
elif i <= 47:
UpperCAmelCase = b ^ c ^ d
UpperCAmelCase = (3 * i + 5) % 16
else:
UpperCAmelCase = c ^ (b | not_aa(__A ))
UpperCAmelCase = (7 * i) % 16
UpperCAmelCase = (f + a + added_consts[i] + block_words[g]) % 2**32
UpperCAmelCase = d
UpperCAmelCase = c
UpperCAmelCase = b
UpperCAmelCase = sum_aa(__A , left_rotate_aa(__A , shift_amounts[i] ) )
# Add hashed chunk to running total
UpperCAmelCase = sum_aa(__A , __A )
UpperCAmelCase = sum_aa(__A , __A )
UpperCAmelCase = sum_aa(__A , __A )
UpperCAmelCase = sum_aa(__A , __A )
UpperCAmelCase = reformat_hex(__A ) + reformat_hex(__A ) + reformat_hex(__A ) + reformat_hex(__A )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |
def _lowerCAmelCase( __A , __A , __A ):
if n == 0:
return 1
elif n % 2 == 1:
return (binary_exponentiation(__A , n - 1 , __A ) * a) % mod
else:
UpperCAmelCase = binary_exponentiation(__A , n / 2 , __A )
return (b * b) % mod
# a prime number
lowerCAmelCase__ = 701
lowerCAmelCase__ = 1000000000
lowerCAmelCase__ = 10
# using binary exponentiation function, O(log(p)):
print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p)
print((a / b) % p == (a * b ** (p - 2)) % p)
| 1 | 1 |
from __future__ import annotations
from collections.abc import Callable
def _lowerCAmelCase( __A , __A , __A , __A = 100 , ):
UpperCAmelCase = x_start
UpperCAmelCase = fnc(__A )
UpperCAmelCase = 0.0
for _ in range(__A ):
# Approximates small segments of curve as linear and solve
# for trapezoidal area
UpperCAmelCase = (x_end - x_start) / steps + xa
UpperCAmelCase = fnc(__A )
area += abs(fxa + fxa ) * (xa - xa) / 2
# Increment step
UpperCAmelCase = xa
UpperCAmelCase = fxa
return area
if __name__ == "__main__":
def _lowerCAmelCase( __A ):
return x**3 + x**2
print("f(x) = x^3 + x^2")
print("The area between the curve, x = -5, x = 5 and the x axis is:")
lowerCAmelCase__ = 10
while i <= 100000:
print(f"with {i} steps: {trapezoidal_area(f, -5, 5, i)}")
i *= 10
| 1 |
lowerCAmelCase__ = {
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
lowerCAmelCase__ = {value: key for key, value in encode_dict.items()}
def _lowerCAmelCase( __A ):
UpperCAmelCase = ""
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception("encode() accepts only letters of the alphabet and spaces" )
return encoded
def _lowerCAmelCase( __A ):
if set(__A ) - {"A", "B", " "} != set():
raise Exception("decode() accepts only 'A', 'B' and spaces" )
UpperCAmelCase = ""
for word in coded.split():
while len(__A ) != 0:
decoded += decode_dict[word[:5]]
UpperCAmelCase = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
def _lowerCAmelCase( __A ):
assert column_title.isupper()
UpperCAmelCase = 0
UpperCAmelCase = len(__A ) - 1
UpperCAmelCase = 0
while index >= 0:
UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , __A )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 |
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
lowerCAmelCase__ = {"UserAgent": UserAgent().random}
def _lowerCAmelCase( __A ):
UpperCAmelCase = script.contents[0]
UpperCAmelCase = json.loads(data[data.find("{\"config\"" ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class __magic_name__ :
def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Any:
UpperCAmelCase = f"https://www.instagram.com/{username}/"
UpperCAmelCase = self.get_json()
def _UpperCamelCase ( self : List[str] ) -> dict:
UpperCAmelCase = requests.get(self.url , headers=lowerCAmelCase__ ).text
UpperCAmelCase = BeautifulSoup(lowerCAmelCase__ , "html.parser" ).find_all("script" )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self : Tuple ) -> str:
return f"{self.__class__.__name__}('{self.username}')"
def __str__( self : Optional[int] ) -> str:
return f"{self.fullname} ({self.username}) is {self.biography}"
@property
def _UpperCamelCase ( self : Any ) -> str:
return self.user_data["username"]
@property
def _UpperCamelCase ( self : List[Any] ) -> str:
return self.user_data["full_name"]
@property
def _UpperCamelCase ( self : List[str] ) -> str:
return self.user_data["biography"]
@property
def _UpperCamelCase ( self : Optional[int] ) -> str:
return self.user_data["business_email"]
@property
def _UpperCamelCase ( self : str ) -> str:
return self.user_data["external_url"]
@property
def _UpperCamelCase ( self : int ) -> int:
return self.user_data["edge_followed_by"]["count"]
@property
def _UpperCamelCase ( self : List[Any] ) -> int:
return self.user_data["edge_follow"]["count"]
@property
def _UpperCamelCase ( self : List[str] ) -> int:
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def _UpperCamelCase ( self : Tuple ) -> str:
return self.user_data["profile_pic_url_hd"]
@property
def _UpperCamelCase ( self : Optional[int] ) -> bool:
return self.user_data["is_verified"]
@property
def _UpperCamelCase ( self : Optional[Any] ) -> bool:
return self.user_data["is_private"]
def _lowerCAmelCase( __A = "github" ):
import os
if os.environ.get("CI" ):
return # test failing on GitHub Actions
UpperCAmelCase = InstagramUser(__A )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , __A )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 150
assert instagram_user.number_of_followers > 120000
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "[email protected]"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith("https://instagram." )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase__ = InstagramUser("github")
print(instagram_user)
print(f"{instagram_user.number_of_posts = }")
print(f"{instagram_user.number_of_followers = }")
print(f"{instagram_user.number_of_followings = }")
print(f"{instagram_user.email = }")
print(f"{instagram_user.website = }")
print(f"{instagram_user.profile_picture_url = }")
print(f"{instagram_user.is_verified = }")
print(f"{instagram_user.is_private = }")
| 1 | 1 |
def _lowerCAmelCase( __A , __A ):
return 1 if input_a == input_a else 0
def _lowerCAmelCase( ):
assert xnor_gate(0 , 0 ) == 1
assert xnor_gate(0 , 1 ) == 0
assert xnor_gate(1 , 0 ) == 0
assert xnor_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(xnor_gate(0, 0))
print(xnor_gate(0, 1))
print(xnor_gate(1, 0))
print(xnor_gate(1, 1))
| 1 |
import unittest
import numpy as np
def _lowerCAmelCase( __A , __A , __A , __A = None , ):
UpperCAmelCase = np.shape(__A )
UpperCAmelCase = np.shape(__A )
UpperCAmelCase = np.shape(__A )
if shape_a[0] != shape_b[0]:
UpperCAmelCase = (
"Expected the same number of rows for A and B. "
F"Instead found A of size {shape_a} and B of size {shape_b}"
)
raise ValueError(__A )
if shape_b[1] != shape_c[1]:
UpperCAmelCase = (
"Expected the same number of columns for B and C. "
F"Instead found B of size {shape_b} and C of size {shape_c}"
)
raise ValueError(__A )
UpperCAmelCase = pseudo_inv
if a_inv is None:
try:
UpperCAmelCase = np.linalg.inv(__A )
except np.linalg.LinAlgError:
raise ValueError(
"Input matrix A is not invertible. Cannot compute Schur complement." )
return mat_c - mat_b.T @ a_inv @ mat_b
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : List[str] ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1], [6, 3]] )
UpperCAmelCase = schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = np.block([[a, b], [b.T, c]] )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
UpperCAmelCase = np.linalg.det(lowerCAmelCase__ )
self.assertAlmostEqual(lowerCAmelCase__ , det_a * det_s )
def _UpperCamelCase ( self : str ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1], [6, 3]] )
with self.assertRaises(lowerCAmelCase__ ):
schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def _UpperCamelCase ( self : Dict ) -> None:
UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(lowerCAmelCase__ ):
schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 1 | 1 |
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class __magic_name__ :
def __init__( self : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any]=9_9 , lowerCAmelCase__ : int=1_3 , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : Optional[int]=9 , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[int]=3_2 , lowerCAmelCase__ : Union[str, Any]=5 , lowerCAmelCase__ : Tuple=4 , lowerCAmelCase__ : int=3_7 , lowerCAmelCase__ : Any=8 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : Tuple=0.002 , lowerCAmelCase__ : Any=1 , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : List[str]=0 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[str]=None , ) -> List[str]:
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = encoder_seq_length
UpperCAmelCase = decoder_seq_length
# For common tests
UpperCAmelCase = self.decoder_seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_attention_mask
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = d_ff
UpperCAmelCase = relative_attention_num_buckets
UpperCAmelCase = dropout_rate
UpperCAmelCase = initializer_factor
UpperCAmelCase = eos_token_id
UpperCAmelCase = pad_token_id
UpperCAmelCase = decoder_start_token_id
UpperCAmelCase = None
UpperCAmelCase = decoder_layers
def _UpperCamelCase ( self : int ) -> List[Any]:
return TaConfig.from_pretrained("google/umt5-base" )
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Optional[int]=None , ) -> str:
if attention_mask is None:
UpperCAmelCase = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=lowerCAmelCase__ )
if decoder_head_mask is None:
UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=lowerCAmelCase__ )
if cross_attn_head_mask is None:
UpperCAmelCase = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=lowerCAmelCase__ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _UpperCamelCase ( self : Dict ) -> Any:
UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 )
UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 )
UpperCAmelCase = self.get_config()
UpperCAmelCase = config.num_attention_heads
UpperCAmelCase = self.prepare_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
return config, input_dict
def _UpperCamelCase ( self : Union[str, Any] ) -> Any:
UpperCAmelCase , UpperCAmelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def _UpperCamelCase ( self : Dict ) -> List[str]:
return TaConfig(
vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCamelCase ( self : Optional[Any] ) -> List[str]:
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCamelCase ( self : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , ) -> List[str]:
UpperCAmelCase = UMTaModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
UpperCAmelCase = model(
input_ids=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , )
UpperCAmelCase = model(input_ids=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ )
UpperCAmelCase = result.last_hidden_state
UpperCAmelCase = result.past_key_values
UpperCAmelCase = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(lowerCAmelCase__ ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _UpperCamelCase ( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , ) -> Optional[Any]:
UpperCAmelCase = UMTaModel(config=lowerCAmelCase__ ).get_decoder().to(lowerCAmelCase__ ).eval()
# first forward pass
UpperCAmelCase = model(lowerCAmelCase__ , use_cache=lowerCAmelCase__ )
UpperCAmelCase = model(lowerCAmelCase__ )
UpperCAmelCase = model(lowerCAmelCase__ , use_cache=lowerCAmelCase__ )
self.parent.assertTrue(len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) )
self.parent.assertTrue(len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) + 1 )
UpperCAmelCase , UpperCAmelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase = model(lowerCAmelCase__ )["last_hidden_state"]
UpperCAmelCase = model(lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )["last_hidden_state"]
# select random slice
UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach()
UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , ) -> Optional[int]:
UpperCAmelCase = UMTaModel(config=lowerCAmelCase__ ).to(lowerCAmelCase__ ).half().eval()
UpperCAmelCase = model(**lowerCAmelCase__ )["last_hidden_state"]
self.parent.assertFalse(torch.isnan(lowerCAmelCase__ ).any().item() )
@require_torch
class __magic_name__ ( _snake_case , _snake_case , _snake_case , unittest.TestCase ):
UpperCAmelCase = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
UpperCAmelCase = (UMTaForConditionalGeneration,) if is_torch_available() else ()
UpperCAmelCase = (
{
"""conversational""": UMTaForConditionalGeneration,
"""feature-extraction""": UMTaModel,
"""summarization""": UMTaForConditionalGeneration,
"""text2text-generation""": UMTaForConditionalGeneration,
"""translation""": UMTaForConditionalGeneration,
"""question-answering""": UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
UpperCAmelCase = True
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = True
UpperCAmelCase = True
# The small UMT5 model needs higher percentages for CPU/MP tests
UpperCAmelCase = [0.8, 0.9]
def _UpperCamelCase ( self : Union[str, Any] ) -> Any:
UpperCAmelCase = UMTaModelTester(self )
@unittest.skip("Test has a segmentation fault on torch 1.8.0" )
def _UpperCamelCase ( self : Tuple ) -> List[str]:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
UpperCAmelCase = UMTaModel(config_and_inputs[0] ).to(lowerCAmelCase__ )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
lowerCAmelCase__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"{tmpdirname}/t5_test.onnx" , export_params=lowerCAmelCase__ , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , )
@unittest.skipIf(torch_device == "cpu" , "Cant do half precision" )
def _UpperCamelCase ( self : Optional[Any] ) -> int:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*lowerCAmelCase__ )
def _UpperCamelCase ( self : int ) -> Optional[Any]:
UpperCAmelCase = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
UpperCAmelCase = config_and_inputs[0]
UpperCAmelCase = UMTaForConditionalGeneration(lowerCAmelCase__ ).eval()
model.to(lowerCAmelCase__ )
UpperCAmelCase = {
"head_mask": torch.zeros(config.num_layers , config.num_heads , device=lowerCAmelCase__ ),
"decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=lowerCAmelCase__ ),
"cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=lowerCAmelCase__ ),
}
for attn_name, (name, mask) in zip(lowerCAmelCase__ , head_masking.items() ):
UpperCAmelCase = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
UpperCAmelCase = torch.ones(
config.num_decoder_layers , config.num_heads , device=lowerCAmelCase__ )
UpperCAmelCase = model.generate(
config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=lowerCAmelCase__ , return_dict_in_generate=lowerCAmelCase__ , **lowerCAmelCase__ , )
# We check the state of decoder_attentions and cross_attentions just from the last step
UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip("Does not work on the tiny model as we keep hitting edge cases." )
def _UpperCamelCase ( self : Optional[Any] ) -> Optional[int]:
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class __magic_name__ ( unittest.TestCase ):
@slow
@unittest.skip(
"Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" )
def _UpperCamelCase ( self : Tuple ) -> str:
UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=lowerCAmelCase__ ).to(lowerCAmelCase__ )
UpperCAmelCase = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=lowerCAmelCase__ , legacy=lowerCAmelCase__ )
UpperCAmelCase = [
"Bonjour monsieur <extra_id_0> bien <extra_id_1>.",
"No se como puedo <extra_id_0>.",
"This is the reason why we <extra_id_0> them.",
"The <extra_id_0> walks in <extra_id_1>, seats",
"A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.",
]
UpperCAmelCase = tokenizer(lowerCAmelCase__ , return_tensors="pt" , padding=lowerCAmelCase__ ).input_ids
# fmt: off
UpperCAmelCase = torch.tensor(
[
[ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1],
] )
# fmt: on
torch.testing.assert_allclose(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = model.generate(input_ids.to(lowerCAmelCase__ ) )
UpperCAmelCase = [
"<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>",
"<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
"<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
"<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
"<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
]
UpperCAmelCase = tokenizer.batch_decode(lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
| 1 |
import argparse
import os
import re
import numpy as np
import PIL
import torch
from timm import create_model
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor
from accelerate import Accelerator
def _lowerCAmelCase( __A ):
UpperCAmelCase = fname.split(os.path.sep )[-1]
return re.search(r"^(.*)_\d+\.jpg$" , __A ).groups()[0]
class __magic_name__ ( _snake_case ):
def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : int=None ) -> Optional[Any]:
UpperCAmelCase = file_names
UpperCAmelCase = image_transform
UpperCAmelCase = label_to_id
def __len__( self : Tuple ) -> List[str]:
return len(self.file_names )
def __getitem__( self : Optional[int] , lowerCAmelCase__ : Tuple ) -> Dict:
UpperCAmelCase = self.file_names[idx]
UpperCAmelCase = PIL.Image.open(lowerCAmelCase__ )
UpperCAmelCase = raw_image.convert("RGB" )
if self.image_transform is not None:
UpperCAmelCase = self.image_transform(lowerCAmelCase__ )
UpperCAmelCase = extract_label(lowerCAmelCase__ )
if self.label_to_id is not None:
UpperCAmelCase = self.label_to_id[label]
return {"image": image, "label": label}
def _lowerCAmelCase( __A , __A ):
# Initialize accelerator
if args.with_tracking:
UpperCAmelCase = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir )
else:
UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase = config["lr"]
UpperCAmelCase = int(config["num_epochs"] )
UpperCAmelCase = int(config["seed"] )
UpperCAmelCase = int(config["batch_size"] )
UpperCAmelCase = config["image_size"]
if not isinstance(__A , (list, tuple) ):
UpperCAmelCase = (image_size, image_size)
# Parse out whether we are saving every epoch or after a certain number of batches
if hasattr(args.checkpointing_steps , "isdigit" ):
if args.checkpointing_steps == "epoch":
UpperCAmelCase = args.checkpointing_steps
elif args.checkpointing_steps.isdigit():
UpperCAmelCase = int(args.checkpointing_steps )
else:
raise ValueError(
F"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." )
else:
UpperCAmelCase = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
UpperCAmelCase = os.path.split(__A )[-1].split("." )[0]
accelerator.init_trackers(__A , __A )
# Grab all the image filenames
UpperCAmelCase = [os.path.join(args.data_dir , __A ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )]
# Build the label correspondences
UpperCAmelCase = [extract_label(__A ) for fname in file_names]
UpperCAmelCase = list(set(__A ) )
id_to_label.sort()
UpperCAmelCase = {lbl: i for i, lbl in enumerate(__A )}
# Set the seed before splitting the data.
np.random.seed(__A )
torch.manual_seed(__A )
torch.cuda.manual_seed_all(__A )
# Split our filenames between train and validation
UpperCAmelCase = np.random.permutation(len(__A ) )
UpperCAmelCase = int(0.8 * len(__A ) )
UpperCAmelCase = random_perm[:cut]
UpperCAmelCase = random_perm[cut:]
# For training we use a simple RandomResizedCrop
UpperCAmelCase = Compose([RandomResizedCrop(__A , scale=(0.5, 1.0) ), ToTensor()] )
UpperCAmelCase = PetsDataset(
[file_names[i] for i in train_split] , image_transform=__A , label_to_id=__A )
# For evaluation, we use a deterministic Resize
UpperCAmelCase = Compose([Resize(__A ), ToTensor()] )
UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=__A , label_to_id=__A )
# Instantiate dataloaders.
UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 )
UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase = create_model("resnet50d" , pretrained=__A , num_classes=len(__A ) )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCAmelCase = model.to(accelerator.device )
# Freezing the base model
for param in model.parameters():
UpperCAmelCase = False
for param in model.get_classifier().parameters():
UpperCAmelCase = True
# We normalize the batches of images to be a bit faster.
UpperCAmelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device )
UpperCAmelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device )
# Instantiate optimizer
UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 )
# Instantiate learning rate scheduler
UpperCAmelCase = OneCycleLR(optimizer=__A , max_lr=__A , epochs=__A , steps_per_epoch=len(__A ) )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare(
__A , __A , __A , __A , __A )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase = 0
# We also need to keep track of the starting epoch so files are named properly
UpperCAmelCase = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(F"Resumed from checkpoint: {args.resume_from_checkpoint}" )
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase = os.path.basename(args.resume_from_checkpoint )
else:
# Get the most recent checkpoint
UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()]
dirs.sort(key=os.path.getctime )
UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
UpperCAmelCase = os.path.splitext(__A )[0]
if "epoch" in training_difference:
UpperCAmelCase = int(training_difference.replace("epoch_" , "" ) ) + 1
UpperCAmelCase = None
else:
UpperCAmelCase = int(training_difference.replace("step_" , "" ) )
UpperCAmelCase = resume_step // len(__A )
resume_step -= starting_epoch * len(__A )
# Now we train the model
for epoch in range(__A , __A ):
model.train()
if args.with_tracking:
UpperCAmelCase = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We need to skip steps until we reach the resumed step
UpperCAmelCase = accelerator.skip_first_batches(__A , __A )
overall_step += resume_step
else:
# After the first iteration though, we need to go back to the original dataloader
UpperCAmelCase = train_dataloader
for batch in active_dataloader:
# We could avoid this line since we set the accelerator with `device_placement=True`.
UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()}
UpperCAmelCase = (batch["image"] - mean) / std
UpperCAmelCase = model(__A )
UpperCAmelCase = torch.nn.functional.cross_entropy(__A , batch["label"] )
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(__A )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
if isinstance(__A , __A ):
UpperCAmelCase = F"step_{overall_step}"
if overall_step % checkpointing_steps == 0:
if args.output_dir is not None:
UpperCAmelCase = os.path.join(args.output_dir , __A )
accelerator.save_state(__A )
model.eval()
UpperCAmelCase = 0
UpperCAmelCase = 0
for step, batch in enumerate(__A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()}
UpperCAmelCase = (batch["image"] - mean) / std
with torch.no_grad():
UpperCAmelCase = model(__A )
UpperCAmelCase = outputs.argmax(dim=-1 )
UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["label"]) )
UpperCAmelCase = predictions == references
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
UpperCAmelCase = accurate.item() / num_elems
# Use accelerator.print to print only on the main process.
accelerator.print(F"epoch {epoch}: {100 * eval_metric:.2f}" )
if args.with_tracking:
accelerator.log(
{
"accuracy": 100 * eval_metric,
"train_loss": total_loss.item() / len(__A ),
"epoch": epoch,
} , step=__A , )
if checkpointing_steps == "epoch":
UpperCAmelCase = F"epoch_{epoch}"
if args.output_dir is not None:
UpperCAmelCase = os.path.join(args.output_dir , __A )
accelerator.save_state(__A )
if args.with_tracking:
accelerator.end_training()
def _lowerCAmelCase( ):
UpperCAmelCase = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument("--data_dir" , required=__A , help="The data folder on disk." )
parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." )
parser.add_argument(
"--mixed_precision" , type=__A , default=__A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
parser.add_argument(
"--checkpointing_steps" , type=__A , default=__A , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , )
parser.add_argument(
"--output_dir" , type=__A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , )
parser.add_argument(
"--resume_from_checkpoint" , type=__A , default=__A , help="If the training should continue from a checkpoint folder." , )
parser.add_argument(
"--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , )
parser.add_argument(
"--project_dir" , type=__A , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , )
UpperCAmelCase = parser.parse_args()
UpperCAmelCase = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224}
training_function(__A , __A )
if __name__ == "__main__":
main()
| 1 | 1 |
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
lowerCAmelCase__ = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class __magic_name__ ( _snake_case ):
def __init__( self : str , *lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : List[str]=None , **lowerCAmelCase__ : List[str] ) -> Optional[Any]:
super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = eval_examples
UpperCAmelCase = post_process_function
UpperCAmelCase = quant_trainer_args
UpperCAmelCase = 1_2_8 # default number of calibration samples
def _UpperCamelCase ( self : int , lowerCAmelCase__ : Dict=None ) -> Optional[int]:
if calib_dataset is None and self.calib_dataset is None:
raise ValueError("Trainer: calibration requires an calib_dataset." )
UpperCAmelCase = calib_dataset if calib_dataset is not None else self.calib_dataset
UpperCAmelCase = self._remove_unused_columns(lowerCAmelCase__ , description="Calibration" )
return DataLoader(
lowerCAmelCase__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=lowerCAmelCase__ , )
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : Any=None ) -> int:
UpperCAmelCase = self.train_dataset if calib_dataset is None else calib_dataset
UpperCAmelCase = self.get_calib_dataloader(lowerCAmelCase__ )
UpperCAmelCase = self.model
quant_trainer.configure_model(lowerCAmelCase__ , self.quant_trainer_args , calib=lowerCAmelCase__ )
model.eval()
quant_trainer.enable_calibration(lowerCAmelCase__ )
logger.info("***** Running calibration *****" )
logger.info(f" Num examples = {self.calib_num}" )
logger.info(f" Batch size = {calib_dataloader.batch_size}" )
for step, inputs in enumerate(lowerCAmelCase__ ):
# Prediction step
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self.prediction_step(lowerCAmelCase__ , lowerCAmelCase__ , prediction_loss_only=lowerCAmelCase__ )
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(lowerCAmelCase__ , self.quant_trainer_args )
UpperCAmelCase = model
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str = "eval" ) -> List[Any]:
UpperCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset
UpperCAmelCase = self.get_eval_dataloader(lowerCAmelCase__ )
UpperCAmelCase = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
UpperCAmelCase = self.compute_metrics
UpperCAmelCase = None
UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
UpperCAmelCase = eval_loop(
lowerCAmelCase__ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , )
finally:
UpperCAmelCase = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
UpperCAmelCase = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , output.predictions )
UpperCAmelCase = self.compute_metrics(lowerCAmelCase__ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"{metric_key_prefix}_" ):
UpperCAmelCase = metrics.pop(lowerCAmelCase__ )
self.log(lowerCAmelCase__ )
else:
UpperCAmelCase = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
UpperCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCAmelCase__ )
return metrics
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : str=None , lowerCAmelCase__ : str = "test" ) -> Any:
UpperCAmelCase = self.get_test_dataloader(lowerCAmelCase__ )
# Temporarily disable metric computation, we will do it in the loop here.
UpperCAmelCase = self.compute_metrics
UpperCAmelCase = None
UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
UpperCAmelCase = eval_loop(
lowerCAmelCase__ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , )
finally:
UpperCAmelCase = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
UpperCAmelCase = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , output.predictions , "predict" )
UpperCAmelCase = self.compute_metrics(lowerCAmelCase__ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"{metric_key_prefix}_" ):
UpperCAmelCase = metrics.pop(lowerCAmelCase__ )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCAmelCase__ )
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[int]="./" ) -> Optional[int]:
UpperCAmelCase = self.eval_dataset
UpperCAmelCase = self.get_eval_dataloader(lowerCAmelCase__ )
UpperCAmelCase = next(iter(lowerCAmelCase__ ) )
# saving device - to make it consistent
UpperCAmelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" )
# convert to tuple
UpperCAmelCase = tuple(v.to(lowerCAmelCase__ ) for k, v in batch.items() )
logger.info("Converting model to be onnx compatible" )
from pytorch_quantization.nn import TensorQuantizer
UpperCAmelCase = True
UpperCAmelCase = self.model.to(lowerCAmelCase__ )
model.eval()
model.float()
UpperCAmelCase = model.module if hasattr(lowerCAmelCase__ , "module" ) else model
quant_trainer.configure_model(lowerCAmelCase__ , self.quant_trainer_args )
UpperCAmelCase = os.path.join(lowerCAmelCase__ , "model.onnx" )
logger.info(f"exporting model to {output_model_file}" )
UpperCAmelCase = {0: "batch_size", 1: "seq_len"}
torch.onnx.export(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , export_params=lowerCAmelCase__ , opset_version=1_3 , do_constant_folding=lowerCAmelCase__ , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={
"input_ids": axes,
"attention_mask": axes,
"token_type_ids": axes,
"output_start_logits": axes,
"output_end_logits": axes,
} , verbose=lowerCAmelCase__ , )
logger.info("onnx export finished" )
| 1 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = ""
lowerCAmelCase__ = 1 # (0 is vertical, 1 is horizontal)
def _lowerCAmelCase( ):
UpperCAmelCase , UpperCAmelCase = get_dataset(__A , __A )
print("Processing..." )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = update_image_and_anno(__A , __A , __A )
for index, image in enumerate(__A ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
UpperCAmelCase = random_chars(32 )
UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0]
UpperCAmelCase = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cva.imwrite(F"/{file_root}.jpg" , __A , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F"Success {index+1}/{len(__A )} with {file_name}" )
UpperCAmelCase = []
for anno in new_annos[index]:
UpperCAmelCase = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(__A )
with open(F"/{file_root}.txt" , "w" ) as outfile:
outfile.write("\n".join(line for line in annos_list ) )
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = []
UpperCAmelCase = []
for label_file in glob.glob(os.path.join(__A , "*.txt" ) ):
UpperCAmelCase = label_file.split(os.sep )[-1].rsplit("." , 1 )[0]
with open(__A ) as in_file:
UpperCAmelCase = in_file.readlines()
UpperCAmelCase = os.path.join(__A , F"{label_name}.jpg" )
UpperCAmelCase = []
for obj_list in obj_lists:
UpperCAmelCase = obj_list.rstrip("\n" ).split(" " )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__A )
labels.append(__A )
return img_paths, labels
def _lowerCAmelCase( __A , __A , __A = 1 ):
UpperCAmelCase = []
UpperCAmelCase = []
UpperCAmelCase = []
for idx in range(len(__A ) ):
UpperCAmelCase = []
UpperCAmelCase = img_list[idx]
path_list.append(__A )
UpperCAmelCase = anno_list[idx]
UpperCAmelCase = cva.imread(__A )
if flip_type == 1:
UpperCAmelCase = cva.flip(__A , __A )
for bbox in img_annos:
UpperCAmelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
UpperCAmelCase = cva.flip(__A , __A )
for bbox in img_annos:
UpperCAmelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__A )
new_imgs_list.append(__A )
return new_imgs_list, new_annos_lists, path_list
def _lowerCAmelCase( __A = 32 ):
assert number_char > 1, "The number of character should greater than 1"
UpperCAmelCase = ascii_lowercase + digits
return "".join(random.choice(__A ) for _ in range(__A ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 1 | 1 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
lowerCAmelCase__ = "Create a default config file for Accelerate with only a few flags set."
def _lowerCAmelCase( __A="no" , __A = default_json_config_file , __A = False ):
UpperCAmelCase = Path(__A )
path.parent.mkdir(parents=__A , exist_ok=__A )
if path.exists():
print(
F"Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`." )
return False
UpperCAmelCase = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
F"`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}" )
UpperCAmelCase = {
"compute_environment": "LOCAL_MACHINE",
"mixed_precision": mixed_precision,
}
if torch.cuda.is_available():
UpperCAmelCase = torch.cuda.device_count()
UpperCAmelCase = num_gpus
UpperCAmelCase = False
if num_gpus > 1:
UpperCAmelCase = "MULTI_GPU"
else:
UpperCAmelCase = "NO"
elif is_xpu_available() and use_xpu:
UpperCAmelCase = torch.xpu.device_count()
UpperCAmelCase = num_xpus
UpperCAmelCase = False
if num_xpus > 1:
UpperCAmelCase = "MULTI_XPU"
else:
UpperCAmelCase = "NO"
elif is_npu_available():
UpperCAmelCase = torch.npu.device_count()
UpperCAmelCase = num_npus
UpperCAmelCase = False
if num_npus > 1:
UpperCAmelCase = "MULTI_NPU"
else:
UpperCAmelCase = "NO"
else:
UpperCAmelCase = 0
UpperCAmelCase = True
UpperCAmelCase = 1
UpperCAmelCase = "NO"
UpperCAmelCase = ClusterConfig(**__A )
config.to_json_file(__A )
return path
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = parser.add_parser("default" , parents=__A , help=__A , formatter_class=__A )
parser.add_argument(
"--config_file" , default=__A , help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) , dest="save_location" , )
parser.add_argument(
"--mixed_precision" , choices=["no", "fp16", "bf16"] , type=__A , help="Whether or not to use mixed precision training. "
"Choose between FP16 and BF16 (bfloat16) training. "
"BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later." , default="no" , )
parser.set_defaults(func=__A )
return parser
def _lowerCAmelCase( __A ):
UpperCAmelCase = write_basic_config(args.mixed_precision , args.save_location )
if config_file:
print(F"accelerate configuration saved at {config_file}" )
| 1 |
def _lowerCAmelCase( __A ):
if not isinstance(__A , __A ):
raise TypeError("only integers accepted as input" )
else:
UpperCAmelCase = str(abs(__A ) )
UpperCAmelCase = [list(__A ) for char in range(len(__A ) )]
for index in range(len(__A ) ):
num_transpositions[index].pop(__A )
return max(
int("".join(list(__A ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__("doctest").testmod()
| 1 | 1 |
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __magic_name__ ( unittest.TestCase ):
@parameterized.expand([(None,), ("foo.json",)] )
def _UpperCamelCase ( self : str , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]:
UpperCAmelCase = GenerationConfig(
do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowerCAmelCase__ , config_name=lowerCAmelCase__ )
UpperCAmelCase = GenerationConfig.from_pretrained(lowerCAmelCase__ , config_name=lowerCAmelCase__ )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , lowerCAmelCase__ )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 5_0 )
self.assertEqual(loaded_config.max_length , 2_0 )
self.assertEqual(loaded_config.max_time , lowerCAmelCase__ )
def _UpperCamelCase ( self : Dict ) -> Optional[Any]:
UpperCAmelCase = AutoConfig.from_pretrained("gpt2" )
UpperCAmelCase = GenerationConfig.from_model_config(lowerCAmelCase__ )
UpperCAmelCase = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def _UpperCamelCase ( self : int ) -> int:
UpperCAmelCase = GenerationConfig()
UpperCAmelCase = {
"max_new_tokens": 1_0_2_4,
"foo": "bar",
}
UpperCAmelCase = copy.deepcopy(lowerCAmelCase__ )
UpperCAmelCase = generation_config.update(**lowerCAmelCase__ )
# update_kwargs was not modified (no side effects)
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(lowerCAmelCase__ , {"foo": "bar"} )
def _UpperCamelCase ( self : List[Any] ) -> Dict:
UpperCAmelCase = GenerationConfig()
UpperCAmelCase = "bar"
with tempfile.TemporaryDirectory("test-generation-config" ) as tmp_dir:
generation_config.save_pretrained(lowerCAmelCase__ )
UpperCAmelCase = GenerationConfig.from_pretrained(lowerCAmelCase__ )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , "bar" )
UpperCAmelCase = GenerationConfig.from_model_config(lowerCAmelCase__ )
assert not hasattr(lowerCAmelCase__ , "foo" ) # no new kwargs should be initialized if from config
def _UpperCamelCase ( self : Tuple ) -> Dict:
UpperCAmelCase = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , lowerCAmelCase__ )
self.assertEqual(default_config.num_beams , 1 )
UpperCAmelCase = GenerationConfig(
do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , lowerCAmelCase__ )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowerCAmelCase__ )
UpperCAmelCase = GenerationConfig.from_pretrained(lowerCAmelCase__ , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , lowerCAmelCase__ )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class __magic_name__ ( unittest.TestCase ):
@classmethod
def _UpperCamelCase ( cls : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase = TOKEN
HfFolder.save_token(lowerCAmelCase__ )
@classmethod
def _UpperCamelCase ( cls : List[str] ) -> int:
try:
delete_repo(token=cls._token , repo_id="test-generation-config" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org" )
except HTTPError:
pass
def _UpperCamelCase ( self : List[Any] ) -> Any:
UpperCAmelCase = GenerationConfig(
do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("test-generation-config" , use_auth_token=self._token )
UpperCAmelCase = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="test-generation-config" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
lowerCAmelCase__ , repo_id="test-generation-config" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Any ) -> Dict:
UpperCAmelCase = GenerationConfig(
do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token )
UpperCAmelCase = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
lowerCAmelCase__ , repo_id="valid_org/test-generation-config-org" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
| 1 |
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
lowerCAmelCase__ = logging.getLogger(__name__)
lowerCAmelCase__ = 50 # max width of layer names
lowerCAmelCase__ = 70 # max width of quantizer names
def _lowerCAmelCase( __A ):
UpperCAmelCase = parser.add_argument_group("quant_trainer arguments" )
group.add_argument("--wprec" , type=__A , default=8 , help="weight precision" )
group.add_argument("--aprec" , type=__A , default=8 , help="activation precision" )
group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" )
group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" )
group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" )
group.add_argument("--quant-disable-keyword" , type=__A , nargs="+" , help="disable quantizers by keyword" )
group.add_argument("--quant-disable-layer-module" , type=__A , help="disable quantizers by keyword under layer." )
group.add_argument("--quant-enable-layer-module" , type=__A , help="enable quantizers by keyword under layer" )
group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" )
group.add_argument("--percentile" , default=__A , type=__A , help="percentile for PercentileCalibrator" )
group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" )
group.add_argument("--clip-gelu" , metavar="N" , type=__A , help="clip gelu output maximum value to N" )
group.add_argument(
"--recalibrate-weights" , action="store_true" , help=(
"recalibrate weight amaxes by taking the max of the weights."
" amaxes will be computed with the current quantization granularity (axis)."
) , )
def _lowerCAmelCase( __A ):
if args.calibrator == "max":
UpperCAmelCase = "max"
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError("Specify --percentile when using percentile calibrator" )
UpperCAmelCase = "histogram"
elif args.calibrator == "mse":
UpperCAmelCase = "histogram"
else:
raise ValueError(F"Invalid calibrator {args.calibrator}" )
UpperCAmelCase = QuantDescriptor(num_bits=args.aprec , calib_method=__A )
UpperCAmelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(__A )
quant_nn.QuantLinear.set_default_quant_desc_weight(__A )
def _lowerCAmelCase( __A , __A , __A=False , __A=False ):
logger.info("Configuring Model for Quantization" )
logger.info(F"using quantization package {pytorch_quantization.__file__}" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(__A , ["embeddings"] , which="weight" , _disabled=__A )
if args.quant_disable:
set_quantizer_by_name(__A , [""] , _disabled=__A )
if args.quant_disable_keyword:
set_quantizer_by_name(__A , args.quant_disable_keyword , _disabled=__A )
if args.quant_disable_layer_module:
set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=__A )
if args.quant_enable_layer_module:
set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=__A )
if args.recalibrate_weights:
recalibrate_weights(__A )
if args.fuse_qkv:
fuse_qkv(__A , __A )
if args.clip_gelu:
clip_gelu(__A , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(__A )
def _lowerCAmelCase( __A ):
logger.info("Enabling Calibration" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(F"{name:80}: {module}" )
def _lowerCAmelCase( __A , __A ):
logger.info("Loading calibrated amax" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax("percentile" , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(__A )
def _lowerCAmelCase( __A , __A ):
def fusea(__A , __A , __A ):
for mod in [qq, qk, qv]:
if not hasattr(__A , "_amax" ):
print(" WARNING: NO AMAX BUFFER" )
return
UpperCAmelCase = qq._amax.detach().item()
UpperCAmelCase = qk._amax.detach().item()
UpperCAmelCase = qv._amax.detach().item()
UpperCAmelCase = max(__A , __A , __A )
qq._amax.fill_(__A )
qk._amax.fill_(__A )
qv._amax.fill_(__A )
logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" )
for name, mod in model.named_modules():
if name.endswith(".attention.self" ):
logger.info(F"FUSE_QKV: {name:{name_width}}" )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _lowerCAmelCase( __A , __A ):
for name, mod in model.named_modules():
if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ):
UpperCAmelCase = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=__A )
UpperCAmelCase = mod._input_quantizer._amax.data.detach().item()
logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" )
def _lowerCAmelCase( __A ):
for name, mod in model.named_modules():
if hasattr(__A , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None:
UpperCAmelCase = mod.weight.shape[0]
UpperCAmelCase = mod._weight_quantizer._amax.detach()
UpperCAmelCase = torch.ones(__A , dtype=amax.dtype , device=amax.device ) * amax
print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" )
def _lowerCAmelCase( __A ):
for name, mod in model.named_modules():
if hasattr(__A , "_weight_quantizer" ):
if not hasattr(mod.weight_quantizer , "_amax" ):
print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
UpperCAmelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
UpperCAmelCase = set(range(len(mod.weight.size() ) ) ) - axis_set
UpperCAmelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__A , keepdims=__A ).detach()
logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" )
UpperCAmelCase = amax
def _lowerCAmelCase( __A , __A=25 , __A=180 , __A=None ):
if ignore is None:
UpperCAmelCase = []
elif not isinstance(__A , __A ):
UpperCAmelCase = [ignore]
UpperCAmelCase = 0
for name, mod in model.named_modules():
if not hasattr(__A , "weight" ):
continue
UpperCAmelCase = max(__A , len(__A ) )
for name, mod in model.named_modules():
UpperCAmelCase = getattr(__A , "_input_quantizer" , __A )
UpperCAmelCase = getattr(__A , "_weight_quantizer" , __A )
if not hasattr(__A , "weight" ):
continue
if type(__A ) in ignore:
continue
if [True for s in ignore if type(__A ) is str and s in name]:
continue
UpperCAmelCase = F"Act:{input_q.extra_repr()}"
UpperCAmelCase = F"Wgt:{weight_q.extra_repr()}"
UpperCAmelCase = F"{name:{name_width}} {act_str} {wgt_str}"
if len(__A ) <= line_width:
logger.info(__A )
else:
logger.info(F"{name:{name_width}} {act_str}" )
logger.info(F"{' ':{name_width}} {wgt_str}" )
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
for name, mod in model.named_modules():
if isinstance(__A , pytorch_quantization.nn.TensorQuantizer ):
print(F"{name:80} {mod}" )
count += 1
print(F"{count} TensorQuantizers found in model" )
def _lowerCAmelCase( __A , __A , __A , __A , __A ):
UpperCAmelCase = getattr(__A , __A , __A )
if quantizer_mod is not None:
assert hasattr(__A , __A )
setattr(__A , __A , __A )
else:
logger.warning(F"{name} has no {quantizer}" )
def _lowerCAmelCase( __A , __A , __A="both" , **__A ):
UpperCAmelCase = F"Warning: changing {which} quantizers of {name:{qname_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
if which in ["input", "both"]:
set_quantizer(__A , __A , "_input_quantizer" , __A , __A )
if which in ["weight", "both"]:
set_quantizer(__A , __A , "_weight_quantizer" , __A , __A )
logger.info(__A )
def _lowerCAmelCase( __A , __A , **__A ):
for name, mod in model.named_modules():
if hasattr(__A , "_input_quantizer" ) or hasattr(__A , "_weight_quantizer" ):
for n in names:
if re.search(__A , __A ):
set_quantizers(__A , __A , **__A )
elif name.endswith("_quantizer" ):
for n in names:
if re.search(__A , __A ):
UpperCAmelCase = F"Warning: changing {name:{name_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
setattr(__A , __A , __A )
logger.info(__A )
| 1 | 1 |
import argparse
import json
import re
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileNetVaConfig,
MobileNetVaForImageClassification,
MobileNetVaImageProcessor,
load_tf_weights_in_mobilenet_va,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
def _lowerCAmelCase( __A ):
UpperCAmelCase = MobileNetVaConfig(layer_norm_eps=0.001 )
if "_quant" in model_name:
raise ValueError("Quantized models are not supported." )
UpperCAmelCase = re.match(r"^mobilenet_v1_([^_]*)_([^_]*)$" , __A )
if matches:
UpperCAmelCase = float(matches[1] )
UpperCAmelCase = int(matches[2] )
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
# the usual 1000. The first class (index 0) is "background".
UpperCAmelCase = 1001
UpperCAmelCase = "imagenet-1k-id2label.json"
UpperCAmelCase = "huggingface/label-files"
UpperCAmelCase = json.load(open(hf_hub_download(__A , __A , repo_type="dataset" ) , "r" ) )
UpperCAmelCase = {int(__A ) + 1: v for k, v in idalabel.items()}
UpperCAmelCase = "background"
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def _lowerCAmelCase( ):
UpperCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase = Image.open(requests.get(__A , stream=__A ).raw )
return im
@torch.no_grad()
def _lowerCAmelCase( __A , __A , __A , __A=False ):
UpperCAmelCase = get_mobilenet_va_config(__A )
# Load 🤗 model
UpperCAmelCase = MobileNetVaForImageClassification(__A ).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_va(__A , __A , __A )
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
UpperCAmelCase = MobileNetVaImageProcessor(
crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , )
UpperCAmelCase = image_processor(images=prepare_img() , return_tensors="pt" )
UpperCAmelCase = model(**__A )
UpperCAmelCase = outputs.logits
assert logits.shape == (1, 1001)
if model_name == "mobilenet_v1_1.0_224":
UpperCAmelCase = torch.tensor([-4.1739, -1.1233, 3.1205] )
elif model_name == "mobilenet_v1_0.75_192":
UpperCAmelCase = torch.tensor([-3.9440, -2.3141, -0.3333] )
else:
UpperCAmelCase = None
if expected_logits is not None:
assert torch.allclose(logits[0, :3] , __A , atol=1E-4 )
Path(__A ).mkdir(exist_ok=__A )
print(F"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__A )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__A )
if push_to_hub:
print("Pushing to the hub..." )
UpperCAmelCase = "google/" + model_name
image_processor.push_to_hub(__A )
model.push_to_hub(__A )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="mobilenet_v1_1.0_224",
type=str,
help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.",
)
parser.add_argument(
"--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
lowerCAmelCase__ = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 1 |
def _lowerCAmelCase( __A ):
assert column_title.isupper()
UpperCAmelCase = 0
UpperCAmelCase = len(__A ) - 1
UpperCAmelCase = 0
while index >= 0:
UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , __A )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def _lowerCAmelCase( __A , __A , __A , __A ):
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), F"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})"
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), F"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})"
def _lowerCAmelCase( __A , __A , __A , __A , __A=True ):
model.train()
UpperCAmelCase = model(__A )
UpperCAmelCase = F.mse_loss(__A , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(__A )
def _lowerCAmelCase( __A , __A=False ):
set_seed(42 )
UpperCAmelCase = RegressionModel()
UpperCAmelCase = deepcopy(__A )
UpperCAmelCase = RegressionDataset(length=80 )
UpperCAmelCase = DataLoader(__A , batch_size=16 )
model.to(accelerator.device )
if sched:
UpperCAmelCase = AdamW(params=model.parameters() , lr=1E-3 )
UpperCAmelCase = AdamW(params=ddp_model.parameters() , lr=1E-3 )
UpperCAmelCase = LambdaLR(__A , lr_lambda=lambda __A : epoch**0.65 )
UpperCAmelCase = LambdaLR(__A , lr_lambda=lambda __A : epoch**0.65 )
# Make a copy of `model`
if sched:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare(__A , __A , __A , __A )
else:
UpperCAmelCase , UpperCAmelCase = accelerator.prepare(__A , __A )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def _lowerCAmelCase( __A ):
# Test when on a single CPU or GPU that the context manager does nothing
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = get_training_setup(__A )
# Use a single batch
UpperCAmelCase , UpperCAmelCase = next(iter(__A ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
UpperCAmelCase , UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase , UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(__A , __A , __A , __A )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(__A ):
step_model(__A , __A , __A , __A )
else:
# Sync grads
step_model(__A , __A , __A , __A )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(__A , __A , __A , __A )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
UpperCAmelCase = ddp_input[torch.randperm(len(__A ) )]
def _lowerCAmelCase( __A ):
# Test on distributed setup that context manager behaves properly
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = get_training_setup(__A )
# Use a single batch
UpperCAmelCase , UpperCAmelCase = next(iter(__A ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
UpperCAmelCase , UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase , UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(__A , __A , __A , __A )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(__A ):
step_model(__A , __A , __A , __A )
else:
# Sync grads
step_model(__A , __A , __A , __A )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
UpperCAmelCase = ddp_input[torch.randperm(len(__A ) )]
def _lowerCAmelCase( __A=False , __A=False ):
UpperCAmelCase = Accelerator(
split_batches=__A , dispatch_batches=__A , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = get_training_setup(__A )
for iteration, batch in enumerate(__A ):
UpperCAmelCase , UpperCAmelCase = batch.values()
# Gather the distributed inputs and targs for the base model
UpperCAmelCase , UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase , UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(__A , __A , __A , __A , __A )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(__A ):
step_model(__A , __A , __A , __A )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(__A ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
UpperCAmelCase = ddp_input[torch.randperm(len(__A ) )]
GradientState._reset_state()
def _lowerCAmelCase( __A=False , __A=False ):
UpperCAmelCase = Accelerator(
split_batches=__A , dispatch_batches=__A , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = get_training_setup(__A , __A )
for iteration, batch in enumerate(__A ):
UpperCAmelCase , UpperCAmelCase = batch.values()
# Gather the distributed inputs and targs for the base model
UpperCAmelCase , UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase , UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(__A , __A , __A , __A , __A )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__A )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(__A ):
step_model(__A , __A , __A , __A )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), F"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n"
UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__A ))
if accelerator.num_processes > 1:
check_model_parameters(__A , __A , __A , __A )
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
GradientState._reset_state()
def _lowerCAmelCase( ):
UpperCAmelCase = Accelerator()
UpperCAmelCase = RegressionDataset(length=80 )
UpperCAmelCase = DataLoader(__A , batch_size=16 )
UpperCAmelCase = RegressionDataset(length=96 )
UpperCAmelCase = DataLoader(__A , batch_size=16 )
UpperCAmelCase , UpperCAmelCase = accelerator.prepare(__A , __A )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(__A ):
assert id(accelerator.gradient_state.active_dataloader ) == id(__A )
if iteration < len(__A ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(__A ):
assert id(accelerator.gradient_state.active_dataloader ) == id(__A )
if batch_num < len(__A ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def _lowerCAmelCase( ):
UpperCAmelCase = Accelerator()
UpperCAmelCase = accelerator.state
if state.local_process_index == 0:
print("**Test `accumulate` gradient accumulation with dataloader break**" )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("**Test NOOP `no_sync` context manager**" )
test_noop_sync(__A )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("**Test Distributed `no_sync` context manager**" )
test_distributed_sync(__A )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation, " , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , )
test_gradient_accumulation(__A , __A )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , )
test_gradient_accumulation_with_opt_and_scheduler(__A , __A )
def _lowerCAmelCase( __A ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 1 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
lowerCAmelCase__ = get_tests_dir("fixtures")
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
# A mock response for an HTTP head request to emulate server down
UpperCAmelCase = mock.Mock()
UpperCAmelCase = 5_0_0
UpperCAmelCase = {}
UpperCAmelCase = HTTPError
UpperCAmelCase = {}
# Download this model to make sure it's in the cache.
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request" , return_value=lowerCAmelCase__ ) as mock_head:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# This check we did call the fake head request
mock_head.assert_called()
def _UpperCamelCase ( self : List[Any] ) -> Dict:
# This test is for deprecated behavior and can be removed in v5
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" )
@is_staging_test
class __magic_name__ ( unittest.TestCase ):
@classmethod
def _UpperCamelCase ( cls : List[str] ) -> List[Any]:
UpperCAmelCase = TOKEN
HfFolder.save_token(lowerCAmelCase__ )
@classmethod
def _UpperCamelCase ( cls : Optional[int] ) -> Union[str, Any]:
try:
delete_repo(token=cls._token , repo_id="test-feature-extractor" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" )
except HTTPError:
pass
def _UpperCamelCase ( self : Any ) -> Any:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
lowerCAmelCase__ , repo_id="test-feature-extractor" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : List[Any] ) -> Tuple:
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
lowerCAmelCase__ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Dict ) -> List[str]:
CustomFeatureExtractor.register_for_auto_class()
UpperCAmelCase = CustomFeatureExtractor.from_pretrained(lowerCAmelCase__ )
feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , )
UpperCAmelCase = AutoFeatureExtractor.from_pretrained(
f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=lowerCAmelCase__ )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
| 1 | 1 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
lowerCAmelCase__ = datasets.utils.logging.get_logger(__name__)
lowerCAmelCase__ = ["names", "prefix"]
lowerCAmelCase__ = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"]
lowerCAmelCase__ = ["encoding_errors", "on_bad_lines"]
lowerCAmelCase__ = ["date_format"]
@dataclass
class __magic_name__ ( datasets.BuilderConfig ):
UpperCAmelCase = ","
UpperCAmelCase = None
UpperCAmelCase = "infer"
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = True
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = False
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = False
UpperCAmelCase = True
UpperCAmelCase = None
UpperCAmelCase = "."
UpperCAmelCase = None
UpperCAmelCase = '"'
UpperCAmelCase = 0
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = 0
UpperCAmelCase = True
UpperCAmelCase = False
UpperCAmelCase = None
UpperCAmelCase = 10_000
UpperCAmelCase = None
UpperCAmelCase = "strict"
UpperCAmelCase = "error"
UpperCAmelCase = None
def _UpperCamelCase ( self : Optional[int] ) -> Tuple:
if self.delimiter is not None:
UpperCAmelCase = self.delimiter
if self.column_names is not None:
UpperCAmelCase = self.column_names
@property
def _UpperCamelCase ( self : Optional[int] ) -> List[Any]:
UpperCAmelCase = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class __magic_name__ ( datasets.ArrowBasedBuilder ):
UpperCAmelCase = CsvConfig
def _UpperCamelCase ( self : Dict ) -> Tuple:
return datasets.DatasetInfo(features=self.config.features )
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : Tuple ) -> List[Any]:
if not self.config.data_files:
raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" )
UpperCAmelCase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCAmelCase__ , (str, list, tuple) ):
UpperCAmelCase = data_files
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase = [files]
UpperCAmelCase = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
UpperCAmelCase = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase = [files]
UpperCAmelCase = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) )
return splits
def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : pa.Table ) -> pa.Table:
if self.config.features is not None:
UpperCAmelCase = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
UpperCAmelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
UpperCAmelCase = table_cast(lowerCAmelCase__ , lowerCAmelCase__ )
return pa_table
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[Any]:
UpperCAmelCase = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
UpperCAmelCase = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ):
UpperCAmelCase = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(lowerCAmelCase__ ):
UpperCAmelCase = pa.Table.from_pandas(lowerCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ )
except ValueError as e:
logger.error(f"Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}" )
raise
| 1 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
lowerCAmelCase__ = "src/diffusers"
# Matches is_xxx_available()
lowerCAmelCase__ = re.compile(r"is\_([a-z_]*)_available\(\)")
# Matches from xxx import bla
lowerCAmelCase__ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
lowerCAmelCase__ = "\n{0} = None\n"
lowerCAmelCase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n"
lowerCAmelCase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n"
def _lowerCAmelCase( __A ):
UpperCAmelCase = _re_backend.findall(__A )
if len(__A ) == 0:
return None
return "_and_".join(__A )
def _lowerCAmelCase( ):
with open(os.path.join(__A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.readlines()
# Get to the point we do the actual imports for type checking
UpperCAmelCase = 0
UpperCAmelCase = {}
# Go through the end of the file
while line_index < len(__A ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
UpperCAmelCase = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("else:" ):
line_index += 1
line_index += 1
UpperCAmelCase = []
# Until we unindent, add backend objects to the list
while line_index < len(__A ) and len(lines[line_index] ) > 1:
UpperCAmelCase = lines[line_index]
UpperCAmelCase = _re_single_line_import.search(__A )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__A ) > 0:
UpperCAmelCase = objects
else:
line_index += 1
return backend_specific_objects
def _lowerCAmelCase( __A , __A ):
if name.isupper():
return DUMMY_CONSTANT.format(__A )
elif name.islower():
return DUMMY_FUNCTION.format(__A , __A )
else:
return DUMMY_CLASS.format(__A , __A )
def _lowerCAmelCase( __A=None ):
if backend_specific_objects is None:
UpperCAmelCase = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
UpperCAmelCase = {}
for backend, objects in backend_specific_objects.items():
UpperCAmelCase = "[" + ", ".join(F"\"{b}\"" for b in backend.split("_and_" ) ) + "]"
UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__A , __A ) for o in objects] )
UpperCAmelCase = dummy_file
return dummy_files
def _lowerCAmelCase( __A=False ):
UpperCAmelCase = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
UpperCAmelCase = {"torch": "pt"}
# Locate actual dummy modules and read their content.
UpperCAmelCase = os.path.join(__A , "utils" )
UpperCAmelCase = {
backend: os.path.join(__A , F"dummy_{short_names.get(__A , __A )}_objects.py" )
for backend in dummy_files.keys()
}
UpperCAmelCase = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__A ):
with open(__A , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase = f.read()
else:
UpperCAmelCase = ""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F"Updating diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py as the main "
"__init__ has new objects." )
with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"The main __init__ has objects that are not present in "
F"diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py. Run `make fix-copies` "
"to fix this." )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowerCAmelCase__ = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 1 | 1 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, ClassLabel, Features
from .base import TaskTemplate
@dataclass(frozen=_snake_case )
class __magic_name__ ( _snake_case ):
UpperCAmelCase = field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} )
UpperCAmelCase = Features({"""audio""": Audio()} )
UpperCAmelCase = Features({"""labels""": ClassLabel} )
UpperCAmelCase = "audio"
UpperCAmelCase = "labels"
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> List[str]:
if self.label_column not in features:
raise ValueError(f"Column {self.label_column} is not present in features." )
if not isinstance(features[self.label_column] , lowerCAmelCase__ ):
raise ValueError(f"Column {self.label_column} is not a ClassLabel." )
UpperCAmelCase = copy.deepcopy(self )
UpperCAmelCase = self.label_schema.copy()
UpperCAmelCase = features[self.label_column]
UpperCAmelCase = label_schema
return task_template
@property
def _UpperCamelCase ( self : int ) -> Dict[str, str]:
return {
self.audio_column: "audio",
self.label_column: "labels",
}
| 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json",
}
class __magic_name__ ( _snake_case , _snake_case ):
UpperCAmelCase = """convnextv2"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Dict=1e-1_2 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : str=2_2_4 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[Any] , ) -> List[Any]:
super().__init__(**lowerCAmelCase__ )
UpperCAmelCase = num_channels
UpperCAmelCase = patch_size
UpperCAmelCase = num_stages
UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes
UpperCAmelCase = [3, 3, 9, 3] if depths is None else depths
UpperCAmelCase = hidden_act
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = drop_path_rate
UpperCAmelCase = image_size
UpperCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )]
UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
| 1 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json",
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json",
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json",
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json",
"bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json",
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json",
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json",
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json",
"bert-large-uncased-whole-word-masking": (
"https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json"
),
"bert-large-cased-whole-word-masking": (
"https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json"
),
"bert-large-uncased-whole-word-masking-finetuned-squad": (
"https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json"
),
"bert-large-cased-whole-word-masking-finetuned-squad": (
"https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json"
),
"bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json",
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json",
"bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json",
"cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json",
"cl-tohoku/bert-base-japanese-whole-word-masking": (
"https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json"
),
"cl-tohoku/bert-base-japanese-char": (
"https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json"
),
"cl-tohoku/bert-base-japanese-char-whole-word-masking": (
"https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json"
),
"TurkuNLP/bert-base-finnish-cased-v1": (
"https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json"
),
"TurkuNLP/bert-base-finnish-uncased-v1": (
"https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json"
),
"wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json",
# See all BERT models at https://huggingface.co/models?filter=bert
}
class __magic_name__ ( _snake_case ):
UpperCAmelCase = """bert"""
def __init__( self : Optional[int] , lowerCAmelCase__ : int=3_0_5_2_2 , lowerCAmelCase__ : Union[str, Any]=7_6_8 , lowerCAmelCase__ : Dict=1_2 , lowerCAmelCase__ : Optional[Any]=1_2 , lowerCAmelCase__ : List[Any]=3_0_7_2 , lowerCAmelCase__ : Union[str, Any]="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : str=5_1_2 , lowerCAmelCase__ : Union[str, Any]=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Optional[Any]=1e-1_2 , lowerCAmelCase__ : str=0 , lowerCAmelCase__ : List[str]="absolute" , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Any=None , **lowerCAmelCase__ : str , ) -> Dict:
super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = position_embedding_type
UpperCAmelCase = use_cache
UpperCAmelCase = classifier_dropout
class __magic_name__ ( _snake_case ):
@property
def _UpperCamelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
UpperCAmelCase = {0: "batch", 1: "choice", 2: "sequence"}
else:
UpperCAmelCase = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
] )
| 1 |
lowerCAmelCase__ = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCAmelCase__ = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCAmelCase__ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 1 | 1 |
def _lowerCAmelCase( __A , __A ):
if not (isinstance(__A , __A ) and isinstance(__A , __A )):
raise ValueError("longest_common_substring() takes two strings for inputs" )
UpperCAmelCase = len(__A )
UpperCAmelCase = len(__A )
UpperCAmelCase = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )]
UpperCAmelCase = 0
UpperCAmelCase = 0
for i in range(1 , texta_length + 1 ):
for j in range(1 , texta_length + 1 ):
if texta[i - 1] == texta[j - 1]:
UpperCAmelCase = 1 + dp[i - 1][j - 1]
if dp[i][j] > ans_length:
UpperCAmelCase = i
UpperCAmelCase = dp[i][j]
return texta[ans_index - ans_length : ans_index]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = KandinskyInpaintPipeline
UpperCAmelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
UpperCAmelCase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
UpperCAmelCase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
UpperCAmelCase = False
@property
def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple:
return 3_2
@property
def _UpperCamelCase ( self : int ) -> List[Any]:
return 3_2
@property
def _UpperCamelCase ( self : List[Any] ) -> List[Any]:
return self.time_input_dim
@property
def _UpperCamelCase ( self : Tuple ) -> Tuple:
return self.time_input_dim * 4
@property
def _UpperCamelCase ( self : Any ) -> Optional[int]:
return 1_0_0
@property
def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]:
UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" )
return tokenizer
@property
def _UpperCamelCase ( self : int ) -> Dict:
torch.manual_seed(0 )
UpperCAmelCase = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , )
UpperCAmelCase = MultilingualCLIP(lowerCAmelCase__ )
UpperCAmelCase = text_encoder.eval()
return text_encoder
@property
def _UpperCamelCase ( self : Dict ) -> Optional[int]:
torch.manual_seed(0 )
UpperCAmelCase = {
"in_channels": 9,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "text_image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "text_image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
UpperCAmelCase = UNetaDConditionModel(**lowerCAmelCase__ )
return model
@property
def _UpperCamelCase ( self : str ) -> Optional[Any]:
return {
"block_out_channels": [3_2, 6_4],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def _UpperCamelCase ( self : Dict ) -> List[Any]:
torch.manual_seed(0 )
UpperCAmelCase = VQModel(**self.dummy_movq_kwargs )
return model
def _UpperCamelCase ( self : Tuple ) -> Any:
UpperCAmelCase = self.dummy_text_encoder
UpperCAmelCase = self.dummy_tokenizer
UpperCAmelCase = self.dummy_unet
UpperCAmelCase = self.dummy_movq
UpperCAmelCase = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCAmelCase__ , )
UpperCAmelCase = {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=0 ) -> str:
UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase__ )
# create init_image
UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) )
# create mask
UpperCAmelCase = np.ones((6_4, 6_4) , dtype=np.floataa )
UpperCAmelCase = 0
if str(lowerCAmelCase__ ).startswith("mps" ):
UpperCAmelCase = torch.manual_seed(lowerCAmelCase__ )
else:
UpperCAmelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
UpperCAmelCase = {
"prompt": "horse",
"image": init_image,
"mask_image": mask,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 6_4,
"width": 6_4,
"num_inference_steps": 2,
"guidance_scale": 4.0,
"output_type": "np",
}
return inputs
def _UpperCamelCase ( self : Dict ) -> List[str]:
UpperCAmelCase = "cpu"
UpperCAmelCase = self.get_dummy_components()
UpperCAmelCase = self.pipeline_class(**lowerCAmelCase__ )
UpperCAmelCase = pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) )
UpperCAmelCase = output.images
UpperCAmelCase = pipe(
**self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0]
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
print(f"image.shape {image.shape}" )
assert image.shape == (1, 6_4, 6_4, 3)
UpperCAmelCase = np.array(
[0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def _UpperCamelCase ( self : str ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class __magic_name__ ( unittest.TestCase ):
def _UpperCamelCase ( self : str ) -> str:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCamelCase ( self : Tuple ) -> int:
UpperCAmelCase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" )
UpperCAmelCase = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
UpperCAmelCase = np.ones((7_6_8, 7_6_8) , dtype=np.floataa )
UpperCAmelCase = 0
UpperCAmelCase = "a hat"
UpperCAmelCase = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa )
pipe_prior.to(lowerCAmelCase__ )
UpperCAmelCase = KandinskyInpaintPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa )
UpperCAmelCase = pipeline.to(lowerCAmelCase__ )
pipeline.set_progress_bar_config(disable=lowerCAmelCase__ )
UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase , UpperCAmelCase = pipe_prior(
lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
UpperCAmelCase = pipeline(
lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="np" , )
UpperCAmelCase = output.images[0]
assert image.shape == (7_6_8, 7_6_8, 3)
assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
| 1 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
lowerCAmelCase__ = {
"vocab_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json",
"roberta-large-openai-detector": (
"https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json"
),
},
"merges_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt",
"roberta-large-openai-detector": (
"https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt"
),
},
"tokenizer_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json",
"roberta-base-openai-detector": (
"https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json"
),
"roberta-large-openai-detector": (
"https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json"
),
},
}
lowerCAmelCase__ = {
"roberta-base": 512,
"roberta-large": 512,
"roberta-large-mnli": 512,
"distilroberta-base": 512,
"roberta-base-openai-detector": 512,
"roberta-large-openai-detector": 512,
}
class __magic_name__ ( _snake_case ):
UpperCAmelCase = VOCAB_FILES_NAMES
UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase = ["""input_ids""", """attention_mask"""]
UpperCAmelCase = RobertaTokenizer
def __init__( self : Dict , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : List[str]="replace" , lowerCAmelCase__ : List[Any]="<s>" , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : Optional[int]="</s>" , lowerCAmelCase__ : Dict="<s>" , lowerCAmelCase__ : Tuple="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Union[str, Any]=True , **lowerCAmelCase__ : Tuple , ) -> Tuple:
super().__init__(
lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ , **lowerCAmelCase__ , )
UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , lowerCAmelCase__ ) != add_prefix_space:
UpperCAmelCase = getattr(lowerCAmelCase__ , pre_tok_state.pop("type" ) )
UpperCAmelCase = add_prefix_space
UpperCAmelCase = pre_tok_class(**lowerCAmelCase__ )
UpperCAmelCase = add_prefix_space
UpperCAmelCase = "post_processor"
UpperCAmelCase = getattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ )
if tokenizer_component_instance:
UpperCAmelCase = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
UpperCAmelCase = tuple(state["sep"] )
if "cls" in state:
UpperCAmelCase = tuple(state["cls"] )
UpperCAmelCase = False
if state.get("add_prefix_space" , lowerCAmelCase__ ) != add_prefix_space:
UpperCAmelCase = add_prefix_space
UpperCAmelCase = True
if state.get("trim_offsets" , lowerCAmelCase__ ) != trim_offsets:
UpperCAmelCase = trim_offsets
UpperCAmelCase = True
if changes_to_apply:
UpperCAmelCase = getattr(lowerCAmelCase__ , state.pop("type" ) )
UpperCAmelCase = component_class(**lowerCAmelCase__ )
setattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ )
@property
def _UpperCamelCase ( self : str ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error("Using mask_token, but it is not set yet." )
return None
return str(self._mask_token )
@mask_token.setter
def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] ) -> int:
UpperCAmelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else value
UpperCAmelCase = value
def _UpperCamelCase ( self : Tuple , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : List[Any] ) -> BatchEncoding:
UpperCAmelCase = kwargs.get("is_split_into_words" , lowerCAmelCase__ )
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ )
def _UpperCamelCase ( self : Optional[Any] , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : str ) -> BatchEncoding:
UpperCAmelCase = kwargs.get("is_split_into_words" , lowerCAmelCase__ )
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ )
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
UpperCAmelCase = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ )
return tuple(lowerCAmelCase__ )
def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any]=None ) -> List[Any]:
UpperCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
UpperCAmelCase = [self.sep_token_id]
UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 1 |
def _lowerCAmelCase( __A , __A ):
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def _lowerCAmelCase( __A , __A=0 ):
return sorted(__A , key=lambda __A : x[column] )
def _lowerCAmelCase( __A , __A , __A=float("inf" ) ):
for i in range(points_counts - 1 ):
for j in range(i + 1 , __A ):
UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
UpperCAmelCase = current_dis
return min_dis
def _lowerCAmelCase( __A , __A , __A=float("inf" ) ):
for i in range(min(6 , points_counts - 1 ) , __A ):
for j in range(max(0 , i - 6 ) , __A ):
UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
UpperCAmelCase = current_dis
return min_dis
def _lowerCAmelCase( __A , __A , __A ):
# base case
if points_counts <= 3:
return dis_between_closest_pair(__A , __A )
# recursion
UpperCAmelCase = points_counts // 2
UpperCAmelCase = closest_pair_of_points_sqr(
__A , points_sorted_on_y[:mid] , __A )
UpperCAmelCase = closest_pair_of_points_sqr(
__A , points_sorted_on_y[mid:] , points_counts - mid )
UpperCAmelCase = min(__A , __A )
UpperCAmelCase = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(__A )
UpperCAmelCase = dis_between_closest_in_strip(
__A , len(__A ) , __A )
return min(__A , __A )
def _lowerCAmelCase( __A , __A ):
UpperCAmelCase = column_based_sort(__A , column=0 )
UpperCAmelCase = column_based_sort(__A , column=1 )
return (
closest_pair_of_points_sqr(
__A , __A , __A )
) ** 0.5
if __name__ == "__main__":
lowerCAmelCase__ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
print("Distance:", closest_pair_of_points(points, len(points)))
| 1 | 1 |
def _lowerCAmelCase( __A , __A , __A ):
if n == 0:
return 1
elif n % 2 == 1:
return (binary_exponentiation(__A , n - 1 , __A ) * a) % mod
else:
UpperCAmelCase = binary_exponentiation(__A , n / 2 , __A )
return (b * b) % mod
# a prime number
lowerCAmelCase__ = 701
lowerCAmelCase__ = 1000000000
lowerCAmelCase__ = 10
# using binary exponentiation function, O(log(p)):
print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p)
print((a / b) % p == (a * b ** (p - 2)) % p)
| 1 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class __magic_name__ :
def __init__( self : Optional[int] ) -> Optional[Any]:
UpperCAmelCase = ""
UpperCAmelCase = ""
UpperCAmelCase = []
UpperCAmelCase = 0
UpperCAmelCase = 2_5_6
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 0
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Optional[Any] ) -> List[str]:
UpperCAmelCase = cva.imread(lowerCAmelCase__ , 0 )
UpperCAmelCase = copy.deepcopy(self.img )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="x" )
UpperCAmelCase = np.sum(lowerCAmelCase__ )
for i in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase = x[i] / self.k
self.sk += prk
UpperCAmelCase = (self.L - 1) * self.sk
if self.rem != 0:
UpperCAmelCase = int(last % last )
UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(lowerCAmelCase__ )
UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size )
UpperCAmelCase = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCAmelCase = self.img[j][i]
if num != self.last_list[num]:
UpperCAmelCase = self.last_list[num]
cva.imwrite("output_data/output.jpg" , self.img )
def _UpperCamelCase ( self : str ) -> int:
plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] )
def _UpperCamelCase ( self : Dict ) -> Optional[Any]:
cva.imshow("Output-Image" , self.img )
cva.imshow("Input-Image" , self.original_image )
cva.waitKey(5_0_0_0 )
cva.destroyAllWindows()
if __name__ == "__main__":
lowerCAmelCase__ = os.path.join(os.path.basename(__file__), "image_data/input.jpg")
lowerCAmelCase__ = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 1 | 1 |
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import logging
lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name
class __magic_name__ ( _snake_case ):
def __init__( self : Optional[Any] , lowerCAmelCase__ : WhisperForConditionalGeneration , lowerCAmelCase__ : WhisperProcessor , lowerCAmelCase__ : AutoencoderKL , lowerCAmelCase__ : CLIPTextModel , lowerCAmelCase__ : CLIPTokenizer , lowerCAmelCase__ : UNetaDConditionModel , lowerCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase__ : StableDiffusionSafetyChecker , lowerCAmelCase__ : CLIPImageProcessor , ) -> int:
super().__init__()
if safety_checker is None:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." )
self.register_modules(
speech_model=lowerCAmelCase__ , speech_processor=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , )
def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : Optional[Union[str, int]] = "auto" ) -> int:
if slice_size == "auto":
UpperCAmelCase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(lowerCAmelCase__ )
def _UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]:
self.enable_attention_slicing(lowerCAmelCase__ )
@torch.no_grad()
def __call__( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str]=1_6_0_0_0 , lowerCAmelCase__ : int = 5_1_2 , lowerCAmelCase__ : int = 5_1_2 , lowerCAmelCase__ : int = 5_0 , lowerCAmelCase__ : float = 7.5 , lowerCAmelCase__ : Optional[Union[str, List[str]]] = None , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : Optional[torch.Generator] = None , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[str] = "pil" , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase__ : int = 1 , **lowerCAmelCase__ : Any , ) -> Optional[Any]:
UpperCAmelCase = self.speech_processor.feature_extractor(
lowerCAmelCase__ , return_tensors="pt" , sampling_rate=lowerCAmelCase__ ).input_features.to(self.device )
UpperCAmelCase = self.speech_model.generate(lowerCAmelCase__ , max_length=4_8_0_0_0_0 )
UpperCAmelCase = self.speech_processor.tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , normalize=lowerCAmelCase__ )[
0
]
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase = 1
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase = len(lowerCAmelCase__ )
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase__ )}" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(lowerCAmelCase__ )}." )
# get prompt text embeddings
UpperCAmelCase = self.tokenizer(
lowerCAmelCase__ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , )
UpperCAmelCase = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
UpperCAmelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}" )
UpperCAmelCase = text_input_ids[:, : self.tokenizer.model_max_length]
UpperCAmelCase = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = text_embeddings.shape
UpperCAmelCase = text_embeddings.repeat(1 , lowerCAmelCase__ , 1 )
UpperCAmelCase = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCAmelCase__ , -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
UpperCAmelCase = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
UpperCAmelCase = 42
if negative_prompt is None:
UpperCAmelCase = [""] * batch_size
elif type(lowerCAmelCase__ ) is not type(lowerCAmelCase__ ):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(lowerCAmelCase__ )} !="
f" {type(lowerCAmelCase__ )}." )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase = [negative_prompt]
elif batch_size != len(lowerCAmelCase__ ):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(lowerCAmelCase__ )}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`." )
else:
UpperCAmelCase = negative_prompt
UpperCAmelCase = text_input_ids.shape[-1]
UpperCAmelCase = self.tokenizer(
lowerCAmelCase__ , padding="max_length" , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" , )
UpperCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
UpperCAmelCase = uncond_embeddings.shape[1]
UpperCAmelCase = uncond_embeddings.repeat(1 , lowerCAmelCase__ , 1 )
UpperCAmelCase = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCAmelCase__ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCAmelCase = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
UpperCAmelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
UpperCAmelCase = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
UpperCAmelCase = torch.randn(lowerCAmelCase__ , generator=lowerCAmelCase__ , device="cpu" , dtype=lowerCAmelCase__ ).to(
self.device )
else:
UpperCAmelCase = torch.randn(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=lowerCAmelCase__ )
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" )
UpperCAmelCase = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(lowerCAmelCase__ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
UpperCAmelCase = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
UpperCAmelCase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
UpperCAmelCase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
UpperCAmelCase = {}
if accepts_eta:
UpperCAmelCase = eta
for i, t in enumerate(self.progress_bar(lowerCAmelCase__ ) ):
# expand the latents if we are doing classifier free guidance
UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
UpperCAmelCase = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
# predict the noise residual
UpperCAmelCase = self.unet(lowerCAmelCase__ , lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ ).sample
# perform guidance
if do_classifier_free_guidance:
UpperCAmelCase , UpperCAmelCase = noise_pred.chunk(2 )
UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase = 1 / 0.18_215 * latents
UpperCAmelCase = self.vae.decode(lowerCAmelCase__ ).sample
UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
UpperCAmelCase = self.numpy_to_pil(lowerCAmelCase__ )
if not return_dict:
return image
return StableDiffusionPipelineOutput(images=lowerCAmelCase__ , nsfw_content_detected=lowerCAmelCase__ )
| 1 |
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __magic_name__ ( _snake_case , unittest.TestCase ):
UpperCAmelCase = LEDTokenizer
UpperCAmelCase = LEDTokenizerFast
UpperCAmelCase = True
def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
super().setUp()
UpperCAmelCase = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
UpperCAmelCase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
UpperCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
UpperCAmelCase = {"unk_token": "<unk>"}
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Union[str, Any] , **lowerCAmelCase__ : Optional[int] ) -> Optional[int]:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _UpperCamelCase ( self : str , **lowerCAmelCase__ : str ) -> Optional[int]:
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
return "lower newer", "lower newer"
@cached_property
def _UpperCamelCase ( self : Dict ) -> str:
return LEDTokenizer.from_pretrained("allenai/led-base-16384" )
@cached_property
def _UpperCamelCase ( self : int ) -> Tuple:
return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" )
@require_torch
def _UpperCamelCase ( self : Tuple ) -> List[str]:
UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
UpperCAmelCase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@require_torch
def _UpperCamelCase ( self : Union[str, Any] ) -> List[Any]:
UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt" )
self.assertIn("input_ids" , lowerCAmelCase__ )
self.assertIn("attention_mask" , lowerCAmelCase__ )
self.assertNotIn("labels" , lowerCAmelCase__ )
self.assertNotIn("decoder_attention_mask" , lowerCAmelCase__ )
@require_torch
def _UpperCamelCase ( self : int ) -> int:
UpperCAmelCase = [
"Summary of the text.",
"Another summary.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , max_length=3_2 , padding="max_length" , return_tensors="pt" )
self.assertEqual(3_2 , targets["input_ids"].shape[1] )
@require_torch
def _UpperCamelCase ( self : Any ) -> int:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(
["I am a small frog" * 1_0_2_4, "I am a small frog"] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) )
@require_torch
def _UpperCamelCase ( self : Dict ) -> Tuple:
UpperCAmelCase = ["A long paragraph for summarization."]
UpperCAmelCase = [
"Summary of the text.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase = tokenizer(text_target=lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase = inputs["input_ids"]
UpperCAmelCase = targets["input_ids"]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = ["Summary of the text.", "Another summary."]
UpperCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
UpperCAmelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ )
UpperCAmelCase = [[0] * len(lowerCAmelCase__ ) for x in encoded_output["input_ids"]]
UpperCAmelCase = tokenizer.pad(lowerCAmelCase__ )
self.assertSequenceEqual(outputs["global_attention_mask"] , lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] ) -> int:
pass
def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
UpperCAmelCase = "A, <mask> AllenNLP sentence."
UpperCAmelCase = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
UpperCAmelCase = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) )
self.assertEqual(
sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , )
UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] )
UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] )
self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(
lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
self.assertSequenceEqual(
lowerCAmelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
| 1 | 1 |
import math
def _lowerCAmelCase( __A , __A ):
if 0 not in (x, y):
# We use the relation x^y = y*log10(x), where 10 is the base.
return y * math.logaa(__A )
else:
if x == 0: # 0 raised to any number is 0
return 0
elif y == 0:
return 1 # any number raised to 0 is 1
raise AssertionError("This should never happen" )
if __name__ == "__main__": # Main function
# Read two numbers from input and typecast them to int using map function.
# Here x is the base and y is the power.
lowerCAmelCase__ = "Enter the base and the power separated by a comma: "
lowerCAmelCase__, lowerCAmelCase__ = map(int, input(prompt).split(","))
lowerCAmelCase__, lowerCAmelCase__ = map(int, input(prompt).split(","))
# We find the log of each number, using the function res(), which takes two
# arguments.
lowerCAmelCase__ = res(xa, ya)
lowerCAmelCase__ = res(xa, ya)
# We check for the largest number
if resa > resa:
print("Largest number is", xa, "^", ya)
elif resa > resa:
print("Largest number is", xa, "^", ya)
else:
print("Both are equal")
| 1 |
import numpy as np
from nltk.translate import meteor_score
import datasets
from datasets.config import importlib_metadata, version
lowerCAmelCase__ = version.parse(importlib_metadata.version("nltk"))
if NLTK_VERSION >= version.Version("3.6.4"):
from nltk import word_tokenize
lowerCAmelCase__ = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n"
lowerCAmelCase__ = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n"
lowerCAmelCase__ = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __magic_name__ ( datasets.Metric ):
def _UpperCamelCase ( self : int ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[
"https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score",
"https://en.wikipedia.org/wiki/METEOR",
] , )
def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : List[Any] ) -> Dict:
import nltk
nltk.download("wordnet" )
if NLTK_VERSION >= version.Version("3.6.5" ):
nltk.download("punkt" )
if NLTK_VERSION >= version.Version("3.6.6" ):
nltk.download("omw-1.4" )
def _UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=0.9 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Optional[int]=0.5 ) -> Any:
if NLTK_VERSION >= version.Version("3.6.5" ):
UpperCAmelCase = [
meteor_score.single_meteor_score(
word_tokenize(lowerCAmelCase__ ) , word_tokenize(lowerCAmelCase__ ) , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ )
for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
else:
UpperCAmelCase = [
meteor_score.single_meteor_score(lowerCAmelCase__ , lowerCAmelCase__ , alpha=lowerCAmelCase__ , beta=lowerCAmelCase__ , gamma=lowerCAmelCase__ )
for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
return {"meteor": np.mean(lowerCAmelCase__ )}
| 1 | 1 |
import os
from datetime import datetime as dt
from github import Github
lowerCAmelCase__ = [
"good first issue",
"feature request",
"wip",
]
def _lowerCAmelCase( ):
UpperCAmelCase = Github(os.environ["GITHUB_TOKEN"] )
UpperCAmelCase = g.get_repo("huggingface/accelerate" )
UpperCAmelCase = repo.get_issues(state="open" )
for issue in open_issues:
UpperCAmelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __A : i.created_at , reverse=__A )
UpperCAmelCase = comments[0] if len(__A ) > 0 else None
UpperCAmelCase = dt.utcnow()
UpperCAmelCase = (current_time - issue.updated_at).days
UpperCAmelCase = (current_time - issue.created_at).days
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and days_since_updated > 7
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Close issue since it has been 7 days of inactivity since bot mention.
issue.edit(state="closed" )
elif (
days_since_updated > 23
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Add stale comment
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
if __name__ == "__main__":
main()
| 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json",
}
class __magic_name__ ( _snake_case ):
UpperCAmelCase = """lxmert"""
UpperCAmelCase = {}
def __init__( self : int , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : List[str]=7_6_8 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : List[Any]=9_5_0_0 , lowerCAmelCase__ : Any=1_6_0_0 , lowerCAmelCase__ : Union[str, Any]=4_0_0 , lowerCAmelCase__ : Tuple=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : str=1e-1_2 , lowerCAmelCase__ : str=9 , lowerCAmelCase__ : int=5 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : List[Any]=2_0_4_8 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Dict=6.67 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Tuple=True , **lowerCAmelCase__ : List[Any] , ) -> Dict:
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = num_qa_labels
UpperCAmelCase = num_object_labels
UpperCAmelCase = num_attr_labels
UpperCAmelCase = l_layers
UpperCAmelCase = x_layers
UpperCAmelCase = r_layers
UpperCAmelCase = visual_feat_dim
UpperCAmelCase = visual_pos_dim
UpperCAmelCase = visual_loss_normalizer
UpperCAmelCase = task_matched
UpperCAmelCase = task_mask_lm
UpperCAmelCase = task_obj_predict
UpperCAmelCase = task_qa
UpperCAmelCase = visual_obj_loss
UpperCAmelCase = visual_attr_loss
UpperCAmelCase = visual_feat_loss
UpperCAmelCase = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers}
super().__init__(**lowerCAmelCase__ )
| 1 | 1 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class __magic_name__ :
UpperCAmelCase = 42
UpperCAmelCase = 42
class __magic_name__ :
def __init__( self : List[str] , lowerCAmelCase__ : int ) -> str:
UpperCAmelCase = [[] for _ in range(lowerCAmelCase__ )]
UpperCAmelCase = size
def __getitem__( self : str , lowerCAmelCase__ : int ) -> Iterator[Edge]:
return iter(self._graph[vertex] )
@property
def _UpperCamelCase ( self : Union[str, Any] ) -> List[Any]:
return self._size
def _UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> Tuple:
if weight not in (0, 1):
raise ValueError("Edge weight must be either 0 or 1." )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError("Vertex indexes must be in [0; size)." )
self._graph[from_vertex].append(Edge(lowerCAmelCase__ , lowerCAmelCase__ ) )
def _UpperCamelCase ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int | None:
UpperCAmelCase = deque([start_vertex] )
UpperCAmelCase = [None] * self.size
UpperCAmelCase = 0
while queue:
UpperCAmelCase = queue.popleft()
UpperCAmelCase = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
UpperCAmelCase = current_distance + edge.weight
UpperCAmelCase = distances[edge.destination_vertex]
if (
isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
and new_distance >= dest_vertex_distance
):
continue
UpperCAmelCase = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError("No path from start_vertex to finish_vertex." )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |
def _lowerCAmelCase( __A ):
UpperCAmelCase = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def _lowerCAmelCase( __A = 100 ):
UpperCAmelCase = 1
UpperCAmelCase = 2
for i in range(2 , max_n + 1 ):
UpperCAmelCase = pre_numerator
UpperCAmelCase = 2 * i // 3 if i % 3 == 0 else 1
UpperCAmelCase = cur_numerator
UpperCAmelCase = e_cont * pre_numerator + temp
return sum_digits(__A )
if __name__ == "__main__":
print(f"{solution() = }")
| 1 | 1 |
from copy import deepcopy
class __magic_name__ :
def __init__( self : List[str] , lowerCAmelCase__ : list[int] | None = None , lowerCAmelCase__ : int | None = None ) -> None:
if arr is None and size is not None:
UpperCAmelCase = size
UpperCAmelCase = [0] * size
elif arr is not None:
self.init(lowerCAmelCase__ )
else:
raise ValueError("Either arr or size must be specified" )
def _UpperCamelCase ( self : int , lowerCAmelCase__ : list[int] ) -> None:
UpperCAmelCase = len(lowerCAmelCase__ )
UpperCAmelCase = deepcopy(lowerCAmelCase__ )
for i in range(1 , self.size ):
UpperCAmelCase = self.next_(lowerCAmelCase__ )
if j < self.size:
self.tree[j] += self.tree[i]
def _UpperCamelCase ( self : Dict ) -> list[int]:
UpperCAmelCase = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
UpperCAmelCase = self.next_(lowerCAmelCase__ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def _UpperCamelCase ( lowerCAmelCase__ : int ) -> int:
return index + (index & (-index))
@staticmethod
def _UpperCamelCase ( lowerCAmelCase__ : int ) -> int:
return index - (index & (-index))
def _UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> None:
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
UpperCAmelCase = self.next_(lowerCAmelCase__ )
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> None:
self.add(lowerCAmelCase__ , value - self.get(lowerCAmelCase__ ) )
def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : int ) -> int:
if right == 0:
return 0
UpperCAmelCase = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
UpperCAmelCase = self.prev(lowerCAmelCase__ )
return result
def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int:
return self.prefix(lowerCAmelCase__ ) - self.prefix(lowerCAmelCase__ )
def _UpperCamelCase ( self : int , lowerCAmelCase__ : int ) -> int:
return self.query(lowerCAmelCase__ , index + 1 )
def _UpperCamelCase ( self : Any , lowerCAmelCase__ : int ) -> int:
value -= self.tree[0]
if value < 0:
return -1
UpperCAmelCase = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
UpperCAmelCase = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 1 | 1 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.