code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from random import randint, random def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any = False , SCREAMING_SNAKE_CASE : List[Any] = False , SCREAMING_SNAKE_CASE : Union[str, Any] = 5 , ) -> Any: __lowercase = [[-1] * number_of_cells] # Create a highway without any car __lowercase = 0 __lowercase = max(lowerCAmelCase_ , 0 ) while i < number_of_cells: __lowercase = ( randint(0 , lowerCAmelCase_ ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ) -> Any: __lowercase = 0 __lowercase = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase_ ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase_ , -1 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: __lowercase = len(lowerCAmelCase_ ) # Beforce calculations, the highway is empty __lowercase = [-1] * number_of_cells for car_index in range(lowerCAmelCase_ ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed __lowercase = min(highway_now[car_index] + 1 , lowerCAmelCase_ ) # Number of empty cell before the next car __lowercase = get_distance(lowerCAmelCase_ , lowerCAmelCase_ ) - 1 # We can't have the car causing an accident __lowercase = min(next_highway[car_index] , lowerCAmelCase_ ) if random() < probability: # Randomly, a driver will slow down __lowercase = max(next_highway[car_index] - 1 , 0 ) return next_highway def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str ) -> Tuple: __lowercase = len(highway[0] ) for i in range(lowerCAmelCase_ ): __lowercase = update(highway[i] , lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase = [-1] * number_of_cells for car_index in range(lowerCAmelCase_ ): __lowercase = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) __lowercase = (car_index + speed) % number_of_cells # Commit the change of position __lowercase = speed highway.append(lowerCAmelCase_ ) return highway if __name__ == "__main__": import doctest doctest.testmod()
707
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float: __lowercase = u for i in range(1 , SCREAMING_SNAKE_CASE ): __lowercase = temp * (u - i) return temp def __SCREAMING_SNAKE_CASE ( ) -> None: __lowercase = int(input('enter the numbers of values: ' ) ) __lowercase = [] for _ in range(SCREAMING_SNAKE_CASE ): y.append([] ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): y[i].append(SCREAMING_SNAKE_CASE ) __lowercase = 0 print('enter the values of parameters in a list: ' ) __lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(SCREAMING_SNAKE_CASE ): __lowercase = float(input() ) __lowercase = int(input('enter the value to interpolate: ' ) ) __lowercase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(n - i ): __lowercase = y[j + 1][i - 1] - y[j][i - 1] __lowercase = y[0][0] for i in range(1 , SCREAMING_SNAKE_CASE ): summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
688
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class A__ ( metaclass=lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = ["torch", "transformers", "onnx"] def __init__( self : Dict , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Any ) -> Optional[int]: """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : Tuple , *_UpperCAmelCase : Dict , **_UpperCAmelCase : str ) -> List[Any]: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : Optional[int] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : int ) -> List[str]: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = ["torch", "transformers", "onnx"] def __init__( self : Tuple , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : str ) -> int: """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : Optional[int] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : int , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = ["torch", "transformers", "onnx"] def __init__( self : Tuple , *_UpperCAmelCase : Any , **_UpperCAmelCase : Dict ) -> int: """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : Union[str, Any] , *_UpperCAmelCase : int , **_UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = ["torch", "transformers", "onnx"] def __init__( self : Optional[int] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : Union[str, Any] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : List[Any] ) -> Dict: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : Tuple , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> str: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=lowerCAmelCase__ ): lowerCAmelCase__ : str = ["torch", "transformers", "onnx"] def __init__( self : str , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : str , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = ["torch", "transformers", "onnx"] def __init__( self : Dict , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Any ) -> Optional[int]: """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : List[Any] , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def a__ ( cls : List[str] , *_UpperCAmelCase : int , **_UpperCAmelCase : List[str] ) -> List[Any]: """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] )
708
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = F"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: __lowercase = F"""Input value of [number={number}] must be > 0""" raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
688
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
709
from argparse import ArgumentParser from .env import EnvironmentCommand def __SCREAMING_SNAKE_CASE ( ) -> List[str]: __lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) __lowercase = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE ) # Let's go __lowercase = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
688
0
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = pd.read_csv("""sample_data.csv""", header=None) SCREAMING_SNAKE_CASE__ = df.shape[:1][0] # If you're using some other dataset input the target column SCREAMING_SNAKE_CASE__ = df.iloc[:, 1:2] SCREAMING_SNAKE_CASE__ = actual_data.values.reshape(len_data, 1) SCREAMING_SNAKE_CASE__ = MinMaxScaler().fit_transform(actual_data) SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 5 SCREAMING_SNAKE_CASE__ = 20 SCREAMING_SNAKE_CASE__ = len_data - periods * look_back SCREAMING_SNAKE_CASE__ = actual_data[:division] SCREAMING_SNAKE_CASE__ = actual_data[division - look_back :] SCREAMING_SNAKE_CASE__ = [], [] SCREAMING_SNAKE_CASE__ = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) SCREAMING_SNAKE_CASE__ = np.array(train_x) SCREAMING_SNAKE_CASE__ = np.array(test_x) SCREAMING_SNAKE_CASE__ = np.array([list(i.ravel()) for i in train_y]) SCREAMING_SNAKE_CASE__ = np.array([list(i.ravel()) for i in test_y]) SCREAMING_SNAKE_CASE__ = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") SCREAMING_SNAKE_CASE__ = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) SCREAMING_SNAKE_CASE__ = model.predict(x_test)
710
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ProphetNetTokenizer lowerCAmelCase__ : str = False def a__ ( self : str ) -> Tuple: """simple docstring""" super().setUp() __lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = 'UNwant\u00E9d,running' __lowercase = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Any: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : int ) -> List[str]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowercase = {} for i, token in enumerate(_UpperCAmelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] __lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def a__ ( self : int ) -> Dict: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : Any ) -> List[str]: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
688
0
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor SCREAMING_SNAKE_CASE__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Union[str, Any]: if isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): return image elif isinstance(SCREAMING_SNAKE_CASE , PIL.Image.Image ): __lowercase = [image] __lowercase = [trans(img.convert('RGB' ) ) for img in image] __lowercase = torch.stack(SCREAMING_SNAKE_CASE ) return image class A__ ( snake_case__ ): def __init__( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> str: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM __lowercase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_A , scheduler=_A ) def a__ ( self : int , _UpperCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" if strength < 0 or strength > 1: raise ValueError(f"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def a__ ( self : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> str: """simple docstring""" __lowercase = min(int(num_inference_steps * strength ) , _A ) __lowercase = max(num_inference_steps - init_timestep , 0 ) __lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any]=None ) -> Tuple: """simple docstring""" if not isinstance(_A , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_A )}""" ) __lowercase = image.to(device=_A , dtype=_A ) if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(_A )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __lowercase = init_latents.shape __lowercase = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) # get latents print('add noise to latents at timestep' , _A ) __lowercase = self.scheduler.add_noise(_A , _A , _A ) __lowercase = init_latents return latents @torch.no_grad() def __call__( self : Any , _UpperCAmelCase : List[str] = None , _UpperCAmelCase : Any = 0.8 , _UpperCAmelCase : List[Any] = 1 , _UpperCAmelCase : Dict = None , _UpperCAmelCase : List[str] = 0.0 , _UpperCAmelCase : str = 50 , _UpperCAmelCase : Tuple = None , _UpperCAmelCase : int = "pil" , _UpperCAmelCase : str = True , ) -> List[str]: """simple docstring""" self.check_inputs(_A ) # 2. Preprocess image __lowercase = preprocess(_A ) # 3. set timesteps self.scheduler.set_timesteps(_A , device=self.device ) __lowercase = self.get_timesteps(_A , _A , self.device ) __lowercase = timesteps[:1].repeat(_A ) # 4. Prepare latent variables __lowercase = self.prepare_latents(_A , _A , _A , self.unet.dtype , self.device , _A ) __lowercase = latents # 5. Denoising loop for t in self.progress_bar(_A ): # 1. predict noise model_output __lowercase = self.unet(_A , _A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __lowercase = self.scheduler.step( _A , _A , _A , eta=_A , use_clipped_model_output=_A , generator=_A , ).prev_sample __lowercase = (image / 2 + 0.5).clamp(0 , 1 ) __lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(_A ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_A )
711
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } SCREAMING_SNAKE_CASE__ = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } SCREAMING_SNAKE_CASE__ = { """jukebox""": 512, } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase__ : Any = ["input_ids", "attention_mask"] def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]: """simple docstring""" __lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token super().__init__( unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = version __lowercase = max_n_lyric_tokens __lowercase = n_genres with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) __lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase = oov.replace(R'\-\'' , R'\-+\'' ) __lowercase = regex.compile(_UpperCAmelCase ) __lowercase = {v: k for k, v in self.artists_encoder.items()} __lowercase = {v: k for k, v in self.genres_encoder.items()} __lowercase = {v: k for k, v in self.lyrics_encoder.items()} @property def a__ ( self : List[Any] ) -> Any: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(_UpperCAmelCase ) ): __lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]] __lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" return list(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = self._tokenize(_UpperCAmelCase ) return artist, genre, lyrics def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase = artists[idx].lower() __lowercase = [genres[idx].lower()] else: __lowercase = self._normalize(artists[idx] ) + '.v2' __lowercase = [ self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) __lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' __lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )} __lowercase = 0 __lowercase = len(_UpperCAmelCase ) + 1 __lowercase = self.vocab __lowercase = {v: k for k, v in self.vocab.items()} __lowercase = '' else: __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) __lowercase = self._run_strip_accents(_UpperCAmelCase ) __lowercase = lyrics.replace('\\' , '\n' ) __lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], [] return artists, genres, lyrics def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase ) __lowercase = [] for char in text: __lowercase = unicodedata.category(_UpperCAmelCase ) if cat == "Mn": continue output.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = ( [chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) __lowercase = frozenset(_UpperCAmelCase ) __lowercase = re.compile(R'_+' ) __lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] ) __lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' ) return text def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" return " ".join(_UpperCAmelCase ) def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = TensorType(_UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf __lowercase = tf.constant __lowercase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch __lowercase = torch.tensor __lowercase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 __lowercase = jnp.array __lowercase = _is_jax else: __lowercase = np.asarray __lowercase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase = [inputs] if not is_tensor(_UpperCAmelCase ): __lowercase = as_tensor(_UpperCAmelCase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding: """simple docstring""" __lowercase = [0, 0, 0] __lowercase = [artist] * len(self.version ) __lowercase = [genres] * len(self.version ) __lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = [-INFINITY] * len(full_tokens[-1] ) __lowercase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.artists_decoder.get(_UpperCAmelCase ) __lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index] __lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
688
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class A__ : lowerCAmelCase__ : Optional[int] = MBartConfig lowerCAmelCase__ : Optional[int] = {} lowerCAmelCase__ : Optional[int] = "gelu" def __init__( self : str , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Optional[int]=7 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : List[Any]=99 , _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Tuple=20 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : Optional[int]=0 , ) -> Any: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowercase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowercase = prepare_mbart_inputs_dict(__a , __a , __a ) return config, inputs_dict def a__ ( self : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" __lowercase = TFMBartModel(config=__a ).get_decoder() __lowercase = inputs_dict['input_ids'] __lowercase = input_ids[:1, :] __lowercase = inputs_dict['attention_mask'][:1, :] __lowercase = inputs_dict['head_mask'] __lowercase = 1 # first forward pass __lowercase = model(__a , attention_mask=__a , head_mask=__a , use_cache=__a ) __lowercase , __lowercase = outputs.to_tuple() __lowercase = past_key_values[1] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Optional[int]=None , ) -> Optional[int]: if attention_mask is None: __lowercase = tf.cast(tf.math.not_equal(__snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowercase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowercase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Optional[Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowerCAmelCase__ : List[str] = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase__ : Dict = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase__ : str = True lowerCAmelCase__ : Any = False lowerCAmelCase__ : Tuple = False def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any ) -> Dict: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def a__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = TFMBartModelTester(self ) __lowercase = ConfigTester(self , config_class=__a ) def a__ ( self : str ) -> str: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : int ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) @require_sentencepiece @require_tokenizers @require_tf class A__ ( unittest.TestCase ): lowerCAmelCase__ : List[str] = [ " UN Chief Says There Is No Military Solution in Syria", ] lowerCAmelCase__ : Tuple = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] lowerCAmelCase__ : str = "facebook/mbart-large-en-ro" @cached_property def a__ ( self : Tuple ) -> List[Any]: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def a__ ( self : Optional[int] ) -> str: """simple docstring""" __lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def a__ ( self : List[str] , **_UpperCAmelCase : Tuple ) -> List[str]: """simple docstring""" __lowercase = self.translate_src_text(**__a ) self.assertListEqual(self.expected_text , __a ) def a__ ( self : Union[str, Any] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" __lowercase = self.tokenizer(self.src_text , **__a , return_tensors='tf' ) __lowercase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __lowercase = self.tokenizer.batch_decode(__a , skip_special_tokens=__a ) return generated_words @slow def a__ ( self : int ) -> Any: """simple docstring""" self._assert_generated_batch_equal_expected()
712
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_hidden_groups __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def a__ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" __lowercase = AlbertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple: """simple docstring""" __lowercase = AlbertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = AlbertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" __lowercase = self.num_choices __lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ : Dict = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Optional[Any] = True def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple: """simple docstring""" __lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def a__ ( self : str ) -> str: """simple docstring""" __lowercase = AlbertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def a__ ( self : int ) -> Any: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AlbertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class A__ ( unittest.TestCase ): @slow def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = AlbertModel.from_pretrained('albert-base-v2' ) __lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __lowercase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
688
0
SCREAMING_SNAKE_CASE__ = {} def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[int]: if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __lowercase = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __lowercase = _calculate(days - 1 , lowerCamelCase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __lowercase = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __lowercase = _calculate(days - 1 , lowerCamelCase_ , 0 ) __lowercase = state_late + state_absent + state_ontime __lowercase = prizestrings return prizestrings def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str = 30 ) -> List[str]: return _calculate(lowerCamelCase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
713
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A__ ( lowerCAmelCase__ ): def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]: """simple docstring""" __lowercase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['token'] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __lowercase = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) __lowercase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [files] self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['unk']['id'] __lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
688
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
714
import string from math import logaa def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int: __lowercase = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) __lowercase = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]: __lowercase = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' __lowercase = corpus_without_punctuation.split('\n' ) __lowercase = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE )) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float: if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float: return round(tf * idf , 3 )
688
0
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # TODO Update this SCREAMING_SNAKE_CASE__ = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class A__ ( _UpperCamelCase ): lowerCAmelCase__ : List[Any] = "esm" def __init__( self : Any , _UpperCAmelCase : str=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=7_68 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Union[str, Any]=10_26 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : str=1e-1_2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Union[str, Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , mask_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = emb_layer_norm_before __lowercase = token_dropout __lowercase = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) __lowercase = EsmFoldConfig() elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = EsmFoldConfig(**_UpperCAmelCase ) __lowercase = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) __lowercase = get_default_vocab_list() else: __lowercase = vocab_list else: __lowercase = None __lowercase = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , _UpperCAmelCase ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase = super().to_dict() if isinstance(self.esmfold_config , _UpperCAmelCase ): __lowercase = self.esmfold_config.to_dict() return output @dataclass class A__ : lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : int = True lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : str = False lowerCAmelCase__ : List[str] = 128 lowerCAmelCase__ : Dict = None def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" if self.trunk is None: __lowercase = TrunkConfig() elif isinstance(self.trunk , _UpperCAmelCase ): __lowercase = TrunkConfig(**self.trunk ) def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = asdict(self ) __lowercase = self.trunk.to_dict() return output @dataclass class A__ : lowerCAmelCase__ : Optional[int] = 48 lowerCAmelCase__ : Dict = 1024 lowerCAmelCase__ : Union[str, Any] = 128 lowerCAmelCase__ : List[str] = 32 lowerCAmelCase__ : Optional[Any] = 32 lowerCAmelCase__ : Any = 32 lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : str = 0 lowerCAmelCase__ : Dict = False lowerCAmelCase__ : Tuple = 4 lowerCAmelCase__ : Union[str, Any] = 128 lowerCAmelCase__ : Dict = None def a__ ( self : Dict ) -> Any: """simple docstring""" if self.structure_module is None: __lowercase = StructureModuleConfig() elif isinstance(self.structure_module , _UpperCAmelCase ): __lowercase = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) __lowercase = self.sequence_state_dim // self.sequence_head_width __lowercase = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = asdict(self ) __lowercase = self.structure_module.to_dict() return output @dataclass class A__ : lowerCAmelCase__ : Optional[int] = 384 lowerCAmelCase__ : List[Any] = 128 lowerCAmelCase__ : List[str] = 16 lowerCAmelCase__ : List[Any] = 128 lowerCAmelCase__ : str = 12 lowerCAmelCase__ : List[str] = 4 lowerCAmelCase__ : Tuple = 8 lowerCAmelCase__ : List[Any] = 0.1 lowerCAmelCase__ : Dict = 8 lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : int = 2 lowerCAmelCase__ : Any = 7 lowerCAmelCase__ : List[Any] = 10 lowerCAmelCase__ : Optional[Any] = 1e-8 lowerCAmelCase__ : Optional[Any] = 1e5 def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return asdict(self ) def __SCREAMING_SNAKE_CASE ( ) -> Dict: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
715
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # TODO: upload to AWS SCREAMING_SNAKE_CASE__ = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "retribert" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = share_encoders __lowercase = projection_dim
688
0
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ : def __init__( self : List[Any] , _UpperCAmelCase : str = None , _UpperCAmelCase : uuid.UUID = None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : int=None ) -> Dict: """simple docstring""" if not conversation_id: __lowercase = uuid.uuida() if past_user_inputs is None: __lowercase = [] if generated_responses is None: __lowercase = [] __lowercase = conversation_id __lowercase = past_user_inputs __lowercase = generated_responses __lowercase = text def __eq__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def a__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Any: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ f"""with: \"{text}\".""" ) __lowercase = text else: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: __lowercase = text def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase = None def a__ ( self : Dict , _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" self.generated_responses.append(lowercase_ ) def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = f"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): __lowercase = 'user' if is_user else 'bot' output += f"""{name} >> {text} \n""" return output @add_end_docstrings( lowerCAmelCase__ , R"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class A__ ( lowerCAmelCase__ ): def __init__( self : List[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : str ) -> List[str]: """simple docstring""" super().__init__(*lowercase_ , **lowercase_ ) if self.tokenizer.pad_token_id is None: __lowercase = self.tokenizer.eos_token def a__ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : int=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase = {} __lowercase = {} __lowercase = {} if min_length_for_response is not None: __lowercase = min_length_for_response if minimum_tokens is not None: __lowercase = minimum_tokens if "max_length" in generate_kwargs: __lowercase = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowercase_ ) return preprocess_params, forward_params, postprocess_params def __call__( self : Any , _UpperCAmelCase : Union[Conversation, List[Conversation]] , _UpperCAmelCase : str=0 , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = super().__call__(lowercase_ , num_workers=lowercase_ , **lowercase_ ) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) == 1: return outputs[0] return outputs def a__ ( self : List[Any] , _UpperCAmelCase : Conversation , _UpperCAmelCase : Any=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): __lowercase = self.tokenizer._build_conversation_input_ids(lowercase_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase = self._legacy_parse_and_tokenize(lowercase_ ) if self.framework == "pt": __lowercase = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def a__ ( self : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int]=10 , **_UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" __lowercase = generate_kwargs.get('max_length' , self.model.config.max_length ) __lowercase = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) __lowercase = max_length - minimum_tokens __lowercase = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: __lowercase = model_inputs['attention_mask'][:, -trim:] __lowercase = model_inputs.pop('conversation' ) __lowercase = max_length __lowercase = self.model.generate(**lowercase_ , **lowercase_ ) if self.model.config.is_encoder_decoder: __lowercase = 1 else: __lowercase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int=True ) -> List[Any]: """simple docstring""" __lowercase = model_outputs['output_ids'] __lowercase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ , ) __lowercase = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(lowercase_ ) return conversation def a__ ( self : Any , _UpperCAmelCase : Conversation ) -> Dict: """simple docstring""" __lowercase = self.tokenizer.eos_token_id __lowercase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) if len(lowercase_ ) > self.tokenizer.model_max_length: __lowercase = input_ids[-self.tokenizer.model_max_length :] return input_ids
716
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """Intel/dpt-large""": """https://huggingface.co/Intel/dpt-large/resolve/main/config.json""", # See all DPT models at https://huggingface.co/models?filter=dpt } class A__ ( __lowerCAmelCase ): lowerCAmelCase__ : Tuple = '''dpt''' def __init__( self : str , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : str=30_72 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : Union[str, Any]=1e-1_2 , _UpperCAmelCase : Dict=3_84 , _UpperCAmelCase : Dict=16 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple=[2, 5, 8, 11] , _UpperCAmelCase : Optional[int]="project" , _UpperCAmelCase : Optional[Any]=[4, 2, 1, 0.5] , _UpperCAmelCase : List[str]=[96, 1_92, 3_84, 7_68] , _UpperCAmelCase : Any=2_56 , _UpperCAmelCase : Union[str, Any]=-1 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]=0.4 , _UpperCAmelCase : Union[str, Any]=2_55 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=[1, 10_24, 24, 24] , _UpperCAmelCase : List[str]=[0, 1] , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[str] , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase_ ) __lowercase = hidden_size __lowercase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) __lowercase = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } __lowercase = BitConfig(**lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): logger.info('Initializing the config with a `BiT` backbone.' ) __lowercase = BitConfig(**lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase = backbone_config else: raise ValueError( f"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) __lowercase = backbone_featmap_shape __lowercase = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: __lowercase = None __lowercase = None __lowercase = [] __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) __lowercase = readout_type __lowercase = reassemble_factors __lowercase = neck_hidden_sizes __lowercase = fusion_hidden_size __lowercase = head_in_index __lowercase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) __lowercase = use_auxiliary_head __lowercase = auxiliary_loss_weight __lowercase = semantic_loss_ignore_index __lowercase = semantic_classifier_dropout def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output
717
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"] lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor" lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __lowercase = kwargs.pop('feature_extractor' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor __lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowercase = features['words'] __lowercase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values __lowercase = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowercase = images return encoded_inputs def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" ) return images_with_overflow def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def a__ ( self : str ) -> Dict: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
688
0
'''simple docstring''' class A__ : def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" __lowercase = name __lowercase = val def __str__( self : Dict ) -> Optional[Any]: """simple docstring""" return f"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self : Tuple , _UpperCAmelCase : Any ) -> Any: """simple docstring""" return self.val < other.val class A__ : def __init__( self : int , _UpperCAmelCase : Any ) -> int: """simple docstring""" __lowercase = {} __lowercase = {} __lowercase = self.build_heap(UpperCAmelCase__ ) def __getitem__( self : Optional[int] , _UpperCAmelCase : Tuple ) -> str: """simple docstring""" return self.get_value(UpperCAmelCase__ ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return (idx - 1) // 2 def a__ ( self : Tuple , _UpperCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" return idx * 2 + 1 def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Tuple: """simple docstring""" return idx * 2 + 2 def a__ ( self : Any , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return self.heap_dict[key] def a__ ( self : Optional[int] , _UpperCAmelCase : Any ) -> Optional[int]: """simple docstring""" __lowercase = len(UpperCAmelCase__ ) - 1 __lowercase = self.get_parent_idx(UpperCAmelCase__ ) for idx, i in enumerate(UpperCAmelCase__ ): __lowercase = idx __lowercase = i.val for i in range(UpperCAmelCase__ , -1 , -1 ): self.sift_down(UpperCAmelCase__ , UpperCAmelCase__ ) return array def a__ ( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> Dict: """simple docstring""" while True: __lowercase = self.get_left_child_idx(UpperCAmelCase__ ) # noqa: E741 __lowercase = self.get_right_child_idx(UpperCAmelCase__ ) __lowercase = idx if l < len(UpperCAmelCase__ ) and array[l] < array[idx]: __lowercase = l if r < len(UpperCAmelCase__ ) and array[r] < array[smallest]: __lowercase = r if smallest != idx: __lowercase = array[smallest], array[idx] ( __lowercase ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) __lowercase = smallest else: break def a__ ( self : Dict , _UpperCAmelCase : int ) -> str: """simple docstring""" __lowercase = self.get_parent_idx(UpperCAmelCase__ ) while p >= 0 and self.heap[p] > self.heap[idx]: __lowercase = self.heap[idx], self.heap[p] __lowercase = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) __lowercase = p __lowercase = self.get_parent_idx(UpperCAmelCase__ ) def a__ ( self : List[str] ) -> Tuple: """simple docstring""" return self.heap[0] def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase = self.heap[-1], self.heap[0] __lowercase = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) __lowercase = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def a__ ( self : str , _UpperCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" self.heap.append(UpperCAmelCase__ ) __lowercase = len(self.heap ) - 1 __lowercase = node.val self.sift_up(len(self.heap ) - 1 ) def a__ ( self : List[Any] ) -> int: """simple docstring""" return len(self.heap ) == 0 def a__ ( self : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ) -> List[Any]: """simple docstring""" assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" __lowercase = new_value __lowercase = new_value self.sift_up(self.idx_of_element[node] ) SCREAMING_SNAKE_CASE__ = Node("""R""", -1) SCREAMING_SNAKE_CASE__ = Node("""B""", 6) SCREAMING_SNAKE_CASE__ = Node("""A""", 3) SCREAMING_SNAKE_CASE__ = Node("""X""", 1) SCREAMING_SNAKE_CASE__ = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array SCREAMING_SNAKE_CASE__ = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
718
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ : lowerCAmelCase__ : Optional[int] = "dummy_data" lowerCAmelCase__ : str = "datasets" lowerCAmelCase__ : Dict = False def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]: """simple docstring""" __lowercase = 0 __lowercase = dataset_name __lowercase = cache_dir __lowercase = use_local_dummy_data __lowercase = config # download_callbacks take a single url as input __lowercase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowercase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowercase = str(_UpperCAmelCase ) # to be downloaded __lowercase = None __lowercase = None @property def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" if self._dummy_file is None: __lowercase = self.download_dummy_data() return self._dummy_file @property def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowercase = cached_path( _UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase ) return os.path.join(_UpperCAmelCase , self.dummy_file_name ) @property def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" if self._bucket_url is None: __lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowercase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowercase = self.dummy_file_name # special case when data_url is a dict if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase ) elif isinstance(_UpperCAmelCase , (list, tuple) ): return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase ) else: return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" return path def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" return {} def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for single_url in single_urls: download_callback(_UpperCAmelCase ) else: __lowercase = single_urls download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls] else: __lowercase = single_urls __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) __lowercase = value # make sure that values are unique if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowercase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url ) __lowercase = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowercase = [data_url[0]] * len(_UpperCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(_UpperCAmelCase ) return dummy_data_list def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def a__ ( self : List[str] ) -> Any: """simple docstring""" pass def a__ ( self : int ) -> str: """simple docstring""" pass def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" def _iter_archive_members(_UpperCAmelCase : Optional[Any] ): # this preserves the order of the members inside the ZIP archive __lowercase = Path(self.dummy_file ).parent __lowercase = path.relative_to(_UpperCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowercase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_UpperCAmelCase ) __lowercase = Path(_UpperCAmelCase ) __lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [paths] for path in paths: if os.path.isfile(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(_UpperCAmelCase ): if filename.startswith(('.', '__') ): continue yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
688
0
SCREAMING_SNAKE_CASE__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> bytes: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = F"""a bytes-like object is required, not \'{data.__class__.__name__}\'""" raise TypeError(SCREAMING_SNAKE_CASE ) __lowercase = "".join(bin(SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data ) __lowercase = len(SCREAMING_SNAKE_CASE ) % 6 != 0 if padding_needed: # The padding that will be added later __lowercase = b"=" * ((6 - len(SCREAMING_SNAKE_CASE ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(SCREAMING_SNAKE_CASE ) % 6) else: __lowercase = b"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(SCREAMING_SNAKE_CASE ) , 6 ) ).encode() + padding ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> bytes: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = ( "argument should be a bytes-like object or ASCII string, " F"""not \'{encoded_data.__class__.__name__}\'""" ) raise TypeError(SCREAMING_SNAKE_CASE ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): try: __lowercase = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) __lowercase = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __lowercase = encoded_data[:-padding] __lowercase = "".join( bin(B64_CHARSET.index(SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __lowercase = "".join( bin(B64_CHARSET.index(SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data ) __lowercase = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(SCREAMING_SNAKE_CASE ) , 8 ) ] return bytes(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
719
import math import sys import cva import numpy as np def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __lowercase = math.sqrt(SCREAMING_SNAKE_CASE ) __lowercase = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray: __lowercase = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __lowercase = np.zeros((kernel_size, kernel_size) ) for i in range(0 , SCREAMING_SNAKE_CASE ): for j in range(0 , SCREAMING_SNAKE_CASE ): __lowercase = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray: __lowercase = np.zeros(img.shape ) __lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2] __lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE ) __lowercase = val return imga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple: __lowercase = args[1] if args[1:] else '../image_data/lena.jpg' __lowercase = float(args[2] ) if args[2:] else 1.0 __lowercase = float(args[3] ) if args[3:] else 1.0 if args[4:]: __lowercase = int(args[4] ) __lowercase = kernel_size + abs(kernel_size % 2 - 1 ) else: __lowercase = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv) SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0) cva.imshow("""input image""", img) SCREAMING_SNAKE_CASE__ = img / 255 SCREAMING_SNAKE_CASE__ = out.astype("""float32""") SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) SCREAMING_SNAKE_CASE__ = out * 255 SCREAMING_SNAKE_CASE__ = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
688
0
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class A__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ : Any = DownBlockaD # noqa F405 lowerCAmelCase__ : List[Any] = "down" def a__ ( self : str ) -> str: """simple docstring""" __lowercase = [-0.0_232, -0.9_869, 0.8_054, -0.0_637, -0.1_688, -1.4_264, 0.4_470, -1.3_394, 0.0_904] super().test_output(SCREAMING_SNAKE_CASE_ ) class A__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ : Dict = ResnetDownsampleBlockaD # noqa F405 lowerCAmelCase__ : int = "down" def a__ ( self : Dict ) -> str: """simple docstring""" __lowercase = [0.0_710, 0.2_410, -0.7_320, -1.0_757, -1.1_343, 0.3_540, -0.0_133, -0.2_576, 0.0_948] super().test_output(SCREAMING_SNAKE_CASE_ ) class A__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ : Dict = AttnDownBlockaD # noqa F405 lowerCAmelCase__ : List[str] = "down" def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = [0.0_636, 0.8_964, -0.6_234, -1.0_131, 0.0_844, 0.4_935, 0.3_437, 0.0_911, -0.2_957] super().test_output(SCREAMING_SNAKE_CASE_ ) class A__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ : Optional[int] = CrossAttnDownBlockaD # noqa F405 lowerCAmelCase__ : Tuple = "down" def a__ ( self : int ) -> str: """simple docstring""" __lowercase , __lowercase = super().prepare_init_args_and_inputs_for_common() __lowercase = 32 return init_dict, inputs_dict def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = [0.2_238, -0.7_396, -0.2_255, -0.3_829, 0.1_925, 1.1_665, 0.0_603, -0.7_295, 0.1_983] super().test_output(SCREAMING_SNAKE_CASE_ ) class A__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ : int = SimpleCrossAttnDownBlockaD # noqa F405 lowerCAmelCase__ : Tuple = "down" @property def a__ ( self : str ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=SCREAMING_SNAKE_CASE_ ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase , __lowercase = super().prepare_init_args_and_inputs_for_common() __lowercase = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase = [0.7_921, -0.0_992, -0.1_962, -0.7_695, -0.4_242, 0.7_804, 0.4_737, 0.2_765, 0.3_338] super().test_output(SCREAMING_SNAKE_CASE_ ) class A__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ : List[str] = SkipDownBlockaD # noqa F405 lowerCAmelCase__ : List[Any] = "down" @property def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" return super().get_dummy_input(include_skip_sample=SCREAMING_SNAKE_CASE_ ) def a__ ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase = [-0.0_845, -0.2_087, -0.2_465, 0.0_971, 0.1_900, -0.0_484, 0.2_664, 0.4_179, 0.5_069] super().test_output(SCREAMING_SNAKE_CASE_ ) class A__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ : Union[str, Any] = AttnSkipDownBlockaD # noqa F405 lowerCAmelCase__ : Any = "down" @property def a__ ( self : Dict ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_skip_sample=SCREAMING_SNAKE_CASE_ ) def a__ ( self : Dict ) -> Any: """simple docstring""" __lowercase = [0.5_539, 0.1_609, 0.4_924, 0.0_537, -0.1_995, 0.4_050, 0.0_979, -0.2_721, -0.0_642] super().test_output(SCREAMING_SNAKE_CASE_ ) class A__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ : Union[str, Any] = DownEncoderBlockaD # noqa F405 lowerCAmelCase__ : Optional[Any] = "down" @property def a__ ( self : Any ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=SCREAMING_SNAKE_CASE_ ) def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase = { 'in_channels': 32, 'out_channels': 32, } __lowercase = self.dummy_input return init_dict, inputs_dict def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = [1.1_102, 0.5_302, 0.4_872, -0.0_023, -0.8_042, 0.0_483, -0.3_489, -0.5_632, 0.7_626] super().test_output(SCREAMING_SNAKE_CASE_ ) class A__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ : List[Any] = AttnDownEncoderBlockaD # noqa F405 lowerCAmelCase__ : List[str] = "down" @property def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_temb=SCREAMING_SNAKE_CASE_ ) def a__ ( self : Dict ) -> Any: """simple docstring""" __lowercase = { 'in_channels': 32, 'out_channels': 32, } __lowercase = self.dummy_input return init_dict, inputs_dict def a__ ( self : int ) -> int: """simple docstring""" __lowercase = [0.8_966, -0.1_486, 0.8_568, 0.8_141, -0.9_046, -0.1_342, -0.0_972, -0.7_417, 0.1_538] super().test_output(SCREAMING_SNAKE_CASE_ ) class A__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ : Optional[Any] = UNetMidBlockaD # noqa F405 lowerCAmelCase__ : Tuple = "mid" def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = { 'in_channels': 32, 'temb_channels': 1_28, } __lowercase = self.dummy_input return init_dict, inputs_dict def a__ ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase = [-0.1_062, 1.7_248, 0.3_494, 1.4_569, -0.0_910, -1.2_421, -0.9_984, 0.6_736, 1.0_028] super().test_output(SCREAMING_SNAKE_CASE_ ) class A__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ : Optional[int] = UNetMidBlockaDCrossAttn # noqa F405 lowerCAmelCase__ : Optional[int] = "mid" def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase , __lowercase = super().prepare_init_args_and_inputs_for_common() __lowercase = 32 return init_dict, inputs_dict def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = [0.0_187, 2.4_220, 0.4_484, 1.1_203, -0.6_121, -1.5_122, -0.8_270, 0.7_851, 1.8_335] super().test_output(SCREAMING_SNAKE_CASE_ ) class A__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ : Dict = UNetMidBlockaDSimpleCrossAttn # noqa F405 lowerCAmelCase__ : List[Any] = "mid" @property def a__ ( self : List[Any] ) -> str: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=SCREAMING_SNAKE_CASE_ ) def a__ ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = super().prepare_init_args_and_inputs_for_common() __lowercase = 32 return init_dict, inputs_dict def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = [0.7_143, 1.9_974, 0.5_448, 1.3_977, 0.1_282, -1.1_237, -1.4_238, 0.5_530, 0.8_880] super().test_output(SCREAMING_SNAKE_CASE_ ) class A__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ : List[str] = UpBlockaD # noqa F405 lowerCAmelCase__ : Any = "up" @property def a__ ( self : Tuple ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ ) def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = [-0.2_041, -0.4_165, -0.3_022, 0.0_041, -0.6_628, -0.7_053, 0.1_928, -0.0_325, 0.0_523] super().test_output(SCREAMING_SNAKE_CASE_ ) class A__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ : Tuple = ResnetUpsampleBlockaD # noqa F405 lowerCAmelCase__ : Any = "up" @property def a__ ( self : List[Any] ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase = [0.2_287, 0.3_549, -0.1_346, 0.4_797, -0.1_715, -0.9_649, 0.7_305, -0.5_864, -0.6_244] super().test_output(SCREAMING_SNAKE_CASE_ ) class A__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ : Tuple = CrossAttnUpBlockaD # noqa F405 lowerCAmelCase__ : int = "up" @property def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase , __lowercase = super().prepare_init_args_and_inputs_for_common() __lowercase = 32 return init_dict, inputs_dict def a__ ( self : List[str] ) -> Dict: """simple docstring""" __lowercase = [-0.1_403, -0.3_515, -0.0_420, -0.1_425, 0.3_167, 0.5_094, -0.2_181, 0.5_931, 0.5_582] super().test_output(SCREAMING_SNAKE_CASE_ ) class A__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ : Dict = SimpleCrossAttnUpBlockaD # noqa F405 lowerCAmelCase__ : List[Any] = "up" @property def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ , include_encoder_hidden_states=SCREAMING_SNAKE_CASE_ ) def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = super().prepare_init_args_and_inputs_for_common() __lowercase = 32 return init_dict, inputs_dict def a__ ( self : Any ) -> Dict: """simple docstring""" __lowercase = [0.2_645, 0.1_480, 0.0_909, 0.8_044, -0.9_758, -0.9_083, 0.0_994, -1.1_453, -0.7_402] super().test_output(SCREAMING_SNAKE_CASE_ ) class A__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ : Tuple = AttnUpBlockaD # noqa F405 lowerCAmelCase__ : List[Any] = "up" @property def a__ ( self : Any ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ ) @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = [0.0_979, 0.1_326, 0.0_021, 0.0_659, 0.2_249, 0.0_059, 0.1_132, 0.5_952, 0.1_033] super().test_output(SCREAMING_SNAKE_CASE_ ) class A__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ : List[Any] = SkipUpBlockaD # noqa F405 lowerCAmelCase__ : Any = "up" @property def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ ) def a__ ( self : Any ) -> str: """simple docstring""" __lowercase = [-0.0_893, -0.1_234, -0.1_506, -0.0_332, 0.0_123, -0.0_211, 0.0_566, 0.0_143, 0.0_362] super().test_output(SCREAMING_SNAKE_CASE_ ) class A__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ : Dict = AttnSkipUpBlockaD # noqa F405 lowerCAmelCase__ : Optional[Any] = "up" @property def a__ ( self : List[Any] ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" __lowercase = [0.0_361, 0.0_617, 0.2_787, -0.0_350, 0.0_342, 0.3_421, -0.0_843, 0.0_913, 0.3_015] super().test_output(SCREAMING_SNAKE_CASE_ ) class A__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ : List[str] = UpDecoderBlockaD # noqa F405 lowerCAmelCase__ : List[str] = "up" @property def a__ ( self : Any ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_temb=SCREAMING_SNAKE_CASE_ ) def a__ ( self : Dict ) -> int: """simple docstring""" __lowercase = {'in_channels': 32, 'out_channels': 32} __lowercase = self.dummy_input return init_dict, inputs_dict def a__ ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase = [0.4_404, 0.1_998, -0.9_886, -0.3_320, -0.3_128, -0.7_034, -0.6_955, -0.2_338, -0.3_137] super().test_output(SCREAMING_SNAKE_CASE_ ) class A__ ( __lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ : Tuple = AttnUpDecoderBlockaD # noqa F405 lowerCAmelCase__ : Any = "up" @property def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_temb=SCREAMING_SNAKE_CASE_ ) def a__ ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase = {'in_channels': 32, 'out_channels': 32} __lowercase = self.dummy_input return init_dict, inputs_dict def a__ ( self : int ) -> str: """simple docstring""" __lowercase = [0.6_738, 0.4_491, 0.1_055, 1.0_710, 0.7_316, 0.3_339, 0.3_352, 0.1_023, 0.3_568] super().test_output(SCREAMING_SNAKE_CASE_ )
720
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A__ ( unittest.TestCase ): def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict: """simple docstring""" __lowercase = size if size is not None else {'height': 18, 'width': 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = apply_ocr def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def a__ ( self : int ) -> Tuple: """simple docstring""" pass def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _UpperCAmelCase ) self.assertIsInstance(encoding.boxes , _UpperCAmelCase ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = LayoutLMvaImageProcessor() from datasets import load_dataset __lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __lowercase = Image.open(ds[0]['file'] ).convert('RGB' ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _UpperCAmelCase ) self.assertListEqual(encoding.boxes , _UpperCAmelCase ) # with apply_OCR = False __lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
688
0
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class A__ ( _snake_case ): lowerCAmelCase__ : int = """EncodecFeatureExtractor""" lowerCAmelCase__ : str = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" super().__init__(snake_case_ , snake_case_ ) __lowercase = self.feature_extractor __lowercase = False def a__ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]=True ) -> Tuple: """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=snake_case_ , language=snake_case_ , no_timestamps=snake_case_ ) def __call__( self : List[Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*snake_case_ , **snake_case_ ) __lowercase = kwargs.pop('audio' , snake_case_ ) __lowercase = kwargs.pop('sampling_rate' , snake_case_ ) __lowercase = kwargs.pop('text' , snake_case_ ) if len(snake_case_ ) > 0: __lowercase = args[0] __lowercase = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if text is not None: __lowercase = self.tokenizer(snake_case_ , **snake_case_ ) if audio is not None: __lowercase = self.feature_extractor(snake_case_ , *snake_case_ , sampling_rate=snake_case_ , **snake_case_ ) if audio is None: return inputs elif text is None: return audio_inputs else: __lowercase = audio_inputs["input_values"] if "padding_mask" in audio_inputs: __lowercase = audio_inputs["padding_mask"] return inputs def a__ ( self : List[Any] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> str: """simple docstring""" __lowercase = kwargs.pop('audio' , snake_case_ ) __lowercase = kwargs.pop('padding_mask' , snake_case_ ) if len(snake_case_ ) > 0: __lowercase = args[0] __lowercase = args[1:] if audio_values is not None: return self._decode_audio(snake_case_ , padding_mask=snake_case_ ) else: return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def a__ ( self : List[Any] , *_UpperCAmelCase : Dict , **_UpperCAmelCase : List[Any] ) -> str: """simple docstring""" return self.tokenizer.decode(*snake_case_ , **snake_case_ ) def a__ ( self : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] = None ) -> Tuple: """simple docstring""" __lowercase = to_numpy(snake_case_ ) __lowercase = audio_values.shape if padding_mask is None: return list(snake_case_ ) __lowercase = to_numpy(snake_case_ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __lowercase = seq_len - padding_mask.shape[-1] __lowercase = 1 - self.feature_extractor.padding_value __lowercase = np.pad(snake_case_ , ((0, 0), (0, difference)) , 'constant' , constant_values=snake_case_ ) __lowercase = audio_values.tolist() for i in range(snake_case_ ): __lowercase = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __lowercase = sliced_audio.reshape(snake_case_ , -1 ) return audio_values
721
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "umt5" lowerCAmelCase__ : Tuple = ["past_key_values"] def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__( is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = vocab_size __lowercase = d_model __lowercase = d_kv __lowercase = d_ff __lowercase = num_layers __lowercase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase = num_heads __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = initializer_factor __lowercase = feed_forward_proj __lowercase = use_cache __lowercase = self.feed_forward_proj.split('-' ) __lowercase = act_info[-1] __lowercase = act_info[0] == 'gated' if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __lowercase = 'gelu_new' @property def a__ ( self : Tuple ) -> Any: """simple docstring""" return self.d_model @property def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" return self.num_heads @property def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" return self.num_layers class A__ ( lowerCAmelCase__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __lowercase = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __lowercase = 'past_encoder_sequence + sequence' __lowercase = {0: 'batch'} __lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase = {0: 'batch', 1: 'decoder_sequence'} __lowercase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a__ ( self : List[str] ) -> int: """simple docstring""" return 13 @property def a__ ( self : Dict ) -> float: """simple docstring""" return 5e-4
688
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class A__ ( lowercase__ , lowercase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = StableDiffusionPanoramaPipeline lowerCAmelCase__ : int = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ : int = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def a__ ( self : Tuple ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) __lowercase = DDIMScheduler() torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __lowercase = CLIPTextModel(UpperCAmelCase__ ) __lowercase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a__ ( self : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any=0 ) -> Optional[Any]: """simple docstring""" __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableDiffusionPanoramaPipeline(**UpperCAmelCase__ ) __lowercase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs(UpperCAmelCase__ ) __lowercase = sd_pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowercase = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self : Dict ) -> str: """simple docstring""" super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableDiffusionPanoramaPipeline(**UpperCAmelCase__ ) __lowercase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs(UpperCAmelCase__ ) __lowercase = '''french fries''' __lowercase = sd_pipe(**UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowercase = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self : Dict ) -> int: """simple docstring""" __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableDiffusionPanoramaPipeline(**UpperCAmelCase__ ) __lowercase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs(UpperCAmelCase__ ) __lowercase = sd_pipe(**UpperCAmelCase__ , view_batch_size=2 ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowercase = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self : str ) -> Any: """simple docstring""" __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' ) __lowercase = StableDiffusionPanoramaPipeline(**UpperCAmelCase__ ) __lowercase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs(UpperCAmelCase__ ) __lowercase = sd_pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowercase = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self : Tuple ) -> Any: """simple docstring""" __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = PNDMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , skip_prk_steps=UpperCAmelCase__ ) __lowercase = StableDiffusionPanoramaPipeline(**UpperCAmelCase__ ) __lowercase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs(UpperCAmelCase__ ) __lowercase = sd_pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowercase = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class A__ ( unittest.TestCase ): def a__ ( self : int ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self : int , _UpperCAmelCase : int=0 ) -> Optional[Any]: """simple docstring""" __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase = '''stabilityai/stable-diffusion-2-base''' __lowercase = DDIMScheduler.from_pretrained(UpperCAmelCase__ , subfolder='scheduler' ) __lowercase = StableDiffusionPanoramaPipeline.from_pretrained(UpperCAmelCase__ , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing() __lowercase = self.get_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) __lowercase = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def a__ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = StableDiffusionPanoramaPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-base' , safety_checker=UpperCAmelCase__ ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing() __lowercase = self.get_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) __lowercase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = 0 def callback_fn(_UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : torch.FloatTensor ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: __lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 __lowercase = False __lowercase = '''stabilityai/stable-diffusion-2-base''' __lowercase = DDIMScheduler.from_pretrained(UpperCAmelCase__ , subfolder='scheduler' ) __lowercase = StableDiffusionPanoramaPipeline.from_pretrained(UpperCAmelCase__ , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ ) __lowercase = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing() __lowercase = self.get_inputs() pipe(**UpperCAmelCase__ , callback=UpperCAmelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def a__ ( self : int ) -> Tuple: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = '''stabilityai/stable-diffusion-2-base''' __lowercase = DDIMScheduler.from_pretrained(UpperCAmelCase__ , subfolder='scheduler' ) __lowercase = StableDiffusionPanoramaPipeline.from_pretrained(UpperCAmelCase__ , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ ) __lowercase = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowercase = self.get_inputs() __lowercase = pipe(**UpperCAmelCase__ ) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
700
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = version.parse("1.12" ) @property def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : Any ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : Dict ) -> int: """simple docstring""" return 12 def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
688
0
from __future__ import annotations from random import random class A__ : def __init__( self : Tuple , _UpperCAmelCase : int | None = None ) -> int: """simple docstring""" __lowercase = value __lowercase = random() __lowercase = None __lowercase = None def __repr__( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Optional[Any] ) -> int: """simple docstring""" __lowercase = str(self.value ) + ' ' __lowercase = str(self.left or '' ) __lowercase = str(self.right or '' ) return value + left + right def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: __lowercase , __lowercase = split(root.left , _lowerCAmelCase ) return left, root else: __lowercase , __lowercase = split(root.right , _lowerCAmelCase ) return root, right def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: __lowercase = merge(left.right , _lowerCAmelCase ) return left else: __lowercase = merge(_lowerCAmelCase , right.left ) return right def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: __lowercase = Node(_lowerCAmelCase ) __lowercase , __lowercase = split(_lowerCAmelCase , _lowerCAmelCase ) return merge(merge(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> List[Any]: __lowercase , __lowercase = split(_lowerCAmelCase , value - 1 ) __lowercase , __lowercase = split(_lowerCAmelCase , _lowerCAmelCase ) return merge(_lowerCAmelCase , _lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> List[str]: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: for arg in args.split(): if arg[0] == "+": __lowercase = insert(_lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": __lowercase = erase(_lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: __lowercase = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) __lowercase = input() while args != "q": __lowercase = interact_treap(_lowerCAmelCase , _lowerCAmelCase ) print(_lowerCAmelCase ) __lowercase = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
701
from pathlib import Path import numpy as np from PIL import Image def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: return (gray > 127) & (gray <= 255) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase = np.zeros_like(SCREAMING_SNAKE_CASE ) __lowercase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __lowercase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __lowercase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __lowercase = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
688
0
from collections.abc import Sequence def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Sequence[float] , SCREAMING_SNAKE_CASE : float ) -> Any: return sum(c * (x**i) for i, c in enumerate(lowerCamelCase_ ) ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Sequence[float] , SCREAMING_SNAKE_CASE : float ) -> Tuple: __lowercase = 0.0 for coeff in reversed(lowerCamelCase_ ): __lowercase = result * x + coeff return result if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = (0.0, 0.0, 5.0, 9.3, 7.0) SCREAMING_SNAKE_CASE__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
702
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = ["pixel_values"] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = size if size is not None else {'height': 3_84, 'width': 3_84} __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase = do_convert_rgb def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) __lowercase = (size['height'], size['width']) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: """simple docstring""" __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = resample if resample is not None else self.resample __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = size if size is not None else self.size __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] __lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase ) return encoded_outputs
688
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class A__ ( snake_case__ ): lowerCAmelCase__ : str = VOCAB_FILES_NAMES lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : List[str] = ["input_ids", "attention_mask"] lowerCAmelCase__ : Optional[Any] = None def __init__( self : int , _UpperCAmelCase : Dict=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]="<unk>" , _UpperCAmelCase : int="<s>" , _UpperCAmelCase : Any="</s>" , _UpperCAmelCase : Optional[Any]="<pad>" , _UpperCAmelCase : str=False , _UpperCAmelCase : List[Any]=False , **_UpperCAmelCase : Optional[int] , ) -> List[Any]: """simple docstring""" super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , add_prefix_space=lowercase_ , clean_up_tokenization_spaces=lowercase_ , **lowercase_ , ) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase_ ) != add_prefix_space: __lowercase = getattr(lowercase_ , pre_tok_state.pop('type' ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**lowercase_ ) __lowercase = add_prefix_space def a__ ( self : Optional[int] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Tuple ) -> Any: """simple docstring""" __lowercase = kwargs.get('is_split_into_words' , lowercase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ' pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase_ , **lowercase_ ) def a__ ( self : Optional[int] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Tuple ) -> Any: """simple docstring""" __lowercase = kwargs.get('is_split_into_words' , lowercase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ' pretokenized inputs.' ) return super()._encode_plus(*lowercase_ , **lowercase_ ) def a__ ( self : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] = None ) -> List[str]: """simple docstring""" __lowercase = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] return input_ids
704
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter __lowercase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams __lowercase = 4 __lowercase = True # hparam_utils.py hparams __lowercase = 0.664_694 __lowercase = 0.207_951 __lowercase = 0.121_194 __lowercase = True __lowercase = True __lowercase = False __lowercase = 0.0_352_513 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowercase = 4 __lowercase = False # hparam_utils.py hparams __lowercase = 36.4_519 __lowercase = 0.903_421 __lowercase = 222.088 __lowercase = True __lowercase = True __lowercase = True __lowercase = 0.763_141 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "TABFACT": __lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE ) elif task == "MLM": __lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": __lowercase = TapasModel(config=SCREAMING_SNAKE_CASE ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
0
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL SCREAMING_SNAKE_CASE__ = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple=False , ) -> int: output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , use_external_data_format=SCREAMING_SNAKE_CASE , enable_onnx_checker=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) else: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] = False ) -> Optional[Any]: __lowercase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowercase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __lowercase = 'cpu' __lowercase = Path(SCREAMING_SNAKE_CASE ) # VAE DECODER __lowercase = AutoencoderKL.from_pretrained(model_path + '/vae' ) __lowercase = vae_decoder.config.latent_channels # forward only through the decoder part __lowercase = vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=SCREAMING_SNAKE_CASE , ) del vae_decoder if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") SCREAMING_SNAKE_CASE__ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("""SD: Done: ONNX""")
705
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def __SCREAMING_SNAKE_CASE ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
688
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> None: __lowercase = analyze_text(_lowerCamelCase ) __lowercase = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. __lowercase = sum(single_char_strings.values() ) # one length string __lowercase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __lowercase = single_char_strings[ch] __lowercase = my_str / all_sum my_fir_sum += prob * math.loga(_lowerCamelCase ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string __lowercase = sum(two_char_strings.values() ) __lowercase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __lowercase = cha + cha if sequence in two_char_strings: __lowercase = two_char_strings[sequence] __lowercase = int(_lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(_lowerCamelCase ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> tuple[dict, dict]: __lowercase = Counter() # type: ignore __lowercase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __SCREAMING_SNAKE_CASE ( ) -> List[str]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
706
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """Hello, World!""" SCREAMING_SNAKE_CASE__ = """en_XX""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]: __lowercase = Path('data_bin' ) __lowercase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE ) __lowercase = xmod.model.encoder.sentence_encoder __lowercase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , SCREAMING_SNAKE_CASE ) __lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings __lowercase = xmod_sent_encoder.embed_tokens.weight __lowercase = xmod_sent_encoder.embed_positions.weight __lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowercase = xmod_sent_encoder.layernorm_embedding.weight __lowercase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowercase = model.roberta.encoder.layer[i] __lowercase = xmod_sent_encoder.layers[i] # self attention __lowercase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __lowercase = xmod_layer.self_attn.q_proj.weight __lowercase = xmod_layer.self_attn.q_proj.bias __lowercase = xmod_layer.self_attn.k_proj.weight __lowercase = xmod_layer.self_attn.k_proj.bias __lowercase = xmod_layer.self_attn.v_proj.weight __lowercase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowercase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __lowercase = xmod_layer.self_attn.out_proj.weight __lowercase = xmod_layer.self_attn.out_proj.bias __lowercase = xmod_layer.self_attn_layer_norm.weight __lowercase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowercase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias # output __lowercase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias __lowercase = xmod_layer.final_layer_norm.weight __lowercase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowercase = xmod_layer.adapter_layer_norm.weight __lowercase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowercase = bert_output.adapter_modules[lang_code] __lowercase = xmod_layer.adapter_modules[lang_code] __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowercase = xmod_sent_encoder.layer_norm.weight __lowercase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowercase = xmod.model.classification_heads['mnli'].dense.weight __lowercase = xmod.model.classification_heads['mnli'].dense.bias __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight __lowercase = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowercase = xmod.model.encoder.lm_head.dense.weight __lowercase = xmod.model.encoder.lm_head.dense.bias __lowercase = xmod.model.encoder.lm_head.layer_norm.weight __lowercase = xmod.model.encoder.lm_head.layer_norm.bias __lowercase = xmod.model.encoder.lm_head.weight __lowercase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE ) __lowercase = model(SCREAMING_SNAKE_CASE )[0] if classification_head: __lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) ) else: __lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
688
0
class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ : def __init__( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = [ [], [], [], ] def a__ ( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> None: """simple docstring""" try: if len(self.queues[priority] ) >= 1_00: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(__UpperCamelCase ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def a__ ( self : int ) -> int: """simple docstring""" for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self : str ) -> str: """simple docstring""" return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues ) ) class A__ : def __init__( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = [] def a__ ( self : str , _UpperCAmelCase : int ) -> None: """simple docstring""" if len(self.queue ) == 1_00: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(__UpperCamelCase ) def a__ ( self : Dict ) -> int: """simple docstring""" if not self.queue: raise UnderFlowError('The queue is empty' ) else: __lowercase = min(self.queue ) self.queue.remove(__UpperCamelCase ) return data def __str__( self : Optional[Any] ) -> str: """simple docstring""" return str(self.queue ) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: __lowercase = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __lowercase = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
707
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float: __lowercase = u for i in range(1 , SCREAMING_SNAKE_CASE ): __lowercase = temp * (u - i) return temp def __SCREAMING_SNAKE_CASE ( ) -> None: __lowercase = int(input('enter the numbers of values: ' ) ) __lowercase = [] for _ in range(SCREAMING_SNAKE_CASE ): y.append([] ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): y[i].append(SCREAMING_SNAKE_CASE ) __lowercase = 0 print('enter the values of parameters in a list: ' ) __lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(SCREAMING_SNAKE_CASE ): __lowercase = float(input() ) __lowercase = int(input('enter the value to interpolate: ' ) ) __lowercase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(n - i ): __lowercase = y[j + 1][i - 1] - y[j][i - 1] __lowercase = y[0][0] for i in range(1 , SCREAMING_SNAKE_CASE ): summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
688
0
'''simple docstring''' import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name SCREAMING_SNAKE_CASE__ = 256 class A__ ( A_ ): lowerCAmelCase__ : List[str] = ['''melgan'''] def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , ) -> str: """simple docstring""" super().__init__() # From MELGAN __lowercase = math.log(1e-5 ) # Matches MelGAN training. __lowercase = 4.0 # Largest value for most examples __lowercase = 1_28 self.register_modules( notes_encoder=_UpperCAmelCase , continuous_encoder=_UpperCAmelCase , decoder=_UpperCAmelCase , scheduler=_UpperCAmelCase , melgan=_UpperCAmelCase , ) def a__ ( self : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict=(-1.0, 1.0) , _UpperCAmelCase : Union[str, Any]=False ) -> Any: """simple docstring""" __lowercase = output_range if clip: __lowercase = torch.clip(_UpperCAmelCase , self.min_value , self.max_value ) # Scale to [0, 1]. __lowercase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def a__ ( self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=(-1.0, 1.0) , _UpperCAmelCase : Dict=False ) -> Optional[int]: """simple docstring""" __lowercase = input_range __lowercase = torch.clip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip else outputs # Scale to [0, 1]. __lowercase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def a__ ( self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = input_tokens > 0 __lowercase = self.notes_encoder( encoder_input_tokens=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) __lowercase = self.continuous_encoder( encoder_inputs=_UpperCAmelCase , encoder_inputs_mask=_UpperCAmelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def a__ ( self : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = noise_time if not torch.is_tensor(_UpperCAmelCase ): __lowercase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_UpperCAmelCase ) and len(timesteps.shape ) == 0: __lowercase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowercase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) __lowercase = self.decoder( encodings_and_masks=_UpperCAmelCase , decoder_input_tokens=_UpperCAmelCase , decoder_noise_time=_UpperCAmelCase ) return logits @torch.no_grad() def __call__( self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] = None , _UpperCAmelCase : Dict = 1_00 , _UpperCAmelCase : Union[str, Any] = True , _UpperCAmelCase : int = "numpy" , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : str = 1 , ) -> Any: """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(_UpperCAmelCase )}.""" ) __lowercase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) __lowercase = np.zeros([1, 0, self.n_dims] , np.floataa ) __lowercase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) for i, encoder_input_tokens in enumerate(_UpperCAmelCase ): if i == 0: __lowercase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. __lowercase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_UpperCAmelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __lowercase = ones __lowercase = self.scale_features( _UpperCAmelCase , output_range=[-1.0, 1.0] , clip=_UpperCAmelCase ) __lowercase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_UpperCAmelCase , continuous_mask=_UpperCAmelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __lowercase = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_UpperCAmelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __lowercase = self.decode( encodings_and_masks=_UpperCAmelCase , input_tokens=_UpperCAmelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __lowercase = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample __lowercase = self.scale_to_features(_UpperCAmelCase , input_range=[-1.0, 1.0] ) __lowercase = mel[:1] __lowercase = mel.cpu().float().numpy() __lowercase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase ) logger.info('Generated segment' , _UpperCAmelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": __lowercase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __lowercase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_UpperCAmelCase )
708
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = F"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: __lowercase = F"""Input value of [number={number}] must be > 0""" raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
688
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
709
from argparse import ArgumentParser from .env import EnvironmentCommand def __SCREAMING_SNAKE_CASE ( ) -> List[str]: __lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) __lowercase = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE ) # Let's go __lowercase = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
688
0
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params SCREAMING_SNAKE_CASE__ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: for pegasus_name, hf_name in PATTERNS: __lowercase = k.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return k def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple ) -> PegasusForConditionalGeneration: __lowercase = DEFAULTS.copy() cfg_kwargs.update(SCREAMING_SNAKE_CASE ) __lowercase = PegasusConfig(**SCREAMING_SNAKE_CASE ) __lowercase = PegasusForConditionalGeneration(SCREAMING_SNAKE_CASE ) __lowercase = torch_model.model.state_dict() __lowercase = {} for k, v in tf_weights.items(): __lowercase = rename_state_dict_key(SCREAMING_SNAKE_CASE ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __lowercase = v.T __lowercase = torch.tensor(SCREAMING_SNAKE_CASE , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __lowercase = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __lowercase = mapping['shared.weight'] __lowercase = mapping['shared.weight'] __lowercase = {k: torch.zeros_like(SCREAMING_SNAKE_CASE ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = torch_model.model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) __lowercase = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: __lowercase = tf.train.list_variables(SCREAMING_SNAKE_CASE ) __lowercase = {} __lowercase = ['Adafactor', 'global_step'] for name, shape in tqdm(SCREAMING_SNAKE_CASE , desc='converting tf checkpoint to dict' ): __lowercase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowercase = tf.train.load_variable(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = array return tf_weights def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple ) -> str: # save tokenizer first __lowercase = Path(SCREAMING_SNAKE_CASE ).parent.name __lowercase = task_specific_params[F"""summarization_{dataset}"""]['max_position_embeddings'] __lowercase = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=SCREAMING_SNAKE_CASE ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(SCREAMING_SNAKE_CASE ) # convert model __lowercase = get_tf_weights_as_numpy(SCREAMING_SNAKE_CASE ) __lowercase = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": __lowercase = task_specific_params __lowercase = convert_pegasus(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) torch_model.save_pretrained(SCREAMING_SNAKE_CASE ) __lowercase = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(SCREAMING_SNAKE_CASE , Path(SCREAMING_SNAKE_CASE ) / 'pytorch_model.bin' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") SCREAMING_SNAKE_CASE__ = parser.parse_args() if args.save_dir is None: SCREAMING_SNAKE_CASE__ = Path(args.tf_ckpt_path).parent.name SCREAMING_SNAKE_CASE__ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
710
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ProphetNetTokenizer lowerCAmelCase__ : str = False def a__ ( self : str ) -> Tuple: """simple docstring""" super().setUp() __lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = 'UNwant\u00E9d,running' __lowercase = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Any: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : int ) -> List[str]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowercase = {} for i, token in enumerate(_UpperCAmelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] __lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def a__ ( self : int ) -> Dict: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : Any ) -> List[str]: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
688
0
import requests from bsa import BeautifulSoup def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : dict ) -> List[str]: __lowercase = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE , params=SCREAMING_SNAKE_CASE ).content , 'html.parser' ) __lowercase = soup.find('div' , attrs={'class': 'gs_ri'} ) __lowercase = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
711
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } SCREAMING_SNAKE_CASE__ = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } SCREAMING_SNAKE_CASE__ = { """jukebox""": 512, } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase__ : Any = ["input_ids", "attention_mask"] def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]: """simple docstring""" __lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token super().__init__( unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = version __lowercase = max_n_lyric_tokens __lowercase = n_genres with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) __lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase = oov.replace(R'\-\'' , R'\-+\'' ) __lowercase = regex.compile(_UpperCAmelCase ) __lowercase = {v: k for k, v in self.artists_encoder.items()} __lowercase = {v: k for k, v in self.genres_encoder.items()} __lowercase = {v: k for k, v in self.lyrics_encoder.items()} @property def a__ ( self : List[Any] ) -> Any: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(_UpperCAmelCase ) ): __lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]] __lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" return list(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = self._tokenize(_UpperCAmelCase ) return artist, genre, lyrics def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase = artists[idx].lower() __lowercase = [genres[idx].lower()] else: __lowercase = self._normalize(artists[idx] ) + '.v2' __lowercase = [ self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) __lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' __lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )} __lowercase = 0 __lowercase = len(_UpperCAmelCase ) + 1 __lowercase = self.vocab __lowercase = {v: k for k, v in self.vocab.items()} __lowercase = '' else: __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) __lowercase = self._run_strip_accents(_UpperCAmelCase ) __lowercase = lyrics.replace('\\' , '\n' ) __lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], [] return artists, genres, lyrics def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase ) __lowercase = [] for char in text: __lowercase = unicodedata.category(_UpperCAmelCase ) if cat == "Mn": continue output.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = ( [chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) __lowercase = frozenset(_UpperCAmelCase ) __lowercase = re.compile(R'_+' ) __lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] ) __lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' ) return text def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" return " ".join(_UpperCAmelCase ) def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = TensorType(_UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf __lowercase = tf.constant __lowercase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch __lowercase = torch.tensor __lowercase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 __lowercase = jnp.array __lowercase = _is_jax else: __lowercase = np.asarray __lowercase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase = [inputs] if not is_tensor(_UpperCAmelCase ): __lowercase = as_tensor(_UpperCAmelCase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding: """simple docstring""" __lowercase = [0, 0, 0] __lowercase = [artist] * len(self.version ) __lowercase = [genres] * len(self.version ) __lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = [-INFINITY] * len(full_tokens[-1] ) __lowercase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.artists_decoder.get(_UpperCAmelCase ) __lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index] __lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
688
0
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str ) -> float: __lowercase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__lowerCAmelCase )] ) __lowercase = np.array(__lowerCAmelCase ) __lowercase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __lowerCAmelCase ) ) , x.transpose() ) , __lowerCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ) -> float: __lowercase = (1, 2, 1) __lowercase = (1, 1, 0, 7) __lowercase = SARIMAX( __lowerCAmelCase , exog=__lowerCAmelCase , order=__lowerCAmelCase , seasonal_order=__lowerCAmelCase ) __lowercase = model.fit(disp=__lowerCAmelCase , maxiter=600 , method='nm' ) __lowercase = model_fit.predict(1 , len(__lowerCAmelCase ) , exog=[test_match] ) return result[0] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] ) -> float: __lowercase = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__lowerCAmelCase , __lowerCAmelCase ) __lowercase = regressor.predict(__lowerCAmelCase ) return y_pred[0] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> float: train_user.sort() __lowercase = np.percentile(__lowerCAmelCase , 25 ) __lowercase = np.percentile(__lowerCAmelCase , 75 ) __lowercase = qa - qa __lowercase = qa - (iqr * 0.1) return low_lim def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple ) -> bool: __lowercase = 0 __lowercase = 0 for i in list_vote: if i > actual_result: __lowercase = not_safe + 1 else: if abs(abs(__lowerCAmelCase ) - abs(__lowerCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) SCREAMING_SNAKE_CASE__ = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] SCREAMING_SNAKE_CASE__ = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) SCREAMING_SNAKE_CASE__ = Normalizer().fit_transform(data_input_df.values) # split data SCREAMING_SNAKE_CASE__ = normalize_df[:, 2].tolist() SCREAMING_SNAKE_CASE__ = normalize_df[:, 0].tolist() SCREAMING_SNAKE_CASE__ = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) SCREAMING_SNAKE_CASE__ = normalize_df[:, [1, 2]].tolist() SCREAMING_SNAKE_CASE__ = x[: len(x) - 1] SCREAMING_SNAKE_CASE__ = x[len(x) - 1 :] # for linear regression & sarimax SCREAMING_SNAKE_CASE__ = total_date[: len(total_date) - 1] SCREAMING_SNAKE_CASE__ = total_user[: len(total_user) - 1] SCREAMING_SNAKE_CASE__ = total_match[: len(total_match) - 1] SCREAMING_SNAKE_CASE__ = total_date[len(total_date) - 1 :] SCREAMING_SNAKE_CASE__ = total_user[len(total_user) - 1 :] SCREAMING_SNAKE_CASE__ = total_match[len(total_match) - 1 :] # voting system with forecasting SCREAMING_SNAKE_CASE__ = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data SCREAMING_SNAKE_CASE__ = "" if data_safety_checker(res_vote, tst_user) else "not " print("""Today's data is {not_str}safe.""")
712
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_hidden_groups __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def a__ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" __lowercase = AlbertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple: """simple docstring""" __lowercase = AlbertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = AlbertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" __lowercase = self.num_choices __lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ : Dict = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Optional[Any] = True def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple: """simple docstring""" __lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def a__ ( self : str ) -> str: """simple docstring""" __lowercase = AlbertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def a__ ( self : int ) -> Any: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AlbertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class A__ ( unittest.TestCase ): @slow def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = AlbertModel.from_pretrained('albert-base-v2' ) __lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __lowercase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
688
0
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch SCREAMING_SNAKE_CASE__ = True except ImportError: SCREAMING_SNAKE_CASE__ = False try: from torch.hub import _get_torch_home SCREAMING_SNAKE_CASE__ = _get_torch_home() except ImportError: SCREAMING_SNAKE_CASE__ = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) SCREAMING_SNAKE_CASE__ = os.path.join(torch_cache_home, """transformers""") SCREAMING_SNAKE_CASE__ = """https://cdn.huggingface.co""" SCREAMING_SNAKE_CASE__ = """https://s3.amazonaws.com/models.huggingface.co/bert""" SCREAMING_SNAKE_CASE__ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) SCREAMING_SNAKE_CASE__ = os.path.join(PATH, """config.yaml""") SCREAMING_SNAKE_CASE__ = os.path.join(PATH, """attributes.txt""") SCREAMING_SNAKE_CASE__ = os.path.join(PATH, """objects.txt""") SCREAMING_SNAKE_CASE__ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) SCREAMING_SNAKE_CASE__ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) SCREAMING_SNAKE_CASE__ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) SCREAMING_SNAKE_CASE__ = """pytorch_model.bin""" SCREAMING_SNAKE_CASE__ = """config.yaml""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int=OBJECTS , SCREAMING_SNAKE_CASE : str=ATTRIBUTES ) -> Any: __lowercase = [] with open(a_ ) as f: for object in f.readlines(): vg_classes.append(object.split(',' )[0].lower().strip() ) __lowercase = [] with open(a_ ) as f: for object in f.readlines(): vg_attrs.append(object.split(',' )[0].lower().strip() ) return vg_classes, vg_attrs def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: __lowercase = OrderedDict() with open(a_ , 'rb' ) as f: __lowercase = pkl.load(a_ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): __lowercase = ckp.pop(a_ ) if isinstance(a_ , np.ndarray ): __lowercase = torch.tensor(a_ ) else: assert isinstance(a_ , torch.tensor ), type(a_ ) __lowercase = v return r class A__ : lowerCAmelCase__ : Optional[int] = {} def __init__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] = "root" , _UpperCAmelCase : str=0 ) -> Optional[Any]: """simple docstring""" __lowercase = name __lowercase = level __lowercase = {} for k, v in dictionary.items(): if v is None: raise ValueError() __lowercase = copy.deepcopy(_UpperCAmelCase ) __lowercase = copy.deepcopy(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = Config(_UpperCAmelCase , name=_UpperCAmelCase , level=level + 1 ) __lowercase = v setattr(self , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = d def __repr__( self : str ) -> int: """simple docstring""" return str(list((self._pointer.keys()) ) ) def __setattr__( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" __lowercase = val __lowercase = val __lowercase = key.split('.' ) __lowercase = len(_UpperCAmelCase ) - 1 __lowercase = self._pointer if len(_UpperCAmelCase ) > 1: for i, l in enumerate(_UpperCAmelCase ): if hasattr(self , _UpperCAmelCase ) and isinstance(getattr(self , _UpperCAmelCase ) , _UpperCAmelCase ): setattr(getattr(self , _UpperCAmelCase ) , '.'.join(levels[i:] ) , _UpperCAmelCase ) if l == last_level: __lowercase = val else: __lowercase = pointer[l] def a__ ( self : int ) -> Dict: """simple docstring""" return self._pointer def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int: """simple docstring""" with open(f"""{file_name}""" , 'w' ) as stream: dump(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ) -> Dict: """simple docstring""" with open(f"""{file_name}""" , 'w' ) as stream: json.dump(_UpperCAmelCase , _UpperCAmelCase ) @staticmethod def a__ ( _UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" with open(_UpperCAmelCase ) as stream: __lowercase = load(_UpperCAmelCase , Loader=_UpperCAmelCase ) return data def __str__( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = ''' ''' if self._name != "root": __lowercase = f"""{t * (self._level-1)}{self._name}:\n""" else: __lowercase = '''''' __lowercase = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): r += f"""{t * (self._level)}{v}\n""" self._level += 1 else: r += f"""{t * (self._level)}{k}: {v} ({type(_UpperCAmelCase ).__name__})\n""" __lowercase = level return r[:-1] @classmethod def a__ ( cls : Tuple , _UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) return cls(_UpperCAmelCase ) @classmethod def a__ ( cls : int , _UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Any ) -> int: """simple docstring""" __lowercase = kwargs.pop('cache_dir' , _UpperCAmelCase ) __lowercase = kwargs.pop('force_download' , _UpperCAmelCase ) __lowercase = kwargs.pop('resume_download' , _UpperCAmelCase ) __lowercase = kwargs.pop('proxies' , _UpperCAmelCase ) __lowercase = kwargs.pop('local_files_only' , _UpperCAmelCase ) if os.path.isdir(_UpperCAmelCase ): __lowercase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) elif os.path.isfile(_UpperCAmelCase ) or is_remote_url(_UpperCAmelCase ): __lowercase = pretrained_model_name_or_path else: __lowercase = hf_bucket_url(_UpperCAmelCase , filename=_UpperCAmelCase , use_cdn=_UpperCAmelCase ) try: # Load from URL or cache if already cached __lowercase = cached_path( _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , proxies=_UpperCAmelCase , resume_download=_UpperCAmelCase , local_files_only=_UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __lowercase = Config.load_yaml(_UpperCAmelCase ) except EnvironmentError: __lowercase = '''Can\'t load config for''' raise EnvironmentError(_UpperCAmelCase ) if resolved_config_file == config_file: print('loading configuration file from path' ) else: print('loading configuration file cache' ) return Config.load_yaml(_UpperCAmelCase ), kwargs def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: __lowercase = torch.load('dump.pt' , map_location=in_tensor.device ) __lowercase = in_tensor.numpy() __lowercase = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(a_ , a_ , rtol=0.01 , atol=0.1 ), ( F"""{sum([1 for x in np.isclose(a_ , a_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %""" " element-wise mismatch" ) raise Exception('tensors are all good' ) # Hugging face functions below def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> List[Any]: __lowercase = urlparse(a_ ) return parsed.scheme in ("http", "https") def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str=True ) -> str: __lowercase = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __lowercase = '''/''' not in model_id if legacy_format: return F"""{endpoint}/{model_id}-{filename}""" else: return F"""{endpoint}/{model_id}/{filename}""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Optional[Any]=0 , SCREAMING_SNAKE_CASE : Optional[Any]=None , ) -> int: __lowercase = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(a_ , a_ ): ua += "; " + "; ".join('{}/{}'.format(a_ , a_ ) for k, v in user_agent.items() ) elif isinstance(a_ , a_ ): ua += "; " + user_agent __lowercase = {'''user-agent''': ua} if resume_size > 0: __lowercase = '''bytes=%d-''' % (resume_size,) __lowercase = requests.get(a_ , stream=a_ , proxies=a_ , headers=a_ ) if response.status_code == 416: # Range not satisfiable return __lowercase = response.headers.get('Content-Length' ) __lowercase = resume_size + int(a_ ) if content_length is not None else None __lowercase = tqdm( unit='B' , unit_scale=a_ , total=a_ , initial=a_ , desc='Downloading' , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(a_ ) ) temp_file.write(a_ ) progress.close() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : Optional[Any]=False , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=10 , SCREAMING_SNAKE_CASE : Union[str, Any]=False , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Dict=False , ) -> Any: if cache_dir is None: __lowercase = TRANSFORMERS_CACHE if isinstance(a_ , a_ ): __lowercase = str(a_ ) os.makedirs(a_ , exist_ok=a_ ) __lowercase = None if not local_files_only: try: __lowercase = requests.head(a_ , allow_redirects=a_ , proxies=a_ , timeout=a_ ) if response.status_code == 200: __lowercase = response.headers.get('ETag' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __lowercase = url_to_filename(a_ , a_ ) # get cache path to put the file __lowercase = os.path.join(a_ , a_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(a_ ): return cache_path else: __lowercase = [ file for file in fnmatch.filter(os.listdir(a_ ) , filename + '.*' ) if not file.endswith('.json' ) and not file.endswith('.lock' ) ] if len(a_ ) > 0: return os.path.join(a_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( 'Cannot find the requested files in the cached path and outgoing traffic has been' ' disabled. To enable model look-ups and downloads online, set \'local_files_only\'' ' to False.' ) return None # From now on, etag is not None. if os.path.exists(a_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __lowercase = cache_path + '''.lock''' with FileLock(a_ ): # If the download just completed while the lock was activated. if os.path.exists(a_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __lowercase = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(a_ , 'a+b' ) as f: yield f __lowercase = _resumable_file_manager if os.path.exists(a_ ): __lowercase = os.stat(a_ ).st_size else: __lowercase = 0 else: __lowercase = partial(tempfile.NamedTemporaryFile , dir=a_ , delete=a_ ) __lowercase = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '%s not found in cache or force_download set to True, downloading to %s' , a_ , temp_file.name , ) http_get( a_ , a_ , proxies=a_ , resume_size=a_ , user_agent=a_ , ) os.replace(temp_file.name , a_ ) __lowercase = {'''url''': url, '''etag''': etag} __lowercase = cache_path + '''.json''' with open(a_ , 'w' ) as meta_file: json.dump(a_ , a_ ) return cache_path def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str]=None ) -> Any: __lowercase = url.encode('utf-8' ) __lowercase = shaaaa(a_ ) __lowercase = url_hash.hexdigest() if etag: __lowercase = etag.encode('utf-8' ) __lowercase = shaaaa(a_ ) filename += "." + etag_hash.hexdigest() if url.endswith('.h5' ): filename += ".h5" return filename def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Tuple=False , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=False , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : List[Any]=False , SCREAMING_SNAKE_CASE : str=False , SCREAMING_SNAKE_CASE : List[Any]=False , ) -> Any: if cache_dir is None: __lowercase = TRANSFORMERS_CACHE if isinstance(a_ , a_ ): __lowercase = str(a_ ) if isinstance(a_ , a_ ): __lowercase = str(a_ ) if is_remote_url(a_ ): # URL, so get it from the cache (downloading if necessary) __lowercase = get_from_cache( a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , user_agent=a_ , local_files_only=a_ , ) elif os.path.exists(a_ ): # File, and it exists. __lowercase = url_or_filename elif urlparse(a_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('file {} not found'.format(a_ ) ) else: # Something unknown raise ValueError('unable to parse {} as a URL or as a local path'.format(a_ ) ) if extract_compressed_file: if not is_zipfile(a_ ) and not tarfile.is_tarfile(a_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __lowercase = os.path.split(a_ ) __lowercase = output_file.replace('.' , '-' ) + '''-extracted''' __lowercase = os.path.join(a_ , a_ ) if os.path.isdir(a_ ) and os.listdir(a_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions __lowercase = output_path + '''.lock''' with FileLock(a_ ): shutil.rmtree(a_ , ignore_errors=a_ ) os.makedirs(a_ ) if is_zipfile(a_ ): with ZipFile(a_ , 'r' ) as zip_file: zip_file.extractall(a_ ) zip_file.close() elif tarfile.is_tarfile(a_ ): __lowercase = tarfile.open(a_ ) tar_file.extractall(a_ ) tar_file.close() else: raise EnvironmentError('Archive format of {} could not be identified'.format(a_ ) ) return output_path_extracted return output_path def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int]="," ) -> Optional[Any]: assert isinstance(a_ , a_ ) if os.path.isfile(a_ ): with open(a_ ) as f: __lowercase = eval(f.read() ) else: __lowercase = requests.get(a_ ) try: __lowercase = requests.json() except Exception: __lowercase = req.content.decode() assert data is not None, "could not connect" try: __lowercase = eval(a_ ) except Exception: __lowercase = data.split('\n' ) req.close() return data def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] ) -> str: __lowercase = requests.get(a_ ) __lowercase = np.array(Image.open(BytesIO(response.content ) ) ) return img def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Dict: __lowercase = url.split('/' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(a_ ) with open(a_ , 'rb' ) as stream: __lowercase = pkl.load(a_ ) __lowercase = weights.pop('model' ) __lowercase = {} for k, v in model.items(): __lowercase = torch.from_numpy(a_ ) if "running_var" in k: __lowercase = torch.tensor([0] ) __lowercase = k.replace('running_var' , 'num_batches_tracked' ) __lowercase = zero return new def __SCREAMING_SNAKE_CASE ( ) -> int: print(F"""{os.path.abspath(os.path.join(a_ , os.pardir ) )}/demo.ipynb""" ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any]="RGB" ) -> str: assert isinstance(a_ , a_ ) if os.path.isfile(a_ ): __lowercase = cva.imread(a_ ) else: __lowercase = get_image_from_url(a_ ) assert img is not None, F"""could not connect to: {im}""" __lowercase = cva.cvtColor(a_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": __lowercase = img[:, :, ::-1] return img def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str=1 ) -> List[str]: return (images[i : i + batch] for i in range(0 , len(a_ ) , a_ ))
713
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A__ ( lowerCAmelCase__ ): def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]: """simple docstring""" __lowercase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['token'] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __lowercase = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) __lowercase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [files] self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['unk']['id'] __lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
688
0
from __future__ import annotations from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ = TypeVar("""T""") class A__ ( Generic[T] ): def __init__( self : Any , _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" __lowercase = data __lowercase = self __lowercase = 0 class A__ ( Generic[T] ): def __init__( self : Tuple ) -> str: """simple docstring""" __lowercase = {} def a__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase = DisjointSetTreeNode(_A ) def a__ ( self : int , _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.map[data] if elem_ref != elem_ref.parent: __lowercase = self.find_set(elem_ref.parent.data ) return elem_ref.parent def a__ ( self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ) -> Optional[int]: """simple docstring""" if nodea.rank > nodea.rank: __lowercase = nodea else: __lowercase = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" self.link(self.find_set(_A ) , self.find_set(_A ) ) class A__ ( Generic[T] ): def __init__( self : List[str] ) -> int: """simple docstring""" __lowercase = {} def a__ ( self : str , _UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" if node not in self.connections: __lowercase = {} def a__ ( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" self.add_node(_A ) self.add_node(_A ) __lowercase = weight __lowercase = weight def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase = [] __lowercase = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda _UpperCAmelCase : x[2] ) # creating the disjoint set __lowercase = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(_A ) # MST generation __lowercase = 0 __lowercase = 0 __lowercase = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: __lowercase , __lowercase , __lowercase = edges[index] index += 1 __lowercase = disjoint_set.find_set(_A ) __lowercase = disjoint_set.find_set(_A ) if parent_u != parent_v: num_edges += 1 graph.add_edge(_A , _A , _A ) disjoint_set.union(_A , _A ) return graph
714
import string from math import logaa def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int: __lowercase = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) __lowercase = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]: __lowercase = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' __lowercase = corpus_without_punctuation.split('\n' ) __lowercase = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE )) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float: if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float: return round(tf * idf , 3 )
688
0
from copy import deepcopy class A__ : def __init__( self : Optional[Any] , _UpperCAmelCase : list[int] | None = None , _UpperCAmelCase : int | None = None ) -> List[str]: """simple docstring""" if arr is None and size is not None: __lowercase = size __lowercase = [0] * size elif arr is not None: self.init(__UpperCamelCase ) else: raise ValueError('Either arr or size must be specified' ) def a__ ( self : Any , _UpperCAmelCase : list[int] ) -> Any: """simple docstring""" __lowercase = len(__UpperCamelCase ) __lowercase = deepcopy(__UpperCamelCase ) for i in range(1 , self.size ): __lowercase = self.next_(__UpperCamelCase ) if j < self.size: self.tree[j] += self.tree[i] def a__ ( self : Tuple ) -> int: """simple docstring""" __lowercase = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): __lowercase = self.next_(__UpperCamelCase ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def a__ ( _UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" return index + (index & (-index)) @staticmethod def a__ ( _UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" return index - (index & (-index)) def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value __lowercase = self.next_(__UpperCamelCase ) def a__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> Dict: """simple docstring""" self.add(__UpperCamelCase , value - self.get(__UpperCamelCase ) ) def a__ ( self : int , _UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" if right == 0: return 0 __lowercase = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] __lowercase = self.prev(__UpperCamelCase ) return result def a__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> Dict: """simple docstring""" return self.prefix(__UpperCamelCase ) - self.prefix(__UpperCamelCase ) def a__ ( self : int , _UpperCAmelCase : int ) -> Tuple: """simple docstring""" return self.query(__UpperCamelCase , index + 1 ) def a__ ( self : List[str] , _UpperCAmelCase : int ) -> List[str]: """simple docstring""" value -= self.tree[0] if value < 0: return -1 __lowercase = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 __lowercase = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
715
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # TODO: upload to AWS SCREAMING_SNAKE_CASE__ = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "retribert" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = share_encoders __lowercase = projection_dim
688
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any=False ) -> int: try: __lowercase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowercase = default else: # KEY is set, convert it to True or False. try: __lowercase = strtobool(_UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value SCREAMING_SNAKE_CASE__ = parse_flag_from_env("""RUN_SLOW""", default=False) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> List[Any]: return unittest.skip('Test was skipped' )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: return unittest.skipUnless(_run_slow_tests , 'test is slow' )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> int: return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> Dict: return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]: return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Optional[Any]: return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> Dict: return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> int: return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> int: return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> Dict: return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : str=None ) -> str: if test_case is None: return partial(_UpperCamelCase , version=_UpperCamelCase ) return unittest.skipUnless(is_torch_version('>=' , _UpperCamelCase ) , F"""test requires torch version >= {version}""" )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> List[str]: return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> Tuple: return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(_UpperCamelCase ) class A__ ( unittest.TestCase ): lowerCAmelCase__ : List[str] = True @classmethod def a__ ( cls : str ) -> Optional[Any]: """simple docstring""" __lowercase = tempfile.mkdtemp() @classmethod def a__ ( cls : Any ) -> Dict: """simple docstring""" if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def a__ ( self : Tuple ) -> str: """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_UpperCAmelCase ) class A__ ( unittest.TestCase ): def a__ ( self : Optional[int] ) -> int: """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class A__ ( unittest.TestCase ): def a__ ( self : List[Any] , _UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" __lowercase = mocks if isinstance(_UpperCAmelCase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: __lowercase = AcceleratorState() __lowercase = tensor[None].clone().to(state.device ) __lowercase = gather(_UpperCamelCase ).cpu() __lowercase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _UpperCamelCase ): return False return True class A__ : def __init__( self : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ) -> List[Any]: """simple docstring""" __lowercase = returncode __lowercase = stdout __lowercase = stderr async def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple ) -> Dict: while True: __lowercase = await stream.readline() if line: callback(_UpperCamelCase ) else: break async def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : Tuple=False ) -> _RunOutput: if echo: print('\nRunning: ' , ' '.join(_UpperCamelCase ) ) __lowercase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowercase = [] __lowercase = [] def tee(SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str="" ): __lowercase = line.decode('utf-8' ).rstrip() sink.append(_UpperCamelCase ) if not quiet: print(_UpperCamelCase , _UpperCamelCase , file=_UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda SCREAMING_SNAKE_CASE : tee(_UpperCamelCase , _UpperCamelCase , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda SCREAMING_SNAKE_CASE : tee(_UpperCamelCase , _UpperCamelCase , sys.stderr , label='stderr:' ) ) ), ] , timeout=_UpperCamelCase , ) return _RunOutput(await p.wait() , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : int=180 , SCREAMING_SNAKE_CASE : Optional[Any]=False , SCREAMING_SNAKE_CASE : Tuple=True ) -> _RunOutput: __lowercase = asyncio.get_event_loop() __lowercase = loop.run_until_complete( _stream_subprocess(_UpperCamelCase , env=_UpperCamelCase , stdin=_UpperCamelCase , timeout=_UpperCamelCase , quiet=_UpperCamelCase , echo=_UpperCamelCase ) ) __lowercase = ' '.join(_UpperCamelCase ) if result.returncode > 0: __lowercase = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) return result class A__ ( lowerCAmelCase__ ): pass def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str]=False ) -> List[str]: try: __lowercase = subprocess.check_output(_UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_UpperCamelCase , 'decode' ): __lowercase = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"""Command `{" ".join(_UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
716
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
0
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> str: __lowercase = 0 for ch in input_str: __lowercase = ord(SCREAMING_SNAKE_CASE ) __lowercase = pow(2 , SCREAMING_SNAKE_CASE ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
717
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"] lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor" lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __lowercase = kwargs.pop('feature_extractor' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor __lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowercase = features['words'] __lowercase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values __lowercase = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowercase = images return encoded_inputs def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" ) return images_with_overflow def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def a__ ( self : str ) -> Dict: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
688
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE__ = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
718
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ : lowerCAmelCase__ : Optional[int] = "dummy_data" lowerCAmelCase__ : str = "datasets" lowerCAmelCase__ : Dict = False def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]: """simple docstring""" __lowercase = 0 __lowercase = dataset_name __lowercase = cache_dir __lowercase = use_local_dummy_data __lowercase = config # download_callbacks take a single url as input __lowercase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowercase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowercase = str(_UpperCAmelCase ) # to be downloaded __lowercase = None __lowercase = None @property def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" if self._dummy_file is None: __lowercase = self.download_dummy_data() return self._dummy_file @property def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowercase = cached_path( _UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase ) return os.path.join(_UpperCAmelCase , self.dummy_file_name ) @property def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" if self._bucket_url is None: __lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowercase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowercase = self.dummy_file_name # special case when data_url is a dict if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase ) elif isinstance(_UpperCAmelCase , (list, tuple) ): return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase ) else: return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" return path def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" return {} def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for single_url in single_urls: download_callback(_UpperCAmelCase ) else: __lowercase = single_urls download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls] else: __lowercase = single_urls __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) __lowercase = value # make sure that values are unique if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowercase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url ) __lowercase = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowercase = [data_url[0]] * len(_UpperCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(_UpperCAmelCase ) return dummy_data_list def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def a__ ( self : List[str] ) -> Any: """simple docstring""" pass def a__ ( self : int ) -> str: """simple docstring""" pass def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" def _iter_archive_members(_UpperCAmelCase : Optional[Any] ): # this preserves the order of the members inside the ZIP archive __lowercase = Path(self.dummy_file ).parent __lowercase = path.relative_to(_UpperCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowercase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_UpperCAmelCase ) __lowercase = Path(_UpperCAmelCase ) __lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [paths] for path in paths: if os.path.isfile(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(_UpperCAmelCase ): if filename.startswith(('.', '__') ): continue yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
688
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str ) -> List[Any]: # Initialise PyTorch model __lowercase = FunnelConfig.from_json_file(snake_case_ ) print(F"""Building PyTorch model from configuration: {config}""" ) __lowercase = FunnelBaseModel(snake_case_ ) if base_model else FunnelModel(snake_case_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(snake_case_ , snake_case_ , snake_case_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
719
import math import sys import cva import numpy as np def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __lowercase = math.sqrt(SCREAMING_SNAKE_CASE ) __lowercase = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray: __lowercase = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __lowercase = np.zeros((kernel_size, kernel_size) ) for i in range(0 , SCREAMING_SNAKE_CASE ): for j in range(0 , SCREAMING_SNAKE_CASE ): __lowercase = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray: __lowercase = np.zeros(img.shape ) __lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2] __lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE ) __lowercase = val return imga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple: __lowercase = args[1] if args[1:] else '../image_data/lena.jpg' __lowercase = float(args[2] ) if args[2:] else 1.0 __lowercase = float(args[3] ) if args[3:] else 1.0 if args[4:]: __lowercase = int(args[4] ) __lowercase = kernel_size + abs(kernel_size % 2 - 1 ) else: __lowercase = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv) SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0) cva.imshow("""input image""", img) SCREAMING_SNAKE_CASE__ = img / 255 SCREAMING_SNAKE_CASE__ = out.astype("""float32""") SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) SCREAMING_SNAKE_CASE__ = out * 255 SCREAMING_SNAKE_CASE__ = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
688
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class A__ ( lowercase_ ): @staticmethod @abstractmethod def a__ ( _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" raise NotImplementedError() @abstractmethod def a__ ( self : Any ) -> List[str]: """simple docstring""" raise NotImplementedError()
720
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A__ ( unittest.TestCase ): def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict: """simple docstring""" __lowercase = size if size is not None else {'height': 18, 'width': 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = apply_ocr def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def a__ ( self : int ) -> Tuple: """simple docstring""" pass def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _UpperCAmelCase ) self.assertIsInstance(encoding.boxes , _UpperCAmelCase ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = LayoutLMvaImageProcessor() from datasets import load_dataset __lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __lowercase = Image.open(ds[0]['file'] ).convert('RGB' ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _UpperCAmelCase ) self.assertListEqual(encoding.boxes , _UpperCAmelCase ) # with apply_OCR = False __lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
688
0
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> list[int]: if num <= 0: raise ValueError('Input must be a positive integer' ) __lowercase = [True] * (num + 1) __lowercase = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , lowerCamelCase__ ): __lowercase = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
721
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "umt5" lowerCAmelCase__ : Tuple = ["past_key_values"] def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__( is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = vocab_size __lowercase = d_model __lowercase = d_kv __lowercase = d_ff __lowercase = num_layers __lowercase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase = num_heads __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = initializer_factor __lowercase = feed_forward_proj __lowercase = use_cache __lowercase = self.feed_forward_proj.split('-' ) __lowercase = act_info[-1] __lowercase = act_info[0] == 'gated' if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __lowercase = 'gelu_new' @property def a__ ( self : Tuple ) -> Any: """simple docstring""" return self.d_model @property def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" return self.num_heads @property def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" return self.num_layers class A__ ( lowerCAmelCase__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __lowercase = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __lowercase = 'past_encoder_sequence + sequence' __lowercase = {0: 'batch'} __lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase = {0: 'batch', 1: 'decoder_sequence'} __lowercase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a__ ( self : List[str] ) -> int: """simple docstring""" return 13 @property def a__ ( self : Dict ) -> float: """simple docstring""" return 5e-4
688
0
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = F"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: __lowercase = F"""Input value of [number={number}] must be > 0""" raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
700
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = version.parse("1.12" ) @property def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : Any ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : Dict ) -> int: """simple docstring""" return 12 def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
688
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class A__ ( unittest.TestCase ): def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase = 0 def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = Path(_UpperCAmelCase ) / 'preprocessor_config.json' __lowercase = Path(_UpperCAmelCase ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_UpperCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_UpperCAmelCase , 'w' ) ) __lowercase = AutoImageProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = Path(_UpperCAmelCase ) / 'preprocessor_config.json' __lowercase = Path(_UpperCAmelCase ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_UpperCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_UpperCAmelCase , 'w' ) ) __lowercase = AutoImageProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = CLIPConfig() # Create a dummy config file with image_proceesor_type __lowercase = Path(_UpperCAmelCase ) / 'preprocessor_config.json' __lowercase = Path(_UpperCAmelCase ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_UpperCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_UpperCAmelCase , 'w' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __lowercase = AutoImageProcessor.from_pretrained(_UpperCAmelCase ).to_dict() config_dict.pop('image_processor_type' ) __lowercase = CLIPImageProcessor(**_UpperCAmelCase ) # save in new folder model_config.save_pretrained(_UpperCAmelCase ) config.save_pretrained(_UpperCAmelCase ) __lowercase = AutoImageProcessor.from_pretrained(_UpperCAmelCase ) # make sure private variable is not incorrectly saved __lowercase = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = Path(_UpperCAmelCase ) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_UpperCAmelCase , 'w' ) , ) __lowercase = AutoImageProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" with self.assertRaisesRegex( _UpperCAmelCase , 'clip-base is not a local folder and is not a valid model identifier' ): __lowercase = AutoImageProcessor.from_pretrained('clip-base' ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" with self.assertRaisesRegex( _UpperCAmelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __lowercase = AutoImageProcessor.from_pretrained(_UpperCAmelCase , revision='aaaaaa' ) def a__ ( self : int ) -> str: """simple docstring""" with self.assertRaisesRegex( _UpperCAmelCase , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): __lowercase = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" with self.assertRaises(_UpperCAmelCase ): __lowercase = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_UpperCAmelCase ): __lowercase = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_UpperCAmelCase ) __lowercase = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_UpperCAmelCase ) __lowercase = AutoImageProcessor.from_pretrained(_UpperCAmelCase , trust_remote_code=_UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor' ) def a__ ( self : Tuple ) -> str: """simple docstring""" try: AutoConfig.register('custom' , _UpperCAmelCase ) AutoImageProcessor.register(_UpperCAmelCase , _UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCAmelCase ): AutoImageProcessor.register(_UpperCAmelCase , _UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = Path(_UpperCAmelCase ) / 'preprocessor_config.json' __lowercase = Path(_UpperCAmelCase ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_UpperCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_UpperCAmelCase , 'w' ) ) __lowercase = CustomImageProcessor.from_pretrained(_UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_UpperCAmelCase ) __lowercase = AutoImageProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def a__ ( self : Optional[int] ) -> int: """simple docstring""" class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Dict = True try: AutoConfig.register('custom' , _UpperCAmelCase ) AutoImageProcessor.register(_UpperCAmelCase , _UpperCAmelCase ) # If remote code is not set, the default is to use local __lowercase = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __lowercase = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __lowercase = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(not hasattr(_UpperCAmelCase , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
701
from pathlib import Path import numpy as np from PIL import Image def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: return (gray > 127) & (gray <= 255) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase = np.zeros_like(SCREAMING_SNAKE_CASE ) __lowercase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __lowercase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __lowercase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __lowercase = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
688
0
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
702
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = ["pixel_values"] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = size if size is not None else {'height': 3_84, 'width': 3_84} __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase = do_convert_rgb def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) __lowercase = (size['height'], size['width']) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: """simple docstring""" __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = resample if resample is not None else self.resample __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = size if size is not None else self.size __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] __lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase ) return encoded_outputs
688
0
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } SCREAMING_SNAKE_CASE__ = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } SCREAMING_SNAKE_CASE__ = { """jukebox""": 512, } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase__ : Any = ["input_ids", "attention_mask"] def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]: """simple docstring""" __lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token super().__init__( unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = version __lowercase = max_n_lyric_tokens __lowercase = n_genres with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) __lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase = oov.replace(R'\-\'' , R'\-+\'' ) __lowercase = regex.compile(_UpperCAmelCase ) __lowercase = {v: k for k, v in self.artists_encoder.items()} __lowercase = {v: k for k, v in self.genres_encoder.items()} __lowercase = {v: k for k, v in self.lyrics_encoder.items()} @property def a__ ( self : List[Any] ) -> Any: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(_UpperCAmelCase ) ): __lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]] __lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" return list(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = self._tokenize(_UpperCAmelCase ) return artist, genre, lyrics def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase = artists[idx].lower() __lowercase = [genres[idx].lower()] else: __lowercase = self._normalize(artists[idx] ) + '.v2' __lowercase = [ self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) __lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' __lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )} __lowercase = 0 __lowercase = len(_UpperCAmelCase ) + 1 __lowercase = self.vocab __lowercase = {v: k for k, v in self.vocab.items()} __lowercase = '' else: __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) __lowercase = self._run_strip_accents(_UpperCAmelCase ) __lowercase = lyrics.replace('\\' , '\n' ) __lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], [] return artists, genres, lyrics def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase ) __lowercase = [] for char in text: __lowercase = unicodedata.category(_UpperCAmelCase ) if cat == "Mn": continue output.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = ( [chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) __lowercase = frozenset(_UpperCAmelCase ) __lowercase = re.compile(R'_+' ) __lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] ) __lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' ) return text def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" return " ".join(_UpperCAmelCase ) def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = TensorType(_UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf __lowercase = tf.constant __lowercase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch __lowercase = torch.tensor __lowercase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 __lowercase = jnp.array __lowercase = _is_jax else: __lowercase = np.asarray __lowercase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase = [inputs] if not is_tensor(_UpperCAmelCase ): __lowercase = as_tensor(_UpperCAmelCase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding: """simple docstring""" __lowercase = [0, 0, 0] __lowercase = [artist] * len(self.version ) __lowercase = [genres] * len(self.version ) __lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = [-INFINITY] * len(full_tokens[-1] ) __lowercase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.artists_decoder.get(_UpperCAmelCase ) __lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index] __lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
0
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> Dict: __lowercase , __lowercase = image.size __lowercase , __lowercase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __lowercase = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) __lowercase = np.array(SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 255.0 __lowercase = image[None].transpose(0 , 3 , 1 , 2 ) __lowercase = torch.from_numpy(SCREAMING_SNAKE_CASE ) return 2.0 * image - 1.0 class A__ ( lowerCAmelCase__ ): def __init__( self : Optional[Any] , _UpperCAmelCase : VQModel , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> str: """simple docstring""" super().__init__() self.register_modules(vqvae=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self : str , _UpperCAmelCase : Union[torch.Tensor, PIL.Image.Image] = None , _UpperCAmelCase : Optional[int] = 1 , _UpperCAmelCase : Optional[int] = 1_00 , _UpperCAmelCase : Optional[float] = 0.0 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" if isinstance(_UpperCAmelCase , PIL.Image.Image ): __lowercase = 1 elif isinstance(_UpperCAmelCase , torch.Tensor ): __lowercase = image.shape[0] else: raise ValueError(f"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) if isinstance(_UpperCAmelCase , PIL.Image.Image ): __lowercase = preprocess(_UpperCAmelCase ) __lowercase , __lowercase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __lowercase = (batch_size, self.unet.config.in_channels // 2, height, width) __lowercase = next(self.unet.parameters() ).dtype __lowercase = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) __lowercase = image.to(device=self.device , dtype=_UpperCAmelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_UpperCAmelCase , device=self.device ) __lowercase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta for t in self.progress_bar(_UpperCAmelCase ): # concat latents and low resolution image in the channel dimension. __lowercase = torch.cat([latents, image] , dim=1 ) __lowercase = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # decode the image latents with the VQVAE __lowercase = self.vqvae.decode(_UpperCAmelCase ).sample __lowercase = torch.clamp(_UpperCAmelCase , -1.0 , 1.0 ) __lowercase = image / 2 + 0.5 __lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
704
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter __lowercase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams __lowercase = 4 __lowercase = True # hparam_utils.py hparams __lowercase = 0.664_694 __lowercase = 0.207_951 __lowercase = 0.121_194 __lowercase = True __lowercase = True __lowercase = False __lowercase = 0.0_352_513 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowercase = 4 __lowercase = False # hparam_utils.py hparams __lowercase = 36.4_519 __lowercase = 0.903_421 __lowercase = 222.088 __lowercase = True __lowercase = True __lowercase = True __lowercase = 0.763_141 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "TABFACT": __lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE ) elif task == "MLM": __lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": __lowercase = TapasModel(config=SCREAMING_SNAKE_CASE ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
0
import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: __lowercase = factor * value __lowercase = value while not is_prime(SCREAMING_SNAKE_CASE ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE ) return value
705
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def __SCREAMING_SNAKE_CASE ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
688
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder snake_case_ = """__DUMMY_TRANSFORMERS_USER__""" snake_case_ = """Dummy User""" snake_case_ = """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""" snake_case_ = """https://hub-ci.huggingface.co""" snake_case_ = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" snake_case_ = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" snake_case_ = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] ) -> int: monkeypatch.setattr( 'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , SCREAMING_SNAKE_CASE ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: monkeypatch.setattr('datasets.config.HF_ENDPOINT' , SCREAMING_SNAKE_CASE ) monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , SCREAMING_SNAKE_CASE ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> Dict: monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , SCREAMING_SNAKE_CASE ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any ) -> List[str]: HfFolder.save_token(SCREAMING_SNAKE_CASE ) yield HfFolder.delete_token() @pytest.fixture(scope='session' ) def __SCREAMING_SNAKE_CASE ( ) -> Dict: return HfApi(endpoint=SCREAMING_SNAKE_CASE ) @pytest.fixture(scope='session' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : HfApi ) -> Optional[int]: __lowercase = HfFolder.get_token() HfFolder.save_token(SCREAMING_SNAKE_CASE ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(SCREAMING_SNAKE_CASE ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]: def _cleanup_repo(SCREAMING_SNAKE_CASE : str ): hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' ) return _cleanup_repo @pytest.fixture def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]: @contextmanager def _temporary_repo(SCREAMING_SNAKE_CASE : Tuple ): try: yield repo_id finally: cleanup_repo(SCREAMING_SNAKE_CASE ) return _temporary_repo @pytest.fixture(scope='session' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : HfApi , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] ) -> Any: __lowercase = F"""repo_txt_data-{int(time.time() * 10E3 )}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' , private=SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE , path_or_fileobj=str(SCREAMING_SNAKE_CASE ) , path_in_repo='data/text_data.txt' , repo_id=SCREAMING_SNAKE_CASE , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='session' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : HfApi , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> str: __lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3 )}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' , private=SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE , path_or_fileobj=str(SCREAMING_SNAKE_CASE ) , path_in_repo='data.zip' , repo_id=SCREAMING_SNAKE_CASE , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='session' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : HfApi , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: __lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3 )}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' , private=SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE , path_or_fileobj=str(SCREAMING_SNAKE_CASE ) , path_in_repo='data.zip' , repo_id=SCREAMING_SNAKE_CASE , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: return hf_private_dataset_repo_zipped_img_data_
706
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """Hello, World!""" SCREAMING_SNAKE_CASE__ = """en_XX""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]: __lowercase = Path('data_bin' ) __lowercase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE ) __lowercase = xmod.model.encoder.sentence_encoder __lowercase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , SCREAMING_SNAKE_CASE ) __lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings __lowercase = xmod_sent_encoder.embed_tokens.weight __lowercase = xmod_sent_encoder.embed_positions.weight __lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowercase = xmod_sent_encoder.layernorm_embedding.weight __lowercase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowercase = model.roberta.encoder.layer[i] __lowercase = xmod_sent_encoder.layers[i] # self attention __lowercase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __lowercase = xmod_layer.self_attn.q_proj.weight __lowercase = xmod_layer.self_attn.q_proj.bias __lowercase = xmod_layer.self_attn.k_proj.weight __lowercase = xmod_layer.self_attn.k_proj.bias __lowercase = xmod_layer.self_attn.v_proj.weight __lowercase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowercase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __lowercase = xmod_layer.self_attn.out_proj.weight __lowercase = xmod_layer.self_attn.out_proj.bias __lowercase = xmod_layer.self_attn_layer_norm.weight __lowercase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowercase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias # output __lowercase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias __lowercase = xmod_layer.final_layer_norm.weight __lowercase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowercase = xmod_layer.adapter_layer_norm.weight __lowercase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowercase = bert_output.adapter_modules[lang_code] __lowercase = xmod_layer.adapter_modules[lang_code] __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowercase = xmod_sent_encoder.layer_norm.weight __lowercase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowercase = xmod.model.classification_heads['mnli'].dense.weight __lowercase = xmod.model.classification_heads['mnli'].dense.bias __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight __lowercase = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowercase = xmod.model.encoder.lm_head.dense.weight __lowercase = xmod.model.encoder.lm_head.dense.bias __lowercase = xmod.model.encoder.lm_head.layer_norm.weight __lowercase = xmod.model.encoder.lm_head.layer_norm.bias __lowercase = xmod.model.encoder.lm_head.weight __lowercase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE ) __lowercase = model(SCREAMING_SNAKE_CASE )[0] if classification_head: __lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) ) else: __lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
688
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Dict = "ClapFeatureExtractor" lowerCAmelCase__ : List[str] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] ) -> int: """simple docstring""" super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : Any ) -> int: """simple docstring""" __lowercase = kwargs.pop('sampling_rate' , _UpperCAmelCase ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: __lowercase = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if audios is not None: __lowercase = self.feature_extractor( _UpperCAmelCase , sampling_rate=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and audios is not None: __lowercase = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def a__ ( self : Dict , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : int , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : int ) -> str: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase = self.tokenizer.model_input_names __lowercase = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
707
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float: __lowercase = u for i in range(1 , SCREAMING_SNAKE_CASE ): __lowercase = temp * (u - i) return temp def __SCREAMING_SNAKE_CASE ( ) -> None: __lowercase = int(input('enter the numbers of values: ' ) ) __lowercase = [] for _ in range(SCREAMING_SNAKE_CASE ): y.append([] ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): y[i].append(SCREAMING_SNAKE_CASE ) __lowercase = 0 print('enter the values of parameters in a list: ' ) __lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(SCREAMING_SNAKE_CASE ): __lowercase = float(input() ) __lowercase = int(input('enter the value to interpolate: ' ) ) __lowercase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(n - i ): __lowercase = y[j + 1][i - 1] - y[j][i - 1] __lowercase = y[0][0] for i in range(1 , SCREAMING_SNAKE_CASE ): summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
688
0
'''simple docstring''' class A__ : def __init__( self : Any ) -> Any: """simple docstring""" __lowercase = '' __lowercase = '' __lowercase = [] def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: __lowercase = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: __lowercase = self.__min_dist_top_down_dp(_UpperCAmelCase , n - 1 ) __lowercase = self.__min_dist_top_down_dp(m - 1 , _UpperCAmelCase ) __lowercase = self.__min_dist_top_down_dp(m - 1 , n - 1 ) __lowercase = 1 + min(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self.dp[m][n] def a__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> int: """simple docstring""" __lowercase = worda __lowercase = worda __lowercase = [[-1 for _ in range(len(_UpperCAmelCase ) )] for _ in range(len(_UpperCAmelCase ) )] return self.__min_dist_top_down_dp(len(_UpperCAmelCase ) - 1 , len(_UpperCAmelCase ) - 1 ) def a__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> int: """simple docstring""" __lowercase = worda __lowercase = worda __lowercase = len(_UpperCAmelCase ) __lowercase = len(_UpperCAmelCase ) __lowercase = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty __lowercase = j elif j == 0: # second string is empty __lowercase = i elif worda[i - 1] == worda[j - 1]: # last characters are equal __lowercase = self.dp[i - 1][j - 1] else: __lowercase = self.dp[i][j - 1] __lowercase = self.dp[i - 1][j] __lowercase = self.dp[i - 1][j - 1] __lowercase = 1 + min(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self.dp[m][n] if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = EditDistance() print("""****************** Testing Edit Distance DP Algorithm ******************""") print() SCREAMING_SNAKE_CASE__ = input("""Enter the first string: """).strip() SCREAMING_SNAKE_CASE__ = input("""Enter the second string: """).strip() print() print(F'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(F'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print("""*************** End of Testing Edit Distance DP Algorithm ***************""")
708
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = F"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: __lowercase = F"""Input value of [number={number}] must be > 0""" raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
688
0
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class A__ ( unittest.TestCase ): @slow def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = FlaxMTaForConditionalGeneration.from_pretrained('google/mt5-small' ) __lowercase = AutoTokenizer.from_pretrained('google/mt5-small' ) __lowercase = tokenizer('Hello there' , return_tensors='np' ).input_ids __lowercase = tokenizer('Hi I am' , return_tensors='np' ).input_ids __lowercase = shift_tokens_right(_UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) __lowercase = model(_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase ).logits __lowercase = optax.softmax_cross_entropy(_UpperCAmelCase , onehot(_UpperCAmelCase , logits.shape[-1] ) ).mean() __lowercase = -(labels.shape[-1] * loss.item()) __lowercase = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
709
from argparse import ArgumentParser from .env import EnvironmentCommand def __SCREAMING_SNAKE_CASE ( ) -> List[str]: __lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) __lowercase = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE ) # Let's go __lowercase = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
688
0
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : List[Any] = BloomTokenizerFast lowerCAmelCase__ : Tuple = BloomTokenizerFast lowerCAmelCase__ : int = True lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : List[Any] = "tokenizer_file" lowerCAmelCase__ : int = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" super().setUp() __lowercase = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self : Tuple , **_UpperCAmelCase : Optional[int] ) -> Tuple: """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = self.get_rust_tokenizer() __lowercase = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] __lowercase = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] __lowercase = tokenizer.batch_encode_plus(_UpperCAmelCase )['input_ids'] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : str=6 ) -> Any: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowercase = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __lowercase = 'This is a simple input' __lowercase = ['This is a simple input 1', 'This is a simple input 2'] __lowercase = ('This is a simple input', 'This is a pair') __lowercase = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.batch_encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.encode(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.batch_encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) __lowercase = None # Hotfixing padding = None self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) # Simple input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) # Simple input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) # Pair input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , ) def a__ ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase = self.get_rust_tokenizer() __lowercase = load_dataset('xnli' , 'all_languages' , split='test' , streaming=_UpperCAmelCase ) __lowercase = next(iter(_UpperCAmelCase ) )['premise'] # pick up one data __lowercase = list(sample_data.values() ) __lowercase = list(map(tokenizer.encode , _UpperCAmelCase ) ) __lowercase = [tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) for x in output_tokens] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : int ) -> str: """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
710
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ProphetNetTokenizer lowerCAmelCase__ : str = False def a__ ( self : str ) -> Tuple: """simple docstring""" super().setUp() __lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = 'UNwant\u00E9d,running' __lowercase = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Any: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : int ) -> List[str]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowercase = {} for i, token in enumerate(_UpperCAmelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] __lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def a__ ( self : int ) -> Dict: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : Any ) -> List[str]: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
688
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys SCREAMING_SNAKE_CASE__ = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") SCREAMING_SNAKE_CASE__ = subprocess.check_output(F'''git diff --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() SCREAMING_SNAKE_CASE__ = """|""".join(sys.argv[1:]) SCREAMING_SNAKE_CASE__ = re.compile(rF'''^({joined_dirs}).*?\.py$''') SCREAMING_SNAKE_CASE__ = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
711
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } SCREAMING_SNAKE_CASE__ = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } SCREAMING_SNAKE_CASE__ = { """jukebox""": 512, } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase__ : Any = ["input_ids", "attention_mask"] def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]: """simple docstring""" __lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token super().__init__( unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = version __lowercase = max_n_lyric_tokens __lowercase = n_genres with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) __lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase = oov.replace(R'\-\'' , R'\-+\'' ) __lowercase = regex.compile(_UpperCAmelCase ) __lowercase = {v: k for k, v in self.artists_encoder.items()} __lowercase = {v: k for k, v in self.genres_encoder.items()} __lowercase = {v: k for k, v in self.lyrics_encoder.items()} @property def a__ ( self : List[Any] ) -> Any: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(_UpperCAmelCase ) ): __lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]] __lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" return list(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = self._tokenize(_UpperCAmelCase ) return artist, genre, lyrics def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase = artists[idx].lower() __lowercase = [genres[idx].lower()] else: __lowercase = self._normalize(artists[idx] ) + '.v2' __lowercase = [ self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) __lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' __lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )} __lowercase = 0 __lowercase = len(_UpperCAmelCase ) + 1 __lowercase = self.vocab __lowercase = {v: k for k, v in self.vocab.items()} __lowercase = '' else: __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) __lowercase = self._run_strip_accents(_UpperCAmelCase ) __lowercase = lyrics.replace('\\' , '\n' ) __lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], [] return artists, genres, lyrics def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase ) __lowercase = [] for char in text: __lowercase = unicodedata.category(_UpperCAmelCase ) if cat == "Mn": continue output.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = ( [chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) __lowercase = frozenset(_UpperCAmelCase ) __lowercase = re.compile(R'_+' ) __lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] ) __lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' ) return text def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" return " ".join(_UpperCAmelCase ) def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = TensorType(_UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf __lowercase = tf.constant __lowercase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch __lowercase = torch.tensor __lowercase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 __lowercase = jnp.array __lowercase = _is_jax else: __lowercase = np.asarray __lowercase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase = [inputs] if not is_tensor(_UpperCAmelCase ): __lowercase = as_tensor(_UpperCAmelCase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding: """simple docstring""" __lowercase = [0, 0, 0] __lowercase = [artist] * len(self.version ) __lowercase = [genres] * len(self.version ) __lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = [-INFINITY] * len(full_tokens[-1] ) __lowercase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.artists_decoder.get(_UpperCAmelCase ) __lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index] __lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
688
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """spm_char.model"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """microsoft/speecht5_asr""": """https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model""", """microsoft/speecht5_tts""": """https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model""", """microsoft/speecht5_vc""": """https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model""", } } SCREAMING_SNAKE_CASE__ = { """microsoft/speecht5_asr""": 1024, """microsoft/speecht5_tts""": 1024, """microsoft/speecht5_vc""": 1024, } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Dict = VOCAB_FILES_NAMES lowerCAmelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str="<s>" , _UpperCAmelCase : Any="</s>" , _UpperCAmelCase : Optional[int]="<unk>" , _UpperCAmelCase : List[str]="<pad>" , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : List[str] , ) -> None: """simple docstring""" __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __lowercase = vocab_file __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) @property def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" return self.sp_model.get_piece_size() def a__ ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self : Optional[Any] , _UpperCAmelCase : Dict ) -> Any: """simple docstring""" __lowercase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__ ( self : List[Any] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" return self.sp_model.piece_to_id(_UpperCAmelCase ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase = self.sp_model.IdToPiece(_UpperCAmelCase ) return token def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> int: """simple docstring""" __lowercase = [] __lowercase = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_UpperCAmelCase ) + token __lowercase = [] else: current_sub_tokens.append(_UpperCAmelCase ) out_string += self.sp_model.decode(_UpperCAmelCase ) return out_string.strip() def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def a__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) __lowercase = [1] if token_ids_a is None: return ([0] * len(_UpperCAmelCase )) + suffix_ones return ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def a__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , 'wb' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,)
712
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_hidden_groups __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def a__ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" __lowercase = AlbertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple: """simple docstring""" __lowercase = AlbertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = AlbertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" __lowercase = self.num_choices __lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ : Dict = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Optional[Any] = True def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple: """simple docstring""" __lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def a__ ( self : str ) -> str: """simple docstring""" __lowercase = AlbertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def a__ ( self : int ) -> Any: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AlbertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class A__ ( unittest.TestCase ): @slow def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = AlbertModel.from_pretrained('albert-base-v2' ) __lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __lowercase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
688
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name class A__ ( lowerCAmelCase__ ): def __init__( self : Optional[Any] , _UpperCAmelCase : WhisperForConditionalGeneration , _UpperCAmelCase : WhisperProcessor , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : CLIPTextModel , _UpperCAmelCase : CLIPTokenizer , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _UpperCAmelCase : StableDiffusionSafetyChecker , _UpperCAmelCase : CLIPImageProcessor , ) -> Dict: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=_UpperCAmelCase , speech_processor=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[Union[str, int]] = "auto" ) -> str: """simple docstring""" if slice_size == "auto": __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" self.enable_attention_slicing(_UpperCAmelCase ) @torch.no_grad() def __call__( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=1_60_00 , _UpperCAmelCase : int = 5_12 , _UpperCAmelCase : int = 5_12 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : float = 7.5 , _UpperCAmelCase : Optional[Union[str, List[str]]] = None , _UpperCAmelCase : Optional[int] = 1 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : Optional[torch.Generator] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _UpperCAmelCase : int = 1 , **_UpperCAmelCase : List[str] , ) -> List[Any]: """simple docstring""" __lowercase = self.speech_processor.feature_extractor( _UpperCAmelCase , return_tensors='pt' , sampling_rate=_UpperCAmelCase ).input_features.to(self.device ) __lowercase = self.speech_model.generate(_UpperCAmelCase , max_length=48_00_00 ) __lowercase = self.speech_processor.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , normalize=_UpperCAmelCase )[ 0 ] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = 1 elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = len(_UpperCAmelCase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(_UpperCAmelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(_UpperCAmelCase )}.""" ) # get prompt text embeddings __lowercase = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __lowercase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowercase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __lowercase = text_input_ids[:, : self.tokenizer.model_max_length] __lowercase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __lowercase , __lowercase , __lowercase = text_embeddings.shape __lowercase = text_embeddings.repeat(1 , _UpperCAmelCase , 1 ) __lowercase = text_embeddings.view(bs_embed * num_images_per_prompt , _UpperCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = 42 if negative_prompt is None: __lowercase = [''] * batch_size elif type(_UpperCAmelCase ) is not type(_UpperCAmelCase ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(_UpperCAmelCase )} !=""" f""" {type(_UpperCAmelCase )}.""" ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [negative_prompt] elif batch_size != len(_UpperCAmelCase ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(_UpperCAmelCase )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ' the batch size of `prompt`.' ) else: __lowercase = negative_prompt __lowercase = text_input_ids.shape[-1] __lowercase = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='pt' , ) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowercase = uncond_embeddings.shape[1] __lowercase = uncond_embeddings.repeat(1 , _UpperCAmelCase , 1 ) __lowercase = uncond_embeddings.view(batch_size * num_images_per_prompt , _UpperCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __lowercase = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: __lowercase = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __lowercase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __lowercase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta for i, t in enumerate(self.progress_bar(_UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform guidance if do_classifier_free_guidance: __lowercase , __lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = 1 / 0.18_215 * latents __lowercase = self.vae.decode(_UpperCAmelCase ).sample __lowercase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
713
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A__ ( lowerCAmelCase__ ): def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]: """simple docstring""" __lowercase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['token'] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __lowercase = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) __lowercase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [files] self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['unk']['id'] __lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
688
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class A__ : lowerCAmelCase__ : str = MBartConfig lowerCAmelCase__ : Optional[Any] = {} lowerCAmelCase__ : Optional[int] = "gelu" def __init__( self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Dict=7 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : List[Any]=99 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : int=2 , _UpperCAmelCase : str=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : str=20 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : Union[str, Any]=0 , ) -> Union[str, Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowercase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowercase = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def a__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" __lowercase = TFMBartModel(config=_UpperCAmelCase ).get_decoder() __lowercase = inputs_dict['input_ids'] __lowercase = input_ids[:1, :] __lowercase = inputs_dict['attention_mask'][:1, :] __lowercase = inputs_dict['head_mask'] __lowercase = 1 # first forward pass __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) __lowercase , __lowercase = outputs.to_tuple() __lowercase = past_key_values[1] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , ) -> int: if attention_mask is None: __lowercase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowercase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowercase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowerCAmelCase__ : Dict = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase__ : int = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : Optional[int] = False def a__ ( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any ) -> List[Any]: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def a__ ( self : List[str] ) -> str: """simple docstring""" __lowercase = TFMBartModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase ) def a__ ( self : List[str] ) -> int: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class A__ ( unittest.TestCase ): lowerCAmelCase__ : Optional[Any] = [ " UN Chief Says There Is No Military Solution in Syria", ] lowerCAmelCase__ : List[Any] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] lowerCAmelCase__ : int = "facebook/mbart-large-en-ro" @cached_property def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def a__ ( self : Optional[int] ) -> str: """simple docstring""" __lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def a__ ( self : Any , **_UpperCAmelCase : Dict ) -> Optional[int]: """simple docstring""" __lowercase = self.translate_src_text(**_UpperCAmelCase ) self.assertListEqual(self.expected_text , _UpperCAmelCase ) def a__ ( self : Dict , **_UpperCAmelCase : List[Any] ) -> Dict: """simple docstring""" __lowercase = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='tf' ) __lowercase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __lowercase = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) return generated_words @slow def a__ ( self : Tuple ) -> Any: """simple docstring""" self._assert_generated_batch_equal_expected()
714
import string from math import logaa def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int: __lowercase = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) __lowercase = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]: __lowercase = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' __lowercase = corpus_without_punctuation.split('\n' ) __lowercase = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE )) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float: if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float: return round(tf * idf , 3 )
688
0
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
715
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # TODO: upload to AWS SCREAMING_SNAKE_CASE__ = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "retribert" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = share_encoders __lowercase = projection_dim
688
0
import logging from transformers.configuration_utils import PretrainedConfig SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : int = "masked_bert" def __init__( self : Tuple , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=5_12 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : str=1e-1_2 , _UpperCAmelCase : List[Any]=0 , _UpperCAmelCase : Tuple="topK" , _UpperCAmelCase : Dict="constant" , _UpperCAmelCase : Tuple=0.0 , **_UpperCAmelCase : Tuple , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = pruning_method __lowercase = mask_init __lowercase = mask_scale
716
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/unispeech-sat-base-100h-libri-ft""": ( """https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json""" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = "unispeech-sat" def __init__( self : Union[str, Any] , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : int=30_72 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : Optional[int]=1e-5 , _UpperCAmelCase : Dict="group" , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[str]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _UpperCAmelCase : Optional[int]=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase : Optional[Any]=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : List[str]=1_28 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : str=False , _UpperCAmelCase : Any=True , _UpperCAmelCase : Dict=0.05 , _UpperCAmelCase : Tuple=10 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Union[str, Any]=10 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : Dict=3_20 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=1_00 , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : Optional[int]=2_56 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple="mean" , _UpperCAmelCase : Dict=False , _UpperCAmelCase : str=False , _UpperCAmelCase : int=2_56 , _UpperCAmelCase : Any=(5_12, 5_12, 5_12, 5_12, 15_00) , _UpperCAmelCase : Optional[Any]=(5, 3, 3, 1, 1) , _UpperCAmelCase : str=(1, 2, 3, 1, 1) , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Any=1 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Optional[int]=5_04 , **_UpperCAmelCase : int , ) -> Optional[Any]: """simple docstring""" super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) __lowercase = hidden_size __lowercase = feat_extract_norm __lowercase = feat_extract_activation __lowercase = list(_UpperCAmelCase ) __lowercase = list(_UpperCAmelCase ) __lowercase = list(_UpperCAmelCase ) __lowercase = conv_bias __lowercase = num_conv_pos_embeddings __lowercase = num_conv_pos_embedding_groups __lowercase = len(self.conv_dim ) __lowercase = num_hidden_layers __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_attention_heads __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = feat_proj_dropout __lowercase = final_dropout __lowercase = layerdrop __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = vocab_size __lowercase = num_clusters __lowercase = do_stable_layer_norm __lowercase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase = apply_spec_augment __lowercase = mask_time_prob __lowercase = mask_time_length __lowercase = mask_time_min_masks __lowercase = mask_feature_prob __lowercase = mask_feature_length __lowercase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __lowercase = num_codevectors_per_group __lowercase = num_codevector_groups __lowercase = contrastive_logits_temperature __lowercase = feat_quantizer_dropout __lowercase = num_negatives __lowercase = codevector_dim __lowercase = proj_codevector_dim __lowercase = diversity_loss_weight # ctc loss __lowercase = ctc_loss_reduction __lowercase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase = list(_UpperCAmelCase ) __lowercase = list(_UpperCAmelCase ) __lowercase = list(_UpperCAmelCase ) __lowercase = xvector_output_dim @property def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
717
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"] lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor" lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __lowercase = kwargs.pop('feature_extractor' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor __lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowercase = features['words'] __lowercase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values __lowercase = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowercase = images return encoded_inputs def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" ) return images_with_overflow def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def a__ ( self : str ) -> Dict: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
688
0
'''simple docstring''' import unittest import numpy as np def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray | None = None , ) -> np.ndarray: __lowercase = np.shape(SCREAMING_SNAKE_CASE ) __lowercase = np.shape(SCREAMING_SNAKE_CASE ) __lowercase = np.shape(SCREAMING_SNAKE_CASE ) if shape_a[0] != shape_b[0]: __lowercase = ( 'Expected the same number of rows for A and B. ' F"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) if shape_b[1] != shape_c[1]: __lowercase = ( 'Expected the same number of columns for B and C. ' F"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = pseudo_inv if a_inv is None: try: __lowercase = np.linalg.inv(SCREAMING_SNAKE_CASE ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class A__ ( unittest.TestCase ): def a__ ( self : List[Any] ) -> None: """simple docstring""" __lowercase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __lowercase = np.array([[0, 3], [3, 0], [2, 3]] ) __lowercase = np.array([[2, 1], [6, 3]] ) __lowercase = schur_complement(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = np.block([[a, b], [b.T, c]] ) __lowercase = np.linalg.det(_UpperCAmelCase ) __lowercase = np.linalg.det(_UpperCAmelCase ) __lowercase = np.linalg.det(_UpperCAmelCase ) self.assertAlmostEqual(_UpperCAmelCase , det_a * det_s ) def a__ ( self : Union[str, Any] ) -> None: """simple docstring""" __lowercase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __lowercase = np.array([[0, 3], [3, 0], [2, 3]] ) __lowercase = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_UpperCAmelCase ): schur_complement(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> None: """simple docstring""" __lowercase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __lowercase = np.array([[0, 3], [3, 0], [2, 3]] ) __lowercase = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_UpperCAmelCase ): schur_complement(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
718
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ : lowerCAmelCase__ : Optional[int] = "dummy_data" lowerCAmelCase__ : str = "datasets" lowerCAmelCase__ : Dict = False def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]: """simple docstring""" __lowercase = 0 __lowercase = dataset_name __lowercase = cache_dir __lowercase = use_local_dummy_data __lowercase = config # download_callbacks take a single url as input __lowercase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowercase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowercase = str(_UpperCAmelCase ) # to be downloaded __lowercase = None __lowercase = None @property def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" if self._dummy_file is None: __lowercase = self.download_dummy_data() return self._dummy_file @property def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowercase = cached_path( _UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase ) return os.path.join(_UpperCAmelCase , self.dummy_file_name ) @property def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" if self._bucket_url is None: __lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowercase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowercase = self.dummy_file_name # special case when data_url is a dict if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase ) elif isinstance(_UpperCAmelCase , (list, tuple) ): return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase ) else: return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" return path def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" return {} def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for single_url in single_urls: download_callback(_UpperCAmelCase ) else: __lowercase = single_urls download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls] else: __lowercase = single_urls __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) __lowercase = value # make sure that values are unique if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowercase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url ) __lowercase = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowercase = [data_url[0]] * len(_UpperCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(_UpperCAmelCase ) return dummy_data_list def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def a__ ( self : List[str] ) -> Any: """simple docstring""" pass def a__ ( self : int ) -> str: """simple docstring""" pass def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" def _iter_archive_members(_UpperCAmelCase : Optional[Any] ): # this preserves the order of the members inside the ZIP archive __lowercase = Path(self.dummy_file ).parent __lowercase = path.relative_to(_UpperCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowercase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_UpperCAmelCase ) __lowercase = Path(_UpperCAmelCase ) __lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [paths] for path in paths: if os.path.isfile(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(_UpperCAmelCase ): if filename.startswith(('.', '__') ): continue yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
688
0
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class A__ ( lowerCAmelCase__ ): def __init__( self : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=4 , _UpperCAmelCase : Optional[Any]=64 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : Optional[Any]=1 , ) -> Union[str, Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = q_groups __lowercase = k_groups __lowercase = v_groups __lowercase = post_attention_groups __lowercase = intermediate_groups __lowercase = output_groups def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" __lowercase = SqueezeBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase = SqueezeBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" __lowercase = SqueezeBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = SqueezeBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = self.num_labels __lowercase = SqueezeBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_choices __lowercase = SqueezeBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ((__lowercase) , (__lowercase) , (__lowercase) , (__lowercase) , (__lowercase) , (__lowercase)) = config_and_inputs __lowercase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Any = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowerCAmelCase__ : int = ( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : int = False lowerCAmelCase__ : Any = True lowerCAmelCase__ : Optional[int] = False def a__ ( self : List[Any] ) -> str: """simple docstring""" __lowercase = SqueezeBertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , dim=37 ) def a__ ( self : Tuple ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_UpperCAmelCase ) def a__ ( self : Dict ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_UpperCAmelCase ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_UpperCAmelCase ) @slow def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = SqueezeBertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_torch class A__ ( unittest.TestCase ): @slow def a__ ( self : List[str] ) -> Dict: """simple docstring""" __lowercase = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) __lowercase = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] ) __lowercase = model(_UpperCAmelCase )[0] __lowercase = torch.Size((1, 3) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = torch.tensor([[0.6_401, -0.0_349, -0.6_041]] ) self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-4 ) )
719
import math import sys import cva import numpy as np def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __lowercase = math.sqrt(SCREAMING_SNAKE_CASE ) __lowercase = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray: __lowercase = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __lowercase = np.zeros((kernel_size, kernel_size) ) for i in range(0 , SCREAMING_SNAKE_CASE ): for j in range(0 , SCREAMING_SNAKE_CASE ): __lowercase = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray: __lowercase = np.zeros(img.shape ) __lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2] __lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE ) __lowercase = val return imga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple: __lowercase = args[1] if args[1:] else '../image_data/lena.jpg' __lowercase = float(args[2] ) if args[2:] else 1.0 __lowercase = float(args[3] ) if args[3:] else 1.0 if args[4:]: __lowercase = int(args[4] ) __lowercase = kernel_size + abs(kernel_size % 2 - 1 ) else: __lowercase = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv) SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0) cva.imshow("""input image""", img) SCREAMING_SNAKE_CASE__ = img / 255 SCREAMING_SNAKE_CASE__ = out.astype("""float32""") SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) SCREAMING_SNAKE_CASE__ = out * 255 SCREAMING_SNAKE_CASE__ = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
688
0
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ProphetNetTokenizer lowerCAmelCase__ : str = False def a__ ( self : str ) -> Tuple: """simple docstring""" super().setUp() __lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = 'UNwant\u00E9d,running' __lowercase = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Any: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : int ) -> List[str]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowercase = {} for i, token in enumerate(_UpperCAmelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] __lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def a__ ( self : int ) -> Dict: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : Any ) -> List[str]: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
720
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A__ ( unittest.TestCase ): def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict: """simple docstring""" __lowercase = size if size is not None else {'height': 18, 'width': 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = apply_ocr def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def a__ ( self : int ) -> Tuple: """simple docstring""" pass def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _UpperCAmelCase ) self.assertIsInstance(encoding.boxes , _UpperCAmelCase ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = LayoutLMvaImageProcessor() from datasets import load_dataset __lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __lowercase = Image.open(ds[0]['file'] ).convert('RGB' ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _UpperCAmelCase ) self.assertListEqual(encoding.boxes , _UpperCAmelCase ) # with apply_OCR = False __lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
688
0
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # TODO: upload to AWS SCREAMING_SNAKE_CASE__ = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "retribert" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = share_encoders __lowercase = projection_dim
721
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "umt5" lowerCAmelCase__ : Tuple = ["past_key_values"] def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__( is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = vocab_size __lowercase = d_model __lowercase = d_kv __lowercase = d_ff __lowercase = num_layers __lowercase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase = num_heads __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = initializer_factor __lowercase = feed_forward_proj __lowercase = use_cache __lowercase = self.feed_forward_proj.split('-' ) __lowercase = act_info[-1] __lowercase = act_info[0] == 'gated' if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __lowercase = 'gelu_new' @property def a__ ( self : Tuple ) -> Any: """simple docstring""" return self.d_model @property def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" return self.num_heads @property def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" return self.num_layers class A__ ( lowerCAmelCase__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __lowercase = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __lowercase = 'past_encoder_sequence + sequence' __lowercase = {0: 'batch'} __lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase = {0: 'batch', 1: 'decoder_sequence'} __lowercase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a__ ( self : List[str] ) -> int: """simple docstring""" return 13 @property def a__ ( self : Dict ) -> float: """simple docstring""" return 5e-4
688
0
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """T5Config""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : jnp.array , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> jnp.ndarray: __lowercase = jnp.zeros_like(SCREAMING_SNAKE_CASE ) __lowercase = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) __lowercase = shifted_input_ids.at[:, 0].set(SCREAMING_SNAKE_CASE ) __lowercase = jnp.where(shifted_input_ids == -100 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return shifted_input_ids class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = "mt5" lowerCAmelCase__ : List[str] = MTaConfig class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = "mt5" lowerCAmelCase__ : Optional[Any] = MTaConfig class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Dict = "mt5" lowerCAmelCase__ : List[Any] = MTaConfig
700
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = version.parse("1.12" ) @property def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : Any ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : Dict ) -> int: """simple docstring""" return 12 def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
688
0
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class A__ ( unittest.TestCase ): def __init__( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=13 , _UpperCAmelCase : Union[str, Any]=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : int=5 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Optional[Any]=37 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=5_12 , _UpperCAmelCase : str=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=4 , ) -> List[str]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_attention_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_choices def a__ ( self : int ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_attention_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ ( self : str ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Union[str, Any] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = FlaxAlbertModelTester(self ) @slow def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained('albert-base-v2' ) __lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class A__ ( unittest.TestCase ): @slow def a__ ( self : Dict ) -> Dict: """simple docstring""" __lowercase = FlaxAlbertModel.from_pretrained('albert-base-v2' ) __lowercase = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowercase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __lowercase = (1, 11, 7_68) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
701
from pathlib import Path import numpy as np from PIL import Image def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: return (gray > 127) & (gray <= 255) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase = np.zeros_like(SCREAMING_SNAKE_CASE ) __lowercase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __lowercase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __lowercase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __lowercase = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
688
0
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> str: __lowercase = 0 # if input_string is "aba" than new_input_string become "a|b|a" __lowercase = '' __lowercase = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(SCREAMING_SNAKE_CASE ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring __lowercase , __lowercase = 0, 0 # length[i] shows the length of palindromic substring with center i __lowercase = [1 for i in range(len(SCREAMING_SNAKE_CASE ) )] # for each character in new_string find corresponding palindromic string __lowercase = 0 for j in range(len(SCREAMING_SNAKE_CASE ) ): __lowercase = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(SCREAMING_SNAKE_CASE ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 __lowercase = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: __lowercase = j - k + 1 # noqa: E741 __lowercase = j + k - 1 # update max_length and start position if max_length < length[j]: __lowercase = length[j] __lowercase = j # create that string __lowercase = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
702
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = ["pixel_values"] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = size if size is not None else {'height': 3_84, 'width': 3_84} __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase = do_convert_rgb def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) __lowercase = (size['height'], size['width']) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: """simple docstring""" __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = resample if resample is not None else self.resample __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = size if size is not None else self.size __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] __lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase ) return encoded_outputs
688
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class A__ ( lowerCAmelCase__ ): def __init__( self : str , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : str ) -> str: """simple docstring""" super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def a__ ( self : str , _UpperCAmelCase : List[str]=None ) -> Tuple: """simple docstring""" __lowercase = {} if top_k is not None: __lowercase = top_k return {}, {}, postprocess_params def __call__( self : Tuple , _UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" return super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" __lowercase = load_image(_UpperCAmelCase ) __lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework ) return model_inputs def a__ ( self : Tuple , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model(**_UpperCAmelCase ) return model_outputs def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple=5 ) -> Any: """simple docstring""" if top_k > self.model.config.num_labels: __lowercase = self.model.config.num_labels if self.framework == "pt": __lowercase = model_outputs.logits.softmax(-1 )[0] __lowercase , __lowercase = probs.topk(_UpperCAmelCase ) elif self.framework == "tf": __lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0] __lowercase = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase ) __lowercase , __lowercase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __lowercase = scores.tolist() __lowercase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase )]
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
0
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class A__ ( lowerCAmelCase__ ): def __init__( self : int , _UpperCAmelCase : Any=0.01 , _UpperCAmelCase : Optional[Any]=10_00 ) -> Dict: """simple docstring""" __lowercase = p_stop __lowercase = max_length def __iter__( self : Dict ) -> int: """simple docstring""" __lowercase = 0 __lowercase = False while not stop and count < self.max_length: yield count count += 1 __lowercase = random.random() < self.p_stop class A__ ( unittest.TestCase ): def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Union[str, Any]=True ) -> Optional[Any]: """simple docstring""" __lowercase = [ BatchSamplerShard(_UpperCAmelCase , 2 , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) for i in range(2 ) ] __lowercase = [list(_UpperCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_UpperCAmelCase ) for shard in batch_sampler_shards] , [len(_UpperCAmelCase ) for e in expected] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = BatchSampler(range(24 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = BatchSampler(range(24 ) , batch_size=3 , drop_last=_UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowercase = BatchSampler(range(21 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = BatchSampler(range(21 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowercase = BatchSampler(range(22 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = BatchSampler(range(22 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowercase = BatchSampler(range(20 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = BatchSampler(range(20 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) # Check the shards when the dataset is very small. __lowercase = BatchSampler(range(2 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = BatchSampler(range(2 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [[], []] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : str ) -> Tuple: """simple docstring""" __lowercase = BatchSampler(range(24 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(24 ) , batch_size=4 , drop_last=_UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowercase = BatchSampler(range(22 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(22 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowercase = BatchSampler(range(21 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(21 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) # Check the shards when the dataset is very small. __lowercase = BatchSampler(range(2 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(2 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [[], []] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) def a__ ( self : Dict ) -> List[str]: """simple docstring""" __lowercase = BatchSampler(range(24 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(24 ) , batch_size=3 , drop_last=_UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowercase = BatchSampler(range(21 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(21 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowercase = BatchSampler(range(22 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(22 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowercase = BatchSampler(range(20 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(20 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) # Check the shards when the dataset is very small. __lowercase = BatchSampler(range(2 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [[[0, 1]], []] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(2 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [[], []] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) def a__ ( self : List[str] ) -> Any: """simple docstring""" __lowercase = BatchSampler(range(24 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(24 ) , batch_size=4 , drop_last=_UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowercase = BatchSampler(range(22 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(22 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowercase = BatchSampler(range(21 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(21 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) # Check the shards when the dataset is very small. __lowercase = BatchSampler(range(2 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [[[0, 1]], []] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(2 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [[], []] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __lowercase = [BatchSamplerShard(_UpperCAmelCase , 2 , _UpperCAmelCase , even_batches=_UpperCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def a__ ( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=False ) -> Any: """simple docstring""" random.seed(_UpperCAmelCase ) __lowercase = list(_UpperCAmelCase ) __lowercase = [ IterableDatasetShard( _UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase , num_processes=_UpperCAmelCase , process_index=_UpperCAmelCase , split_batches=_UpperCAmelCase , ) for i in range(_UpperCAmelCase ) ] __lowercase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_UpperCAmelCase ) iterable_dataset_lists.append(list(_UpperCAmelCase ) ) __lowercase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __lowercase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) self.assertTrue(len(_UpperCAmelCase ) % shard_batch_size == 0 ) __lowercase = [] for idx in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_UpperCAmelCase ) < len(_UpperCAmelCase ): reference += reference self.assertListEqual(_UpperCAmelCase , reference[: len(_UpperCAmelCase )] ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase = 42 __lowercase = RandomIterableDataset() self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) # Edge case with a very small dataset __lowercase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = BatchSampler(range(16 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = SkipBatchSampler(_UpperCAmelCase , 2 ) self.assertListEqual(list(_UpperCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a__ ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = DataLoader(list(range(16 ) ) , batch_size=4 ) __lowercase = skip_first_batches(_UpperCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(_UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" Accelerator() __lowercase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(_UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
704
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter __lowercase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams __lowercase = 4 __lowercase = True # hparam_utils.py hparams __lowercase = 0.664_694 __lowercase = 0.207_951 __lowercase = 0.121_194 __lowercase = True __lowercase = True __lowercase = False __lowercase = 0.0_352_513 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowercase = 4 __lowercase = False # hparam_utils.py hparams __lowercase = 36.4_519 __lowercase = 0.903_421 __lowercase = 222.088 __lowercase = True __lowercase = True __lowercase = True __lowercase = 0.763_141 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "TABFACT": __lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE ) elif task == "MLM": __lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": __lowercase = TapasModel(config=SCREAMING_SNAKE_CASE ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> List[Any]: __lowercase = argparse.ArgumentParser(add_help=SCREAMING_SNAKE_CASE , allow_abbrev=SCREAMING_SNAKE_CASE ) # The main config parser __lowercase = config_command_parser(SCREAMING_SNAKE_CASE ) # The subparser to add commands to __lowercase = config_parser.add_subparsers(title='subcommands' , dest='subcommand' ) # Then add other parsers with the parent parser default_command_parser(SCREAMING_SNAKE_CASE , parents=[parent_parser] ) update_command_parser(SCREAMING_SNAKE_CASE , parents=[parent_parser] ) return config_parser def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: __lowercase = get_config_parser() __lowercase = config_parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , 'func' ): config_parser.print_help() exit(1 ) # Run args.func(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
705
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def __SCREAMING_SNAKE_CASE ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
688
0
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class A__ : lowerCAmelCase__ : CommonSchedulerState # setable values lowerCAmelCase__ : jnp.ndarray lowerCAmelCase__ : jnp.ndarray lowerCAmelCase__ : Optional[int] = None @classmethod def a__ ( cls : List[str] , _UpperCAmelCase : CommonSchedulerState , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray ) -> Optional[int]: """simple docstring""" return cls(common=_UpperCAmelCase , init_noise_sigma=_UpperCAmelCase , timesteps=_UpperCAmelCase ) @dataclass class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : DDPMSchedulerState class A__ ( lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = [e.name for e in FlaxKarrasDiffusionSchedulers] lowerCAmelCase__ : jnp.dtype @property def a__ ( self : List[str] ) -> str: """simple docstring""" return True @register_to_config def __init__( self : Dict , _UpperCAmelCase : int = 10_00 , _UpperCAmelCase : float = 0.0_001 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : str = "linear" , _UpperCAmelCase : Optional[jnp.ndarray] = None , _UpperCAmelCase : str = "fixed_small" , _UpperCAmelCase : bool = True , _UpperCAmelCase : str = "epsilon" , _UpperCAmelCase : jnp.dtype = jnp.floataa , ) -> Tuple: """simple docstring""" __lowercase = dtype def a__ ( self : Tuple , _UpperCAmelCase : Optional[CommonSchedulerState] = None ) -> DDPMSchedulerState: """simple docstring""" if common is None: __lowercase = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __lowercase = jnp.array(1.0 , dtype=self.dtype ) __lowercase = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=_UpperCAmelCase , init_noise_sigma=_UpperCAmelCase , timesteps=_UpperCAmelCase , ) def a__ ( self : List[str] , _UpperCAmelCase : DDPMSchedulerState , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : Optional[int] = None ) -> jnp.ndarray: """simple docstring""" return sample def a__ ( self : Optional[Any] , _UpperCAmelCase : DDPMSchedulerState , _UpperCAmelCase : int , _UpperCAmelCase : Tuple = () ) -> DDPMSchedulerState: """simple docstring""" __lowercase = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __lowercase = (jnp.arange(0 , _UpperCAmelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=_UpperCAmelCase , timesteps=_UpperCAmelCase , ) def a__ ( self : Tuple , _UpperCAmelCase : DDPMSchedulerState , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Dict=None ) -> Any: """simple docstring""" __lowercase = state.common.alphas_cumprod[t] __lowercase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __lowercase = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __lowercase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __lowercase = jnp.clip(_UpperCAmelCase , a_min=1e-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __lowercase = jnp.log(jnp.clip(_UpperCAmelCase , a_min=1e-2_0 ) ) elif variance_type == "fixed_large": __lowercase = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __lowercase = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __lowercase = variance __lowercase = state.common.betas[t] __lowercase = (predicted_variance + 1) / 2 __lowercase = frac * max_log + (1 - frac) * min_log return variance def a__ ( self : Tuple , _UpperCAmelCase : DDPMSchedulerState , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : Optional[jax.random.KeyArray] = None , _UpperCAmelCase : bool = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: """simple docstring""" __lowercase = timestep if key is None: __lowercase = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __lowercase , __lowercase = jnp.split(_UpperCAmelCase , sample.shape[1] , axis=1 ) else: __lowercase = None # 1. compute alphas, betas __lowercase = state.common.alphas_cumprod[t] __lowercase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __lowercase = 1 - alpha_prod_t __lowercase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __lowercase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __lowercase = model_output elif self.config.prediction_type == "v_prediction": __lowercase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ ' for the FlaxDDPMScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __lowercase = jnp.clip(_UpperCAmelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __lowercase = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __lowercase = jax.random.split(_UpperCAmelCase , num=1 ) __lowercase = jax.random.normal(_UpperCAmelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(_UpperCAmelCase , _UpperCAmelCase , predicted_variance=_UpperCAmelCase ) ** 0.5) * noise __lowercase = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __lowercase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=_UpperCAmelCase , state=_UpperCAmelCase ) def a__ ( self : List[Any] , _UpperCAmelCase : DDPMSchedulerState , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return add_noise_common(state.common , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Tuple , _UpperCAmelCase : DDPMSchedulerState , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return get_velocity_common(state.common , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def __len__( self : int ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
706
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """Hello, World!""" SCREAMING_SNAKE_CASE__ = """en_XX""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]: __lowercase = Path('data_bin' ) __lowercase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE ) __lowercase = xmod.model.encoder.sentence_encoder __lowercase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , SCREAMING_SNAKE_CASE ) __lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings __lowercase = xmod_sent_encoder.embed_tokens.weight __lowercase = xmod_sent_encoder.embed_positions.weight __lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowercase = xmod_sent_encoder.layernorm_embedding.weight __lowercase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowercase = model.roberta.encoder.layer[i] __lowercase = xmod_sent_encoder.layers[i] # self attention __lowercase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __lowercase = xmod_layer.self_attn.q_proj.weight __lowercase = xmod_layer.self_attn.q_proj.bias __lowercase = xmod_layer.self_attn.k_proj.weight __lowercase = xmod_layer.self_attn.k_proj.bias __lowercase = xmod_layer.self_attn.v_proj.weight __lowercase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowercase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __lowercase = xmod_layer.self_attn.out_proj.weight __lowercase = xmod_layer.self_attn.out_proj.bias __lowercase = xmod_layer.self_attn_layer_norm.weight __lowercase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowercase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias # output __lowercase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias __lowercase = xmod_layer.final_layer_norm.weight __lowercase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowercase = xmod_layer.adapter_layer_norm.weight __lowercase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowercase = bert_output.adapter_modules[lang_code] __lowercase = xmod_layer.adapter_modules[lang_code] __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowercase = xmod_sent_encoder.layer_norm.weight __lowercase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowercase = xmod.model.classification_heads['mnli'].dense.weight __lowercase = xmod.model.classification_heads['mnli'].dense.bias __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight __lowercase = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowercase = xmod.model.encoder.lm_head.dense.weight __lowercase = xmod.model.encoder.lm_head.dense.bias __lowercase = xmod.model.encoder.lm_head.layer_norm.weight __lowercase = xmod.model.encoder.lm_head.layer_norm.bias __lowercase = xmod.model.encoder.lm_head.weight __lowercase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE ) __lowercase = model(SCREAMING_SNAKE_CASE )[0] if classification_head: __lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) ) else: __lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
688
0
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class A__ ( unittest.TestCase ): @slow def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) __lowercase = AutoTokenizer.from_pretrained('xlm-roberta-base' ) __lowercase = 'The dog is cute and lives in the garden house' __lowercase = jnp.array([tokenizer.encode(_UpperCAmelCase )] ) __lowercase = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim __lowercase = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) __lowercase = model(_UpperCAmelCase )['last_hidden_state'] self.assertEqual(output.shape , _UpperCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , _UpperCAmelCase , atol=1e-3 ) )
707
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float: __lowercase = u for i in range(1 , SCREAMING_SNAKE_CASE ): __lowercase = temp * (u - i) return temp def __SCREAMING_SNAKE_CASE ( ) -> None: __lowercase = int(input('enter the numbers of values: ' ) ) __lowercase = [] for _ in range(SCREAMING_SNAKE_CASE ): y.append([] ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): y[i].append(SCREAMING_SNAKE_CASE ) __lowercase = 0 print('enter the values of parameters in a list: ' ) __lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(SCREAMING_SNAKE_CASE ): __lowercase = float(input() ) __lowercase = int(input('enter the value to interpolate: ' ) ) __lowercase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(n - i ): __lowercase = y[j + 1][i - 1] - y[j][i - 1] __lowercase = y[0][0] for i in range(1 , SCREAMING_SNAKE_CASE ): summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
688
0
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: __lowercase = ArgumentParser( 'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=SCREAMING_SNAKE_CASE ) __lowercase = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(SCREAMING_SNAKE_CASE ) EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE ) TestCommand.register_subcommand(SCREAMING_SNAKE_CASE ) RunBeamCommand.register_subcommand(SCREAMING_SNAKE_CASE ) DummyDataCommand.register_subcommand(SCREAMING_SNAKE_CASE ) # Parse args __lowercase , __lowercase = parser.parse_known_args() if not hasattr(SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) __lowercase = parse_unknown_args(SCREAMING_SNAKE_CASE ) # Run __lowercase = args.func(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
708
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = F"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: __lowercase = F"""Input value of [number={number}] must be > 0""" raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
688
0
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float: if digit_amount > 0: return round(number - int(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) return number - int(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
709
from argparse import ArgumentParser from .env import EnvironmentCommand def __SCREAMING_SNAKE_CASE ( ) -> List[str]: __lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) __lowercase = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE ) # Let's go __lowercase = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
688
0
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] SCREAMING_SNAKE_CASE__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right SCREAMING_SNAKE_CASE__ = tuple[int, int] class A__ : def __init__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Node | None , ) -> None: """simple docstring""" __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def a__ ( self : List[Any] ) -> float: """simple docstring""" __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_UpperCAmelCase ) + abs(_UpperCAmelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : List[Any] , _UpperCAmelCase : Node ) -> bool: """simple docstring""" return self.f_cost < other.f_cost class A__ : def __init__( self : Tuple , _UpperCAmelCase : TPosition , _UpperCAmelCase : TPosition ) -> Optional[Any]: """simple docstring""" __lowercase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _UpperCAmelCase ) __lowercase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , _UpperCAmelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def a__ ( self : Tuple ) -> list[TPosition]: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_UpperCAmelCase ) self.closed_nodes.append(_UpperCAmelCase ) __lowercase = self.get_successors(_UpperCAmelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_UpperCAmelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_UpperCAmelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_UpperCAmelCase ) else: self.open_nodes.append(_UpperCAmelCase ) return [self.start.pos] def a__ ( self : List[str] , _UpperCAmelCase : Node ) -> list[Node]: """simple docstring""" __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _UpperCAmelCase , _UpperCAmelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _UpperCAmelCase , ) ) return successors def a__ ( self : Optional[int] , _UpperCAmelCase : Node | None ) -> list[TPosition]: """simple docstring""" __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class A__ : def __init__( self : List[str] , _UpperCAmelCase : TPosition , _UpperCAmelCase : TPosition ) -> None: """simple docstring""" __lowercase = AStar(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = AStar(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = False def a__ ( self : List[Any] ) -> list[TPosition]: """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _UpperCAmelCase , _UpperCAmelCase ) self.fwd_astar.closed_nodes.append(_UpperCAmelCase ) self.bwd_astar.closed_nodes.append(_UpperCAmelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(_UpperCAmelCase ), self.bwd_astar: self.bwd_astar.get_successors(_UpperCAmelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_UpperCAmelCase ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(_UpperCAmelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_UpperCAmelCase ) else: astar.open_nodes.append(_UpperCAmelCase ) return [self.fwd_astar.start.pos] def a__ ( self : Dict , _UpperCAmelCase : Node , _UpperCAmelCase : Node ) -> list[TPosition]: """simple docstring""" __lowercase = self.fwd_astar.retrace_path(_UpperCAmelCase ) __lowercase = self.bwd_astar.retrace_path(_UpperCAmelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] SCREAMING_SNAKE_CASE__ = (0, 0) SCREAMING_SNAKE_CASE__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = AStar(init, goal) SCREAMING_SNAKE_CASE__ = a_star.search() SCREAMING_SNAKE_CASE__ = time.time() - start_time print(F'''AStar execution time = {end_time:f} seconds''') SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = BidirectionalAStar(init, goal) SCREAMING_SNAKE_CASE__ = time.time() - bd_start_time print(F'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
710
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ProphetNetTokenizer lowerCAmelCase__ : str = False def a__ ( self : str ) -> Tuple: """simple docstring""" super().setUp() __lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = 'UNwant\u00E9d,running' __lowercase = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Any: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : int ) -> List[str]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowercase = {} for i, token in enumerate(_UpperCAmelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] __lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def a__ ( self : int ) -> Dict: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : Any ) -> List[str]: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
688
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "blip_2_vision_model" def __init__( self : int , _UpperCAmelCase : Dict=14_08 , _UpperCAmelCase : Union[str, Any]=61_44 , _UpperCAmelCase : List[Any]=39 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=2_24 , _UpperCAmelCase : int=14 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : str=0.00_001 , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : Any=1e-1_0 , _UpperCAmelCase : Dict=True , **_UpperCAmelCase : int , ) -> Optional[int]: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = hidden_size __lowercase = intermediate_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = patch_size __lowercase = image_size __lowercase = initializer_range __lowercase = attention_dropout __lowercase = layer_norm_eps __lowercase = hidden_act __lowercase = qkv_bias @classmethod def a__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) __lowercase , __lowercase = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": __lowercase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = "blip_2_qformer" def __init__( self : Dict , _UpperCAmelCase : Optional[int]=3_05_22 , _UpperCAmelCase : Optional[Any]=7_68 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : int=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Any=5_12 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-1_2 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Any=2 , _UpperCAmelCase : str=14_08 , **_UpperCAmelCase : Dict , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = cross_attention_frequency __lowercase = encoder_hidden_size @classmethod def a__ ( cls : Optional[int] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Any ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) __lowercase , __lowercase = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": __lowercase = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Any = "blip-2" lowerCAmelCase__ : int = True def __init__( self : int , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Optional[int]=32 , **_UpperCAmelCase : Tuple ) -> List[str]: """simple docstring""" super().__init__(**_UpperCAmelCase ) if vision_config is None: __lowercase = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: __lowercase = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: __lowercase = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __lowercase = BlipaVisionConfig(**_UpperCAmelCase ) __lowercase = BlipaQFormerConfig(**_UpperCAmelCase ) __lowercase = text_config['model_type'] if 'model_type' in text_config else 'opt' __lowercase = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase ) __lowercase = self.text_config.tie_word_embeddings __lowercase = self.text_config.is_encoder_decoder __lowercase = num_query_tokens __lowercase = self.vision_config.hidden_size __lowercase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __lowercase = 1.0 __lowercase = 0.02 @classmethod def a__ ( cls : Union[str, Any] , _UpperCAmelCase : BlipaVisionConfig , _UpperCAmelCase : BlipaQFormerConfig , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : List[Any] , ) -> str: """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , ) def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.vision_config.to_dict() __lowercase = self.qformer_config.to_dict() __lowercase = self.text_config.to_dict() __lowercase = self.__class__.model_type return output
711
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } SCREAMING_SNAKE_CASE__ = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } SCREAMING_SNAKE_CASE__ = { """jukebox""": 512, } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase__ : Any = ["input_ids", "attention_mask"] def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]: """simple docstring""" __lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token super().__init__( unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = version __lowercase = max_n_lyric_tokens __lowercase = n_genres with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) __lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase = oov.replace(R'\-\'' , R'\-+\'' ) __lowercase = regex.compile(_UpperCAmelCase ) __lowercase = {v: k for k, v in self.artists_encoder.items()} __lowercase = {v: k for k, v in self.genres_encoder.items()} __lowercase = {v: k for k, v in self.lyrics_encoder.items()} @property def a__ ( self : List[Any] ) -> Any: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(_UpperCAmelCase ) ): __lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]] __lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" return list(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = self._tokenize(_UpperCAmelCase ) return artist, genre, lyrics def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase = artists[idx].lower() __lowercase = [genres[idx].lower()] else: __lowercase = self._normalize(artists[idx] ) + '.v2' __lowercase = [ self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) __lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' __lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )} __lowercase = 0 __lowercase = len(_UpperCAmelCase ) + 1 __lowercase = self.vocab __lowercase = {v: k for k, v in self.vocab.items()} __lowercase = '' else: __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) __lowercase = self._run_strip_accents(_UpperCAmelCase ) __lowercase = lyrics.replace('\\' , '\n' ) __lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], [] return artists, genres, lyrics def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase ) __lowercase = [] for char in text: __lowercase = unicodedata.category(_UpperCAmelCase ) if cat == "Mn": continue output.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = ( [chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) __lowercase = frozenset(_UpperCAmelCase ) __lowercase = re.compile(R'_+' ) __lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] ) __lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' ) return text def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" return " ".join(_UpperCAmelCase ) def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = TensorType(_UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf __lowercase = tf.constant __lowercase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch __lowercase = torch.tensor __lowercase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 __lowercase = jnp.array __lowercase = _is_jax else: __lowercase = np.asarray __lowercase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase = [inputs] if not is_tensor(_UpperCAmelCase ): __lowercase = as_tensor(_UpperCAmelCase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding: """simple docstring""" __lowercase = [0, 0, 0] __lowercase = [artist] * len(self.version ) __lowercase = [genres] * len(self.version ) __lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = [-INFINITY] * len(full_tokens[-1] ) __lowercase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.artists_decoder.get(_UpperCAmelCase ) __lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index] __lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
688
0
import os from collections import deque import torch from torch.utils.data import Dataset class A__ ( lowerCAmelCase__ ): def __init__( self : List[str] , _UpperCAmelCase : str="" , _UpperCAmelCase : int="train" ) -> Tuple: """simple docstring""" assert os.path.isdir(_UpperCAmelCase ) __lowercase = [] __lowercase = os.listdir(_UpperCAmelCase ) for story_filename in story_filenames_list: if "summary" in story_filename: continue __lowercase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isfile(_UpperCAmelCase ): continue self.documents.append(_UpperCAmelCase ) def __len__( self : List[str] ) -> List[str]: """simple docstring""" return len(self.documents ) def __getitem__( self : int , _UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" __lowercase = self.documents[idx] __lowercase = document_path.split('/' )[-1] with open(_UpperCAmelCase , encoding='utf-8' ) as source: __lowercase = source.read() __lowercase , __lowercase = process_story(_UpperCAmelCase ) return document_name, story_lines, summary_lines def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> Dict: __lowercase = list(filter(lambda SCREAMING_SNAKE_CASE : len(SCREAMING_SNAKE_CASE ) != 0 , [line.strip() for line in raw_story.split('\n' )] ) ) # for some unknown reason some lines miss a period, add it __lowercase = [_add_missing_period(SCREAMING_SNAKE_CASE ) for line in nonempty_lines] # gather article lines __lowercase = [] __lowercase = deque(SCREAMING_SNAKE_CASE ) while True: try: __lowercase = lines.popleft() if element.startswith('@highlight' ): break story_lines.append(SCREAMING_SNAKE_CASE ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines __lowercase = list(filter(lambda SCREAMING_SNAKE_CASE : not t.startswith('@highlight' ) , SCREAMING_SNAKE_CASE ) ) return story_lines, summary_lines def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> str: __lowercase = ['.', '!', '?', '...', '\'', '`', '"', '\u2019', '\u2019', ')'] if line.startswith('@highlight' ): return line if line[-1] in END_TOKENS: return line return line + "." def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: if len(SCREAMING_SNAKE_CASE ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(SCREAMING_SNAKE_CASE )) ) return sequence def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ) -> List[Any]: __lowercase = torch.ones_like(SCREAMING_SNAKE_CASE ) __lowercase = sequence == pad_token_id __lowercase = 0 return mask def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: __lowercase = [tokenizer.encode(SCREAMING_SNAKE_CASE ) for line in story_lines] __lowercase = [token for sentence in story_lines_token_ids for token in sentence] __lowercase = [tokenizer.encode(SCREAMING_SNAKE_CASE ) for line in summary_lines] __lowercase = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]: __lowercase = [] for sequence in batch: __lowercase = -1 __lowercase = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(SCREAMING_SNAKE_CASE ) return torch.tensor(SCREAMING_SNAKE_CASE )
712
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_hidden_groups __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def a__ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" __lowercase = AlbertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple: """simple docstring""" __lowercase = AlbertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = AlbertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" __lowercase = self.num_choices __lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ : Dict = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Optional[Any] = True def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple: """simple docstring""" __lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def a__ ( self : str ) -> str: """simple docstring""" __lowercase = AlbertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def a__ ( self : int ) -> Any: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AlbertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class A__ ( unittest.TestCase ): @slow def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = AlbertModel.from_pretrained('albert-base-v2' ) __lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __lowercase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
688
0
from __future__ import annotations from math import ceil, floor, sqrt def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 2000000 ) -> int: __lowercase = [0] __lowercase = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __lowercase = 0 # the area corresponding to the grid that gives the product closest to target __lowercase = 0 # an estimate of b, using the quadratic formula __lowercase = 42 # the largest integer less than b_estimate __lowercase = 42 # the largest integer less than b_estimate __lowercase = 42 # the triangle number corresponding to b_floor __lowercase = 42 # the triangle number corresponding to b_ceil __lowercase = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __lowercase = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __lowercase = floor(SCREAMING_SNAKE_CASE ) __lowercase = ceil(SCREAMING_SNAKE_CASE ) __lowercase = triangle_numbers[b_floor] __lowercase = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __lowercase = triangle_b_first_guess * triangle_a __lowercase = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __lowercase = triangle_b_second_guess * triangle_a __lowercase = idx_a * b_ceil return area if __name__ == "__main__": print(F'''{solution() = }''')
713
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A__ ( lowerCAmelCase__ ): def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]: """simple docstring""" __lowercase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['token'] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __lowercase = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) __lowercase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [files] self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['unk']['id'] __lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
688
0
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name SCREAMING_SNAKE_CASE__ = """ Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\") >>> pipe.to(\"cuda\") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save(\"cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any=8 ) -> Optional[int]: __lowercase = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 __lowercase = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class A__ ( lowerCAmelCase__ ): def __init__( self : List[str] , _UpperCAmelCase : MultilingualCLIP , _UpperCAmelCase : XLMRobertaTokenizer , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , _UpperCAmelCase : VQModel , ) -> Union[str, Any]: """simple docstring""" super().__init__() self.register_modules( text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , movq=_UpperCAmelCase , ) __lowercase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" if latents is None: __lowercase = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) __lowercase = latents.to(_UpperCAmelCase ) __lowercase = latents * scheduler.init_noise_sigma return latents def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" __lowercase = len(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else 1 # get prompt text embeddings __lowercase = self.tokenizer( _UpperCAmelCase , padding='max_length' , truncation=_UpperCAmelCase , max_length=77 , return_attention_mask=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors='pt' , ) __lowercase = text_inputs.input_ids __lowercase = self.tokenizer(_UpperCAmelCase , padding='longest' , return_tensors='pt' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __lowercase = text_input_ids.to(_UpperCAmelCase ) __lowercase = text_inputs.attention_mask.to(_UpperCAmelCase ) __lowercase , __lowercase = self.text_encoder( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase ) __lowercase = prompt_embeds.repeat_interleave(_UpperCAmelCase , dim=0 ) __lowercase = text_encoder_hidden_states.repeat_interleave(_UpperCAmelCase , dim=0 ) __lowercase = text_mask.repeat_interleave(_UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: __lowercase = 42 if negative_prompt is None: __lowercase = [''] * batch_size elif type(_UpperCAmelCase ) is not type(_UpperCAmelCase ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(_UpperCAmelCase )} !=""" f""" {type(_UpperCAmelCase )}.""" ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [negative_prompt] elif batch_size != len(_UpperCAmelCase ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(_UpperCAmelCase )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ' the batch size of `prompt`.' ) else: __lowercase = negative_prompt __lowercase = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=77 , truncation=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors='pt' , ) __lowercase = uncond_input.input_ids.to(_UpperCAmelCase ) __lowercase = uncond_input.attention_mask.to(_UpperCAmelCase ) __lowercase , __lowercase = self.text_encoder( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowercase = negative_prompt_embeds.shape[1] __lowercase = negative_prompt_embeds.repeat(1 , _UpperCAmelCase ) __lowercase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _UpperCAmelCase ) __lowercase = uncond_text_encoder_hidden_states.shape[1] __lowercase = uncond_text_encoder_hidden_states.repeat(1 , _UpperCAmelCase , 1 ) __lowercase = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , _UpperCAmelCase , -1 ) __lowercase = uncond_text_mask.repeat_interleave(_UpperCAmelCase , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([negative_prompt_embeds, prompt_embeds] ) __lowercase = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) __lowercase = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def a__ ( self : Optional[Any] , _UpperCAmelCase : Optional[int]=0 ) -> List[str]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __lowercase = torch.device(f"""cuda:{gpu_id}""" ) __lowercase = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : List[str]=0 ) -> Optional[int]: """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) __lowercase = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_UpperCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowercase = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: __lowercase , __lowercase = cpu_offload_with_hook(_UpperCAmelCase , _UpperCAmelCase , prev_module_hook=_UpperCAmelCase ) if self.safety_checker is not None: __lowercase , __lowercase = cpu_offload_with_hook(self.safety_checker , _UpperCAmelCase , prev_module_hook=_UpperCAmelCase ) # We'll offload the last model manually. __lowercase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def a__ ( self : Any ) -> Any: """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_UpperCAmelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_UpperCAmelCase ) def __call__( self : Optional[int] , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCAmelCase : Optional[Union[str, List[str]]] = None , _UpperCAmelCase : int = 5_12 , _UpperCAmelCase : int = 5_12 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 4.0 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ) -> str: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = 1 elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = len(_UpperCAmelCase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(_UpperCAmelCase )}""" ) __lowercase = self._execution_device __lowercase = batch_size * num_images_per_prompt __lowercase = guidance_scale > 1.0 __lowercase , __lowercase , __lowercase = self._encode_prompt( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = torch.cat(_UpperCAmelCase , dim=0 ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = torch.cat(_UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: __lowercase = image_embeds.repeat_interleave(_UpperCAmelCase , dim=0 ) __lowercase = negative_image_embeds.repeat_interleave(_UpperCAmelCase , dim=0 ) __lowercase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=_UpperCAmelCase ) self.scheduler.set_timesteps(_UpperCAmelCase , device=_UpperCAmelCase ) __lowercase = self.scheduler.timesteps __lowercase = self.unet.config.in_channels __lowercase , __lowercase = get_new_h_w(_UpperCAmelCase , _UpperCAmelCase , self.movq_scale_factor ) # create initial latent __lowercase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} __lowercase = self.unet( sample=_UpperCAmelCase , timestep=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , added_cond_kwargs=_UpperCAmelCase , return_dict=_UpperCAmelCase , )[0] if do_classifier_free_guidance: __lowercase , __lowercase = noise_pred.split(latents.shape[1] , dim=1 ) __lowercase , __lowercase = noise_pred.chunk(2 ) __lowercase , __lowercase = variance_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowercase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowercase , __lowercase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase , ).prev_sample # post-processing __lowercase = self.movq.decode(_UpperCAmelCase , force_not_quantize=_UpperCAmelCase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: __lowercase = image * 0.5 + 0.5 __lowercase = image.clamp(0 , 1 ) __lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
714
import string from math import logaa def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int: __lowercase = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) __lowercase = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]: __lowercase = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' __lowercase = corpus_without_punctuation.split('\n' ) __lowercase = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE )) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float: if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float: return round(tf * idf , 3 )
688
0
import numpy as np SCREAMING_SNAKE_CASE__ = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class A__ : def __init__( self : Dict ) -> None: """simple docstring""" __lowercase = np.array(_UpperCAmelCase ) def a__ ( self : List[str] , _UpperCAmelCase : str ) -> np.ndarray: """simple docstring""" __lowercase , __lowercase = np.where(letter == self.SQUARE ) __lowercase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def a__ ( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: """simple docstring""" __lowercase = self.SQUARE[indexa - 1, indexa - 1] return letter def a__ ( self : List[Any] , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = message.lower() __lowercase = message.replace(' ' , '' ) __lowercase = message.replace('j' , 'i' ) __lowercase = np.empty((2, len(_UpperCAmelCase )) ) for letter_index in range(len(_UpperCAmelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape(2 * len(_UpperCAmelCase ) ) __lowercase = '' for numbers_index in range(len(_UpperCAmelCase ) ): __lowercase = int(second_step[numbers_index * 2] ) __lowercase = int(second_step[(numbers_index * 2) + 1] ) __lowercase = self.numbers_to_letter(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = encoded_message + letter return encoded_message def a__ ( self : Any , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = message.lower() message.replace(' ' , '' ) __lowercase = np.empty(2 * len(_UpperCAmelCase ) ) for letter_index in range(len(_UpperCAmelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape((2, len(_UpperCAmelCase )) ) __lowercase = '' for numbers_index in range(len(_UpperCAmelCase ) ): __lowercase = int(second_step[0, numbers_index] ) __lowercase = int(second_step[1, numbers_index] ) __lowercase = self.numbers_to_letter(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = decoded_message + letter return decoded_message
715
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # TODO: upload to AWS SCREAMING_SNAKE_CASE__ = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "retribert" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = share_encoders __lowercase = projection_dim
688
0
import json import sys def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str: with open(SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: __lowercase = json.load(SCREAMING_SNAKE_CASE ) __lowercase = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(SCREAMING_SNAKE_CASE ): __lowercase = results[benchmark_name] __lowercase = benchmark_name.split('/' )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) __lowercase = '| metric |' __lowercase = '|--------|' __lowercase = '| new / old (diff) |' for metric_name in sorted(SCREAMING_SNAKE_CASE ): __lowercase = benchmark_res[metric_name] __lowercase = metric_vals['new'] __lowercase = metric_vals.get('old' , SCREAMING_SNAKE_CASE ) __lowercase = metric_vals.get('diff' , SCREAMING_SNAKE_CASE ) __lowercase = F""" {new_val:f}""" if isinstance(SCREAMING_SNAKE_CASE , (int, float) ) else 'None' if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(SCREAMING_SNAKE_CASE , (int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(SCREAMING_SNAKE_CASE , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = sys.argv[1] SCREAMING_SNAKE_CASE__ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
716
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
0
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class A__ ( unittest.TestCase , lowerCAmelCase__ ): def a__ ( self : Tuple ) -> int: """simple docstring""" __lowercase = load_tool('text-to-speech' ) self.tool.setup() def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) __lowercase = self.tool('hey' ) __lowercase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) ) def a__ ( self : Tuple ) -> Any: """simple docstring""" torch.manual_seed(0 ) __lowercase = self.tool('hey' ) __lowercase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
717
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"] lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor" lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __lowercase = kwargs.pop('feature_extractor' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor __lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowercase = features['words'] __lowercase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values __lowercase = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowercase = images return encoded_inputs def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" ) return images_with_overflow def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def a__ ( self : str ) -> Dict: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
688
0
'''simple docstring''' import inspect import unittest class A__ ( unittest.TestCase ): def a__ ( self : str ) -> Tuple: """simple docstring""" try: import diffusers # noqa: F401 except ImportError: assert False def a__ ( self : int ) -> Tuple: """simple docstring""" import diffusers from diffusers.dependency_versions_table import deps __lowercase = inspect.getmembers(_UpperCAmelCase , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": __lowercase = 'k-diffusion' elif backend == "invisible_watermark": __lowercase = 'invisible-watermark' assert backend in deps, f"""{backend} is not in the deps table!"""
718
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ : lowerCAmelCase__ : Optional[int] = "dummy_data" lowerCAmelCase__ : str = "datasets" lowerCAmelCase__ : Dict = False def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]: """simple docstring""" __lowercase = 0 __lowercase = dataset_name __lowercase = cache_dir __lowercase = use_local_dummy_data __lowercase = config # download_callbacks take a single url as input __lowercase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowercase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowercase = str(_UpperCAmelCase ) # to be downloaded __lowercase = None __lowercase = None @property def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" if self._dummy_file is None: __lowercase = self.download_dummy_data() return self._dummy_file @property def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowercase = cached_path( _UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase ) return os.path.join(_UpperCAmelCase , self.dummy_file_name ) @property def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" if self._bucket_url is None: __lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowercase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowercase = self.dummy_file_name # special case when data_url is a dict if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase ) elif isinstance(_UpperCAmelCase , (list, tuple) ): return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase ) else: return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" return path def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" return {} def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for single_url in single_urls: download_callback(_UpperCAmelCase ) else: __lowercase = single_urls download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls] else: __lowercase = single_urls __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) __lowercase = value # make sure that values are unique if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowercase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url ) __lowercase = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowercase = [data_url[0]] * len(_UpperCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(_UpperCAmelCase ) return dummy_data_list def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def a__ ( self : List[str] ) -> Any: """simple docstring""" pass def a__ ( self : int ) -> str: """simple docstring""" pass def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" def _iter_archive_members(_UpperCAmelCase : Optional[Any] ): # this preserves the order of the members inside the ZIP archive __lowercase = Path(self.dummy_file ).parent __lowercase = path.relative_to(_UpperCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowercase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_UpperCAmelCase ) __lowercase = Path(_UpperCAmelCase ) __lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [paths] for path in paths: if os.path.isfile(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(_UpperCAmelCase ): if filename.startswith(('.', '__') ): continue yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
688
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """Hello, World!""" SCREAMING_SNAKE_CASE__ = """en_XX""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]: __lowercase = Path('data_bin' ) __lowercase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE ) __lowercase = xmod.model.encoder.sentence_encoder __lowercase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , SCREAMING_SNAKE_CASE ) __lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings __lowercase = xmod_sent_encoder.embed_tokens.weight __lowercase = xmod_sent_encoder.embed_positions.weight __lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowercase = xmod_sent_encoder.layernorm_embedding.weight __lowercase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowercase = model.roberta.encoder.layer[i] __lowercase = xmod_sent_encoder.layers[i] # self attention __lowercase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __lowercase = xmod_layer.self_attn.q_proj.weight __lowercase = xmod_layer.self_attn.q_proj.bias __lowercase = xmod_layer.self_attn.k_proj.weight __lowercase = xmod_layer.self_attn.k_proj.bias __lowercase = xmod_layer.self_attn.v_proj.weight __lowercase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowercase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __lowercase = xmod_layer.self_attn.out_proj.weight __lowercase = xmod_layer.self_attn.out_proj.bias __lowercase = xmod_layer.self_attn_layer_norm.weight __lowercase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowercase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias # output __lowercase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias __lowercase = xmod_layer.final_layer_norm.weight __lowercase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowercase = xmod_layer.adapter_layer_norm.weight __lowercase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowercase = bert_output.adapter_modules[lang_code] __lowercase = xmod_layer.adapter_modules[lang_code] __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowercase = xmod_sent_encoder.layer_norm.weight __lowercase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowercase = xmod.model.classification_heads['mnli'].dense.weight __lowercase = xmod.model.classification_heads['mnli'].dense.bias __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight __lowercase = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowercase = xmod.model.encoder.lm_head.dense.weight __lowercase = xmod.model.encoder.lm_head.dense.bias __lowercase = xmod.model.encoder.lm_head.layer_norm.weight __lowercase = xmod.model.encoder.lm_head.layer_norm.bias __lowercase = xmod.model.encoder.lm_head.weight __lowercase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE ) __lowercase = model(SCREAMING_SNAKE_CASE )[0] if classification_head: __lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) ) else: __lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
719
import math import sys import cva import numpy as np def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __lowercase = math.sqrt(SCREAMING_SNAKE_CASE ) __lowercase = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray: __lowercase = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __lowercase = np.zeros((kernel_size, kernel_size) ) for i in range(0 , SCREAMING_SNAKE_CASE ): for j in range(0 , SCREAMING_SNAKE_CASE ): __lowercase = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray: __lowercase = np.zeros(img.shape ) __lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2] __lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE ) __lowercase = val return imga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple: __lowercase = args[1] if args[1:] else '../image_data/lena.jpg' __lowercase = float(args[2] ) if args[2:] else 1.0 __lowercase = float(args[3] ) if args[3:] else 1.0 if args[4:]: __lowercase = int(args[4] ) __lowercase = kernel_size + abs(kernel_size % 2 - 1 ) else: __lowercase = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv) SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0) cva.imshow("""input image""", img) SCREAMING_SNAKE_CASE__ = img / 255 SCREAMING_SNAKE_CASE__ = out.astype("""float32""") SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) SCREAMING_SNAKE_CASE__ = out * 255 SCREAMING_SNAKE_CASE__ = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
688
0
import unittest from knapsack import knapsack as k class A__ ( unittest.TestCase ): def a__ ( self : Optional[int] ) -> int: """simple docstring""" __lowercase = 0 __lowercase = [0] __lowercase = [0] __lowercase = len(_UpperCAmelCase ) self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 0 ) __lowercase = [60] __lowercase = [10] __lowercase = len(_UpperCAmelCase ) self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 0 ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = 3 __lowercase = [1, 2, 3] __lowercase = [3, 2, 1] __lowercase = len(_UpperCAmelCase ) self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 5 ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase = 50 __lowercase = [60, 1_00, 1_20] __lowercase = [10, 20, 30] __lowercase = len(_UpperCAmelCase ) self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 2_20 ) if __name__ == "__main__": unittest.main()
720
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A__ ( unittest.TestCase ): def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict: """simple docstring""" __lowercase = size if size is not None else {'height': 18, 'width': 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = apply_ocr def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def a__ ( self : int ) -> Tuple: """simple docstring""" pass def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _UpperCAmelCase ) self.assertIsInstance(encoding.boxes , _UpperCAmelCase ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = LayoutLMvaImageProcessor() from datasets import load_dataset __lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __lowercase = Image.open(ds[0]['file'] ).convert('RGB' ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _UpperCAmelCase ) self.assertListEqual(encoding.boxes , _UpperCAmelCase ) # with apply_OCR = False __lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
688
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") SCREAMING_SNAKE_CASE__ = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) SCREAMING_SNAKE_CASE__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A__ : lowerCAmelCase__ : Optional[str] = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) lowerCAmelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The column name of the images in the files. If not set, will try to use 'image' or 'img'."} , ) lowerCAmelCase__ : Optional[str] = field(default=lowerCAmelCase__ , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase__ : Optional[str] = field(default=lowerCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase__ : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase__ : int = field(default=32 , metadata={"help": "The size of the square patches to use for masking."} ) lowerCAmelCase__ : float = field( default=0.6 , metadata={"help": "Percentage of patches to mask."} , ) lowerCAmelCase__ : Optional[int] = field( default=lowerCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase__ : Optional[int] = field( default=lowerCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase = {} if self.train_dir is not None: __lowercase = self.train_dir if self.validation_dir is not None: __lowercase = self.validation_dir __lowercase = data_files if data_files else None @dataclass class A__ : lowerCAmelCase__ : str = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a " "checkpoint identifier on the hub. " "Don't set if you want to train a model from scratch." ) } , ) lowerCAmelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) lowerCAmelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) lowerCAmelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"} , ) lowerCAmelCase__ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase__ : str = field(default=lowerCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase__ : bool = field( default=lowerCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase__ : Optional[int] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The size (resolution) of each image. If not specified, will use `image_size` of the configuration." ) } , ) lowerCAmelCase__ : Optional[int] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration." ) } , ) lowerCAmelCase__ : Optional[int] = field( default=lowerCAmelCase__ , metadata={"help": "Stride to use for the encoder."} , ) class A__ : def __init__( self : Tuple , _UpperCAmelCase : Optional[int]=1_92 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : Optional[int]=0.6 ) -> Union[str, Any]: """simple docstring""" __lowercase = input_size __lowercase = mask_patch_size __lowercase = model_patch_size __lowercase = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('Input size must be divisible by mask patch size' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('Mask patch size must be divisible by model patch size' ) __lowercase = self.input_size // self.mask_patch_size __lowercase = self.mask_patch_size // self.model_patch_size __lowercase = self.rand_size**2 __lowercase = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = np.random.permutation(self.token_count )[: self.mask_count] __lowercase = np.zeros(self.token_count , dtype=_UpperCAmelCase ) __lowercase = 1 __lowercase = mask.reshape((self.rand_size, self.rand_size) ) __lowercase = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: __lowercase = torch.stack([example['pixel_values'] for example in examples] ) __lowercase = torch.stack([example['mask'] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def __SCREAMING_SNAKE_CASE ( ) -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase , __lowercase , __lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mim' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowercase = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. __lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __lowercase = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , SCREAMING_SNAKE_CASE ) and data_args.train_val_split > 0.0: __lowercase = ds['train'].train_test_split(data_args.train_val_split ) __lowercase = split['train'] __lowercase = split['test'] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.config_name_or_path , **SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(SCREAMING_SNAKE_CASE , 'decoder_type' ): __lowercase = 'simmim' # adapt config __lowercase = model_args.image_size if model_args.image_size is not None else config.image_size __lowercase = model_args.patch_size if model_args.patch_size is not None else config.patch_size __lowercase = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { 'image_size': model_args.image_size, 'patch_size': model_args.patch_size, 'encoder_stride': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: __lowercase = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: __lowercase = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE ) else: __lowercase = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } __lowercase = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: __lowercase = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) __lowercase = AutoModelForMaskedImageModeling.from_config(SCREAMING_SNAKE_CASE ) if training_args.do_train: __lowercase = ds['train'].column_names else: __lowercase = ds['validation'].column_names if data_args.image_column_name is not None: __lowercase = data_args.image_column_name elif "image" in column_names: __lowercase = 'image' elif "img" in column_names: __lowercase = 'img' else: __lowercase = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py __lowercase = Compose( [ Lambda(lambda SCREAMING_SNAKE_CASE : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator __lowercase = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(SCREAMING_SNAKE_CASE : int ): __lowercase = [transforms(SCREAMING_SNAKE_CASE ) for image in examples[image_column_name]] __lowercase = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: __lowercase = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(SCREAMING_SNAKE_CASE ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: __lowercase = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(SCREAMING_SNAKE_CASE ) # Initialize our trainer __lowercase = Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: __lowercase = None if training_args.resume_from_checkpoint is not None: __lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowercase = last_checkpoint __lowercase = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowercase = trainer.evaluate() trainer.log_metrics('eval' , SCREAMING_SNAKE_CASE ) trainer.save_metrics('eval' , SCREAMING_SNAKE_CASE ) # Write model card and (optionally) push to hub __lowercase = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'masked-image-modeling', 'dataset': data_args.dataset_name, 'tags': ['masked-image-modeling'], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
721
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "umt5" lowerCAmelCase__ : Tuple = ["past_key_values"] def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__( is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = vocab_size __lowercase = d_model __lowercase = d_kv __lowercase = d_ff __lowercase = num_layers __lowercase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase = num_heads __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = initializer_factor __lowercase = feed_forward_proj __lowercase = use_cache __lowercase = self.feed_forward_proj.split('-' ) __lowercase = act_info[-1] __lowercase = act_info[0] == 'gated' if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __lowercase = 'gelu_new' @property def a__ ( self : Tuple ) -> Any: """simple docstring""" return self.d_model @property def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" return self.num_heads @property def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" return self.num_layers class A__ ( lowerCAmelCase__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __lowercase = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __lowercase = 'past_encoder_sequence + sequence' __lowercase = {0: 'batch'} __lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase = {0: 'batch', 1: 'decoder_sequence'} __lowercase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a__ ( self : List[str] ) -> int: """simple docstring""" return 13 @property def a__ ( self : Dict ) -> float: """simple docstring""" return 5e-4
688
0
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class A__ : @property def a__ ( self : List[str] ) -> List[str]: """simple docstring""" return self.get_dummy_input() @property def a__ ( self : Tuple ) -> Dict: """simple docstring""" if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" ) def a__ ( self : Optional[Any] , _UpperCAmelCase : int=True , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Any=False , ) -> Dict: """simple docstring""" __lowercase = 4 __lowercase = 32 __lowercase = (32, 32) __lowercase = torch.manual_seed(0 ) __lowercase = torch.device(_UpperCAmelCase ) __lowercase = (batch_size, num_channels) + sizes __lowercase = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=_UpperCAmelCase ) __lowercase = {'hidden_states': hidden_states} if include_temb: __lowercase = 1_28 __lowercase = randn_tensor((batch_size, temb_channels) , generator=_UpperCAmelCase , device=_UpperCAmelCase ) if include_res_hidden_states_tuple: __lowercase = torch.manual_seed(1 ) __lowercase = (randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=_UpperCAmelCase ),) if include_encoder_hidden_states: __lowercase = floats_tensor((batch_size, 32, 32) ).to(_UpperCAmelCase ) if include_skip_sample: __lowercase = randn_tensor(((batch_size, 3) + sizes) , generator=_UpperCAmelCase , device=_UpperCAmelCase ) return dummy_input def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 1_28, } if self.block_type == "up": __lowercase = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) __lowercase = self.dummy_input return init_dict, inputs_dict def a__ ( self : int , _UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase = self.prepare_init_args_and_inputs_for_common() __lowercase = self.block_class(**_UpperCAmelCase ) unet_block.to(_UpperCAmelCase ) unet_block.eval() with torch.no_grad(): __lowercase = unet_block(**_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = output[0] self.assertEqual(output.shape , self.output_shape ) __lowercase = output[0, -1, -3:, -3:] __lowercase = torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase ) assert torch_all_close(output_slice.flatten() , _UpperCAmelCase , atol=5e-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.prepare_init_args_and_inputs_for_common() __lowercase = self.block_class(**_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() __lowercase = model(**_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = output[0] __lowercase = torch.device(_UpperCAmelCase ) __lowercase = randn_tensor(output.shape , device=_UpperCAmelCase ) __lowercase = torch.nn.functional.mse_loss(_UpperCAmelCase , _UpperCAmelCase ) loss.backward()
700
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = version.parse("1.12" ) @property def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : Any ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : Dict ) -> int: """simple docstring""" return 12 def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
688
0
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = LayoutLMTokenizer lowerCAmelCase__ : List[Any] = LayoutLMTokenizerFast lowerCAmelCase__ : str = True lowerCAmelCase__ : Optional[int] = True def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" super().setUp() __lowercase = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : Any , **_UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : Dict ) -> Dict: """simple docstring""" __lowercase = 'UNwant\u00E9d,running' __lowercase = 'unwanted, running' return input_text, output_text def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def a__ ( self : Dict ) -> str: """simple docstring""" pass
701
from pathlib import Path import numpy as np from PIL import Image def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: return (gray > 127) & (gray <= 255) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase = np.zeros_like(SCREAMING_SNAKE_CASE ) __lowercase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __lowercase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __lowercase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __lowercase = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
688
0
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. """ class A__ ( lowerCAmelCase__ ): @add_start_docstrings(_UpperCAmelCase ) def __call__( self : List[Any] , _UpperCAmelCase : torch.LongTensor , _UpperCAmelCase : torch.FloatTensor , **_UpperCAmelCase : List[Any] ) -> bool: """simple docstring""" raise NotImplementedError('StoppingCriteria needs to be subclassed' ) class A__ ( lowerCAmelCase__ ): def __init__( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] = None ) -> Optional[Any]: """simple docstring""" __lowercase = max_length __lowercase = max_position_embeddings @add_start_docstrings(_UpperCAmelCase ) def __call__( self : Optional[int] , _UpperCAmelCase : torch.LongTensor , _UpperCAmelCase : torch.FloatTensor , **_UpperCAmelCase : Optional[int] ) -> bool: """simple docstring""" __lowercase = input_ids.shape[-1] __lowercase = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( 'This is a friendly reminder - the current text generation call will exceed the model\'s predefined ' f"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ 'exceptions, performance degradation, or nothing at all.' ) return is_done class A__ ( lowerCAmelCase__ ): def __init__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[str]: """simple docstring""" warnings.warn( 'The class `MaxNewTokensCriteria` is deprecated. ' f"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ 'with `max_length = start_length + max_new_tokens` instead.' , _UpperCAmelCase , ) __lowercase = start_length __lowercase = max_new_tokens __lowercase = start_length + max_new_tokens @add_start_docstrings(_UpperCAmelCase ) def __call__( self : Dict , _UpperCAmelCase : torch.LongTensor , _UpperCAmelCase : torch.FloatTensor , **_UpperCAmelCase : Dict ) -> bool: """simple docstring""" return input_ids.shape[-1] >= self.max_length class A__ ( lowerCAmelCase__ ): def __init__( self : List[str] , _UpperCAmelCase : float , _UpperCAmelCase : Optional[float] = None ) -> int: """simple docstring""" __lowercase = max_time __lowercase = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(_UpperCAmelCase ) def __call__( self : Tuple , _UpperCAmelCase : torch.LongTensor , _UpperCAmelCase : torch.FloatTensor , **_UpperCAmelCase : List[Any] ) -> bool: """simple docstring""" return time.time() - self.initial_timestamp > self.max_time class A__ ( lowerCAmelCase__ ): @add_start_docstrings(_UpperCAmelCase ) def __call__( self : Tuple , _UpperCAmelCase : torch.LongTensor , _UpperCAmelCase : torch.FloatTensor , **_UpperCAmelCase : Dict ) -> bool: """simple docstring""" return any(criteria(_UpperCAmelCase , _UpperCAmelCase ) for criteria in self ) @property def a__ ( self : Any ) -> Optional[int]: """simple docstring""" for stopping_criterium in self: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return stopping_criterium.max_length elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): return stopping_criterium.max_length return None def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : StoppingCriteriaList , SCREAMING_SNAKE_CASE : int ) -> StoppingCriteriaList: __lowercase = stopping_criteria.max_length __lowercase = deepcopy(SCREAMING_SNAKE_CASE ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('You set different `max_length` for stopping criteria and `max_length` parameter' , SCREAMING_SNAKE_CASE ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=SCREAMING_SNAKE_CASE ) ) return new_stopping_criteria
702
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = ["pixel_values"] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = size if size is not None else {'height': 3_84, 'width': 3_84} __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase = do_convert_rgb def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) __lowercase = (size['height'], size['width']) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: """simple docstring""" __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = resample if resample is not None else self.resample __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = size if size is not None else self.size __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] __lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase ) return encoded_outputs
688
0
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class A__ : def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : int=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=17 , _UpperCAmelCase : List[str]=23 , _UpperCAmelCase : Dict=11 , _UpperCAmelCase : Union[str, Any]=True , ) -> Optional[int]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = act_dim __lowercase = state_dim __lowercase = hidden_size __lowercase = max_length __lowercase = is_training def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) __lowercase = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) __lowercase = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowercase = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowercase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=10_00 ) __lowercase = random_attention_mask((self.batch_size, self.seq_length) ) __lowercase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def a__ ( self : List[str] ) -> Tuple: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , ) -> Tuple: """simple docstring""" __lowercase = DecisionTransformerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def a__ ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = { 'states': states, 'actions': actions, 'rewards': rewards, 'returns_to_go': returns_to_go, 'timesteps': timesteps, 'attention_mask': attention_mask, } return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Optional[int] = (DecisionTransformerModel,) if is_torch_available() else () lowerCAmelCase__ : Any = () lowerCAmelCase__ : Optional[int] = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCAmelCase__ : Any = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCAmelCase__ : int = False lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : int = False lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : List[Any] = False lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : str = False def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = DecisionTransformerModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def a__ ( self : Tuple ) -> str: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = DecisionTransformerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_UpperCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = [ 'states', 'actions', 'rewards', 'returns_to_go', 'timesteps', 'attention_mask', ] self.assertListEqual(arg_names[: len(_UpperCAmelCase )] , _UpperCAmelCase ) @require_torch class A__ ( unittest.TestCase ): @slow def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = 2 # number of steps of autoregressive prediction we will perform __lowercase = 10 # defined by the RL environment, may be normalized __lowercase = DecisionTransformerModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert' ) __lowercase = model.to(_UpperCAmelCase ) __lowercase = model.config torch.manual_seed(0 ) __lowercase = torch.randn(1 , 1 , config.state_dim ).to(device=_UpperCAmelCase , dtype=torch.floataa ) # env.reset() __lowercase = torch.tensor( [[0.242_793, -0.28_693_074, 0.8_742_613], [0.67_815_274, -0.08_101_085, -0.12_952_147]] , device=_UpperCAmelCase ) __lowercase = torch.tensor(_UpperCAmelCase , device=_UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) __lowercase = state __lowercase = torch.zeros(1 , 0 , config.act_dim , device=_UpperCAmelCase , dtype=torch.floataa ) __lowercase = torch.zeros(1 , 0 , device=_UpperCAmelCase , dtype=torch.floataa ) __lowercase = torch.tensor(0 , device=_UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(_UpperCAmelCase ): __lowercase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_UpperCAmelCase )] , dim=1 ) __lowercase = torch.cat([rewards, torch.zeros(1 , 1 , device=_UpperCAmelCase )] , dim=1 ) __lowercase = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): __lowercase , __lowercase , __lowercase = model( states=_UpperCAmelCase , actions=_UpperCAmelCase , rewards=_UpperCAmelCase , returns_to_go=_UpperCAmelCase , timesteps=_UpperCAmelCase , attention_mask=_UpperCAmelCase , return_dict=_UpperCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) __lowercase , __lowercase , __lowercase , __lowercase = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=_UpperCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) __lowercase = action_pred[0, -1] __lowercase = torch.cat([states, state] , dim=1 ) __lowercase = returns_to_go[0, -1] - reward __lowercase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) __lowercase = torch.cat( [timesteps, torch.ones((1, 1) , device=_UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
0
from typing import TYPE_CHECKING from ..utils import _LazyModule SCREAMING_SNAKE_CASE__ = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
704
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter __lowercase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams __lowercase = 4 __lowercase = True # hparam_utils.py hparams __lowercase = 0.664_694 __lowercase = 0.207_951 __lowercase = 0.121_194 __lowercase = True __lowercase = True __lowercase = False __lowercase = 0.0_352_513 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowercase = 4 __lowercase = False # hparam_utils.py hparams __lowercase = 36.4_519 __lowercase = 0.903_421 __lowercase = 222.088 __lowercase = True __lowercase = True __lowercase = True __lowercase = 0.763_141 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "TABFACT": __lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE ) elif task == "MLM": __lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": __lowercase = TapasModel(config=SCREAMING_SNAKE_CASE ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
0
from __future__ import annotations import math from collections.abc import Callable def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Callable[[int | float], int | float] , SCREAMING_SNAKE_CASE : int | float , SCREAMING_SNAKE_CASE : int | float , SCREAMING_SNAKE_CASE : int = 100 , ) -> float: __lowercase = x_start __lowercase = fnc(SCREAMING_SNAKE_CASE ) __lowercase = 0.0 for _ in range(SCREAMING_SNAKE_CASE ): # Approximates curve as a sequence of linear lines and sums their length __lowercase = (x_end - x_start) / steps + xa __lowercase = fnc(SCREAMING_SNAKE_CASE ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step __lowercase = xa __lowercase = fxa return length if __name__ == "__main__": def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[int]: return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") SCREAMING_SNAKE_CASE__ = 10 while i <= 10_0000: print(F'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
705
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def __SCREAMING_SNAKE_CASE ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
688
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class A__ : def __init__( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str]=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=99 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : str=5 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : int=5_12 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Any=0.02 , _UpperCAmelCase : int=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Union[str, Any]=None , ) -> int: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = embedding_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def a__ ( self : str ) -> Any: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : str ) -> Optional[int]: """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple ) -> Any: """simple docstring""" __lowercase = MegatronBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = MegatronBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase = MegatronBertForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = MegatronBertForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def a__ ( self : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase = MegatronBertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" __lowercase = MegatronBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = MegatronBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase = self.num_labels __lowercase = MegatronBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = self.num_choices __lowercase = MegatronBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[Any] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ : Optional[int] = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Union[str, Any] = True # test_resize_embeddings = False lowerCAmelCase__ : Tuple = False def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int=False ) -> List[Any]: """simple docstring""" __lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = MegatronBertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : str ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*_UpperCAmelCase ) def a__ ( self : Any ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*_UpperCAmelCase ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*_UpperCAmelCase ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*_UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> str: return torch.tensor( SCREAMING_SNAKE_CASE , dtype=torch.long , device=SCREAMING_SNAKE_CASE , ) snake_case_ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): @slow @unittest.skip('Model is not available.' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: __lowercase = os.path.join(os.environ['MYDIR'] , _UpperCAmelCase ) __lowercase = MegatronBertModel.from_pretrained(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.half() __lowercase = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): __lowercase = model(_UpperCAmelCase )[0] __lowercase = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3 ): for jj in range(3 ): __lowercase = output[0, ii, jj] __lowercase = expected[3 * ii + jj] __lowercase = 'ii={} jj={} a={} b={}'.format(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertTrue(math.isclose(_UpperCAmelCase , _UpperCAmelCase , rel_tol=_UpperCAmelCase , abs_tol=_UpperCAmelCase ) , msg=_UpperCAmelCase )
706
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """Hello, World!""" SCREAMING_SNAKE_CASE__ = """en_XX""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]: __lowercase = Path('data_bin' ) __lowercase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE ) __lowercase = xmod.model.encoder.sentence_encoder __lowercase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , SCREAMING_SNAKE_CASE ) __lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings __lowercase = xmod_sent_encoder.embed_tokens.weight __lowercase = xmod_sent_encoder.embed_positions.weight __lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowercase = xmod_sent_encoder.layernorm_embedding.weight __lowercase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowercase = model.roberta.encoder.layer[i] __lowercase = xmod_sent_encoder.layers[i] # self attention __lowercase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __lowercase = xmod_layer.self_attn.q_proj.weight __lowercase = xmod_layer.self_attn.q_proj.bias __lowercase = xmod_layer.self_attn.k_proj.weight __lowercase = xmod_layer.self_attn.k_proj.bias __lowercase = xmod_layer.self_attn.v_proj.weight __lowercase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowercase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __lowercase = xmod_layer.self_attn.out_proj.weight __lowercase = xmod_layer.self_attn.out_proj.bias __lowercase = xmod_layer.self_attn_layer_norm.weight __lowercase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowercase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias # output __lowercase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias __lowercase = xmod_layer.final_layer_norm.weight __lowercase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowercase = xmod_layer.adapter_layer_norm.weight __lowercase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowercase = bert_output.adapter_modules[lang_code] __lowercase = xmod_layer.adapter_modules[lang_code] __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowercase = xmod_sent_encoder.layer_norm.weight __lowercase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowercase = xmod.model.classification_heads['mnli'].dense.weight __lowercase = xmod.model.classification_heads['mnli'].dense.bias __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight __lowercase = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowercase = xmod.model.encoder.lm_head.dense.weight __lowercase = xmod.model.encoder.lm_head.dense.bias __lowercase = xmod.model.encoder.lm_head.layer_norm.weight __lowercase = xmod.model.encoder.lm_head.layer_norm.bias __lowercase = xmod.model.encoder.lm_head.weight __lowercase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE ) __lowercase = model(SCREAMING_SNAKE_CASE )[0] if classification_head: __lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) ) else: __lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
688
0
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> str: return " ".join( ''.join(word[::-1] ) if len(SCREAMING_SNAKE_CASE ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("""Hey wollef sroirraw"""))
707
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float: __lowercase = u for i in range(1 , SCREAMING_SNAKE_CASE ): __lowercase = temp * (u - i) return temp def __SCREAMING_SNAKE_CASE ( ) -> None: __lowercase = int(input('enter the numbers of values: ' ) ) __lowercase = [] for _ in range(SCREAMING_SNAKE_CASE ): y.append([] ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): y[i].append(SCREAMING_SNAKE_CASE ) __lowercase = 0 print('enter the values of parameters in a list: ' ) __lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(SCREAMING_SNAKE_CASE ): __lowercase = float(input() ) __lowercase = int(input('enter the value to interpolate: ' ) ) __lowercase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(n - i ): __lowercase = y[j + 1][i - 1] - y[j][i - 1] __lowercase = y[0][0] for i in range(1 , SCREAMING_SNAKE_CASE ): summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
688
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """BridgeTower/bridgetower-base""": """https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json""", """BridgeTower/bridgetower-base-itm-mlm""": ( """https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json""" ), } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "bridgetower_vision_model" def __init__( self : int , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : int=3 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : Tuple=2_88 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : Optional[Any]=1e-0_5 , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : int=False , **_UpperCAmelCase : List[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_channels __lowercase = patch_size __lowercase = image_size __lowercase = initializer_factor __lowercase = layer_norm_eps __lowercase = stop_gradient __lowercase = share_layernorm __lowercase = remove_last_layer @classmethod def a__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[Any] ) -> "PretrainedConfig": """simple docstring""" __lowercase , __lowercase = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) if config_dict.get('model_type' ) == "bridgetower": __lowercase = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Any = "bridgetower_text_model" def __init__( self : str , _UpperCAmelCase : Tuple=5_02_65 , _UpperCAmelCase : Dict=7_68 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : Optional[Any]=30_72 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=5_14 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Union[str, Any]=1e-0_5 , _UpperCAmelCase : int=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Optional[int]="absolute" , _UpperCAmelCase : str=True , **_UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = initializer_factor __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = pad_token_id __lowercase = bos_token_id __lowercase = eos_token_id @classmethod def a__ ( cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig": """simple docstring""" __lowercase , __lowercase = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) if config_dict.get('model_type' ) == "bridgetower": __lowercase = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = "bridgetower" def __init__( self : Union[str, Any] , _UpperCAmelCase : str=True , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : List[str]=7_68 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : List[Any]=1e-0_5 , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Tuple="add" , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : int=6 , _UpperCAmelCase : Any=False , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : Tuple , ) -> str: """simple docstring""" __lowercase = kwargs.pop('text_config_dict' , _UpperCAmelCase ) __lowercase = kwargs.pop('vision_config_dict' , _UpperCAmelCase ) super().__init__(**_UpperCAmelCase ) __lowercase = share_cross_modal_transformer_layers __lowercase = hidden_act __lowercase = hidden_size __lowercase = initializer_factor __lowercase = layer_norm_eps __lowercase = share_link_tower_layers __lowercase = link_tower_type __lowercase = num_attention_heads __lowercase = num_hidden_layers __lowercase = tie_word_embeddings __lowercase = init_layernorm_from_vision_encoder if text_config is None: __lowercase = {} logger.info('`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.' ) if vision_config is None: __lowercase = {} logger.info('`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.' ) __lowercase = BridgeTowerTextConfig(**_UpperCAmelCase ) __lowercase = BridgeTowerVisionConfig(**_UpperCAmelCase ) @classmethod def a__ ( cls : Optional[Any] , _UpperCAmelCase : BridgeTowerTextConfig , _UpperCAmelCase : BridgeTowerVisionConfig , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.text_config.to_dict() __lowercase = self.vision_config.to_dict() __lowercase = self.__class__.model_type return output
708
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = F"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: __lowercase = F"""Input value of [number={number}] must be > 0""" raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
688
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
709
from argparse import ArgumentParser from .env import EnvironmentCommand def __SCREAMING_SNAKE_CASE ( ) -> List[str]: __lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) __lowercase = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE ) # Let's go __lowercase = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
688
0
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version SCREAMING_SNAKE_CASE__ = { """<""": operator.lt, """<=""": operator.le, """==""": operator.eq, """!=""": operator.ne, """>=""": operator.ge, """>""": operator.gt, } def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: if got_ver is None or want_ver is None: raise ValueError( F"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" F""" reinstalling {pkg}.""" ) if not ops[op](version.parse(SCREAMING_SNAKE_CASE ) , version.parse(SCREAMING_SNAKE_CASE ) ): raise ImportError( F"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None ) -> None: __lowercase = F"""\n{hint}""" if hint is not None else '' # non-versioned check if re.match(R'^[\w_\-\d]+$' , SCREAMING_SNAKE_CASE ): __lowercase , __lowercase , __lowercase = requirement, None, None else: __lowercase = re.findall(R'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , SCREAMING_SNAKE_CASE ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' F""" got {requirement}""" ) __lowercase , __lowercase = match[0] __lowercase = want_full.split(',' ) # there could be multiple requirements __lowercase = {} for w in want_range: __lowercase = re.findall(R'^([\s!=<>]{1,2})(.+)' , SCREAMING_SNAKE_CASE ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' F""" but got {requirement}""" ) __lowercase , __lowercase = match[0] __lowercase = want_ver if op not in ops: raise ValueError(F"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": __lowercase = '.'.join([str(SCREAMING_SNAKE_CASE ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return # check if any version is installed try: __lowercase = importlib.metadata.version(SCREAMING_SNAKE_CASE ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> Dict: __lowercase = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
710
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ProphetNetTokenizer lowerCAmelCase__ : str = False def a__ ( self : str ) -> Tuple: """simple docstring""" super().setUp() __lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = 'UNwant\u00E9d,running' __lowercase = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Any: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : int ) -> List[str]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowercase = {} for i, token in enumerate(_UpperCAmelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] __lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def a__ ( self : int ) -> Dict: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : Any ) -> List[str]: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
688
0
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated SCREAMING_SNAKE_CASE__ = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ SCREAMING_SNAKE_CASE__ = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: __lowercase = numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=SCREAMING_SNAKE_CASE )[0] @deprecated(SCREAMING_SNAKE_CASE , 'Please use tf.data to implement this functionality.' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> int: print('Extracting' , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE ) as bytestream: __lowercase = _readaa(SCREAMING_SNAKE_CASE ) if magic != 2051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) __lowercase = _readaa(SCREAMING_SNAKE_CASE ) __lowercase = _readaa(SCREAMING_SNAKE_CASE ) __lowercase = _readaa(SCREAMING_SNAKE_CASE ) __lowercase = bytestream.read(rows * cols * num_images ) __lowercase = numpy.frombuffer(SCREAMING_SNAKE_CASE , dtype=numpy.uinta ) __lowercase = data.reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 1 ) return data @deprecated(SCREAMING_SNAKE_CASE , 'Please use tf.one_hot on tensors.' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int ) -> Optional[int]: __lowercase = labels_dense.shape[0] __lowercase = numpy.arange(SCREAMING_SNAKE_CASE ) * num_classes __lowercase = numpy.zeros((num_labels, num_classes) ) __lowercase = 1 return labels_one_hot @deprecated(SCREAMING_SNAKE_CASE , 'Please use tf.data to implement this functionality.' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any]=False , SCREAMING_SNAKE_CASE : int=10 ) -> Union[str, Any]: print('Extracting' , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE ) as bytestream: __lowercase = _readaa(SCREAMING_SNAKE_CASE ) if magic != 2049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) __lowercase = _readaa(SCREAMING_SNAKE_CASE ) __lowercase = bytestream.read(SCREAMING_SNAKE_CASE ) __lowercase = numpy.frombuffer(SCREAMING_SNAKE_CASE , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return labels class A__ : @deprecated( _UpperCAmelCase , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : str=False , _UpperCAmelCase : Tuple=dtypes.floataa , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=None , ) -> int: """simple docstring""" __lowercase , __lowercase = random_seed.get_seed(_UpperCAmelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __lowercase = dtypes.as_dtype(_UpperCAmelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: __lowercase = 1_00_00 __lowercase = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"""images.shape: {images.shape} labels.shape: {labels.shape}""" __lowercase = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __lowercase = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __lowercase = images.astype(numpy.floataa ) __lowercase = numpy.multiply(_UpperCAmelCase , 1.0 / 255.0 ) __lowercase = images __lowercase = labels __lowercase = 0 __lowercase = 0 @property def a__ ( self : Dict ) -> Optional[int]: """simple docstring""" return self._images @property def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self._labels @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return self._num_examples @property def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" return self._epochs_completed def a__ ( self : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : str=True ) -> List[str]: """simple docstring""" if fake_data: __lowercase = [1] * 7_84 __lowercase = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_UpperCAmelCase )], [fake_label for _ in range(_UpperCAmelCase )], ) __lowercase = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __lowercase = numpy.arange(self._num_examples ) numpy.random.shuffle(_UpperCAmelCase ) __lowercase = self.images[perma] __lowercase = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __lowercase = self._num_examples - start __lowercase = self._images[start : self._num_examples] __lowercase = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __lowercase = numpy.arange(self._num_examples ) numpy.random.shuffle(_UpperCAmelCase ) __lowercase = self.images[perm] __lowercase = self.labels[perm] # Start next epoch __lowercase = 0 __lowercase = batch_size - rest_num_examples __lowercase = self._index_in_epoch __lowercase = self._images[start:end] __lowercase = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __lowercase = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(SCREAMING_SNAKE_CASE , 'Please write your own downloading logic.' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any ) -> List[Any]: if not gfile.Exists(SCREAMING_SNAKE_CASE ): gfile.MakeDirs(SCREAMING_SNAKE_CASE ) __lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not gfile.Exists(SCREAMING_SNAKE_CASE ): urllib.request.urlretrieve(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # noqa: S310 with gfile.GFile(SCREAMING_SNAKE_CASE ) as f: __lowercase = f.size() print('Successfully downloaded' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'bytes.' ) return filepath @deprecated( SCREAMING_SNAKE_CASE , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : int=dtypes.floataa , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : Optional[int]=5000 , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Any=DEFAULT_SOURCE_URL , ) -> Tuple: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=SCREAMING_SNAKE_CASE , one_hot=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE , seed=SCREAMING_SNAKE_CASE ) __lowercase = fake() __lowercase = fake() __lowercase = fake() return _Datasets(train=SCREAMING_SNAKE_CASE , validation=SCREAMING_SNAKE_CASE , test=SCREAMING_SNAKE_CASE ) if not source_url: # empty string check __lowercase = DEFAULT_SOURCE_URL __lowercase = 'train-images-idx3-ubyte.gz' __lowercase = 'train-labels-idx1-ubyte.gz' __lowercase = 't10k-images-idx3-ubyte.gz' __lowercase = 't10k-labels-idx1-ubyte.gz' __lowercase = _maybe_download( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , source_url + train_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE , 'rb' ) as f: __lowercase = _extract_images(SCREAMING_SNAKE_CASE ) __lowercase = _maybe_download( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , source_url + train_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE , 'rb' ) as f: __lowercase = _extract_labels(SCREAMING_SNAKE_CASE , one_hot=SCREAMING_SNAKE_CASE ) __lowercase = _maybe_download( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , source_url + test_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE , 'rb' ) as f: __lowercase = _extract_images(SCREAMING_SNAKE_CASE ) __lowercase = _maybe_download( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , source_url + test_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE , 'rb' ) as f: __lowercase = _extract_labels(SCREAMING_SNAKE_CASE , one_hot=SCREAMING_SNAKE_CASE ) if not 0 <= validation_size <= len(SCREAMING_SNAKE_CASE ): __lowercase = ( 'Validation size should be between 0 and ' F"""{len(SCREAMING_SNAKE_CASE )}. Received: {validation_size}.""" ) raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = train_images[:validation_size] __lowercase = train_labels[:validation_size] __lowercase = train_images[validation_size:] __lowercase = train_labels[validation_size:] __lowercase = {'dtype': dtype, 'reshape': reshape, 'seed': seed} __lowercase = _DataSet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) __lowercase = _DataSet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) __lowercase = _DataSet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) return _Datasets(train=SCREAMING_SNAKE_CASE , validation=SCREAMING_SNAKE_CASE , test=SCREAMING_SNAKE_CASE )
711
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } SCREAMING_SNAKE_CASE__ = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } SCREAMING_SNAKE_CASE__ = { """jukebox""": 512, } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase__ : Any = ["input_ids", "attention_mask"] def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]: """simple docstring""" __lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token super().__init__( unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = version __lowercase = max_n_lyric_tokens __lowercase = n_genres with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) __lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase = oov.replace(R'\-\'' , R'\-+\'' ) __lowercase = regex.compile(_UpperCAmelCase ) __lowercase = {v: k for k, v in self.artists_encoder.items()} __lowercase = {v: k for k, v in self.genres_encoder.items()} __lowercase = {v: k for k, v in self.lyrics_encoder.items()} @property def a__ ( self : List[Any] ) -> Any: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(_UpperCAmelCase ) ): __lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]] __lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" return list(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = self._tokenize(_UpperCAmelCase ) return artist, genre, lyrics def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase = artists[idx].lower() __lowercase = [genres[idx].lower()] else: __lowercase = self._normalize(artists[idx] ) + '.v2' __lowercase = [ self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) __lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' __lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )} __lowercase = 0 __lowercase = len(_UpperCAmelCase ) + 1 __lowercase = self.vocab __lowercase = {v: k for k, v in self.vocab.items()} __lowercase = '' else: __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) __lowercase = self._run_strip_accents(_UpperCAmelCase ) __lowercase = lyrics.replace('\\' , '\n' ) __lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], [] return artists, genres, lyrics def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase ) __lowercase = [] for char in text: __lowercase = unicodedata.category(_UpperCAmelCase ) if cat == "Mn": continue output.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = ( [chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) __lowercase = frozenset(_UpperCAmelCase ) __lowercase = re.compile(R'_+' ) __lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] ) __lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' ) return text def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" return " ".join(_UpperCAmelCase ) def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = TensorType(_UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf __lowercase = tf.constant __lowercase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch __lowercase = torch.tensor __lowercase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 __lowercase = jnp.array __lowercase = _is_jax else: __lowercase = np.asarray __lowercase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase = [inputs] if not is_tensor(_UpperCAmelCase ): __lowercase = as_tensor(_UpperCAmelCase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding: """simple docstring""" __lowercase = [0, 0, 0] __lowercase = [artist] * len(self.version ) __lowercase = [genres] * len(self.version ) __lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = [-INFINITY] * len(full_tokens[-1] ) __lowercase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.artists_decoder.get(_UpperCAmelCase ) __lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index] __lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
688
0
from __future__ import annotations from random import random class A__ : def __init__( self : Union[str, Any] , _UpperCAmelCase : int | None = None ) -> List[str]: """simple docstring""" __lowercase = value __lowercase = random() __lowercase = None __lowercase = None def __repr__( self : Optional[Any] ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ) -> str: """simple docstring""" __lowercase = str(self.value ) + ' ' __lowercase = str(self.left or '' ) __lowercase = str(self.right or '' ) return value + left + right def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None , SCREAMING_SNAKE_CASE : int ) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: __lowercase , __lowercase = split(root.left , SCREAMING_SNAKE_CASE ) return left, root else: __lowercase , __lowercase = split(root.right , SCREAMING_SNAKE_CASE ) return root, right def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None , SCREAMING_SNAKE_CASE : Node | None ) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: __lowercase = merge(left.right , SCREAMING_SNAKE_CASE ) return left else: __lowercase = merge(SCREAMING_SNAKE_CASE , right.left ) return right def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None , SCREAMING_SNAKE_CASE : int ) -> Node | None: __lowercase = Node(SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = split(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return merge(merge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None , SCREAMING_SNAKE_CASE : int ) -> Node | None: __lowercase , __lowercase = split(SCREAMING_SNAKE_CASE , value - 1 ) __lowercase , __lowercase = split(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return merge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None ) -> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None , SCREAMING_SNAKE_CASE : str ) -> Node | None: for arg in args.split(): if arg[0] == "+": __lowercase = insert(SCREAMING_SNAKE_CASE , int(arg[1:] ) ) elif arg[0] == "-": __lowercase = erase(SCREAMING_SNAKE_CASE , int(arg[1:] ) ) else: print('Unknown command' ) return root def __SCREAMING_SNAKE_CASE ( ) -> None: __lowercase = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) __lowercase = input() while args != "q": __lowercase = interact_treap(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(SCREAMING_SNAKE_CASE ) __lowercase = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
712
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_hidden_groups __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def a__ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" __lowercase = AlbertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple: """simple docstring""" __lowercase = AlbertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = AlbertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" __lowercase = self.num_choices __lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ : Dict = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Optional[Any] = True def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple: """simple docstring""" __lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def a__ ( self : str ) -> str: """simple docstring""" __lowercase = AlbertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def a__ ( self : int ) -> Any: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AlbertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class A__ ( unittest.TestCase ): @slow def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = AlbertModel.from_pretrained('albert-base-v2' ) __lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __lowercase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
688
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = {"""configuration_unispeech""": ["""UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP""", """UniSpeechConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST""", """UniSpeechForCTC""", """UniSpeechForPreTraining""", """UniSpeechForSequenceClassification""", """UniSpeechModel""", """UniSpeechPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
713
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A__ ( lowerCAmelCase__ ): def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]: """simple docstring""" __lowercase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['token'] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __lowercase = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) __lowercase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [files] self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['unk']['id'] __lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
688
0
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: __lowercase = tmp_path / 'cache' __lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowercase = JsonDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_json_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict ) -> List[str]: __lowercase = tmp_path / 'cache' __lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowercase = features.copy() if features else default_expected_features __lowercase = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase = JsonDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_json_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: __lowercase = tmp_path / 'cache' __lowercase = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} __lowercase = features.copy() if features else default_expected_features __lowercase = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase = JsonDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} __lowercase = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} __lowercase = features.copy() __lowercase = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase = tmp_path / 'cache' __lowercase = JsonDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: __lowercase = tmp_path / 'cache' __lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowercase = JsonDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE ).read() _check_json_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] ) -> str: if issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = jsonl_path elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = [jsonl_path] __lowercase = tmp_path / 'cache' __lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowercase = JsonDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_json_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int]=("train",) ) -> List[Any]: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for split in splits: __lowercase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: __lowercase = tmp_path / 'cache' __lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowercase = JsonDatasetReader({'train': jsonl_path} , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_json_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: __lowercase = tmp_path / 'cache' __lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowercase = features.copy() if features else default_expected_features __lowercase = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase = JsonDatasetReader({'train': jsonl_path} , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_json_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: if split: __lowercase = {split: jsonl_path} else: __lowercase = 'train' __lowercase = {'train': jsonl_path, 'test': jsonl_path} __lowercase = tmp_path / 'cache' __lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowercase = JsonDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_json_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]: return json.load(SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Dict: return [json.loads(SCREAMING_SNAKE_CASE ) for line in buffer] class A__ : @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def a__ ( self : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , lines=_UpperCAmelCase ).write() buffer.seek(0 ) __lowercase = load_json_function(_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert isinstance(exported_content[0] , _UpperCAmelCase ) assert len(_UpperCAmelCase ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , lines=_UpperCAmelCase , orient=_UpperCAmelCase ).write() buffer.seek(0 ) __lowercase = load_json(_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_UpperCAmelCase , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_UpperCAmelCase ) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , lines=_UpperCAmelCase , num_proc=2 ).write() buffer.seek(0 ) __lowercase = load_json_function(_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert isinstance(exported_content[0] , _UpperCAmelCase ) assert len(_UpperCAmelCase ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def a__ ( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> Dict: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , lines=_UpperCAmelCase , orient=_UpperCAmelCase , num_proc=2 ).write() buffer.seek(0 ) __lowercase = load_json(_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_UpperCAmelCase , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_UpperCAmelCase ) == 10 def a__ ( self : str , _UpperCAmelCase : List[str] ) -> Any: """simple docstring""" with pytest.raises(_UpperCAmelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def a__ ( self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" __lowercase = tmp_path_factory.mktemp('data' ) / f"""test.json.{extension}""" __lowercase = str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , compression=_UpperCAmelCase ).write() with fsspec.open(_UpperCAmelCase , 'rb' , compression='infer' ) as f: __lowercase = f.read() with fsspec.open(_UpperCAmelCase , 'rb' , compression='infer' ) as f: __lowercase = f.read() assert exported_content == original_content
714
import string from math import logaa def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int: __lowercase = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) __lowercase = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]: __lowercase = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' __lowercase = corpus_without_punctuation.split('\n' ) __lowercase = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE )) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float: if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float: return round(tf * idf , 3 )
688
0
from argparse import ArgumentParser from .env import EnvironmentCommand def __SCREAMING_SNAKE_CASE ( ) -> List[str]: __lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) __lowercase = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE ) # Let's go __lowercase = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
715
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # TODO: upload to AWS SCREAMING_SNAKE_CASE__ = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "retribert" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = share_encoders __lowercase = projection_dim
688
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A__ ( unittest.TestCase ): def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict: """simple docstring""" __lowercase = size if size is not None else {'height': 18, 'width': 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = apply_ocr def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def a__ ( self : int ) -> Tuple: """simple docstring""" pass def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _UpperCAmelCase ) self.assertIsInstance(encoding.boxes , _UpperCAmelCase ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = LayoutLMvaImageProcessor() from datasets import load_dataset __lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __lowercase = Image.open(ds[0]['file'] ).convert('RGB' ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _UpperCAmelCase ) self.assertListEqual(encoding.boxes , _UpperCAmelCase ) # with apply_OCR = False __lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
716
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
0
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "umt5" lowerCAmelCase__ : Tuple = ["past_key_values"] def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__( is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = vocab_size __lowercase = d_model __lowercase = d_kv __lowercase = d_ff __lowercase = num_layers __lowercase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase = num_heads __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = initializer_factor __lowercase = feed_forward_proj __lowercase = use_cache __lowercase = self.feed_forward_proj.split('-' ) __lowercase = act_info[-1] __lowercase = act_info[0] == 'gated' if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __lowercase = 'gelu_new' @property def a__ ( self : Tuple ) -> Any: """simple docstring""" return self.d_model @property def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" return self.num_heads @property def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" return self.num_layers class A__ ( lowerCAmelCase__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __lowercase = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __lowercase = 'past_encoder_sequence + sequence' __lowercase = {0: 'batch'} __lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase = {0: 'batch', 1: 'decoder_sequence'} __lowercase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a__ ( self : List[str] ) -> int: """simple docstring""" return 13 @property def a__ ( self : Dict ) -> float: """simple docstring""" return 5e-4
717
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"] lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor" lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __lowercase = kwargs.pop('feature_extractor' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor __lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowercase = features['words'] __lowercase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values __lowercase = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowercase = images return encoded_inputs def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" ) return images_with_overflow def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def a__ ( self : str ) -> Dict: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
688
0
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int = 0 ) -> list: __lowercase = length or len(SCREAMING_SNAKE_CASE ) __lowercase = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __lowercase , __lowercase = list_data[i + 1], list_data[i] __lowercase = True return list_data if not swapped else bubble_sort(SCREAMING_SNAKE_CASE , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
718
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ : lowerCAmelCase__ : Optional[int] = "dummy_data" lowerCAmelCase__ : str = "datasets" lowerCAmelCase__ : Dict = False def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]: """simple docstring""" __lowercase = 0 __lowercase = dataset_name __lowercase = cache_dir __lowercase = use_local_dummy_data __lowercase = config # download_callbacks take a single url as input __lowercase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowercase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowercase = str(_UpperCAmelCase ) # to be downloaded __lowercase = None __lowercase = None @property def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" if self._dummy_file is None: __lowercase = self.download_dummy_data() return self._dummy_file @property def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowercase = cached_path( _UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase ) return os.path.join(_UpperCAmelCase , self.dummy_file_name ) @property def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" if self._bucket_url is None: __lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowercase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowercase = self.dummy_file_name # special case when data_url is a dict if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase ) elif isinstance(_UpperCAmelCase , (list, tuple) ): return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase ) else: return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" return path def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" return {} def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for single_url in single_urls: download_callback(_UpperCAmelCase ) else: __lowercase = single_urls download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls] else: __lowercase = single_urls __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) __lowercase = value # make sure that values are unique if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowercase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url ) __lowercase = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowercase = [data_url[0]] * len(_UpperCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(_UpperCAmelCase ) return dummy_data_list def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def a__ ( self : List[str] ) -> Any: """simple docstring""" pass def a__ ( self : int ) -> str: """simple docstring""" pass def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" def _iter_archive_members(_UpperCAmelCase : Optional[Any] ): # this preserves the order of the members inside the ZIP archive __lowercase = Path(self.dummy_file ).parent __lowercase = path.relative_to(_UpperCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowercase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_UpperCAmelCase ) __lowercase = Path(_UpperCAmelCase ) __lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [paths] for path in paths: if os.path.isfile(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(_UpperCAmelCase ): if filename.startswith(('.', '__') ): continue yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
688
0