code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any]=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : List[Any]=18 , UpperCAmelCase_ : int=30 , UpperCAmelCase_ : List[Any]=400 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[int]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : int=False , ) ->str:
"""simple docstring"""
snake_case_ = size if size is not None else {"""height""": 20, """width""": 20}
snake_case_ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_center_crop
snake_case_ = crop_size
snake_case_ = do_normalize
snake_case_ = image_mean
snake_case_ = image_std
snake_case_ = do_reduce_labels
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def _a ( ) -> List[Any]:
snake_case_ = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" )
snake_case_ = Image.open(dataset[0]["""file"""] )
snake_case_ = Image.open(dataset[1]["""file"""] )
return image, map
def _a ( ) -> Dict:
snake_case_ = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" )
snake_case_ = Image.open(ds[0]["""file"""] )
snake_case_ = Image.open(ds[1]["""file"""] )
snake_case_ = Image.open(ds[2]["""file"""] )
snake_case_ = Image.open(ds[3]["""file"""] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[str] = BeitImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = BeitImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_center_crop""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """center_crop""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """image_mean""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """image_std""" ) )
def lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} )
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} )
self.assertEqual(image_processor.do_reduce_labels , UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=UpperCAmelCase_ )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
self.assertEqual(image_processor.do_reduce_labels , UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Optional[int] ) ->int:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , np.ndarray )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ )
snake_case_ = []
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
snake_case_ = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
1,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
# Test batched
snake_case_ = image_processing(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
# Test not batched input (PIL images)
snake_case_ , snake_case_ = prepare_semantic_single_inputs()
snake_case_ = image_processing(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
1,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
# Test batched input (PIL images)
snake_case_ , snake_case_ = prepare_semantic_batch_inputs()
snake_case_ = image_processing(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="""pt""" )
self.assertEqual(
encoding["""pixel_values"""].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
2,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
def lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
snake_case_ , snake_case_ = prepare_semantic_single_inputs()
snake_case_ = image_processing(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="""pt""" )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 150 )
snake_case_ = True
snake_case_ = image_processing(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="""pt""" )
self.assertTrue(encoding["""labels"""].min().item() >= 0 )
self.assertTrue(encoding["""labels"""].max().item() <= 255 )
| 702 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : str = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: Any = """mctct"""
def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = intermediate_size
snake_case_ = num_attention_heads
snake_case_ = attention_head_dim
snake_case_ = max_position_embeddings
snake_case_ = layer_norm_eps
snake_case_ = layerdrop
snake_case_ = hidden_act
snake_case_ = initializer_range
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = pad_token_id
snake_case_ = bos_token_id
snake_case_ = eos_token_id
snake_case_ = conv_glu_dim
snake_case_ = conv_dropout
snake_case_ = num_conv_layers
snake_case_ = input_feat_per_channel
snake_case_ = input_channels
snake_case_ = conv_channels
snake_case_ = ctc_loss_reduction
snake_case_ = ctc_zero_infinity
# prevents config testing fail with exporting to json
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """
F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """
F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
| 2 | 0 |
"""simple docstring"""
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__)
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
snake_case_ = RobertaPreLayerNormConfig.from_pretrained(
_SCREAMING_SNAKE_CASE , architectures=["""RobertaPreLayerNormForMaskedLM"""] )
# convert state_dict
snake_case_ = torch.load(hf_hub_download(repo_id=_SCREAMING_SNAKE_CASE , filename="""pytorch_model.bin""" ) )
snake_case_ = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith("""roberta.""" ):
snake_case_ = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ):
continue
snake_case_ = tensor_value
snake_case_ = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE , state_dict=_SCREAMING_SNAKE_CASE )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
# convert tokenizer
snake_case_ = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE )
tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint-repo',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 703 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int:
return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 2 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Any = {
'configuration_instructblip': [
'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'InstructBlipConfig',
'InstructBlipQFormerConfig',
'InstructBlipVisionConfig',
],
'processing_instructblip': ['InstructBlipProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : str = [
'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'InstructBlipQFormerModel',
'InstructBlipPreTrainedModel',
'InstructBlipForConditionalGeneration',
'InstructBlipVisionModel',
]
if TYPE_CHECKING:
from .configuration_instructblip import (
INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
InstructBlipConfig,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from .processing_instructblip import InstructBlipProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_instructblip import (
INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
InstructBlipForConditionalGeneration,
InstructBlipPreTrainedModel,
InstructBlipQFormerModel,
InstructBlipVisionModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 704 |
"""simple docstring"""
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: str = VQModel
__lowercase: Union[str, Any] = """sample"""
@property
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple:
"""simple docstring"""
snake_case_ = 4
snake_case_ = 3
snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ )
return {"sample": image}
@property
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
return (3, 32, 32)
@property
def lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
return (3, 32, 32)
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 3,
}
snake_case_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(UpperCAmelCase_ )
snake_case_ = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" )
model.to(UpperCAmelCase_ ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size )
snake_case_ = image.to(UpperCAmelCase_ )
with torch.no_grad():
snake_case_ = model(UpperCAmelCase_ ).sample
snake_case_ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] )
# fmt: on
self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 0 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(snake_case__) , """Tatoeba directory does not exist.""")
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : Tuple ) ->Optional[int]:
"""simple docstring"""
snake_case_ = tempfile.mkdtemp()
return TatoebaConverter(save_dir=UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
self.resolver.convert_models(["""heb-eng"""] )
@slow
def lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
snake_case_ , snake_case_ = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=UpperCAmelCase_ )
assert mmeta["long_pair"] == "heb-eng"
| 705 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Dict = KandinskyVaaControlnetPipeline
__lowercase: str = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""]
__lowercase: Union[str, Any] = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
__lowercase: Tuple = False
@property
def lowerCAmelCase ( self : Any ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : Optional[Any] ) ->Union[str, Any]:
"""simple docstring"""
return 32
@property
def lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
return self.time_input_dim
@property
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return 100
@property
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
torch.manual_seed(0 )
snake_case_ = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Dict ) ->str:
"""simple docstring"""
snake_case_ = self.dummy_unet
snake_case_ = self.dummy_movq
snake_case_ = DDIMScheduler(
num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , )
snake_case_ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=0 ) ->List[str]:
"""simple docstring"""
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase_ )
# create hint
snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
if str(UpperCAmelCase_ ).startswith("""mps""" ):
snake_case_ = torch.manual_seed(UpperCAmelCase_ )
else:
snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
snake_case_ = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def lowerCAmelCase ( self : List[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = """cpu"""
snake_case_ = self.get_dummy_components()
snake_case_ = self.pipeline_class(**UpperCAmelCase_ )
snake_case_ = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
snake_case_ = output.images
snake_case_ = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
snake_case_ = image[0, -3:, -3:, -1]
snake_case_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case_ = np.array(
[0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[str] ) ->List[str]:
"""simple docstring"""
snake_case_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
snake_case_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
snake_case_ = torch.from_numpy(np.array(UpperCAmelCase_ ) ).float() / 255.0
snake_case_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
snake_case_ = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
snake_case_ = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
snake_case_ = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
snake_case_ = """A robot, 4k photo"""
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ , snake_case_ = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
snake_case_ = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case_ = pipeline(
image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , hint=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , output_type="""np""" , )
snake_case_ = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 2 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__SCREAMING_SNAKE_CASE : List[Any] = {
'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'],
'tokenization_roberta': ['RobertaTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = ['RobertaTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : List[Any] = [
'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'RobertaForCausalLM',
'RobertaForMaskedLM',
'RobertaForMultipleChoice',
'RobertaForQuestionAnswering',
'RobertaForSequenceClassification',
'RobertaForTokenClassification',
'RobertaModel',
'RobertaPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : List[str] = [
'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRobertaForCausalLM',
'TFRobertaForMaskedLM',
'TFRobertaForMultipleChoice',
'TFRobertaForQuestionAnswering',
'TFRobertaForSequenceClassification',
'TFRobertaForTokenClassification',
'TFRobertaMainLayer',
'TFRobertaModel',
'TFRobertaPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Optional[int] = [
'FlaxRobertaForCausalLM',
'FlaxRobertaForMaskedLM',
'FlaxRobertaForMultipleChoice',
'FlaxRobertaForQuestionAnswering',
'FlaxRobertaForSequenceClassification',
'FlaxRobertaForTokenClassification',
'FlaxRobertaModel',
'FlaxRobertaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 706 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
class __A :
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : list[str] ) ->List[Any]:
"""simple docstring"""
snake_case_ = []
self.adlist.append(
{"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} )
for keyword in keywords:
self.add_keyword(UpperCAmelCase_ )
self.set_fail_transitions()
def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) ->int | None:
"""simple docstring"""
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str ) ->None:
"""simple docstring"""
snake_case_ = 0
for character in keyword:
snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ )
if next_state is None:
self.adlist.append(
{
"""value""": character,
"""next_states""": [],
"""fail_state""": 0,
"""output""": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
snake_case_ = len(self.adlist ) - 1
else:
snake_case_ = next_state
self.adlist[current_state]["output"].append(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->None:
"""simple docstring"""
snake_case_ = deque()
for node in self.adlist[0]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = 0
while q:
snake_case_ = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(UpperCAmelCase_ )
snake_case_ = self.adlist[r]["""fail_state"""]
while (
self.find_next_state(UpperCAmelCase_ , self.adlist[child]["""value"""] ) is None
and state != 0
):
snake_case_ = self.adlist[state]["""fail_state"""]
snake_case_ = self.find_next_state(
UpperCAmelCase_ , self.adlist[child]["""value"""] )
if self.adlist[child]["fail_state"] is None:
snake_case_ = 0
snake_case_ = (
self.adlist[child]["""output"""]
+ self.adlist[self.adlist[child]["""fail_state"""]]["""output"""]
)
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str ) ->dict[str, list[int]]:
"""simple docstring"""
snake_case_ = {} # returns a dict with keywords and list of its occurrences
snake_case_ = 0
for i in range(len(UpperCAmelCase_ ) ):
while (
self.find_next_state(UpperCAmelCase_ , string[i] ) is None
and current_state != 0
):
snake_case_ = self.adlist[current_state]["""fail_state"""]
snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] )
if next_state is None:
snake_case_ = 0
else:
snake_case_ = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
snake_case_ = []
result[key].append(i - len(UpperCAmelCase_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
"""simple docstring"""
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class __A (ctypes.Structure):
'''simple docstring'''
__lowercase: Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)]
def _a ( ) -> str:
if os.name == "nt":
snake_case_ = CursorInfo()
snake_case_ = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
snake_case_ = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
elif os.name == "posix":
sys.stdout.write("""\033[?25l""" )
sys.stdout.flush()
def _a ( ) -> List[Any]:
if os.name == "nt":
snake_case_ = CursorInfo()
snake_case_ = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
snake_case_ = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) )
elif os.name == "posix":
sys.stdout.write("""\033[?25h""" )
sys.stdout.flush()
@contextmanager
def _a ( ) -> List[str]:
try:
hide_cursor()
yield
finally:
show_cursor() | 707 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Dict=[10, 20, 30, 40] , UpperCAmelCase_ : List[Any]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : int=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Optional[int]=[2, 3, 4] , UpperCAmelCase_ : List[str]=None , ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = num_channels
snake_case_ = num_stages
snake_case_ = hidden_sizes
snake_case_ = depths
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = num_labels
snake_case_ = initializer_range
snake_case_ = out_features
snake_case_ = out_indices
snake_case_ = scope
def lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.num_labels )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = ConvNextVaModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ) ->Any:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case_ = None
snake_case_ = ConvNextVaBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values, """labels""": labels}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[Any] = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
__lowercase: Union[str, Any] = (
{"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: Optional[Any] = False
__lowercase: Any = False
__lowercase: Union[str, Any] = False
__lowercase: Dict = False
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = ConvNextVaModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def lowerCAmelCase ( self : Optional[int] ) ->List[str]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = True
if model_class.__name__ in [
*get_values(UpperCAmelCase_ ),
*get_values(UpperCAmelCase_ ),
]:
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_with_labels()
snake_case_ = False
snake_case_ = True
if (
model_class.__name__
in [*get_values(UpperCAmelCase_ ), *get_values(UpperCAmelCase_ )]
or not model_class.supports_gradient_checkpointing
):
continue
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.gradient_checkpointing_enable()
model.train()
snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
snake_case_ = model(**UpperCAmelCase_ ).loss
loss.backward()
def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
def check_hidden_states_output(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ):
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case_ = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = ConvNextVaModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def _a ( ) -> str:
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(UpperCAmelCase_ )
snake_case_ = self.default_image_processor
snake_case_ = prepare_img()
snake_case_ = preprocessor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ )
# verify the logits
snake_case_ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
| 2 | 0 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__)
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
snake_case_ = b.T
snake_case_ = np.sum(np.square(_SCREAMING_SNAKE_CASE ) , axis=1 )
snake_case_ = np.sum(np.square(_SCREAMING_SNAKE_CASE ) , axis=0 )
snake_case_ = np.matmul(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = aa[:, None] - 2 * ab + ba[None, :]
return d
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
snake_case_ = x.reshape(-1 , 3 )
snake_case_ = squared_euclidean_distance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return np.argmin(_SCREAMING_SNAKE_CASE , axis=1 )
class __A (snake_case__):
'''simple docstring'''
__lowercase: str = ["""pixel_values"""]
def __init__( self : Tuple , UpperCAmelCase_ : Optional[Union[List[List[int]], np.ndarray]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : Optional[int] , ) ->None:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ )
snake_case_ = size if size is not None else {"""height""": 256, """width""": 256}
snake_case_ = get_size_dict(UpperCAmelCase_ )
snake_case_ = np.array(UpperCAmelCase_ ) if clusters is not None else None
snake_case_ = do_resize
snake_case_ = size
snake_case_ = resample
snake_case_ = do_normalize
snake_case_ = do_color_quantize
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Tuple , ) ->np.ndarray:
"""simple docstring"""
snake_case_ = get_size_dict(UpperCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F"""Size dictionary must contain both height and width keys. Got {size.keys()}""" )
return resize(
UpperCAmelCase_ , size=(size["""height"""], size["""width"""]) , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , ) ->np.ndarray:
"""simple docstring"""
snake_case_ = rescale(image=UpperCAmelCase_ , scale=1 / 127.5 , data_format=UpperCAmelCase_ )
snake_case_ = image - 1
return image
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[List[List[int]], np.ndarray]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **UpperCAmelCase_ : Any , ) ->PIL.Image.Image:
"""simple docstring"""
snake_case_ = do_resize if do_resize is not None else self.do_resize
snake_case_ = size if size is not None else self.size
snake_case_ = get_size_dict(UpperCAmelCase_ )
snake_case_ = resample if resample is not None else self.resample
snake_case_ = do_normalize if do_normalize is not None else self.do_normalize
snake_case_ = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
snake_case_ = clusters if clusters is not None else self.clusters
snake_case_ = np.array(UpperCAmelCase_ )
snake_case_ = make_list_of_images(UpperCAmelCase_ )
if not valid_images(UpperCAmelCase_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_color_quantize and clusters is None:
raise ValueError("""Clusters must be specified if do_color_quantize is True.""" )
# All transformations expect numpy arrays.
snake_case_ = [to_numpy_array(UpperCAmelCase_ ) for image in images]
if do_resize:
snake_case_ = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ ) for image in images]
if do_normalize:
snake_case_ = [self.normalize(image=UpperCAmelCase_ ) for image in images]
if do_color_quantize:
snake_case_ = [to_channel_dimension_format(UpperCAmelCase_ , ChannelDimension.LAST ) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
snake_case_ = np.array(UpperCAmelCase_ )
snake_case_ = color_quantize(UpperCAmelCase_ , UpperCAmelCase_ ).reshape(images.shape[:-1] )
# flatten to (batch_size, height*width)
snake_case_ = images.shape[0]
snake_case_ = images.reshape(UpperCAmelCase_ , -1 )
# We need to convert back to a list of images to keep consistent behaviour across processors.
snake_case_ = list(UpperCAmelCase_ )
else:
snake_case_ = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images]
snake_case_ = {"""input_ids""": images}
return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ )
| 708 |
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : int = ['model.decoder.embed_positions.weights']
def _a ( _SCREAMING_SNAKE_CASE ) -> str:
if "emb" in name:
snake_case_ = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
snake_case_ = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
snake_case_ = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
snake_case_ = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
snake_case_ = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
snake_case_ = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
snake_case_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
snake_case_ = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
snake_case_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
snake_case_ = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
snake_case_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[Dict, Dict]:
snake_case_ = list(state_dict.keys() )
snake_case_ = {}
for key in keys:
snake_case_ = state_dict.pop(_SCREAMING_SNAKE_CASE )
snake_case_ = rename_keys(_SCREAMING_SNAKE_CASE )
if "in_proj_weight" in key:
# split fused qkv proj
snake_case_ = val[:hidden_size, :]
snake_case_ = val[hidden_size : 2 * hidden_size, :]
snake_case_ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
snake_case_ = val
else:
snake_case_ = val
return state_dict, enc_dec_proj_state_dict
def _a ( _SCREAMING_SNAKE_CASE ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
snake_case_ = 1_024
snake_case_ = 24
snake_case_ = 16
elif checkpoint == "medium":
snake_case_ = 1_536
snake_case_ = 48
snake_case_ = 24
elif checkpoint == "large":
snake_case_ = 2_048
snake_case_ = 48
snake_case_ = 32
else:
raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
snake_case_ = MusicgenDecoderConfig(
hidden_size=_SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , )
return config
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="cpu" ) -> Tuple:
snake_case_ = MusicGen.get_pretrained(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE )
snake_case_ = decoder_config_from_checkpoint(_SCREAMING_SNAKE_CASE )
snake_case_ = fairseq_model.lm.state_dict()
snake_case_ , snake_case_ = rename_state_dict(
_SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size )
snake_case_ = TaEncoderModel.from_pretrained("""t5-base""" )
snake_case_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
snake_case_ = MusicgenForCausalLM(_SCREAMING_SNAKE_CASE ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
snake_case_ , snake_case_ = decoder.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
snake_case_ = MusicgenForConditionalGeneration(text_encoder=_SCREAMING_SNAKE_CASE , audio_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(_SCREAMING_SNAKE_CASE )
# check we can do a forward pass
snake_case_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
snake_case_ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
snake_case_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
snake_case_ = AutoTokenizer.from_pretrained("""t5-base""" )
snake_case_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
snake_case_ = MusicgenProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE )
# set the appropriate bos/pad token ids
snake_case_ = 2_048
snake_case_ = 2_048
# set other default generation config params
snake_case_ = int(30 * audio_encoder.config.frame_rate )
snake_case_ = True
snake_case_ = 3.0
if pytorch_dump_folder is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
processor.save_pretrained(_SCREAMING_SNAKE_CASE )
if repo_id:
logger.info(f"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(_SCREAMING_SNAKE_CASE )
processor.push_to_hub(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint',
default='small',
type=str,
help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.',
)
parser.add_argument(
'--pytorch_dump_folder',
required=True,
default=None,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
parser.add_argument(
'--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.'
)
__SCREAMING_SNAKE_CASE : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 2 | 0 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
snake_case_ = [int(_SCREAMING_SNAKE_CASE ) for i in ip_va_address.split(""".""" ) if i.isdigit()]
return len(_SCREAMING_SNAKE_CASE ) == 4 and all(0 <= int(_SCREAMING_SNAKE_CASE ) <= 254 for octet in octets )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Any = input().strip()
__SCREAMING_SNAKE_CASE : int = 'valid' if is_ip_va_address_valid(ip) else 'invalid'
print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
| 709 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
if index == number_of_items:
return 0
snake_case_ = 0
snake_case_ = 0
snake_case_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 )
if weights[index] <= max_weight:
snake_case_ = values[index] + knapsack(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 )
return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__)
def _a ( _SCREAMING_SNAKE_CASE ) -> Dict:
snake_case_ = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
snake_case_ = 128
elif "12-12" in model_name:
snake_case_ = 12
snake_case_ = 12
elif "14-14" in model_name:
snake_case_ = 14
snake_case_ = 14
elif "16-16" in model_name:
snake_case_ = 16
snake_case_ = 16
else:
raise ValueError("""Model not supported""" )
snake_case_ = """huggingface/label-files"""
if "speech-commands" in model_name:
snake_case_ = 35
snake_case_ = """speech-commands-v2-id2label.json"""
else:
snake_case_ = 527
snake_case_ = """audioset-id2label.json"""
snake_case_ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) )
snake_case_ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
snake_case_ = idalabel
snake_case_ = {v: k for k, v in idalabel.items()}
return config
def _a ( _SCREAMING_SNAKE_CASE ) -> Tuple:
if "module.v" in name:
snake_case_ = name.replace("""module.v""" , """audio_spectrogram_transformer""" )
if "cls_token" in name:
snake_case_ = name.replace("""cls_token""" , """embeddings.cls_token""" )
if "dist_token" in name:
snake_case_ = name.replace("""dist_token""" , """embeddings.distillation_token""" )
if "pos_embed" in name:
snake_case_ = name.replace("""pos_embed""" , """embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
snake_case_ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
# transformer blocks
if "blocks" in name:
snake_case_ = name.replace("""blocks""" , """encoder.layer""" )
if "attn.proj" in name:
snake_case_ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
snake_case_ = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
snake_case_ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
snake_case_ = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
snake_case_ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
snake_case_ = name.replace("""mlp.fc2""" , """output.dense""" )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
snake_case_ = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" )
# classifier head
if "module.mlp_head.0" in name:
snake_case_ = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" )
if "module.mlp_head.1" in name:
snake_case_ = name.replace("""module.mlp_head.1""" , """classifier.dense""" )
return name
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]:
for key in orig_state_dict.copy().keys():
snake_case_ = orig_state_dict.pop(_SCREAMING_SNAKE_CASE )
if "qkv" in key:
snake_case_ = key.split(""".""" )
snake_case_ = int(key_split[3] )
snake_case_ = config.hidden_size
if "weight" in key:
snake_case_ = val[:dim, :]
snake_case_ = val[dim : dim * 2, :]
snake_case_ = val[-dim:, :]
else:
snake_case_ = val[:dim]
snake_case_ = val[dim : dim * 2]
snake_case_ = val[-dim:]
else:
snake_case_ = val
return orig_state_dict
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
snake_case_ = [
"""module.v.head.weight""",
"""module.v.head.bias""",
"""module.v.head_dist.weight""",
"""module.v.head_dist.bias""",
]
for k in ignore_keys:
state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> str:
snake_case_ = get_audio_spectrogram_transformer_config(_SCREAMING_SNAKE_CASE )
snake_case_ = {
"""ast-finetuned-audioset-10-10-0.4593""": (
"""https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.450""": (
"""https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448""": (
"""https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448-v2""": (
"""https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1"""
),
"""ast-finetuned-audioset-12-12-0.447""": (
"""https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1"""
),
"""ast-finetuned-audioset-14-14-0.443""": (
"""https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1"""
),
"""ast-finetuned-audioset-16-16-0.442""": (
"""https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1"""
),
"""ast-finetuned-speech-commands-v2""": (
"""https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1"""
),
}
# load original state_dict
snake_case_ = model_name_to_url[model_name]
snake_case_ = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )
# remove some keys
remove_keys(_SCREAMING_SNAKE_CASE )
# rename some keys
snake_case_ = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# load 🤗 model
snake_case_ = ASTForAudioClassification(_SCREAMING_SNAKE_CASE )
model.eval()
model.load_state_dict(_SCREAMING_SNAKE_CASE )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
snake_case_ = -4.267_7393 if """speech-commands""" not in model_name else -6.84_5978
snake_case_ = 4.568_9974 if """speech-commands""" not in model_name else 5.565_4526
snake_case_ = 1_024 if """speech-commands""" not in model_name else 128
snake_case_ = ASTFeatureExtractor(mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE )
if "speech-commands" in model_name:
snake_case_ = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" )
snake_case_ = dataset[0]["""audio"""]["""array"""]
else:
snake_case_ = hf_hub_download(
repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , )
snake_case_ , snake_case_ = torchaudio.load(_SCREAMING_SNAKE_CASE )
snake_case_ = waveform.squeeze().numpy()
snake_case_ = feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=16_000 , return_tensors="""pt""" )
# forward pass
snake_case_ = model(**_SCREAMING_SNAKE_CASE )
snake_case_ = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
snake_case_ = torch.tensor([-0.8760, -7.0042, -8.6602] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
snake_case_ = torch.tensor([-1.1986, -7.0903, -8.2718] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
snake_case_ = torch.tensor([-2.6128, -8.0080, -9.4344] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
snake_case_ = torch.tensor([-1.5080, -7.4534, -8.8917] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
snake_case_ = torch.tensor([-0.5050, -6.5833, -8.0843] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
snake_case_ = torch.tensor([-0.3826, -7.0336, -8.2413] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
snake_case_ = torch.tensor([-1.2113, -6.9101, -8.3470] )
elif model_name == "ast-finetuned-speech-commands-v2":
snake_case_ = torch.tensor([6.1589, -8.0566, -8.7984] )
else:
raise ValueError("""Unknown model name""" )
if not torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ):
raise ValueError("""Logits don't match""" )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
print(f"""Saving feature extractor to {pytorch_dump_folder_path}""" )
feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE )
if push_to_hub:
print("""Pushing model and feature extractor to the hub...""" )
model.push_to_hub(f"""MIT/{model_name}""" )
feature_extractor.push_to_hub(f"""MIT/{model_name}""" )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='ast-finetuned-audioset-10-10-0.4593',
type=str,
help='Name of the Audio Spectrogram Transformer model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
__SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 710 |
"""simple docstring"""
from math import factorial
def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int:
snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
snake_case_ = n // 2
return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
__SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 2 | 0 |
"""simple docstring"""
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
__SCREAMING_SNAKE_CASE : List[str] = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n'
__SCREAMING_SNAKE_CASE : List[str] = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n'
__SCREAMING_SNAKE_CASE : Optional[Any] = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n'
__SCREAMING_SNAKE_CASE : int = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n'
__SCREAMING_SNAKE_CASE : List[str] = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class __A (datasets.Metric):
def lowerCAmelCase ( self : Any ) ->Any:
"""simple docstring"""
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any]=[1, 10, 100] , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Dict=3.0 ) ->Any:
"""simple docstring"""
if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError("""This metric is currently not supported on Windows.""" )
with ThreadPoolExecutor(max_workers=UpperCAmelCase_ ) as executor:
snake_case_ = []
snake_case_ = Counter()
snake_case_ = 0
snake_case_ = defaultdict(UpperCAmelCase_ )
for task_id, (candidates, test_case) in enumerate(zip(UpperCAmelCase_ , UpperCAmelCase_ ) ):
for candidate in candidates:
snake_case_ = candidate + """\n""" + test_case
snake_case_ = (test_program, timeout, task_id, completion_id[task_id])
snake_case_ = executor.submit(UpperCAmelCase_ , *UpperCAmelCase_ )
futures.append(UpperCAmelCase_ )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(UpperCAmelCase_ ):
snake_case_ = future.result()
results[result["task_id"]].append((result["""completion_id"""], result) )
snake_case_ , snake_case_ = [], []
for result in results.values():
result.sort()
snake_case_ = [r[1]["""passed"""] for r in result]
total.append(len(UpperCAmelCase_ ) )
correct.append(sum(UpperCAmelCase_ ) )
snake_case_ = np.array(UpperCAmelCase_ )
snake_case_ = np.array(UpperCAmelCase_ )
snake_case_ = k
snake_case_ = {F"""pass@{k}""": estimate_pass_at_k(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
def estimator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = itertools.repeat(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) )
else:
assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )
snake_case_ = iter(_SCREAMING_SNAKE_CASE )
return np.array([estimator(int(_SCREAMING_SNAKE_CASE ) , int(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) for n, c in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] )
| 711 |
"""simple docstring"""
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def _a ( _SCREAMING_SNAKE_CASE = 8 ) -> str:
snake_case_ = ascii_letters + digits + punctuation
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
# Password Generator = full boot with random_number, random_letters, and
# random_character FUNCTIONS
# Put your code here...
i -= len(_SCREAMING_SNAKE_CASE )
snake_case_ = i // 3
snake_case_ = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
snake_case_ = (
chars_incl
+ random(_SCREAMING_SNAKE_CASE , quotient + remainder )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
+ random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
)
snake_case_ = list(_SCREAMING_SNAKE_CASE )
shuffle(_SCREAMING_SNAKE_CASE )
return "".join(_SCREAMING_SNAKE_CASE )
# random is a generalised function for letters, characters and numbers
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
pass # Put your code here...
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 ) -> bool:
if len(_SCREAMING_SNAKE_CASE ) < min_length:
# Your Password must be at least 8 characters long
return False
snake_case_ = any(char in ascii_uppercase for char in password )
snake_case_ = any(char in ascii_lowercase for char in password )
snake_case_ = any(char in digits for char in password )
snake_case_ = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def _a ( ) -> str:
snake_case_ = int(input("""Please indicate the max length of your password: """ ).strip() )
snake_case_ = input(
"""Please indicate the characters that must be in your password: """ ).strip()
print("""Password generated:""" , password_generator(_SCREAMING_SNAKE_CASE ) )
print(
"""Alternative Password generated:""" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , )
print("""[If you are thinking of using this passsword, You better save it.]""" )
if __name__ == "__main__":
main()
| 2 | 0 |
"""simple docstring"""
from heapq import heappop, heappush
import numpy as np
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> tuple[float | int, list[tuple[int, int]]]:
snake_case_ , snake_case_ = grid.shape
snake_case_ = [-1, 1, 0, 0]
snake_case_ = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
snake_case_ , snake_case_ = [(0, source)], set()
snake_case_ = np.full((rows, cols) , np.inf )
snake_case_ = 0
snake_case_ = np.empty((rows, cols) , dtype=_SCREAMING_SNAKE_CASE )
snake_case_ = None
while queue:
((snake_case_) , (snake_case_)) = heappop(_SCREAMING_SNAKE_CASE )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
snake_case_ = []
while (x, y) != source:
path.append((x, y) )
snake_case_ , snake_case_ = predecessors[x, y]
path.append(_SCREAMING_SNAKE_CASE ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ , snake_case_ = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
snake_case_ = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(_SCREAMING_SNAKE_CASE , (dist + 1, (nx, ny)) )
snake_case_ = dist + 1
snake_case_ = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()
| 712 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __A (unittest.TestCase):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = size if size is not None else {"""height""": 18, """width""": 18}
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = num_channels
snake_case_ = image_size
snake_case_ = min_resolution
snake_case_ = max_resolution
snake_case_ = do_resize
snake_case_ = size
snake_case_ = do_normalize
def lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __A (snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Optional[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) )
def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def lowerCAmelCase ( self : Any ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
snake_case_ = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" )
image_processor_first.to_json_file(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(UpperCAmelCase_ )
snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict()
snake_case_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def lowerCAmelCase ( self : List[Any] ) ->Tuple:
"""simple docstring"""
pass
def _a ( ) -> str:
snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
snake_case_ = Image.open(dataset[4]["""file"""] )
snake_case_ = Image.open(dataset[5]["""file"""] )
snake_case_ = [imagea, imagea]
return images
@require_vision
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
snake_case_ = prepare_images()
# test non-batched
snake_case_ = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_024) )
snake_case_ = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ )
# test batched
snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_024) )
snake_case_ = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
| 2 | 0 |
__SCREAMING_SNAKE_CASE : Union[str, Any] = {
'meter': 'm',
'kilometer': 'km',
'megametre': 'Mm',
'gigametre': 'Gm',
'terametre': 'Tm',
'petametre': 'Pm',
'exametre': 'Em',
'zettametre': 'Zm',
'yottametre': 'Ym',
}
# Exponent of the factor(meter)
__SCREAMING_SNAKE_CASE : List[str] = {
'm': 0,
'km': 3,
'Mm': 6,
'Gm': 9,
'Tm': 12,
'Pm': 15,
'Em': 18,
'Zm': 21,
'Ym': 24,
}
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float:
snake_case_ = from_type.lower().strip("""s""" )
snake_case_ = to_type.lower().strip("""s""" )
snake_case_ = UNIT_SYMBOL.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
snake_case_ = UNIT_SYMBOL.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if from_sanitized not in METRIC_CONVERSION:
snake_case_ = (
f"""Invalid 'from_type' value: {from_type!r}.\n"""
f"""Conversion abbreviations are: {", ".join(_SCREAMING_SNAKE_CASE )}"""
)
raise ValueError(_SCREAMING_SNAKE_CASE )
if to_sanitized not in METRIC_CONVERSION:
snake_case_ = (
f"""Invalid 'to_type' value: {to_type!r}.\n"""
f"""Conversion abbreviations are: {", ".join(_SCREAMING_SNAKE_CASE )}"""
)
raise ValueError(_SCREAMING_SNAKE_CASE )
snake_case_ = METRIC_CONVERSION[from_sanitized]
snake_case_ = METRIC_CONVERSION[to_sanitized]
snake_case_ = 1
if from_exponent > to_exponent:
snake_case_ = from_exponent - to_exponent
else:
snake_case_ = -(to_exponent - from_exponent)
return value * pow(10 , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 713 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = scope
snake_case_ = range_bbox
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
snake_case_ = bbox[i, j, 3]
snake_case_ = bbox[i, j, 1]
snake_case_ = t
if bbox[i, j, 2] < bbox[i, j, 0]:
snake_case_ = bbox[i, j, 2]
snake_case_ = bbox[i, j, 0]
snake_case_ = t
snake_case_ = None
if self.use_input_mask:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str:
"""simple docstring"""
snake_case_ = LiltModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict:
"""simple docstring"""
snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowercase: Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return True
def lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = LiltModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@require_torch
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ )
snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ )
snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ )
snake_case_ = torch.Size([1, 2, 768] )
snake_case_ = torch.tensor(
[[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 0 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block
@dataclass
class __A (snake_case__):
'''simple docstring'''
__lowercase: torch.FloatTensor
class __A (snake_case__ , snake_case__):
'''simple docstring'''
@register_to_config
def __init__( self : Tuple , UpperCAmelCase_ : int = 65_536 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : str = "fourier" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase_ : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase_ : str = None , UpperCAmelCase_ : Tuple[int] = (32, 32, 64) , UpperCAmelCase_ : str = None , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = False , ) ->Dict:
"""simple docstring"""
super().__init__()
snake_case_ = sample_size
# time
if time_embedding_type == "fourier":
snake_case_ = GaussianFourierProjection(
embedding_size=8 , set_W_to_weight=UpperCAmelCase_ , log=UpperCAmelCase_ , flip_sin_to_cos=UpperCAmelCase_ )
snake_case_ = 2 * block_out_channels[0]
elif time_embedding_type == "positional":
snake_case_ = Timesteps(
block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase_ , downscale_freq_shift=UpperCAmelCase_ )
snake_case_ = block_out_channels[0]
if use_timestep_embedding:
snake_case_ = block_out_channels[0] * 4
snake_case_ = TimestepEmbedding(
in_channels=UpperCAmelCase_ , time_embed_dim=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , out_dim=block_out_channels[0] , )
snake_case_ = nn.ModuleList([] )
snake_case_ = None
snake_case_ = nn.ModuleList([] )
snake_case_ = None
# down
snake_case_ = in_channels
for i, down_block_type in enumerate(UpperCAmelCase_ ):
snake_case_ = output_channel
snake_case_ = block_out_channels[i]
if i == 0:
input_channel += extra_in_channels
snake_case_ = i == len(UpperCAmelCase_ ) - 1
snake_case_ = get_down_block(
UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , )
self.down_blocks.append(UpperCAmelCase_ )
# mid
snake_case_ = get_mid_block(
UpperCAmelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase_ , add_downsample=UpperCAmelCase_ , )
# up
snake_case_ = list(reversed(UpperCAmelCase_ ) )
snake_case_ = reversed_block_out_channels[0]
if out_block_type is None:
snake_case_ = out_channels
else:
snake_case_ = block_out_channels[0]
for i, up_block_type in enumerate(UpperCAmelCase_ ):
snake_case_ = output_channel
snake_case_ = (
reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase_ ) - 1 else final_upsample_channels
)
snake_case_ = i == len(UpperCAmelCase_ ) - 1
snake_case_ = get_up_block(
UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , )
self.up_blocks.append(UpperCAmelCase_ )
snake_case_ = output_channel
# out
snake_case_ = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 )
snake_case_ = get_out_block(
out_block_type=UpperCAmelCase_ , num_groups_out=UpperCAmelCase_ , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , fc_dim=block_out_channels[-1] // 4 , )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Union[torch.Tensor, float, int] , UpperCAmelCase_ : bool = True , ) ->Union[UNetaDOutput, Tuple]:
"""simple docstring"""
snake_case_ = timestep
if not torch.is_tensor(UpperCAmelCase_ ):
snake_case_ = torch.tensor([timesteps] , dtype=torch.long , device=sample.device )
elif torch.is_tensor(UpperCAmelCase_ ) and len(timesteps.shape ) == 0:
snake_case_ = timesteps[None].to(sample.device )
snake_case_ = self.time_proj(UpperCAmelCase_ )
if self.config.use_timestep_embedding:
snake_case_ = self.time_mlp(UpperCAmelCase_ )
else:
snake_case_ = timestep_embed[..., None]
snake_case_ = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype )
snake_case_ = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) )
# 2. down
snake_case_ = ()
for downsample_block in self.down_blocks:
snake_case_ , snake_case_ = downsample_block(hidden_states=UpperCAmelCase_ , temb=UpperCAmelCase_ )
down_block_res_samples += res_samples
# 3. mid
if self.mid_block:
snake_case_ = self.mid_block(UpperCAmelCase_ , UpperCAmelCase_ )
# 4. up
for i, upsample_block in enumerate(self.up_blocks ):
snake_case_ = down_block_res_samples[-1:]
snake_case_ = down_block_res_samples[:-1]
snake_case_ = upsample_block(UpperCAmelCase_ , res_hidden_states_tuple=UpperCAmelCase_ , temb=UpperCAmelCase_ )
# 5. post-process
if self.out_block:
snake_case_ = self.out_block(UpperCAmelCase_ , UpperCAmelCase_ )
if not return_dict:
return (sample,)
return UNetaDOutput(sample=UpperCAmelCase_ )
| 714 |
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = 0
snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
snake_case_ = i + 1
else:
snake_case_ = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
| 2 | 0 |
"""simple docstring"""
import argparse
import math
import os
import torch
from neural_compressor.utils.pytorch import load
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel
def _a ( ) -> str:
snake_case_ = argparse.ArgumentParser()
parser.add_argument(
"""-m""" , """--pretrained_model_name_or_path""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , )
parser.add_argument(
"""-c""" , """--caption""" , type=_SCREAMING_SNAKE_CASE , default="""robotic cat with wings""" , help="""Text used to generate images.""" , )
parser.add_argument(
"""-n""" , """--images_num""" , type=_SCREAMING_SNAKE_CASE , default=4 , help="""How much images to generate.""" , )
parser.add_argument(
"""-s""" , """--seed""" , type=_SCREAMING_SNAKE_CASE , default=42 , help="""Seed for random process.""" , )
parser.add_argument(
"""-ci""" , """--cuda_id""" , type=_SCREAMING_SNAKE_CASE , default=0 , help="""cuda_id.""" , )
snake_case_ = parser.parse_args()
return args
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
if not len(_SCREAMING_SNAKE_CASE ) == rows * cols:
raise ValueError("""The specified number of rows and columns are not correct.""" )
snake_case_ , snake_case_ = imgs[0].size
snake_case_ = Image.new("""RGB""" , size=(cols * w, rows * h) )
snake_case_ , snake_case_ = grid.size
for i, img in enumerate(_SCREAMING_SNAKE_CASE ):
grid.paste(_SCREAMING_SNAKE_CASE , box=(i % cols * w, i // cols * h) )
return grid
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="robotic cat with wings" , _SCREAMING_SNAKE_CASE=7.5 , _SCREAMING_SNAKE_CASE=50 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=42 , ) -> Dict:
snake_case_ = torch.Generator(pipeline.device ).manual_seed(_SCREAMING_SNAKE_CASE )
snake_case_ = pipeline(
_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , ).images
snake_case_ = int(math.sqrt(_SCREAMING_SNAKE_CASE ) )
snake_case_ = image_grid(_SCREAMING_SNAKE_CASE , rows=_rows , cols=num_images_per_prompt // _rows )
return grid, images
__SCREAMING_SNAKE_CASE : List[Any] = parse_args()
# Load models and create wrapper for stable diffusion
__SCREAMING_SNAKE_CASE : Optional[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer')
__SCREAMING_SNAKE_CASE : List[str] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder')
__SCREAMING_SNAKE_CASE : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae')
__SCREAMING_SNAKE_CASE : Optional[int] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet')
__SCREAMING_SNAKE_CASE : str = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer
)
__SCREAMING_SNAKE_CASE : Union[str, Any] = lambda images, clip_input: (images, False)
if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')):
__SCREAMING_SNAKE_CASE : Optional[Any] = load(args.pretrained_model_name_or_path, model=unet)
unet.eval()
setattr(pipeline, 'unet', unet)
else:
__SCREAMING_SNAKE_CASE : Any = unet.to(torch.device('cuda', args.cuda_id))
__SCREAMING_SNAKE_CASE : Tuple = pipeline.to(unet.device)
__SCREAMING_SNAKE_CASE : List[str] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed)
grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split()))))
__SCREAMING_SNAKE_CASE : Dict = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split()))
os.makedirs(dirname, exist_ok=True)
for idx, image in enumerate(images):
image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
| 715 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Optional[Any] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 0 |
"""simple docstring"""
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]:
warnings.warn(
"""The preprocess method is deprecated and will be removed in a future version. Please"""
""" use VaeImageProcessor.preprocess instead""" , _SCREAMING_SNAKE_CASE , )
if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ):
return image
elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ):
snake_case_ = [image]
if isinstance(image[0] , PIL.Image.Image ):
snake_case_ , snake_case_ = image[0].size
snake_case_ , snake_case_ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
snake_case_ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image]
snake_case_ = np.concatenate(_SCREAMING_SNAKE_CASE , axis=0 )
snake_case_ = np.array(_SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 255.0
snake_case_ = image.transpose(0 , 3 , 1 , 2 )
snake_case_ = 2.0 * image - 1.0
snake_case_ = torch.from_numpy(_SCREAMING_SNAKE_CASE )
elif isinstance(image[0] , torch.Tensor ):
snake_case_ = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 )
return image
def _a ( _SCREAMING_SNAKE_CASE ) -> Dict:
if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ):
return mask
elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ):
snake_case_ = [mask]
if isinstance(mask[0] , PIL.Image.Image ):
snake_case_ , snake_case_ = mask[0].size
snake_case_ , snake_case_ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
snake_case_ = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask]
snake_case_ = np.concatenate(_SCREAMING_SNAKE_CASE , axis=0 )
snake_case_ = mask.astype(np.floataa ) / 255.0
snake_case_ = 0
snake_case_ = 1
snake_case_ = torch.from_numpy(_SCREAMING_SNAKE_CASE )
elif isinstance(mask[0] , torch.Tensor ):
snake_case_ = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 )
return mask
class __A (snake_case__):
'''simple docstring'''
__lowercase: UNetaDModel
__lowercase: RePaintScheduler
def __init__( self : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] ) ->Optional[Any]:
"""simple docstring"""
super().__init__()
self.register_modules(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ )
@torch.no_grad()
def __call__( self : Dict , UpperCAmelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCAmelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCAmelCase_ : int = 250 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
snake_case_ = image
snake_case_ = _preprocess_image(UpperCAmelCase_ )
snake_case_ = original_image.to(device=self.device , dtype=self.unet.dtype )
snake_case_ = _preprocess_mask(UpperCAmelCase_ )
snake_case_ = mask_image.to(device=self.device , dtype=self.unet.dtype )
snake_case_ = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and len(UpperCAmelCase_ ) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(UpperCAmelCase_ )}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
snake_case_ = original_image.shape
snake_case_ = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , self.device )
snake_case_ = eta
snake_case_ = self.scheduler.timesteps[0] + 1
snake_case_ = generator[0] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
if t < t_last:
# predict the noise residual
snake_case_ = self.unet(UpperCAmelCase_ , UpperCAmelCase_ ).sample
# compute previous image: x_t -> x_t-1
snake_case_ = self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
snake_case_ = self.scheduler.undo_step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
snake_case_ = t
snake_case_ = (image / 2 + 0.5).clamp(0 , 1 )
snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
snake_case_ = self.numpy_to_pil(UpperCAmelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCAmelCase_ )
| 716 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter'
__SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE'
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}"""
raise TypeError(_SCREAMING_SNAKE_CASE )
snake_case_ = spanish_id.replace("""-""" , """""" ).upper()
if len(_SCREAMING_SNAKE_CASE ) != 9:
raise ValueError(_SCREAMING_SNAKE_CASE )
try:
snake_case_ = int(spanish_id_clean[0:8] )
snake_case_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_SCREAMING_SNAKE_CASE ) from ex
if letter.isdigit():
raise ValueError(_SCREAMING_SNAKE_CASE )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
"""simple docstring"""
import json
import os
import re
import sys
import urllib.request
import requests
from bsa import BeautifulSoup
__SCREAMING_SNAKE_CASE : List[Any] = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582'
}
def _a ( _SCREAMING_SNAKE_CASE = "dhaka" , _SCREAMING_SNAKE_CASE = 5 ) -> int:
snake_case_ = min(_SCREAMING_SNAKE_CASE , 50 ) # Prevent abuse!
snake_case_ = {
"""q""": query,
"""tbm""": """isch""",
"""hl""": """en""",
"""ijn""": """0""",
}
snake_case_ = requests.get("""https://www.google.com/search""" , params=_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE )
snake_case_ = BeautifulSoup(html.text , """html.parser""" )
snake_case_ = """""".join(
re.findall(r"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""" ) ) ) )
snake_case_ = json.dumps(_SCREAMING_SNAKE_CASE )
snake_case_ = json.loads(_SCREAMING_SNAKE_CASE )
snake_case_ = re.findall(
r"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , _SCREAMING_SNAKE_CASE , )
if not matched_google_image_data:
return 0
snake_case_ = re.sub(
r"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(_SCREAMING_SNAKE_CASE ) , )
snake_case_ = re.findall(
r"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , _SCREAMING_SNAKE_CASE , )
for index, fixed_full_res_image in enumerate(_SCREAMING_SNAKE_CASE ):
if index >= max_images:
return index
snake_case_ = bytes(_SCREAMING_SNAKE_CASE , """ascii""" ).decode(
"""unicode-escape""" )
snake_case_ = bytes(_SCREAMING_SNAKE_CASE , """ascii""" ).decode(
"""unicode-escape""" )
snake_case_ = urllib.request.build_opener()
snake_case_ = [
(
"""User-Agent""",
"""Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"""
""" (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""",
)
]
urllib.request.install_opener(_SCREAMING_SNAKE_CASE )
snake_case_ = f"""query_{query.replace(" " , "_" )}"""
if not os.path.exists(_SCREAMING_SNAKE_CASE ):
os.makedirs(_SCREAMING_SNAKE_CASE )
urllib.request.urlretrieve( # noqa: S310
_SCREAMING_SNAKE_CASE , f"""{path_name}/original_size_img_{index}.jpg""" )
return index
if __name__ == "__main__":
try:
__SCREAMING_SNAKE_CASE : Optional[int] = download_images_from_google_query(sys.argv[1])
print(f"""{image_count} images were downloaded to disk.""")
except IndexError:
print('Please provide a search term.')
raise
| 717 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'}
__SCREAMING_SNAKE_CASE : List[str] = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
}
}
__SCREAMING_SNAKE_CASE : List[str] = {
'albert-base-v1': 512,
'albert-large-v1': 512,
'albert-xlarge-v1': 512,
'albert-xxlarge-v1': 512,
'albert-base-v2': 512,
'albert-large-v2': 512,
'albert-xlarge-v2': 512,
'albert-xxlarge-v2': 512,
}
__SCREAMING_SNAKE_CASE : int = '▁'
class __A (snake_case__):
'''simple docstring'''
__lowercase: Optional[Any] = VOCAB_FILES_NAMES
__lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__lowercase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : int="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->None:
"""simple docstring"""
snake_case_ = (
AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ , normalized=UpperCAmelCase_ )
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
else mask_token
)
snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
snake_case_ = do_lower_case
snake_case_ = remove_space
snake_case_ = keep_accents
snake_case_ = vocab_file
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase_ )
@property
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
return len(self.sp_model )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) ->List[str]:
"""simple docstring"""
snake_case_ = self.__dict__.copy()
snake_case_ = None
return state
def __setstate__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
snake_case_ = {}
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any ) ->str:
"""simple docstring"""
if self.remove_space:
snake_case_ = """ """.join(inputs.strip().split() )
else:
snake_case_ = inputs
snake_case_ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
snake_case_ = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ )
snake_case_ = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] )
if self.do_lower_case:
snake_case_ = outputs.lower()
return outputs
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str ) ->List[str]:
"""simple docstring"""
snake_case_ = self.preprocess_text(UpperCAmelCase_ )
snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ )
snake_case_ = []
for piece in pieces:
if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
snake_case_ = cur_pieces[1:]
else:
snake_case_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCAmelCase_ )
else:
new_pieces.append(UpperCAmelCase_ )
return new_pieces
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ) ->Dict:
"""simple docstring"""
return self.sp_model.PieceToId(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
return self.sp_model.IdToPiece(UpperCAmelCase_ )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict ) ->Any:
"""simple docstring"""
snake_case_ = []
snake_case_ = """"""
snake_case_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase_ ) + token
snake_case_ = True
snake_case_ = []
else:
current_sub_tokens.append(UpperCAmelCase_ )
snake_case_ = False
out_string += self.sp_model.decode(UpperCAmelCase_ )
return out_string.strip()
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ )
if token_ids_a is not None:
return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1]
return [1] + ([0] * len(UpperCAmelCase_ )) + [1]
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]:
"""simple docstring"""
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case_ = os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase_ , """wb""" ) as fi:
snake_case_ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
return (out_vocab_file,)
| 2 | 0 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'microsoft/unispeech-sat-base-100h-libri-ft': (
'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class __A (snake_case__):
'''simple docstring'''
__lowercase: int = """unispeech-sat"""
def __init__( self : int , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : Optional[Any]=768 , UpperCAmelCase_ : Dict=12 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : Optional[int]=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : Any="group" , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[str]=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : List[str]=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Dict=128 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : List[Any]=10 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : List[Any]=10 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : str=320 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : List[str]=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Any="mean" , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[Any]=256 , UpperCAmelCase_ : Optional[Any]=(512, 512, 512, 512, 1_500) , UpperCAmelCase_ : Optional[Any]=(5, 3, 3, 1, 1) , UpperCAmelCase_ : Dict=(1, 2, 3, 1, 1) , UpperCAmelCase_ : str=512 , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Tuple=504 , **UpperCAmelCase_ : str , ) ->Any:
"""simple docstring"""
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
snake_case_ = hidden_size
snake_case_ = feat_extract_norm
snake_case_ = feat_extract_activation
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = conv_bias
snake_case_ = num_conv_pos_embeddings
snake_case_ = num_conv_pos_embedding_groups
snake_case_ = len(self.conv_dim )
snake_case_ = num_hidden_layers
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = num_attention_heads
snake_case_ = hidden_dropout
snake_case_ = attention_dropout
snake_case_ = activation_dropout
snake_case_ = feat_proj_dropout
snake_case_ = final_dropout
snake_case_ = layerdrop
snake_case_ = layer_norm_eps
snake_case_ = initializer_range
snake_case_ = vocab_size
snake_case_ = num_clusters
snake_case_ = do_stable_layer_norm
snake_case_ = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="""
""" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="""
F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
snake_case_ = apply_spec_augment
snake_case_ = mask_time_prob
snake_case_ = mask_time_length
snake_case_ = mask_time_min_masks
snake_case_ = mask_feature_prob
snake_case_ = mask_feature_length
snake_case_ = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
snake_case_ = num_codevectors_per_group
snake_case_ = num_codevector_groups
snake_case_ = contrastive_logits_temperature
snake_case_ = feat_quantizer_dropout
snake_case_ = num_negatives
snake_case_ = codevector_dim
snake_case_ = proj_codevector_dim
snake_case_ = diversity_loss_weight
# ctc loss
snake_case_ = ctc_loss_reduction
snake_case_ = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
snake_case_ = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = list(UpperCAmelCase_ )
snake_case_ = xvector_output_dim
@property
def lowerCAmelCase ( self : Tuple ) ->List[Any]:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 718 |
"""simple docstring"""
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("""The given input must be positive""" )
# get the generated string sequence
snake_case_ = gray_code_sequence_string(_SCREAMING_SNAKE_CASE )
#
# convert them to integers
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
snake_case_ = int(sequence[i] , 2 )
return sequence
def _a ( _SCREAMING_SNAKE_CASE ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
snake_case_ = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
snake_case_ = gray_code_sequence_string(bit_count - 1 )
snake_case_ = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
snake_case_ = """0""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
snake_case_ = """1""" + smaller_sequence[i]
sequence.append(_SCREAMING_SNAKE_CASE )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class __A (tf.keras.layers.Layer):
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int = None , UpperCAmelCase_ : int = None ) ->Dict:
"""simple docstring"""
super().__init__()
snake_case_ = pad_token_id
snake_case_ = max_length
snake_case_ = vocab
snake_case_ = merges
snake_case_ = BytePairTokenizer(UpperCAmelCase_ , UpperCAmelCase_ , sequence_length=UpperCAmelCase_ )
@classmethod
def lowerCAmelCase ( cls : Tuple , UpperCAmelCase_ : GPTaTokenizer , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = [""" """.join(UpperCAmelCase_ ) for m in tokenizer.bpe_ranks.keys()]
snake_case_ = tokenizer.get_vocab()
return cls(UpperCAmelCase_ , UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ )
@classmethod
def lowerCAmelCase ( cls : Union[str, Any] , UpperCAmelCase_ : Union[str, os.PathLike] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = GPTaTokenizer.from_pretrained(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ )
return cls.from_tokenizer(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ )
@classmethod
def lowerCAmelCase ( cls : List[str] , UpperCAmelCase_ : Union[str, Any] ) ->List[str]:
"""simple docstring"""
return cls(**UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict ) ->int:
"""simple docstring"""
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int = None ) ->Any:
"""simple docstring"""
snake_case_ = self.tf_tokenizer(UpperCAmelCase_ )
snake_case_ = tf.ones_like(UpperCAmelCase_ )
if self.pad_token_id is not None:
# pad the tokens up to max length
snake_case_ = max_length if max_length is not None else self.max_length
if max_length is not None:
snake_case_ , snake_case_ = pad_model_inputs(
UpperCAmelCase_ , max_seq_length=UpperCAmelCase_ , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 719 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE : Optional[Any] = {
'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE : Tuple = [
'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegatronBertForCausalLM',
'MegatronBertForMaskedLM',
'MegatronBertForMultipleChoice',
'MegatronBertForNextSentencePrediction',
'MegatronBertForPreTraining',
'MegatronBertForQuestionAnswering',
'MegatronBertForSequenceClassification',
'MegatronBertForTokenClassification',
'MegatronBertModel',
'MegatronBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 2 | 0 |
"""simple docstring"""
import collections
import os
import re
from pathlib import Path
__SCREAMING_SNAKE_CASE : Union[str, Any] = 'src/transformers'
# Matches is_xxx_available()
__SCREAMING_SNAKE_CASE : List[str] = re.compile(R'is\_([a-z_]*)_available()')
# Catches a one-line _import_struct = {xxx}
__SCREAMING_SNAKE_CASE : int = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
__SCREAMING_SNAKE_CASE : str = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]')
# Catches a line if not is_foo_available
__SCREAMING_SNAKE_CASE : Tuple = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)')
# Catches a line _import_struct["bla"].append("foo")
__SCREAMING_SNAKE_CASE : List[str] = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
__SCREAMING_SNAKE_CASE : Tuple = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]')
# Catches a line with an object between quotes and a comma: "MyModel",
__SCREAMING_SNAKE_CASE : List[str] = re.compile(R'^\s+"([^"]+)",')
# Catches a line with objects between brackets only: ["foo", "bar"],
__SCREAMING_SNAKE_CASE : Dict = re.compile(R'^\s+\[([^\]]+)\]')
# Catches a line with from foo import bar, bla, boo
__SCREAMING_SNAKE_CASE : Dict = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n')
# Catches a line with try:
__SCREAMING_SNAKE_CASE : int = re.compile(R'^\s*try:')
# Catches a line with else:
__SCREAMING_SNAKE_CASE : Tuple = re.compile(R'^\s*else:')
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
if _re_test_backend.search(_SCREAMING_SNAKE_CASE ) is None:
return None
snake_case_ = [b[0] for b in _re_backend.findall(_SCREAMING_SNAKE_CASE )]
backends.sort()
return "_and_".join(_SCREAMING_SNAKE_CASE )
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]:
with open(_SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
snake_case_ = f.readlines()
snake_case_ = 0
while line_index < len(_SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith("""_import_structure = {""" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(_SCREAMING_SNAKE_CASE ):
return None
# First grab the objects without a specific backend in _import_structure
snake_case_ = []
while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None:
snake_case_ = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ):
snake_case_ = _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ).groups()[0]
snake_case_ = re.findall(r"""\[([^\]]+)\]""" , _SCREAMING_SNAKE_CASE )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(""", """ )] )
line_index += 1
continue
snake_case_ = _re_import_struct_key_value.search(_SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
snake_case_ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(_SCREAMING_SNAKE_CASE ) > 0]
objects.extend(_SCREAMING_SNAKE_CASE )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
line_index += 1
snake_case_ = {"""none""": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("""if TYPE_CHECKING""" ):
# If the line is an if not is_backend_available, we grab all objects associated.
snake_case_ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
snake_case_ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
snake_case_ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ):
snake_case_ = lines[line_index]
if _re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ).groups()[0] )
elif _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ) is not None:
snake_case_ = _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(""", """ )
snake_case_ = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0]
objects.extend(_SCREAMING_SNAKE_CASE )
elif _re_between_brackets.search(_SCREAMING_SNAKE_CASE ) is not None:
snake_case_ = _re_between_brackets.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(""", """ )
snake_case_ = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0]
objects.extend(_SCREAMING_SNAKE_CASE )
elif _re_quote_object.search(_SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_quote_object.search(_SCREAMING_SNAKE_CASE ).groups()[0] )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
elif line.startswith(""" """ * 12 + """\"""" ):
objects.append(line[13:-3] )
line_index += 1
snake_case_ = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
snake_case_ = []
while (
line_index < len(_SCREAMING_SNAKE_CASE )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("""else""" )
):
snake_case_ = lines[line_index]
snake_case_ = _re_import.search(_SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
snake_case_ = {"""none""": objects}
# Let's continue with backend-specific objects
while line_index < len(_SCREAMING_SNAKE_CASE ):
# If the line is an if is_backend_available, we grab all objects associated.
snake_case_ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
snake_case_ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
snake_case_ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ):
snake_case_ = lines[line_index]
snake_case_ = _re_import.search(_SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 12 ):
objects.append(line[12:-2] )
line_index += 1
snake_case_ = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
def find_duplicates(_SCREAMING_SNAKE_CASE ):
return [k for k, v in collections.Counter(_SCREAMING_SNAKE_CASE ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
snake_case_ = []
for key in import_dict_objects.keys():
snake_case_ = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
snake_case_ = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
snake_case_ = """base imports""" if key == """none""" else f"""{key} backend"""
errors.append(f"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def _a ( ) -> str:
snake_case_ = []
for root, _, files in os.walk(_SCREAMING_SNAKE_CASE ):
if "__init__.py" in files:
snake_case_ = os.path.join(_SCREAMING_SNAKE_CASE , """__init__.py""" )
snake_case_ = parse_init(_SCREAMING_SNAKE_CASE )
if objects is not None:
snake_case_ = analyze_results(*_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
snake_case_ = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append("""\n""".join(_SCREAMING_SNAKE_CASE ) )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError("""\n\n""".join(_SCREAMING_SNAKE_CASE ) )
def _a ( ) -> int:
snake_case_ = []
for path, directories, files in os.walk(_SCREAMING_SNAKE_CASE ):
for folder in directories:
# Ignore private modules
if folder.startswith("""_""" ):
directories.remove(_SCREAMING_SNAKE_CASE )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(_SCREAMING_SNAKE_CASE ) / folder).glob("""*.py""" ) ) ) == 0:
continue
snake_case_ = str((Path(_SCREAMING_SNAKE_CASE ) / folder).relative_to(_SCREAMING_SNAKE_CASE ) )
snake_case_ = short_path.replace(os.path.sep , """.""" )
submodules.append(_SCREAMING_SNAKE_CASE )
for fname in files:
if fname == "__init__.py":
continue
snake_case_ = str((Path(_SCREAMING_SNAKE_CASE ) / fname).relative_to(_SCREAMING_SNAKE_CASE ) )
snake_case_ = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" )
if len(submodule.split(""".""" ) ) == 1:
submodules.append(_SCREAMING_SNAKE_CASE )
return submodules
__SCREAMING_SNAKE_CASE : Dict = [
'convert_pytorch_checkpoint_to_tf2',
'modeling_flax_pytorch_utils',
'models.esm.openfold_utils',
]
def _a ( ) -> Tuple:
# This is to make sure the transformers module imported is the one in the repo.
from transformers.utils import direct_transformers_import
snake_case_ = direct_transformers_import(_SCREAMING_SNAKE_CASE )
snake_case_ = set(transformers._import_structure.keys() )
# This contains all the base keys of the _import_structure object defined in the init, but if the user is missing
# some optional dependencies, they may not have all of them. Thus we read the init to read all additions and
# (potentiall re-) add them.
with open(os.path.join(_SCREAMING_SNAKE_CASE , """__init__.py""" ) , """r""" ) as f:
snake_case_ = f.read()
import_structure_keys.update(set(re.findall(r"""import_structure\[\"([^\"]*)\"\]""" , _SCREAMING_SNAKE_CASE ) ) )
snake_case_ = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in import_structure_keys
]
if len(_SCREAMING_SNAKE_CASE ) > 0:
snake_case_ = """\n""".join(f"""- {module}""" for module in module_not_registered )
raise ValueError(
"""The following submodules are not properly registed in the main init of Transformers:\n"""
f"""{list_of_modules}\n"""
"""Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 720 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/'
__SCREAMING_SNAKE_CASE : List[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def _a ( _SCREAMING_SNAKE_CASE ) -> int:
if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" )
elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" )
elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" )
elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10:
snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" )
if "conditioner_blocks.0." in key:
snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" )
if "prime_prior" in key:
snake_case_ = key.replace("""prime_prior""" , """encoder""" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
snake_case_ = key.replace(""".emb.""" , """.""" )
if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(""".k""" , """.codebook""" )
if "y_emb." in key:
return key.replace("""y_emb.""" , """metadata_embedding.""" )
if "x_emb.emb." in key:
snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" )
if "prime_state_ln" in key:
return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" )
if ".ln" in key:
return key.replace(""".ln""" , """.layer_norm""" )
if "_ln" in key:
return key.replace("""_ln""" , """_layer_norm""" )
if "prime_state_proj" in key:
return key.replace("""prime_state_proj""" , """encoder.proj_in""" )
if "prime_x_out" in key:
return key.replace("""prime_x_out""" , """encoder.lm_head""" )
if "prior.x_out" in key:
return key.replace("""x_out""" , """fc_proj_out""" )
if "x_emb" in key:
return key.replace("""x_emb""" , """embed_tokens""" )
return key
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ = {}
import re
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" )
snake_case_ = re.compile(
r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] )
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]]
snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
snake_case_ = prefix + resnet_block
snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ):
snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE )
snake_case_ = regex_match.groups()
snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# keep original key
else:
snake_case_ = original_key
snake_case_ = replace_key(_SCREAMING_SNAKE_CASE )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
snake_case_ = original_key
snake_case_ = original_key
snake_case_ = value
return new_dict
@torch.no_grad()
def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]:
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ):
snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE )
open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content )
snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]]
snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE )
snake_case_ = []
snake_case_ = {}
for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ):
snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""]
snake_case_ = {}
for k in old_dic.keys():
if k.endswith(""".b""" ):
snake_case_ = old_dic[k]
elif k.endswith(""".w""" ):
snake_case_ = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
snake_case_ = old_dic[k]
else:
snake_case_ = old_dic[k]
snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}"""
snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
weight_dict.append(_SCREAMING_SNAKE_CASE )
snake_case_ = weight_dict.pop(0 )
model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
return weight_dict
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
__SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 2 | 0 |
"""simple docstring"""
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
'''simple docstring'''
def __init__( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : str=[1, 2, 1] , UpperCAmelCase_ : str=[2, 2, 4] , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=2.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : str=True , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Dict=1E-5 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[Any]=10 , UpperCAmelCase_ : List[Any]=8 , ) ->int:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = patch_size
snake_case_ = num_channels
snake_case_ = embed_dim
snake_case_ = depths
snake_case_ = num_heads
snake_case_ = window_size
snake_case_ = mlp_ratio
snake_case_ = qkv_bias
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = drop_path_rate
snake_case_ = hidden_act
snake_case_ = use_absolute_embeddings
snake_case_ = patch_norm
snake_case_ = layer_norm_eps
snake_case_ = initializer_range
snake_case_ = is_training
snake_case_ = scope
snake_case_ = use_labels
snake_case_ = type_sequence_label_size
snake_case_ = encoder_stride
def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str ) ->List[Any]:
"""simple docstring"""
snake_case_ = SwinvaModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
snake_case_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
snake_case_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = SwinvaForMaskedImageModeling(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
snake_case_ = 1
snake_case_ = SwinvaForMaskedImageModeling(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
snake_case_ = model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] ) ->List[Any]:
"""simple docstring"""
snake_case_ = self.type_sequence_label_size
snake_case_ = SwinvaForImageClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ = config_and_inputs
snake_case_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Any = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
__lowercase: Dict = (
{"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: Optional[Any] = False
__lowercase: Union[str, Any] = False
__lowercase: str = False
def lowerCAmelCase ( self : List[Any] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = SwinvaModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , embed_dim=37 )
def lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : Optional[int] ) ->Any:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
@unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" )
def lowerCAmelCase ( self : Any ) ->Optional[Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""Swinv2 does not use inputs_embeds""" )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
pass
def lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
snake_case_ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) )
def lowerCAmelCase ( self : int ) ->Optional[Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(UpperCAmelCase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def lowerCAmelCase ( self : str ) ->Optional[Any]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = True
for model_class in self.all_model_classes:
snake_case_ = True
snake_case_ = False
snake_case_ = True
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.attentions
snake_case_ = len(self.model_tester.depths )
self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
snake_case_ = True
snake_case_ = config.window_size**2
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.attentions
self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
snake_case_ = len(UpperCAmelCase_ )
# Check attention is always last and order is fine
snake_case_ = True
snake_case_ = True
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
if hasattr(self.model_tester , """num_hidden_states_types""" ):
snake_case_ = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
snake_case_ = 2
self.assertEqual(out_len + added_hidden_states , len(UpperCAmelCase_ ) )
snake_case_ = outputs.attentions
self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
snake_case_ = outputs.hidden_states
snake_case_ = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ )
# Swinv2 has a different seq_length
snake_case_ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
snake_case_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
snake_case_ = outputs.reshaped_hidden_states
self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ )
snake_case_ , snake_case_ , snake_case_ , snake_case_ = reshaped_hidden_states[0].shape
snake_case_ = (
reshaped_hidden_states[0].view(UpperCAmelCase_ , UpperCAmelCase_ , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def lowerCAmelCase ( self : Any ) ->List[str]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
snake_case_ = True
self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = 3
snake_case_ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
snake_case_ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
snake_case_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
snake_case_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
snake_case_ = True
self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = SwinvaModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = _config_zero_init(UpperCAmelCase_ )
for model_class in self.all_model_classes:
snake_case_ = model_class(config=UpperCAmelCase_ )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@require_vision
@require_torch
class __A (unittest.TestCase):
'''simple docstring'''
@cached_property
def lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" )
if is_vision_available()
else None
)
@slow
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to(
UpperCAmelCase_ )
snake_case_ = self.default_image_processor
snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
snake_case_ = image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**UpperCAmelCase_ )
# verify the logits
snake_case_ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase_ )
snake_case_ = torch.tensor([-0.3_947, -0.4_306, 0.0_026] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
| 721 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
__SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
__SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
__SCREAMING_SNAKE_CASE : Dict = 'zero2'
__SCREAMING_SNAKE_CASE : List[Any] = 'zero3'
__SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
__SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __A (snake_case__):
'''simple docstring'''
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = models[model]
snake_case_ = self.run_trainer(
stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
self.do_checks(UpperCAmelCase_ )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ )
snake_case_ = F"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(UpperCAmelCase_ )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
snake_case_ = self.get_launcher(UpperCAmelCase_ )
snake_case_ = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple:
"""simple docstring"""
snake_case_ = min(2 , get_gpu_count() ) if distributed else 1
return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 2 | 0 |
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def A ( lowercase , lowercase ) -> float:
'''simple docstring'''
return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(lowercase , lowercase ) ) )
def A ( lowercase , lowercase ) -> list[list[list[float] | float]]:
'''simple docstring'''
if dataset.ndim != value_array.ndim:
UpperCamelCase = (
'Wrong input data\'s dimensions... '
f'''dataset : {dataset.ndim}, value_array : {value_array.ndim}'''
)
raise ValueError(lowercase )
try:
if dataset.shape[1] != value_array.shape[1]:
UpperCamelCase = (
'Wrong input data\'s shape... '
f'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}'''
)
raise ValueError(lowercase )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError('Wrong shape' )
if dataset.dtype != value_array.dtype:
UpperCamelCase = (
'Input data have different datatype... '
f'''dataset : {dataset.dtype}, value_array : {value_array.dtype}'''
)
raise TypeError(lowercase )
UpperCamelCase = []
for value in value_array:
UpperCamelCase = euclidean(lowercase , dataset[0] )
UpperCamelCase = dataset[0].tolist()
for dataset_value in dataset[1:]:
UpperCamelCase = euclidean(lowercase , lowercase )
if dist > temp_dist:
UpperCamelCase = temp_dist
UpperCamelCase = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def A ( lowercase , lowercase ) -> float:
'''simple docstring'''
return np.dot(lowercase , lowercase ) / (norm(lowercase ) * norm(lowercase ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
def A ( lowercase , lowercase ) -> str:
'''simple docstring'''
if a < 0 or b < 0:
raise ValueError('the value of both inputs must be positive' )
UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b"
UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b"
UpperCamelCase = max(len(lowercase ) , len(lowercase ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(lowercase ) , b_binary.zfill(lowercase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
import itertools
import random
import unittest
import numpy as np
from transformers import is_speech_available
from transformers.testing_utils import require_torch, require_torchaudio
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import SpeechaTextFeatureExtractor
_UpperCAmelCase : int = random.Random()
def A ( lowercase , lowercase=1.0 , lowercase=None , lowercase=None ) -> List[Any]:
'''simple docstring'''
if rng is None:
UpperCamelCase = global_rng
UpperCamelCase = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class lowercase ( unittest.TestCase ):
def __init__( self , A_ , A_=7 , A_=400 , A_=2_000 , A_=24 , A_=24 , A_=0.0 , A_=16_000 , A_=True , A_=True , ) -> int:
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = min_seq_length
UpperCamelCase = max_seq_length
UpperCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
UpperCamelCase = feature_size
UpperCamelCase = num_mel_bins
UpperCamelCase = padding_value
UpperCamelCase = sampling_rate
UpperCamelCase = return_attention_mask
UpperCamelCase = do_normalize
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
return {
"feature_size": self.feature_size,
"num_mel_bins": self.num_mel_bins,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def __UpperCamelCase ( self , A_=False , A_=False ) -> Optional[int]:
"""simple docstring"""
def _flatten(A_ ):
return list(itertools.chain(*A_ ) )
if equal_length:
UpperCamelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
UpperCamelCase = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
UpperCamelCase = [np.asarray(A_ ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
__lowercase : Optional[int] = SpeechaTextFeatureExtractor if is_speech_available() else None
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = SpeechaTextFeatureExtractionTester(self )
def __UpperCamelCase ( self , A_ ) -> Optional[Any]:
"""simple docstring"""
self.assertTrue(np.all(np.mean(A_ , axis=0 ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(A_ , axis=0 ) - 1 ) < 1e-3 ) )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
# Tests that all call wrap to encode_plus and batch_encode_plus
UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
UpperCamelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
UpperCamelCase = [np.asarray(A_ ) for speech_input in speech_inputs]
# Test feature size
UpperCamelCase = feature_extractor(A_ , padding=A_ , return_tensors='np' ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size )
# Test not batched input
UpperCamelCase = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features
UpperCamelCase = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features
self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) )
# Test batched
UpperCamelCase = feature_extractor(A_ , return_tensors='np' ).input_features
UpperCamelCase = feature_extractor(A_ , return_tensors='np' ).input_features
for enc_seq_a, enc_seq_a in zip(A_ , A_ ):
self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
UpperCamelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)]
UpperCamelCase = np.asarray(A_ )
UpperCamelCase = feature_extractor(A_ , return_tensors='np' ).input_features
UpperCamelCase = feature_extractor(A_ , return_tensors='np' ).input_features
for enc_seq_a, enc_seq_a in zip(A_ , A_ ):
self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) )
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
UpperCamelCase = ['longest', 'max_length', 'do_not_pad']
UpperCamelCase = [None, 16, None]
for max_length, padding in zip(A_ , A_ ):
UpperCamelCase = feature_extractor(
A_ , padding=A_ , max_length=A_ , return_attention_mask=A_ )
UpperCamelCase = inputs.input_features
UpperCamelCase = inputs.attention_mask
UpperCamelCase = [np.sum(A_ ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
UpperCamelCase = ['longest', 'max_length', 'do_not_pad']
UpperCamelCase = [None, 16, None]
for max_length, padding in zip(A_ , A_ ):
UpperCamelCase = feature_extractor(
A_ , max_length=A_ , padding=A_ , return_tensors='np' , return_attention_mask=A_ )
UpperCamelCase = inputs.input_features
UpperCamelCase = inputs.attention_mask
UpperCamelCase = [np.sum(A_ ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
UpperCamelCase = feature_extractor(
A_ , padding='max_length' , max_length=4 , truncation=A_ , return_tensors='np' , return_attention_mask=A_ , )
UpperCamelCase = inputs.input_features
UpperCamelCase = inputs.attention_mask
UpperCamelCase = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1] )
self._check_zero_mean_unit_variance(input_features[2] )
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
UpperCamelCase = feature_extractor(
A_ , padding='longest' , max_length=4 , truncation=A_ , return_tensors='np' , return_attention_mask=A_ , )
UpperCamelCase = inputs.input_features
UpperCamelCase = inputs.attention_mask
UpperCamelCase = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 4, 24) )
UpperCamelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
UpperCamelCase = feature_extractor(
A_ , padding='longest' , max_length=16 , truncation=A_ , return_tensors='np' , return_attention_mask=A_ , )
UpperCamelCase = inputs.input_features
UpperCamelCase = inputs.attention_mask
UpperCamelCase = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 6, 24) )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
import torch
UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase = np.random.rand(100 , 32 ).astype(np.floataa )
UpperCamelCase = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
UpperCamelCase = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
UpperCamelCase = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def __UpperCamelCase ( self , A_ ) -> Optional[Any]:
"""simple docstring"""
from datasets import load_dataset
UpperCamelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' )
# automatic decoding with librispeech
UpperCamelCase = ds.sort('id' ).select(range(A_ ) )[:num_samples]['audio']
return [x["array"] for x in speech_samples]
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
# fmt: off
UpperCamelCase = np.array([
-1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241,
-1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128,
-1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625,
] )
# fmt: on
UpperCamelCase = self._load_datasamples(1 )
UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase = feature_extractor(A_ , return_tensors='pt' ).input_features
self.assertEquals(input_features.shape , (1, 584, 24) )
self.assertTrue(np.allclose(input_features[0, 0, :30] , A_ , atol=1e-4 ) )
| 3 |
import re
def A ( lowercase ) -> str:
'''simple docstring'''
if len(re.findall('[ATCG]' , lowercase ) ) != len(lowercase ):
raise ValueError('Invalid Strand' )
return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
from collections.abc import Callable
def A ( lowercase , lowercase , lowercase ) -> float:
'''simple docstring'''
UpperCamelCase = a
UpperCamelCase = b
if function(lowercase ) == 0: # one of the a or b is a root for the function
return a
elif function(lowercase ) == 0:
return b
elif (
function(lowercase ) * function(lowercase ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('could not find root in given interval.' )
else:
UpperCamelCase = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(lowercase ) == 0:
return mid
elif function(lowercase ) * function(lowercase ) < 0:
UpperCamelCase = mid
else:
UpperCamelCase = mid
UpperCamelCase = start + (end - start) / 2.0
return mid
def A ( lowercase ) -> float:
'''simple docstring'''
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1_000))
import doctest
doctest.testmod()
| 3 |
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Dict = (DDPMScheduler,)
def __UpperCamelCase ( self , **A_ ) -> Dict:
"""simple docstring"""
UpperCamelCase = {
'num_train_timesteps': 1_000,
'beta_start': 0.0001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'variance_type': 'fixed_small',
'clip_sample': True,
}
config.update(**A_ )
return config
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=A_ )
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=A_ , beta_end=A_ )
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=A_ )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=A_ )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=A_ )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
self.check_over_configs(thresholding=A_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=A_ , prediction_type=A_ , sample_max_value=A_ , )
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=A_ )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
for t in [0, 500, 999]:
self.check_over_forward(time_step=A_ )
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = len(A_ )
UpperCamelCase = self.dummy_model()
UpperCamelCase = self.dummy_sample_deter
UpperCamelCase = torch.manual_seed(0 )
for t in reversed(range(A_ ) ):
# 1. predict noise residual
UpperCamelCase = model(A_ , A_ )
# 2. predict previous mean of sample x_t-1
UpperCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
UpperCamelCase = pred_prev_sample
UpperCamelCase = torch.sum(torch.abs(A_ ) )
UpperCamelCase = torch.mean(torch.abs(A_ ) )
assert abs(result_sum.item() - 258.9606 ) < 1e-2
assert abs(result_mean.item() - 0.3372 ) < 1e-3
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config(prediction_type='v_prediction' )
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = len(A_ )
UpperCamelCase = self.dummy_model()
UpperCamelCase = self.dummy_sample_deter
UpperCamelCase = torch.manual_seed(0 )
for t in reversed(range(A_ ) ):
# 1. predict noise residual
UpperCamelCase = model(A_ , A_ )
# 2. predict previous mean of sample x_t-1
UpperCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
UpperCamelCase = pred_prev_sample
UpperCamelCase = torch.sum(torch.abs(A_ ) )
UpperCamelCase = torch.mean(torch.abs(A_ ) )
assert abs(result_sum.item() - 202.0296 ) < 1e-2
assert abs(result_mean.item() - 0.2631 ) < 1e-3
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=A_ )
UpperCamelCase = scheduler.timesteps
for i, timestep in enumerate(A_ ):
if i == len(A_ ) - 1:
UpperCamelCase = -1
else:
UpperCamelCase = timesteps[i + 1]
UpperCamelCase = scheduler.previous_timestep(A_ )
UpperCamelCase = prev_t.item()
self.assertEqual(A_ , A_ )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = [100, 87, 50, 51, 0]
with self.assertRaises(A_ , msg='`custom_timesteps` must be in descending order.' ):
scheduler.set_timesteps(timesteps=A_ )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = [100, 87, 50, 1, 0]
UpperCamelCase = len(A_ )
with self.assertRaises(A_ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ):
scheduler.set_timesteps(num_inference_steps=A_ , timesteps=A_ )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = [scheduler.config.num_train_timesteps]
with self.assertRaises(
A_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ):
scheduler.set_timesteps(timesteps=A_ )
| 3 | 1 |
class lowercase :
def __init__( self , A_ ) -> List[str]:
"""simple docstring"""
# we need a list not a string, so do something to change the type
UpperCamelCase = arr.split(',' )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = [int(self.array[0] )] * len(self.array )
UpperCamelCase = [int(self.array[0] )] * len(self.array )
for i in range(1 , len(self.array ) ):
UpperCamelCase = max(
int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) )
UpperCamelCase = max(sum_value[i] , rear[i - 1] )
return rear[len(self.array ) - 1]
if __name__ == "__main__":
_UpperCAmelCase : int = input("please input some numbers:")
_UpperCAmelCase : int = SubArray(whole_array)
_UpperCAmelCase : Union[str, Any] = array.solve_sub_array()
print(("the results is:", re))
| 3 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
_UpperCAmelCase : List[str] = None
_UpperCAmelCase : Any = logging.get_logger(__name__)
_UpperCAmelCase : Tuple = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
_UpperCAmelCase : List[str] = {
"vocab_file": {
"camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model",
},
"tokenizer_file": {
"camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json",
},
}
_UpperCAmelCase : Optional[int] = {
"camembert-base": 512,
}
_UpperCAmelCase : Union[str, Any] = "▁"
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : str = VOCAB_FILES_NAMES
__lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
__lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase : List[str] = ["input_ids", "attention_mask"]
__lowercase : Tuple = CamembertTokenizer
def __init__( self , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=["<s>NOTUSED", "</s>NOTUSED"] , **A_ , ) -> List[Any]:
"""simple docstring"""
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token
super().__init__(
A_ , tokenizer_file=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , additional_special_tokens=A_ , **A_ , )
UpperCamelCase = vocab_file
UpperCamelCase = False if not self.vocab_file else True
def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCamelCase = [self.cls_token_id]
UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]:
"""simple docstring"""
UpperCamelCase = [self.sep_token_id]
UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(A_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCamelCase = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ):
copyfile(self.vocab_file , A_ )
return (out_vocab_file,)
| 3 | 1 |
def A ( lowercase , lowercase ) -> str:
'''simple docstring'''
if a < 0 or b < 0:
raise ValueError('the value of both inputs must be positive' )
UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b"
UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b"
UpperCamelCase = max(len(lowercase ) , len(lowercase ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(lowercase ) , b_binary.zfill(lowercase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCAmelCase : Union[str, Any] = {
"configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
"processing_git": ["GitProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Dict = [
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
_UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 3 | 1 |
import inspect
import jax
import jax.lax as lax
import jax.numpy as jnp
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
_UpperCAmelCase : Any = get_logger(__name__)
_UpperCAmelCase : Tuple = R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n"
class lowercase :
@add_start_docstrings(A_ )
def __call__( self , A_ , A_ ) -> jnp.ndarray:
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class lowercase :
@add_start_docstrings(A_ )
def __call__( self , A_ , A_ ) -> jnp.ndarray:
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class lowercase ( _SCREAMING_SNAKE_CASE ):
@add_start_docstrings(A_ )
def __call__( self , A_ , A_ , A_ , **A_ ) -> jnp.ndarray:
"""simple docstring"""
for processor in self:
UpperCamelCase = inspect.signature(processor.__call__ ).parameters
if len(A_ ) > 3:
if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ):
raise ValueError(
F'''Make sure that all the required parameters: {list(function_args.keys() )} for '''
F'''{processor.__class__} are passed to the logits processor.''' )
UpperCamelCase = processor(A_ , A_ , A_ , **A_ )
else:
UpperCamelCase = processor(A_ , A_ , A_ )
return scores
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ ) -> Union[str, Any]:
"""simple docstring"""
if not isinstance(A_ , A_ ) or not (temperature > 0):
raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''' )
UpperCamelCase = temperature
def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray:
"""simple docstring"""
UpperCamelCase = scores / self.temperature
return scores
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ , A_ = -float('Inf' ) , A_ = 1 ) -> Union[str, Any]:
"""simple docstring"""
if not isinstance(A_ , A_ ) or (top_p < 0 or top_p > 1.0):
raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' )
if not isinstance(A_ , A_ ) or (min_tokens_to_keep < 1):
raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' )
UpperCamelCase = top_p
UpperCamelCase = filter_value
UpperCamelCase = min_tokens_to_keep
def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = lax.top_k(A_ , scores.shape[-1] )
UpperCamelCase = jnp.full_like(A_ , self.filter_value )
UpperCamelCase = jax.nn.softmax(A_ , axis=-1 ).cumsum(axis=-1 )
UpperCamelCase = cumulative_probs < self.top_p
# include the token that is higher than top_p as well
UpperCamelCase = jnp.roll(A_ , 1 )
score_mask |= score_mask.at[:, 0].set(A_ )
# min tokens to keep
UpperCamelCase = score_mask.at[:, : self.min_tokens_to_keep].set(A_ )
UpperCamelCase = jnp.where(A_ , A_ , A_ )
UpperCamelCase = jax.lax.sort_key_val(A_ , A_ )[-1]
return next_scores
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ , A_ = -float('Inf' ) , A_ = 1 ) -> Any:
"""simple docstring"""
if not isinstance(A_ , A_ ) or top_k <= 0:
raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''' )
UpperCamelCase = max(A_ , A_ )
UpperCamelCase = filter_value
def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = scores.shape
UpperCamelCase = jnp.full(batch_size * vocab_size , self.filter_value )
UpperCamelCase = min(self.top_k , scores.shape[-1] ) # Safety check
UpperCamelCase , UpperCamelCase = lax.top_k(A_ , A_ )
UpperCamelCase = jnp.broadcast_to((jnp.arange(A_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten()
UpperCamelCase = topk_scores.flatten()
UpperCamelCase = topk_indices.flatten() + shift
UpperCamelCase = next_scores_flat.at[topk_indices_flat].set(A_ )
UpperCamelCase = next_scores_flat.reshape(A_ , A_ )
return next_scores
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = bos_token_id
def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray:
"""simple docstring"""
UpperCamelCase = jnp.full(scores.shape , -float('inf' ) )
UpperCamelCase = 1 - jnp.bool_(cur_len - 1 )
UpperCamelCase = jnp.where(A_ , new_scores.at[:, self.bos_token_id].set(0 ) , A_ )
return scores
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ , A_ ) -> str:
"""simple docstring"""
UpperCamelCase = max_length
UpperCamelCase = eos_token_id
def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray:
"""simple docstring"""
UpperCamelCase = jnp.full(scores.shape , -float('inf' ) )
UpperCamelCase = 1 - jnp.bool_(cur_len - self.max_length + 1 )
UpperCamelCase = jnp.where(A_ , new_scores.at[:, self.eos_token_id].set(0 ) , A_ )
return scores
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ , A_ ) -> Tuple:
"""simple docstring"""
if not isinstance(A_ , A_ ) or min_length < 0:
raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''' )
if not isinstance(A_ , A_ ) or eos_token_id < 0:
raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' )
UpperCamelCase = min_length
UpperCamelCase = eos_token_id
def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray:
"""simple docstring"""
# create boolean flag to decide if min length penalty should be applied
UpperCamelCase = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 )
UpperCamelCase = jnp.where(A_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , A_ )
return scores
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ , A_ ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = list(A_ )
UpperCamelCase = begin_index
def __call__( self , A_ , A_ , A_ ) -> Any:
"""simple docstring"""
UpperCamelCase = 1 - jnp.bool_(cur_len - self.begin_index )
UpperCamelCase = jnp.where(A_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , A_ )
return scores
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ ) -> Any:
"""simple docstring"""
UpperCamelCase = list(A_ )
def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray:
"""simple docstring"""
UpperCamelCase = scores.at[..., self.suppress_tokens].set(-float('inf' ) )
return scores
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = dict(A_ )
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
# Indexes without forced tokens will have a negative value.
UpperCamelCase = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1
for index, token in force_token_map.items():
if token is not None:
UpperCamelCase = force_token_array.at[index].set(A_ )
UpperCamelCase = jnp.intaa(A_ )
def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray:
"""simple docstring"""
def _force_token(A_ ):
UpperCamelCase = scores.shape[0]
UpperCamelCase = self.force_token_array[generation_idx]
UpperCamelCase = jnp.ones_like(A_ , dtype=scores.dtype ) * -float('inf' )
UpperCamelCase = jnp.zeros((batch_size, 1) , dtype=scores.dtype )
UpperCamelCase = lax.dynamic_update_slice(A_ , A_ , (0, current_token) )
return new_scores
UpperCamelCase = lax.cond(
cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond(
self.force_token_array[cur_len] >= 0 , lambda: _force_token(A_ ) , lambda: scores , ) , )
return scores
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ , A_ , A_ ) -> int:
"""simple docstring"""
UpperCamelCase = generate_config.eos_token_id
UpperCamelCase = generate_config.no_timestamps_token_id
UpperCamelCase = generate_config.no_timestamps_token_id + 1
UpperCamelCase = decoder_input_length + 1
if generate_config.is_multilingual:
# room for language token and task token
self.begin_index += 2
if hasattr(A_ , 'max_initial_timestamp_index' ):
UpperCamelCase = generate_config.max_initial_timestamp_index
else:
UpperCamelCase = model_config.vocab_size
if self.max_initial_timestamp_index is None:
UpperCamelCase = model_config.vocab_size
def __call__( self , A_ , A_ , A_ ) -> int:
"""simple docstring"""
# suppress <|notimestamps|> which is handled by without_timestamps
UpperCamelCase = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) )
def handle_pairs(A_ , A_ ):
UpperCamelCase = jnp.where((cur_len - self.begin_index) >= 1 , A_ , A_ )
UpperCamelCase = jnp.where(
input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , A_ , )
UpperCamelCase = jnp.where((cur_len - self.begin_index) < 2 , A_ , A_ )
UpperCamelCase = jnp.where(
input_ids_k[cur_len - 2] >= self.timestamp_begin , A_ , A_ , )
return jnp.where(
A_ , jnp.where(
penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , A_ , )
UpperCamelCase = jax.vmap(A_ )(A_ , A_ )
UpperCamelCase = jnp.where(cur_len == self.begin_index , A_ , A_ )
UpperCamelCase = jnp.where(
self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , A_ , )
UpperCamelCase = self.timestamp_begin + self.max_initial_timestamp_index
UpperCamelCase = jnp.where(
A_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , A_ , )
# if sum of probability over timestamps is above any other token, sample timestamp
UpperCamelCase = jax.nn.log_softmax(A_ , axis=-1 )
def handle_cumulative_probs(A_ , A_ ):
UpperCamelCase = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 )
UpperCamelCase = jnp.max(logprobs_k[: self.timestamp_begin] )
return jnp.where(
timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , A_ , )
UpperCamelCase = jax.vmap(A_ )(A_ , A_ )
return scores
| 3 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCAmelCase : Tuple = logging.get_logger(__name__)
_UpperCAmelCase : Union[str, Any] = {
"facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json",
}
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Dict = "data2vec-text"
def __init__( self , A_=30_522 , A_=768 , A_=12 , A_=12 , A_=3_072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ) -> Any:
"""simple docstring"""
super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ )
UpperCamelCase = vocab_size
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = hidden_act
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = max_position_embeddings
UpperCamelCase = type_vocab_size
UpperCamelCase = initializer_range
UpperCamelCase = layer_norm_eps
UpperCamelCase = position_embedding_type
UpperCamelCase = use_cache
UpperCamelCase = classifier_dropout
class lowercase ( _SCREAMING_SNAKE_CASE ):
@property
def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 3 | 1 |
def A ( lowercase = 50_000_000 ) -> int:
'''simple docstring'''
UpperCamelCase = set()
UpperCamelCase = int((limit - 24) ** (1 / 2) )
UpperCamelCase = set(range(3 , prime_square_limit + 1 , 2 ) )
primes.add(2 )
for p in range(3 , prime_square_limit + 1 , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) )
for primea in primes:
UpperCamelCase = primea * primea
for primea in primes:
UpperCamelCase = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
UpperCamelCase = primea * primea * primea * primea
UpperCamelCase = square + cube + tetr
if total >= limit:
break
ret.add(lowercase )
return len(lowercase )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 3 |
from random import shuffle
import tensorflow as tf
from numpy import array
def A ( lowercase , lowercase ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase = int(lowercase )
assert noofclusters < len(lowercase )
# Find out the dimensionality
UpperCamelCase = len(vectors[0] )
# Will help select random centroids from among the available vectors
UpperCamelCase = list(range(len(lowercase ) ) )
shuffle(lowercase )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
UpperCamelCase = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
UpperCamelCase = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
UpperCamelCase = [
tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase )
]
##These nodes will assign the centroid Variables the appropriate
##values
UpperCamelCase = tf.placeholder('float64' , [dim] )
UpperCamelCase = []
for centroid in centroids:
cent_assigns.append(tf.assign(lowercase , lowercase ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
UpperCamelCase = [tf.Variable(0 ) for i in range(len(lowercase ) )]
##These nodes will assign an assignment Variable the appropriate
##value
UpperCamelCase = tf.placeholder('int32' )
UpperCamelCase = []
for assignment in assignments:
cluster_assigns.append(tf.assign(lowercase , lowercase ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
UpperCamelCase = tf.placeholder('float' , [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
UpperCamelCase = tf.reduce_mean(lowercase , 0 )
##Node for computing Euclidean distances
# Placeholders for input
UpperCamelCase = tf.placeholder('float' , [dim] )
UpperCamelCase = tf.placeholder('float' , [dim] )
UpperCamelCase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase , lowercase ) , 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
UpperCamelCase = tf.placeholder('float' , [noofclusters] )
UpperCamelCase = tf.argmin(lowercase , 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
UpperCamelCase = tf.initialize_all_variables()
# Initialize all variables
sess.run(lowercase )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
UpperCamelCase = 100
for _ in range(lowercase ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(lowercase ) ):
UpperCamelCase = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
UpperCamelCase = [
sess.run(lowercase , feed_dict={va: vect, va: sess.run(lowercase )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
UpperCamelCase = sess.run(
lowercase , feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(lowercase ):
# Collect all the vectors assigned to this cluster
UpperCamelCase = [
vectors[i]
for i in range(len(lowercase ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
UpperCamelCase = sess.run(
lowercase , feed_dict={mean_input: array(lowercase )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} )
# Return centroids and assignments
UpperCamelCase = sess.run(lowercase )
UpperCamelCase = sess.run(lowercase )
return centroids, assignments
| 3 | 1 |
def A ( lowercase ) -> str:
'''simple docstring'''
return "".join([hex(lowercase )[2:].zfill(2 ).upper() for byte in list(lowercase )] )
def A ( lowercase ) -> bytes:
'''simple docstring'''
if (len(lowercase ) % 2) != 0:
raise ValueError(
'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' )
# Check the character set - the standard base16 alphabet
# is uppercase according to RFC3548 section 6
if not set(lowercase ) <= set('0123456789ABCDEF' ):
raise ValueError(
'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' )
# For every two hexadecimal digits (= a byte), turn it into an integer.
# Then, string the result together into bytes, and return it.
return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowercase ) , 2 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_UpperCAmelCase : Tuple = _symbol_database.Default()
_UpperCAmelCase : List[Any] = _descriptor_pool.Default().AddSerializedFile(
b"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03"
)
_UpperCAmelCase : int = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
_UpperCAmelCase : int = None
_UpperCAmelCase : List[str] = b"H\003"
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
_UpperCAmelCase : Optional[Any] = 45
_UpperCAmelCase : Any = 1_581
_UpperCAmelCase : Tuple = 1_517
_UpperCAmelCase : List[str] = 1_570
_UpperCAmelCase : int = 1_584
_UpperCAmelCase : List[Any] = 1_793
_UpperCAmelCase : Optional[int] = 1_795
_UpperCAmelCase : Any = 1_916
_UpperCAmelCase : Tuple = 1_864
_UpperCAmelCase : List[Any] = 1_905
_UpperCAmelCase : Union[str, Any] = 1_919
_UpperCAmelCase : str = 2_429
_UpperCAmelCase : Any = 2_208
_UpperCAmelCase : Dict = 2_418
_UpperCAmelCase : Optional[Any] = 2_323
_UpperCAmelCase : Tuple = 2_407
# @@protoc_insertion_point(module_scope)
| 3 | 1 |
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class lowercase ( unittest.TestCase ):
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
UpperCamelCase = FlaxDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=A_ , cache_dir=A_ )
UpperCamelCase = [t[-1] for t in os.walk(os.path.join(A_ , os.listdir(A_ )[0] , 'snapshots' ) )]
UpperCamelCase = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith('.bin' ) for f in files )
@slow
@require_flax
class lowercase ( unittest.TestCase ):
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=A_ )
UpperCamelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
UpperCamelCase = jax.random.PRNGKey(0 )
UpperCamelCase = 4
UpperCamelCase = jax.device_count()
UpperCamelCase = num_samples * [prompt]
UpperCamelCase = pipeline.prepare_inputs(A_ )
# shard inputs and rng
UpperCamelCase = replicate(A_ )
UpperCamelCase = jax.random.split(A_ , A_ )
UpperCamelCase = shard(A_ )
UpperCamelCase = pipeline(A_ , A_ , A_ , A_ , jit=A_ ).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.151_4745 ) < 1e-3
assert np.abs(np.abs(A_ , dtype=np.floataa ).sum() - 4_9947.875 ) < 5e-1
UpperCamelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) )
assert len(A_ ) == num_samples
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=A_ )
UpperCamelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
UpperCamelCase = jax.random.PRNGKey(0 )
UpperCamelCase = 50
UpperCamelCase = jax.device_count()
UpperCamelCase = num_samples * [prompt]
UpperCamelCase = pipeline.prepare_inputs(A_ )
# shard inputs and rng
UpperCamelCase = replicate(A_ )
UpperCamelCase = jax.random.split(A_ , A_ )
UpperCamelCase = shard(A_ )
UpperCamelCase = pipeline(A_ , A_ , A_ , A_ , jit=A_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0565_2401) ) < 1e-3
assert np.abs((np.abs(A_ , dtype=np.floataa ).sum() - 238_3808.2) ) < 5e-1
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=A_ )
UpperCamelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
UpperCamelCase = jax.random.PRNGKey(0 )
UpperCamelCase = 50
UpperCamelCase = jax.device_count()
UpperCamelCase = num_samples * [prompt]
UpperCamelCase = pipeline.prepare_inputs(A_ )
# shard inputs and rng
UpperCamelCase = replicate(A_ )
UpperCamelCase = jax.random.split(A_ , A_ )
UpperCamelCase = shard(A_ )
UpperCamelCase = pipeline(A_ , A_ , A_ , A_ , jit=A_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3
assert np.abs((np.abs(A_ , dtype=np.floataa ).sum() - 237_3516.75) ) < 5e-1
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa )
UpperCamelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
UpperCamelCase = jax.random.PRNGKey(0 )
UpperCamelCase = 50
UpperCamelCase = jax.device_count()
UpperCamelCase = num_samples * [prompt]
UpperCamelCase = pipeline.prepare_inputs(A_ )
# shard inputs and rng
UpperCamelCase = replicate(A_ )
UpperCamelCase = jax.random.split(A_ , A_ )
UpperCamelCase = shard(A_ )
UpperCamelCase = pipeline(A_ , A_ , A_ , A_ , jit=A_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3
assert np.abs((np.abs(A_ , dtype=np.floataa ).sum() - 237_3516.75) ) < 5e-1
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = FlaxDDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , set_alpha_to_one=A_ , steps_offset=1 , )
UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=A_ , safety_checker=A_ , )
UpperCamelCase = scheduler.create_state()
UpperCamelCase = scheduler_state
UpperCamelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
UpperCamelCase = jax.random.PRNGKey(0 )
UpperCamelCase = 50
UpperCamelCase = jax.device_count()
UpperCamelCase = num_samples * [prompt]
UpperCamelCase = pipeline.prepare_inputs(A_ )
# shard inputs and rng
UpperCamelCase = replicate(A_ )
UpperCamelCase = jax.random.split(A_ , A_ )
UpperCamelCase = shard(A_ )
UpperCamelCase = pipeline(A_ , A_ , A_ , A_ , jit=A_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4504_3945) ) < 1e-3
assert np.abs((np.abs(A_ , dtype=np.floataa ).sum() - 234_7693.5) ) < 5e-1
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
UpperCamelCase = jax.device_count()
UpperCamelCase = num_samples * [prompt]
UpperCamelCase = jax.random.split(jax.random.PRNGKey(0 ) , A_ )
UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=A_ , )
UpperCamelCase = replicate(A_ )
UpperCamelCase = pipeline.prepare_inputs(A_ )
UpperCamelCase = shard(A_ )
UpperCamelCase = pipeline(A_ , A_ , A_ , jit=A_ ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
UpperCamelCase = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=A_ , use_memory_efficient_attention=A_ , )
UpperCamelCase = replicate(A_ )
UpperCamelCase = pipeline.prepare_inputs(A_ )
UpperCamelCase = shard(A_ )
UpperCamelCase = pipeline(A_ , A_ , A_ , jit=A_ ).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
UpperCamelCase = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice ).max() < 1e-2
| 3 |
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class lowercase ( unittest.TestCase ):
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
# A mock response for an HTTP head request to emulate server down
UpperCamelCase = mock.Mock()
UpperCamelCase = 500
UpperCamelCase = {}
UpperCamelCase = HTTPError
UpperCamelCase = {}
# Download this model to make sure it's in the cache.
UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head:
UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
# A mock response for an HTTP head request to emulate server down
UpperCamelCase = mock.Mock()
UpperCamelCase = 500
UpperCamelCase = {}
UpperCamelCase = HTTPError
UpperCamelCase = {}
# Download this model to make sure it's in the cache.
UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head:
UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' )
# This check we did call the fake head request
mock_head.assert_called()
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
# This test is for deprecated behavior and can be removed in v5
try:
UpperCamelCase = tempfile.mktemp()
with open(A_ , 'wb' ) as f:
http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , A_ )
UpperCamelCase = AlbertTokenizer.from_pretrained(A_ )
finally:
os.remove(A_ )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile('tokenizer.json' ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open('tokenizer.json' , 'wb' ) as f:
http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , A_ )
UpperCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size , 1_000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove('tokenizer.json' )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
# This test is for deprecated behavior and can be removed in v5
UpperCamelCase = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' )
@is_staging_test
class lowercase ( unittest.TestCase ):
__lowercase : int = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def __UpperCamelCase ( cls ) -> Tuple:
"""simple docstring"""
UpperCamelCase = TOKEN
HfFolder.save_token(A_ )
@classmethod
def __UpperCamelCase ( cls ) -> Optional[int]:
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='test-tokenizer' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' )
except HTTPError:
pass
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase = os.path.join(A_ , 'vocab.txt' )
with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCamelCase = BertTokenizer(A_ )
tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token )
UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id='test-tokenizer' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(A_ , repo_id='test-tokenizer' , push_to_hub=A_ , use_auth_token=self._token )
UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase = os.path.join(A_ , 'vocab.txt' )
with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCamelCase = BertTokenizer(A_ )
tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token )
UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
A_ , repo_id='valid_org/test-tokenizer-org' , push_to_hub=A_ , use_auth_token=self._token )
UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
@require_tokenizers
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase = os.path.join(A_ , 'vocab.txt' )
with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCamelCase = CustomTokenizer(A_ )
# No fast custom tokenizer
tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token )
UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase = os.path.join(A_ , 'vocab.txt' )
with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCamelCase = BertTokenizerFast.from_pretrained(A_ )
bert_tokenizer.save_pretrained(A_ )
UpperCamelCase = CustomTokenizerFast.from_pretrained(A_ )
tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token )
UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' )
UpperCamelCase = AutoTokenizer.from_pretrained(
F'''{USER}/test-dynamic-tokenizer''' , use_fast=A_ , trust_remote_code=A_ )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' )
class lowercase ( unittest.TestCase ):
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('Hello 友達' )
self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} )
trie.add('Hello' )
trie.data
self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} )
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase = Trie()
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] )
trie.add('[CLS]' )
trie.add('extra_id_1' )
trie.add('extra_id_100' )
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] )
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('A' )
self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] )
self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('TOKEN]' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('A' )
trie.add('P' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('AB' )
trie.add('B' )
trie.add('C' )
self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('ABC' )
trie.add('B' )
trie.add('CD' )
self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
# Even if the offsets are wrong, we necessarily output correct string
# parts.
UpperCamelCase = Trie()
UpperCamelCase = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] )
self.assertEqual(A_ , ['AB', 'C'] )
| 3 | 1 |
import argparse
import json
import os
import torch
from transformers.file_utils import has_file
from diffusers import UNetaDConditionModel, UNetaDModel
_UpperCAmelCase : Optional[int] = False
_UpperCAmelCase : Optional[int] = True
_UpperCAmelCase : Dict = False
if __name__ == "__main__":
_UpperCAmelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
"--repo_path",
default=None,
type=str,
required=True,
help="The config json file corresponding to the architecture.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
_UpperCAmelCase : Dict = parser.parse_args()
_UpperCAmelCase : Tuple = {
"image_size": "sample_size",
"num_res_blocks": "layers_per_block",
"block_channels": "block_out_channels",
"down_blocks": "down_block_types",
"up_blocks": "up_block_types",
"downscale_freq_shift": "freq_shift",
"resnet_num_groups": "norm_num_groups",
"resnet_act_fn": "act_fn",
"resnet_eps": "norm_eps",
"num_head_channels": "attention_head_dim",
}
_UpperCAmelCase : List[Any] = {
"time_steps": "time_proj",
"mid": "mid_block",
"downsample_blocks": "down_blocks",
"upsample_blocks": "up_blocks",
}
_UpperCAmelCase : int = "" if has_file(args.repo_path, "config.json") else "unet"
with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader:
_UpperCAmelCase : int = reader.read()
_UpperCAmelCase : int = json.loads(text)
if do_only_config:
for key in config_parameters_to_change.keys():
config.pop(key, None)
if has_file(args.repo_path, "config.json"):
_UpperCAmelCase : Tuple = UNetaDModel(**config)
else:
_UpperCAmelCase : int = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel
_UpperCAmelCase : str = class_name(**config)
if do_only_config:
model.save_config(os.path.join(args.repo_path, subfolder))
_UpperCAmelCase : int = dict(model.config)
if do_only_renaming:
for key, value in config_parameters_to_change.items():
if key in config:
_UpperCAmelCase : str = config[key]
del config[key]
_UpperCAmelCase : Optional[Any] = [k.replace("UNetRes", "") for k in config["down_block_types"]]
_UpperCAmelCase : Optional[int] = [k.replace("UNetRes", "") for k in config["up_block_types"]]
if do_only_weights:
_UpperCAmelCase : Dict = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin"))
_UpperCAmelCase : str = {}
for param_key, param_value in state_dict.items():
if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"):
continue
_UpperCAmelCase : List[str] = False
for key, new_key in key_parameters_to_change.items():
if not has_changed and param_key.split(".")[0] == key:
_UpperCAmelCase : Optional[int] = param_value
_UpperCAmelCase : List[Any] = True
if not has_changed:
_UpperCAmelCase : str = param_value
model.load_state_dict(new_state_dict)
model.save_pretrained(os.path.join(args.repo_path, subfolder))
| 3 |
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def A ( lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
assert isinstance(lowercase , lowercase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def A ( lowercase , lowercase , lowercase ) -> Tuple:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def A ( lowercase , lowercase , lowercase ) -> Tuple:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = features.copy() if features else default_expected_features
UpperCamelCase = (
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCamelCase = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def A ( lowercase , lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type' , [str, list] )
def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
if issubclass(lowercase , lowercase ):
UpperCamelCase = parquet_path
elif issubclass(lowercase , lowercase ):
UpperCamelCase = [parquet_path]
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
def A ( lowercase , lowercase , lowercase=("train",) ) -> Tuple:
'''simple docstring'''
assert isinstance(lowercase , lowercase )
for split in splits:
UpperCamelCase = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def A ( lowercase , lowercase , lowercase ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCamelCase = ParquetDatasetReader(
{'train': parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read()
_check_parquet_datasetdict(lowercase , lowercase )
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def A ( lowercase , lowercase , lowercase ) -> List[Any]:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = features.copy() if features else default_expected_features
UpperCamelCase = (
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCamelCase = ParquetDatasetReader({'train': parquet_path} , features=lowercase , cache_dir=lowercase ).read()
_check_parquet_datasetdict(lowercase , lowercase )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
if split:
UpperCamelCase = {split: parquet_path}
else:
UpperCamelCase = 'train'
UpperCamelCase = {'train': parquet_path, 'test': parquet_path}
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read()
_check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def A ( lowercase , lowercase ) -> List[Any]:
'''simple docstring'''
UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' )
assert writer.write() > 0
UpperCamelCase = pq.ParquetFile(tmp_path / 'foo.parquet' )
UpperCamelCase = pf.read()
assert dataset.data.table == output_table
def A ( lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = str(shared_datadir / 'test_image_rgb.jpg' )
UpperCamelCase = {'image': [image_path]}
UpperCamelCase = Features({'image': Image()} )
UpperCamelCase = Dataset.from_dict(lowercase , features=lowercase )
UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' )
assert writer.write() > 0
UpperCamelCase = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) )
assert dataset.features == reloaded_dataset.features
UpperCamelCase = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=lowercase ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
'feature, expected' , [
(Features({'foo': Value('int32' )} ), None),
(Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def A ( lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
assert get_writer_batch_size(lowercase ) == expected
| 3 | 1 |
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCAmelCase : Dict = logging.get_logger(__name__)
_UpperCAmelCase : Any = {
"huggingface/time-series-transformer-tourism-monthly": (
"https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json"
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : List[str] = "time_series_transformer"
__lowercase : int = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__( self , A_ = None , A_ = None , A_ = "student_t" , A_ = "nll" , A_ = 1 , A_ = [1, 2, 3, 4, 5, 6, 7] , A_ = "mean" , A_ = 0 , A_ = 0 , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 32 , A_ = 32 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = True , A_ = "gelu" , A_ = 64 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 100 , A_ = 0.02 , A_=True , **A_ , ) -> List[str]:
"""simple docstring"""
# time series specific configuration
UpperCamelCase = prediction_length
UpperCamelCase = context_length or prediction_length
UpperCamelCase = distribution_output
UpperCamelCase = loss
UpperCamelCase = input_size
UpperCamelCase = num_time_features
UpperCamelCase = lags_sequence
UpperCamelCase = scaling
UpperCamelCase = num_dynamic_real_features
UpperCamelCase = num_static_real_features
UpperCamelCase = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(A_ ) != num_static_categorical_features:
raise ValueError(
'The cardinality should be a list of the same length as `num_static_categorical_features`' )
UpperCamelCase = cardinality
else:
UpperCamelCase = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(A_ ) != num_static_categorical_features:
raise ValueError(
'The embedding dimension should be a list of the same length as `num_static_categorical_features`' )
UpperCamelCase = embedding_dimension
else:
UpperCamelCase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
UpperCamelCase = num_parallel_samples
# Transformer architecture configuration
UpperCamelCase = input_size * len(A_ ) + self._number_of_features
UpperCamelCase = d_model
UpperCamelCase = encoder_attention_heads
UpperCamelCase = decoder_attention_heads
UpperCamelCase = encoder_ffn_dim
UpperCamelCase = decoder_ffn_dim
UpperCamelCase = encoder_layers
UpperCamelCase = decoder_layers
UpperCamelCase = dropout
UpperCamelCase = attention_dropout
UpperCamelCase = activation_dropout
UpperCamelCase = encoder_layerdrop
UpperCamelCase = decoder_layerdrop
UpperCamelCase = activation_function
UpperCamelCase = init_std
UpperCamelCase = use_cache
super().__init__(is_encoder_decoder=A_ , **A_ )
@property
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 3 |
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class lowercase ( unittest.TestCase ):
def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , ) -> Tuple:
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = num_channels
UpperCamelCase = image_size
UpperCamelCase = min_resolution
UpperCamelCase = max_resolution
UpperCamelCase = do_resize
UpperCamelCase = size if size is not None else {'height': 18, 'width': 20}
UpperCamelCase = do_thumbnail
UpperCamelCase = do_align_axis
UpperCamelCase = do_pad
UpperCamelCase = do_normalize
UpperCamelCase = image_mean
UpperCamelCase = image_std
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
__lowercase : Optional[int] = DonutImageProcessor if is_vision_available() else None
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = DonutImageProcessingTester(self )
@property
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A_ , 'do_resize' ) )
self.assertTrue(hasattr(A_ , 'size' ) )
self.assertTrue(hasattr(A_ , 'do_thumbnail' ) )
self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) )
self.assertTrue(hasattr(A_ , 'do_pad' ) )
self.assertTrue(hasattr(A_ , 'do_normalize' ) )
self.assertTrue(hasattr(A_ , 'image_mean' ) )
self.assertTrue(hasattr(A_ , 'image_std' ) )
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 20} )
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
# Previous config had dimensions in (width, height) order
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {'height': 84, 'width': 42} )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
pass
@is_flaky()
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
# Initialize image_processing
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , Image.Image )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
# Initialize image_processing
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , np.ndarray )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
# Initialize image_processing
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , torch.Tensor )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
| 3 | 1 |
from collections import defaultdict
def A ( lowercase , lowercase ) -> bool:
'''simple docstring'''
UpperCamelCase = first_str.lower().strip()
UpperCamelCase = second_str.lower().strip()
# Remove whitespace
UpperCamelCase = first_str.replace(' ' , '' )
UpperCamelCase = second_str.replace(' ' , '' )
# Strings of different lengths are not anagrams
if len(lowercase ) != len(lowercase ):
return False
# Default values for count should be 0
UpperCamelCase = defaultdict(lowercase )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(lowercase ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
_UpperCAmelCase : int = input("Enter the first string ").strip()
_UpperCAmelCase : Optional[Any] = input("Enter the second string ").strip()
_UpperCAmelCase : List[Any] = check_anagrams(input_a, input_b)
print(F'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
| 3 |
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_UpperCAmelCase : Dict = logging.get_logger(__name__)
_UpperCAmelCase : Optional[Any] = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
_UpperCAmelCase : str = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
_UpperCAmelCase : List[str] = {"facebook/blenderbot_small-90M": 512}
def A ( lowercase ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase = set()
UpperCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCamelCase = char
UpperCamelCase = set(lowercase )
return pairs
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Optional[Any] = VOCAB_FILES_NAMES
__lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP
__lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase : Any = ["input_ids", "attention_mask"]
def __init__( self , A_ , A_ , A_="__start__" , A_="__end__" , A_="__unk__" , A_="__null__" , **A_ , ) -> List[Any]:
"""simple docstring"""
super().__init__(unk_token=A_ , bos_token=A_ , eos_token=A_ , pad_token=A_ , **A_ )
with open(A_ , encoding='utf-8' ) as vocab_handle:
UpperCamelCase = json.load(A_ )
UpperCamelCase = {v: k for k, v in self.encoder.items()}
with open(A_ , encoding='utf-8' ) as merges_handle:
UpperCamelCase = merges_handle.read().split('\n' )[1:-1]
UpperCamelCase = [tuple(merge.split() ) for merge in merges]
UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) )
UpperCamelCase = {}
@property
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
return len(self.encoder )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def __UpperCamelCase ( self , A_ ) -> str:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
UpperCamelCase = re.sub('([.,!?()])' , r' \1' , A_ )
UpperCamelCase = re.sub('(\')' , r' \1 ' , A_ )
UpperCamelCase = re.sub(r'\s{2,}' , ' ' , A_ )
if "\n" in token:
UpperCamelCase = token.replace('\n' , ' __newln__' )
UpperCamelCase = token.split(' ' )
UpperCamelCase = []
for token in tokens:
if not len(A_ ):
continue
UpperCamelCase = token.lower()
UpperCamelCase = tuple(A_ )
UpperCamelCase = tuple(list(word[:-1] ) + [word[-1] + '</w>'] )
UpperCamelCase = get_pairs(A_ )
if not pairs:
words.append(A_ )
continue
while True:
UpperCamelCase = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
UpperCamelCase , UpperCamelCase = bigram
UpperCamelCase = []
UpperCamelCase = 0
while i < len(A_ ):
try:
UpperCamelCase = word.index(A_ , A_ )
new_word.extend(word[i:j] )
UpperCamelCase = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCamelCase = tuple(A_ )
UpperCamelCase = new_word
if len(A_ ) == 1:
break
else:
UpperCamelCase = get_pairs(A_ )
UpperCamelCase = '@@ '.join(A_ )
UpperCamelCase = word[:-4]
UpperCamelCase = word
words.append(A_ )
return " ".join(A_ )
def __UpperCamelCase ( self , A_ ) -> List[str]:
"""simple docstring"""
UpperCamelCase = []
UpperCamelCase = re.findall(r'\S+\n?' , A_ )
for token in words:
split_tokens.extend(list(self.bpe(A_ ).split(' ' ) ) )
return split_tokens
def __UpperCamelCase ( self , A_ ) -> int:
"""simple docstring"""
UpperCamelCase = token.lower()
return self.encoder.get(A_ , self.encoder.get(self.unk_token ) )
def __UpperCamelCase ( self , A_ ) -> str:
"""simple docstring"""
return self.decoder.get(A_ , self.unk_token )
def __UpperCamelCase ( self , A_ ) -> str:
"""simple docstring"""
UpperCamelCase = ' '.join(A_ ).replace('@@ ' , '' ).strip()
return out_string
def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(A_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCamelCase = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
UpperCamelCase = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(A_ , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' )
UpperCamelCase = 0
with open(A_ , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
' Please check that the tokenizer is not corrupted!' )
UpperCamelCase = token_index
writer.write(' '.join(A_ ) + '\n' )
index += 1
return vocab_file, merge_file
| 3 | 1 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class lowercase :
def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Any:
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = 13
UpperCamelCase = 7
UpperCamelCase = True
UpperCamelCase = True
UpperCamelCase = True
UpperCamelCase = True
UpperCamelCase = 99
UpperCamelCase = 384
UpperCamelCase = 2
UpperCamelCase = 4
UpperCamelCase = 37
UpperCamelCase = 'gelu'
UpperCamelCase = 0.1
UpperCamelCase = 0.1
UpperCamelCase = 512
UpperCamelCase = 16
UpperCamelCase = 2
UpperCamelCase = 0.02
UpperCamelCase = 3
UpperCamelCase = 4
UpperCamelCase = 128
UpperCamelCase = 2
UpperCamelCase = 9
UpperCamelCase = 1
UpperCamelCase = None
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase = None
if self.use_input_mask:
UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase = None
if self.use_token_type_ids:
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase = None
UpperCamelCase = None
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = TFConvBertModel(config=A_ )
UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
UpperCamelCase = [input_ids, input_mask]
UpperCamelCase = model(A_ )
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Any:
"""simple docstring"""
UpperCamelCase = TFConvBertForMaskedLM(config=A_ )
UpperCamelCase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[str]:
"""simple docstring"""
UpperCamelCase = self.num_labels
UpperCamelCase = TFConvBertForSequenceClassification(config=A_ )
UpperCamelCase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Tuple:
"""simple docstring"""
UpperCamelCase = self.num_choices
UpperCamelCase = TFConvBertForMultipleChoice(config=A_ )
UpperCamelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str:
"""simple docstring"""
UpperCamelCase = self.num_labels
UpperCamelCase = TFConvBertForTokenClassification(config=A_ )
UpperCamelCase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = TFConvBertForQuestionAnswering(config=A_ )
UpperCamelCase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) = config_and_inputs
UpperCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ):
__lowercase : Optional[Any] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
__lowercase : Any = (
{
"feature-extraction": TFConvBertModel,
"fill-mask": TFConvBertForMaskedLM,
"question-answering": TFConvBertForQuestionAnswering,
"text-classification": TFConvBertForSequenceClassification,
"token-classification": TFConvBertForTokenClassification,
"zero-shot": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__lowercase : Tuple = False
__lowercase : Any = False
__lowercase : Optional[int] = False
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = TFConvBertModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=A_ , hidden_size=37 )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*A_ )
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*A_ )
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A_ )
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A_ )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*A_ )
@slow
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = True
UpperCamelCase = True
if hasattr(A_ , 'use_cache' ):
UpperCamelCase = True
UpperCamelCase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCamelCase = getattr(self.model_tester , 'key_length' , A_ )
for model_class in self.all_model_classes:
UpperCamelCase = self._prepare_for_class(A_ , A_ )
UpperCamelCase = model_class(A_ )
UpperCamelCase = len(model(A_ ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(A_ , saved_model=A_ )
UpperCamelCase = os.path.join(A_ , 'saved_model' , '1' )
UpperCamelCase = tf.keras.models.load_model(A_ )
UpperCamelCase = model(A_ )
if self.is_encoder_decoder:
UpperCamelCase = outputs['encoder_hidden_states']
UpperCamelCase = outputs['encoder_attentions']
else:
UpperCamelCase = outputs['hidden_states']
UpperCamelCase = outputs['attentions']
self.assertEqual(len(A_ ) , A_ )
UpperCamelCase = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(A_ ) , A_ )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(A_ )
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = True
UpperCamelCase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
UpperCamelCase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCamelCase = getattr(self.model_tester , 'key_length' , A_ )
UpperCamelCase = getattr(self.model_tester , 'key_length' , A_ )
def check_decoder_attentions_output(A_ ):
UpperCamelCase = len(A_ )
self.assertEqual(out_len % 2 , 0 )
UpperCamelCase = outputs.decoder_attentions
self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(A_ ):
UpperCamelCase = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
UpperCamelCase = True
UpperCamelCase = False
UpperCamelCase = model_class(A_ )
UpperCamelCase = model(self._prepare_for_class(A_ , A_ ) )
UpperCamelCase = len(A_ )
self.assertEqual(config.output_hidden_states , A_ )
check_encoder_attentions_output(A_ )
if self.is_encoder_decoder:
UpperCamelCase = model_class(A_ )
UpperCamelCase = model(self._prepare_for_class(A_ , A_ ) )
self.assertEqual(config.output_hidden_states , A_ )
check_decoder_attentions_output(A_ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCamelCase = True
UpperCamelCase = model_class(A_ )
UpperCamelCase = model(self._prepare_for_class(A_ , A_ ) )
self.assertEqual(config.output_hidden_states , A_ )
check_encoder_attentions_output(A_ )
# Check attention is always last and order is fine
UpperCamelCase = True
UpperCamelCase = True
UpperCamelCase = model_class(A_ )
UpperCamelCase = model(self._prepare_for_class(A_ , A_ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(A_ ) )
self.assertEqual(model.config.output_hidden_states , A_ )
check_encoder_attentions_output(A_ )
@require_tf
class lowercase ( unittest.TestCase ):
@slow
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCamelCase = model(A_ )[0]
UpperCamelCase = [1, 6, 768]
self.assertEqual(output.shape , A_ )
UpperCamelCase = tf.constant(
[
[
[-0.0347_5493, -0.468_6034, -0.3063_8832],
[0.2263_7248, -0.2698_8646, -0.742_3424],
[0.1032_4868, -0.4501_3508, -0.5828_0784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1e-4 )
| 3 |
def A ( lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = int(lowercase )
if decimal in (0, 1): # Exit cases for the recursion
return str(lowercase )
UpperCamelCase , UpperCamelCase = divmod(lowercase , 2 )
return binary_recursive(lowercase ) + str(lowercase )
def A ( lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = str(lowercase ).strip()
if not number:
raise ValueError('No input value was provided' )
UpperCamelCase = '-' if number.startswith('-' ) else ''
UpperCamelCase = number.lstrip('-' )
if not number.isnumeric():
raise ValueError('Input value is not an integer' )
return f'''{negative}0b{binary_recursive(int(lowercase ) )}'''
if __name__ == "__main__":
from doctest import testmod
testmod()
| 3 | 1 |
import requests
_UpperCAmelCase : List[Any] = "" # <-- Put your OpenWeatherMap appid here!
_UpperCAmelCase : str = "https://api.openweathermap.org/data/2.5/"
def A ( lowercase = "Chicago" , lowercase = APPID ) -> dict:
'''simple docstring'''
return requests.get(URL_BASE + 'weather' , params=locals() ).json()
def A ( lowercase = "Kolkata, India" , lowercase = APPID ) -> dict:
'''simple docstring'''
return requests.get(URL_BASE + 'forecast' , params=locals() ).json()
def A ( lowercase = 5_5.6_8 , lowercase = 1_2.5_7 , lowercase = APPID ) -> dict:
'''simple docstring'''
return requests.get(URL_BASE + 'onecall' , params=locals() ).json()
if __name__ == "__main__":
from pprint import pprint
while True:
_UpperCAmelCase : Union[str, Any] = input("Enter a location:").strip()
if location:
pprint(current_weather(location))
else:
break
| 3 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_UpperCAmelCase : Tuple = logging.get_logger(__name__)
_UpperCAmelCase : Tuple = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.linear_k": "encoder.layers.*.self_attn.linear_k",
"self_attn.linear_v": "encoder.layers.*.self_attn.linear_v",
"self_attn.linear_q": "encoder.layers.*.self_attn.linear_q",
"self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u",
"self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v",
"self_attn.linear_out": "encoder.layers.*.self_attn.linear_out",
"self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos",
"self_attn.rotary_emb": "encoder.embed_positions",
"self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm",
"conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1",
"conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2",
"conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv",
"conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm",
"conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm",
"ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense",
"ffn1.w_2": "encoder.layers.*.ffn1.output_dense",
"ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm",
"ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense",
"ffn2.w_2": "encoder.layers.*.ffn2.output_dense",
"ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
_UpperCAmelCase : Any = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict:
'''simple docstring'''
for attribute in key.split('.' ):
UpperCamelCase = getattr(lowercase , lowercase )
if weight_type is not None:
UpperCamelCase = getattr(lowercase , lowercase ).shape
else:
UpperCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}''' )
if weight_type == "weight":
UpperCamelCase = value
elif weight_type == "weight_g":
UpperCamelCase = value
elif weight_type == "weight_v":
UpperCamelCase = value
elif weight_type == "bias":
UpperCamelCase = value
elif weight_type == "running_mean":
UpperCamelCase = value
elif weight_type == "running_var":
UpperCamelCase = value
elif weight_type == "num_batches_tracked":
UpperCamelCase = value
elif weight_type == "inv_freq":
UpperCamelCase = value
else:
UpperCamelCase = value
logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def A ( lowercase , lowercase , lowercase ) -> Any:
'''simple docstring'''
UpperCamelCase = []
UpperCamelCase = fairseq_model.state_dict()
UpperCamelCase = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
UpperCamelCase = False
if "conv_layers" in name:
load_conv_layer(
lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == 'group' , )
UpperCamelCase = True
else:
for key, mapped_key in MAPPING.items():
UpperCamelCase = 'wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
UpperCamelCase = True
if "*" in mapped_key:
UpperCamelCase = name.split(lowercase )[0].split('.' )[-2]
UpperCamelCase = mapped_key.replace('*' , lowercase )
if "pos_bias_u" in name:
UpperCamelCase = None
elif "pos_bias_v" in name:
UpperCamelCase = None
elif "weight_g" in name:
UpperCamelCase = 'weight_g'
elif "weight_v" in name:
UpperCamelCase = 'weight_v'
elif "bias" in name:
UpperCamelCase = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCamelCase = 'weight'
elif "running_mean" in name:
UpperCamelCase = 'running_mean'
elif "inv_freq" in name:
UpperCamelCase = 'inv_freq'
elif "running_var" in name:
UpperCamelCase = 'running_var'
elif "num_batches_tracked" in name:
UpperCamelCase = 'num_batches_tracked'
else:
UpperCamelCase = None
set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase )
continue
if not is_used:
unused_weights.append(lowercase )
logger.warning(f'''Unused weights: {unused_weights}''' )
def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = full_name.split('conv_layers.' )[-1]
UpperCamelCase = name.split('.' )
UpperCamelCase = int(items[0] )
UpperCamelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
UpperCamelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
UpperCamelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
UpperCamelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
UpperCamelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(lowercase )
@torch.no_grad()
def A ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> int:
'''simple docstring'''
if config_path is not None:
UpperCamelCase = WavaVecaConformerConfig.from_pretrained(lowercase , hidden_act='swish' )
else:
UpperCamelCase = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
UpperCamelCase = 'rotary'
if is_finetuned:
if dict_path:
UpperCamelCase = Dictionary.load(lowercase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCamelCase = target_dict.pad_index
UpperCamelCase = target_dict.bos_index
UpperCamelCase = target_dict.eos_index
UpperCamelCase = len(target_dict.symbols )
UpperCamelCase = os.path.join(lowercase , 'vocab.json' )
if not os.path.isdir(lowercase ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowercase ) )
return
os.makedirs(lowercase , exist_ok=lowercase )
UpperCamelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCamelCase = 0
UpperCamelCase = 1
with open(lowercase , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(lowercase , lowercase )
UpperCamelCase = WavaVecaCTCTokenizer(
lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowercase , )
UpperCamelCase = True if config.feat_extract_norm == 'layer' else False
UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , )
UpperCamelCase = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase )
processor.save_pretrained(lowercase )
UpperCamelCase = WavaVecaConformerForCTC(lowercase )
else:
UpperCamelCase = WavaVecaConformerForPreTraining(lowercase )
if is_finetuned:
UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
UpperCamelCase = argparse.Namespace(task='audio_pretraining' )
UpperCamelCase = fairseq.tasks.setup_task(lowercase )
UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase )
UpperCamelCase = model[0].eval()
recursively_load_weights(lowercase , lowercase , not is_finetuned )
hf_wavavec.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
_UpperCAmelCase : Dict = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 3 | 1 |
import inspect
import unittest
from typing import List
import numpy as np
from transformers import EfficientFormerConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
)
from transformers.models.efficientformer.modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_vision_available():
from PIL import Image
from transformers import EfficientFormerImageProcessor
class lowercase :
def __init__( self , A_ , A_ = 13 , A_ = 64 , A_ = 2 , A_ = 3 , A_ = 3 , A_ = True , A_ = True , A_ = 128 , A_=[16, 32, 64, 128] , A_ = 7 , A_ = 4 , A_ = 37 , A_ = "gelu" , A_ = 0.1 , A_ = 0.1 , A_ = 10 , A_ = 0.02 , A_ = 2 , A_ = 1 , A_ = 128 , A_ = [2, 2, 2, 2] , A_ = 2 , A_ = 2 , ) -> int:
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = patch_size
UpperCamelCase = num_channels
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
UpperCamelCase = encoder_stride
UpperCamelCase = num_attention_outputs
UpperCamelCase = embed_dim
UpperCamelCase = embed_dim + 1
UpperCamelCase = resolution
UpperCamelCase = depths
UpperCamelCase = hidden_sizes
UpperCamelCase = dim
UpperCamelCase = mlp_expansion_ratio
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase = self.get_config()
return config, pixel_values, labels
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
return EfficientFormerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , )
def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Tuple:
"""simple docstring"""
UpperCamelCase = TFEfficientFormerModel(config=A_ )
UpperCamelCase = model(A_ , training=A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Any:
"""simple docstring"""
UpperCamelCase = self.type_sequence_label_size
UpperCamelCase = TFEfficientFormerForImageClassification(A_ )
UpperCamelCase = model(A_ , labels=A_ , training=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase = 1
UpperCamelCase = TFEfficientFormerForImageClassification(A_ )
UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs
UpperCamelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ):
__lowercase : List[Any] = (
(
TFEfficientFormerModel,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerForImageClassification,
)
if is_tf_available()
else ()
)
__lowercase : Optional[int] = (
{
"feature-extraction": TFEfficientFormerModel,
"image-classification": (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
),
}
if is_tf_available()
else {}
)
__lowercase : List[Any] = False
__lowercase : int = False
__lowercase : int = False
__lowercase : str = False
__lowercase : Dict = False
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = TFEfficientFormerModelTester(self )
UpperCamelCase = ConfigTester(
self , config_class=A_ , has_text_modality=A_ , hidden_size=37 )
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='EfficientFormer does not use inputs_embeds' )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason='EfficientFormer does not support input and output embeddings' )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
pass
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(A_ )
UpperCamelCase = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , A_ )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
def check_hidden_states_output(A_ , A_ , A_ ):
UpperCamelCase = model_class(A_ )
UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) , training=A_ )
UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCamelCase = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(A_ ) , A_ )
if hasattr(self.model_tester , 'encoder_seq_length' ):
UpperCamelCase = self.model_tester.encoder_seq_length
if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1:
UpperCamelCase = seq_length * self.model_tester.chunk_length
else:
UpperCamelCase = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
if config.is_encoder_decoder:
UpperCamelCase = outputs.decoder_hidden_states
self.asseretIsInstance(A_ , (list, tuple) )
self.assertEqual(len(A_ ) , A_ )
UpperCamelCase = getattr(self.model_tester , 'seq_length' , A_ )
UpperCamelCase = getattr(self.model_tester , 'decoder_seq_length' , A_ )
self.assertListEqual(
list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , )
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = True
check_hidden_states_output(A_ , A_ , A_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase = True
check_hidden_states_output(A_ , A_ , A_ )
def __UpperCamelCase ( self , A_ , A_ , A_=False ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = super()._prepare_for_class(A_ , A_ , return_labels=A_ )
if return_labels:
if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
@unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' )
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*A_ )
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A_ )
@slow
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase = TFEfficientFormerModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = True
UpperCamelCase = getattr(self.model_tester , 'seq_length' , A_ )
UpperCamelCase = getattr(self.model_tester , 'encoder_seq_length' , A_ )
UpperCamelCase = getattr(self.model_tester , 'key_length' , A_ )
UpperCamelCase = getattr(self.model_tester , 'chunk_length' , A_ )
if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ):
UpperCamelCase = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
UpperCamelCase = True
UpperCamelCase = False
UpperCamelCase = True
UpperCamelCase = model_class(A_ )
UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) , training=A_ )
UpperCamelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(A_ ) , self.model_tester.num_attention_outputs )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCamelCase = True
UpperCamelCase = model_class(A_ )
UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) , training=A_ )
UpperCamelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(A_ ) , self.model_tester.num_attention_outputs )
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , )
else:
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
# We use a simplified version of this test for EfficientFormer because it requires training=False
# and Keras refuses to let us force that during functional construction
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Prepare our model
UpperCamelCase = model_class(A_ )
# These are maximally general inputs for the model, with multiple None dimensions
# Hopefully this will catch any conditionals that fail for flexible shapes
UpperCamelCase = {
key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=A_ )
for key, val in model.input_signature.items()
if key in model.dummy_inputs
}
UpperCamelCase = model(A_ )
self.assertTrue(outputs_dict is not None )
def A ( ) -> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
return (
EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' )
if is_vision_available()
else None
)
@slow
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='tf' )
# forward pass
UpperCamelCase = model(**A_ , training=A_ )
# verify the logits
UpperCamelCase = tf.TensorShape((1, 1_000) )
self.assertEqual(outputs.logits.shape , A_ )
UpperCamelCase = tf.constant([-0.0555, 0.4825, -0.0852] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
@slow
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
UpperCamelCase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained(
'snap-research/efficientformer-l1-300' )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='tf' )
# forward pass
UpperCamelCase = model(**A_ , training=A_ )
# verify the logits
UpperCamelCase = tf.TensorShape((1, 1_000) )
self.assertEqual(outputs.logits.shape , A_ )
UpperCamelCase = tf.constant([-0.1312, 0.4353, -1.0499] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
| 3 |
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
_UpperCAmelCase : Any = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n"
_UpperCAmelCase : str = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n"
_UpperCAmelCase : List[str] = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n"
def A ( lowercase , lowercase ) -> List[str]:
'''simple docstring'''
return float((preds == labels).mean() )
def A ( lowercase , lowercase ) -> Tuple:
'''simple docstring'''
UpperCamelCase = simple_accuracy(lowercase , lowercase )
UpperCamelCase = float(fa_score(y_true=lowercase , y_pred=lowercase ) )
return {
"accuracy": acc,
"f1": fa,
}
def A ( lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = float(pearsonr(lowercase , lowercase )[0] )
UpperCamelCase = float(spearmanr(lowercase , lowercase )[0] )
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase ( datasets.Metric ):
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
if self.config_name not in [
"sst2",
"mnli",
"mnli_mismatched",
"mnli_matched",
"cola",
"stsb",
"mrpc",
"qqp",
"qnli",
"rte",
"wnli",
"hans",
]:
raise KeyError(
'You should supply a configuration name selected in '
'["sst2", "mnli", "mnli_mismatched", "mnli_matched", '
'"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ),
'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ),
} ) , codebase_urls=[] , reference_urls=[] , format='numpy' , )
def __UpperCamelCase ( self , A_ , A_ ) -> Any:
"""simple docstring"""
if self.config_name == "cola":
return {"matthews_correlation": matthews_corrcoef(A_ , A_ )}
elif self.config_name == "stsb":
return pearson_and_spearman(A_ , A_ )
elif self.config_name in ["mrpc", "qqp"]:
return acc_and_fa(A_ , A_ )
elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]:
return {"accuracy": simple_accuracy(A_ , A_ )}
else:
raise KeyError(
'You should supply a configuration name selected in '
'["sst2", "mnli", "mnli_mismatched", "mnli_matched", '
'"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
| 3 | 1 |
from random import shuffle
import tensorflow as tf
from numpy import array
def A ( lowercase , lowercase ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase = int(lowercase )
assert noofclusters < len(lowercase )
# Find out the dimensionality
UpperCamelCase = len(vectors[0] )
# Will help select random centroids from among the available vectors
UpperCamelCase = list(range(len(lowercase ) ) )
shuffle(lowercase )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
UpperCamelCase = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
UpperCamelCase = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
UpperCamelCase = [
tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase )
]
##These nodes will assign the centroid Variables the appropriate
##values
UpperCamelCase = tf.placeholder('float64' , [dim] )
UpperCamelCase = []
for centroid in centroids:
cent_assigns.append(tf.assign(lowercase , lowercase ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
UpperCamelCase = [tf.Variable(0 ) for i in range(len(lowercase ) )]
##These nodes will assign an assignment Variable the appropriate
##value
UpperCamelCase = tf.placeholder('int32' )
UpperCamelCase = []
for assignment in assignments:
cluster_assigns.append(tf.assign(lowercase , lowercase ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
UpperCamelCase = tf.placeholder('float' , [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
UpperCamelCase = tf.reduce_mean(lowercase , 0 )
##Node for computing Euclidean distances
# Placeholders for input
UpperCamelCase = tf.placeholder('float' , [dim] )
UpperCamelCase = tf.placeholder('float' , [dim] )
UpperCamelCase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase , lowercase ) , 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
UpperCamelCase = tf.placeholder('float' , [noofclusters] )
UpperCamelCase = tf.argmin(lowercase , 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
UpperCamelCase = tf.initialize_all_variables()
# Initialize all variables
sess.run(lowercase )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
UpperCamelCase = 100
for _ in range(lowercase ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(lowercase ) ):
UpperCamelCase = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
UpperCamelCase = [
sess.run(lowercase , feed_dict={va: vect, va: sess.run(lowercase )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
UpperCamelCase = sess.run(
lowercase , feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(lowercase ):
# Collect all the vectors assigned to this cluster
UpperCamelCase = [
vectors[i]
for i in range(len(lowercase ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
UpperCamelCase = sess.run(
lowercase , feed_dict={mean_input: array(lowercase )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} )
# Return centroids and assignments
UpperCamelCase = sess.run(lowercase )
UpperCamelCase = sess.run(lowercase )
return centroids, assignments
| 3 |
import importlib
import math
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Tuple, Union
import flax
import jax.numpy as jnp
from ..utils import BaseOutput
_UpperCAmelCase : str = "scheduler_config.json"
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Tuple = 1
__lowercase : int = 2
__lowercase : List[Any] = 3
__lowercase : str = 4
__lowercase : Optional[Any] = 5
@dataclass
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : jnp.ndarray
class lowercase :
__lowercase : Union[str, Any] = SCHEDULER_CONFIG_NAME
__lowercase : Dict = ["dtype"]
__lowercase : List[Any] = []
__lowercase : Dict = True
@classmethod
def __UpperCamelCase ( cls , A_ = None , A_ = None , A_=False , **A_ , ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = cls.load_config(
pretrained_model_name_or_path=A_ , subfolder=A_ , return_unused_kwargs=A_ , **A_ , )
UpperCamelCase , UpperCamelCase = cls.from_config(A_ , return_unused_kwargs=A_ , **A_ )
if hasattr(A_ , 'create_state' ) and getattr(A_ , 'has_state' , A_ ):
UpperCamelCase = scheduler.create_state()
if return_unused_kwargs:
return scheduler, state, unused_kwargs
return scheduler, state
def __UpperCamelCase ( self , A_ , A_ = False , **A_ ) -> str:
"""simple docstring"""
self.save_config(save_directory=A_ , push_to_hub=A_ , **A_ )
@property
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
return self._get_compatibles()
@classmethod
def __UpperCamelCase ( cls ) -> int:
"""simple docstring"""
UpperCamelCase = list(set([cls.__name__] + cls._compatibles ) )
UpperCamelCase = importlib.import_module(__name__.split('.' )[0] )
UpperCamelCase = [
getattr(A_ , A_ ) for c in compatible_classes_str if hasattr(A_ , A_ )
]
return compatible_classes
def A ( lowercase , lowercase ) -> jnp.ndarray:
'''simple docstring'''
assert len(lowercase ) >= x.ndim
return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(lowercase ) - x.ndim) ) , lowercase )
def A ( lowercase , lowercase=0.9_9_9 , lowercase=jnp.floataa ) -> jnp.ndarray:
'''simple docstring'''
def alpha_bar(lowercase ):
return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2
UpperCamelCase = []
for i in range(lowercase ):
UpperCamelCase = i / num_diffusion_timesteps
UpperCamelCase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(lowercase ) / alpha_bar(lowercase ) , lowercase ) )
return jnp.array(lowercase , dtype=lowercase )
@flax.struct.dataclass
class lowercase :
__lowercase : jnp.ndarray
__lowercase : jnp.ndarray
__lowercase : jnp.ndarray
@classmethod
def __UpperCamelCase ( cls , A_ ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = scheduler.config
if config.trained_betas is not None:
UpperCamelCase = jnp.asarray(config.trained_betas , dtype=scheduler.dtype )
elif config.beta_schedule == "linear":
UpperCamelCase = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype )
elif config.beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
UpperCamelCase = (
jnp.linspace(
config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype )
** 2
)
elif config.beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
UpperCamelCase = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype )
else:
raise NotImplementedError(
F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' )
UpperCamelCase = 1.0 - betas
UpperCamelCase = jnp.cumprod(A_ , axis=0 )
return cls(
alphas=A_ , betas=A_ , alphas_cumprod=A_ , )
def A ( lowercase , lowercase , lowercase , lowercase ) -> List[Any]:
'''simple docstring'''
UpperCamelCase = state.alphas_cumprod
UpperCamelCase = alphas_cumprod[timesteps] ** 0.5
UpperCamelCase = sqrt_alpha_prod.flatten()
UpperCamelCase = broadcast_to_shape_from_left(lowercase , original_samples.shape )
UpperCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5
UpperCamelCase = sqrt_one_minus_alpha_prod.flatten()
UpperCamelCase = broadcast_to_shape_from_left(lowercase , original_samples.shape )
return sqrt_alpha_prod, sqrt_one_minus_alpha_prod
def A ( lowercase , lowercase , lowercase , lowercase ) -> Dict:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = get_sqrt_alpha_prod(lowercase , lowercase , lowercase , lowercase )
UpperCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def A ( lowercase , lowercase , lowercase , lowercase ) -> int:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = get_sqrt_alpha_prod(lowercase , lowercase , lowercase , lowercase )
UpperCamelCase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
| 3 | 1 |
from __future__ import annotations
def A ( lowercase , lowercase ) -> tuple[int, int]:
'''simple docstring'''
if b == 0:
return (1, 0)
((UpperCamelCase) , (UpperCamelCase)) = extended_euclid(lowercase , a % b )
UpperCamelCase = a // b
return (y, x - k * y)
def A ( lowercase , lowercase , lowercase , lowercase ) -> int:
'''simple docstring'''
((UpperCamelCase) , (UpperCamelCase)) = extended_euclid(lowercase , lowercase )
UpperCamelCase = na * na
UpperCamelCase = ra * x * na + ra * y * na
return (n % m + m) % m
def A ( lowercase , lowercase ) -> int:
'''simple docstring'''
((UpperCamelCase) , (UpperCamelCase)) = extended_euclid(lowercase , lowercase )
if b < 0:
UpperCamelCase = (b % n + n) % n
return b
def A ( lowercase , lowercase , lowercase , lowercase ) -> int:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = invert_modulo(lowercase , lowercase ), invert_modulo(lowercase , lowercase )
UpperCamelCase = na * na
UpperCamelCase = ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name="chinese_remainder_theorem", verbose=True)
testmod(name="chinese_remainder_theorem2", verbose=True)
testmod(name="invert_modulo", verbose=True)
testmod(name="extended_euclid", verbose=True)
| 3 |
from abc import ABC, abstractmethod
from typing import List, Optional
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self ) -> Optional[Any]:
"""simple docstring"""
# test for the above condition
self.test()
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = 0
UpperCamelCase = False
while not completed:
if counter == 1:
self.reset()
UpperCamelCase = self.advance()
if not self.does_advance(A_ ):
raise Exception(
'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' )
UpperCamelCase , UpperCamelCase , UpperCamelCase = self.update(A_ )
counter += 1
if counter > 10_000:
raise Exception('update() does not fulfill the constraint.' )
if self.remaining() != 0:
raise Exception('Custom Constraint is not defined correctly.' )
@abstractmethod
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def __UpperCamelCase ( self , A_ ) -> str:
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def __UpperCamelCase ( self , A_ ) -> int:
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def __UpperCamelCase ( self , A_=False ) -> int:
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ ) -> Any:
"""simple docstring"""
super(A_ , self ).__init__()
if not isinstance(A_ , A_ ) or len(A_ ) == 0:
raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' )
if any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids ):
raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' )
UpperCamelCase = token_ids
UpperCamelCase = len(self.token_ids )
UpperCamelCase = -1 # the index of the currently fulfilled step
UpperCamelCase = False
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def __UpperCamelCase ( self , A_ ) -> Optional[int]:
"""simple docstring"""
if not isinstance(A_ , A_ ):
raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' )
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def __UpperCamelCase ( self , A_ ) -> Optional[int]:
"""simple docstring"""
if not isinstance(A_ , A_ ):
raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' )
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
if self.does_advance(A_ ):
self.fulfilled_idx += 1
UpperCamelCase = True
if self.fulfilled_idx == (self.seqlen - 1):
UpperCamelCase = True
UpperCamelCase = completed
else:
# failed to make progress.
UpperCamelCase = True
self.reset()
return stepped, completed, reset
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = False
UpperCamelCase = 0
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
return self.seqlen - (self.fulfilled_idx + 1)
def __UpperCamelCase ( self , A_=False ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = PhrasalConstraint(self.token_ids )
if stateful:
UpperCamelCase = self.seqlen
UpperCamelCase = self.fulfilled_idx
UpperCamelCase = self.completed
return new_constraint
class lowercase :
def __init__( self , A_ , A_=True ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = max([len(A_ ) for one in nested_token_ids] )
UpperCamelCase = {}
for token_ids in nested_token_ids:
UpperCamelCase = root
for tidx, token_id in enumerate(A_ ):
if token_id not in level:
UpperCamelCase = {}
UpperCamelCase = level[token_id]
if no_subsets and self.has_subsets(A_ , A_ ):
raise ValueError(
'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is'
F''' {nested_token_ids}.''' )
UpperCamelCase = root
def __UpperCamelCase ( self , A_ ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = self.trie
for current_token in current_seq:
UpperCamelCase = start[current_token]
UpperCamelCase = list(start.keys() )
return next_tokens
def __UpperCamelCase ( self , A_ ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = self.next_tokens(A_ )
return len(A_ ) == 0
def __UpperCamelCase ( self , A_ ) -> List[str]:
"""simple docstring"""
UpperCamelCase = list(root.values() )
if len(A_ ) == 0:
return 1
else:
return sum([self.count_leaves(A_ ) for nn in next_nodes] )
def __UpperCamelCase ( self , A_ , A_ ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = self.count_leaves(A_ )
return len(A_ ) != leaf_count
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ ) -> str:
"""simple docstring"""
super(A_ , self ).__init__()
if not isinstance(A_ , A_ ) or len(A_ ) == 0:
raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' )
if any(not isinstance(A_ , A_ ) for token_ids in nested_token_ids ):
raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' )
if any(
any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids )
for token_ids in nested_token_ids ):
raise ValueError(
F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' )
UpperCamelCase = DisjunctiveTrie(A_ )
UpperCamelCase = nested_token_ids
UpperCamelCase = self.trie.max_height
UpperCamelCase = []
UpperCamelCase = False
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = self.trie.next_tokens(self.current_seq )
if len(A_ ) == 0:
return None
else:
return token_list
def __UpperCamelCase ( self , A_ ) -> Optional[Any]:
"""simple docstring"""
if not isinstance(A_ , A_ ):
raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' )
UpperCamelCase = self.trie.next_tokens(self.current_seq )
return token_id in next_tokens
def __UpperCamelCase ( self , A_ ) -> Optional[Any]:
"""simple docstring"""
if not isinstance(A_ , A_ ):
raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' )
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
if self.does_advance(A_ ):
self.current_seq.append(A_ )
UpperCamelCase = True
else:
UpperCamelCase = True
self.reset()
UpperCamelCase = self.trie.reached_leaf(self.current_seq )
UpperCamelCase = completed
return stepped, completed, reset
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase = False
UpperCamelCase = []
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq )
def __UpperCamelCase ( self , A_=False ) -> int:
"""simple docstring"""
UpperCamelCase = DisjunctiveConstraint(self.token_ids )
if stateful:
UpperCamelCase = self.seqlen
UpperCamelCase = self.current_seq
UpperCamelCase = self.completed
return new_constraint
class lowercase :
def __init__( self , A_ ) -> Tuple:
"""simple docstring"""
UpperCamelCase = constraints
# max # of steps required to fulfill a given constraint
UpperCamelCase = max([c.seqlen for c in constraints] )
UpperCamelCase = len(A_ )
UpperCamelCase = False
self.init_state()
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = []
UpperCamelCase = None
UpperCamelCase = [constraint.copy(stateful=A_ ) for constraint in self.constraints]
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints ) * self.max_seqlen) + add
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
UpperCamelCase = constraint.advance()
if isinstance(A_ , A_ ):
token_list.append(A_ )
elif isinstance(A_ , A_ ):
token_list.extend(A_ )
else:
UpperCamelCase = self.inprogress_constraint.advance()
if isinstance(A_ , A_ ):
token_list.append(A_ )
elif isinstance(A_ , A_ ):
token_list.extend(A_ )
if len(A_ ) == 0:
return None
else:
return token_list
def __UpperCamelCase ( self , A_ ) -> Any:
"""simple docstring"""
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
UpperCamelCase , UpperCamelCase = self.add(A_ )
# the entire list of constraints are fulfilled
if self.completed:
break
def __UpperCamelCase ( self , A_ ) -> int:
"""simple docstring"""
if not isinstance(A_ , A_ ):
raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' )
UpperCamelCase , UpperCamelCase = False, False
if self.completed:
UpperCamelCase = True
UpperCamelCase = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
UpperCamelCase , UpperCamelCase , UpperCamelCase = self.inprogress_constraint.update(A_ )
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=A_ ) )
UpperCamelCase = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint )
UpperCamelCase = None
if len(self.pending_constraints ) == 0:
# we're done!
UpperCamelCase = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints ):
if pending_constraint.does_advance(A_ ):
UpperCamelCase , UpperCamelCase , UpperCamelCase = pending_constraint.update(A_ )
if not stepped:
raise Exception(
'`constraint.update(token_id)` is not yielding incremental progress, '
'even though `constraint.does_advance(token_id)` is true.' )
if complete:
self.complete_constraints.append(A_ )
UpperCamelCase = None
if not complete and stepped:
UpperCamelCase = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
UpperCamelCase = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
UpperCamelCase = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def __UpperCamelCase ( self , A_=True ) -> Tuple:
"""simple docstring"""
UpperCamelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
UpperCamelCase = [
constraint.copy(stateful=A_ ) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
UpperCamelCase = self.inprogress_constraint.copy(stateful=A_ )
UpperCamelCase = [constraint.copy() for constraint in self.pending_constraints]
return new_state
| 3 | 1 |
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_UpperCAmelCase : Dict = logging.get_logger(__name__)
_UpperCAmelCase : Optional[Any] = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
_UpperCAmelCase : str = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
_UpperCAmelCase : List[str] = {"facebook/blenderbot_small-90M": 512}
def A ( lowercase ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase = set()
UpperCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCamelCase = char
UpperCamelCase = set(lowercase )
return pairs
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Optional[Any] = VOCAB_FILES_NAMES
__lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP
__lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase : Any = ["input_ids", "attention_mask"]
def __init__( self , A_ , A_ , A_="__start__" , A_="__end__" , A_="__unk__" , A_="__null__" , **A_ , ) -> List[Any]:
"""simple docstring"""
super().__init__(unk_token=A_ , bos_token=A_ , eos_token=A_ , pad_token=A_ , **A_ )
with open(A_ , encoding='utf-8' ) as vocab_handle:
UpperCamelCase = json.load(A_ )
UpperCamelCase = {v: k for k, v in self.encoder.items()}
with open(A_ , encoding='utf-8' ) as merges_handle:
UpperCamelCase = merges_handle.read().split('\n' )[1:-1]
UpperCamelCase = [tuple(merge.split() ) for merge in merges]
UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) )
UpperCamelCase = {}
@property
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
return len(self.encoder )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def __UpperCamelCase ( self , A_ ) -> str:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
UpperCamelCase = re.sub('([.,!?()])' , r' \1' , A_ )
UpperCamelCase = re.sub('(\')' , r' \1 ' , A_ )
UpperCamelCase = re.sub(r'\s{2,}' , ' ' , A_ )
if "\n" in token:
UpperCamelCase = token.replace('\n' , ' __newln__' )
UpperCamelCase = token.split(' ' )
UpperCamelCase = []
for token in tokens:
if not len(A_ ):
continue
UpperCamelCase = token.lower()
UpperCamelCase = tuple(A_ )
UpperCamelCase = tuple(list(word[:-1] ) + [word[-1] + '</w>'] )
UpperCamelCase = get_pairs(A_ )
if not pairs:
words.append(A_ )
continue
while True:
UpperCamelCase = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
UpperCamelCase , UpperCamelCase = bigram
UpperCamelCase = []
UpperCamelCase = 0
while i < len(A_ ):
try:
UpperCamelCase = word.index(A_ , A_ )
new_word.extend(word[i:j] )
UpperCamelCase = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCamelCase = tuple(A_ )
UpperCamelCase = new_word
if len(A_ ) == 1:
break
else:
UpperCamelCase = get_pairs(A_ )
UpperCamelCase = '@@ '.join(A_ )
UpperCamelCase = word[:-4]
UpperCamelCase = word
words.append(A_ )
return " ".join(A_ )
def __UpperCamelCase ( self , A_ ) -> List[str]:
"""simple docstring"""
UpperCamelCase = []
UpperCamelCase = re.findall(r'\S+\n?' , A_ )
for token in words:
split_tokens.extend(list(self.bpe(A_ ).split(' ' ) ) )
return split_tokens
def __UpperCamelCase ( self , A_ ) -> int:
"""simple docstring"""
UpperCamelCase = token.lower()
return self.encoder.get(A_ , self.encoder.get(self.unk_token ) )
def __UpperCamelCase ( self , A_ ) -> str:
"""simple docstring"""
return self.decoder.get(A_ , self.unk_token )
def __UpperCamelCase ( self , A_ ) -> str:
"""simple docstring"""
UpperCamelCase = ' '.join(A_ ).replace('@@ ' , '' ).strip()
return out_string
def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(A_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCamelCase = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
UpperCamelCase = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(A_ , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' )
UpperCamelCase = 0
with open(A_ , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
' Please check that the tokenizer is not corrupted!' )
UpperCamelCase = token_index
writer.write(' '.join(A_ ) + '\n' )
index += 1
return vocab_file, merge_file
| 3 |
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
_UpperCAmelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
@register_to_config
def __init__( self , A_ , A_ = None , A_ = None ) -> Any:
"""simple docstring"""
super().__init__()
UpperCamelCase = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
UpperCamelCase = torch.zeros(A_ , A_ )
else:
UpperCamelCase = None
UpperCamelCase = torch.nn.Parameter(A_ )
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : VQModel
__lowercase : CLIPTextModel
__lowercase : CLIPTokenizer
__lowercase : TransformeraDModel
__lowercase : LearnedClassifierFreeSamplingEmbeddings
__lowercase : VQDiffusionScheduler
def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
self.register_modules(
vqvae=A_ , transformer=A_ , text_encoder=A_ , tokenizer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , )
def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = len(A_ ) if isinstance(A_ , A_ ) else 1
# get prompt text embeddings
UpperCamelCase = self.tokenizer(
A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , )
UpperCamelCase = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'The following part of your input was truncated because CLIP can only handle sequences up to'
F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length]
UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A_ )
# duplicate text embeddings for each generation per prompt
UpperCamelCase = prompt_embeds.repeat_interleave(A_ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings
UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(A_ , 1 , 1 )
else:
UpperCamelCase = [''] * batch_size
UpperCamelCase = text_input_ids.shape[-1]
UpperCamelCase = self.tokenizer(
A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='pt' , )
UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A_ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
UpperCamelCase = negative_prompt_embeds.shape[1]
UpperCamelCase = negative_prompt_embeds.repeat(1 , A_ , 1 )
UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self , A_ , A_ = 100 , A_ = 5.0 , A_ = 1.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , ) -> Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
if isinstance(A_ , A_ ):
UpperCamelCase = 1
elif isinstance(A_ , A_ ):
UpperCamelCase = len(A_ )
else:
raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' )
UpperCamelCase = batch_size * num_images_per_prompt
UpperCamelCase = guidance_scale > 1.0
UpperCamelCase = self._encode_prompt(A_ , A_ , A_ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0)
):
raise ValueError(
F'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
F''' {type(A_ )}.''' )
# get the initial completely masked latents unless the user supplied it
UpperCamelCase = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
UpperCamelCase = self.transformer.num_vector_embeds - 1
UpperCamelCase = torch.full(A_ , A_ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,'
F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' )
UpperCamelCase = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(A_ , device=self.device )
UpperCamelCase = self.scheduler.timesteps.to(self.device )
UpperCamelCase = latents
for i, t in enumerate(self.progress_bar(A_ ) ):
# expand the sample if we are doing classifier free guidance
UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
UpperCamelCase = self.transformer(A_ , encoder_hidden_states=A_ , timestep=A_ ).sample
if do_classifier_free_guidance:
UpperCamelCase , UpperCamelCase = model_output.chunk(2 )
UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(A_ , dim=1 , keepdim=A_ )
UpperCamelCase = self.truncate(A_ , A_ )
# remove `log(0)`'s (`-inf`s)
UpperCamelCase = model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
UpperCamelCase = self.scheduler.step(A_ , timestep=A_ , sample=A_ , generator=A_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(A_ , A_ , A_ )
UpperCamelCase = self.vqvae.config.vq_embed_dim
UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
UpperCamelCase = self.vqvae.quantize.get_codebook_entry(A_ , shape=A_ )
UpperCamelCase = self.vqvae.decode(A_ , force_not_quantize=A_ ).sample
UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 )
UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCamelCase = self.numpy_to_pil(A_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A_ )
def __UpperCamelCase ( self , A_ , A_ ) -> torch.FloatTensor:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = torch.sort(A_ , 1 , descending=A_ )
UpperCamelCase = torch.exp(A_ )
UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , A_ )
UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 )
UpperCamelCase = keep_mask[:, :-1, :]
UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) )
UpperCamelCase = log_p_x_0.clone()
UpperCamelCase = -torch.inf # -inf = log(0)
return rv
| 3 | 1 |
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class lowercase ( _SCREAMING_SNAKE_CASE ):
@staticmethod
@abstractmethod
def __UpperCamelCase ( A_ ) -> List[Any]:
"""simple docstring"""
raise NotImplementedError()
@abstractmethod
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
raise NotImplementedError()
| 3 |
from string import ascii_uppercase
_UpperCAmelCase : Dict = {char: i for i, char in enumerate(ascii_uppercase)}
_UpperCAmelCase : Tuple = dict(enumerate(ascii_uppercase))
def A ( lowercase , lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = len(lowercase )
UpperCamelCase = 0
while True:
if x == i:
UpperCamelCase = 0
if len(lowercase ) == len(lowercase ):
break
key += key[i]
i += 1
return key
def A ( lowercase , lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = ''
UpperCamelCase = 0
for letter in message:
if letter == " ":
cipher_text += " "
else:
UpperCamelCase = (dicta[letter] - dicta[key_new[i]]) % 26
i += 1
cipher_text += dicta[x]
return cipher_text
def A ( lowercase , lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = ''
UpperCamelCase = 0
for letter in cipher_text:
if letter == " ":
or_txt += " "
else:
UpperCamelCase = (dicta[letter] + dicta[key_new[i]] + 26) % 26
i += 1
or_txt += dicta[x]
return or_txt
def A ( ) -> None:
'''simple docstring'''
UpperCamelCase = 'THE GERMAN ATTACK'
UpperCamelCase = 'SECRET'
UpperCamelCase = generate_key(lowercase , lowercase )
UpperCamelCase = cipher_text(lowercase , lowercase )
print(f'''Encrypted Text = {s}''' )
print(f'''Original Text = {original_text(lowercase , lowercase )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 3 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_UpperCAmelCase : Optional[Any] = {
"configuration_efficientformer": [
"EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EfficientFormerConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Optional[Any] = ["EfficientFormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : List[str] = [
"EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"EfficientFormerForImageClassification",
"EfficientFormerForImageClassificationWithTeacher",
"EfficientFormerModel",
"EfficientFormerPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : int = [
"TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFEfficientFormerForImageClassification",
"TFEfficientFormerForImageClassificationWithTeacher",
"TFEfficientFormerModel",
"TFEfficientFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientformer import EfficientFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientformer import (
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientFormerForImageClassification,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerModel,
EfficientFormerPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
TFEfficientFormerPreTrainedModel,
)
else:
import sys
_UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 3 |
from collections.abc import Callable
def A ( lowercase , lowercase , lowercase ) -> float:
'''simple docstring'''
UpperCamelCase = a
UpperCamelCase = b
if function(lowercase ) == 0: # one of the a or b is a root for the function
return a
elif function(lowercase ) == 0:
return b
elif (
function(lowercase ) * function(lowercase ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('could not find root in given interval.' )
else:
UpperCamelCase = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(lowercase ) == 0:
return mid
elif function(lowercase ) * function(lowercase ) < 0:
UpperCamelCase = mid
else:
UpperCamelCase = mid
UpperCamelCase = start + (end - start) / 2.0
return mid
def A ( lowercase ) -> float:
'''simple docstring'''
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1_000))
import doctest
doctest.testmod()
| 3 | 1 |
from collections import defaultdict
from math import ceil, sqrt
def A ( lowercase = 1_000_000 , lowercase = 10 ) -> int:
'''simple docstring'''
UpperCamelCase = defaultdict(lowercase )
for outer_width in range(3 , (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
UpperCamelCase = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 )
else:
UpperCamelCase = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(lowercase , outer_width - 1 , 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10 )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 3 |
import os
_UpperCAmelCase : int = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000}
def A ( lowercase ) -> int:
'''simple docstring'''
UpperCamelCase = 0
UpperCamelCase = 0
while index < len(lowercase ) - 1:
UpperCamelCase = SYMBOLS[numerals[index]]
UpperCamelCase = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def A ( lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = ''
UpperCamelCase = num // 1_000
numerals += m_count * "M"
num %= 1_000
UpperCamelCase = num // 100
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 100
UpperCamelCase = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def A ( lowercase = "/p089_roman.txt" ) -> int:
'''simple docstring'''
UpperCamelCase = 0
with open(os.path.dirname(lowercase ) + roman_numerals_filename ) as filea:
UpperCamelCase = filea.readlines()
for line in lines:
UpperCamelCase = line.strip()
UpperCamelCase = parse_roman_numerals(lowercase )
UpperCamelCase = generate_roman_numerals(lowercase )
savings += len(lowercase ) - len(lowercase )
return savings
if __name__ == "__main__":
print(F'''{solution() = }''')
| 3 | 1 |
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class lowercase :
def __init__( self , A_ , A_=99 , A_=13 , A_=16 , A_=7 , A_=True , A_=True , A_=True , A_=False , A_=True , A_=2 , A_=32 , A_=4 , A_=4 , A_=30 , A_=0 , A_=1 , A_=2 , A_=None , ) -> Tuple:
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = decoder_seq_length
# For common tests
UpperCamelCase = self.decoder_seq_length
UpperCamelCase = is_training
UpperCamelCase = use_attention_mask
UpperCamelCase = use_labels
UpperCamelCase = vocab_size
UpperCamelCase = d_model
UpperCamelCase = d_model
UpperCamelCase = decoder_layers
UpperCamelCase = decoder_layers
UpperCamelCase = decoder_ffn_dim
UpperCamelCase = decoder_attention_heads
UpperCamelCase = decoder_attention_heads
UpperCamelCase = eos_token_id
UpperCamelCase = bos_token_id
UpperCamelCase = pad_token_id
UpperCamelCase = decoder_start_token_id
UpperCamelCase = use_cache
UpperCamelCase = max_position_embeddings
UpperCamelCase = None
UpperCamelCase = decoder_seq_length
UpperCamelCase = 2
UpperCamelCase = 1
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
UpperCamelCase = None
if self.use_attention_mask:
UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
UpperCamelCase = TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = True
UpperCamelCase = TrOCRDecoder(config=A_ ).to(A_ ).eval()
UpperCamelCase = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
UpperCamelCase = model(A_ , use_cache=A_ )
UpperCamelCase = model(A_ )
UpperCamelCase = model(A_ , use_cache=A_ )
self.parent.assertTrue(len(A_ ) == len(A_ ) )
self.parent.assertTrue(len(A_ ) == len(A_ ) + 1 )
UpperCamelCase = outputs['past_key_values']
# create hypothetical next token and extent to next_input_ids
UpperCamelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCamelCase = model(A_ )['last_hidden_state']
UpperCamelCase = model(A_ , past_key_values=A_ )['last_hidden_state']
# select random slice
UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCamelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
UpperCamelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(A_ , A_ , atol=1e-3 )
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs
UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_torch
class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ):
__lowercase : List[Any] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
__lowercase : List[Any] = (TrOCRForCausalLM,) if is_torch_available() else ()
__lowercase : str = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {}
__lowercase : List[str] = True
__lowercase : str = False
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = TrOCRStandaloneDecoderModelTester(self , is_training=A_ )
UpperCamelCase = ConfigTester(self , config_class=A_ )
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
pass
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
pass
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
pass
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*A_ )
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
return
@unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :)
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
pass
| 3 |
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20] )
def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowercase )
UpperCamelCase = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
UpperCamelCase = dataset_size < in_memory_max_size
else:
UpperCamelCase = False
UpperCamelCase = is_small_dataset(lowercase )
assert result == expected
| 3 | 1 |
import math
def A ( lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = 0
UpperCamelCase = 0
while num > 0:
UpperCamelCase = num % 8
UpperCamelCase = octal + (remainder * math.floor(math.pow(10 , lowercase ) ))
counter += 1
UpperCamelCase = math.floor(num / 8 ) # basically /= 8 without remainder if any
# This formatting removes trailing '.0' from `octal`.
return f'''0o{int(lowercase )}'''
def A ( ) -> None:
'''simple docstring'''
print('\n2 in octal is:' )
print(decimal_to_octal(2 ) ) # = 2
print('\n8 in octal is:' )
print(decimal_to_octal(8 ) ) # = 10
print('\n65 in octal is:' )
print(decimal_to_octal(65 ) ) # = 101
print('\n216 in octal is:' )
print(decimal_to_octal(216 ) ) # = 330
print('\n512 in octal is:' )
print(decimal_to_octal(512 ) ) # = 1000
print('\n' )
if __name__ == "__main__":
main()
| 3 |
def A ( lowercase , lowercase ) -> str:
'''simple docstring'''
if a < 0 or b < 0:
raise ValueError('the value of both inputs must be positive' )
UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b"
UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b"
UpperCamelCase = max(len(lowercase ) , len(lowercase ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(lowercase ) , b_binary.zfill(lowercase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def A ( lowercase ) -> List[str]:
'''simple docstring'''
if is_torch_version('<' , '2.0.0' ) or not hasattr(lowercase , '_dynamo' ):
return False
return isinstance(lowercase , torch._dynamo.eval_frame.OptimizedModule )
def A ( lowercase , lowercase = True ) -> Any:
'''simple docstring'''
UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
UpperCamelCase = is_compiled_module(lowercase )
if is_compiled:
UpperCamelCase = model
UpperCamelCase = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(lowercase , lowercase ):
UpperCamelCase = model.module
if not keep_fpaa_wrapper:
UpperCamelCase = getattr(lowercase , 'forward' )
UpperCamelCase = model.__dict__.pop('_original_forward' , lowercase )
if original_forward is not None:
while hasattr(lowercase , '__wrapped__' ):
UpperCamelCase = forward.__wrapped__
if forward == original_forward:
break
UpperCamelCase = forward
if getattr(lowercase , '_converted_to_transformer_engine' , lowercase ):
convert_model(lowercase , to_transformer_engine=lowercase )
if is_compiled:
UpperCamelCase = model
UpperCamelCase = compiled_model
return model
def A ( ) -> Optional[int]:
'''simple docstring'''
PartialState().wait_for_everyone()
def A ( lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
if PartialState().distributed_type == DistributedType.TPU:
xm.save(lowercase , lowercase )
elif PartialState().local_process_index == 0:
torch.save(lowercase , lowercase )
@contextmanager
def A ( **lowercase ) -> Optional[Any]:
'''simple docstring'''
for key, value in kwargs.items():
UpperCamelCase = str(lowercase )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def A ( lowercase ) -> str:
'''simple docstring'''
if not hasattr(lowercase , '__qualname__' ) and not hasattr(lowercase , '__name__' ):
UpperCamelCase = getattr(lowercase , '__class__' , lowercase )
if hasattr(lowercase , '__qualname__' ):
return obj.__qualname__
if hasattr(lowercase , '__name__' ):
return obj.__name__
return str(lowercase )
def A ( lowercase , lowercase ) -> int:
'''simple docstring'''
for key, value in source.items():
if isinstance(lowercase , lowercase ):
UpperCamelCase = destination.setdefault(lowercase , {} )
merge_dicts(lowercase , lowercase )
else:
UpperCamelCase = value
return destination
def A ( lowercase = None ) -> bool:
'''simple docstring'''
if port is None:
UpperCamelCase = 29_500
with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s:
return s.connect_ex(('localhost', port) ) == 0
| 3 |
import re
def A ( lowercase ) -> str:
'''simple docstring'''
if len(re.findall('[ATCG]' , lowercase ) ) != len(lowercase ):
raise ValueError('Invalid Strand' )
return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def A ( lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
assert isinstance(lowercase , lowercase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def A ( lowercase , lowercase , lowercase ) -> Tuple:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def A ( lowercase , lowercase , lowercase ) -> Tuple:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = features.copy() if features else default_expected_features
UpperCamelCase = (
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCamelCase = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def A ( lowercase , lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type' , [str, list] )
def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
if issubclass(lowercase , lowercase ):
UpperCamelCase = parquet_path
elif issubclass(lowercase , lowercase ):
UpperCamelCase = [parquet_path]
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
def A ( lowercase , lowercase , lowercase=("train",) ) -> Tuple:
'''simple docstring'''
assert isinstance(lowercase , lowercase )
for split in splits:
UpperCamelCase = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def A ( lowercase , lowercase , lowercase ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCamelCase = ParquetDatasetReader(
{'train': parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read()
_check_parquet_datasetdict(lowercase , lowercase )
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def A ( lowercase , lowercase , lowercase ) -> List[Any]:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = features.copy() if features else default_expected_features
UpperCamelCase = (
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCamelCase = ParquetDatasetReader({'train': parquet_path} , features=lowercase , cache_dir=lowercase ).read()
_check_parquet_datasetdict(lowercase , lowercase )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
if split:
UpperCamelCase = {split: parquet_path}
else:
UpperCamelCase = 'train'
UpperCamelCase = {'train': parquet_path, 'test': parquet_path}
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read()
_check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def A ( lowercase , lowercase ) -> List[Any]:
'''simple docstring'''
UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' )
assert writer.write() > 0
UpperCamelCase = pq.ParquetFile(tmp_path / 'foo.parquet' )
UpperCamelCase = pf.read()
assert dataset.data.table == output_table
def A ( lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = str(shared_datadir / 'test_image_rgb.jpg' )
UpperCamelCase = {'image': [image_path]}
UpperCamelCase = Features({'image': Image()} )
UpperCamelCase = Dataset.from_dict(lowercase , features=lowercase )
UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' )
assert writer.write() > 0
UpperCamelCase = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) )
assert dataset.features == reloaded_dataset.features
UpperCamelCase = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=lowercase ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
'feature, expected' , [
(Features({'foo': Value('int32' )} ), None),
(Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def A ( lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
assert get_writer_batch_size(lowercase ) == expected
| 3 |
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Dict = (DDPMScheduler,)
def __UpperCamelCase ( self , **A_ ) -> Dict:
"""simple docstring"""
UpperCamelCase = {
'num_train_timesteps': 1_000,
'beta_start': 0.0001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'variance_type': 'fixed_small',
'clip_sample': True,
}
config.update(**A_ )
return config
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=A_ )
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=A_ , beta_end=A_ )
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=A_ )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=A_ )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=A_ )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
self.check_over_configs(thresholding=A_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=A_ , prediction_type=A_ , sample_max_value=A_ , )
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=A_ )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
for t in [0, 500, 999]:
self.check_over_forward(time_step=A_ )
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = len(A_ )
UpperCamelCase = self.dummy_model()
UpperCamelCase = self.dummy_sample_deter
UpperCamelCase = torch.manual_seed(0 )
for t in reversed(range(A_ ) ):
# 1. predict noise residual
UpperCamelCase = model(A_ , A_ )
# 2. predict previous mean of sample x_t-1
UpperCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
UpperCamelCase = pred_prev_sample
UpperCamelCase = torch.sum(torch.abs(A_ ) )
UpperCamelCase = torch.mean(torch.abs(A_ ) )
assert abs(result_sum.item() - 258.9606 ) < 1e-2
assert abs(result_mean.item() - 0.3372 ) < 1e-3
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config(prediction_type='v_prediction' )
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = len(A_ )
UpperCamelCase = self.dummy_model()
UpperCamelCase = self.dummy_sample_deter
UpperCamelCase = torch.manual_seed(0 )
for t in reversed(range(A_ ) ):
# 1. predict noise residual
UpperCamelCase = model(A_ , A_ )
# 2. predict previous mean of sample x_t-1
UpperCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
UpperCamelCase = pred_prev_sample
UpperCamelCase = torch.sum(torch.abs(A_ ) )
UpperCamelCase = torch.mean(torch.abs(A_ ) )
assert abs(result_sum.item() - 202.0296 ) < 1e-2
assert abs(result_mean.item() - 0.2631 ) < 1e-3
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=A_ )
UpperCamelCase = scheduler.timesteps
for i, timestep in enumerate(A_ ):
if i == len(A_ ) - 1:
UpperCamelCase = -1
else:
UpperCamelCase = timesteps[i + 1]
UpperCamelCase = scheduler.previous_timestep(A_ )
UpperCamelCase = prev_t.item()
self.assertEqual(A_ , A_ )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = [100, 87, 50, 51, 0]
with self.assertRaises(A_ , msg='`custom_timesteps` must be in descending order.' ):
scheduler.set_timesteps(timesteps=A_ )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = [100, 87, 50, 1, 0]
UpperCamelCase = len(A_ )
with self.assertRaises(A_ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ):
scheduler.set_timesteps(num_inference_steps=A_ , timesteps=A_ )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = [scheduler.config.num_train_timesteps]
with self.assertRaises(
A_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ):
scheduler.set_timesteps(timesteps=A_ )
| 3 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
_UpperCAmelCase : Tuple = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
_UpperCAmelCase : List[str] = TaTokenizerFast
_UpperCAmelCase : Tuple = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Union[str, Any] = [
"MT5EncoderModel",
"MT5ForConditionalGeneration",
"MT5ForQuestionAnswering",
"MT5Model",
"MT5PreTrainedModel",
"MT5Stack",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Any = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : List[Any] = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
_UpperCAmelCase : Optional[Any] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast},
module_spec=__spec__,
)
| 3 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
_UpperCAmelCase : List[str] = None
_UpperCAmelCase : Any = logging.get_logger(__name__)
_UpperCAmelCase : Tuple = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
_UpperCAmelCase : List[str] = {
"vocab_file": {
"camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model",
},
"tokenizer_file": {
"camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json",
},
}
_UpperCAmelCase : Optional[int] = {
"camembert-base": 512,
}
_UpperCAmelCase : Union[str, Any] = "▁"
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : str = VOCAB_FILES_NAMES
__lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
__lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase : List[str] = ["input_ids", "attention_mask"]
__lowercase : Tuple = CamembertTokenizer
def __init__( self , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=["<s>NOTUSED", "</s>NOTUSED"] , **A_ , ) -> List[Any]:
"""simple docstring"""
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token
super().__init__(
A_ , tokenizer_file=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , additional_special_tokens=A_ , **A_ , )
UpperCamelCase = vocab_file
UpperCamelCase = False if not self.vocab_file else True
def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCamelCase = [self.cls_token_id]
UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]:
"""simple docstring"""
UpperCamelCase = [self.sep_token_id]
UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(A_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCamelCase = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ):
copyfile(self.vocab_file , A_ )
return (out_vocab_file,)
| 3 | 1 |
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class lowercase :
__lowercase : Union[str, Any] = XGLMConfig
__lowercase : Dict = {}
__lowercase : str = "gelu"
def __init__( self , A_ , A_=14 , A_=7 , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=0.02 , ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = seq_length
UpperCamelCase = is_training
UpperCamelCase = use_input_mask
UpperCamelCase = use_labels
UpperCamelCase = vocab_size
UpperCamelCase = d_model
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = ffn_dim
UpperCamelCase = activation_function
UpperCamelCase = activation_dropout
UpperCamelCase = attention_dropout
UpperCamelCase = max_position_embeddings
UpperCamelCase = initializer_range
UpperCamelCase = None
UpperCamelCase = 0
UpperCamelCase = 2
UpperCamelCase = 1
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
return XGLMConfig.from_pretrained('facebook/xglm-564M' )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
UpperCamelCase = None
if self.use_input_mask:
UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase = self.get_config()
UpperCamelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=A_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=A_ , )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) = config_and_inputs
UpperCamelCase = {
'input_ids': input_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_tf
class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ):
__lowercase : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
__lowercase : Optional[Any] = (TFXGLMForCausalLM,) if is_tf_available() else ()
__lowercase : Any = (
{"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {}
)
__lowercase : str = False
__lowercase : Optional[Any] = False
__lowercase : Dict = False
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = TFXGLMModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=A_ , n_embd=37 )
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
@slow
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase = TFXGLMModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
@unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' )
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
super().test_resize_token_embeddings()
@require_tf
class lowercase ( unittest.TestCase ):
@slow
def __UpperCamelCase ( self , A_=True ) -> List[str]:
"""simple docstring"""
UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
UpperCamelCase = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
UpperCamelCase = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581]
# fmt: on
UpperCamelCase = model.generate(A_ , do_sample=A_ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , A_ )
@slow
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
tf.random.set_seed(0 )
UpperCamelCase = tokenizer('Today is a nice day and' , return_tensors='tf' )
UpperCamelCase = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(':/CPU:0' ):
UpperCamelCase = model.generate(A_ , do_sample=A_ , seed=[7, 0] )
UpperCamelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=A_ )
UpperCamelCase = (
'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'
)
self.assertEqual(A_ , A_ )
@slow
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
UpperCamelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
UpperCamelCase = 'left'
# use different length sentences to test batching
UpperCamelCase = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When',
'Hello, my dog is a little',
]
UpperCamelCase = tokenizer(A_ , return_tensors='tf' , padding=A_ )
UpperCamelCase = inputs['input_ids']
UpperCamelCase = model.generate(input_ids=A_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 )
UpperCamelCase = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
UpperCamelCase = model.generate(input_ids=A_ , max_new_tokens=12 )
UpperCamelCase = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
UpperCamelCase = model.generate(input_ids=A_ , max_new_tokens=12 )
UpperCamelCase = tokenizer.batch_decode(A_ , skip_special_tokens=A_ )
UpperCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=A_ )
UpperCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=A_ )
UpperCamelCase = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '
'a single',
'Hello, my dog is a little bit of a shy one, but he is very friendly',
]
self.assertListEqual(A_ , A_ )
self.assertListEqual(A_ , [non_padded_sentence, padded_sentence] )
| 3 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCAmelCase : Union[str, Any] = {
"configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
"processing_git": ["GitProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Dict = [
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
_UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 3 | 1 |
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
_UpperCAmelCase : List[str] = logging.get_logger(__name__)
_UpperCAmelCase : Any = {
"deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json",
# See all Perceiver models at https://huggingface.co/models?filter=perceiver
}
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Optional[Any] = "perceiver"
def __init__( self , A_=256 , A_=1_280 , A_=768 , A_=1 , A_=26 , A_=8 , A_=8 , A_=None , A_=None , A_="kv" , A_=1 , A_=1 , A_="gelu" , A_=0.1 , A_=0.02 , A_=1e-12 , A_=True , A_=262 , A_=2_048 , A_=56 , A_=[368, 496] , A_=16 , A_=1_920 , A_=16 , A_=[1, 16, 224, 224] , **A_ , ) -> Any:
"""simple docstring"""
super().__init__(**A_ )
UpperCamelCase = num_latents
UpperCamelCase = d_latents
UpperCamelCase = d_model
UpperCamelCase = num_blocks
UpperCamelCase = num_self_attends_per_block
UpperCamelCase = num_self_attention_heads
UpperCamelCase = num_cross_attention_heads
UpperCamelCase = qk_channels
UpperCamelCase = v_channels
UpperCamelCase = cross_attention_shape_for_attention
UpperCamelCase = self_attention_widening_factor
UpperCamelCase = cross_attention_widening_factor
UpperCamelCase = hidden_act
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = initializer_range
UpperCamelCase = layer_norm_eps
UpperCamelCase = use_query_residual
# masked language modeling attributes
UpperCamelCase = vocab_size
UpperCamelCase = max_position_embeddings
# image classification attributes
UpperCamelCase = image_size
# flow attributes
UpperCamelCase = train_size
# multimodal autoencoding attributes
UpperCamelCase = num_frames
UpperCamelCase = audio_samples_per_frame
UpperCamelCase = samples_per_patch
UpperCamelCase = output_shape
class lowercase ( _SCREAMING_SNAKE_CASE ):
@property
def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('inputs', dynamic_axis),
('attention_mask', dynamic_axis),
] )
@property
def __UpperCamelCase ( self ) -> float:
"""simple docstring"""
return 1e-4
def __UpperCamelCase ( self , A_ , A_ = -1 , A_ = -1 , A_ = -1 , A_ = False , A_ = None , A_ = 3 , A_ = 40 , A_ = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
# copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified
if isinstance(A_ , A_ ):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCamelCase = compute_effective_axis_dimension(
A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCamelCase = preprocessor.num_special_tokens_to_add(A_ )
UpperCamelCase = compute_effective_axis_dimension(
A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ )
# Generate dummy inputs according to compute batch and sequence
UpperCamelCase = [' '.join(['a'] ) * seq_length] * batch_size
UpperCamelCase = dict(preprocessor(A_ , return_tensors=A_ ) )
UpperCamelCase = inputs.pop('input_ids' )
return inputs
elif isinstance(A_ , A_ ) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCamelCase = compute_effective_axis_dimension(A_ , fixed_dimension=OnnxConfig.default_fixed_batch )
UpperCamelCase = self._generate_dummy_images(A_ , A_ , A_ , A_ )
UpperCamelCase = dict(preprocessor(images=A_ , return_tensors=A_ ) )
UpperCamelCase = inputs.pop('pixel_values' )
return inputs
else:
raise ValueError(
'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
| 3 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCAmelCase : Tuple = logging.get_logger(__name__)
_UpperCAmelCase : Union[str, Any] = {
"facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json",
}
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Dict = "data2vec-text"
def __init__( self , A_=30_522 , A_=768 , A_=12 , A_=12 , A_=3_072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ) -> Any:
"""simple docstring"""
super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ )
UpperCamelCase = vocab_size
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = hidden_act
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = max_position_embeddings
UpperCamelCase = type_vocab_size
UpperCamelCase = initializer_range
UpperCamelCase = layer_norm_eps
UpperCamelCase = position_embedding_type
UpperCamelCase = use_cache
UpperCamelCase = classifier_dropout
class lowercase ( _SCREAMING_SNAKE_CASE ):
@property
def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 3 | 1 |
import itertools
import json
import os
import unittest
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
__lowercase : Optional[Any] = RobertaTokenizer
__lowercase : Union[str, Any] = RobertaTokenizerFast
__lowercase : Tuple = True
__lowercase : Any = {"cls_token": "<s>"}
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCamelCase = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) )
UpperCamelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
UpperCamelCase = {'unk_token': '<unk>'}
UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(A_ ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(A_ ) )
def __UpperCamelCase ( self , **A_ ) -> List[str]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **A_ )
def __UpperCamelCase ( self , **A_ ) -> Optional[Any]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **A_ )
def __UpperCamelCase ( self , A_ ) -> Any:
"""simple docstring"""
UpperCamelCase = 'lower newer'
UpperCamelCase = 'lower newer'
return input_text, output_text
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCamelCase = 'lower newer'
UpperCamelCase = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er']
UpperCamelCase = tokenizer.tokenize(A_ ) # , add_prefix_space=True)
self.assertListEqual(A_ , A_ )
UpperCamelCase = tokens + [tokenizer.unk_token]
UpperCamelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ )
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
UpperCamelCase = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=A_ ) , [0, 31_414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=A_ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , )
@slow
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = self.tokenizer_class.from_pretrained('roberta-base' )
UpperCamelCase = tokenizer.encode('sequence builders' , add_special_tokens=A_ )
UpperCamelCase = tokenizer.encode('multi-sequence build' , add_special_tokens=A_ )
UpperCamelCase = tokenizer.encode(
'sequence builders' , add_special_tokens=A_ , add_prefix_space=A_ )
UpperCamelCase = tokenizer.encode(
'sequence builders' , 'multi-sequence build' , add_special_tokens=A_ , add_prefix_space=A_ )
UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ )
UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ , A_ )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = self.get_tokenizer()
UpperCamelCase = 'Encode this sequence.'
UpperCamelCase = tokenizer.byte_encoder[' '.encode('utf-8' )[0]]
# Testing encoder arguments
UpperCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ , add_prefix_space=A_ )
UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(A_ , A_ )
UpperCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ , add_prefix_space=A_ )
UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(A_ , A_ )
tokenizer.add_special_tokens({'bos_token': '<s>'} )
UpperCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ )
UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(A_ , A_ )
# Testing spaces after special tokens
UpperCamelCase = '<mask>'
tokenizer.add_special_tokens(
{'mask_token': AddedToken(A_ , lstrip=A_ , rstrip=A_ )} ) # mask token has a left space
UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ )
UpperCamelCase = 'Encode <mask> sequence'
UpperCamelCase = 'Encode <mask>sequence'
UpperCamelCase = tokenizer.encode(A_ )
UpperCamelCase = encoded.index(A_ )
UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(A_ , A_ )
UpperCamelCase = tokenizer.encode(A_ )
UpperCamelCase = encoded.index(A_ )
UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(A_ , A_ )
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
pass
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(A_ , **A_ )
UpperCamelCase = self.tokenizer_class.from_pretrained(A_ , **A_ )
UpperCamelCase = 'A, <mask> AllenNLP sentence.'
UpperCamelCase = tokenizer_r.encode_plus(A_ , add_special_tokens=A_ , return_token_type_ids=A_ )
UpperCamelCase = tokenizer_p.encode_plus(A_ , add_special_tokens=A_ , return_token_type_ids=A_ )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , )
UpperCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] )
UpperCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
A_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
self.assertSequenceEqual(
A_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ )
UpperCamelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
UpperCamelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['add_prefix_space'] , A_ )
self.assertEqual(post_processor_state['add_prefix_space'] , A_ )
self.assertEqual(post_processor_state['trim_offsets'] , A_ )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
UpperCamelCase = 'hello' # `hello` is a token in the vocabulary of `pretrained_name`
UpperCamelCase = F'''{text_of_1_token} {text_of_1_token}'''
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ )
UpperCamelCase = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(A_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(A_ ) + 1, len(A_ ) + 1 + len(A_ )) , )
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ )
UpperCamelCase = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(A_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(A_ ) + 1, len(A_ ) + 1 + len(A_ )) , )
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ )
UpperCamelCase = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(A_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(A_ ), len(A_ ) + 1 + len(A_ )) , )
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ )
UpperCamelCase = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(A_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(A_ ), len(A_ ) + 1 + len(A_ )) , )
UpperCamelCase = F''' {text}'''
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ )
UpperCamelCase = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(A_ ) + 1, 1 + len(A_ ) + 1 + len(A_ )) , )
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ )
UpperCamelCase = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(A_ ), 1 + len(A_ ) + 1 + len(A_ )) , )
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ )
UpperCamelCase = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(A_ ), 1 + len(A_ ) + 1 + len(A_ )) , )
| 3 |
from random import shuffle
import tensorflow as tf
from numpy import array
def A ( lowercase , lowercase ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase = int(lowercase )
assert noofclusters < len(lowercase )
# Find out the dimensionality
UpperCamelCase = len(vectors[0] )
# Will help select random centroids from among the available vectors
UpperCamelCase = list(range(len(lowercase ) ) )
shuffle(lowercase )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
UpperCamelCase = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
UpperCamelCase = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
UpperCamelCase = [
tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase )
]
##These nodes will assign the centroid Variables the appropriate
##values
UpperCamelCase = tf.placeholder('float64' , [dim] )
UpperCamelCase = []
for centroid in centroids:
cent_assigns.append(tf.assign(lowercase , lowercase ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
UpperCamelCase = [tf.Variable(0 ) for i in range(len(lowercase ) )]
##These nodes will assign an assignment Variable the appropriate
##value
UpperCamelCase = tf.placeholder('int32' )
UpperCamelCase = []
for assignment in assignments:
cluster_assigns.append(tf.assign(lowercase , lowercase ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
UpperCamelCase = tf.placeholder('float' , [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
UpperCamelCase = tf.reduce_mean(lowercase , 0 )
##Node for computing Euclidean distances
# Placeholders for input
UpperCamelCase = tf.placeholder('float' , [dim] )
UpperCamelCase = tf.placeholder('float' , [dim] )
UpperCamelCase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase , lowercase ) , 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
UpperCamelCase = tf.placeholder('float' , [noofclusters] )
UpperCamelCase = tf.argmin(lowercase , 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
UpperCamelCase = tf.initialize_all_variables()
# Initialize all variables
sess.run(lowercase )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
UpperCamelCase = 100
for _ in range(lowercase ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(lowercase ) ):
UpperCamelCase = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
UpperCamelCase = [
sess.run(lowercase , feed_dict={va: vect, va: sess.run(lowercase )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
UpperCamelCase = sess.run(
lowercase , feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(lowercase ):
# Collect all the vectors assigned to this cluster
UpperCamelCase = [
vectors[i]
for i in range(len(lowercase ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
UpperCamelCase = sess.run(
lowercase , feed_dict={mean_input: array(lowercase )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} )
# Return centroids and assignments
UpperCamelCase = sess.run(lowercase )
UpperCamelCase = sess.run(lowercase )
return centroids, assignments
| 3 | 1 |
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A_ , 'width_multiplier' ) )
class lowercase :
def __init__( self , A_ , A_=13 , A_=64 , A_=2 , A_=3 , A_="swish" , A_=3 , A_=32 , A_=0.1 , A_=0.02 , A_=True , A_=True , A_=10 , A_=None , A_=0.25 , A_=0.0 , A_=0.0 , ) -> Dict:
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = patch_size
UpperCamelCase = num_channels
UpperCamelCase = make_divisible(512 * width_multiplier , divisor=8 )
UpperCamelCase = hidden_act
UpperCamelCase = conv_kernel_size
UpperCamelCase = output_stride
UpperCamelCase = classifier_dropout_prob
UpperCamelCase = use_labels
UpperCamelCase = is_training
UpperCamelCase = num_labels
UpperCamelCase = initializer_range
UpperCamelCase = scope
UpperCamelCase = width_multiplier
UpperCamelCase = ffn_dropout
UpperCamelCase = attn_dropout
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = None
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels )
UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCamelCase = self.get_config()
return config, pixel_values, labels, pixel_labels
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = MobileViTVaModel(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> str:
"""simple docstring"""
UpperCamelCase = self.num_labels
UpperCamelCase = MobileViTVaForImageClassification(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> Tuple:
"""simple docstring"""
UpperCamelCase = self.num_labels
UpperCamelCase = MobileViTVaForSemanticSegmentation(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs
UpperCamelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ):
__lowercase : int = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
__lowercase : Dict = (
{
"feature-extraction": MobileViTVaModel,
"image-classification": MobileViTVaForImageClassification,
"image-segmentation": MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__lowercase : str = False
__lowercase : int = False
__lowercase : Optional[int] = False
__lowercase : Optional[Any] = False
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = MobileViTVaModelTester(self )
UpperCamelCase = MobileViTVaConfigTester(self , config_class=A_ , has_text_modality=A_ )
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileViTV2 does not use inputs_embeds' )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
pass
@unittest.skip(reason='MobileViTV2 does not support input and output embeddings' )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
pass
@unittest.skip(reason='MobileViTV2 does not output attentions' )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
pass
@require_torch_multi_gpu
@unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
pass
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(A_ )
UpperCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , A_ )
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
def check_hidden_states_output(A_ , A_ , A_ ):
UpperCamelCase = model_class(A_ )
model.to(A_ )
model.eval()
with torch.no_grad():
UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) )
UpperCamelCase = outputs.hidden_states
UpperCamelCase = 5
self.assertEqual(len(A_ ) , A_ )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
UpperCamelCase = 2
for i in range(len(A_ ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = True
check_hidden_states_output(A_ , A_ , A_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase = True
check_hidden_states_output(A_ , A_ , A_ )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A_ )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*A_ )
@slow
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase = MobileViTVaModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
def A ( ) -> int:
'''simple docstring'''
UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
return (
MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' )
if is_vision_available()
else None
)
@slow
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to(
A_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
# verify the logits
UpperCamelCase = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , A_ )
UpperCamelCase = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(A_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
@slow
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase = model.to(A_ )
UpperCamelCase = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] , device=A_ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4 ) )
@slow
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase = model.to(A_ )
UpperCamelCase = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits.detach().cpu()
UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(50, 60)] )
UpperCamelCase = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , A_ )
UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ )
UpperCamelCase = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , A_ )
| 3 |
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_UpperCAmelCase : Tuple = _symbol_database.Default()
_UpperCAmelCase : List[Any] = _descriptor_pool.Default().AddSerializedFile(
b"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03"
)
_UpperCAmelCase : int = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
_UpperCAmelCase : int = None
_UpperCAmelCase : List[str] = b"H\003"
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
_UpperCAmelCase : Optional[Any] = 45
_UpperCAmelCase : Any = 1_581
_UpperCAmelCase : Tuple = 1_517
_UpperCAmelCase : List[str] = 1_570
_UpperCAmelCase : int = 1_584
_UpperCAmelCase : List[Any] = 1_793
_UpperCAmelCase : Optional[int] = 1_795
_UpperCAmelCase : Any = 1_916
_UpperCAmelCase : Tuple = 1_864
_UpperCAmelCase : List[Any] = 1_905
_UpperCAmelCase : Union[str, Any] = 1_919
_UpperCAmelCase : str = 2_429
_UpperCAmelCase : Any = 2_208
_UpperCAmelCase : Dict = 2_418
_UpperCAmelCase : Optional[Any] = 2_323
_UpperCAmelCase : Tuple = 2_407
# @@protoc_insertion_point(module_scope)
| 3 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCAmelCase : Dict = logging.get_logger(__name__)
_UpperCAmelCase : Optional[int] = {
"microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json",
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : int = "cvt"
def __init__( self , A_=3 , A_=[7, 3, 3] , A_=[4, 2, 2] , A_=[2, 1, 1] , A_=[64, 192, 384] , A_=[1, 3, 6] , A_=[1, 2, 10] , A_=[4.0, 4.0, 4.0] , A_=[0.0, 0.0, 0.0] , A_=[0.0, 0.0, 0.0] , A_=[0.0, 0.0, 0.1] , A_=[True, True, True] , A_=[False, False, True] , A_=["dw_bn", "dw_bn", "dw_bn"] , A_=[3, 3, 3] , A_=[1, 1, 1] , A_=[2, 2, 2] , A_=[1, 1, 1] , A_=[1, 1, 1] , A_=0.02 , A_=1e-12 , **A_ , ) -> List[Any]:
"""simple docstring"""
super().__init__(**A_ )
UpperCamelCase = num_channels
UpperCamelCase = patch_sizes
UpperCamelCase = patch_stride
UpperCamelCase = patch_padding
UpperCamelCase = embed_dim
UpperCamelCase = num_heads
UpperCamelCase = depth
UpperCamelCase = mlp_ratio
UpperCamelCase = attention_drop_rate
UpperCamelCase = drop_rate
UpperCamelCase = drop_path_rate
UpperCamelCase = qkv_bias
UpperCamelCase = cls_token
UpperCamelCase = qkv_projection_method
UpperCamelCase = kernel_qkv
UpperCamelCase = padding_kv
UpperCamelCase = stride_kv
UpperCamelCase = padding_q
UpperCamelCase = stride_q
UpperCamelCase = initializer_range
UpperCamelCase = layer_norm_eps
| 3 |
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class lowercase ( unittest.TestCase ):
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
# A mock response for an HTTP head request to emulate server down
UpperCamelCase = mock.Mock()
UpperCamelCase = 500
UpperCamelCase = {}
UpperCamelCase = HTTPError
UpperCamelCase = {}
# Download this model to make sure it's in the cache.
UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head:
UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
# A mock response for an HTTP head request to emulate server down
UpperCamelCase = mock.Mock()
UpperCamelCase = 500
UpperCamelCase = {}
UpperCamelCase = HTTPError
UpperCamelCase = {}
# Download this model to make sure it's in the cache.
UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head:
UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' )
# This check we did call the fake head request
mock_head.assert_called()
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
# This test is for deprecated behavior and can be removed in v5
try:
UpperCamelCase = tempfile.mktemp()
with open(A_ , 'wb' ) as f:
http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , A_ )
UpperCamelCase = AlbertTokenizer.from_pretrained(A_ )
finally:
os.remove(A_ )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile('tokenizer.json' ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open('tokenizer.json' , 'wb' ) as f:
http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , A_ )
UpperCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size , 1_000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove('tokenizer.json' )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
# This test is for deprecated behavior and can be removed in v5
UpperCamelCase = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' )
@is_staging_test
class lowercase ( unittest.TestCase ):
__lowercase : int = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def __UpperCamelCase ( cls ) -> Tuple:
"""simple docstring"""
UpperCamelCase = TOKEN
HfFolder.save_token(A_ )
@classmethod
def __UpperCamelCase ( cls ) -> Optional[int]:
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='test-tokenizer' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' )
except HTTPError:
pass
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase = os.path.join(A_ , 'vocab.txt' )
with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCamelCase = BertTokenizer(A_ )
tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token )
UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id='test-tokenizer' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(A_ , repo_id='test-tokenizer' , push_to_hub=A_ , use_auth_token=self._token )
UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase = os.path.join(A_ , 'vocab.txt' )
with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCamelCase = BertTokenizer(A_ )
tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token )
UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
A_ , repo_id='valid_org/test-tokenizer-org' , push_to_hub=A_ , use_auth_token=self._token )
UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
@require_tokenizers
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase = os.path.join(A_ , 'vocab.txt' )
with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCamelCase = CustomTokenizer(A_ )
# No fast custom tokenizer
tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token )
UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase = os.path.join(A_ , 'vocab.txt' )
with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCamelCase = BertTokenizerFast.from_pretrained(A_ )
bert_tokenizer.save_pretrained(A_ )
UpperCamelCase = CustomTokenizerFast.from_pretrained(A_ )
tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token )
UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' )
UpperCamelCase = AutoTokenizer.from_pretrained(
F'''{USER}/test-dynamic-tokenizer''' , use_fast=A_ , trust_remote_code=A_ )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' )
class lowercase ( unittest.TestCase ):
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('Hello 友達' )
self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} )
trie.add('Hello' )
trie.data
self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} )
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase = Trie()
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] )
trie.add('[CLS]' )
trie.add('extra_id_1' )
trie.add('extra_id_100' )
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] )
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('A' )
self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] )
self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('TOKEN]' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('A' )
trie.add('P' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('AB' )
trie.add('B' )
trie.add('C' )
self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('ABC' )
trie.add('B' )
trie.add('CD' )
self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
# Even if the offsets are wrong, we necessarily output correct string
# parts.
UpperCamelCase = Trie()
UpperCamelCase = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] )
self.assertEqual(A_ , ['AB', 'C'] )
| 3 | 1 |
from pickle import UnpicklingError
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict
from ..utils import logging
_UpperCAmelCase : int = logging.get_logger(__name__)
def A ( lowercase , lowercase ) -> Optional[Any]:
'''simple docstring'''
try:
with open(lowercase , 'rb' ) as flax_state_f:
UpperCamelCase = from_bytes(lowercase , flax_state_f.read() )
except UnpicklingError as e:
try:
with open(lowercase ) as f:
if f.read().startswith('version' ):
raise OSError(
'You seem to have cloned a repository without having git-lfs installed. Please'
' install git-lfs and run `git lfs install` followed by `git lfs pull` in the'
' folder you cloned.' )
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(f'''Unable to convert {model_file} to Flax deserializable object. ''' )
return load_flax_weights_in_pytorch_model(lowercase , lowercase )
def A ( lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
try:
import torch # noqa: F401
except ImportError:
logger.error(
'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see'
' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'
' instructions.' )
raise
# check if we have bf16 weights
UpperCamelCase = flatten_dict(jax.tree_util.tree_map(lambda lowercase : x.dtype == jnp.bfloataa , lowercase ) ).values()
if any(lowercase ):
# convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '
'before loading those in PyTorch model.' )
UpperCamelCase = jax.tree_util.tree_map(
lambda lowercase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , lowercase )
UpperCamelCase = ''
UpperCamelCase = flatten_dict(lowercase , sep='.' )
UpperCamelCase = pt_model.state_dict()
# keep track of unexpected & missing keys
UpperCamelCase = []
UpperCamelCase = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
UpperCamelCase = flax_key_tuple.split('.' )
if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4:
UpperCamelCase = flax_key_tuple_array[:-1] + ['weight']
UpperCamelCase = jnp.transpose(lowercase , (3, 2, 0, 1) )
elif flax_key_tuple_array[-1] == "kernel":
UpperCamelCase = flax_key_tuple_array[:-1] + ['weight']
UpperCamelCase = flax_tensor.T
elif flax_key_tuple_array[-1] == "scale":
UpperCamelCase = flax_key_tuple_array[:-1] + ['weight']
if "time_embedding" not in flax_key_tuple_array:
for i, flax_key_tuple_string in enumerate(lowercase ):
UpperCamelCase = (
flax_key_tuple_string.replace('_0' , '.0' )
.replace('_1' , '.1' )
.replace('_2' , '.2' )
.replace('_3' , '.3' )
.replace('_4' , '.4' )
.replace('_5' , '.5' )
.replace('_6' , '.6' )
.replace('_7' , '.7' )
.replace('_8' , '.8' )
.replace('_9' , '.9' )
)
UpperCamelCase = '.'.join(lowercase )
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected '''
f'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
else:
# add weight to pytorch dict
UpperCamelCase = np.asarray(lowercase ) if not isinstance(lowercase , np.ndarray ) else flax_tensor
UpperCamelCase = torch.from_numpy(lowercase )
# remove from missing keys
missing_keys.remove(lowercase )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(lowercase )
pt_model.load_state_dict(lowercase )
# re-transform missing_keys to list
UpperCamelCase = list(lowercase )
if len(lowercase ) > 0:
logger.warning(
'Some weights of the Flax model were not used when initializing the PyTorch model'
f''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing'''
f''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture'''
' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'
f''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect'''
' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'
' FlaxBertForSequenceClassification model).' )
if len(lowercase ) > 0:
logger.warning(
f'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly'''
f''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to'''
' use it for predictions and inference.' )
return pt_model
| 3 |
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def A ( lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
assert isinstance(lowercase , lowercase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def A ( lowercase , lowercase , lowercase ) -> Tuple:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def A ( lowercase , lowercase , lowercase ) -> Tuple:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = features.copy() if features else default_expected_features
UpperCamelCase = (
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCamelCase = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def A ( lowercase , lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type' , [str, list] )
def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
if issubclass(lowercase , lowercase ):
UpperCamelCase = parquet_path
elif issubclass(lowercase , lowercase ):
UpperCamelCase = [parquet_path]
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
def A ( lowercase , lowercase , lowercase=("train",) ) -> Tuple:
'''simple docstring'''
assert isinstance(lowercase , lowercase )
for split in splits:
UpperCamelCase = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def A ( lowercase , lowercase , lowercase ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCamelCase = ParquetDatasetReader(
{'train': parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read()
_check_parquet_datasetdict(lowercase , lowercase )
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def A ( lowercase , lowercase , lowercase ) -> List[Any]:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = features.copy() if features else default_expected_features
UpperCamelCase = (
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCamelCase = ParquetDatasetReader({'train': parquet_path} , features=lowercase , cache_dir=lowercase ).read()
_check_parquet_datasetdict(lowercase , lowercase )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
if split:
UpperCamelCase = {split: parquet_path}
else:
UpperCamelCase = 'train'
UpperCamelCase = {'train': parquet_path, 'test': parquet_path}
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read()
_check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def A ( lowercase , lowercase ) -> List[Any]:
'''simple docstring'''
UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' )
assert writer.write() > 0
UpperCamelCase = pq.ParquetFile(tmp_path / 'foo.parquet' )
UpperCamelCase = pf.read()
assert dataset.data.table == output_table
def A ( lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = str(shared_datadir / 'test_image_rgb.jpg' )
UpperCamelCase = {'image': [image_path]}
UpperCamelCase = Features({'image': Image()} )
UpperCamelCase = Dataset.from_dict(lowercase , features=lowercase )
UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' )
assert writer.write() > 0
UpperCamelCase = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) )
assert dataset.features == reloaded_dataset.features
UpperCamelCase = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=lowercase ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
'feature, expected' , [
(Features({'foo': Value('int32' )} ), None),
(Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def A ( lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
assert get_writer_batch_size(lowercase ) == expected
| 3 | 1 |
import tensorflow as tf
from ...tf_utils import shape_list
class lowercase ( tf.keras.layers.Layer ):
def __init__( self , A_ , A_ , A_ , A_ , A_=1 , A_=False , **A_ ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**A_ )
UpperCamelCase = vocab_size
UpperCamelCase = d_embed
UpperCamelCase = d_proj
UpperCamelCase = cutoffs + [vocab_size]
UpperCamelCase = [0] + self.cutoffs
UpperCamelCase = div_val
UpperCamelCase = self.cutoffs[0]
UpperCamelCase = len(self.cutoffs ) - 1
UpperCamelCase = self.shortlist_size + self.n_clusters
UpperCamelCase = keep_order
UpperCamelCase = []
UpperCamelCase = []
def __UpperCamelCase ( self , A_ ) -> Dict:
"""simple docstring"""
if self.n_clusters > 0:
UpperCamelCase = self.add_weight(
shape=(self.n_clusters, self.d_embed) , initializer='zeros' , trainable=A_ , name='cluster_weight' )
UpperCamelCase = self.add_weight(
shape=(self.n_clusters,) , initializer='zeros' , trainable=A_ , name='cluster_bias' )
if self.div_val == 1:
for i in range(len(self.cutoffs ) ):
if self.d_proj != self.d_embed:
UpperCamelCase = self.add_weight(
shape=(self.d_embed, self.d_proj) , initializer='zeros' , trainable=A_ , name=F'''out_projs_._{i}''' , )
self.out_projs.append(A_ )
else:
self.out_projs.append(A_ )
UpperCamelCase = self.add_weight(
shape=(self.vocab_size, self.d_embed) , initializer='zeros' , trainable=A_ , name=F'''out_layers_._{i}_._weight''' , )
UpperCamelCase = self.add_weight(
shape=(self.vocab_size,) , initializer='zeros' , trainable=A_ , name=F'''out_layers_._{i}_._bias''' , )
self.out_layers.append((weight, bias) )
else:
for i in range(len(self.cutoffs ) ):
UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1]
UpperCamelCase = self.d_embed // (self.div_val**i)
UpperCamelCase = self.add_weight(
shape=(d_emb_i, self.d_proj) , initializer='zeros' , trainable=A_ , name=F'''out_projs_._{i}''' )
self.out_projs.append(A_ )
UpperCamelCase = self.add_weight(
shape=(r_idx - l_idx, d_emb_i) , initializer='zeros' , trainable=A_ , name=F'''out_layers_._{i}_._weight''' , )
UpperCamelCase = self.add_weight(
shape=(r_idx - l_idx,) , initializer='zeros' , trainable=A_ , name=F'''out_layers_._{i}_._bias''' , )
self.out_layers.append((weight, bias) )
super().build(A_ )
@staticmethod
def __UpperCamelCase ( A_ , A_ , A_ , A_=None ) -> int:
"""simple docstring"""
UpperCamelCase = x
if proj is not None:
UpperCamelCase = tf.einsum('ibd,ed->ibe' , A_ , A_ )
return tf.einsum('ibd,nd->ibn' , A_ , A_ ) + b
@staticmethod
def __UpperCamelCase ( A_ , A_ ) -> Dict:
"""simple docstring"""
UpperCamelCase = shape_list(A_ )
UpperCamelCase = tf.range(lp_size[0] , dtype=target.dtype )
UpperCamelCase = tf.stack([r, target] , 1 )
return tf.gather_nd(A_ , A_ )
def __UpperCamelCase ( self , A_ , A_ , A_=True , A_=False ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = 0
if self.n_clusters == 0:
UpperCamelCase = self._logit(A_ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] )
if target is not None:
UpperCamelCase = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=A_ , logits=A_ )
UpperCamelCase = tf.nn.log_softmax(A_ , axis=-1 )
else:
UpperCamelCase = shape_list(A_ )
UpperCamelCase = []
UpperCamelCase = tf.zeros(hidden_sizes[:2] )
for i in range(len(self.cutoffs ) ):
UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1]
if target is not None:
UpperCamelCase = (target >= l_idx) & (target < r_idx)
UpperCamelCase = tf.where(A_ )
UpperCamelCase = tf.boolean_mask(A_ , A_ ) - l_idx
if self.div_val == 1:
UpperCamelCase = self.out_layers[0][0][l_idx:r_idx]
UpperCamelCase = self.out_layers[0][1][l_idx:r_idx]
else:
UpperCamelCase = self.out_layers[i][0]
UpperCamelCase = self.out_layers[i][1]
if i == 0:
UpperCamelCase = tf.concat([cur_W, self.cluster_weight] , 0 )
UpperCamelCase = tf.concat([cur_b, self.cluster_bias] , 0 )
UpperCamelCase = self._logit(A_ , A_ , A_ , self.out_projs[0] )
UpperCamelCase = tf.nn.log_softmax(A_ )
out.append(head_logprob[..., : self.cutoffs[0]] )
if target is not None:
UpperCamelCase = tf.boolean_mask(A_ , A_ )
UpperCamelCase = self._gather_logprob(A_ , A_ )
else:
UpperCamelCase = self._logit(A_ , A_ , A_ , self.out_projs[i] )
UpperCamelCase = tf.nn.log_softmax(A_ )
UpperCamelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster
UpperCamelCase = head_logprob[..., cluster_prob_idx, None] + tail_logprob
out.append(A_ )
if target is not None:
UpperCamelCase = tf.boolean_mask(A_ , A_ )
UpperCamelCase = tf.boolean_mask(A_ , A_ )
UpperCamelCase = self._gather_logprob(A_ , A_ )
cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1]
if target is not None:
loss += tf.scatter_nd(A_ , -cur_logprob , shape_list(A_ ) )
UpperCamelCase = tf.concat(A_ , axis=-1 )
if target is not None:
if return_mean:
UpperCamelCase = tf.reduce_mean(A_ )
# Add the training-time loss value to the layer using `self.add_loss()`.
self.add_loss(A_ )
# Log the loss as a metric (we could log arbitrary metrics,
# including different metrics for training and inference.
self.add_metric(A_ , name=self.name , aggregation='mean' if return_mean else '' )
return out
| 3 |
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class lowercase ( unittest.TestCase ):
def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , ) -> Tuple:
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = num_channels
UpperCamelCase = image_size
UpperCamelCase = min_resolution
UpperCamelCase = max_resolution
UpperCamelCase = do_resize
UpperCamelCase = size if size is not None else {'height': 18, 'width': 20}
UpperCamelCase = do_thumbnail
UpperCamelCase = do_align_axis
UpperCamelCase = do_pad
UpperCamelCase = do_normalize
UpperCamelCase = image_mean
UpperCamelCase = image_std
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
__lowercase : Optional[int] = DonutImageProcessor if is_vision_available() else None
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = DonutImageProcessingTester(self )
@property
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A_ , 'do_resize' ) )
self.assertTrue(hasattr(A_ , 'size' ) )
self.assertTrue(hasattr(A_ , 'do_thumbnail' ) )
self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) )
self.assertTrue(hasattr(A_ , 'do_pad' ) )
self.assertTrue(hasattr(A_ , 'do_normalize' ) )
self.assertTrue(hasattr(A_ , 'image_mean' ) )
self.assertTrue(hasattr(A_ , 'image_std' ) )
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 20} )
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
# Previous config had dimensions in (width, height) order
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {'height': 84, 'width': 42} )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
pass
@is_flaky()
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
# Initialize image_processing
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , Image.Image )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
# Initialize image_processing
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , np.ndarray )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
# Initialize image_processing
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , torch.Tensor )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
| 3 | 1 |
import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
_UpperCAmelCase : List[Any] = get_tests_dir("fixtures/spiece.model")
@require_sentencepiece
@require_tokenizers
class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
__lowercase : Dict = DebertaVaTokenizer
__lowercase : Tuple = DebertaVaTokenizerFast
__lowercase : str = True
__lowercase : Optional[int] = True
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
UpperCamelCase = DebertaVaTokenizer(A_ , unk_token='<unk>' )
tokenizer.save_pretrained(self.tmpdirname )
def __UpperCamelCase ( self , A_ ) -> List[str]:
"""simple docstring"""
UpperCamelCase = 'this is a test'
UpperCamelCase = 'this is a test'
return input_text, output_text
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = '<pad>'
UpperCamelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<pad>' )
self.assertEqual(vocab_keys[1] , '<unk>' )
self.assertEqual(vocab_keys[-1] , '[PAD]' )
self.assertEqual(len(A_ ) , 30_001 )
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 30_000 )
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
# fmt: off
UpperCamelCase = ' \tHeLLo!how \n Are yoU? '
UpperCamelCase = ['▁hello', '!', 'how', '▁are', '▁you', '?']
# fmt: on
UpperCamelCase = DebertaVaTokenizer(A_ , do_lower_case=A_ )
UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) )
self.assertListEqual(A_ , A_ )
UpperCamelCase = DebertaVaTokenizerFast(A_ , do_lower_case=A_ )
UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) )
self.assertListEqual(A_ , A_ )
@unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' )
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
pass
@unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' )
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
pass
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
# fmt: off
UpperCamelCase = 'I was born in 92000, and this is falsé.'
UpperCamelCase = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ]
# fmt: on
UpperCamelCase = DebertaVaTokenizer(A_ , split_by_punct=A_ )
UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) )
self.assertListEqual(A_ , A_ )
UpperCamelCase = DebertaVaTokenizerFast(A_ , split_by_punct=A_ )
UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) )
self.assertListEqual(A_ , A_ )
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
# fmt: off
UpperCamelCase = 'I was born in 92000, and this is falsé.'
UpperCamelCase = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ]
# fmt: on
UpperCamelCase = DebertaVaTokenizer(A_ , do_lower_case=A_ , split_by_punct=A_ )
UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) )
self.assertListEqual(A_ , A_ )
UpperCamelCase = DebertaVaTokenizerFast(A_ , do_lower_case=A_ , split_by_punct=A_ )
UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) )
self.assertListEqual(A_ , A_ )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
# fmt: off
UpperCamelCase = 'I was born in 92000, and this is falsé.'
UpperCamelCase = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ]
# fmt: on
UpperCamelCase = DebertaVaTokenizer(A_ , do_lower_case=A_ , split_by_punct=A_ )
UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) )
self.assertListEqual(A_ , A_ )
UpperCamelCase = DebertaVaTokenizerFast(A_ , do_lower_case=A_ , split_by_punct=A_ )
UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) )
self.assertListEqual(A_ , A_ )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
# fmt: off
UpperCamelCase = 'I was born in 92000, and this is falsé.'
UpperCamelCase = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ]
# fmt: on
UpperCamelCase = DebertaVaTokenizer(A_ , do_lower_case=A_ , split_by_punct=A_ )
UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) )
self.assertListEqual(A_ , A_ )
UpperCamelCase = DebertaVaTokenizerFast(A_ , do_lower_case=A_ , split_by_punct=A_ )
UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) )
self.assertListEqual(A_ , A_ )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
# fmt: off
UpperCamelCase = ' \tHeLLo!how \n Are yoU? '
UpperCamelCase = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?']
# fmt: on
UpperCamelCase = DebertaVaTokenizer(A_ , do_lower_case=A_ , split_by_punct=A_ )
UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) )
self.assertListEqual(A_ , A_ )
UpperCamelCase = DebertaVaTokenizerFast(A_ , do_lower_case=A_ , split_by_punct=A_ )
UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) )
self.assertListEqual(A_ , A_ )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = self.get_tokenizer()
UpperCamelCase = self.get_rust_tokenizer()
UpperCamelCase = 'I was born in 92000, and this is falsé.'
UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) )
UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) )
self.assertListEqual(A_ , A_ )
UpperCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ )
UpperCamelCase = rust_tokenizer.encode(A_ , add_special_tokens=A_ )
self.assertListEqual(A_ , A_ )
UpperCamelCase = self.get_rust_tokenizer()
UpperCamelCase = tokenizer.encode(A_ )
UpperCamelCase = rust_tokenizer.encode(A_ )
self.assertListEqual(A_ , A_ )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = 'This is a test'
UpperCamelCase = [13, 1, 4_398, 25, 21, 1_289]
UpperCamelCase = ['▁', 'T', 'his', '▁is', '▁a', '▁test']
UpperCamelCase = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test']
UpperCamelCase = DebertaVaTokenizer(A_ , keep_accents=A_ )
UpperCamelCase = DebertaVaTokenizerFast(A_ , keep_accents=A_ )
UpperCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ )
self.assertListEqual(A_ , A_ )
UpperCamelCase = tokenizer.tokenize(A_ )
self.assertListEqual(A_ , A_ )
UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ )
self.assertListEqual(A_ , A_ )
UpperCamelCase = rust_tokenizer.encode(A_ , add_special_tokens=A_ )
self.assertListEqual(A_ , A_ )
UpperCamelCase = rust_tokenizer.tokenize(A_ )
self.assertListEqual(A_ , A_ )
UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(A_ )
self.assertListEqual(A_ , A_ )
# fmt: off
UpperCamelCase = 'I was born in 92000, and this is falsé.'
UpperCamelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9]
UpperCamelCase = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ]
UpperCamelCase = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ]
# fmt: on
UpperCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ )
self.assertListEqual(A_ , A_ )
UpperCamelCase = tokenizer.tokenize(A_ )
self.assertListEqual(A_ , A_ )
UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ )
self.assertListEqual(A_ , A_ )
UpperCamelCase = rust_tokenizer.encode(A_ , add_special_tokens=A_ )
self.assertListEqual(A_ , A_ )
UpperCamelCase = rust_tokenizer.tokenize(A_ )
self.assertListEqual(A_ , A_ )
UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(A_ )
self.assertListEqual(A_ , A_ )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = DebertaVaTokenizer(A_ )
UpperCamelCase = tokenizer.encode('sequence builders' )
UpperCamelCase = tokenizer.encode('multi-sequence build' )
UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ )
UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ , A_ )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , A_ )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , A_ , )
@slow
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
# fmt: off
UpperCamelCase = {'input_ids': [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A_ , model_name='microsoft/deberta-v2-xlarge' , revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' , )
| 3 |
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_UpperCAmelCase : Dict = logging.get_logger(__name__)
_UpperCAmelCase : Optional[Any] = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
_UpperCAmelCase : str = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
_UpperCAmelCase : List[str] = {"facebook/blenderbot_small-90M": 512}
def A ( lowercase ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase = set()
UpperCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCamelCase = char
UpperCamelCase = set(lowercase )
return pairs
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Optional[Any] = VOCAB_FILES_NAMES
__lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP
__lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase : Any = ["input_ids", "attention_mask"]
def __init__( self , A_ , A_ , A_="__start__" , A_="__end__" , A_="__unk__" , A_="__null__" , **A_ , ) -> List[Any]:
"""simple docstring"""
super().__init__(unk_token=A_ , bos_token=A_ , eos_token=A_ , pad_token=A_ , **A_ )
with open(A_ , encoding='utf-8' ) as vocab_handle:
UpperCamelCase = json.load(A_ )
UpperCamelCase = {v: k for k, v in self.encoder.items()}
with open(A_ , encoding='utf-8' ) as merges_handle:
UpperCamelCase = merges_handle.read().split('\n' )[1:-1]
UpperCamelCase = [tuple(merge.split() ) for merge in merges]
UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) )
UpperCamelCase = {}
@property
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
return len(self.encoder )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def __UpperCamelCase ( self , A_ ) -> str:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
UpperCamelCase = re.sub('([.,!?()])' , r' \1' , A_ )
UpperCamelCase = re.sub('(\')' , r' \1 ' , A_ )
UpperCamelCase = re.sub(r'\s{2,}' , ' ' , A_ )
if "\n" in token:
UpperCamelCase = token.replace('\n' , ' __newln__' )
UpperCamelCase = token.split(' ' )
UpperCamelCase = []
for token in tokens:
if not len(A_ ):
continue
UpperCamelCase = token.lower()
UpperCamelCase = tuple(A_ )
UpperCamelCase = tuple(list(word[:-1] ) + [word[-1] + '</w>'] )
UpperCamelCase = get_pairs(A_ )
if not pairs:
words.append(A_ )
continue
while True:
UpperCamelCase = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
UpperCamelCase , UpperCamelCase = bigram
UpperCamelCase = []
UpperCamelCase = 0
while i < len(A_ ):
try:
UpperCamelCase = word.index(A_ , A_ )
new_word.extend(word[i:j] )
UpperCamelCase = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCamelCase = tuple(A_ )
UpperCamelCase = new_word
if len(A_ ) == 1:
break
else:
UpperCamelCase = get_pairs(A_ )
UpperCamelCase = '@@ '.join(A_ )
UpperCamelCase = word[:-4]
UpperCamelCase = word
words.append(A_ )
return " ".join(A_ )
def __UpperCamelCase ( self , A_ ) -> List[str]:
"""simple docstring"""
UpperCamelCase = []
UpperCamelCase = re.findall(r'\S+\n?' , A_ )
for token in words:
split_tokens.extend(list(self.bpe(A_ ).split(' ' ) ) )
return split_tokens
def __UpperCamelCase ( self , A_ ) -> int:
"""simple docstring"""
UpperCamelCase = token.lower()
return self.encoder.get(A_ , self.encoder.get(self.unk_token ) )
def __UpperCamelCase ( self , A_ ) -> str:
"""simple docstring"""
return self.decoder.get(A_ , self.unk_token )
def __UpperCamelCase ( self , A_ ) -> str:
"""simple docstring"""
UpperCamelCase = ' '.join(A_ ).replace('@@ ' , '' ).strip()
return out_string
def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(A_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCamelCase = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
UpperCamelCase = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(A_ , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' )
UpperCamelCase = 0
with open(A_ , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
' Please check that the tokenizer is not corrupted!' )
UpperCamelCase = token_index
writer.write(' '.join(A_ ) + '\n' )
index += 1
return vocab_file, merge_file
| 3 | 1 |
import operator as op
def A ( lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = []
UpperCamelCase = lambda lowercase , lowercase : int(x / y ) # noqa: E731 integer division operation
UpperCamelCase = {
'^': op.pow,
'*': op.mul,
'/': div,
'+': op.add,
'-': op.sub,
} # operators & their respective operation
# print table header
print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' )
print('-' * (30 + len(lowercase )) )
for x in post_fix:
if x.isdigit(): # if x in digit
stack.append(lowercase ) # append x to stack
# output in tabular format
print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(lowercase ) , sep=' | ' )
else:
UpperCamelCase = stack.pop() # pop stack
# output in tabular format
print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(lowercase ) , sep=' | ' )
UpperCamelCase = stack.pop() # pop stack
# output in tabular format
print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(lowercase ) , sep=' | ' )
stack.append(
str(opr[x](int(lowercase ) , int(lowercase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack
# output in tabular format
print(
x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(lowercase ) , sep=' | ' , )
return int(stack[0] )
if __name__ == "__main__":
_UpperCAmelCase : Optional[int] = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ")
print("\n\tResult = ", solve(Postfix))
| 3 |
def A ( lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = int(lowercase )
if decimal in (0, 1): # Exit cases for the recursion
return str(lowercase )
UpperCamelCase , UpperCamelCase = divmod(lowercase , 2 )
return binary_recursive(lowercase ) + str(lowercase )
def A ( lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = str(lowercase ).strip()
if not number:
raise ValueError('No input value was provided' )
UpperCamelCase = '-' if number.startswith('-' ) else ''
UpperCamelCase = number.lstrip('-' )
if not number.isnumeric():
raise ValueError('Input value is not an integer' )
return f'''{negative}0b{binary_recursive(int(lowercase ) )}'''
if __name__ == "__main__":
from doctest import testmod
testmod()
| 3 | 1 |
from __future__ import annotations
from collections import deque
class lowercase :
def __init__( self , A_ ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = []
self.adlist.append(
{'value': '', 'next_states': [], 'fail_state': 0, 'output': []} )
for keyword in keywords:
self.add_keyword(A_ )
self.set_fail_transitions()
def __UpperCamelCase ( self , A_ , A_ ) -> int | None:
"""simple docstring"""
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def __UpperCamelCase ( self , A_ ) -> None:
"""simple docstring"""
UpperCamelCase = 0
for character in keyword:
UpperCamelCase = self.find_next_state(A_ , A_ )
if next_state is None:
self.adlist.append(
{
'value': character,
'next_states': [],
'fail_state': 0,
'output': [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
UpperCamelCase = len(self.adlist ) - 1
else:
UpperCamelCase = next_state
self.adlist[current_state]["output"].append(A_ )
def __UpperCamelCase ( self ) -> None:
"""simple docstring"""
UpperCamelCase = deque()
for node in self.adlist[0]["next_states"]:
q.append(A_ )
UpperCamelCase = 0
while q:
UpperCamelCase = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(A_ )
UpperCamelCase = self.adlist[r]['fail_state']
while (
self.find_next_state(A_ , self.adlist[child]['value'] ) is None
and state != 0
):
UpperCamelCase = self.adlist[state]['fail_state']
UpperCamelCase = self.find_next_state(
A_ , self.adlist[child]['value'] )
if self.adlist[child]["fail_state"] is None:
UpperCamelCase = 0
UpperCamelCase = (
self.adlist[child]['output']
+ self.adlist[self.adlist[child]['fail_state']]['output']
)
def __UpperCamelCase ( self , A_ ) -> dict[str, list[int]]:
"""simple docstring"""
UpperCamelCase = {} # returns a dict with keywords and list of its occurrences
UpperCamelCase = 0
for i in range(len(A_ ) ):
while (
self.find_next_state(A_ , string[i] ) is None
and current_state != 0
):
UpperCamelCase = self.adlist[current_state]['fail_state']
UpperCamelCase = self.find_next_state(A_ , string[i] )
if next_state is None:
UpperCamelCase = 0
else:
UpperCamelCase = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
UpperCamelCase = []
result[key].append(i - len(A_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_UpperCAmelCase : Tuple = logging.get_logger(__name__)
_UpperCAmelCase : Tuple = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.linear_k": "encoder.layers.*.self_attn.linear_k",
"self_attn.linear_v": "encoder.layers.*.self_attn.linear_v",
"self_attn.linear_q": "encoder.layers.*.self_attn.linear_q",
"self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u",
"self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v",
"self_attn.linear_out": "encoder.layers.*.self_attn.linear_out",
"self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos",
"self_attn.rotary_emb": "encoder.embed_positions",
"self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm",
"conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1",
"conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2",
"conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv",
"conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm",
"conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm",
"ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense",
"ffn1.w_2": "encoder.layers.*.ffn1.output_dense",
"ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm",
"ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense",
"ffn2.w_2": "encoder.layers.*.ffn2.output_dense",
"ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
_UpperCAmelCase : Any = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict:
'''simple docstring'''
for attribute in key.split('.' ):
UpperCamelCase = getattr(lowercase , lowercase )
if weight_type is not None:
UpperCamelCase = getattr(lowercase , lowercase ).shape
else:
UpperCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}''' )
if weight_type == "weight":
UpperCamelCase = value
elif weight_type == "weight_g":
UpperCamelCase = value
elif weight_type == "weight_v":
UpperCamelCase = value
elif weight_type == "bias":
UpperCamelCase = value
elif weight_type == "running_mean":
UpperCamelCase = value
elif weight_type == "running_var":
UpperCamelCase = value
elif weight_type == "num_batches_tracked":
UpperCamelCase = value
elif weight_type == "inv_freq":
UpperCamelCase = value
else:
UpperCamelCase = value
logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def A ( lowercase , lowercase , lowercase ) -> Any:
'''simple docstring'''
UpperCamelCase = []
UpperCamelCase = fairseq_model.state_dict()
UpperCamelCase = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
UpperCamelCase = False
if "conv_layers" in name:
load_conv_layer(
lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == 'group' , )
UpperCamelCase = True
else:
for key, mapped_key in MAPPING.items():
UpperCamelCase = 'wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
UpperCamelCase = True
if "*" in mapped_key:
UpperCamelCase = name.split(lowercase )[0].split('.' )[-2]
UpperCamelCase = mapped_key.replace('*' , lowercase )
if "pos_bias_u" in name:
UpperCamelCase = None
elif "pos_bias_v" in name:
UpperCamelCase = None
elif "weight_g" in name:
UpperCamelCase = 'weight_g'
elif "weight_v" in name:
UpperCamelCase = 'weight_v'
elif "bias" in name:
UpperCamelCase = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCamelCase = 'weight'
elif "running_mean" in name:
UpperCamelCase = 'running_mean'
elif "inv_freq" in name:
UpperCamelCase = 'inv_freq'
elif "running_var" in name:
UpperCamelCase = 'running_var'
elif "num_batches_tracked" in name:
UpperCamelCase = 'num_batches_tracked'
else:
UpperCamelCase = None
set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase )
continue
if not is_used:
unused_weights.append(lowercase )
logger.warning(f'''Unused weights: {unused_weights}''' )
def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = full_name.split('conv_layers.' )[-1]
UpperCamelCase = name.split('.' )
UpperCamelCase = int(items[0] )
UpperCamelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
UpperCamelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
UpperCamelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
UpperCamelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
UpperCamelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(lowercase )
@torch.no_grad()
def A ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> int:
'''simple docstring'''
if config_path is not None:
UpperCamelCase = WavaVecaConformerConfig.from_pretrained(lowercase , hidden_act='swish' )
else:
UpperCamelCase = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
UpperCamelCase = 'rotary'
if is_finetuned:
if dict_path:
UpperCamelCase = Dictionary.load(lowercase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCamelCase = target_dict.pad_index
UpperCamelCase = target_dict.bos_index
UpperCamelCase = target_dict.eos_index
UpperCamelCase = len(target_dict.symbols )
UpperCamelCase = os.path.join(lowercase , 'vocab.json' )
if not os.path.isdir(lowercase ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowercase ) )
return
os.makedirs(lowercase , exist_ok=lowercase )
UpperCamelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCamelCase = 0
UpperCamelCase = 1
with open(lowercase , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(lowercase , lowercase )
UpperCamelCase = WavaVecaCTCTokenizer(
lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowercase , )
UpperCamelCase = True if config.feat_extract_norm == 'layer' else False
UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , )
UpperCamelCase = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase )
processor.save_pretrained(lowercase )
UpperCamelCase = WavaVecaConformerForCTC(lowercase )
else:
UpperCamelCase = WavaVecaConformerForPreTraining(lowercase )
if is_finetuned:
UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
UpperCamelCase = argparse.Namespace(task='audio_pretraining' )
UpperCamelCase = fairseq.tasks.setup_task(lowercase )
UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase )
UpperCamelCase = model[0].eval()
recursively_load_weights(lowercase , lowercase , not is_finetuned )
hf_wavavec.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
_UpperCAmelCase : Dict = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 3 | 1 |
from string import ascii_uppercase
_UpperCAmelCase : Dict = {char: i for i, char in enumerate(ascii_uppercase)}
_UpperCAmelCase : Tuple = dict(enumerate(ascii_uppercase))
def A ( lowercase , lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = len(lowercase )
UpperCamelCase = 0
while True:
if x == i:
UpperCamelCase = 0
if len(lowercase ) == len(lowercase ):
break
key += key[i]
i += 1
return key
def A ( lowercase , lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = ''
UpperCamelCase = 0
for letter in message:
if letter == " ":
cipher_text += " "
else:
UpperCamelCase = (dicta[letter] - dicta[key_new[i]]) % 26
i += 1
cipher_text += dicta[x]
return cipher_text
def A ( lowercase , lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = ''
UpperCamelCase = 0
for letter in cipher_text:
if letter == " ":
or_txt += " "
else:
UpperCamelCase = (dicta[letter] + dicta[key_new[i]] + 26) % 26
i += 1
or_txt += dicta[x]
return or_txt
def A ( ) -> None:
'''simple docstring'''
UpperCamelCase = 'THE GERMAN ATTACK'
UpperCamelCase = 'SECRET'
UpperCamelCase = generate_key(lowercase , lowercase )
UpperCamelCase = cipher_text(lowercase , lowercase )
print(f'''Encrypted Text = {s}''' )
print(f'''Original Text = {original_text(lowercase , lowercase )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 3 |
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
_UpperCAmelCase : Any = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n"
_UpperCAmelCase : str = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n"
_UpperCAmelCase : List[str] = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n"
def A ( lowercase , lowercase ) -> List[str]:
'''simple docstring'''
return float((preds == labels).mean() )
def A ( lowercase , lowercase ) -> Tuple:
'''simple docstring'''
UpperCamelCase = simple_accuracy(lowercase , lowercase )
UpperCamelCase = float(fa_score(y_true=lowercase , y_pred=lowercase ) )
return {
"accuracy": acc,
"f1": fa,
}
def A ( lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = float(pearsonr(lowercase , lowercase )[0] )
UpperCamelCase = float(spearmanr(lowercase , lowercase )[0] )
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase ( datasets.Metric ):
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
if self.config_name not in [
"sst2",
"mnli",
"mnli_mismatched",
"mnli_matched",
"cola",
"stsb",
"mrpc",
"qqp",
"qnli",
"rte",
"wnli",
"hans",
]:
raise KeyError(
'You should supply a configuration name selected in '
'["sst2", "mnli", "mnli_mismatched", "mnli_matched", '
'"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ),
'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ),
} ) , codebase_urls=[] , reference_urls=[] , format='numpy' , )
def __UpperCamelCase ( self , A_ , A_ ) -> Any:
"""simple docstring"""
if self.config_name == "cola":
return {"matthews_correlation": matthews_corrcoef(A_ , A_ )}
elif self.config_name == "stsb":
return pearson_and_spearman(A_ , A_ )
elif self.config_name in ["mrpc", "qqp"]:
return acc_and_fa(A_ , A_ )
elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]:
return {"accuracy": simple_accuracy(A_ , A_ )}
else:
raise KeyError(
'You should supply a configuration name selected in '
'["sst2", "mnli", "mnli_mismatched", "mnli_matched", '
'"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
| 3 | 1 |
from typing import List
import numpy as np
def A ( lowercase ) -> int:
'''simple docstring'''
UpperCamelCase = {key: len(lowercase ) for key, value in gen_kwargs.items() if isinstance(lowercase , lowercase )}
if len(set(lists_lengths.values() ) ) > 1:
raise RuntimeError(
(
'Sharding is ambiguous for this dataset: '
+ 'we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n'
+ '\n'.join(f'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() )
+ '\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, '
+ 'and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.'
) )
UpperCamelCase = max(lists_lengths.values() , default=0 )
return max(1 , lowercase )
def A ( lowercase , lowercase ) -> List[range]:
'''simple docstring'''
UpperCamelCase = []
for group_idx in range(lowercase ):
UpperCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs))
if num_shards_to_add == 0:
break
UpperCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0
UpperCamelCase = range(lowercase , start + num_shards_to_add )
shards_indices_per_group.append(lowercase )
return shards_indices_per_group
def A ( lowercase , lowercase ) -> List[dict]:
'''simple docstring'''
UpperCamelCase = _number_of_shards_in_gen_kwargs(lowercase )
if num_shards == 1:
return [dict(lowercase )]
else:
UpperCamelCase = _distribute_shards(num_shards=lowercase , max_num_jobs=lowercase )
return [
{
key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]]
if isinstance(lowercase , lowercase )
else value
for key, value in gen_kwargs.items()
}
for group_idx in range(len(lowercase ) )
]
def A ( lowercase ) -> dict:
'''simple docstring'''
return {
key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]]
if isinstance(gen_kwargs_list[0][key] , lowercase )
else gen_kwargs_list[0][key]
for key in gen_kwargs_list[0]
}
def A ( lowercase , lowercase ) -> dict:
'''simple docstring'''
UpperCamelCase = {len(lowercase ) for value in gen_kwargs.values() if isinstance(lowercase , lowercase )}
UpperCamelCase = {}
for size in list_sizes:
UpperCamelCase = list(range(lowercase ) )
rng.shuffle(indices_per_size[size] )
# Now let's copy the gen_kwargs and shuffle the lists based on their sizes
UpperCamelCase = dict(lowercase )
for key, value in shuffled_kwargs.items():
if isinstance(lowercase , lowercase ):
UpperCamelCase = [value[i] for i in indices_per_size[len(lowercase )]]
return shuffled_kwargs
| 3 |
import importlib
import math
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Tuple, Union
import flax
import jax.numpy as jnp
from ..utils import BaseOutput
_UpperCAmelCase : str = "scheduler_config.json"
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Tuple = 1
__lowercase : int = 2
__lowercase : List[Any] = 3
__lowercase : str = 4
__lowercase : Optional[Any] = 5
@dataclass
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : jnp.ndarray
class lowercase :
__lowercase : Union[str, Any] = SCHEDULER_CONFIG_NAME
__lowercase : Dict = ["dtype"]
__lowercase : List[Any] = []
__lowercase : Dict = True
@classmethod
def __UpperCamelCase ( cls , A_ = None , A_ = None , A_=False , **A_ , ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = cls.load_config(
pretrained_model_name_or_path=A_ , subfolder=A_ , return_unused_kwargs=A_ , **A_ , )
UpperCamelCase , UpperCamelCase = cls.from_config(A_ , return_unused_kwargs=A_ , **A_ )
if hasattr(A_ , 'create_state' ) and getattr(A_ , 'has_state' , A_ ):
UpperCamelCase = scheduler.create_state()
if return_unused_kwargs:
return scheduler, state, unused_kwargs
return scheduler, state
def __UpperCamelCase ( self , A_ , A_ = False , **A_ ) -> str:
"""simple docstring"""
self.save_config(save_directory=A_ , push_to_hub=A_ , **A_ )
@property
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
return self._get_compatibles()
@classmethod
def __UpperCamelCase ( cls ) -> int:
"""simple docstring"""
UpperCamelCase = list(set([cls.__name__] + cls._compatibles ) )
UpperCamelCase = importlib.import_module(__name__.split('.' )[0] )
UpperCamelCase = [
getattr(A_ , A_ ) for c in compatible_classes_str if hasattr(A_ , A_ )
]
return compatible_classes
def A ( lowercase , lowercase ) -> jnp.ndarray:
'''simple docstring'''
assert len(lowercase ) >= x.ndim
return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(lowercase ) - x.ndim) ) , lowercase )
def A ( lowercase , lowercase=0.9_9_9 , lowercase=jnp.floataa ) -> jnp.ndarray:
'''simple docstring'''
def alpha_bar(lowercase ):
return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2
UpperCamelCase = []
for i in range(lowercase ):
UpperCamelCase = i / num_diffusion_timesteps
UpperCamelCase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(lowercase ) / alpha_bar(lowercase ) , lowercase ) )
return jnp.array(lowercase , dtype=lowercase )
@flax.struct.dataclass
class lowercase :
__lowercase : jnp.ndarray
__lowercase : jnp.ndarray
__lowercase : jnp.ndarray
@classmethod
def __UpperCamelCase ( cls , A_ ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = scheduler.config
if config.trained_betas is not None:
UpperCamelCase = jnp.asarray(config.trained_betas , dtype=scheduler.dtype )
elif config.beta_schedule == "linear":
UpperCamelCase = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype )
elif config.beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
UpperCamelCase = (
jnp.linspace(
config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype )
** 2
)
elif config.beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
UpperCamelCase = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype )
else:
raise NotImplementedError(
F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' )
UpperCamelCase = 1.0 - betas
UpperCamelCase = jnp.cumprod(A_ , axis=0 )
return cls(
alphas=A_ , betas=A_ , alphas_cumprod=A_ , )
def A ( lowercase , lowercase , lowercase , lowercase ) -> List[Any]:
'''simple docstring'''
UpperCamelCase = state.alphas_cumprod
UpperCamelCase = alphas_cumprod[timesteps] ** 0.5
UpperCamelCase = sqrt_alpha_prod.flatten()
UpperCamelCase = broadcast_to_shape_from_left(lowercase , original_samples.shape )
UpperCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5
UpperCamelCase = sqrt_one_minus_alpha_prod.flatten()
UpperCamelCase = broadcast_to_shape_from_left(lowercase , original_samples.shape )
return sqrt_alpha_prod, sqrt_one_minus_alpha_prod
def A ( lowercase , lowercase , lowercase , lowercase ) -> Dict:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = get_sqrt_alpha_prod(lowercase , lowercase , lowercase , lowercase )
UpperCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def A ( lowercase , lowercase , lowercase , lowercase ) -> int:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = get_sqrt_alpha_prod(lowercase , lowercase , lowercase , lowercase )
UpperCamelCase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
| 3 | 1 |
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
_UpperCAmelCase : Optional[Any] = logging.get_logger(__name__)
class lowercase ( enum.Enum ):
__lowercase : List[Any] = 0
__lowercase : Dict = 1
@add_end_docstrings(_SCREAMING_SNAKE_CASE )
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Any = "generated"
def __init__( self , *A_ , **A_ ) -> Optional[int]:
"""simple docstring"""
super().__init__(*A_ , **A_ )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == 'tf'
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def __UpperCamelCase ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , **A_ , ) -> Dict:
"""simple docstring"""
UpperCamelCase = {}
if truncation is not None:
UpperCamelCase = truncation
UpperCamelCase = generate_kwargs
UpperCamelCase = {}
if return_tensors is not None and return_type is None:
UpperCamelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
UpperCamelCase = return_type
if clean_up_tokenization_spaces is not None:
UpperCamelCase = clean_up_tokenization_spaces
if stop_sequence is not None:
UpperCamelCase = self.tokenizer.encode(A_ , add_special_tokens=A_ )
if len(A_ ) > 1:
warnings.warn(
'Stopping on a multiple token sequence is not yet supported on transformers. The first token of'
' the stop sequence will be used as the stop sequence string in the interim.' )
UpperCamelCase = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def __UpperCamelCase ( self , A_ , A_ , A_ ) -> List[Any]:
"""simple docstring"""
return True
def __UpperCamelCase ( self , *A_ , A_ ) -> List[str]:
"""simple docstring"""
UpperCamelCase = self.model.config.prefix if self.model.config.prefix is not None else ''
if isinstance(args[0] , A_ ):
if self.tokenizer.pad_token_id is None:
raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' )
UpperCamelCase = ([prefix + arg for arg in args[0]],)
UpperCamelCase = True
elif isinstance(args[0] , A_ ):
UpperCamelCase = (prefix + args[0],)
UpperCamelCase = False
else:
raise ValueError(
F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' )
UpperCamelCase = self.tokenizer(*A_ , padding=A_ , truncation=A_ , return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self , *A_ , **A_ ) -> List[str]:
"""simple docstring"""
UpperCamelCase = super().__call__(*A_ , **A_ )
if (
isinstance(args[0] , A_ )
and all(isinstance(A_ , A_ ) for el in args[0] )
and all(len(A_ ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def __UpperCamelCase ( self , A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , **A_ ) -> Dict:
"""simple docstring"""
UpperCamelCase = self._parse_and_tokenize(A_ , truncation=A_ , **A_ )
return inputs
def __UpperCamelCase ( self , A_ , **A_ ) -> int:
"""simple docstring"""
if self.framework == "pt":
UpperCamelCase , UpperCamelCase = model_inputs['input_ids'].shape
elif self.framework == "tf":
UpperCamelCase , UpperCamelCase = tf.shape(model_inputs['input_ids'] ).numpy()
UpperCamelCase = generate_kwargs.get('min_length' , self.model.config.min_length )
UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length )
self.check_inputs(A_ , generate_kwargs['min_length'] , generate_kwargs['max_length'] )
UpperCamelCase = self.model.generate(**A_ , **A_ )
UpperCamelCase = output_ids.shape[0]
if self.framework == "pt":
UpperCamelCase = output_ids.reshape(A_ , out_b // in_b , *output_ids.shape[1:] )
elif self.framework == "tf":
UpperCamelCase = tf.reshape(A_ , (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def __UpperCamelCase ( self , A_ , A_=ReturnType.TEXT , A_=False ) -> Dict:
"""simple docstring"""
UpperCamelCase = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
UpperCamelCase = {F'''{self.return_name}_token_ids''': output_ids}
elif return_type == ReturnType.TEXT:
UpperCamelCase = {
F'''{self.return_name}_text''': self.tokenizer.decode(
A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , )
}
records.append(A_ )
return records
@add_end_docstrings(_SCREAMING_SNAKE_CASE )
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Optional[int] = "summary"
def __call__( self , *A_ , **A_ ) -> List[str]:
"""simple docstring"""
return super().__call__(*A_ , **A_ )
def __UpperCamelCase ( self , A_ , A_ , A_ ) -> bool:
"""simple docstring"""
if max_length < min_length:
logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' )
if input_length < max_length:
logger.warning(
F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is '''
'a summarization task, where outputs shorter than the input are typically wanted, you might '
F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' )
@add_end_docstrings(_SCREAMING_SNAKE_CASE )
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : int = "translation"
def __UpperCamelCase ( self , A_ , A_ , A_ ) -> str:
"""simple docstring"""
if input_length > 0.9 * max_length:
logger.warning(
F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider '''
'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' )
return True
def __UpperCamelCase ( self , *A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , A_=None , A_=None ) -> Optional[int]:
"""simple docstring"""
if getattr(self.tokenizer , '_build_translation_inputs' , A_ ):
return self.tokenizer._build_translation_inputs(
*A_ , return_tensors=self.framework , truncation=A_ , src_lang=A_ , tgt_lang=A_ )
else:
return super()._parse_and_tokenize(*A_ , truncation=A_ )
def __UpperCamelCase ( self , A_=None , A_=None , **A_ ) -> Tuple:
"""simple docstring"""
UpperCamelCase , UpperCamelCase , UpperCamelCase = super()._sanitize_parameters(**A_ )
if src_lang is not None:
UpperCamelCase = src_lang
if tgt_lang is not None:
UpperCamelCase = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
UpperCamelCase = kwargs.get('task' , self.task )
UpperCamelCase = task.split('_' )
if task and len(A_ ) == 4:
# translation, XX, to YY
UpperCamelCase = items[1]
UpperCamelCase = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self , *A_ , **A_ ) -> List[str]:
"""simple docstring"""
return super().__call__(*A_ , **A_ )
| 3 |
from abc import ABC, abstractmethod
from typing import List, Optional
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self ) -> Optional[Any]:
"""simple docstring"""
# test for the above condition
self.test()
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = 0
UpperCamelCase = False
while not completed:
if counter == 1:
self.reset()
UpperCamelCase = self.advance()
if not self.does_advance(A_ ):
raise Exception(
'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' )
UpperCamelCase , UpperCamelCase , UpperCamelCase = self.update(A_ )
counter += 1
if counter > 10_000:
raise Exception('update() does not fulfill the constraint.' )
if self.remaining() != 0:
raise Exception('Custom Constraint is not defined correctly.' )
@abstractmethod
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def __UpperCamelCase ( self , A_ ) -> str:
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def __UpperCamelCase ( self , A_ ) -> int:
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def __UpperCamelCase ( self , A_=False ) -> int:
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ ) -> Any:
"""simple docstring"""
super(A_ , self ).__init__()
if not isinstance(A_ , A_ ) or len(A_ ) == 0:
raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' )
if any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids ):
raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' )
UpperCamelCase = token_ids
UpperCamelCase = len(self.token_ids )
UpperCamelCase = -1 # the index of the currently fulfilled step
UpperCamelCase = False
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def __UpperCamelCase ( self , A_ ) -> Optional[int]:
"""simple docstring"""
if not isinstance(A_ , A_ ):
raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' )
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def __UpperCamelCase ( self , A_ ) -> Optional[int]:
"""simple docstring"""
if not isinstance(A_ , A_ ):
raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' )
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
if self.does_advance(A_ ):
self.fulfilled_idx += 1
UpperCamelCase = True
if self.fulfilled_idx == (self.seqlen - 1):
UpperCamelCase = True
UpperCamelCase = completed
else:
# failed to make progress.
UpperCamelCase = True
self.reset()
return stepped, completed, reset
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = False
UpperCamelCase = 0
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
return self.seqlen - (self.fulfilled_idx + 1)
def __UpperCamelCase ( self , A_=False ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = PhrasalConstraint(self.token_ids )
if stateful:
UpperCamelCase = self.seqlen
UpperCamelCase = self.fulfilled_idx
UpperCamelCase = self.completed
return new_constraint
class lowercase :
def __init__( self , A_ , A_=True ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = max([len(A_ ) for one in nested_token_ids] )
UpperCamelCase = {}
for token_ids in nested_token_ids:
UpperCamelCase = root
for tidx, token_id in enumerate(A_ ):
if token_id not in level:
UpperCamelCase = {}
UpperCamelCase = level[token_id]
if no_subsets and self.has_subsets(A_ , A_ ):
raise ValueError(
'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is'
F''' {nested_token_ids}.''' )
UpperCamelCase = root
def __UpperCamelCase ( self , A_ ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = self.trie
for current_token in current_seq:
UpperCamelCase = start[current_token]
UpperCamelCase = list(start.keys() )
return next_tokens
def __UpperCamelCase ( self , A_ ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = self.next_tokens(A_ )
return len(A_ ) == 0
def __UpperCamelCase ( self , A_ ) -> List[str]:
"""simple docstring"""
UpperCamelCase = list(root.values() )
if len(A_ ) == 0:
return 1
else:
return sum([self.count_leaves(A_ ) for nn in next_nodes] )
def __UpperCamelCase ( self , A_ , A_ ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = self.count_leaves(A_ )
return len(A_ ) != leaf_count
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ ) -> str:
"""simple docstring"""
super(A_ , self ).__init__()
if not isinstance(A_ , A_ ) or len(A_ ) == 0:
raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' )
if any(not isinstance(A_ , A_ ) for token_ids in nested_token_ids ):
raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' )
if any(
any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids )
for token_ids in nested_token_ids ):
raise ValueError(
F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' )
UpperCamelCase = DisjunctiveTrie(A_ )
UpperCamelCase = nested_token_ids
UpperCamelCase = self.trie.max_height
UpperCamelCase = []
UpperCamelCase = False
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = self.trie.next_tokens(self.current_seq )
if len(A_ ) == 0:
return None
else:
return token_list
def __UpperCamelCase ( self , A_ ) -> Optional[Any]:
"""simple docstring"""
if not isinstance(A_ , A_ ):
raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' )
UpperCamelCase = self.trie.next_tokens(self.current_seq )
return token_id in next_tokens
def __UpperCamelCase ( self , A_ ) -> Optional[Any]:
"""simple docstring"""
if not isinstance(A_ , A_ ):
raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' )
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
if self.does_advance(A_ ):
self.current_seq.append(A_ )
UpperCamelCase = True
else:
UpperCamelCase = True
self.reset()
UpperCamelCase = self.trie.reached_leaf(self.current_seq )
UpperCamelCase = completed
return stepped, completed, reset
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase = False
UpperCamelCase = []
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq )
def __UpperCamelCase ( self , A_=False ) -> int:
"""simple docstring"""
UpperCamelCase = DisjunctiveConstraint(self.token_ids )
if stateful:
UpperCamelCase = self.seqlen
UpperCamelCase = self.current_seq
UpperCamelCase = self.completed
return new_constraint
class lowercase :
def __init__( self , A_ ) -> Tuple:
"""simple docstring"""
UpperCamelCase = constraints
# max # of steps required to fulfill a given constraint
UpperCamelCase = max([c.seqlen for c in constraints] )
UpperCamelCase = len(A_ )
UpperCamelCase = False
self.init_state()
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = []
UpperCamelCase = None
UpperCamelCase = [constraint.copy(stateful=A_ ) for constraint in self.constraints]
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints ) * self.max_seqlen) + add
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
UpperCamelCase = constraint.advance()
if isinstance(A_ , A_ ):
token_list.append(A_ )
elif isinstance(A_ , A_ ):
token_list.extend(A_ )
else:
UpperCamelCase = self.inprogress_constraint.advance()
if isinstance(A_ , A_ ):
token_list.append(A_ )
elif isinstance(A_ , A_ ):
token_list.extend(A_ )
if len(A_ ) == 0:
return None
else:
return token_list
def __UpperCamelCase ( self , A_ ) -> Any:
"""simple docstring"""
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
UpperCamelCase , UpperCamelCase = self.add(A_ )
# the entire list of constraints are fulfilled
if self.completed:
break
def __UpperCamelCase ( self , A_ ) -> int:
"""simple docstring"""
if not isinstance(A_ , A_ ):
raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' )
UpperCamelCase , UpperCamelCase = False, False
if self.completed:
UpperCamelCase = True
UpperCamelCase = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
UpperCamelCase , UpperCamelCase , UpperCamelCase = self.inprogress_constraint.update(A_ )
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=A_ ) )
UpperCamelCase = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint )
UpperCamelCase = None
if len(self.pending_constraints ) == 0:
# we're done!
UpperCamelCase = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints ):
if pending_constraint.does_advance(A_ ):
UpperCamelCase , UpperCamelCase , UpperCamelCase = pending_constraint.update(A_ )
if not stepped:
raise Exception(
'`constraint.update(token_id)` is not yielding incremental progress, '
'even though `constraint.does_advance(token_id)` is true.' )
if complete:
self.complete_constraints.append(A_ )
UpperCamelCase = None
if not complete and stepped:
UpperCamelCase = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
UpperCamelCase = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
UpperCamelCase = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def __UpperCamelCase ( self , A_=True ) -> Tuple:
"""simple docstring"""
UpperCamelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
UpperCamelCase = [
constraint.copy(stateful=A_ ) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
UpperCamelCase = self.inprogress_constraint.copy(stateful=A_ )
UpperCamelCase = [constraint.copy() for constraint in self.pending_constraints]
return new_state
| 3 | 1 |
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
_UpperCAmelCase : Dict = logging.get_logger(__name__)
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , *A_ , **A_ ) -> None:
"""simple docstring"""
warnings.warn(
'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use SegformerImageProcessor instead.' , A_ , )
super().__init__(*A_ , **A_ )
| 3 |
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
_UpperCAmelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
@register_to_config
def __init__( self , A_ , A_ = None , A_ = None ) -> Any:
"""simple docstring"""
super().__init__()
UpperCamelCase = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
UpperCamelCase = torch.zeros(A_ , A_ )
else:
UpperCamelCase = None
UpperCamelCase = torch.nn.Parameter(A_ )
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : VQModel
__lowercase : CLIPTextModel
__lowercase : CLIPTokenizer
__lowercase : TransformeraDModel
__lowercase : LearnedClassifierFreeSamplingEmbeddings
__lowercase : VQDiffusionScheduler
def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
self.register_modules(
vqvae=A_ , transformer=A_ , text_encoder=A_ , tokenizer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , )
def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = len(A_ ) if isinstance(A_ , A_ ) else 1
# get prompt text embeddings
UpperCamelCase = self.tokenizer(
A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , )
UpperCamelCase = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'The following part of your input was truncated because CLIP can only handle sequences up to'
F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length]
UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A_ )
# duplicate text embeddings for each generation per prompt
UpperCamelCase = prompt_embeds.repeat_interleave(A_ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings
UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(A_ , 1 , 1 )
else:
UpperCamelCase = [''] * batch_size
UpperCamelCase = text_input_ids.shape[-1]
UpperCamelCase = self.tokenizer(
A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='pt' , )
UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A_ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
UpperCamelCase = negative_prompt_embeds.shape[1]
UpperCamelCase = negative_prompt_embeds.repeat(1 , A_ , 1 )
UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self , A_ , A_ = 100 , A_ = 5.0 , A_ = 1.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , ) -> Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
if isinstance(A_ , A_ ):
UpperCamelCase = 1
elif isinstance(A_ , A_ ):
UpperCamelCase = len(A_ )
else:
raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' )
UpperCamelCase = batch_size * num_images_per_prompt
UpperCamelCase = guidance_scale > 1.0
UpperCamelCase = self._encode_prompt(A_ , A_ , A_ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0)
):
raise ValueError(
F'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
F''' {type(A_ )}.''' )
# get the initial completely masked latents unless the user supplied it
UpperCamelCase = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
UpperCamelCase = self.transformer.num_vector_embeds - 1
UpperCamelCase = torch.full(A_ , A_ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,'
F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' )
UpperCamelCase = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(A_ , device=self.device )
UpperCamelCase = self.scheduler.timesteps.to(self.device )
UpperCamelCase = latents
for i, t in enumerate(self.progress_bar(A_ ) ):
# expand the sample if we are doing classifier free guidance
UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
UpperCamelCase = self.transformer(A_ , encoder_hidden_states=A_ , timestep=A_ ).sample
if do_classifier_free_guidance:
UpperCamelCase , UpperCamelCase = model_output.chunk(2 )
UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(A_ , dim=1 , keepdim=A_ )
UpperCamelCase = self.truncate(A_ , A_ )
# remove `log(0)`'s (`-inf`s)
UpperCamelCase = model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
UpperCamelCase = self.scheduler.step(A_ , timestep=A_ , sample=A_ , generator=A_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(A_ , A_ , A_ )
UpperCamelCase = self.vqvae.config.vq_embed_dim
UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
UpperCamelCase = self.vqvae.quantize.get_codebook_entry(A_ , shape=A_ )
UpperCamelCase = self.vqvae.decode(A_ , force_not_quantize=A_ ).sample
UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 )
UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCamelCase = self.numpy_to_pil(A_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A_ )
def __UpperCamelCase ( self , A_ , A_ ) -> torch.FloatTensor:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = torch.sort(A_ , 1 , descending=A_ )
UpperCamelCase = torch.exp(A_ )
UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , A_ )
UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 )
UpperCamelCase = keep_mask[:, :-1, :]
UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) )
UpperCamelCase = log_p_x_0.clone()
UpperCamelCase = -torch.inf # -inf = log(0)
return rv
| 3 | 1 |
import unittest
from transformers import GPTNeoXJapaneseConfig, is_torch_available
from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel
class lowercase :
def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=4 , A_="gelu" , A_=0.0 , A_=0.1 , A_=True , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Any:
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = seq_length
UpperCamelCase = is_training
UpperCamelCase = use_input_mask
UpperCamelCase = use_token_type_ids
UpperCamelCase = use_labels
UpperCamelCase = vocab_size
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_multiple_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout
UpperCamelCase = attention_dropout
UpperCamelCase = weight_tying
UpperCamelCase = max_position_embeddings
UpperCamelCase = type_vocab_size
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
UpperCamelCase = num_labels
UpperCamelCase = num_choices
UpperCamelCase = scope
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase = None
if self.use_input_mask:
UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase = self.get_config()
return config, input_ids, input_mask, token_labels
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
return GPTNeoXJapaneseConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , )
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase = True
return config, input_ids, input_mask, token_labels
def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = GPTNeoXJapaneseModel(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ , attention_mask=A_ )
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Any:
"""simple docstring"""
UpperCamelCase = True
UpperCamelCase = GPTNeoXJapaneseModel(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ , attention_mask=A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> Any:
"""simple docstring"""
UpperCamelCase = GPTNeoXJapaneseForCausalLM(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCamelCase ( self , A_ , A_ , A_ ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = True
UpperCamelCase = GPTNeoXJapaneseForCausalLM(config=A_ )
model.to(A_ )
model.eval()
# first forward pass
UpperCamelCase = model(A_ , attention_mask=A_ , use_cache=A_ )
UpperCamelCase = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCamelCase = model(A_ , attention_mask=A_ , output_hidden_states=A_ )
UpperCamelCase = output_from_no_past['hidden_states'][0]
UpperCamelCase = model(
A_ , attention_mask=A_ , past_key_values=A_ , output_hidden_states=A_ , )['hidden_states'][0]
# select random slice
UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCamelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1e-3 ) )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs
UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ):
__lowercase : int = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else ()
__lowercase : Any = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else ()
__lowercase : Union[str, Any] = (
{"feature-extraction": GPTNeoXJapaneseModel, "text-generation": GPTNeoXJapaneseForCausalLM}
if is_torch_available()
else {}
)
__lowercase : str = False
__lowercase : Optional[Any] = False
__lowercase : Any = False
__lowercase : Optional[int] = False
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = GPTNeoXJapaneseModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=A_ , hidden_size=37 )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
self.config_tester.run_common_tests()
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(A_ , A_ , A_ )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(A_ , A_ , A_ )
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
# This regression test was failing with PyTorch < 1.3
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder()
UpperCamelCase = None
self.model_tester.create_and_check_model_as_decoder(A_ , A_ , A_ )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(A_ , A_ , A_ )
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*A_ )
@slow
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = 'abeja/gpt-neox-japanese-2.7b'
UpperCamelCase = ['データサイエンティストとは、', '100年後に必要とされる会社は、', 'フルリモートの環境で働くために必要なことは、', '国境の長いトンネルを抜けると', '美味しい日本食といえば、']
UpperCamelCase = [
'データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。',
'100年後に必要とされる会社は、「人」が中心の会社です。',
'フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。',
'国境の長いトンネルを抜けると、そこは雪国だった。',
'美味しい日本食といえば、やっぱりお寿司ですよね。',
]
UpperCamelCase = GPTNeoXJapaneseTokenizer.from_pretrained(A_ )
UpperCamelCase = GPTNeoXJapaneseForCausalLM.from_pretrained(A_ )
UpperCamelCase = []
for prompt in prompts:
UpperCamelCase = tokenizer(A_ , return_tensors='pt' ).input_ids
UpperCamelCase = model.generate(A_ , max_length=50 )
UpperCamelCase = tokenizer.batch_decode(A_ , skip_special_tokens=A_ )
predicted_outputs += generated_string
self.assertListEqual(A_ , A_ )
| 3 |
from string import ascii_uppercase
_UpperCAmelCase : Dict = {char: i for i, char in enumerate(ascii_uppercase)}
_UpperCAmelCase : Tuple = dict(enumerate(ascii_uppercase))
def A ( lowercase , lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = len(lowercase )
UpperCamelCase = 0
while True:
if x == i:
UpperCamelCase = 0
if len(lowercase ) == len(lowercase ):
break
key += key[i]
i += 1
return key
def A ( lowercase , lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = ''
UpperCamelCase = 0
for letter in message:
if letter == " ":
cipher_text += " "
else:
UpperCamelCase = (dicta[letter] - dicta[key_new[i]]) % 26
i += 1
cipher_text += dicta[x]
return cipher_text
def A ( lowercase , lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = ''
UpperCamelCase = 0
for letter in cipher_text:
if letter == " ":
or_txt += " "
else:
UpperCamelCase = (dicta[letter] + dicta[key_new[i]] + 26) % 26
i += 1
or_txt += dicta[x]
return or_txt
def A ( ) -> None:
'''simple docstring'''
UpperCamelCase = 'THE GERMAN ATTACK'
UpperCamelCase = 'SECRET'
UpperCamelCase = generate_key(lowercase , lowercase )
UpperCamelCase = cipher_text(lowercase , lowercase )
print(f'''Encrypted Text = {s}''' )
print(f'''Original Text = {original_text(lowercase , lowercase )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 3 | 1 |
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class lowercase ( unittest.TestCase ):
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
# A mock response for an HTTP head request to emulate server down
UpperCamelCase = mock.Mock()
UpperCamelCase = 500
UpperCamelCase = {}
UpperCamelCase = HTTPError
UpperCamelCase = {}
# Download this model to make sure it's in the cache.
UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head:
UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
# A mock response for an HTTP head request to emulate server down
UpperCamelCase = mock.Mock()
UpperCamelCase = 500
UpperCamelCase = {}
UpperCamelCase = HTTPError
UpperCamelCase = {}
# Download this model to make sure it's in the cache.
UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head:
UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' )
# This check we did call the fake head request
mock_head.assert_called()
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
# This test is for deprecated behavior and can be removed in v5
try:
UpperCamelCase = tempfile.mktemp()
with open(A_ , 'wb' ) as f:
http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , A_ )
UpperCamelCase = AlbertTokenizer.from_pretrained(A_ )
finally:
os.remove(A_ )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile('tokenizer.json' ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open('tokenizer.json' , 'wb' ) as f:
http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , A_ )
UpperCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size , 1_000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove('tokenizer.json' )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
# This test is for deprecated behavior and can be removed in v5
UpperCamelCase = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' )
@is_staging_test
class lowercase ( unittest.TestCase ):
__lowercase : int = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def __UpperCamelCase ( cls ) -> Tuple:
"""simple docstring"""
UpperCamelCase = TOKEN
HfFolder.save_token(A_ )
@classmethod
def __UpperCamelCase ( cls ) -> Optional[int]:
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='test-tokenizer' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' )
except HTTPError:
pass
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase = os.path.join(A_ , 'vocab.txt' )
with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCamelCase = BertTokenizer(A_ )
tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token )
UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id='test-tokenizer' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(A_ , repo_id='test-tokenizer' , push_to_hub=A_ , use_auth_token=self._token )
UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase = os.path.join(A_ , 'vocab.txt' )
with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCamelCase = BertTokenizer(A_ )
tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token )
UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
A_ , repo_id='valid_org/test-tokenizer-org' , push_to_hub=A_ , use_auth_token=self._token )
UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
@require_tokenizers
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase = os.path.join(A_ , 'vocab.txt' )
with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCamelCase = CustomTokenizer(A_ )
# No fast custom tokenizer
tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token )
UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase = os.path.join(A_ , 'vocab.txt' )
with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCamelCase = BertTokenizerFast.from_pretrained(A_ )
bert_tokenizer.save_pretrained(A_ )
UpperCamelCase = CustomTokenizerFast.from_pretrained(A_ )
tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token )
UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' )
UpperCamelCase = AutoTokenizer.from_pretrained(
F'''{USER}/test-dynamic-tokenizer''' , use_fast=A_ , trust_remote_code=A_ )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' )
class lowercase ( unittest.TestCase ):
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('Hello 友達' )
self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} )
trie.add('Hello' )
trie.data
self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} )
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase = Trie()
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] )
trie.add('[CLS]' )
trie.add('extra_id_1' )
trie.add('extra_id_100' )
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] )
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('A' )
self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] )
self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('TOKEN]' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('A' )
trie.add('P' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('AB' )
trie.add('B' )
trie.add('C' )
self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('ABC' )
trie.add('B' )
trie.add('CD' )
self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
# Even if the offsets are wrong, we necessarily output correct string
# parts.
UpperCamelCase = Trie()
UpperCamelCase = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] )
self.assertEqual(A_ , ['AB', 'C'] )
| 3 |
from collections.abc import Callable
def A ( lowercase , lowercase , lowercase ) -> float:
'''simple docstring'''
UpperCamelCase = a
UpperCamelCase = b
if function(lowercase ) == 0: # one of the a or b is a root for the function
return a
elif function(lowercase ) == 0:
return b
elif (
function(lowercase ) * function(lowercase ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('could not find root in given interval.' )
else:
UpperCamelCase = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(lowercase ) == 0:
return mid
elif function(lowercase ) * function(lowercase ) < 0:
UpperCamelCase = mid
else:
UpperCamelCase = mid
UpperCamelCase = start + (end - start) / 2.0
return mid
def A ( lowercase ) -> float:
'''simple docstring'''
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1_000))
import doctest
doctest.testmod()
| 3 | 1 |
import math
def A ( lowercase ) -> bool:
'''simple docstring'''
UpperCamelCase = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 )
return exponent == int(lowercase )
def A ( lowercase = 1 / 12_345 ) -> int:
'''simple docstring'''
UpperCamelCase = 0
UpperCamelCase = 0
UpperCamelCase = 3
while True:
UpperCamelCase = (integer**2 - 1) / 4
# if candidate is an integer, then there is a partition for k
if partition_candidate == int(lowercase ):
UpperCamelCase = int(lowercase )
total_partitions += 1
if check_partition_perfect(lowercase ):
perfect_partitions += 1
if perfect_partitions > 0:
if perfect_partitions / total_partitions < max_proportion:
return int(lowercase )
integer += 1
if __name__ == "__main__":
print(F'''{solution() = }''')
| 3 |
import os
_UpperCAmelCase : int = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000}
def A ( lowercase ) -> int:
'''simple docstring'''
UpperCamelCase = 0
UpperCamelCase = 0
while index < len(lowercase ) - 1:
UpperCamelCase = SYMBOLS[numerals[index]]
UpperCamelCase = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def A ( lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = ''
UpperCamelCase = num // 1_000
numerals += m_count * "M"
num %= 1_000
UpperCamelCase = num // 100
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 100
UpperCamelCase = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def A ( lowercase = "/p089_roman.txt" ) -> int:
'''simple docstring'''
UpperCamelCase = 0
with open(os.path.dirname(lowercase ) + roman_numerals_filename ) as filea:
UpperCamelCase = filea.readlines()
for line in lines:
UpperCamelCase = line.strip()
UpperCamelCase = parse_roman_numerals(lowercase )
UpperCamelCase = generate_roman_numerals(lowercase )
savings += len(lowercase ) - len(lowercase )
return savings
if __name__ == "__main__":
print(F'''{solution() = }''')
| 3 | 1 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Optional[int] = ["image_processor", "tokenizer"]
__lowercase : List[Any] = "ChineseCLIPImageProcessor"
__lowercase : int = ("BertTokenizer", "BertTokenizerFast")
def __init__( self , A_=None , A_=None , **A_ ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , A_ , )
UpperCamelCase = kwargs.pop('feature_extractor' )
UpperCamelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(A_ , A_ )
UpperCamelCase = self.image_processor
def __call__( self , A_=None , A_=None , A_=None , **A_ ) -> Dict:
"""simple docstring"""
if text is None and images is None:
raise ValueError('You have to specify either text or images. Both cannot be none.' )
if text is not None:
UpperCamelCase = self.tokenizer(A_ , return_tensors=A_ , **A_ )
if images is not None:
UpperCamelCase = self.image_processor(A_ , return_tensors=A_ , **A_ )
if text is not None and images is not None:
UpperCamelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**A_ ) , tensor_type=A_ )
def __UpperCamelCase ( self , *A_ , **A_ ) -> str:
"""simple docstring"""
return self.tokenizer.batch_decode(*A_ , **A_ )
def __UpperCamelCase ( self , *A_ , **A_ ) -> str:
"""simple docstring"""
return self.tokenizer.decode(*A_ , **A_ )
@property
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = self.tokenizer.model_input_names
UpperCamelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , A_ , )
return self.image_processor_class
| 3 |
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20] )
def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowercase )
UpperCamelCase = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
UpperCamelCase = dataset_size < in_memory_max_size
else:
UpperCamelCase = False
UpperCamelCase = is_small_dataset(lowercase )
assert result == expected
| 3 | 1 |
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def A ( lowercase , lowercase , lowercase ) -> str:
'''simple docstring'''
def get_masked_lm_array(lowercase ):
UpperCamelCase = f'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
UpperCamelCase = tf.train.load_variable(lowercase , lowercase )
if "kernel" in name:
UpperCamelCase = array.transpose()
return torch.from_numpy(lowercase )
def get_encoder_array(lowercase ):
UpperCamelCase = f'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
UpperCamelCase = tf.train.load_variable(lowercase , lowercase )
if "kernel" in name:
UpperCamelCase = array.transpose()
return torch.from_numpy(lowercase )
def get_encoder_layer_array(lowercase , lowercase ):
UpperCamelCase = f'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
UpperCamelCase = tf.train.load_variable(lowercase , lowercase )
if "kernel" in name:
UpperCamelCase = array.transpose()
return torch.from_numpy(lowercase )
def get_encoder_attention_layer_array(lowercase , lowercase , lowercase ):
UpperCamelCase = f'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
UpperCamelCase = tf.train.load_variable(lowercase , lowercase )
UpperCamelCase = array.reshape(lowercase )
if "kernel" in name:
UpperCamelCase = array.transpose()
return torch.from_numpy(lowercase )
print(f'''Loading model based on config from {config_path}...''' )
UpperCamelCase = BertConfig.from_json_file(lowercase )
UpperCamelCase = BertForMaskedLM(lowercase )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
UpperCamelCase = model.bert.encoder.layer[layer_index]
# Self-attention
UpperCamelCase = layer.attention.self
UpperCamelCase = get_encoder_attention_layer_array(
lowercase , '_query_dense/kernel' , self_attn.query.weight.data.shape )
UpperCamelCase = get_encoder_attention_layer_array(
lowercase , '_query_dense/bias' , self_attn.query.bias.data.shape )
UpperCamelCase = get_encoder_attention_layer_array(
lowercase , '_key_dense/kernel' , self_attn.key.weight.data.shape )
UpperCamelCase = get_encoder_attention_layer_array(
lowercase , '_key_dense/bias' , self_attn.key.bias.data.shape )
UpperCamelCase = get_encoder_attention_layer_array(
lowercase , '_value_dense/kernel' , self_attn.value.weight.data.shape )
UpperCamelCase = get_encoder_attention_layer_array(
lowercase , '_value_dense/bias' , self_attn.value.bias.data.shape )
# Self-attention Output
UpperCamelCase = layer.attention.output
UpperCamelCase = get_encoder_attention_layer_array(
lowercase , '_output_dense/kernel' , self_output.dense.weight.data.shape )
UpperCamelCase = get_encoder_attention_layer_array(
lowercase , '_output_dense/bias' , self_output.dense.bias.data.shape )
UpperCamelCase = get_encoder_layer_array(lowercase , '_attention_layer_norm/gamma' )
UpperCamelCase = get_encoder_layer_array(lowercase , '_attention_layer_norm/beta' )
# Intermediate
UpperCamelCase = layer.intermediate
UpperCamelCase = get_encoder_layer_array(lowercase , '_intermediate_dense/kernel' )
UpperCamelCase = get_encoder_layer_array(lowercase , '_intermediate_dense/bias' )
# Output
UpperCamelCase = layer.output
UpperCamelCase = get_encoder_layer_array(lowercase , '_output_dense/kernel' )
UpperCamelCase = get_encoder_layer_array(lowercase , '_output_dense/bias' )
UpperCamelCase = get_encoder_layer_array(lowercase , '_output_layer_norm/gamma' )
UpperCamelCase = get_encoder_layer_array(lowercase , '_output_layer_norm/beta' )
# Embeddings
UpperCamelCase = get_encoder_array('_position_embedding_layer/embeddings' )
UpperCamelCase = get_encoder_array('_type_embedding_layer/embeddings' )
UpperCamelCase = get_encoder_array('_embedding_norm_layer/gamma' )
UpperCamelCase = get_encoder_array('_embedding_norm_layer/beta' )
# LM Head
UpperCamelCase = model.cls.predictions.transform
UpperCamelCase = get_masked_lm_array('dense/kernel' )
UpperCamelCase = get_masked_lm_array('dense/bias' )
UpperCamelCase = get_masked_lm_array('layer_norm/gamma' )
UpperCamelCase = get_masked_lm_array('layer_norm/beta' )
UpperCamelCase = get_masked_lm_array('embedding_table' )
# Pooling
UpperCamelCase = BertPooler(config=lowercase )
UpperCamelCase = get_encoder_array('_pooler_layer/kernel' )
UpperCamelCase = get_encoder_array('_pooler_layer/bias' )
# Export final model
model.save_pretrained(lowercase )
# Integration test - should load without any errors ;)
UpperCamelCase = BertForMaskedLM.from_pretrained(lowercase )
print(new_model.eval() )
print('Model conversion was done sucessfully!' )
if __name__ == "__main__":
_UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path."
)
parser.add_argument(
"--bert_config_file",
type=str,
required=True,
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path",
type=str,
required=True,
help="Path to the output PyTorch model.",
)
_UpperCAmelCase : Optional[Any] = parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 3 |
def A ( lowercase , lowercase ) -> str:
'''simple docstring'''
if a < 0 or b < 0:
raise ValueError('the value of both inputs must be positive' )
UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b"
UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b"
UpperCamelCase = max(len(lowercase ) , len(lowercase ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(lowercase ) , b_binary.zfill(lowercase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCAmelCase : Any = logging.get_logger(__name__)
_UpperCAmelCase : Union[str, Any] = {
"facebook/deit-base-distilled-patch16-224": (
"https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json"
),
# See all DeiT models at https://huggingface.co/models?filter=deit
}
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Optional[int] = "deit"
def __init__( self , A_=768 , A_=12 , A_=12 , A_=3_072 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1e-12 , A_=224 , A_=16 , A_=3 , A_=True , A_=16 , **A_ , ) -> str:
"""simple docstring"""
super().__init__(**A_ )
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = initializer_range
UpperCamelCase = layer_norm_eps
UpperCamelCase = image_size
UpperCamelCase = patch_size
UpperCamelCase = num_channels
UpperCamelCase = qkv_bias
UpperCamelCase = encoder_stride
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Tuple = version.parse("1.11" )
@property
def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def __UpperCamelCase ( self ) -> float:
"""simple docstring"""
return 1e-4
| 3 |
import re
def A ( lowercase ) -> str:
'''simple docstring'''
if len(re.findall('[ATCG]' , lowercase ) ) != len(lowercase ):
raise ValueError('Invalid Strand' )
return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def A ( lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = np.inf
def set_batch_size(lowercase ) -> None:
nonlocal batch_size
if isinstance(lowercase , lowercase ):
UpperCamelCase = min(lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(lowercase , lowercase ):
UpperCamelCase = min(lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(lowercase , lowercase ) and feature.dtype == "binary":
UpperCamelCase = min(lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(lowercase , lowercase )
return None if batch_size is np.inf else batch_size
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ , A_ = None , A_ = None , A_ = None , A_ = False , A_ = False , A_ = None , **A_ , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(
A_ , split=A_ , features=A_ , cache_dir=A_ , keep_in_memory=A_ , streaming=A_ , num_proc=A_ , **A_ , )
UpperCamelCase = path_or_paths if isinstance(A_ , A_ ) else {self.split: path_or_paths}
UpperCamelCase = _PACKAGED_DATASETS_MODULES['parquet'][1]
UpperCamelCase = Parquet(
cache_dir=A_ , data_files=A_ , features=A_ , hash=A_ , **A_ , )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
# Build iterable dataset
if self.streaming:
UpperCamelCase = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
UpperCamelCase = None
UpperCamelCase = None
UpperCamelCase = None
UpperCamelCase = None
self.builder.download_and_prepare(
download_config=A_ , download_mode=A_ , verification_mode=A_ , base_path=A_ , num_proc=self.num_proc , )
UpperCamelCase = self.builder.as_dataset(
split=self.split , verification_mode=A_ , in_memory=self.keep_in_memory )
return dataset
class lowercase :
def __init__( self , A_ , A_ , A_ = None , **A_ , ) -> str:
"""simple docstring"""
UpperCamelCase = dataset
UpperCamelCase = path_or_buf
UpperCamelCase = batch_size or get_writer_batch_size(dataset.features )
UpperCamelCase = parquet_writer_kwargs
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , 'wb+' ) as buffer:
UpperCamelCase = self._write(file_obj=A_ , batch_size=A_ , **self.parquet_writer_kwargs )
else:
UpperCamelCase = self._write(file_obj=self.path_or_buf , batch_size=A_ , **self.parquet_writer_kwargs )
return written
def __UpperCamelCase ( self , A_ , A_ , **A_ ) -> int:
"""simple docstring"""
UpperCamelCase = 0
UpperCamelCase = parquet_writer_kwargs.pop('path_or_buf' , A_ )
UpperCamelCase = self.dataset.features.arrow_schema
UpperCamelCase = pq.ParquetWriter(A_ , schema=A_ , **A_ )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , A_ ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ):
UpperCamelCase = query_table(
table=self.dataset._data , key=slice(A_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(A_ )
written += batch.nbytes
writer.close()
return written
| 3 |
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Dict = (DDPMScheduler,)
def __UpperCamelCase ( self , **A_ ) -> Dict:
"""simple docstring"""
UpperCamelCase = {
'num_train_timesteps': 1_000,
'beta_start': 0.0001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'variance_type': 'fixed_small',
'clip_sample': True,
}
config.update(**A_ )
return config
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=A_ )
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=A_ , beta_end=A_ )
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=A_ )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=A_ )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=A_ )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
self.check_over_configs(thresholding=A_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=A_ , prediction_type=A_ , sample_max_value=A_ , )
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=A_ )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
for t in [0, 500, 999]:
self.check_over_forward(time_step=A_ )
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = len(A_ )
UpperCamelCase = self.dummy_model()
UpperCamelCase = self.dummy_sample_deter
UpperCamelCase = torch.manual_seed(0 )
for t in reversed(range(A_ ) ):
# 1. predict noise residual
UpperCamelCase = model(A_ , A_ )
# 2. predict previous mean of sample x_t-1
UpperCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
UpperCamelCase = pred_prev_sample
UpperCamelCase = torch.sum(torch.abs(A_ ) )
UpperCamelCase = torch.mean(torch.abs(A_ ) )
assert abs(result_sum.item() - 258.9606 ) < 1e-2
assert abs(result_mean.item() - 0.3372 ) < 1e-3
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config(prediction_type='v_prediction' )
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = len(A_ )
UpperCamelCase = self.dummy_model()
UpperCamelCase = self.dummy_sample_deter
UpperCamelCase = torch.manual_seed(0 )
for t in reversed(range(A_ ) ):
# 1. predict noise residual
UpperCamelCase = model(A_ , A_ )
# 2. predict previous mean of sample x_t-1
UpperCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
UpperCamelCase = pred_prev_sample
UpperCamelCase = torch.sum(torch.abs(A_ ) )
UpperCamelCase = torch.mean(torch.abs(A_ ) )
assert abs(result_sum.item() - 202.0296 ) < 1e-2
assert abs(result_mean.item() - 0.2631 ) < 1e-3
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=A_ )
UpperCamelCase = scheduler.timesteps
for i, timestep in enumerate(A_ ):
if i == len(A_ ) - 1:
UpperCamelCase = -1
else:
UpperCamelCase = timesteps[i + 1]
UpperCamelCase = scheduler.previous_timestep(A_ )
UpperCamelCase = prev_t.item()
self.assertEqual(A_ , A_ )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = [100, 87, 50, 51, 0]
with self.assertRaises(A_ , msg='`custom_timesteps` must be in descending order.' ):
scheduler.set_timesteps(timesteps=A_ )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = [100, 87, 50, 1, 0]
UpperCamelCase = len(A_ )
with self.assertRaises(A_ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ):
scheduler.set_timesteps(num_inference_steps=A_ , timesteps=A_ )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = [scheduler.config.num_train_timesteps]
with self.assertRaises(
A_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ):
scheduler.set_timesteps(timesteps=A_ )
| 3 | 1 |
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
_UpperCAmelCase : Optional[Any] = logging.getLogger(__name__)
def A ( ) -> Dict:
'''simple docstring'''
UpperCamelCase = argparse.ArgumentParser(
description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' )
parser.add_argument(
'--dataset_name' , type=lowercase , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , )
parser.add_argument(
'--dataset_config' , type=lowercase , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' )
parser.add_argument(
'--tokenizer_name_or_path' , type=lowercase , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , )
parser.add_argument(
'--shard_size' , type=lowercase , default=1_000 , help='Number of entries to go in a single shard.' , )
parser.add_argument('--split' , type=lowercase , default='train' , choices=['train', 'test', 'validation'] )
parser.add_argument(
'--limit' , default=lowercase , type=lowercase , help='Limit the number of shards (used for debugging).' , )
parser.add_argument(
'--max_length' , type=lowercase , default=512 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum'
' sequence length that is a multiple of 8.' , )
parser.add_argument(
'--output_dir' , default='tf-tpu' , type=lowercase , help='Output directory where the TFRecord shards will be saved. If the'
' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord'
' shards will be directly saved to a Google Cloud Storage bucket.' , )
UpperCamelCase = parser.parse_args()
return args
def A ( lowercase ) -> Tuple:
'''simple docstring'''
def fn(lowercase ):
return tokenizer(examples['text'] )
return fn
def A ( lowercase ) -> Dict:
'''simple docstring'''
UpperCamelCase = []
for i in range(len(tokenized_data['input_ids'] ) ):
UpperCamelCase = {
'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ),
'attention_mask': tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ),
}
UpperCamelCase = tf.train.Features(feature=lowercase )
UpperCamelCase = tf.train.Example(features=lowercase )
UpperCamelCase = example.SerializeToString()
records.append(lowercase )
return records
def A ( lowercase ) -> List[Any]:
'''simple docstring'''
UpperCamelCase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
UpperCamelCase = min(len(lowercase ) , args.limit )
UpperCamelCase = dataset.select(range(lowercase ) )
print(f'''Limiting the dataset to {args.limit} entries.''' )
UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
UpperCamelCase = os.path.join(args.output_dir , args.split )
if not os.path.exists(lowercase ):
os.makedirs(lowercase )
else:
UpperCamelCase = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
UpperCamelCase = tokenize_function(lowercase )
UpperCamelCase = dataset.map(lowercase , batched=lowercase , num_proc=4 , remove_columns=['text'] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(lowercase ):
# Concatenate all texts.
UpperCamelCase = {k: sum(examples[k] , [] ) for k in examples.keys()}
UpperCamelCase = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
UpperCamelCase = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
UpperCamelCase = {
k: [t[i : i + args.max_length] for i in range(0 , lowercase , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
UpperCamelCase = dataset_tokenized.map(lowercase , batched=lowercase , batch_size=1_000 , num_proc=4 )
UpperCamelCase = 0
UpperCamelCase = 0
for shard in range(0 , len(lowercase ) , args.shard_size ):
UpperCamelCase = grouped_dataset[shard : shard + args.shard_size]
UpperCamelCase = len(dataset_snapshot['input_ids'] )
UpperCamelCase = os.path.join(lowercase , f'''dataset-{shard_count}-{records_containing}.tfrecord''' )
UpperCamelCase = get_serialized_examples(lowercase )
with tf.io.TFRecordWriter(lowercase ) as out_file:
for i in range(len(lowercase ) ):
UpperCamelCase = serialized_examples[i]
out_file.write(lowercase )
print('Wrote file {} containing {} records'.format(lowercase , lowercase ) )
shard_count += 1
total_records += records_containing
with open(f'''split-{args.split}-records-count.txt''' , 'w' ) as f:
print(f'''Total {args.split} records: {total_records}''' , file=lowercase )
if __name__ == "__main__":
_UpperCAmelCase : Any = parse_args()
main(args)
| 3 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
_UpperCAmelCase : List[str] = None
_UpperCAmelCase : Any = logging.get_logger(__name__)
_UpperCAmelCase : Tuple = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
_UpperCAmelCase : List[str] = {
"vocab_file": {
"camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model",
},
"tokenizer_file": {
"camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json",
},
}
_UpperCAmelCase : Optional[int] = {
"camembert-base": 512,
}
_UpperCAmelCase : Union[str, Any] = "▁"
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : str = VOCAB_FILES_NAMES
__lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
__lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase : List[str] = ["input_ids", "attention_mask"]
__lowercase : Tuple = CamembertTokenizer
def __init__( self , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=["<s>NOTUSED", "</s>NOTUSED"] , **A_ , ) -> List[Any]:
"""simple docstring"""
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token
super().__init__(
A_ , tokenizer_file=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , additional_special_tokens=A_ , **A_ , )
UpperCamelCase = vocab_file
UpperCamelCase = False if not self.vocab_file else True
def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCamelCase = [self.cls_token_id]
UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]:
"""simple docstring"""
UpperCamelCase = [self.sep_token_id]
UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(A_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCamelCase = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ):
copyfile(self.vocab_file , A_ )
return (out_vocab_file,)
| 3 | 1 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetaImageProcessor
class lowercase ( unittest.TestCase ):
def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 255 , A_=True , ) -> Dict:
"""simple docstring"""
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
UpperCamelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333}
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = num_channels
UpperCamelCase = min_resolution
UpperCamelCase = max_resolution
UpperCamelCase = do_resize
UpperCamelCase = size
UpperCamelCase = do_normalize
UpperCamelCase = image_mean
UpperCamelCase = image_std
UpperCamelCase = do_rescale
UpperCamelCase = rescale_factor
UpperCamelCase = do_pad
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def __UpperCamelCase ( self , A_ , A_=False ) -> Optional[Any]:
"""simple docstring"""
if not batched:
UpperCamelCase = image_inputs[0]
if isinstance(A_ , Image.Image ):
UpperCamelCase , UpperCamelCase = image.size
else:
UpperCamelCase , UpperCamelCase = image.shape[1], image.shape[2]
if w < h:
UpperCamelCase = int(self.size['shortest_edge'] * h / w )
UpperCamelCase = self.size['shortest_edge']
elif w > h:
UpperCamelCase = self.size['shortest_edge']
UpperCamelCase = int(self.size['shortest_edge'] * w / h )
else:
UpperCamelCase = self.size['shortest_edge']
UpperCamelCase = self.size['shortest_edge']
else:
UpperCamelCase = []
for image in image_inputs:
UpperCamelCase , UpperCamelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
UpperCamelCase = max(A_ , key=lambda A_ : item[0] )[0]
UpperCamelCase = max(A_ , key=lambda A_ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
__lowercase : List[str] = DetaImageProcessor if is_vision_available() else None
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = DetaImageProcessingTester(self )
@property
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A_ , 'image_mean' ) )
self.assertTrue(hasattr(A_ , 'image_std' ) )
self.assertTrue(hasattr(A_ , 'do_normalize' ) )
self.assertTrue(hasattr(A_ , 'do_resize' ) )
self.assertTrue(hasattr(A_ , 'do_rescale' ) )
self.assertTrue(hasattr(A_ , 'do_pad' ) )
self.assertTrue(hasattr(A_ , 'size' ) )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1_333} )
self.assertEqual(image_processor.do_pad , A_ )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
pass
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
# Initialize image_processing
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , Image.Image )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(A_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ )
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
# Initialize image_processing
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , np.ndarray )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(A_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
# Initialize image_processing
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , torch.Tensor )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(A_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
# prepare image and target
UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
UpperCamelCase = json.loads(f.read() )
UpperCamelCase = {'image_id': 39_769, 'annotations': target}
# encode them
UpperCamelCase = DetaImageProcessor()
UpperCamelCase = image_processing(images=A_ , annotations=A_ , return_tensors='pt' )
# verify pixel values
UpperCamelCase = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape , A_ )
UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , A_ , atol=1e-4 ) )
# verify area
UpperCamelCase = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , A_ ) )
# verify boxes
UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , A_ )
UpperCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , A_ , atol=1e-3 ) )
# verify image_id
UpperCamelCase = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , A_ ) )
# verify is_crowd
UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , A_ ) )
# verify class_labels
UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , A_ ) )
# verify orig_size
UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , A_ ) )
# verify size
UpperCamelCase = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , A_ ) )
@slow
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
# prepare image, target and masks_path
UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
UpperCamelCase = json.loads(f.read() )
UpperCamelCase = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target}
UpperCamelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
UpperCamelCase = DetaImageProcessor(format='coco_panoptic' )
UpperCamelCase = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='pt' )
# verify pixel values
UpperCamelCase = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape , A_ )
UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , A_ , atol=1e-4 ) )
# verify area
UpperCamelCase = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , A_ ) )
# verify boxes
UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , A_ )
UpperCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , A_ , atol=1e-3 ) )
# verify image_id
UpperCamelCase = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , A_ ) )
# verify is_crowd
UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , A_ ) )
# verify class_labels
UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , A_ ) )
# verify masks
UpperCamelCase = 822_873
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , A_ )
# verify orig_size
UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , A_ ) )
# verify size
UpperCamelCase = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , A_ ) )
| 3 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCAmelCase : Union[str, Any] = {
"configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
"processing_git": ["GitProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Dict = [
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
_UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 3 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_UpperCAmelCase : List[Any] = {
"configuration_longformer": [
"LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"LongformerConfig",
"LongformerOnnxConfig",
],
"tokenization_longformer": ["LongformerTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Tuple = ["LongformerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Tuple = [
"LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"LongformerForMaskedLM",
"LongformerForMultipleChoice",
"LongformerForQuestionAnswering",
"LongformerForSequenceClassification",
"LongformerForTokenClassification",
"LongformerModel",
"LongformerPreTrainedModel",
"LongformerSelfAttention",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : str = [
"TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFLongformerForMaskedLM",
"TFLongformerForMultipleChoice",
"TFLongformerForQuestionAnswering",
"TFLongformerForSequenceClassification",
"TFLongformerForTokenClassification",
"TFLongformerModel",
"TFLongformerPreTrainedModel",
"TFLongformerSelfAttention",
]
if TYPE_CHECKING:
from .configuration_longformer import (
LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
LongformerConfig,
LongformerOnnxConfig,
)
from .tokenization_longformer import LongformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_longformer_fast import LongformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longformer import (
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
LongformerForMaskedLM,
LongformerForMultipleChoice,
LongformerForQuestionAnswering,
LongformerForSequenceClassification,
LongformerForTokenClassification,
LongformerModel,
LongformerPreTrainedModel,
LongformerSelfAttention,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_longformer import (
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLongformerForMaskedLM,
TFLongformerForMultipleChoice,
TFLongformerForQuestionAnswering,
TFLongformerForSequenceClassification,
TFLongformerForTokenClassification,
TFLongformerModel,
TFLongformerPreTrainedModel,
TFLongformerSelfAttention,
)
else:
import sys
_UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 3 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCAmelCase : Tuple = logging.get_logger(__name__)
_UpperCAmelCase : Union[str, Any] = {
"facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json",
}
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Dict = "data2vec-text"
def __init__( self , A_=30_522 , A_=768 , A_=12 , A_=12 , A_=3_072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ) -> Any:
"""simple docstring"""
super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ )
UpperCamelCase = vocab_size
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = hidden_act
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = max_position_embeddings
UpperCamelCase = type_vocab_size
UpperCamelCase = initializer_range
UpperCamelCase = layer_norm_eps
UpperCamelCase = position_embedding_type
UpperCamelCase = use_cache
UpperCamelCase = classifier_dropout
class lowercase ( _SCREAMING_SNAKE_CASE ):
@property
def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 3 | 1 |
_UpperCAmelCase : Optional[Any] = {
"A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.",
"H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.",
"O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-",
"V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----",
"2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...",
"8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.",
":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.",
"?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-",
"(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/"
} # Exclamation mark is not in ITU-R recommendation
# fmt: on
_UpperCAmelCase : Union[str, Any] = {value: key for key, value in MORSE_CODE_DICT.items()}
def A ( lowercase ) -> str:
'''simple docstring'''
return " ".join(MORSE_CODE_DICT[char] for char in message.upper() )
def A ( lowercase ) -> str:
'''simple docstring'''
return "".join(REVERSE_DICT[char] for char in message.split() )
def A ( ) -> None:
'''simple docstring'''
UpperCamelCase = 'Morse code here!'
print(lowercase )
UpperCamelCase = encrypt(lowercase )
print(lowercase )
UpperCamelCase = decrypt(lowercase )
print(lowercase )
if __name__ == "__main__":
main()
| 3 |
from random import shuffle
import tensorflow as tf
from numpy import array
def A ( lowercase , lowercase ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase = int(lowercase )
assert noofclusters < len(lowercase )
# Find out the dimensionality
UpperCamelCase = len(vectors[0] )
# Will help select random centroids from among the available vectors
UpperCamelCase = list(range(len(lowercase ) ) )
shuffle(lowercase )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
UpperCamelCase = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
UpperCamelCase = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
UpperCamelCase = [
tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase )
]
##These nodes will assign the centroid Variables the appropriate
##values
UpperCamelCase = tf.placeholder('float64' , [dim] )
UpperCamelCase = []
for centroid in centroids:
cent_assigns.append(tf.assign(lowercase , lowercase ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
UpperCamelCase = [tf.Variable(0 ) for i in range(len(lowercase ) )]
##These nodes will assign an assignment Variable the appropriate
##value
UpperCamelCase = tf.placeholder('int32' )
UpperCamelCase = []
for assignment in assignments:
cluster_assigns.append(tf.assign(lowercase , lowercase ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
UpperCamelCase = tf.placeholder('float' , [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
UpperCamelCase = tf.reduce_mean(lowercase , 0 )
##Node for computing Euclidean distances
# Placeholders for input
UpperCamelCase = tf.placeholder('float' , [dim] )
UpperCamelCase = tf.placeholder('float' , [dim] )
UpperCamelCase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase , lowercase ) , 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
UpperCamelCase = tf.placeholder('float' , [noofclusters] )
UpperCamelCase = tf.argmin(lowercase , 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
UpperCamelCase = tf.initialize_all_variables()
# Initialize all variables
sess.run(lowercase )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
UpperCamelCase = 100
for _ in range(lowercase ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(lowercase ) ):
UpperCamelCase = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
UpperCamelCase = [
sess.run(lowercase , feed_dict={va: vect, va: sess.run(lowercase )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
UpperCamelCase = sess.run(
lowercase , feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(lowercase ):
# Collect all the vectors assigned to this cluster
UpperCamelCase = [
vectors[i]
for i in range(len(lowercase ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
UpperCamelCase = sess.run(
lowercase , feed_dict={mean_input: array(lowercase )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} )
# Return centroids and assignments
UpperCamelCase = sess.run(lowercase )
UpperCamelCase = sess.run(lowercase )
return centroids, assignments
| 3 | 1 |
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ = "▁" , A_ = True , A_ = "<unk>" , A_ = "</s>" , A_ = "<pad>" , ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = {
'pad': {'id': 0, 'token': pad_token},
'eos': {'id': 1, 'token': eos_token},
'unk': {'id': 2, 'token': unk_token},
}
UpperCamelCase = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
UpperCamelCase = token_dict['token']
UpperCamelCase = Tokenizer(Unigram() )
UpperCamelCase = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(' {2,}' ) , ' ' ),
normalizers.Lowercase(),
] )
UpperCamelCase = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=A_ , add_prefix_space=A_ ),
pre_tokenizers.Digits(individual_digits=A_ ),
pre_tokenizers.Punctuation(),
] )
UpperCamelCase = decoders.Metaspace(replacement=A_ , add_prefix_space=A_ )
UpperCamelCase = TemplateProcessing(
single=F'''$A {self.special_tokens['eos']['token']}''' , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , )
UpperCamelCase = {
'model': 'SentencePieceUnigram',
'replacement': replacement,
'add_prefix_space': add_prefix_space,
}
super().__init__(A_ , A_ )
def __UpperCamelCase ( self , A_ , A_ = 8_000 , A_ = True , ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = trainers.UnigramTrainer(
vocab_size=A_ , special_tokens=self.special_tokens_list , show_progress=A_ , )
if isinstance(A_ , A_ ):
UpperCamelCase = [files]
self._tokenizer.train(A_ , trainer=A_ )
self.add_unk_id()
def __UpperCamelCase ( self , A_ , A_ = 8_000 , A_ = True , ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = trainers.UnigramTrainer(
vocab_size=A_ , special_tokens=self.special_tokens_list , show_progress=A_ , )
self._tokenizer.train_from_iterator(A_ , trainer=A_ )
self.add_unk_id()
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = json.loads(self._tokenizer.to_str() )
UpperCamelCase = self.special_tokens['unk']['id']
UpperCamelCase = Tokenizer.from_str(json.dumps(A_ ) )
| 3 |
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_UpperCAmelCase : Tuple = _symbol_database.Default()
_UpperCAmelCase : List[Any] = _descriptor_pool.Default().AddSerializedFile(
b"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03"
)
_UpperCAmelCase : int = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
_UpperCAmelCase : int = None
_UpperCAmelCase : List[str] = b"H\003"
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
_UpperCAmelCase : Optional[Any] = 45
_UpperCAmelCase : Any = 1_581
_UpperCAmelCase : Tuple = 1_517
_UpperCAmelCase : List[str] = 1_570
_UpperCAmelCase : int = 1_584
_UpperCAmelCase : List[Any] = 1_793
_UpperCAmelCase : Optional[int] = 1_795
_UpperCAmelCase : Any = 1_916
_UpperCAmelCase : Tuple = 1_864
_UpperCAmelCase : List[Any] = 1_905
_UpperCAmelCase : Union[str, Any] = 1_919
_UpperCAmelCase : str = 2_429
_UpperCAmelCase : Any = 2_208
_UpperCAmelCase : Dict = 2_418
_UpperCAmelCase : Optional[Any] = 2_323
_UpperCAmelCase : Tuple = 2_407
# @@protoc_insertion_point(module_scope)
| 3 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCAmelCase : Optional[int] = logging.get_logger(__name__)
_UpperCAmelCase : Union[str, Any] = {
"uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json",
}
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Union[str, Any] = "mra"
def __init__( self , A_=50_265 , A_=768 , A_=12 , A_=12 , A_=3_072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=1 , A_=0.02 , A_=1e-5 , A_="absolute" , A_=4 , A_="full" , A_=0 , A_=0 , A_=1 , A_=0 , A_=2 , **A_ , ) -> Any:
"""simple docstring"""
super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ )
UpperCamelCase = vocab_size
UpperCamelCase = max_position_embeddings
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = initializer_range
UpperCamelCase = type_vocab_size
UpperCamelCase = layer_norm_eps
UpperCamelCase = position_embedding_type
UpperCamelCase = block_per_row
UpperCamelCase = approx_mode
UpperCamelCase = initial_prior_first_n_blocks
UpperCamelCase = initial_prior_diagonal_n_blocks
| 3 |
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class lowercase ( unittest.TestCase ):
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
# A mock response for an HTTP head request to emulate server down
UpperCamelCase = mock.Mock()
UpperCamelCase = 500
UpperCamelCase = {}
UpperCamelCase = HTTPError
UpperCamelCase = {}
# Download this model to make sure it's in the cache.
UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head:
UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
# A mock response for an HTTP head request to emulate server down
UpperCamelCase = mock.Mock()
UpperCamelCase = 500
UpperCamelCase = {}
UpperCamelCase = HTTPError
UpperCamelCase = {}
# Download this model to make sure it's in the cache.
UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head:
UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' )
# This check we did call the fake head request
mock_head.assert_called()
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
# This test is for deprecated behavior and can be removed in v5
try:
UpperCamelCase = tempfile.mktemp()
with open(A_ , 'wb' ) as f:
http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , A_ )
UpperCamelCase = AlbertTokenizer.from_pretrained(A_ )
finally:
os.remove(A_ )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile('tokenizer.json' ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open('tokenizer.json' , 'wb' ) as f:
http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , A_ )
UpperCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size , 1_000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove('tokenizer.json' )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
# This test is for deprecated behavior and can be removed in v5
UpperCamelCase = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' )
@is_staging_test
class lowercase ( unittest.TestCase ):
__lowercase : int = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def __UpperCamelCase ( cls ) -> Tuple:
"""simple docstring"""
UpperCamelCase = TOKEN
HfFolder.save_token(A_ )
@classmethod
def __UpperCamelCase ( cls ) -> Optional[int]:
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='test-tokenizer' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' )
except HTTPError:
pass
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase = os.path.join(A_ , 'vocab.txt' )
with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCamelCase = BertTokenizer(A_ )
tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token )
UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id='test-tokenizer' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(A_ , repo_id='test-tokenizer' , push_to_hub=A_ , use_auth_token=self._token )
UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase = os.path.join(A_ , 'vocab.txt' )
with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCamelCase = BertTokenizer(A_ )
tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token )
UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
A_ , repo_id='valid_org/test-tokenizer-org' , push_to_hub=A_ , use_auth_token=self._token )
UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
@require_tokenizers
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase = os.path.join(A_ , 'vocab.txt' )
with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCamelCase = CustomTokenizer(A_ )
# No fast custom tokenizer
tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token )
UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase = os.path.join(A_ , 'vocab.txt' )
with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCamelCase = BertTokenizerFast.from_pretrained(A_ )
bert_tokenizer.save_pretrained(A_ )
UpperCamelCase = CustomTokenizerFast.from_pretrained(A_ )
tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token )
UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' )
UpperCamelCase = AutoTokenizer.from_pretrained(
F'''{USER}/test-dynamic-tokenizer''' , use_fast=A_ , trust_remote_code=A_ )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' )
class lowercase ( unittest.TestCase ):
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('Hello 友達' )
self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} )
trie.add('Hello' )
trie.data
self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} )
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase = Trie()
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] )
trie.add('[CLS]' )
trie.add('extra_id_1' )
trie.add('extra_id_100' )
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] )
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('A' )
self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] )
self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('TOKEN]' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('A' )
trie.add('P' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('AB' )
trie.add('B' )
trie.add('C' )
self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('ABC' )
trie.add('B' )
trie.add('CD' )
self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
# Even if the offsets are wrong, we necessarily output correct string
# parts.
UpperCamelCase = Trie()
UpperCamelCase = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] )
self.assertEqual(A_ , ['AB', 'C'] )
| 3 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_UpperCAmelCase : Any = {
"configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"],
"convert_funnel_original_tf_checkpoint_to_pytorch": [],
"tokenization_funnel": ["FunnelTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Union[str, Any] = ["FunnelTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Optional[int] = [
"FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
"FunnelBaseModel",
"FunnelForMaskedLM",
"FunnelForMultipleChoice",
"FunnelForPreTraining",
"FunnelForQuestionAnswering",
"FunnelForSequenceClassification",
"FunnelForTokenClassification",
"FunnelModel",
"FunnelPreTrainedModel",
"load_tf_weights_in_funnel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : int = [
"TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFFunnelBaseModel",
"TFFunnelForMaskedLM",
"TFFunnelForMultipleChoice",
"TFFunnelForPreTraining",
"TFFunnelForQuestionAnswering",
"TFFunnelForSequenceClassification",
"TFFunnelForTokenClassification",
"TFFunnelModel",
"TFFunnelPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
from .tokenization_funnel import FunnelTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_funnel_fast import FunnelTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_funnel import (
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
FunnelBaseModel,
FunnelForMaskedLM,
FunnelForMultipleChoice,
FunnelForPreTraining,
FunnelForQuestionAnswering,
FunnelForSequenceClassification,
FunnelForTokenClassification,
FunnelModel,
FunnelPreTrainedModel,
load_tf_weights_in_funnel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_funnel import (
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
TFFunnelPreTrainedModel,
)
else:
import sys
_UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 3 |
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def A ( lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
assert isinstance(lowercase , lowercase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def A ( lowercase , lowercase , lowercase ) -> Tuple:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def A ( lowercase , lowercase , lowercase ) -> Tuple:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = features.copy() if features else default_expected_features
UpperCamelCase = (
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCamelCase = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def A ( lowercase , lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type' , [str, list] )
def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
if issubclass(lowercase , lowercase ):
UpperCamelCase = parquet_path
elif issubclass(lowercase , lowercase ):
UpperCamelCase = [parquet_path]
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
def A ( lowercase , lowercase , lowercase=("train",) ) -> Tuple:
'''simple docstring'''
assert isinstance(lowercase , lowercase )
for split in splits:
UpperCamelCase = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def A ( lowercase , lowercase , lowercase ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCamelCase = ParquetDatasetReader(
{'train': parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read()
_check_parquet_datasetdict(lowercase , lowercase )
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def A ( lowercase , lowercase , lowercase ) -> List[Any]:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = features.copy() if features else default_expected_features
UpperCamelCase = (
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCamelCase = ParquetDatasetReader({'train': parquet_path} , features=lowercase , cache_dir=lowercase ).read()
_check_parquet_datasetdict(lowercase , lowercase )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
if split:
UpperCamelCase = {split: parquet_path}
else:
UpperCamelCase = 'train'
UpperCamelCase = {'train': parquet_path, 'test': parquet_path}
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read()
_check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def A ( lowercase , lowercase ) -> List[Any]:
'''simple docstring'''
UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' )
assert writer.write() > 0
UpperCamelCase = pq.ParquetFile(tmp_path / 'foo.parquet' )
UpperCamelCase = pf.read()
assert dataset.data.table == output_table
def A ( lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = str(shared_datadir / 'test_image_rgb.jpg' )
UpperCamelCase = {'image': [image_path]}
UpperCamelCase = Features({'image': Image()} )
UpperCamelCase = Dataset.from_dict(lowercase , features=lowercase )
UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' )
assert writer.write() > 0
UpperCamelCase = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) )
assert dataset.features == reloaded_dataset.features
UpperCamelCase = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=lowercase ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
'feature, expected' , [
(Features({'foo': Value('int32' )} ), None),
(Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def A ( lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
assert get_writer_batch_size(lowercase ) == expected
| 3 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCAmelCase : Tuple = logging.get_logger(__name__)
_UpperCAmelCase : Union[str, Any] = {
"facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json",
}
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Dict = "data2vec-text"
def __init__( self , A_=30_522 , A_=768 , A_=12 , A_=12 , A_=3_072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ) -> Any:
"""simple docstring"""
super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ )
UpperCamelCase = vocab_size
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = hidden_act
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = max_position_embeddings
UpperCamelCase = type_vocab_size
UpperCamelCase = initializer_range
UpperCamelCase = layer_norm_eps
UpperCamelCase = position_embedding_type
UpperCamelCase = use_cache
UpperCamelCase = classifier_dropout
class lowercase ( _SCREAMING_SNAKE_CASE ):
@property
def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 3 |
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class lowercase ( unittest.TestCase ):
def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , ) -> Tuple:
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = num_channels
UpperCamelCase = image_size
UpperCamelCase = min_resolution
UpperCamelCase = max_resolution
UpperCamelCase = do_resize
UpperCamelCase = size if size is not None else {'height': 18, 'width': 20}
UpperCamelCase = do_thumbnail
UpperCamelCase = do_align_axis
UpperCamelCase = do_pad
UpperCamelCase = do_normalize
UpperCamelCase = image_mean
UpperCamelCase = image_std
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
__lowercase : Optional[int] = DonutImageProcessor if is_vision_available() else None
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = DonutImageProcessingTester(self )
@property
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A_ , 'do_resize' ) )
self.assertTrue(hasattr(A_ , 'size' ) )
self.assertTrue(hasattr(A_ , 'do_thumbnail' ) )
self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) )
self.assertTrue(hasattr(A_ , 'do_pad' ) )
self.assertTrue(hasattr(A_ , 'do_normalize' ) )
self.assertTrue(hasattr(A_ , 'image_mean' ) )
self.assertTrue(hasattr(A_ , 'image_std' ) )
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 20} )
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
# Previous config had dimensions in (width, height) order
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {'height': 84, 'width': 42} )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
pass
@is_flaky()
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
# Initialize image_processing
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , Image.Image )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
# Initialize image_processing
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , np.ndarray )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
# Initialize image_processing
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , torch.Tensor )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
| 3 | 1 |
import math
import qiskit
def A ( lowercase = 1 , lowercase = 1 , lowercase = 1 ) -> qiskit.result.counts.Counts:
'''simple docstring'''
if (
isinstance(lowercase , lowercase )
or isinstance(lowercase , lowercase )
or isinstance(lowercase , lowercase )
):
raise TypeError('inputs must be integers.' )
if (input_a < 0) or (input_a < 0) or (carry_in < 0):
raise ValueError('inputs must be positive.' )
if (
(math.floor(lowercase ) != input_a)
or (math.floor(lowercase ) != input_a)
or (math.floor(lowercase ) != carry_in)
):
raise ValueError('inputs must be exact integers.' )
if (input_a > 2) or (input_a > 2) or (carry_in > 2):
raise ValueError('inputs must be less or equal to 2.' )
# build registers
UpperCamelCase = qiskit.QuantumRegister(4 , 'qr' )
UpperCamelCase = qiskit.ClassicalRegister(2 , 'cr' )
# list the entries
UpperCamelCase = [input_a, input_a, carry_in]
UpperCamelCase = qiskit.QuantumCircuit(lowercase , lowercase )
for i in range(0 , 3 ):
if entry[i] == 2:
quantum_circuit.h(lowercase ) # for hadamard entries
elif entry[i] == 1:
quantum_circuit.x(lowercase ) # for 1 entries
elif entry[i] == 0:
quantum_circuit.i(lowercase ) # for 0 entries
# build the circuit
quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate
quantum_circuit.cx(0 , 1 )
quantum_circuit.ccx(1 , 2 , 3 )
quantum_circuit.cx(1 , 2 )
quantum_circuit.cx(0 , 1 )
quantum_circuit.measure([2, 3] , lowercase ) # measure the last two qbits
UpperCamelCase = qiskit.Aer.get_backend('aer_simulator' )
UpperCamelCase = qiskit.execute(lowercase , lowercase , shots=1_000 )
return job.result().get_counts(lowercase )
if __name__ == "__main__":
print(F'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
| 3 |
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_UpperCAmelCase : Dict = logging.get_logger(__name__)
_UpperCAmelCase : Optional[Any] = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
_UpperCAmelCase : str = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
_UpperCAmelCase : List[str] = {"facebook/blenderbot_small-90M": 512}
def A ( lowercase ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase = set()
UpperCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCamelCase = char
UpperCamelCase = set(lowercase )
return pairs
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Optional[Any] = VOCAB_FILES_NAMES
__lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP
__lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase : Any = ["input_ids", "attention_mask"]
def __init__( self , A_ , A_ , A_="__start__" , A_="__end__" , A_="__unk__" , A_="__null__" , **A_ , ) -> List[Any]:
"""simple docstring"""
super().__init__(unk_token=A_ , bos_token=A_ , eos_token=A_ , pad_token=A_ , **A_ )
with open(A_ , encoding='utf-8' ) as vocab_handle:
UpperCamelCase = json.load(A_ )
UpperCamelCase = {v: k for k, v in self.encoder.items()}
with open(A_ , encoding='utf-8' ) as merges_handle:
UpperCamelCase = merges_handle.read().split('\n' )[1:-1]
UpperCamelCase = [tuple(merge.split() ) for merge in merges]
UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) )
UpperCamelCase = {}
@property
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
return len(self.encoder )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def __UpperCamelCase ( self , A_ ) -> str:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
UpperCamelCase = re.sub('([.,!?()])' , r' \1' , A_ )
UpperCamelCase = re.sub('(\')' , r' \1 ' , A_ )
UpperCamelCase = re.sub(r'\s{2,}' , ' ' , A_ )
if "\n" in token:
UpperCamelCase = token.replace('\n' , ' __newln__' )
UpperCamelCase = token.split(' ' )
UpperCamelCase = []
for token in tokens:
if not len(A_ ):
continue
UpperCamelCase = token.lower()
UpperCamelCase = tuple(A_ )
UpperCamelCase = tuple(list(word[:-1] ) + [word[-1] + '</w>'] )
UpperCamelCase = get_pairs(A_ )
if not pairs:
words.append(A_ )
continue
while True:
UpperCamelCase = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
UpperCamelCase , UpperCamelCase = bigram
UpperCamelCase = []
UpperCamelCase = 0
while i < len(A_ ):
try:
UpperCamelCase = word.index(A_ , A_ )
new_word.extend(word[i:j] )
UpperCamelCase = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCamelCase = tuple(A_ )
UpperCamelCase = new_word
if len(A_ ) == 1:
break
else:
UpperCamelCase = get_pairs(A_ )
UpperCamelCase = '@@ '.join(A_ )
UpperCamelCase = word[:-4]
UpperCamelCase = word
words.append(A_ )
return " ".join(A_ )
def __UpperCamelCase ( self , A_ ) -> List[str]:
"""simple docstring"""
UpperCamelCase = []
UpperCamelCase = re.findall(r'\S+\n?' , A_ )
for token in words:
split_tokens.extend(list(self.bpe(A_ ).split(' ' ) ) )
return split_tokens
def __UpperCamelCase ( self , A_ ) -> int:
"""simple docstring"""
UpperCamelCase = token.lower()
return self.encoder.get(A_ , self.encoder.get(self.unk_token ) )
def __UpperCamelCase ( self , A_ ) -> str:
"""simple docstring"""
return self.decoder.get(A_ , self.unk_token )
def __UpperCamelCase ( self , A_ ) -> str:
"""simple docstring"""
UpperCamelCase = ' '.join(A_ ).replace('@@ ' , '' ).strip()
return out_string
def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(A_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCamelCase = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
UpperCamelCase = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(A_ , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' )
UpperCamelCase = 0
with open(A_ , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
' Please check that the tokenizer is not corrupted!' )
UpperCamelCase = token_index
writer.write(' '.join(A_ ) + '\n' )
index += 1
return vocab_file, merge_file
| 3 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__)
def A ( lowercase , lowercase=False , lowercase=False , lowercase=False ) -> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append(
(f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') )
# embeddings
rename_keys.extend(
[
# text embeddings
('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'),
(
'text_embeddings.position_embeddings.weight',
'vilt.embeddings.text_embeddings.position_embeddings.weight',
),
('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'),
(
'text_embeddings.token_type_embeddings.weight',
'vilt.embeddings.text_embeddings.token_type_embeddings.weight',
),
('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'),
('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'),
# patch embeddings
('transformer.cls_token', 'vilt.embeddings.cls_token'),
('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'),
('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'),
('transformer.pos_embed', 'vilt.embeddings.position_embeddings'),
# token type embeddings
('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'),
] )
# final layernorm + pooler
rename_keys.extend(
[
('transformer.norm.weight', 'vilt.layernorm.weight'),
('transformer.norm.bias', 'vilt.layernorm.bias'),
('pooler.dense.weight', 'vilt.pooler.dense.weight'),
('pooler.dense.bias', 'vilt.pooler.dense.bias'),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
('vqa_classifier.0.weight', 'classifier.0.weight'),
('vqa_classifier.0.bias', 'classifier.0.bias'),
('vqa_classifier.1.weight', 'classifier.1.weight'),
('vqa_classifier.1.bias', 'classifier.1.bias'),
('vqa_classifier.3.weight', 'classifier.3.weight'),
('vqa_classifier.3.bias', 'classifier.3.bias'),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
('nlvr2_classifier.0.weight', 'classifier.0.weight'),
('nlvr2_classifier.0.bias', 'classifier.0.bias'),
('nlvr2_classifier.1.weight', 'classifier.1.weight'),
('nlvr2_classifier.1.bias', 'classifier.1.bias'),
('nlvr2_classifier.3.weight', 'classifier.3.weight'),
('nlvr2_classifier.3.bias', 'classifier.3.bias'),
] )
else:
pass
return rename_keys
def A ( lowercase , lowercase ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
UpperCamelCase = 'vilt.'
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCamelCase = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' )
UpperCamelCase = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
UpperCamelCase = in_proj_weight[
: config.hidden_size, :
]
UpperCamelCase = in_proj_bias[: config.hidden_size]
UpperCamelCase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCamelCase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCamelCase = in_proj_weight[
-config.hidden_size :, :
]
UpperCamelCase = in_proj_bias[-config.hidden_size :]
def A ( lowercase ) -> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = ['head.weight', 'head.bias']
for k in ignore_keys:
state_dict.pop(lowercase , lowercase )
def A ( lowercase , lowercase , lowercase ) -> Any:
'''simple docstring'''
UpperCamelCase = dct.pop(lowercase )
UpperCamelCase = val
@torch.no_grad()
def A ( lowercase , lowercase ) -> Tuple:
'''simple docstring'''
UpperCamelCase = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=lowercase )
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
if "vqa" in checkpoint_url:
UpperCamelCase = True
UpperCamelCase = 3_129
UpperCamelCase = 'huggingface/label-files'
UpperCamelCase = 'vqa2-id2label.json'
UpperCamelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type='dataset' ) , 'r' ) )
UpperCamelCase = {int(lowercase ): v for k, v in idalabel.items()}
UpperCamelCase = idalabel
UpperCamelCase = {v: k for k, v in idalabel.items()}
UpperCamelCase = ViltForQuestionAnswering(lowercase )
elif "nlvr" in checkpoint_url:
UpperCamelCase = True
UpperCamelCase = 2
UpperCamelCase = {0: 'False', 1: 'True'}
UpperCamelCase = {v: k for k, v in config.idalabel.items()}
UpperCamelCase = 3
UpperCamelCase = ViltForImagesAndTextClassification(lowercase )
elif "irtr" in checkpoint_url:
UpperCamelCase = True
UpperCamelCase = ViltForImageAndTextRetrieval(lowercase )
elif "mlm_itm" in checkpoint_url:
UpperCamelCase = True
UpperCamelCase = ViltForMaskedLM(lowercase )
else:
raise ValueError('Unknown model type' )
# load state_dict of original model, remove and rename some keys
UpperCamelCase = torch.hub.load_state_dict_from_url(lowercase , map_location='cpu' )['state_dict']
UpperCamelCase = create_rename_keys(lowercase , lowercase , lowercase , lowercase )
for src, dest in rename_keys:
rename_key(lowercase , lowercase , lowercase )
read_in_q_k_v(lowercase , lowercase )
if mlm_model or irtr_model:
UpperCamelCase = ['itm_score.fc.weight', 'itm_score.fc.bias']
for k in ignore_keys:
state_dict.pop(lowercase , lowercase )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
UpperCamelCase , UpperCamelCase = model.load_state_dict(lowercase , strict=lowercase )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(lowercase )
# Define processor
UpperCamelCase = ViltImageProcessor(size=384 )
UpperCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' )
UpperCamelCase = ViltProcessor(lowercase , lowercase )
# Forward pass on example inputs (image + text)
if nlvr_model:
UpperCamelCase = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowercase ).raw )
UpperCamelCase = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowercase ).raw )
UpperCamelCase = (
'The left image contains twice the number of dogs as the right image, and at least two dogs in total are'
' standing.'
)
UpperCamelCase = processor(lowercase , lowercase , return_tensors='pt' )
UpperCamelCase = processor(lowercase , lowercase , return_tensors='pt' )
UpperCamelCase = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
UpperCamelCase = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=lowercase ).raw )
if mlm_model:
UpperCamelCase = 'a bunch of [MASK] laying on a [MASK].'
else:
UpperCamelCase = 'How many cats are there?'
UpperCamelCase = processor(lowercase , lowercase , return_tensors='pt' )
UpperCamelCase = model(**lowercase )
# Verify outputs
if mlm_model:
UpperCamelCase = torch.Size([1, 11, 30_522] )
UpperCamelCase = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , lowercase , atol=1e-4 )
# verify masked token prediction equals "cats"
UpperCamelCase = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
UpperCamelCase = torch.Size([1, 3_129] )
UpperCamelCase = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] )
assert torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , lowercase , atol=1e-4 )
# verify vqa prediction equals "2"
UpperCamelCase = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
UpperCamelCase = torch.Size([1, 2] )
UpperCamelCase = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] )
assert torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4 )
assert outputs.logits.shape == expected_shape
Path(lowercase ).mkdir(exist_ok=lowercase )
print(f'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowercase )
processor.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt",
type=str,
help="URL of the checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
_UpperCAmelCase : Optional[int] = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 3 |
def A ( lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = int(lowercase )
if decimal in (0, 1): # Exit cases for the recursion
return str(lowercase )
UpperCamelCase , UpperCamelCase = divmod(lowercase , 2 )
return binary_recursive(lowercase ) + str(lowercase )
def A ( lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = str(lowercase ).strip()
if not number:
raise ValueError('No input value was provided' )
UpperCamelCase = '-' if number.startswith('-' ) else ''
UpperCamelCase = number.lstrip('-' )
if not number.isnumeric():
raise ValueError('Input value is not an integer' )
return f'''{negative}0b{binary_recursive(int(lowercase ) )}'''
if __name__ == "__main__":
from doctest import testmod
testmod()
| 3 | 1 |
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ , A_ , A_ ) -> int:
"""simple docstring"""
UpperCamelCase = dataset
UpperCamelCase = process
UpperCamelCase = params
def __len__( self ) -> int:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self , A_ ) -> str:
"""simple docstring"""
UpperCamelCase = self.dataset[i]
UpperCamelCase = self.process(A_ , **self.params )
return processed
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ , A_ , A_ , A_=None ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = loader
UpperCamelCase = infer
UpperCamelCase = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
UpperCamelCase = None
UpperCamelCase = loader_batch_size
# Internal bookkeeping
UpperCamelCase = None
UpperCamelCase = None
def __len__( self ) -> int:
"""simple docstring"""
return len(self.loader )
def __iter__( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = iter(self.loader )
return self
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
UpperCamelCase = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
UpperCamelCase = {}
for k, element in self._loader_batch_data.items():
if isinstance(A_ , A_ ):
# Convert ModelOutput to tuple first
UpperCamelCase = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
UpperCamelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
UpperCamelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(A_ , A_ ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
UpperCamelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
UpperCamelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
UpperCamelCase = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
UpperCamelCase = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
UpperCamelCase = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
UpperCamelCase = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
UpperCamelCase = self._loader_batch_data.__class__(A_ )
self._loader_batch_index += 1
return result
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
UpperCamelCase = next(self.iterator )
UpperCamelCase = self.infer(A_ , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(A_ , torch.Tensor ):
UpperCamelCase = processed
else:
UpperCamelCase = list(processed.keys() )[0]
UpperCamelCase = processed[key]
if isinstance(A_ , A_ ):
UpperCamelCase = len(A_ )
else:
UpperCamelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
UpperCamelCase = observed_batch_size
# Setting internal index to unwrap the batch
UpperCamelCase = processed
UpperCamelCase = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ , A_ , A_ , A_=None ) -> Optional[Any]:
"""simple docstring"""
super().__init__(A_ , A_ , A_ )
def __iter__( self ) -> str:
"""simple docstring"""
UpperCamelCase = iter(self.loader )
UpperCamelCase = None
return self
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
if self.subiterator is None:
UpperCamelCase = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
UpperCamelCase = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
UpperCamelCase = self.infer(next(self.iterator ) , **self.params )
UpperCamelCase = next(self.subiterator )
return processed
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __iter__( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = iter(self.loader )
return self
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
# Extremely similar to PipelineIterator in its unpacking mechanism
# BUT, we have an extra required item which is the presence of `is_last`
# That is because everything is flattened by `PipelineChunkIterator` we
# need to keep track of how to regroup here in the original `process`
# boundaries so that `process` and `postprocess` see the same data.
# This iterator accumulates items (possibly while unbatching) until it
# its a `is_last` and then just passes it on to the caller.
UpperCamelCase = False
UpperCamelCase = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
UpperCamelCase = self.loader_batch_item()
UpperCamelCase = item.pop('is_last' )
accumulator.append(A_ )
if is_last:
return accumulator
while not is_last:
UpperCamelCase = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(A_ , torch.Tensor ):
UpperCamelCase = processed
else:
UpperCamelCase = list(processed.keys() )[0]
UpperCamelCase = processed[key]
if isinstance(A_ , A_ ):
UpperCamelCase = len(A_ )
else:
UpperCamelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
UpperCamelCase = observed_batch_size
UpperCamelCase = processed
UpperCamelCase = 0
while self._loader_batch_index < self.loader_batch_size:
UpperCamelCase = self.loader_batch_item()
UpperCamelCase = item.pop('is_last' )
accumulator.append(A_ )
if is_last:
return accumulator
else:
UpperCamelCase = processed
UpperCamelCase = item.pop('is_last' )
accumulator.append(A_ )
return accumulator
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ , A_ ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = dataset
UpperCamelCase = key
def __len__( self ) -> Union[str, Any]:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self , A_ ) -> Optional[Any]:
"""simple docstring"""
return self.dataset[i][self.key]
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ , A_ , A_ ) -> str:
"""simple docstring"""
UpperCamelCase = dataset
UpperCamelCase = keya
UpperCamelCase = keya
def __len__( self ) -> Any:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self , A_ ) -> int:
"""simple docstring"""
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 3 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_UpperCAmelCase : Tuple = logging.get_logger(__name__)
_UpperCAmelCase : Tuple = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.linear_k": "encoder.layers.*.self_attn.linear_k",
"self_attn.linear_v": "encoder.layers.*.self_attn.linear_v",
"self_attn.linear_q": "encoder.layers.*.self_attn.linear_q",
"self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u",
"self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v",
"self_attn.linear_out": "encoder.layers.*.self_attn.linear_out",
"self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos",
"self_attn.rotary_emb": "encoder.embed_positions",
"self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm",
"conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1",
"conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2",
"conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv",
"conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm",
"conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm",
"ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense",
"ffn1.w_2": "encoder.layers.*.ffn1.output_dense",
"ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm",
"ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense",
"ffn2.w_2": "encoder.layers.*.ffn2.output_dense",
"ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
_UpperCAmelCase : Any = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict:
'''simple docstring'''
for attribute in key.split('.' ):
UpperCamelCase = getattr(lowercase , lowercase )
if weight_type is not None:
UpperCamelCase = getattr(lowercase , lowercase ).shape
else:
UpperCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}''' )
if weight_type == "weight":
UpperCamelCase = value
elif weight_type == "weight_g":
UpperCamelCase = value
elif weight_type == "weight_v":
UpperCamelCase = value
elif weight_type == "bias":
UpperCamelCase = value
elif weight_type == "running_mean":
UpperCamelCase = value
elif weight_type == "running_var":
UpperCamelCase = value
elif weight_type == "num_batches_tracked":
UpperCamelCase = value
elif weight_type == "inv_freq":
UpperCamelCase = value
else:
UpperCamelCase = value
logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def A ( lowercase , lowercase , lowercase ) -> Any:
'''simple docstring'''
UpperCamelCase = []
UpperCamelCase = fairseq_model.state_dict()
UpperCamelCase = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
UpperCamelCase = False
if "conv_layers" in name:
load_conv_layer(
lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == 'group' , )
UpperCamelCase = True
else:
for key, mapped_key in MAPPING.items():
UpperCamelCase = 'wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
UpperCamelCase = True
if "*" in mapped_key:
UpperCamelCase = name.split(lowercase )[0].split('.' )[-2]
UpperCamelCase = mapped_key.replace('*' , lowercase )
if "pos_bias_u" in name:
UpperCamelCase = None
elif "pos_bias_v" in name:
UpperCamelCase = None
elif "weight_g" in name:
UpperCamelCase = 'weight_g'
elif "weight_v" in name:
UpperCamelCase = 'weight_v'
elif "bias" in name:
UpperCamelCase = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCamelCase = 'weight'
elif "running_mean" in name:
UpperCamelCase = 'running_mean'
elif "inv_freq" in name:
UpperCamelCase = 'inv_freq'
elif "running_var" in name:
UpperCamelCase = 'running_var'
elif "num_batches_tracked" in name:
UpperCamelCase = 'num_batches_tracked'
else:
UpperCamelCase = None
set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase )
continue
if not is_used:
unused_weights.append(lowercase )
logger.warning(f'''Unused weights: {unused_weights}''' )
def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = full_name.split('conv_layers.' )[-1]
UpperCamelCase = name.split('.' )
UpperCamelCase = int(items[0] )
UpperCamelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
UpperCamelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
UpperCamelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
UpperCamelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
UpperCamelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(lowercase )
@torch.no_grad()
def A ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> int:
'''simple docstring'''
if config_path is not None:
UpperCamelCase = WavaVecaConformerConfig.from_pretrained(lowercase , hidden_act='swish' )
else:
UpperCamelCase = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
UpperCamelCase = 'rotary'
if is_finetuned:
if dict_path:
UpperCamelCase = Dictionary.load(lowercase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCamelCase = target_dict.pad_index
UpperCamelCase = target_dict.bos_index
UpperCamelCase = target_dict.eos_index
UpperCamelCase = len(target_dict.symbols )
UpperCamelCase = os.path.join(lowercase , 'vocab.json' )
if not os.path.isdir(lowercase ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowercase ) )
return
os.makedirs(lowercase , exist_ok=lowercase )
UpperCamelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCamelCase = 0
UpperCamelCase = 1
with open(lowercase , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(lowercase , lowercase )
UpperCamelCase = WavaVecaCTCTokenizer(
lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowercase , )
UpperCamelCase = True if config.feat_extract_norm == 'layer' else False
UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , )
UpperCamelCase = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase )
processor.save_pretrained(lowercase )
UpperCamelCase = WavaVecaConformerForCTC(lowercase )
else:
UpperCamelCase = WavaVecaConformerForPreTraining(lowercase )
if is_finetuned:
UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
UpperCamelCase = argparse.Namespace(task='audio_pretraining' )
UpperCamelCase = fairseq.tasks.setup_task(lowercase )
UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase )
UpperCamelCase = model[0].eval()
recursively_load_weights(lowercase , lowercase , not is_finetuned )
hf_wavavec.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
_UpperCAmelCase : Dict = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 3 | 1 |
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class lowercase :
def __init__( self , A_ , A_=100 , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=4 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=None , A_=[0, 1, 2, 3] , ) -> Tuple:
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = 100
UpperCamelCase = batch_size
UpperCamelCase = image_size
UpperCamelCase = patch_size
UpperCamelCase = num_channels
UpperCamelCase = is_training
UpperCamelCase = use_labels
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
UpperCamelCase = scope
UpperCamelCase = out_indices
UpperCamelCase = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase = (image_size // patch_size) ** 2
UpperCamelCase = num_patches + 1
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = None
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCamelCase = self.get_config()
return config, pixel_values, labels, pixel_labels
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> int:
"""simple docstring"""
UpperCamelCase = BeitModel(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = BeitForMaskedImageModeling(config=A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> str:
"""simple docstring"""
UpperCamelCase = self.type_sequence_label_size
UpperCamelCase = BeitForImageClassification(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase = 1
UpperCamelCase = BeitForImageClassification(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = self.num_labels
UpperCamelCase = BeitForSemanticSegmentation(A_ )
model.to(A_ )
model.eval()
UpperCamelCase = model(A_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
UpperCamelCase = model(A_ , labels=A_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs
UpperCamelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ):
__lowercase : str = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
__lowercase : Tuple = (
{
"feature-extraction": BeitModel,
"image-classification": BeitForImageClassification,
"image-segmentation": BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__lowercase : Any = False
__lowercase : int = False
__lowercase : List[Any] = False
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = BeitModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 )
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='BEiT does not use inputs_embeds' )
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
pass
@require_torch_multi_gpu
@unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
pass
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(A_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCamelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A_ , nn.Linear ) )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(A_ )
UpperCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , A_ )
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*A_ )
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A_ )
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*A_ )
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
if not self.model_tester.is_training:
return
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(A_ ), BeitForMaskedImageModeling]:
continue
UpperCamelCase = model_class(A_ )
model.to(A_ )
model.train()
UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ )
UpperCamelCase = model(**A_ ).loss
loss.backward()
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
UpperCamelCase = False
UpperCamelCase = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(A_ ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCamelCase = model_class(A_ )
model.gradient_checkpointing_enable()
model.to(A_ )
model.train()
UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ )
UpperCamelCase = model(**A_ ).loss
loss.backward()
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = _config_zero_init(A_ )
for model_class in self.all_model_classes:
UpperCamelCase = model_class(config=A_ )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@slow
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase = BeitModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
def A ( ) -> List[str]:
'''simple docstring'''
UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(A_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).pixel_values.to(A_ )
# prepare bool_masked_pos
UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(pixel_values=A_ , bool_masked_pos=A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 196, 8_192) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = torch.tensor(
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(A_ )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , A_ , atol=1e-2 ) )
@slow
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(A_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 1_000) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(A_ )
self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) )
UpperCamelCase = 281
self.assertEqual(logits.argmax(-1 ).item() , A_ )
@slow
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to(
A_ )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 21_841) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = torch.tensor([1.6881, -0.2787, 0.5901] ).to(A_ )
self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) )
UpperCamelCase = 2_396
self.assertEqual(logits.argmax(-1 ).item() , A_ )
@slow
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
UpperCamelCase = model.to(A_ )
UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ )
UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
UpperCamelCase = Image.open(ds[0]['file'] )
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape , A_ )
UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' )
if is_pillow_less_than_a:
UpperCamelCase = torch.tensor(
[
[[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
[[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
[[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
] , device=A_ , )
else:
UpperCamelCase = torch.tensor(
[
[[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]],
[[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]],
[[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]],
] , device=A_ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4 ) )
@slow
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
UpperCamelCase = model.to(A_ )
UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ )
UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
UpperCamelCase = Image.open(ds[0]['file'] )
UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**A_ )
UpperCamelCase = outputs.logits.detach().cpu()
UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(500, 300)] )
UpperCamelCase = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape , A_ )
UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ )
UpperCamelCase = torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape , A_ )
| 3 |
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
_UpperCAmelCase : Any = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n"
_UpperCAmelCase : str = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n"
_UpperCAmelCase : List[str] = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n"
def A ( lowercase , lowercase ) -> List[str]:
'''simple docstring'''
return float((preds == labels).mean() )
def A ( lowercase , lowercase ) -> Tuple:
'''simple docstring'''
UpperCamelCase = simple_accuracy(lowercase , lowercase )
UpperCamelCase = float(fa_score(y_true=lowercase , y_pred=lowercase ) )
return {
"accuracy": acc,
"f1": fa,
}
def A ( lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = float(pearsonr(lowercase , lowercase )[0] )
UpperCamelCase = float(spearmanr(lowercase , lowercase )[0] )
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase ( datasets.Metric ):
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
if self.config_name not in [
"sst2",
"mnli",
"mnli_mismatched",
"mnli_matched",
"cola",
"stsb",
"mrpc",
"qqp",
"qnli",
"rte",
"wnli",
"hans",
]:
raise KeyError(
'You should supply a configuration name selected in '
'["sst2", "mnli", "mnli_mismatched", "mnli_matched", '
'"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ),
'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ),
} ) , codebase_urls=[] , reference_urls=[] , format='numpy' , )
def __UpperCamelCase ( self , A_ , A_ ) -> Any:
"""simple docstring"""
if self.config_name == "cola":
return {"matthews_correlation": matthews_corrcoef(A_ , A_ )}
elif self.config_name == "stsb":
return pearson_and_spearman(A_ , A_ )
elif self.config_name in ["mrpc", "qqp"]:
return acc_and_fa(A_ , A_ )
elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]:
return {"accuracy": simple_accuracy(A_ , A_ )}
else:
raise KeyError(
'You should supply a configuration name selected in '
'["sst2", "mnli", "mnli_mismatched", "mnli_matched", '
'"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
| 3 | 1 |
from collections.abc import Generator
def A ( ) -> Generator[int, None, None]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = 0, 1
while True:
UpperCamelCase , UpperCamelCase = b, a + b
yield b
def A ( lowercase = 1_000 ) -> int:
'''simple docstring'''
UpperCamelCase = 1
UpperCamelCase = fibonacci_generator()
while len(str(next(lowercase ) ) ) < n:
answer += 1
return answer + 1
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 3 |
import importlib
import math
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Tuple, Union
import flax
import jax.numpy as jnp
from ..utils import BaseOutput
_UpperCAmelCase : str = "scheduler_config.json"
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Tuple = 1
__lowercase : int = 2
__lowercase : List[Any] = 3
__lowercase : str = 4
__lowercase : Optional[Any] = 5
@dataclass
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : jnp.ndarray
class lowercase :
__lowercase : Union[str, Any] = SCHEDULER_CONFIG_NAME
__lowercase : Dict = ["dtype"]
__lowercase : List[Any] = []
__lowercase : Dict = True
@classmethod
def __UpperCamelCase ( cls , A_ = None , A_ = None , A_=False , **A_ , ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = cls.load_config(
pretrained_model_name_or_path=A_ , subfolder=A_ , return_unused_kwargs=A_ , **A_ , )
UpperCamelCase , UpperCamelCase = cls.from_config(A_ , return_unused_kwargs=A_ , **A_ )
if hasattr(A_ , 'create_state' ) and getattr(A_ , 'has_state' , A_ ):
UpperCamelCase = scheduler.create_state()
if return_unused_kwargs:
return scheduler, state, unused_kwargs
return scheduler, state
def __UpperCamelCase ( self , A_ , A_ = False , **A_ ) -> str:
"""simple docstring"""
self.save_config(save_directory=A_ , push_to_hub=A_ , **A_ )
@property
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
return self._get_compatibles()
@classmethod
def __UpperCamelCase ( cls ) -> int:
"""simple docstring"""
UpperCamelCase = list(set([cls.__name__] + cls._compatibles ) )
UpperCamelCase = importlib.import_module(__name__.split('.' )[0] )
UpperCamelCase = [
getattr(A_ , A_ ) for c in compatible_classes_str if hasattr(A_ , A_ )
]
return compatible_classes
def A ( lowercase , lowercase ) -> jnp.ndarray:
'''simple docstring'''
assert len(lowercase ) >= x.ndim
return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(lowercase ) - x.ndim) ) , lowercase )
def A ( lowercase , lowercase=0.9_9_9 , lowercase=jnp.floataa ) -> jnp.ndarray:
'''simple docstring'''
def alpha_bar(lowercase ):
return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2
UpperCamelCase = []
for i in range(lowercase ):
UpperCamelCase = i / num_diffusion_timesteps
UpperCamelCase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(lowercase ) / alpha_bar(lowercase ) , lowercase ) )
return jnp.array(lowercase , dtype=lowercase )
@flax.struct.dataclass
class lowercase :
__lowercase : jnp.ndarray
__lowercase : jnp.ndarray
__lowercase : jnp.ndarray
@classmethod
def __UpperCamelCase ( cls , A_ ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = scheduler.config
if config.trained_betas is not None:
UpperCamelCase = jnp.asarray(config.trained_betas , dtype=scheduler.dtype )
elif config.beta_schedule == "linear":
UpperCamelCase = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype )
elif config.beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
UpperCamelCase = (
jnp.linspace(
config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype )
** 2
)
elif config.beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
UpperCamelCase = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype )
else:
raise NotImplementedError(
F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' )
UpperCamelCase = 1.0 - betas
UpperCamelCase = jnp.cumprod(A_ , axis=0 )
return cls(
alphas=A_ , betas=A_ , alphas_cumprod=A_ , )
def A ( lowercase , lowercase , lowercase , lowercase ) -> List[Any]:
'''simple docstring'''
UpperCamelCase = state.alphas_cumprod
UpperCamelCase = alphas_cumprod[timesteps] ** 0.5
UpperCamelCase = sqrt_alpha_prod.flatten()
UpperCamelCase = broadcast_to_shape_from_left(lowercase , original_samples.shape )
UpperCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5
UpperCamelCase = sqrt_one_minus_alpha_prod.flatten()
UpperCamelCase = broadcast_to_shape_from_left(lowercase , original_samples.shape )
return sqrt_alpha_prod, sqrt_one_minus_alpha_prod
def A ( lowercase , lowercase , lowercase , lowercase ) -> Dict:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = get_sqrt_alpha_prod(lowercase , lowercase , lowercase , lowercase )
UpperCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def A ( lowercase , lowercase , lowercase , lowercase ) -> int:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = get_sqrt_alpha_prod(lowercase , lowercase , lowercase , lowercase )
UpperCamelCase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
| 3 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
_UpperCAmelCase : List[Any] = logging.get_logger(__name__)
_UpperCAmelCase : Optional[Any] = {
"openai/imagegpt-small": "",
"openai/imagegpt-medium": "",
"openai/imagegpt-large": "",
}
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Optional[int] = "imagegpt"
__lowercase : int = ["past_key_values"]
__lowercase : Union[str, Any] = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , A_=512 + 1 , A_=32 * 32 , A_=512 , A_=24 , A_=8 , A_=None , A_="quick_gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=1e-5 , A_=0.02 , A_=True , A_=True , A_=False , A_=False , A_=False , **A_ , ) -> Dict:
"""simple docstring"""
UpperCamelCase = vocab_size
UpperCamelCase = n_positions
UpperCamelCase = n_embd
UpperCamelCase = n_layer
UpperCamelCase = n_head
UpperCamelCase = n_inner
UpperCamelCase = activation_function
UpperCamelCase = resid_pdrop
UpperCamelCase = embd_pdrop
UpperCamelCase = attn_pdrop
UpperCamelCase = layer_norm_epsilon
UpperCamelCase = initializer_range
UpperCamelCase = scale_attn_weights
UpperCamelCase = use_cache
UpperCamelCase = scale_attn_by_inverse_layer_idx
UpperCamelCase = reorder_and_upcast_attn
UpperCamelCase = tie_word_embeddings
super().__init__(tie_word_embeddings=A_ , **A_ )
class lowercase ( _SCREAMING_SNAKE_CASE ):
@property
def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
] )
def __UpperCamelCase ( self , A_ , A_ = 1 , A_ = -1 , A_ = False , A_ = None , A_ = 3 , A_ = 32 , A_ = 32 , ) -> Mapping[str, Any]:
"""simple docstring"""
UpperCamelCase = self._generate_dummy_images(A_ , A_ , A_ , A_ )
UpperCamelCase = dict(preprocessor(images=A_ , return_tensors=A_ ) )
return inputs
| 3 |
from abc import ABC, abstractmethod
from typing import List, Optional
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self ) -> Optional[Any]:
"""simple docstring"""
# test for the above condition
self.test()
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = 0
UpperCamelCase = False
while not completed:
if counter == 1:
self.reset()
UpperCamelCase = self.advance()
if not self.does_advance(A_ ):
raise Exception(
'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' )
UpperCamelCase , UpperCamelCase , UpperCamelCase = self.update(A_ )
counter += 1
if counter > 10_000:
raise Exception('update() does not fulfill the constraint.' )
if self.remaining() != 0:
raise Exception('Custom Constraint is not defined correctly.' )
@abstractmethod
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def __UpperCamelCase ( self , A_ ) -> str:
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def __UpperCamelCase ( self , A_ ) -> int:
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def __UpperCamelCase ( self , A_=False ) -> int:
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ ) -> Any:
"""simple docstring"""
super(A_ , self ).__init__()
if not isinstance(A_ , A_ ) or len(A_ ) == 0:
raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' )
if any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids ):
raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' )
UpperCamelCase = token_ids
UpperCamelCase = len(self.token_ids )
UpperCamelCase = -1 # the index of the currently fulfilled step
UpperCamelCase = False
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def __UpperCamelCase ( self , A_ ) -> Optional[int]:
"""simple docstring"""
if not isinstance(A_ , A_ ):
raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' )
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def __UpperCamelCase ( self , A_ ) -> Optional[int]:
"""simple docstring"""
if not isinstance(A_ , A_ ):
raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' )
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
if self.does_advance(A_ ):
self.fulfilled_idx += 1
UpperCamelCase = True
if self.fulfilled_idx == (self.seqlen - 1):
UpperCamelCase = True
UpperCamelCase = completed
else:
# failed to make progress.
UpperCamelCase = True
self.reset()
return stepped, completed, reset
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = False
UpperCamelCase = 0
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
return self.seqlen - (self.fulfilled_idx + 1)
def __UpperCamelCase ( self , A_=False ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = PhrasalConstraint(self.token_ids )
if stateful:
UpperCamelCase = self.seqlen
UpperCamelCase = self.fulfilled_idx
UpperCamelCase = self.completed
return new_constraint
class lowercase :
def __init__( self , A_ , A_=True ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = max([len(A_ ) for one in nested_token_ids] )
UpperCamelCase = {}
for token_ids in nested_token_ids:
UpperCamelCase = root
for tidx, token_id in enumerate(A_ ):
if token_id not in level:
UpperCamelCase = {}
UpperCamelCase = level[token_id]
if no_subsets and self.has_subsets(A_ , A_ ):
raise ValueError(
'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is'
F''' {nested_token_ids}.''' )
UpperCamelCase = root
def __UpperCamelCase ( self , A_ ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = self.trie
for current_token in current_seq:
UpperCamelCase = start[current_token]
UpperCamelCase = list(start.keys() )
return next_tokens
def __UpperCamelCase ( self , A_ ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = self.next_tokens(A_ )
return len(A_ ) == 0
def __UpperCamelCase ( self , A_ ) -> List[str]:
"""simple docstring"""
UpperCamelCase = list(root.values() )
if len(A_ ) == 0:
return 1
else:
return sum([self.count_leaves(A_ ) for nn in next_nodes] )
def __UpperCamelCase ( self , A_ , A_ ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = self.count_leaves(A_ )
return len(A_ ) != leaf_count
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_ ) -> str:
"""simple docstring"""
super(A_ , self ).__init__()
if not isinstance(A_ , A_ ) or len(A_ ) == 0:
raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' )
if any(not isinstance(A_ , A_ ) for token_ids in nested_token_ids ):
raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' )
if any(
any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids )
for token_ids in nested_token_ids ):
raise ValueError(
F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' )
UpperCamelCase = DisjunctiveTrie(A_ )
UpperCamelCase = nested_token_ids
UpperCamelCase = self.trie.max_height
UpperCamelCase = []
UpperCamelCase = False
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = self.trie.next_tokens(self.current_seq )
if len(A_ ) == 0:
return None
else:
return token_list
def __UpperCamelCase ( self , A_ ) -> Optional[Any]:
"""simple docstring"""
if not isinstance(A_ , A_ ):
raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' )
UpperCamelCase = self.trie.next_tokens(self.current_seq )
return token_id in next_tokens
def __UpperCamelCase ( self , A_ ) -> Optional[Any]:
"""simple docstring"""
if not isinstance(A_ , A_ ):
raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' )
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
if self.does_advance(A_ ):
self.current_seq.append(A_ )
UpperCamelCase = True
else:
UpperCamelCase = True
self.reset()
UpperCamelCase = self.trie.reached_leaf(self.current_seq )
UpperCamelCase = completed
return stepped, completed, reset
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase = False
UpperCamelCase = []
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq )
def __UpperCamelCase ( self , A_=False ) -> int:
"""simple docstring"""
UpperCamelCase = DisjunctiveConstraint(self.token_ids )
if stateful:
UpperCamelCase = self.seqlen
UpperCamelCase = self.current_seq
UpperCamelCase = self.completed
return new_constraint
class lowercase :
def __init__( self , A_ ) -> Tuple:
"""simple docstring"""
UpperCamelCase = constraints
# max # of steps required to fulfill a given constraint
UpperCamelCase = max([c.seqlen for c in constraints] )
UpperCamelCase = len(A_ )
UpperCamelCase = False
self.init_state()
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = []
UpperCamelCase = None
UpperCamelCase = [constraint.copy(stateful=A_ ) for constraint in self.constraints]
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints ) * self.max_seqlen) + add
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
UpperCamelCase = constraint.advance()
if isinstance(A_ , A_ ):
token_list.append(A_ )
elif isinstance(A_ , A_ ):
token_list.extend(A_ )
else:
UpperCamelCase = self.inprogress_constraint.advance()
if isinstance(A_ , A_ ):
token_list.append(A_ )
elif isinstance(A_ , A_ ):
token_list.extend(A_ )
if len(A_ ) == 0:
return None
else:
return token_list
def __UpperCamelCase ( self , A_ ) -> Any:
"""simple docstring"""
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
UpperCamelCase , UpperCamelCase = self.add(A_ )
# the entire list of constraints are fulfilled
if self.completed:
break
def __UpperCamelCase ( self , A_ ) -> int:
"""simple docstring"""
if not isinstance(A_ , A_ ):
raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' )
UpperCamelCase , UpperCamelCase = False, False
if self.completed:
UpperCamelCase = True
UpperCamelCase = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
UpperCamelCase , UpperCamelCase , UpperCamelCase = self.inprogress_constraint.update(A_ )
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=A_ ) )
UpperCamelCase = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint )
UpperCamelCase = None
if len(self.pending_constraints ) == 0:
# we're done!
UpperCamelCase = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints ):
if pending_constraint.does_advance(A_ ):
UpperCamelCase , UpperCamelCase , UpperCamelCase = pending_constraint.update(A_ )
if not stepped:
raise Exception(
'`constraint.update(token_id)` is not yielding incremental progress, '
'even though `constraint.does_advance(token_id)` is true.' )
if complete:
self.complete_constraints.append(A_ )
UpperCamelCase = None
if not complete and stepped:
UpperCamelCase = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
UpperCamelCase = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
UpperCamelCase = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def __UpperCamelCase ( self , A_=True ) -> Tuple:
"""simple docstring"""
UpperCamelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
UpperCamelCase = [
constraint.copy(stateful=A_ ) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
UpperCamelCase = self.inprogress_constraint.copy(stateful=A_ )
UpperCamelCase = [constraint.copy() for constraint in self.pending_constraints]
return new_state
| 3 | 1 |
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("1.0.0a"):
raise Exception("requires fairseq >= 1.0.0a")
logging.set_verbosity_info()
_UpperCAmelCase : Optional[int] = logging.get_logger(__name__)
_UpperCAmelCase : List[str] = "Hello world! cécé herlolip"
def A ( lowercase , lowercase , lowercase ) -> Dict:
'''simple docstring'''
UpperCamelCase = FairseqRobertaModel.from_pretrained(lowercase )
roberta.eval() # disable dropout
UpperCamelCase = roberta.model.encoder.sentence_encoder
UpperCamelCase = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , )
if classification_head:
UpperCamelCase = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0]
print('Our RoBERTa config:' , lowercase )
UpperCamelCase = XLMRobertaXLForSequenceClassification(lowercase ) if classification_head else XLMRobertaXLForMaskedLM(lowercase )
model.eval()
# Now let's copy all the weights.
# Embeddings
UpperCamelCase = roberta_sent_encoder.embed_tokens.weight
UpperCamelCase = roberta_sent_encoder.embed_positions.weight
UpperCamelCase = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them.
UpperCamelCase = roberta_sent_encoder.layer_norm.weight
UpperCamelCase = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
UpperCamelCase = model.roberta.encoder.layer[i]
UpperCamelCase = roberta_sent_encoder.layers[i]
UpperCamelCase = layer.attention
UpperCamelCase = roberta_layer.self_attn_layer_norm.weight
UpperCamelCase = roberta_layer.self_attn_layer_norm.bias
# self attention
UpperCamelCase = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
)
UpperCamelCase = roberta_layer.self_attn.q_proj.weight
UpperCamelCase = roberta_layer.self_attn.q_proj.bias
UpperCamelCase = roberta_layer.self_attn.k_proj.weight
UpperCamelCase = roberta_layer.self_attn.k_proj.bias
UpperCamelCase = roberta_layer.self_attn.v_proj.weight
UpperCamelCase = roberta_layer.self_attn.v_proj.bias
# self-attention output
UpperCamelCase = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
UpperCamelCase = roberta_layer.self_attn.out_proj.weight
UpperCamelCase = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
UpperCamelCase = roberta_layer.final_layer_norm.weight
UpperCamelCase = roberta_layer.final_layer_norm.bias
# intermediate
UpperCamelCase = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
UpperCamelCase = roberta_layer.fca.weight
UpperCamelCase = roberta_layer.fca.bias
# output
UpperCamelCase = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
UpperCamelCase = roberta_layer.fca.weight
UpperCamelCase = roberta_layer.fca.bias
# end of layer
if classification_head:
UpperCamelCase = roberta.model.classification_heads['mnli'].dense.weight
UpperCamelCase = roberta.model.classification_heads['mnli'].dense.bias
UpperCamelCase = roberta.model.classification_heads['mnli'].out_proj.weight
UpperCamelCase = roberta.model.classification_heads['mnli'].out_proj.bias
else:
# LM Head
UpperCamelCase = roberta.model.encoder.lm_head.dense.weight
UpperCamelCase = roberta.model.encoder.lm_head.dense.bias
UpperCamelCase = roberta.model.encoder.lm_head.layer_norm.weight
UpperCamelCase = roberta.model.encoder.lm_head.layer_norm.bias
UpperCamelCase = roberta.model.encoder.lm_head.weight
UpperCamelCase = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
UpperCamelCase = roberta.encode(lowercase ).unsqueeze(0 ) # batch of size 1
UpperCamelCase = model(lowercase )[0]
if classification_head:
UpperCamelCase = roberta.model.classification_heads['mnli'](roberta.extract_features(lowercase ) )
else:
UpperCamelCase = roberta.model(lowercase )[0]
print(our_output.shape , their_output.shape )
UpperCamelCase = torch.max(torch.abs(our_output - their_output ) ).item()
print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
UpperCamelCase = torch.allclose(lowercase , lowercase , atol=1e-3 )
print('Do both models output the same tensors?' , '🔥' if success else '💩' )
if not success:
raise Exception('Something went wRoNg' )
pathlib.Path(lowercase ).mkdir(parents=lowercase , exist_ok=lowercase )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCAmelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--classification_head", action="store_true", help="Whether to convert a final classification head."
)
_UpperCAmelCase : Any = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 3 |
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
_UpperCAmelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
@register_to_config
def __init__( self , A_ , A_ = None , A_ = None ) -> Any:
"""simple docstring"""
super().__init__()
UpperCamelCase = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
UpperCamelCase = torch.zeros(A_ , A_ )
else:
UpperCamelCase = None
UpperCamelCase = torch.nn.Parameter(A_ )
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : VQModel
__lowercase : CLIPTextModel
__lowercase : CLIPTokenizer
__lowercase : TransformeraDModel
__lowercase : LearnedClassifierFreeSamplingEmbeddings
__lowercase : VQDiffusionScheduler
def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
self.register_modules(
vqvae=A_ , transformer=A_ , text_encoder=A_ , tokenizer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , )
def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = len(A_ ) if isinstance(A_ , A_ ) else 1
# get prompt text embeddings
UpperCamelCase = self.tokenizer(
A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , )
UpperCamelCase = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'The following part of your input was truncated because CLIP can only handle sequences up to'
F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length]
UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A_ )
# duplicate text embeddings for each generation per prompt
UpperCamelCase = prompt_embeds.repeat_interleave(A_ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings
UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(A_ , 1 , 1 )
else:
UpperCamelCase = [''] * batch_size
UpperCamelCase = text_input_ids.shape[-1]
UpperCamelCase = self.tokenizer(
A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='pt' , )
UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A_ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
UpperCamelCase = negative_prompt_embeds.shape[1]
UpperCamelCase = negative_prompt_embeds.repeat(1 , A_ , 1 )
UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self , A_ , A_ = 100 , A_ = 5.0 , A_ = 1.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , ) -> Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
if isinstance(A_ , A_ ):
UpperCamelCase = 1
elif isinstance(A_ , A_ ):
UpperCamelCase = len(A_ )
else:
raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' )
UpperCamelCase = batch_size * num_images_per_prompt
UpperCamelCase = guidance_scale > 1.0
UpperCamelCase = self._encode_prompt(A_ , A_ , A_ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0)
):
raise ValueError(
F'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
F''' {type(A_ )}.''' )
# get the initial completely masked latents unless the user supplied it
UpperCamelCase = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
UpperCamelCase = self.transformer.num_vector_embeds - 1
UpperCamelCase = torch.full(A_ , A_ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,'
F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' )
UpperCamelCase = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(A_ , device=self.device )
UpperCamelCase = self.scheduler.timesteps.to(self.device )
UpperCamelCase = latents
for i, t in enumerate(self.progress_bar(A_ ) ):
# expand the sample if we are doing classifier free guidance
UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
UpperCamelCase = self.transformer(A_ , encoder_hidden_states=A_ , timestep=A_ ).sample
if do_classifier_free_guidance:
UpperCamelCase , UpperCamelCase = model_output.chunk(2 )
UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(A_ , dim=1 , keepdim=A_ )
UpperCamelCase = self.truncate(A_ , A_ )
# remove `log(0)`'s (`-inf`s)
UpperCamelCase = model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
UpperCamelCase = self.scheduler.step(A_ , timestep=A_ , sample=A_ , generator=A_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(A_ , A_ , A_ )
UpperCamelCase = self.vqvae.config.vq_embed_dim
UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
UpperCamelCase = self.vqvae.quantize.get_codebook_entry(A_ , shape=A_ )
UpperCamelCase = self.vqvae.decode(A_ , force_not_quantize=A_ ).sample
UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 )
UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCamelCase = self.numpy_to_pil(A_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A_ )
def __UpperCamelCase ( self , A_ , A_ ) -> torch.FloatTensor:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = torch.sort(A_ , 1 , descending=A_ )
UpperCamelCase = torch.exp(A_ )
UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , A_ )
UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 )
UpperCamelCase = keep_mask[:, :-1, :]
UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) )
UpperCamelCase = log_p_x_0.clone()
UpperCamelCase = -torch.inf # -inf = log(0)
return rv
| 3 | 1 |
from math import isqrt
def A ( lowercase ) -> list[int]:
'''simple docstring'''
UpperCamelCase = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , lowercase , lowercase ):
UpperCamelCase = False
return [i for i in range(2 , lowercase ) if is_prime[i]]
def A ( lowercase = 10**8 ) -> int:
'''simple docstring'''
UpperCamelCase = calculate_prime_numbers(max_number // 2 )
UpperCamelCase = 0
UpperCamelCase = 0
UpperCamelCase = len(lowercase ) - 1
while left <= right:
while prime_numbers[left] * prime_numbers[right] >= max_number:
right -= 1
semiprimes_count += right - left + 1
left += 1
return semiprimes_count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 3 |
from string import ascii_uppercase
_UpperCAmelCase : Dict = {char: i for i, char in enumerate(ascii_uppercase)}
_UpperCAmelCase : Tuple = dict(enumerate(ascii_uppercase))
def A ( lowercase , lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = len(lowercase )
UpperCamelCase = 0
while True:
if x == i:
UpperCamelCase = 0
if len(lowercase ) == len(lowercase ):
break
key += key[i]
i += 1
return key
def A ( lowercase , lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = ''
UpperCamelCase = 0
for letter in message:
if letter == " ":
cipher_text += " "
else:
UpperCamelCase = (dicta[letter] - dicta[key_new[i]]) % 26
i += 1
cipher_text += dicta[x]
return cipher_text
def A ( lowercase , lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = ''
UpperCamelCase = 0
for letter in cipher_text:
if letter == " ":
or_txt += " "
else:
UpperCamelCase = (dicta[letter] + dicta[key_new[i]] + 26) % 26
i += 1
or_txt += dicta[x]
return or_txt
def A ( ) -> None:
'''simple docstring'''
UpperCamelCase = 'THE GERMAN ATTACK'
UpperCamelCase = 'SECRET'
UpperCamelCase = generate_key(lowercase , lowercase )
UpperCamelCase = cipher_text(lowercase , lowercase )
print(f'''Encrypted Text = {s}''' )
print(f'''Original Text = {original_text(lowercase , lowercase )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 3 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCAmelCase : Any = logging.get_logger(__name__)
_UpperCAmelCase : Optional[int] = {
"microsoft/swinv2-tiny-patch4-window8-256": (
"https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json"
),
}
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Dict = "swinv2"
__lowercase : int = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , A_=224 , A_=4 , A_=3 , A_=96 , A_=[2, 2, 6, 2] , A_=[3, 6, 12, 24] , A_=7 , A_=4.0 , A_=True , A_=0.0 , A_=0.0 , A_=0.1 , A_="gelu" , A_=False , A_=0.02 , A_=1e-5 , A_=32 , **A_ , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**A_ )
UpperCamelCase = image_size
UpperCamelCase = patch_size
UpperCamelCase = num_channels
UpperCamelCase = embed_dim
UpperCamelCase = depths
UpperCamelCase = len(A_ )
UpperCamelCase = num_heads
UpperCamelCase = window_size
UpperCamelCase = mlp_ratio
UpperCamelCase = qkv_bias
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = drop_path_rate
UpperCamelCase = hidden_act
UpperCamelCase = use_absolute_embeddings
UpperCamelCase = layer_norm_eps
UpperCamelCase = initializer_range
UpperCamelCase = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
UpperCamelCase = int(embed_dim * 2 ** (len(A_ ) - 1) )
UpperCamelCase = (0, 0, 0, 0)
| 3 |
from collections.abc import Callable
def A ( lowercase , lowercase , lowercase ) -> float:
'''simple docstring'''
UpperCamelCase = a
UpperCamelCase = b
if function(lowercase ) == 0: # one of the a or b is a root for the function
return a
elif function(lowercase ) == 0:
return b
elif (
function(lowercase ) * function(lowercase ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('could not find root in given interval.' )
else:
UpperCamelCase = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(lowercase ) == 0:
return mid
elif function(lowercase ) * function(lowercase ) < 0:
UpperCamelCase = mid
else:
UpperCamelCase = mid
UpperCamelCase = start + (end - start) / 2.0
return mid
def A ( lowercase ) -> float:
'''simple docstring'''
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1_000))
import doctest
doctest.testmod()
| 3 | 1 |
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.utils.data import DistributedSampler, RandomSampler
from transformers import PreTrainedModel, Trainer, logging
from transformers.integrations import is_fairscale_available
from transformers.models.fsmt.configuration_fsmt import FSMTConfig
from transformers.optimization import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.trainer_pt_utils import get_tpu_sampler
from transformers.training_args import ParallelMode
from transformers.utils import is_torch_tpu_available
if is_fairscale_available():
from fairscale.optim import OSS
_UpperCAmelCase : Optional[int] = logging.get_logger(__name__)
_UpperCAmelCase : str = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup,
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
"polynomial": get_polynomial_decay_schedule_with_warmup,
"constant": get_constant_schedule,
"constant_w_warmup": get_constant_schedule_with_warmup,
}
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __init__( self , A_=None , A_=None , *A_ , **A_ ) -> List[Any]:
"""simple docstring"""
super().__init__(*A_ , **A_ )
if config is None:
assert isinstance(self.model , A_ ), (
"If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is"
F''' {self.model.__class__}'''
)
UpperCamelCase = self.model.config
else:
UpperCamelCase = config
UpperCamelCase = data_args
UpperCamelCase = self.config.tgt_vocab_size if isinstance(self.config , A_ ) else self.config.vocab_size
if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss):
assert self.config.pad_token_id is not None, (
"Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss"
" calculation or doing label smoothing."
)
if self.config.pad_token_id is None and self.config.eos_token_id is not None:
logger.warning(
F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for'''
' padding..' )
if self.args.label_smoothing == 0:
UpperCamelCase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id )
else:
# dynamically import label_smoothed_nll_loss
from utils import label_smoothed_nll_loss
UpperCamelCase = label_smoothed_nll_loss
def __UpperCamelCase ( self , A_ ) -> Union[str, Any]:
"""simple docstring"""
if self.optimizer is None:
UpperCamelCase = ['bias', 'LayerNorm.weight']
UpperCamelCase = [
{
'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )],
'weight_decay': self.args.weight_decay,
},
{
'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )],
'weight_decay': 0.0,
},
]
UpperCamelCase = Adafactor if self.args.adafactor else AdamW
if self.args.adafactor:
UpperCamelCase = Adafactor
UpperCamelCase = {'scale_parameter': False, 'relative_step': False}
else:
UpperCamelCase = AdamW
UpperCamelCase = {
'betas': (self.args.adam_betaa, self.args.adam_betaa),
'eps': self.args.adam_epsilon,
}
UpperCamelCase = self.args.learning_rate
if self.sharded_ddp:
UpperCamelCase = OSS(
params=A_ , optim=A_ , **A_ , )
else:
UpperCamelCase = optimizer_cls(A_ , **A_ )
if self.lr_scheduler is None:
UpperCamelCase = self._get_lr_scheduler(A_ )
else: # ignoring --lr_scheduler
logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' )
def __UpperCamelCase ( self , A_ ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = arg_to_scheduler[self.args.lr_scheduler]
if self.args.lr_scheduler == "constant":
UpperCamelCase = schedule_func(self.optimizer )
elif self.args.lr_scheduler == "constant_w_warmup":
UpperCamelCase = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps )
else:
UpperCamelCase = schedule_func(
self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=A_ )
return scheduler
def __UpperCamelCase ( self ) -> Optional[torch.utils.data.Sampler]:
"""simple docstring"""
if isinstance(self.train_dataset , torch.utils.data.IterableDataset ):
return None
elif is_torch_tpu_available():
return get_tpu_sampler(self.train_dataset )
else:
if self.args.sortish_sampler:
self.train_dataset.make_sortish_sampler(
self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , )
return (
RandomSampler(self.train_dataset )
if self.args.local_rank == -1
else DistributedSampler(self.train_dataset )
)
def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Dict:
"""simple docstring"""
if self.args.label_smoothing == 0:
if self.data_args is not None and self.data_args.ignore_pad_token_for_loss:
# force training to ignore pad token
UpperCamelCase = model(**A_ , use_cache=A_ )[0]
UpperCamelCase = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) )
else:
# compute usual loss via models
UpperCamelCase , UpperCamelCase = model(**A_ , labels=A_ , use_cache=A_ )[:2]
else:
# compute label smoothed loss
UpperCamelCase = model(**A_ , use_cache=A_ )[0]
UpperCamelCase = torch.nn.functional.log_softmax(A_ , dim=-1 )
UpperCamelCase , UpperCamelCase = self.loss_fn(A_ , A_ , self.args.label_smoothing , ignore_index=self.config.pad_token_id )
return loss, logits
def __UpperCamelCase ( self , A_ , A_ ) -> int:
"""simple docstring"""
UpperCamelCase = inputs.pop('labels' )
UpperCamelCase , UpperCamelCase = self._compute_loss(A_ , A_ , A_ )
return loss
def __UpperCamelCase ( self , A_ , A_ , A_ , A_ = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
"""simple docstring"""
UpperCamelCase = self._prepare_inputs(A_ )
UpperCamelCase = {
'max_length': self.data_args.val_max_target_length
if self.data_args is not None
else self.config.max_length,
'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams,
}
if self.args.predict_with_generate and not self.args.prediction_loss_only:
UpperCamelCase = self.model.generate(
inputs['input_ids'] , attention_mask=inputs['attention_mask'] , **A_ , )
# in case the batch is shorter than max length, the output should be padded
if generated_tokens.shape[-1] < gen_kwargs["max_length"]:
UpperCamelCase = self._pad_tensors_to_max_len(A_ , gen_kwargs['max_length'] )
UpperCamelCase = inputs.pop('labels' )
with torch.no_grad():
# compute loss on predict data
UpperCamelCase , UpperCamelCase = self._compute_loss(A_ , A_ , A_ )
UpperCamelCase = loss.mean().detach()
if self.args.prediction_loss_only:
return (loss, None, None)
UpperCamelCase = generated_tokens if self.args.predict_with_generate else logits
if labels.shape[-1] < gen_kwargs["max_length"]:
UpperCamelCase = self._pad_tensors_to_max_len(A_ , gen_kwargs['max_length'] )
return (loss, logits, labels)
def __UpperCamelCase ( self , A_ , A_ ) -> List[str]:
"""simple docstring"""
# If PAD token is not defined at least EOS token has to be defined
UpperCamelCase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id
if pad_token_id is None:
raise ValueError(
'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be'
F''' padded to `max_length`={max_length}''' )
UpperCamelCase = pad_token_id * torch.ones(
(tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device )
UpperCamelCase = tensor
return padded_tensor
| 3 |
import os
_UpperCAmelCase : int = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000}
def A ( lowercase ) -> int:
'''simple docstring'''
UpperCamelCase = 0
UpperCamelCase = 0
while index < len(lowercase ) - 1:
UpperCamelCase = SYMBOLS[numerals[index]]
UpperCamelCase = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def A ( lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = ''
UpperCamelCase = num // 1_000
numerals += m_count * "M"
num %= 1_000
UpperCamelCase = num // 100
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 100
UpperCamelCase = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def A ( lowercase = "/p089_roman.txt" ) -> int:
'''simple docstring'''
UpperCamelCase = 0
with open(os.path.dirname(lowercase ) + roman_numerals_filename ) as filea:
UpperCamelCase = filea.readlines()
for line in lines:
UpperCamelCase = line.strip()
UpperCamelCase = parse_roman_numerals(lowercase )
UpperCamelCase = generate_roman_numerals(lowercase )
savings += len(lowercase ) - len(lowercase )
return savings
if __name__ == "__main__":
print(F'''{solution() = }''')
| 3 | 1 |
import numpy as np
def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> int:
'''simple docstring'''
UpperCamelCase = int(np.ceil((x_end - xa) / h ) )
UpperCamelCase = np.zeros((n + 1,) )
UpperCamelCase = ya
UpperCamelCase = xa
for k in range(lowercase ):
UpperCamelCase = f(lowercase , y[k] )
UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
UpperCamelCase = f(x + h , y[k] + h * ka )
UpperCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka)
x += h
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20] )
def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowercase )
UpperCamelCase = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
UpperCamelCase = dataset_size < in_memory_max_size
else:
UpperCamelCase = False
UpperCamelCase = is_small_dataset(lowercase )
assert result == expected
| 3 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class lowercase ( unittest.TestCase ):
def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , ) -> Tuple:
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = num_channels
UpperCamelCase = image_size
UpperCamelCase = min_resolution
UpperCamelCase = max_resolution
UpperCamelCase = do_resize
UpperCamelCase = size if size is not None else {'height': 18, 'width': 20}
UpperCamelCase = do_thumbnail
UpperCamelCase = do_align_axis
UpperCamelCase = do_pad
UpperCamelCase = do_normalize
UpperCamelCase = image_mean
UpperCamelCase = image_std
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
__lowercase : Optional[int] = DonutImageProcessor if is_vision_available() else None
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = DonutImageProcessingTester(self )
@property
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A_ , 'do_resize' ) )
self.assertTrue(hasattr(A_ , 'size' ) )
self.assertTrue(hasattr(A_ , 'do_thumbnail' ) )
self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) )
self.assertTrue(hasattr(A_ , 'do_pad' ) )
self.assertTrue(hasattr(A_ , 'do_normalize' ) )
self.assertTrue(hasattr(A_ , 'image_mean' ) )
self.assertTrue(hasattr(A_ , 'image_std' ) )
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 20} )
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
# Previous config had dimensions in (width, height) order
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {'height': 84, 'width': 42} )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
pass
@is_flaky()
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
# Initialize image_processing
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , Image.Image )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
# Initialize image_processing
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , np.ndarray )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
# Initialize image_processing
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , torch.Tensor )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
| 3 |
def A ( lowercase , lowercase ) -> str:
'''simple docstring'''
if a < 0 or b < 0:
raise ValueError('the value of both inputs must be positive' )
UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b"
UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b"
UpperCamelCase = max(len(lowercase ) , len(lowercase ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(lowercase ) , b_binary.zfill(lowercase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def A ( lowercase , lowercase , lowercase ) -> Any:
'''simple docstring'''
UpperCamelCase = AutoConfig.from_pretrained(lowercase )
UpperCamelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=lowercase )
UpperCamelCase = checkpoints.load_tax_checkpoint(lowercase )
UpperCamelCase = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp']
if config.model_type == "t5":
UpperCamelCase = 'SelfAttention'
if config.model_type == "longt5" and config.encoder_attention_type == "local":
UpperCamelCase = 'LocalSelfAttention'
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
UpperCamelCase = 'TransientGlobalSelfAttention'
else:
raise ValueError(
'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`'
' attribute with a value from [\'local\', \'transient-global].' )
# Encoder
for layer_index in range(config.num_layers ):
UpperCamelCase = f'''layers_{str(lowercase )}'''
# Self-Attention
UpperCamelCase = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel']
UpperCamelCase = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel']
UpperCamelCase = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel']
UpperCamelCase = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel']
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
UpperCamelCase = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale']
# Layer Normalization
UpperCamelCase = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale']
if split_mlp_wi:
UpperCamelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel']
UpperCamelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel']
else:
UpperCamelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel']
UpperCamelCase = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel']
# Layer Normalization
UpperCamelCase = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale']
# Assigning
UpperCamelCase = flax_model.params['encoder']['block'][str(lowercase )]['layer']
UpperCamelCase = tax_attention_key
UpperCamelCase = tax_attention_out
UpperCamelCase = tax_attention_query
UpperCamelCase = tax_attention_value
UpperCamelCase = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
UpperCamelCase = tax_global_layer_norm
if split_mlp_wi:
UpperCamelCase = tax_mlp_wi_a
UpperCamelCase = tax_mlp_wi_a
else:
UpperCamelCase = tax_mlp_wi
UpperCamelCase = tax_mlp_wo
UpperCamelCase = tax_mlp_layer_norm
UpperCamelCase = flax_model_encoder_layer_block
# Only for layer 0:
UpperCamelCase = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T
UpperCamelCase = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
UpperCamelCase = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T
UpperCamelCase = tax_encoder_global_rel_embedding
# Assigning
UpperCamelCase = tax_model['target']['encoder']['encoder_norm']['scale']
UpperCamelCase = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers ):
UpperCamelCase = f'''layers_{str(lowercase )}'''
# Self-Attention
UpperCamelCase = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel']
UpperCamelCase = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel']
UpperCamelCase = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel']
UpperCamelCase = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel']
# Layer Normalization
UpperCamelCase = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][
'scale'
]
# Encoder-Decoder-Attention
UpperCamelCase = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention']
UpperCamelCase = tax_enc_dec_attention_module['key']['kernel']
UpperCamelCase = tax_enc_dec_attention_module['out']['kernel']
UpperCamelCase = tax_enc_dec_attention_module['query']['kernel']
UpperCamelCase = tax_enc_dec_attention_module['value']['kernel']
# Layer Normalization
UpperCamelCase = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale']
# MLP
if split_mlp_wi:
UpperCamelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel']
UpperCamelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel']
else:
UpperCamelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel']
UpperCamelCase = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel']
# Layer Normalization
UpperCamelCase = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale']
# Assigning
UpperCamelCase = flax_model.params['decoder']['block'][str(lowercase )]['layer']
UpperCamelCase = tax_attention_key
UpperCamelCase = tax_attention_out
UpperCamelCase = tax_attention_query
UpperCamelCase = tax_attention_value
UpperCamelCase = tax_pre_attention_layer_norm
UpperCamelCase = tax_enc_dec_attention_key
UpperCamelCase = tax_enc_dec_attention_out
UpperCamelCase = tax_enc_dec_attention_query
UpperCamelCase = tax_enc_dec_attention_value
UpperCamelCase = tax_cross_layer_norm
if split_mlp_wi:
UpperCamelCase = tax_mlp_wi_a
UpperCamelCase = tax_mlp_wi_a
else:
UpperCamelCase = tax_mlp_wi
UpperCamelCase = tax_mlp_wo
UpperCamelCase = txa_mlp_layer_norm
UpperCamelCase = flax_model_decoder_layer_block
# Decoder Normalization
UpperCamelCase = tax_model['target']['decoder']['decoder_norm']['scale']
UpperCamelCase = txa_decoder_norm
# Only for layer 0:
UpperCamelCase = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T
UpperCamelCase = tax_decoder_rel_embedding
# Token Embeddings
UpperCamelCase = tax_model['target']['token_embedder']['embedding']
UpperCamelCase = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
UpperCamelCase = tax_model['target']['decoder']['logits_dense']['kernel']
flax_model.save_pretrained(lowercase )
print('T5X Model was sucessfully converted!' )
if __name__ == "__main__":
_UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint."
)
parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.")
parser.add_argument(
"--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model."
)
_UpperCAmelCase : List[str] = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 3 |
import re
def A ( lowercase ) -> str:
'''simple docstring'''
if len(re.findall('[ATCG]' , lowercase ) ) != len(lowercase ):
raise ValueError('Invalid Strand' )
return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 | 1 |
from numpy import exp, pi, sqrt
def A ( lowercase , lowercase = 0.0 , lowercase = 1.0 ) -> int:
'''simple docstring'''
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Dict = (DDPMScheduler,)
def __UpperCamelCase ( self , **A_ ) -> Dict:
"""simple docstring"""
UpperCamelCase = {
'num_train_timesteps': 1_000,
'beta_start': 0.0001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'variance_type': 'fixed_small',
'clip_sample': True,
}
config.update(**A_ )
return config
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=A_ )
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=A_ , beta_end=A_ )
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=A_ )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=A_ )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=A_ )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
self.check_over_configs(thresholding=A_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=A_ , prediction_type=A_ , sample_max_value=A_ , )
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=A_ )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
for t in [0, 500, 999]:
self.check_over_forward(time_step=A_ )
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = len(A_ )
UpperCamelCase = self.dummy_model()
UpperCamelCase = self.dummy_sample_deter
UpperCamelCase = torch.manual_seed(0 )
for t in reversed(range(A_ ) ):
# 1. predict noise residual
UpperCamelCase = model(A_ , A_ )
# 2. predict previous mean of sample x_t-1
UpperCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
UpperCamelCase = pred_prev_sample
UpperCamelCase = torch.sum(torch.abs(A_ ) )
UpperCamelCase = torch.mean(torch.abs(A_ ) )
assert abs(result_sum.item() - 258.9606 ) < 1e-2
assert abs(result_mean.item() - 0.3372 ) < 1e-3
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config(prediction_type='v_prediction' )
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = len(A_ )
UpperCamelCase = self.dummy_model()
UpperCamelCase = self.dummy_sample_deter
UpperCamelCase = torch.manual_seed(0 )
for t in reversed(range(A_ ) ):
# 1. predict noise residual
UpperCamelCase = model(A_ , A_ )
# 2. predict previous mean of sample x_t-1
UpperCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
UpperCamelCase = pred_prev_sample
UpperCamelCase = torch.sum(torch.abs(A_ ) )
UpperCamelCase = torch.mean(torch.abs(A_ ) )
assert abs(result_sum.item() - 202.0296 ) < 1e-2
assert abs(result_mean.item() - 0.2631 ) < 1e-3
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=A_ )
UpperCamelCase = scheduler.timesteps
for i, timestep in enumerate(A_ ):
if i == len(A_ ) - 1:
UpperCamelCase = -1
else:
UpperCamelCase = timesteps[i + 1]
UpperCamelCase = scheduler.previous_timestep(A_ )
UpperCamelCase = prev_t.item()
self.assertEqual(A_ , A_ )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = [100, 87, 50, 51, 0]
with self.assertRaises(A_ , msg='`custom_timesteps` must be in descending order.' ):
scheduler.set_timesteps(timesteps=A_ )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = [100, 87, 50, 1, 0]
UpperCamelCase = len(A_ )
with self.assertRaises(A_ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ):
scheduler.set_timesteps(num_inference_steps=A_ , timesteps=A_ )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**A_ )
UpperCamelCase = [scheduler.config.num_train_timesteps]
with self.assertRaises(
A_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ):
scheduler.set_timesteps(timesteps=A_ )
| 3 | 1 |
import time
from dataclasses import dataclass
from multiprocessing import Pool
from unittest import TestCase
from unittest.mock import patch
import multiprocess
import numpy as np
import pytest
from datasets.utils.py_utils import (
NestedDataStructure,
asdict,
iflatmap_unordered,
map_nested,
temp_seed,
temporary_assignment,
zip_dict,
)
from .utils import require_tf, require_torch
def A ( lowercase ) -> Dict: # picklable for multiprocessing
'''simple docstring'''
return x.sum()
def A ( lowercase ) -> Tuple: # picklable for multiprocessing
'''simple docstring'''
return i + 1
@dataclass
class lowercase :
__lowercase : int
__lowercase : str
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = {}
UpperCamelCase = []
UpperCamelCase = 1
UpperCamelCase = [1, 2]
UpperCamelCase = {'a': 1, 'b': 2}
UpperCamelCase = {'a': [1, 2], 'b': [3, 4]}
UpperCamelCase = {'a': {'1': 1}, 'b': 2}
UpperCamelCase = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
UpperCamelCase = {}
UpperCamelCase = []
UpperCamelCase = 2
UpperCamelCase = [2, 3]
UpperCamelCase = {'a': 2, 'b': 3}
UpperCamelCase = {'a': [2, 3], 'b': [4, 5]}
UpperCamelCase = {'a': {'1': 2}, 'b': 3}
UpperCamelCase = {'a': 2, 'b': 3, 'c': 4, 'd': 5}
self.assertEqual(map_nested(A_ , A_ ) , A_ )
self.assertEqual(map_nested(A_ , A_ ) , A_ )
self.assertEqual(map_nested(A_ , A_ ) , A_ )
self.assertEqual(map_nested(A_ , A_ ) , A_ )
self.assertEqual(map_nested(A_ , A_ ) , A_ )
self.assertEqual(map_nested(A_ , A_ ) , A_ )
self.assertEqual(map_nested(A_ , A_ ) , A_ )
self.assertEqual(map_nested(A_ , A_ ) , A_ )
UpperCamelCase = 2
self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ )
self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ )
self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ )
self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ )
self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ )
self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ )
self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ )
self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ )
UpperCamelCase = {'a': np.eye(2 ), 'b': np.zeros(3 ), 'c': np.ones(2 )}
UpperCamelCase = {'a': 2, 'b': 0, 'c': 2}
UpperCamelCase = {
'a': np.eye(2 ).astype(A_ ),
'b': np.zeros(3 ).astype(A_ ),
'c': np.ones(2 ).astype(A_ ),
}
self.assertEqual(map_nested(A_ , A_ , map_numpy=A_ ) , A_ )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(A_ , A_ , map_numpy=A_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
self.assertEqual(map_nested(A_ , A_ , map_numpy=A_ , num_proc=A_ ) , A_ )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(A_ , A_ , map_numpy=A_ , num_proc=A_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
with self.assertRaises(A_ ): # can't pickle a local lambda
map_nested(lambda A_ : x + 1 , A_ , num_proc=A_ )
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = {'a': 1, 'b': 2}
UpperCamelCase = {'a': 3, 'b': 4}
UpperCamelCase = {'a': 5, 'b': 6}
UpperCamelCase = sorted([('a', (1, 3, 5)), ('b', (2, 4, 6))] )
self.assertEqual(sorted(zip_dict(A_ , A_ , A_ ) ) , A_ )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
class lowercase :
__lowercase : int = "bar"
UpperCamelCase = Foo()
self.assertEqual(foo.my_attr , 'bar' )
with temporary_assignment(A_ , 'my_attr' , 'BAR' ):
self.assertEqual(foo.my_attr , 'BAR' )
self.assertEqual(foo.my_attr , 'bar' )
@pytest.mark.parametrize(
'iterable_length, num_proc, expected_num_proc' , [
(1, None, 1),
(1, 1, 1),
(2, None, 1),
(2, 1, 1),
(2, 2, 1),
(2, 3, 1),
(3, 2, 1),
(16, 16, 16),
(16, 17, 16),
(17, 16, 16),
] , )
def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
with patch('datasets.utils.py_utils._single_map_nested' ) as mock_single_map_nested, patch(
'datasets.parallel.parallel.Pool' ) as mock_multiprocessing_pool:
UpperCamelCase = {f'''{i}''': i for i in range(lowercase )}
UpperCamelCase = map_nested(lambda lowercase : x + 10 , lowercase , num_proc=lowercase , parallel_min_length=16 )
if expected_num_proc == 1:
assert mock_single_map_nested.called
assert not mock_multiprocessing_pool.called
else:
assert not mock_single_map_nested.called
assert mock_multiprocessing_pool.called
assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc
class lowercase ( _SCREAMING_SNAKE_CASE ):
@require_tf
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
import tensorflow as tf
from tensorflow.keras import layers
UpperCamelCase = layers.Dense(2 )
def gen_random_output():
UpperCamelCase = tf.random.uniform((1, 3) )
return model(A_ ).numpy()
with temp_seed(42 , set_tensorflow=A_ ):
UpperCamelCase = gen_random_output()
with temp_seed(42 , set_tensorflow=A_ ):
UpperCamelCase = gen_random_output()
UpperCamelCase = gen_random_output()
np.testing.assert_equal(A_ , A_ )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@require_torch
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
import torch
def gen_random_output():
UpperCamelCase = torch.nn.Linear(3 , 2 )
UpperCamelCase = torch.rand(1 , 3 )
return model(A_ ).detach().numpy()
with temp_seed(42 , set_pytorch=A_ ):
UpperCamelCase = gen_random_output()
with temp_seed(42 , set_pytorch=A_ ):
UpperCamelCase = gen_random_output()
UpperCamelCase = gen_random_output()
np.testing.assert_equal(A_ , A_ )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
def gen_random_output():
return np.random.rand(1 , 3 )
with temp_seed(42 ):
UpperCamelCase = gen_random_output()
with temp_seed(42 ):
UpperCamelCase = gen_random_output()
UpperCamelCase = gen_random_output()
np.testing.assert_equal(A_ , A_ )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@pytest.mark.parametrize('input_data' , [{}] )
def A ( lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = NestedDataStructure(lowercase ).data
assert output_data == input_data
@pytest.mark.parametrize(
'data, expected_output' , [
({}, []),
([], []),
('foo', ['foo']),
(['foo', 'bar'], ['foo', 'bar']),
([['foo', 'bar']], ['foo', 'bar']),
([[['foo'], ['bar']]], ['foo', 'bar']),
([[['foo'], 'bar']], ['foo', 'bar']),
({'a': 1, 'b': 2}, [1, 2]),
({'a': [1, 2], 'b': [3, 4]}, [1, 2, 3, 4]),
({'a': [[1, 2]], 'b': [[3, 4]]}, [1, 2, 3, 4]),
({'a': [[1, 2]], 'b': [3, 4]}, [1, 2, 3, 4]),
({'a': [[[1], [2]]], 'b': [[[3], [4]]]}, [1, 2, 3, 4]),
({'a': [[[1], [2]]], 'b': [[3, 4]]}, [1, 2, 3, 4]),
({'a': [[[1], [2]]], 'b': [3, 4]}, [1, 2, 3, 4]),
({'a': [[[1], [2]]], 'b': [3, [4]]}, [1, 2, 3, 4]),
({'a': {'1': 1}, 'b': 2}, [1, 2]),
({'a': {'1': [1]}, 'b': 2}, [1, 2]),
({'a': {'1': [1]}, 'b': [2]}, [1, 2]),
] , )
def A ( lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = NestedDataStructure(lowercase ).flatten()
assert output == expected_output
def A ( ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = A(x=1 , y='foobar' )
UpperCamelCase = {'x': 1, 'y': 'foobar'}
assert asdict(lowercase ) == expected_output
UpperCamelCase = {'a': {'b': A(x=10 , y='foo' )}, 'c': [A(x=20 , y='bar' )]}
UpperCamelCase = {'a': {'b': {'x': 10, 'y': 'foo'}}, 'c': [{'x': 20, 'y': 'bar'}]}
assert asdict(lowercase ) == expected_output
with pytest.raises(lowercase ):
asdict([1, A(x=10 , y='foo' )] )
def A ( lowercase ) -> str:
'''simple docstring'''
return text.split()
def A ( lowercase ) -> Optional[Any]:
'''simple docstring'''
yield (time.time(), content)
time.sleep(2 )
yield (time.time(), content)
def A ( ) -> Optional[Any]:
'''simple docstring'''
with Pool(2 ) as pool:
UpperCamelCase = list(iflatmap_unordered(lowercase , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) )
assert out.count('hello' ) == 10
assert out.count('there' ) == 10
assert len(lowercase ) == 20
# check multiprocess from pathos (uses dill for pickling)
with multiprocess.Pool(2 ) as pool:
UpperCamelCase = list(iflatmap_unordered(lowercase , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) )
assert out.count('hello' ) == 10
assert out.count('there' ) == 10
assert len(lowercase ) == 20
# check that we get items as fast as possible
with Pool(2 ) as pool:
UpperCamelCase = []
for yield_time, content in iflatmap_unordered(
lowercase , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'content': 'a'}, {'content': 'b'}] ):
assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded"
out.append(lowercase )
assert out.count('a' ) == 2
assert out.count('b' ) == 2
assert len(lowercase ) == 4
| 3 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
_UpperCAmelCase : List[str] = None
_UpperCAmelCase : Any = logging.get_logger(__name__)
_UpperCAmelCase : Tuple = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
_UpperCAmelCase : List[str] = {
"vocab_file": {
"camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model",
},
"tokenizer_file": {
"camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json",
},
}
_UpperCAmelCase : Optional[int] = {
"camembert-base": 512,
}
_UpperCAmelCase : Union[str, Any] = "▁"
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : str = VOCAB_FILES_NAMES
__lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
__lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase : List[str] = ["input_ids", "attention_mask"]
__lowercase : Tuple = CamembertTokenizer
def __init__( self , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=["<s>NOTUSED", "</s>NOTUSED"] , **A_ , ) -> List[Any]:
"""simple docstring"""
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token
super().__init__(
A_ , tokenizer_file=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , additional_special_tokens=A_ , **A_ , )
UpperCamelCase = vocab_file
UpperCamelCase = False if not self.vocab_file else True
def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCamelCase = [self.cls_token_id]
UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]:
"""simple docstring"""
UpperCamelCase = [self.sep_token_id]
UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(A_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCamelCase = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ):
copyfile(self.vocab_file , A_ )
return (out_vocab_file,)
| 3 | 1 |
def A ( lowercase ) -> list[list[float]]:
'''simple docstring'''
UpperCamelCase = []
for data in source_data:
for i, el in enumerate(lowercase ):
if len(lowercase ) < i + 1:
data_lists.append([] )
data_lists[i].append(float(lowercase ) )
return data_lists
def A ( lowercase , lowercase ) -> list[list[float]]:
'''simple docstring'''
UpperCamelCase = []
for dlist, weight in zip(lowercase , lowercase ):
UpperCamelCase = min(lowercase )
UpperCamelCase = max(lowercase )
UpperCamelCase = []
# for weight 0 score is 1 - actual score
if weight == 0:
for item in dlist:
try:
score.append(1 - ((item - mind) / (maxd - mind)) )
except ZeroDivisionError:
score.append(1 )
elif weight == 1:
for item in dlist:
try:
score.append((item - mind) / (maxd - mind) )
except ZeroDivisionError:
score.append(0 )
# weight not 0 or 1
else:
UpperCamelCase = f'''Invalid weight of {weight:f} provided'''
raise ValueError(lowercase )
score_lists.append(lowercase )
return score_lists
def A ( lowercase ) -> list[float]:
'''simple docstring'''
UpperCamelCase = [0 for i in range(len(score_lists[0] ) )]
for slist in score_lists:
for j, ele in enumerate(lowercase ):
UpperCamelCase = final_scores[j] + ele
return final_scores
def A ( lowercase , lowercase ) -> list[list[float]]:
'''simple docstring'''
UpperCamelCase = get_data(lowercase )
UpperCamelCase = calculate_each_score(lowercase , lowercase )
UpperCamelCase = generate_final_scores(lowercase )
# append scores to source data
for i, ele in enumerate(lowercase ):
source_data[i].append(lowercase )
return source_data
| 3 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCAmelCase : Union[str, Any] = {
"configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
"processing_git": ["GitProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Dict = [
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
_UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 3 | 1 |
def A ( lowercase ) -> list:
'''simple docstring'''
UpperCamelCase = [0] * len(lowercase )
for i in range(1 , len(lowercase ) ):
# use last results for better performance - dynamic programming
UpperCamelCase = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
UpperCamelCase = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
UpperCamelCase = j
return prefix_result
def A ( lowercase ) -> int:
'''simple docstring'''
return max(prefix_function(lowercase ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCAmelCase : Tuple = logging.get_logger(__name__)
_UpperCAmelCase : Union[str, Any] = {
"facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json",
}
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Dict = "data2vec-text"
def __init__( self , A_=30_522 , A_=768 , A_=12 , A_=12 , A_=3_072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ) -> Any:
"""simple docstring"""
super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ )
UpperCamelCase = vocab_size
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = hidden_act
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = max_position_embeddings
UpperCamelCase = type_vocab_size
UpperCamelCase = initializer_range
UpperCamelCase = layer_norm_eps
UpperCamelCase = position_embedding_type
UpperCamelCase = use_cache
UpperCamelCase = classifier_dropout
class lowercase ( _SCREAMING_SNAKE_CASE ):
@property
def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 3 | 1 |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
_UpperCAmelCase : Tuple = "sshleifer/bart-tiny-random"
_UpperCAmelCase : List[str] = "patrickvonplaten/t5-tiny-random"
@require_torch
class lowercase ( unittest.TestCase ):
@cached_property
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
return AutoConfig.from_pretrained(A_ )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase , *UpperCamelCase = create_student_by_copying_alternating_layers(A_ , tempfile.mkdtemp() , e=1 , d=1 )
self.assertEqual(student.config.num_hidden_layers , 1 )
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
UpperCamelCase , *UpperCamelCase = create_student_by_copying_alternating_layers(A_ , tempfile.mkdtemp() , e=1 , d=A_ )
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
UpperCamelCase , *UpperCamelCase = create_student_by_copying_alternating_layers(A_ , tempfile.mkdtemp() , e=1 , d=A_ )
self.assertEqual(student.config.encoder_layers , 1 )
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase , *UpperCamelCase = create_student_by_copying_alternating_layers(A_ , tempfile.mkdtemp() , e=1 , d=1 )
self.assertEqual(student.config.encoder_layers , 1 )
self.assertEqual(student.config.decoder_layers , 1 )
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
with self.assertRaises(A_ ):
create_student_by_copying_alternating_layers(A_ , tempfile.mkdtemp() , e=A_ , d=A_ )
| 3 |
from random import shuffle
import tensorflow as tf
from numpy import array
def A ( lowercase , lowercase ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase = int(lowercase )
assert noofclusters < len(lowercase )
# Find out the dimensionality
UpperCamelCase = len(vectors[0] )
# Will help select random centroids from among the available vectors
UpperCamelCase = list(range(len(lowercase ) ) )
shuffle(lowercase )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
UpperCamelCase = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
UpperCamelCase = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
UpperCamelCase = [
tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase )
]
##These nodes will assign the centroid Variables the appropriate
##values
UpperCamelCase = tf.placeholder('float64' , [dim] )
UpperCamelCase = []
for centroid in centroids:
cent_assigns.append(tf.assign(lowercase , lowercase ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
UpperCamelCase = [tf.Variable(0 ) for i in range(len(lowercase ) )]
##These nodes will assign an assignment Variable the appropriate
##value
UpperCamelCase = tf.placeholder('int32' )
UpperCamelCase = []
for assignment in assignments:
cluster_assigns.append(tf.assign(lowercase , lowercase ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
UpperCamelCase = tf.placeholder('float' , [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
UpperCamelCase = tf.reduce_mean(lowercase , 0 )
##Node for computing Euclidean distances
# Placeholders for input
UpperCamelCase = tf.placeholder('float' , [dim] )
UpperCamelCase = tf.placeholder('float' , [dim] )
UpperCamelCase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase , lowercase ) , 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
UpperCamelCase = tf.placeholder('float' , [noofclusters] )
UpperCamelCase = tf.argmin(lowercase , 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
UpperCamelCase = tf.initialize_all_variables()
# Initialize all variables
sess.run(lowercase )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
UpperCamelCase = 100
for _ in range(lowercase ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(lowercase ) ):
UpperCamelCase = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
UpperCamelCase = [
sess.run(lowercase , feed_dict={va: vect, va: sess.run(lowercase )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
UpperCamelCase = sess.run(
lowercase , feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(lowercase ):
# Collect all the vectors assigned to this cluster
UpperCamelCase = [
vectors[i]
for i in range(len(lowercase ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
UpperCamelCase = sess.run(
lowercase , feed_dict={mean_input: array(lowercase )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} )
# Return centroids and assignments
UpperCamelCase = sess.run(lowercase )
UpperCamelCase = sess.run(lowercase )
return centroids, assignments
| 3 | 1 |
from __future__ import annotations
from typing import TypedDict
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : str
__lowercase : int
def A ( lowercase ) -> list[str]:
'''simple docstring'''
if not isinstance(lowercase , lowercase ):
raise TypeError('The parameter s type must be str.' )
return [s[i:] + s[:i] for i in range(len(lowercase ) )]
def A ( lowercase ) -> BWTTransformDict:
'''simple docstring'''
if not isinstance(lowercase , lowercase ):
raise TypeError('The parameter s type must be str.' )
if not s:
raise ValueError('The parameter s must not be empty.' )
UpperCamelCase = all_rotations(lowercase )
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
UpperCamelCase = {
"bwt_string": "".join([word[-1] for word in rotations] ),
"idx_original_string": rotations.index(lowercase ),
}
return response
def A ( lowercase , lowercase ) -> str:
'''simple docstring'''
if not isinstance(lowercase , lowercase ):
raise TypeError('The parameter bwt_string type must be str.' )
if not bwt_string:
raise ValueError('The parameter bwt_string must not be empty.' )
try:
UpperCamelCase = int(lowercase )
except ValueError:
raise TypeError(
'The parameter idx_original_string type must be int or passive'
' of cast to int.' )
if idx_original_string < 0:
raise ValueError('The parameter idx_original_string must not be lower than 0.' )
if idx_original_string >= len(lowercase ):
raise ValueError(
'The parameter idx_original_string must be lower than' ' len(bwt_string).' )
UpperCamelCase = [''] * len(lowercase )
for _ in range(len(lowercase ) ):
for i in range(len(lowercase ) ):
UpperCamelCase = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string]
if __name__ == "__main__":
_UpperCAmelCase : Optional[Any] = "Provide a string that I will generate its BWT transform: "
_UpperCAmelCase : int = input(entry_msg).strip()
_UpperCAmelCase : Any = bwt_transform(s)
print(
F'''Burrows Wheeler transform for string \'{s}\' results '''
F'''in \'{result['bwt_string']}\''''
)
_UpperCAmelCase : Union[str, Any] = reverse_bwt(result["bwt_string"], result["idx_original_string"])
print(
F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' '''
F'''we get original string \'{original_string}\''''
)
| 3 |
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_UpperCAmelCase : Tuple = _symbol_database.Default()
_UpperCAmelCase : List[Any] = _descriptor_pool.Default().AddSerializedFile(
b"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03"
)
_UpperCAmelCase : int = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
_UpperCAmelCase : int = None
_UpperCAmelCase : List[str] = b"H\003"
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
_UpperCAmelCase : Optional[Any] = 45
_UpperCAmelCase : Any = 1_581
_UpperCAmelCase : Tuple = 1_517
_UpperCAmelCase : List[str] = 1_570
_UpperCAmelCase : int = 1_584
_UpperCAmelCase : List[Any] = 1_793
_UpperCAmelCase : Optional[int] = 1_795
_UpperCAmelCase : Any = 1_916
_UpperCAmelCase : Tuple = 1_864
_UpperCAmelCase : List[Any] = 1_905
_UpperCAmelCase : Union[str, Any] = 1_919
_UpperCAmelCase : str = 2_429
_UpperCAmelCase : Any = 2_208
_UpperCAmelCase : Dict = 2_418
_UpperCAmelCase : Optional[Any] = 2_323
_UpperCAmelCase : Tuple = 2_407
# @@protoc_insertion_point(module_scope)
| 3 | 1 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=_SCREAMING_SNAKE_CASE )
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : str = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True} )
__lowercase : ClassVar[Features] = Features({"text": Value("string" )} )
__lowercase : ClassVar[Features] = Features({} )
__lowercase : str = "text"
@property
def __UpperCamelCase ( self ) -> Dict[str, str]:
"""simple docstring"""
return {self.text_column: "text"}
| 3 |
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class lowercase ( unittest.TestCase ):
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
# A mock response for an HTTP head request to emulate server down
UpperCamelCase = mock.Mock()
UpperCamelCase = 500
UpperCamelCase = {}
UpperCamelCase = HTTPError
UpperCamelCase = {}
# Download this model to make sure it's in the cache.
UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head:
UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
# A mock response for an HTTP head request to emulate server down
UpperCamelCase = mock.Mock()
UpperCamelCase = 500
UpperCamelCase = {}
UpperCamelCase = HTTPError
UpperCamelCase = {}
# Download this model to make sure it's in the cache.
UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head:
UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' )
# This check we did call the fake head request
mock_head.assert_called()
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
# This test is for deprecated behavior and can be removed in v5
try:
UpperCamelCase = tempfile.mktemp()
with open(A_ , 'wb' ) as f:
http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , A_ )
UpperCamelCase = AlbertTokenizer.from_pretrained(A_ )
finally:
os.remove(A_ )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile('tokenizer.json' ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open('tokenizer.json' , 'wb' ) as f:
http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , A_ )
UpperCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size , 1_000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove('tokenizer.json' )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
# This test is for deprecated behavior and can be removed in v5
UpperCamelCase = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' )
@is_staging_test
class lowercase ( unittest.TestCase ):
__lowercase : int = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def __UpperCamelCase ( cls ) -> Tuple:
"""simple docstring"""
UpperCamelCase = TOKEN
HfFolder.save_token(A_ )
@classmethod
def __UpperCamelCase ( cls ) -> Optional[int]:
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='test-tokenizer' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' )
except HTTPError:
pass
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase = os.path.join(A_ , 'vocab.txt' )
with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCamelCase = BertTokenizer(A_ )
tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token )
UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id='test-tokenizer' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(A_ , repo_id='test-tokenizer' , push_to_hub=A_ , use_auth_token=self._token )
UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase = os.path.join(A_ , 'vocab.txt' )
with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCamelCase = BertTokenizer(A_ )
tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token )
UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
A_ , repo_id='valid_org/test-tokenizer-org' , push_to_hub=A_ , use_auth_token=self._token )
UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
@require_tokenizers
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase = os.path.join(A_ , 'vocab.txt' )
with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCamelCase = CustomTokenizer(A_ )
# No fast custom tokenizer
tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token )
UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase = os.path.join(A_ , 'vocab.txt' )
with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
UpperCamelCase = BertTokenizerFast.from_pretrained(A_ )
bert_tokenizer.save_pretrained(A_ )
UpperCamelCase = CustomTokenizerFast.from_pretrained(A_ )
tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token )
UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' )
UpperCamelCase = AutoTokenizer.from_pretrained(
F'''{USER}/test-dynamic-tokenizer''' , use_fast=A_ , trust_remote_code=A_ )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' )
class lowercase ( unittest.TestCase ):
def __UpperCamelCase ( self ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('Hello 友達' )
self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} )
trie.add('Hello' )
trie.data
self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} )
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase = Trie()
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] )
trie.add('[CLS]' )
trie.add('extra_id_1' )
trie.add('extra_id_100' )
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] )
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('A' )
self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] )
self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('TOKEN]' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('A' )
trie.add('P' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('AB' )
trie.add('B' )
trie.add('C' )
self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] )
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = Trie()
trie.add('ABC' )
trie.add('B' )
trie.add('CD' )
self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] )
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
# Even if the offsets are wrong, we necessarily output correct string
# parts.
UpperCamelCase = Trie()
UpperCamelCase = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] )
self.assertEqual(A_ , ['AB', 'C'] )
| 3 | 1 |
_UpperCAmelCase : List[Any] = range(2, 20 + 1)
_UpperCAmelCase : List[str] = [10**k for k in range(ks[-1] + 1)]
_UpperCAmelCase : dict[int, dict[int, list[list[int]]]] = {}
def A ( lowercase , lowercase , lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = sum(a_i[j] for j in range(lowercase , len(lowercase ) ) )
UpperCamelCase = sum(a_i[j] * base[j] for j in range(min(len(lowercase ) , lowercase ) ) )
UpperCamelCase , UpperCamelCase = 0, 0
UpperCamelCase = n - i
UpperCamelCase = memo.get(lowercase )
if sub_memo is not None:
UpperCamelCase = sub_memo.get(lowercase )
if jumps is not None and len(lowercase ) > 0:
# find and make the largest jump without going over
UpperCamelCase = -1
for _k in range(len(lowercase ) - 1 , -1 , -1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
UpperCamelCase = _k
break
if max_jump >= 0:
UpperCamelCase , UpperCamelCase , UpperCamelCase = jumps[max_jump]
# since the difference between jumps is cached, add c
UpperCamelCase = diff + c
for j in range(min(lowercase , len(lowercase ) ) ):
UpperCamelCase , UpperCamelCase = divmod(lowercase , 10 )
if new_c > 0:
add(lowercase , lowercase , lowercase )
else:
UpperCamelCase = []
else:
UpperCamelCase = {c: []}
UpperCamelCase = sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
UpperCamelCase , UpperCamelCase = next_term(lowercase , k - 1 , i + dn , lowercase )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
UpperCamelCase , UpperCamelCase = compute(lowercase , lowercase , i + dn , lowercase )
diff += _diff
dn += terms_jumped
UpperCamelCase = sub_memo[c]
# keep jumps sorted by # of terms skipped
UpperCamelCase = 0
while j < len(lowercase ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(lowercase , (diff, dn, k) )
return (diff, dn)
def A ( lowercase , lowercase , lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
if i >= n:
return 0, i
if k > len(lowercase ):
a_i.extend([0 for _ in range(k - len(lowercase ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
UpperCamelCase = i
UpperCamelCase , UpperCamelCase , UpperCamelCase = 0, 0, 0
for j in range(len(lowercase ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
UpperCamelCase = ds_c + ds_b
diff += addend
UpperCamelCase = 0
for j in range(lowercase ):
UpperCamelCase = a_i[j] + addend
UpperCamelCase , UpperCamelCase = divmod(lowercase , 10 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(lowercase , lowercase , lowercase )
return diff, i - start_i
def A ( lowercase , lowercase , lowercase ) -> str:
'''simple docstring'''
for j in range(lowercase , len(lowercase ) ):
UpperCamelCase = digits[j] + addend
if s >= 10:
UpperCamelCase , UpperCamelCase = divmod(lowercase , 10 )
UpperCamelCase = addend // 10 + quotient
else:
UpperCamelCase = s
UpperCamelCase = addend // 10
if addend == 0:
break
while addend > 0:
UpperCamelCase , UpperCamelCase = divmod(lowercase , 10 )
digits.append(lowercase )
def A ( lowercase = 10**15 ) -> int:
'''simple docstring'''
UpperCamelCase = [1]
UpperCamelCase = 1
UpperCamelCase = 0
while True:
UpperCamelCase , UpperCamelCase = next_term(lowercase , 20 , i + dn , lowercase )
dn += terms_jumped
if dn == n - i:
break
UpperCamelCase = 0
for j in range(len(lowercase ) ):
a_n += digits[j] * 10**j
return a_n
if __name__ == "__main__":
print(F'''{solution() = }''')
| 3 |
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def A ( lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
assert isinstance(lowercase , lowercase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def A ( lowercase , lowercase , lowercase ) -> Tuple:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def A ( lowercase , lowercase , lowercase ) -> Tuple:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = features.copy() if features else default_expected_features
UpperCamelCase = (
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCamelCase = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def A ( lowercase , lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type' , [str, list] )
def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
if issubclass(lowercase , lowercase ):
UpperCamelCase = parquet_path
elif issubclass(lowercase , lowercase ):
UpperCamelCase = [parquet_path]
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
def A ( lowercase , lowercase , lowercase=("train",) ) -> Tuple:
'''simple docstring'''
assert isinstance(lowercase , lowercase )
for split in splits:
UpperCamelCase = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def A ( lowercase , lowercase , lowercase ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCamelCase = ParquetDatasetReader(
{'train': parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read()
_check_parquet_datasetdict(lowercase , lowercase )
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def A ( lowercase , lowercase , lowercase ) -> List[Any]:
'''simple docstring'''
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = features.copy() if features else default_expected_features
UpperCamelCase = (
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCamelCase = ParquetDatasetReader({'train': parquet_path} , features=lowercase , cache_dir=lowercase ).read()
_check_parquet_datasetdict(lowercase , lowercase )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
if split:
UpperCamelCase = {split: parquet_path}
else:
UpperCamelCase = 'train'
UpperCamelCase = {'train': parquet_path, 'test': parquet_path}
UpperCamelCase = tmp_path / 'cache'
UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read()
_check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def A ( lowercase , lowercase ) -> List[Any]:
'''simple docstring'''
UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' )
assert writer.write() > 0
UpperCamelCase = pq.ParquetFile(tmp_path / 'foo.parquet' )
UpperCamelCase = pf.read()
assert dataset.data.table == output_table
def A ( lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = str(shared_datadir / 'test_image_rgb.jpg' )
UpperCamelCase = {'image': [image_path]}
UpperCamelCase = Features({'image': Image()} )
UpperCamelCase = Dataset.from_dict(lowercase , features=lowercase )
UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' )
assert writer.write() > 0
UpperCamelCase = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) )
assert dataset.features == reloaded_dataset.features
UpperCamelCase = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=lowercase ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
'feature, expected' , [
(Features({'foo': Value('int32' )} ), None),
(Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def A ( lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
assert get_writer_batch_size(lowercase ) == expected
| 3 | 1 |
from __future__ import annotations
from bisect import bisect_left
from functools import total_ordering
from heapq import merge
@total_ordering
class lowercase ( _SCREAMING_SNAKE_CASE ):
def __lt__( self , A_ ) -> Dict:
"""simple docstring"""
return self[-1] < other[-1]
def __eq__( self , A_ ) -> Union[str, Any]:
"""simple docstring"""
return self[-1] == other[-1]
def A ( lowercase ) -> list:
'''simple docstring'''
UpperCamelCase = []
# sort into stacks
for element in collection:
UpperCamelCase = Stack([element] )
UpperCamelCase = bisect_left(lowercase , lowercase )
if i != len(lowercase ):
stacks[i].append(lowercase )
else:
stacks.append(lowercase )
# use a heap-based merge to merge stack efficiently
UpperCamelCase = merge(*(reversed(lowercase ) for stack in stacks) )
return collection
if __name__ == "__main__":
_UpperCAmelCase : Any = input("Enter numbers separated by a comma:\n").strip()
_UpperCAmelCase : List[str] = [int(item) for item in user_input.split(",")]
print(patience_sort(unsorted))
| 3 |
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class lowercase ( unittest.TestCase ):
def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , ) -> Tuple:
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = num_channels
UpperCamelCase = image_size
UpperCamelCase = min_resolution
UpperCamelCase = max_resolution
UpperCamelCase = do_resize
UpperCamelCase = size if size is not None else {'height': 18, 'width': 20}
UpperCamelCase = do_thumbnail
UpperCamelCase = do_align_axis
UpperCamelCase = do_pad
UpperCamelCase = do_normalize
UpperCamelCase = image_mean
UpperCamelCase = image_std
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
__lowercase : Optional[int] = DonutImageProcessor if is_vision_available() else None
def __UpperCamelCase ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = DonutImageProcessingTester(self )
@property
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A_ , 'do_resize' ) )
self.assertTrue(hasattr(A_ , 'size' ) )
self.assertTrue(hasattr(A_ , 'do_thumbnail' ) )
self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) )
self.assertTrue(hasattr(A_ , 'do_pad' ) )
self.assertTrue(hasattr(A_ , 'do_normalize' ) )
self.assertTrue(hasattr(A_ , 'image_mean' ) )
self.assertTrue(hasattr(A_ , 'image_std' ) )
def __UpperCamelCase ( self ) -> str:
"""simple docstring"""
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 20} )
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
# Previous config had dimensions in (width, height) order
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {'height': 84, 'width': 42} )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
pass
@is_flaky()
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
# Initialize image_processing
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , Image.Image )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
# Initialize image_processing
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , np.ndarray )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def __UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
# Initialize image_processing
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , torch.Tensor )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
| 3 | 1 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCAmelCase : Tuple = logging.get_logger(__name__)
def A ( lowercase , lowercase , lowercase , lowercase ) -> List[str]:
'''simple docstring'''
UpperCamelCase = original_name.split('.' )[0]
UpperCamelCase = key.split('.' )
UpperCamelCase = int(key_list[key_list.index(lowercase ) - 2] )
UpperCamelCase = int(key_list[key_list.index(lowercase ) - 1] )
UpperCamelCase = orig_block_num - offset
UpperCamelCase = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' , f'''block.{new_block_num}.{layer_num}.{new_name}''' )
return key
def A ( lowercase ) -> Any:
'''simple docstring'''
UpperCamelCase = OrderedDict()
UpperCamelCase , UpperCamelCase = 0, 0
for key, value in state_dict.items():
if key.startswith('network' ):
UpperCamelCase = key.replace('network' , 'poolformer.encoder' )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith('bias' ) and "patch_embed" not in key:
patch_emb_offset += 1
UpperCamelCase = key[: key.find('proj' )]
UpperCamelCase = key.replace(lowercase , f'''patch_embeddings.{total_embed_found}.''' )
UpperCamelCase = key.replace('proj' , 'projection' )
if key.endswith('bias' ):
total_embed_found += 1
if "patch_embeddings" in key:
UpperCamelCase = 'poolformer.encoder.' + key
if "mlp.fc1" in key:
UpperCamelCase = replace_key_with_offset(lowercase , lowercase , 'mlp.fc1' , 'output.conv1' )
if "mlp.fc2" in key:
UpperCamelCase = replace_key_with_offset(lowercase , lowercase , 'mlp.fc2' , 'output.conv2' )
if "norm1" in key:
UpperCamelCase = replace_key_with_offset(lowercase , lowercase , 'norm1' , 'before_norm' )
if "norm2" in key:
UpperCamelCase = replace_key_with_offset(lowercase , lowercase , 'norm2' , 'after_norm' )
if "layer_scale_1" in key:
UpperCamelCase = replace_key_with_offset(lowercase , lowercase , 'layer_scale_1' , 'layer_scale_1' )
if "layer_scale_2" in key:
UpperCamelCase = replace_key_with_offset(lowercase , lowercase , 'layer_scale_2' , 'layer_scale_2' )
if "head" in key:
UpperCamelCase = key.replace('head' , 'classifier' )
UpperCamelCase = value
return new_state_dict
def A ( ) -> Tuple:
'''simple docstring'''
UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
UpperCamelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw )
return image
@torch.no_grad()
def A ( lowercase , lowercase , lowercase ) -> List[Any]:
'''simple docstring'''
UpperCamelCase = PoolFormerConfig()
# set attributes based on model_name
UpperCamelCase = 'huggingface/label-files'
UpperCamelCase = model_name[-3:]
UpperCamelCase = 1_000
UpperCamelCase = 'imagenet-1k-id2label.json'
UpperCamelCase = (1, 1_000)
# set config attributes
UpperCamelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type='dataset' ) , 'r' ) )
UpperCamelCase = {int(lowercase ): v for k, v in idalabel.items()}
UpperCamelCase = idalabel
UpperCamelCase = {v: k for k, v in idalabel.items()}
if size == "s12":
UpperCamelCase = [2, 2, 6, 2]
UpperCamelCase = [64, 128, 320, 512]
UpperCamelCase = 4.0
UpperCamelCase = 0.9
elif size == "s24":
UpperCamelCase = [4, 4, 12, 4]
UpperCamelCase = [64, 128, 320, 512]
UpperCamelCase = 4.0
UpperCamelCase = 0.9
elif size == "s36":
UpperCamelCase = [6, 6, 18, 6]
UpperCamelCase = [64, 128, 320, 512]
UpperCamelCase = 4.0
UpperCamelCase = 1e-6
UpperCamelCase = 0.9
elif size == "m36":
UpperCamelCase = [6, 6, 18, 6]
UpperCamelCase = [96, 192, 384, 768]
UpperCamelCase = 4.0
UpperCamelCase = 1e-6
UpperCamelCase = 0.9_5
elif size == "m48":
UpperCamelCase = [8, 8, 24, 8]
UpperCamelCase = [96, 192, 384, 768]
UpperCamelCase = 4.0
UpperCamelCase = 1e-6
UpperCamelCase = 0.9_5
else:
raise ValueError(f'''Size {size} not supported''' )
# load image processor
UpperCamelCase = PoolFormerImageProcessor(crop_pct=lowercase )
# Prepare image
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=lowercase , return_tensors='pt' ).pixel_values
logger.info(f'''Converting model {model_name}...''' )
# load original state dict
UpperCamelCase = torch.load(lowercase , map_location=torch.device('cpu' ) )
# rename keys
UpperCamelCase = rename_keys(lowercase )
# create HuggingFace model and load state dict
UpperCamelCase = PoolFormerForImageClassification(lowercase )
model.load_state_dict(lowercase )
model.eval()
# Define image processor
UpperCamelCase = PoolFormerImageProcessor(crop_pct=lowercase )
UpperCamelCase = image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values
# forward pass
UpperCamelCase = model(lowercase )
UpperCamelCase = outputs.logits
# define expected logit slices for different models
if size == "s12":
UpperCamelCase = torch.tensor([-0.3_0_4_5, -0.6_7_5_8, -0.4_8_6_9] )
elif size == "s24":
UpperCamelCase = torch.tensor([0.4_4_0_2, -0.1_3_7_4, -0.8_0_4_5] )
elif size == "s36":
UpperCamelCase = torch.tensor([-0.6_0_8_0, -0.5_1_3_3, -0.5_8_9_8] )
elif size == "m36":
UpperCamelCase = torch.tensor([0.3_9_5_2, 0.2_2_6_3, -1.2_6_6_8] )
elif size == "m48":
UpperCamelCase = torch.tensor([0.1_1_6_7, -0.0_6_5_6, -0.3_4_2_3] )
else:
raise ValueError(f'''Size {size} not supported''' )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] , lowercase , atol=1e-2 )
# finally, save model and image processor
logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(lowercase ).mkdir(exist_ok=lowercase )
model.save_pretrained(lowercase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
default="poolformer_s12",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
_UpperCAmelCase : Union[str, Any] = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 3 |
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_UpperCAmelCase : Dict = logging.get_logger(__name__)
_UpperCAmelCase : Optional[Any] = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
_UpperCAmelCase : str = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
_UpperCAmelCase : List[str] = {"facebook/blenderbot_small-90M": 512}
def A ( lowercase ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase = set()
UpperCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCamelCase = char
UpperCamelCase = set(lowercase )
return pairs
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Optional[Any] = VOCAB_FILES_NAMES
__lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP
__lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase : Any = ["input_ids", "attention_mask"]
def __init__( self , A_ , A_ , A_="__start__" , A_="__end__" , A_="__unk__" , A_="__null__" , **A_ , ) -> List[Any]:
"""simple docstring"""
super().__init__(unk_token=A_ , bos_token=A_ , eos_token=A_ , pad_token=A_ , **A_ )
with open(A_ , encoding='utf-8' ) as vocab_handle:
UpperCamelCase = json.load(A_ )
UpperCamelCase = {v: k for k, v in self.encoder.items()}
with open(A_ , encoding='utf-8' ) as merges_handle:
UpperCamelCase = merges_handle.read().split('\n' )[1:-1]
UpperCamelCase = [tuple(merge.split() ) for merge in merges]
UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) )
UpperCamelCase = {}
@property
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
return len(self.encoder )
def __UpperCamelCase ( self ) -> Dict:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def __UpperCamelCase ( self , A_ ) -> str:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
UpperCamelCase = re.sub('([.,!?()])' , r' \1' , A_ )
UpperCamelCase = re.sub('(\')' , r' \1 ' , A_ )
UpperCamelCase = re.sub(r'\s{2,}' , ' ' , A_ )
if "\n" in token:
UpperCamelCase = token.replace('\n' , ' __newln__' )
UpperCamelCase = token.split(' ' )
UpperCamelCase = []
for token in tokens:
if not len(A_ ):
continue
UpperCamelCase = token.lower()
UpperCamelCase = tuple(A_ )
UpperCamelCase = tuple(list(word[:-1] ) + [word[-1] + '</w>'] )
UpperCamelCase = get_pairs(A_ )
if not pairs:
words.append(A_ )
continue
while True:
UpperCamelCase = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
UpperCamelCase , UpperCamelCase = bigram
UpperCamelCase = []
UpperCamelCase = 0
while i < len(A_ ):
try:
UpperCamelCase = word.index(A_ , A_ )
new_word.extend(word[i:j] )
UpperCamelCase = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCamelCase = tuple(A_ )
UpperCamelCase = new_word
if len(A_ ) == 1:
break
else:
UpperCamelCase = get_pairs(A_ )
UpperCamelCase = '@@ '.join(A_ )
UpperCamelCase = word[:-4]
UpperCamelCase = word
words.append(A_ )
return " ".join(A_ )
def __UpperCamelCase ( self , A_ ) -> List[str]:
"""simple docstring"""
UpperCamelCase = []
UpperCamelCase = re.findall(r'\S+\n?' , A_ )
for token in words:
split_tokens.extend(list(self.bpe(A_ ).split(' ' ) ) )
return split_tokens
def __UpperCamelCase ( self , A_ ) -> int:
"""simple docstring"""
UpperCamelCase = token.lower()
return self.encoder.get(A_ , self.encoder.get(self.unk_token ) )
def __UpperCamelCase ( self , A_ ) -> str:
"""simple docstring"""
return self.decoder.get(A_ , self.unk_token )
def __UpperCamelCase ( self , A_ ) -> str:
"""simple docstring"""
UpperCamelCase = ' '.join(A_ ).replace('@@ ' , '' ).strip()
return out_string
def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(A_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCamelCase = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
UpperCamelCase = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(A_ , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' )
UpperCamelCase = 0
with open(A_ , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
' Please check that the tokenizer is not corrupted!' )
UpperCamelCase = token_index
writer.write(' '.join(A_ ) + '\n' )
index += 1
return vocab_file, merge_file
| 3 | 1 |
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
_UpperCAmelCase : Dict = logging.get_logger("transformers.models.speecht5")
_UpperCAmelCase : Optional[int] = {
"speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm",
"speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection",
"speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv",
"speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed",
}
_UpperCAmelCase : Dict = {
"text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens",
"text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha",
}
_UpperCAmelCase : Optional[Any] = {
"speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0",
"speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1",
"speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer",
"speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha",
"speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer",
}
_UpperCAmelCase : Optional[int] = {
"speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out",
"speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out",
"speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv",
"speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm",
"speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv",
"speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm",
"speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv",
"speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm",
"speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv",
"speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm",
"speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv",
"speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm",
}
_UpperCAmelCase : Any = {
"text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens",
}
_UpperCAmelCase : Optional[Any] = {
"text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head",
}
_UpperCAmelCase : Dict = {
"encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj",
"encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj",
"encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj",
"encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj",
"encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm",
"encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense",
"encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense",
"encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm",
"encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k",
}
_UpperCAmelCase : Optional[Any] = {
"decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj",
"decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj",
"decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj",
"decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj",
"decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm",
"decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj",
"decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj",
"decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj",
"decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj",
"decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm",
"decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense",
"decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense",
"decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm",
}
_UpperCAmelCase : Optional[int] = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
_UpperCAmelCase : Optional[int] = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
_UpperCAmelCase : Optional[int] = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
_UpperCAmelCase : str = []
_UpperCAmelCase : Union[str, Any] = [
"encoder.version",
"encoder.layers.*.norm_k.weight",
"encoder.layers.*.norm_k.bias",
"decoder.version",
"decoder.layers.*.norm_k.weight",
"decoder.layers.*.norm_k.bias",
"decoder.pos_emb.pe_k",
"speech_encoder_prenet.embed_positions._float_tensor",
"text_decoder_prenet.embed_positions._float_tensor",
]
_UpperCAmelCase : Tuple = IGNORE_KEYS + [
"encoder.proj",
"text_encoder_prenet.*",
"speech_decoder_prenet.*",
"speech_decoder_postnet.*",
]
_UpperCAmelCase : List[Any] = IGNORE_KEYS + [
"encoder.proj",
"speech_encoder_prenet.*",
"text_decoder_prenet.*",
"text_decoder_postnet.*",
]
_UpperCAmelCase : Any = IGNORE_KEYS + [
"encoder.proj",
"text_encoder_prenet.*",
"text_decoder_prenet.*",
"text_decoder_postnet.*",
]
def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]:
'''simple docstring'''
for attribute in key.split('.' ):
UpperCamelCase = getattr(lowercase , lowercase )
if weight_type is not None:
UpperCamelCase = getattr(lowercase , lowercase ).shape
else:
UpperCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}''' )
if weight_type == "weight":
UpperCamelCase = value
elif weight_type == "weight_g":
UpperCamelCase = value
elif weight_type == "weight_v":
UpperCamelCase = value
elif weight_type == "bias":
UpperCamelCase = value
elif weight_type == "running_mean":
UpperCamelCase = value
elif weight_type == "running_var":
UpperCamelCase = value
elif weight_type == "num_batches_tracked":
UpperCamelCase = value
else:
UpperCamelCase = value
logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' )
def A ( lowercase , lowercase ) -> Tuple:
'''simple docstring'''
for key in ignore_keys:
if key.endswith('.*' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
UpperCamelCase , UpperCamelCase = key.split('.*.' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def A ( lowercase , lowercase , lowercase ) -> List[str]:
'''simple docstring'''
UpperCamelCase = []
if task == "s2t":
UpperCamelCase = hf_model.speechta.encoder.prenet.feature_encoder
UpperCamelCase = MAPPING_S2T
UpperCamelCase = IGNORE_KEYS_S2T
elif task == "t2s":
UpperCamelCase = None
UpperCamelCase = MAPPING_T2S
UpperCamelCase = IGNORE_KEYS_T2S
elif task == "s2s":
UpperCamelCase = hf_model.speechta.encoder.prenet.feature_encoder
UpperCamelCase = MAPPING_S2S
UpperCamelCase = IGNORE_KEYS_S2S
else:
raise ValueError(f'''Unsupported task: {task}''' )
for name, value in fairseq_dict.items():
if should_ignore(lowercase , lowercase ):
logger.info(f'''{name} was ignored''' )
continue
UpperCamelCase = False
if "conv_layers" in name:
load_conv_layer(
lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == 'group' , )
UpperCamelCase = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
UpperCamelCase , UpperCamelCase = key.split('.*.' )
if prefix in name and suffix in name:
UpperCamelCase = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
UpperCamelCase = True
if "*" in mapped_key:
UpperCamelCase = name.split(lowercase )[0].split('.' )[-2]
UpperCamelCase = mapped_key.replace('*' , lowercase )
if "weight_g" in name:
UpperCamelCase = 'weight_g'
elif "weight_v" in name:
UpperCamelCase = 'weight_v'
elif "bias" in name:
UpperCamelCase = 'bias'
elif "weight" in name:
UpperCamelCase = 'weight'
elif "running_mean" in name:
UpperCamelCase = 'running_mean'
elif "running_var" in name:
UpperCamelCase = 'running_var'
elif "num_batches_tracked" in name:
UpperCamelCase = 'num_batches_tracked'
else:
UpperCamelCase = None
set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase )
continue
if not is_used:
unused_weights.append(lowercase )
logger.warning(f'''Unused weights: {unused_weights}''' )
def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = full_name.split('conv_layers.' )[-1]
UpperCamelCase = name.split('.' )
UpperCamelCase = int(items[0] )
UpperCamelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
UpperCamelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
UpperCamelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
UpperCamelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
UpperCamelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(lowercase )
@torch.no_grad()
def A ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , lowercase=None , ) -> List[Any]:
'''simple docstring'''
if config_path is not None:
UpperCamelCase = SpeechTaConfig.from_pretrained(lowercase )
else:
UpperCamelCase = SpeechTaConfig()
if task == "s2t":
UpperCamelCase = config.max_text_positions
UpperCamelCase = SpeechTaForSpeechToText(lowercase )
elif task == "t2s":
UpperCamelCase = 1_876
UpperCamelCase = 600
UpperCamelCase = config.max_speech_positions
UpperCamelCase = SpeechTaForTextToSpeech(lowercase )
elif task == "s2s":
UpperCamelCase = 1_876
UpperCamelCase = config.max_speech_positions
UpperCamelCase = SpeechTaForSpeechToSpeech(lowercase )
else:
raise ValueError(f'''Unknown task name: {task}''' )
if vocab_path:
UpperCamelCase = SpeechTaTokenizer(lowercase , model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
UpperCamelCase = AddedToken('<mask>' , lstrip=lowercase , rstrip=lowercase )
UpperCamelCase = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
UpperCamelCase = SpeechTaFeatureExtractor()
UpperCamelCase = SpeechTaProcessor(tokenizer=lowercase , feature_extractor=lowercase )
processor.save_pretrained(lowercase )
UpperCamelCase = torch.load(lowercase )
recursively_load_weights(fairseq_checkpoint['model'] , lowercase , lowercase )
model.save_pretrained(lowercase )
if repo_id:
print('Pushing to the hub...' )
processor.push_to_hub(lowercase )
model.push_to_hub(lowercase )
if __name__ == "__main__":
_UpperCAmelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument(
"--task",
default="s2t",
type=str,
help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.",
)
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
_UpperCAmelCase : Optional[Any] = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 3 |
def A ( lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = int(lowercase )
if decimal in (0, 1): # Exit cases for the recursion
return str(lowercase )
UpperCamelCase , UpperCamelCase = divmod(lowercase , 2 )
return binary_recursive(lowercase ) + str(lowercase )
def A ( lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = str(lowercase ).strip()
if not number:
raise ValueError('No input value was provided' )
UpperCamelCase = '-' if number.startswith('-' ) else ''
UpperCamelCase = number.lstrip('-' )
if not number.isnumeric():
raise ValueError('Input value is not an integer' )
return f'''{negative}0b{binary_recursive(int(lowercase ) )}'''
if __name__ == "__main__":
from doctest import testmod
testmod()
| 3 | 1 |
import importlib.metadata
import warnings
from copy import deepcopy
from packaging import version
from ..utils import logging
from .import_utils import is_accelerate_available, is_bitsandbytes_available
if is_bitsandbytes_available():
import bitsandbytes as bnb
import torch
import torch.nn as nn
from ..pytorch_utils import ConvaD
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.utils import find_tied_parameters
_UpperCAmelCase : int = logging.get_logger(__name__)
def A ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None ) -> Optional[Any]:
'''simple docstring'''
if "." in tensor_name:
UpperCamelCase = tensor_name.split('.' )
for split in splits[:-1]:
UpperCamelCase = getattr(lowercase , lowercase )
if new_module is None:
raise ValueError(f'''{module} has no attribute {split}.''' )
UpperCamelCase = new_module
UpperCamelCase = splits[-1]
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(f'''{module} does not have a parameter or a buffer named {tensor_name}.''' )
UpperCamelCase = tensor_name in module._buffers
UpperCamelCase = getattr(lowercase , lowercase )
if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None:
raise ValueError(f'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' )
UpperCamelCase = False
UpperCamelCase = False
if is_buffer or not is_bitsandbytes_available():
UpperCamelCase = False
UpperCamelCase = False
else:
UpperCamelCase = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit )
UpperCamelCase = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams )
if is_abit or is_abit:
UpperCamelCase = module._parameters[tensor_name]
if param.device.type != "cuda":
if value is None:
UpperCamelCase = old_value.to(lowercase )
elif isinstance(lowercase , torch.Tensor ):
UpperCamelCase = value.to('cpu' )
if value.dtype == torch.inta:
UpperCamelCase = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse(
'0.37.2' )
if not is_abit_serializable:
raise ValueError(
'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. '
'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' )
else:
UpperCamelCase = torch.tensor(lowercase , device='cpu' )
# Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls , lowercase ) and fpaa_statistics is None:
UpperCamelCase = new_value.T
UpperCamelCase = old_value.__dict__
if is_abit:
UpperCamelCase = bnb.nn.IntaParams(lowercase , requires_grad=lowercase , **lowercase ).to(lowercase )
elif is_abit:
UpperCamelCase = bnb.nn.Paramsabit(lowercase , requires_grad=lowercase , **lowercase ).to(lowercase )
UpperCamelCase = new_value
if fpaa_statistics is not None:
setattr(module.weight , 'SCB' , fpaa_statistics.to(lowercase ) )
else:
if value is None:
UpperCamelCase = old_value.to(lowercase )
elif isinstance(lowercase , torch.Tensor ):
UpperCamelCase = value.to(lowercase )
else:
UpperCamelCase = torch.tensor(lowercase , device=lowercase )
if is_buffer:
UpperCamelCase = new_value
else:
UpperCamelCase = nn.Parameter(lowercase , requires_grad=old_value.requires_grad )
UpperCamelCase = new_value
def A ( lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase=False ) -> Dict:
'''simple docstring'''
for name, module in model.named_children():
if current_key_name is None:
UpperCamelCase = []
current_key_name.append(lowercase )
if (isinstance(lowercase , nn.Linear ) or isinstance(lowercase , lowercase )) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in '.'.join(lowercase ) for key in modules_to_not_convert ):
with init_empty_weights():
if isinstance(lowercase , lowercase ):
UpperCamelCase , UpperCamelCase = module.weight.shape
else:
UpperCamelCase = module.in_features
UpperCamelCase = module.out_features
if quantization_config.quantization_method() == "llm_int8":
UpperCamelCase = bnb.nn.LinearabitLt(
lowercase , lowercase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , )
UpperCamelCase = True
else:
if (
quantization_config.llm_inta_skip_modules is not None
and name in quantization_config.llm_inta_skip_modules
):
pass
else:
UpperCamelCase = bnb.nn.Linearabit(
lowercase , lowercase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , )
UpperCamelCase = True
# Store the module class in case we need to transpose the weight later
UpperCamelCase = type(lowercase )
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(lowercase )
if len(list(module.children() ) ) > 0:
UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear(
lowercase , lowercase , lowercase , lowercase , has_been_replaced=lowercase , )
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def A ( lowercase , lowercase=None , lowercase=None , lowercase=None ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert
UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear(
lowercase , lowercase , lowercase , lowercase )
if not has_been_replaced:
logger.warning(
'You are loading your model in 8bit or 4bit but no linear modules were found in your model.'
' Please double check your model architecture, or submit an issue on github if you think this is'
' a bug.' )
return model
def A ( *lowercase , **lowercase ) -> Optional[int]:
'''simple docstring'''
warnings.warn(
'`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , lowercase , )
return replace_with_bnb_linear(*lowercase , **lowercase )
def A ( *lowercase , **lowercase ) -> Dict:
'''simple docstring'''
warnings.warn(
'`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , lowercase , )
return set_module_quantized_tensor_to_device(*lowercase , **lowercase )
def A ( lowercase ) -> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = deepcopy(lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_model.tie_weights()
UpperCamelCase = find_tied_parameters(lowercase )
# For compatibility with Accelerate < 0.18
if isinstance(lowercase , lowercase ):
UpperCamelCase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
UpperCamelCase = sum(lowercase , [] )
UpperCamelCase = len(lowercase ) > 0
# Check if it is a base model
UpperCamelCase = not hasattr(lowercase , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
UpperCamelCase = list(model.named_children() )
UpperCamelCase = [list_modules[-1][0]]
# add last module together with tied weights
UpperCamelCase = set(lowercase ) - set(lowercase )
UpperCamelCase = list(set(lowercase ) ) + list(lowercase )
# remove ".weight" from the keys
UpperCamelCase = ['.weight', '.bias']
UpperCamelCase = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
UpperCamelCase = name.replace(lowercase , '' )
filtered_module_names.append(lowercase )
return filtered_module_names
| 3 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_UpperCAmelCase : Tuple = logging.get_logger(__name__)
_UpperCAmelCase : Tuple = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.linear_k": "encoder.layers.*.self_attn.linear_k",
"self_attn.linear_v": "encoder.layers.*.self_attn.linear_v",
"self_attn.linear_q": "encoder.layers.*.self_attn.linear_q",
"self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u",
"self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v",
"self_attn.linear_out": "encoder.layers.*.self_attn.linear_out",
"self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos",
"self_attn.rotary_emb": "encoder.embed_positions",
"self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm",
"conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1",
"conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2",
"conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv",
"conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm",
"conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm",
"ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense",
"ffn1.w_2": "encoder.layers.*.ffn1.output_dense",
"ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm",
"ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense",
"ffn2.w_2": "encoder.layers.*.ffn2.output_dense",
"ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
_UpperCAmelCase : Any = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict:
'''simple docstring'''
for attribute in key.split('.' ):
UpperCamelCase = getattr(lowercase , lowercase )
if weight_type is not None:
UpperCamelCase = getattr(lowercase , lowercase ).shape
else:
UpperCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}''' )
if weight_type == "weight":
UpperCamelCase = value
elif weight_type == "weight_g":
UpperCamelCase = value
elif weight_type == "weight_v":
UpperCamelCase = value
elif weight_type == "bias":
UpperCamelCase = value
elif weight_type == "running_mean":
UpperCamelCase = value
elif weight_type == "running_var":
UpperCamelCase = value
elif weight_type == "num_batches_tracked":
UpperCamelCase = value
elif weight_type == "inv_freq":
UpperCamelCase = value
else:
UpperCamelCase = value
logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def A ( lowercase , lowercase , lowercase ) -> Any:
'''simple docstring'''
UpperCamelCase = []
UpperCamelCase = fairseq_model.state_dict()
UpperCamelCase = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
UpperCamelCase = False
if "conv_layers" in name:
load_conv_layer(
lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == 'group' , )
UpperCamelCase = True
else:
for key, mapped_key in MAPPING.items():
UpperCamelCase = 'wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
UpperCamelCase = True
if "*" in mapped_key:
UpperCamelCase = name.split(lowercase )[0].split('.' )[-2]
UpperCamelCase = mapped_key.replace('*' , lowercase )
if "pos_bias_u" in name:
UpperCamelCase = None
elif "pos_bias_v" in name:
UpperCamelCase = None
elif "weight_g" in name:
UpperCamelCase = 'weight_g'
elif "weight_v" in name:
UpperCamelCase = 'weight_v'
elif "bias" in name:
UpperCamelCase = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCamelCase = 'weight'
elif "running_mean" in name:
UpperCamelCase = 'running_mean'
elif "inv_freq" in name:
UpperCamelCase = 'inv_freq'
elif "running_var" in name:
UpperCamelCase = 'running_var'
elif "num_batches_tracked" in name:
UpperCamelCase = 'num_batches_tracked'
else:
UpperCamelCase = None
set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase )
continue
if not is_used:
unused_weights.append(lowercase )
logger.warning(f'''Unused weights: {unused_weights}''' )
def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase = full_name.split('conv_layers.' )[-1]
UpperCamelCase = name.split('.' )
UpperCamelCase = int(items[0] )
UpperCamelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
UpperCamelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
UpperCamelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
UpperCamelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
UpperCamelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(lowercase )
@torch.no_grad()
def A ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> int:
'''simple docstring'''
if config_path is not None:
UpperCamelCase = WavaVecaConformerConfig.from_pretrained(lowercase , hidden_act='swish' )
else:
UpperCamelCase = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
UpperCamelCase = 'rotary'
if is_finetuned:
if dict_path:
UpperCamelCase = Dictionary.load(lowercase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCamelCase = target_dict.pad_index
UpperCamelCase = target_dict.bos_index
UpperCamelCase = target_dict.eos_index
UpperCamelCase = len(target_dict.symbols )
UpperCamelCase = os.path.join(lowercase , 'vocab.json' )
if not os.path.isdir(lowercase ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowercase ) )
return
os.makedirs(lowercase , exist_ok=lowercase )
UpperCamelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCamelCase = 0
UpperCamelCase = 1
with open(lowercase , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(lowercase , lowercase )
UpperCamelCase = WavaVecaCTCTokenizer(
lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowercase , )
UpperCamelCase = True if config.feat_extract_norm == 'layer' else False
UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , )
UpperCamelCase = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase )
processor.save_pretrained(lowercase )
UpperCamelCase = WavaVecaConformerForCTC(lowercase )
else:
UpperCamelCase = WavaVecaConformerForPreTraining(lowercase )
if is_finetuned:
UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
UpperCamelCase = argparse.Namespace(task='audio_pretraining' )
UpperCamelCase = fairseq.tasks.setup_task(lowercase )
UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase )
UpperCamelCase = model[0].eval()
recursively_load_weights(lowercase , lowercase , not is_finetuned )
hf_wavavec.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
_UpperCAmelCase : Dict = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 3 | 1 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.