code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _snake_case ( pl.LightningModule ): '''simple docstring''' def __init__( self: str ,lowerCamelCase_: int ) -> int: super().__init__() UpperCAmelCase_ : int = model UpperCAmelCase_ : List[Any] = 2 UpperCAmelCase_ : Any = nn.Linear(self.model.config.hidden_size ,self.num_labels ) def A__ ( self: int ) -> Optional[Any]: pass def lowerCamelCase_ ( _a : str , _a : str , _a : str ): '''simple docstring''' UpperCAmelCase_ : Tuple = LongformerModel.from_pretrained(_a ) UpperCAmelCase_ : Optional[int] = LightningModel(_a ) UpperCAmelCase_ : Optional[Any] = torch.load(_a , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model UpperCAmelCase_ : Optional[Any] = LongformerForQuestionAnswering.from_pretrained(_a ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_a ) print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase_ = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
345
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _snake_case : '''simple docstring''' def __init__( self: Optional[int] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Tuple=13 ,lowerCamelCase_: int=7 ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Dict=True ,lowerCamelCase_: str=True ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: int=99 ,lowerCamelCase_: List[str]=64 ,lowerCamelCase_: Tuple=32 ,lowerCamelCase_: List[str]=5 ,lowerCamelCase_: str=4 ,lowerCamelCase_: str=37 ,lowerCamelCase_: Union[str, Any]="gelu" ,lowerCamelCase_: Union[str, Any]=0.1 ,lowerCamelCase_: str=0.1 ,lowerCamelCase_: List[str]=512 ,lowerCamelCase_: Dict=16 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: List[str]=0.0_2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: Union[str, Any]=4 ,lowerCamelCase_: str=None ,) -> List[str]: UpperCAmelCase_ : Any = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : Dict = use_input_mask UpperCAmelCase_ : Any = use_token_type_ids UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : List[str] = embedding_size UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : Any = type_sequence_label_size UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Optional[int] = num_labels UpperCAmelCase_ : Optional[int] = num_choices UpperCAmelCase_ : List[str] = scope def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : List[str] = None if self.use_input_mask: UpperCAmelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Dict = None if self.use_token_type_ids: UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : int = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase_ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self: Any ) -> Dict: return MobileBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase_ ,initializer_range=self.initializer_range ,) def A__ ( self: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> int: UpperCAmelCase_ : Any = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def A__ ( self: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Dict ) -> int: UpperCAmelCase_ : Union[str, Any] = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self: str ,lowerCamelCase_: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: int ) -> int: UpperCAmelCase_ : List[Any] = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def A__ ( self: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> Optional[Any]: UpperCAmelCase_ : Tuple = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,next_sentence_label=lowerCamelCase_ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def A__ ( self: Any ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,start_positions=lowerCamelCase_ ,end_positions=lowerCamelCase_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def A__ ( self: List[str] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Any ) -> str: UpperCAmelCase_ : Optional[Any] = self.num_labels UpperCAmelCase_ : Union[str, Any] = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ) -> Any: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self: Tuple ,lowerCamelCase_: str ,lowerCamelCase_: int ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = self.num_choices UpperCAmelCase_ : Tuple = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Dict = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : str = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Optional[int] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def A__ ( self: List[str] ) -> str: UpperCAmelCase_ : str = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) A__ : List[str] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) A__ : List[str] = True def A__ ( self: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: int=False ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = super()._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ,return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): UpperCAmelCase_ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase_ ) return inputs_dict def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : List[str] = MobileBertModelTester(self ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self ,config_class=lowerCamelCase_ ,hidden_size=37 ) def A__ ( self: Optional[Any] ) -> List[Any]: self.config_tester.run_common_tests() def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Tuple: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _a : Union[str, Any] ): '''simple docstring''' return torch.tensor( _a , dtype=torch.long , device=_a , ) UpperCamelCase_ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self: List[Any] ) -> str: UpperCAmelCase_ : Any = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : str = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ )[0] UpperCAmelCase_ : Union[str, Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = torch.tensor( [ [ [-2.473_6526e07, 8.269_1656e04, 1.652_1838e05], [-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00], [2.604_7359e00, 1.567_7652e00, -1.732_4188e-01], ] ] ,device=lowerCamelCase_ ,) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
345
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore UpperCamelCase_ = ''' Human: <<task>> Assistant: ''' UpperCamelCase_ = '''huggingface-tools/default-prompts''' UpperCamelCase_ = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def lowerCamelCase_ ( _a : Union[str, Any] , _a : List[Any] , _a : Any="run" ): '''simple docstring''' if prompt_or_repo_id is None: UpperCAmelCase_ : str = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("""\\s""" , _a ) is not None: return prompt_or_repo_id UpperCAmelCase_ : Dict = cached_file( _a , PROMPT_FILES[mode] , repo_type="""dataset""" , user_agent={"""agent""": agent_name} ) with open(_a , """r""" , encoding="""utf-8""" ) as f: return f.read()
345
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: str ) -> int: UpperCAmelCase_ : List[Any] = """ylacombe/bark-small""" UpperCAmelCase_ : Tuple = tempfile.mkdtemp() UpperCAmelCase_ : Union[str, Any] = """en_speaker_1""" UpperCAmelCase_ : Optional[Any] = """This is a test string""" UpperCAmelCase_ : int = """speaker_embeddings_path.json""" UpperCAmelCase_ : Any = """speaker_embeddings""" def A__ ( self: Tuple ,**lowerCamelCase_: List[str] ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint ,**lowerCamelCase_ ) def A__ ( self: str ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def A__ ( self: List[Any] ) -> int: UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = BarkProcessor(tokenizer=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) @slow def A__ ( self: List[Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) processor.save_pretrained( self.tmpdirname ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,speaker_embeddings_directory=self.speaker_embeddings_directory ,) UpperCAmelCase_ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname ,self.speaker_embeddings_dict_path ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : Any = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) UpperCAmelCase_ : Optional[int] = 35 UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : Dict = 8 UpperCAmelCase_ : Optional[int] = { """semantic_prompt""": np.ones(lowerCamelCase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : str = processor(text=self.input_string ,voice_preset=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,"""file.npz""" ) np.savez(lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string ,voice_preset=lowerCamelCase_ ) UpperCAmelCase_ : int = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Union[str, Any] = processor(text=self.input_string ,voice_preset=self.voice_preset ) def A__ ( self: Dict ) -> Tuple: UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Dict = BarkProcessor(tokenizer=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string ) UpperCAmelCase_ : str = tokenizer( self.input_string ,padding="""max_length""" ,max_length=256 ,add_special_tokens=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,return_token_type_ids=lowerCamelCase_ ,) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key].squeeze().tolist() )
345
1
# Imports import numpy as np class _snake_case : '''simple docstring''' def __init__( self: Union[str, Any] ,lowerCamelCase_: Dict=None ,lowerCamelCase_: Dict=None ,lowerCamelCase_: Optional[Any]=None ,lowerCamelCase_: Union[str, Any]=None ,lowerCamelCase_: Union[str, Any]=None ) -> List[str]: self.set_matricies(red=lowerCamelCase_ ,green=lowerCamelCase_ ,blue=lowerCamelCase_ ,red_edge=lowerCamelCase_ ,nir=lowerCamelCase_ ) def A__ ( self: int ,lowerCamelCase_: Tuple=None ,lowerCamelCase_: List[str]=None ,lowerCamelCase_: List[Any]=None ,lowerCamelCase_: Optional[int]=None ,lowerCamelCase_: Union[str, Any]=None ) -> int: if red is not None: UpperCAmelCase_ : int = red if green is not None: UpperCAmelCase_ : str = green if blue is not None: UpperCAmelCase_ : Optional[int] = blue if red_edge is not None: UpperCAmelCase_ : List[Any] = red_edge if nir is not None: UpperCAmelCase_ : List[Any] = nir return True def A__ ( self: int ,lowerCamelCase_: Optional[Any]="" ,lowerCamelCase_: Optional[int]=None ,lowerCamelCase_: Any=None ,lowerCamelCase_: int=None ,lowerCamelCase_: Optional[Any]=None ,lowerCamelCase_: Tuple=None ) -> Optional[int]: self.set_matricies(red=lowerCamelCase_ ,green=lowerCamelCase_ ,blue=lowerCamelCase_ ,red_edge=lowerCamelCase_ ,nir=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def A__ ( self: int ) -> Any: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def A__ ( self: Optional[int] ) -> Optional[int]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def A__ ( self: Any ) -> Any: return self.nir * (self.red / (self.green**2)) def A__ ( self: Tuple ) -> Optional[int]: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def A__ ( self: str ) -> Optional[int]: return (self.nir - self.red) / (self.nir + self.red) def A__ ( self: Union[str, Any] ) -> Optional[Any]: return (self.nir - self.blue) / (self.nir + self.blue) def A__ ( self: Optional[int] ) -> Tuple: return (self.redEdge - self.red) / (self.redEdge + self.red) def A__ ( self: int ) -> Any: return (self.nir - self.green) / (self.nir + self.green) def A__ ( self: List[str] ) -> List[Any]: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def A__ ( self: str ) -> Union[str, Any]: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def A__ ( self: List[Any] ) -> List[str]: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def A__ ( self: Dict ) -> Tuple: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def A__ ( self: List[str] ,lowerCamelCase_: Dict=0.0_8 ,lowerCamelCase_: Optional[int]=1.2_2 ,lowerCamelCase_: List[Any]=0.0_3 ) -> Tuple: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def A__ ( self: List[Any] ) -> Tuple: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def A__ ( self: Optional[int] ) -> Union[str, Any]: return (self.nir / self.green) - 1 def A__ ( self: Optional[Any] ) -> int: return (self.nir / self.redEdge) - 1 def A__ ( self: Dict ) -> str: return (self.red - self.blue) / self.red def A__ ( self: Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : str = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def A__ ( self: int ) -> Dict: return self.nir - self.green def A__ ( self: List[str] ) -> str: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def A__ ( self: str ) -> int: UpperCAmelCase_ : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def A__ ( self: Optional[Any] ,lowerCamelCase_: Tuple=0.1_6 ) -> str: return (self.nir - self.green) / (self.nir + self.green + y) def A__ ( self: int ,lowerCamelCase_: Union[str, Any]=0.5 ) -> Optional[int]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def A__ ( self: List[str] ) -> Tuple: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def A__ ( self: Any ,lowerCamelCase_: List[Any]=None ,lowerCamelCase_: Any=None ) -> str: return (self.nir - b) / (a * self.red) def A__ ( self: List[Any] ) -> Tuple: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def A__ ( self: List[str] ) -> Dict: return (self.red + self.green + self.blue) / 3_0.5 def A__ ( self: Dict ) -> Tuple: return self.nir / self.red def A__ ( self: List[str] ) -> Tuple: return (self.rvi() - 1) / (self.rvi() + 1) def A__ ( self: Any ) -> Union[str, Any]: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def A__ ( self: List[Any] ) -> Dict: return self.green / (self.nir + self.red + self.green) def A__ ( self: Tuple ) -> List[str]: return self.nir / (self.nir + self.red + self.green) def A__ ( self: Optional[int] ) -> List[str]: return self.red / (self.nir + self.red + self.green) def A__ ( self: Union[str, Any] ) -> Dict: return (self.green - self.red) / (self.green + self.red) def A__ ( self: str ) -> int: return (self.red - self.green) / (self.red + self.green) def A__ ( self: int ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) UpperCAmelCase_ : Union[str, Any] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def A__ ( self: Union[str, Any] ) -> Any: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def A__ ( self: Union[str, Any] ) -> int: return self.nir / self.red def A__ ( self: Union[str, Any] ) -> Tuple: return (self.ndvi() + 0.5) ** (1 / 2) def A__ ( self: List[Any] ) -> List[Any]: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
345
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Any: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : str = -1 UpperCAmelCase_ : Dict = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase_ : Optional[int] = cs.out[:-1] self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: Dict ) -> Optional[Any]: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = -1 UpperCAmelCase_ : List[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : Dict = tokenizer.decode(greedy_ids[0] ) UpperCAmelCase_ : str = TextIteratorStreamer(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} UpperCAmelCase_ : str = Thread(target=model.generate ,kwargs=lowerCamelCase_ ) thread.start() UpperCAmelCase_ : int = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[Any] ) -> Dict: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = -1 UpperCAmelCase_ : Tuple = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Dict = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : str = greedy_ids[:, input_ids.shape[1] :] UpperCAmelCase_ : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ ,skip_prompt=lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase_ : List[str] = cs.out[:-1] self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: str ) -> str: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained("""distilgpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Any = -1 UpperCAmelCase_ : Union[str, Any] = torch.ones((1, 5) ,device=lowerCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: UpperCAmelCase_ : Union[str, Any] = TextStreamer(lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=1 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token UpperCAmelCase_ : List[str] = cs.out[:-1] # Remove the final "\n" UpperCAmelCase_ : Dict = tokenizer(lowerCamelCase_ ,return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape ,(1, 1) ) def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Any = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = -1 UpperCAmelCase_ : Optional[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = TextIteratorStreamer(lowerCamelCase_ ,timeout=0.0_0_1 ) UpperCAmelCase_ : Any = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} UpperCAmelCase_ : Dict = Thread(target=model.generate ,kwargs=lowerCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCamelCase_ ): UpperCAmelCase_ : Union[str, Any] = """""" for new_text in streamer: streamer_text += new_text
345
1
def lowerCamelCase_ ( _a : list[list[int]] , _a : int , _a : int , _a : list[int] ): '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def lowerCamelCase_ ( _a : list[list[int]] , _a : list[int] , _a : int ): '''simple docstring''' if curr_ind == len(_a ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_a ) ): if valid_connection(_a , _a , _a , _a ): # Insert current vertex into path as next transition UpperCAmelCase_ : Tuple = next_ver # Validate created path if util_hamilton_cycle(_a , _a , curr_ind + 1 ): return True # Backtrack UpperCAmelCase_ : Tuple = -1 return False def lowerCamelCase_ ( _a : list[list[int]] , _a : int = 0 ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = [-1] * (len(_a ) + 1) # initialize start and end of path with starting index UpperCAmelCase_ : Optional[Any] = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_a , _a , 1 ) else []
345
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _snake_case ( unittest.TestCase ): '''simple docstring''' @property def A__ ( self: Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") ,up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") ,) return model @property def A__ ( self: Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=3 ,) return model @property def A__ ( self: Tuple ) -> Any: torch.manual_seed(0 ) UpperCAmelCase_ : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(lowerCamelCase_ ) def A__ ( self: str ) -> Optional[Any]: UpperCAmelCase_ : str = self.dummy_uncond_unet UpperCAmelCase_ : List[Any] = DDIMScheduler() UpperCAmelCase_ : List[Any] = self.dummy_vq_model UpperCAmelCase_ : Optional[int] = LDMPipeline(unet=lowerCamelCase_ ,vqvae=lowerCamelCase_ ,scheduler=lowerCamelCase_ ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = torch.manual_seed(0 ) UpperCAmelCase_ : int = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ).images UpperCAmelCase_ : List[str] = torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ,return_dict=lowerCamelCase_ )[0] UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : str = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) UpperCAmelCase_ : Tuple = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = ldm(generator=lowerCamelCase_ ,num_inference_steps=5 ,output_type="""numpy""" ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase_ : int = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) UpperCAmelCase_ : Union[str, Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
345
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
345
def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' UpperCAmelCase_ : Tuple = [0] * len(_a ) UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Dict = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_a ) ): if indegree[i] == 0: queue.append(_a ) while queue: UpperCAmelCase_ : List[str] = queue.pop(0 ) cnt += 1 topo.append(_a ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_a ) if cnt != len(_a ): print("""Cycle exists""" ) else: print(_a ) # Adjacency List of Graph UpperCamelCase_ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
345
1
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _snake_case : '''simple docstring''' def __init__( self: Optional[int] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Tuple=13 ,lowerCamelCase_: int=7 ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Dict=True ,lowerCamelCase_: str=True ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: int=99 ,lowerCamelCase_: List[str]=64 ,lowerCamelCase_: Tuple=32 ,lowerCamelCase_: List[str]=5 ,lowerCamelCase_: str=4 ,lowerCamelCase_: str=37 ,lowerCamelCase_: Union[str, Any]="gelu" ,lowerCamelCase_: Union[str, Any]=0.1 ,lowerCamelCase_: str=0.1 ,lowerCamelCase_: List[str]=512 ,lowerCamelCase_: Dict=16 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: List[str]=0.0_2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: Union[str, Any]=4 ,lowerCamelCase_: str=None ,) -> List[str]: UpperCAmelCase_ : Any = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : Dict = use_input_mask UpperCAmelCase_ : Any = use_token_type_ids UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : List[str] = embedding_size UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : Any = type_sequence_label_size UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Optional[int] = num_labels UpperCAmelCase_ : Optional[int] = num_choices UpperCAmelCase_ : List[str] = scope def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : List[str] = None if self.use_input_mask: UpperCAmelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Dict = None if self.use_token_type_ids: UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : int = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase_ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self: Any ) -> Dict: return MobileBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase_ ,initializer_range=self.initializer_range ,) def A__ ( self: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> int: UpperCAmelCase_ : Any = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def A__ ( self: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Dict ) -> int: UpperCAmelCase_ : Union[str, Any] = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self: str ,lowerCamelCase_: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: int ) -> int: UpperCAmelCase_ : List[Any] = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def A__ ( self: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> Optional[Any]: UpperCAmelCase_ : Tuple = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,next_sentence_label=lowerCamelCase_ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def A__ ( self: Any ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,start_positions=lowerCamelCase_ ,end_positions=lowerCamelCase_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def A__ ( self: List[str] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Any ) -> str: UpperCAmelCase_ : Optional[Any] = self.num_labels UpperCAmelCase_ : Union[str, Any] = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ) -> Any: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self: Tuple ,lowerCamelCase_: str ,lowerCamelCase_: int ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = self.num_choices UpperCAmelCase_ : Tuple = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Dict = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : str = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Optional[int] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def A__ ( self: List[str] ) -> str: UpperCAmelCase_ : str = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) A__ : List[str] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) A__ : List[str] = True def A__ ( self: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: int=False ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = super()._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ,return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): UpperCAmelCase_ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase_ ) return inputs_dict def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : List[str] = MobileBertModelTester(self ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self ,config_class=lowerCamelCase_ ,hidden_size=37 ) def A__ ( self: Optional[Any] ) -> List[Any]: self.config_tester.run_common_tests() def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Tuple: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _a : Union[str, Any] ): '''simple docstring''' return torch.tensor( _a , dtype=torch.long , device=_a , ) UpperCamelCase_ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self: List[Any] ) -> str: UpperCAmelCase_ : Any = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : str = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ )[0] UpperCAmelCase_ : Union[str, Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = torch.tensor( [ [ [-2.473_6526e07, 8.269_1656e04, 1.652_1838e05], [-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00], [2.604_7359e00, 1.567_7652e00, -1.732_4188e-01], ] ] ,device=lowerCamelCase_ ,) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
345
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = "swinv2" A__ : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: List[str] ,lowerCamelCase_: List[str]=224 ,lowerCamelCase_: List[str]=4 ,lowerCamelCase_: List[Any]=3 ,lowerCamelCase_: Optional[Any]=96 ,lowerCamelCase_: Any=[2, 2, 6, 2] ,lowerCamelCase_: Dict=[3, 6, 12, 24] ,lowerCamelCase_: str=7 ,lowerCamelCase_: Optional[Any]=4.0 ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.0 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: str=False ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: Union[str, Any]=1e-5 ,lowerCamelCase_: str=32 ,**lowerCamelCase_: List[str] ,) -> Tuple: super().__init__(**lowerCamelCase_ ) UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : Tuple = patch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : List[Any] = embed_dim UpperCAmelCase_ : Dict = depths UpperCAmelCase_ : Dict = len(lowerCamelCase_ ) UpperCAmelCase_ : str = num_heads UpperCAmelCase_ : Tuple = window_size UpperCAmelCase_ : int = mlp_ratio UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : int = drop_path_rate UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : List[str] = use_absolute_embeddings UpperCAmelCase_ : Dict = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ : List[str] = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) UpperCAmelCase_ : Any = (0, 0, 0, 0)
345
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''', } # fmt: off UpperCamelCase_ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] UpperCamelCase_ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class _snake_case ( __snake_case ): '''simple docstring''' A__ : Any = "whisper" A__ : Optional[Any] = ["past_key_values"] A__ : Dict = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self: Any ,lowerCamelCase_: Optional[int]=51865 ,lowerCamelCase_: str=80 ,lowerCamelCase_: Tuple=6 ,lowerCamelCase_: Tuple=4 ,lowerCamelCase_: int=6 ,lowerCamelCase_: Tuple=4 ,lowerCamelCase_: Dict=1536 ,lowerCamelCase_: Tuple=1536 ,lowerCamelCase_: str=0.0 ,lowerCamelCase_: Dict=0.0 ,lowerCamelCase_: str=50257 ,lowerCamelCase_: List[Any]=True ,lowerCamelCase_: int=True ,lowerCamelCase_: Tuple="gelu" ,lowerCamelCase_: Any=256 ,lowerCamelCase_: str=0.0 ,lowerCamelCase_: List[Any]=0.0 ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: List[Any]=0.0_2 ,lowerCamelCase_: Optional[int]=False ,lowerCamelCase_: List[str]=1500 ,lowerCamelCase_: Dict=448 ,lowerCamelCase_: List[Any]=50256 ,lowerCamelCase_: Optional[Any]=50256 ,lowerCamelCase_: Optional[Any]=50256 ,lowerCamelCase_: Union[str, Any]=None ,lowerCamelCase_: List[str]=[220, 50256] ,lowerCamelCase_: str=False ,lowerCamelCase_: List[Any]=256 ,lowerCamelCase_: Tuple=False ,lowerCamelCase_: Union[str, Any]=0.0_5 ,lowerCamelCase_: List[str]=10 ,lowerCamelCase_: Tuple=2 ,lowerCamelCase_: Union[str, Any]=0.0 ,lowerCamelCase_: Any=10 ,lowerCamelCase_: Dict=0 ,lowerCamelCase_: str=7 ,**lowerCamelCase_: int ,) -> List[str]: UpperCAmelCase_ : str = vocab_size UpperCAmelCase_ : str = num_mel_bins UpperCAmelCase_ : Any = d_model UpperCAmelCase_ : List[str] = encoder_layers UpperCAmelCase_ : Optional[Any] = encoder_attention_heads UpperCAmelCase_ : List[str] = decoder_layers UpperCAmelCase_ : Dict = decoder_attention_heads UpperCAmelCase_ : Optional[int] = decoder_ffn_dim UpperCAmelCase_ : int = encoder_ffn_dim UpperCAmelCase_ : Tuple = dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Optional[int] = activation_dropout UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : List[str] = init_std UpperCAmelCase_ : List[Any] = encoder_layerdrop UpperCAmelCase_ : List[str] = decoder_layerdrop UpperCAmelCase_ : Any = use_cache UpperCAmelCase_ : Optional[int] = encoder_layers UpperCAmelCase_ : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase_ : List[str] = max_source_positions UpperCAmelCase_ : int = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Tuple = classifier_proj_size UpperCAmelCase_ : List[str] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : Optional[Any] = apply_spec_augment UpperCAmelCase_ : Union[str, Any] = mask_time_prob UpperCAmelCase_ : List[Any] = mask_time_length UpperCAmelCase_ : int = mask_time_min_masks UpperCAmelCase_ : Union[str, Any] = mask_feature_prob UpperCAmelCase_ : Optional[Any] = mask_feature_length UpperCAmelCase_ : List[Any] = mask_feature_min_masks UpperCAmelCase_ : Optional[int] = median_filter_width super().__init__( pad_token_id=lowerCamelCase_ ,bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,is_encoder_decoder=lowerCamelCase_ ,decoder_start_token_id=lowerCamelCase_ ,suppress_tokens=lowerCamelCase_ ,begin_suppress_tokens=lowerCamelCase_ ,**lowerCamelCase_ ,) class _snake_case ( __snake_case ): '''simple docstring''' @property def A__ ( self: str ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase_ : Tuple = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase_ : Optional[int] = {0: """batch"""} else: UpperCAmelCase_ : Any = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ ,direction="""inputs""" ) return common_inputs def A__ ( self: List[str] ,lowerCamelCase_: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,lowerCamelCase_: int = -1 ,lowerCamelCase_: int = -1 ,lowerCamelCase_: bool = False ,lowerCamelCase_: Optional["TensorType"] = None ,lowerCamelCase_: int = 22050 ,lowerCamelCase_: float = 5.0 ,lowerCamelCase_: int = 220 ,) -> Mapping[str, Any]: UpperCAmelCase_ : Tuple = OrderedDict() UpperCAmelCase_ : Any = OnnxConfig.generate_dummy_inputs( self ,preprocessor=preprocessor.feature_extractor ,batch_size=lowerCamelCase_ ,framework=lowerCamelCase_ ,sampling_rate=lowerCamelCase_ ,time_duration=lowerCamelCase_ ,frequency=lowerCamelCase_ ,) UpperCAmelCase_ : Tuple = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase_ : str = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase_ : int = super().generate_dummy_inputs( preprocessor.tokenizer ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase_ : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase_ : Any = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def A__ ( self: int ) -> float: return 1e-3
345
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: int ) -> str: # A mock response for an HTTP head request to emulate server down UpperCAmelCase_ : List[str] = mock.Mock() UpperCAmelCase_ : List[Any] = 500 UpperCAmelCase_ : Union[str, Any] = {} UpperCAmelCase_ : Union[str, Any] = HTTPError UpperCAmelCase_ : Any = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ : Union[str, Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head: UpperCAmelCase_ : Any = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def A__ ( self: str ) -> int: # A mock response for an HTTP head request to emulate server down UpperCAmelCase_ : str = mock.Mock() UpperCAmelCase_ : Optional[int] = 500 UpperCAmelCase_ : int = {} UpperCAmelCase_ : Union[str, Any] = HTTPError UpperCAmelCase_ : List[Any] = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ : Optional[int] = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head: UpperCAmelCase_ : Any = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def A__ ( self: str ) -> Dict: # This test is for deprecated behavior and can be removed in v5 try: UpperCAmelCase_ : Any = tempfile.mktemp() with open(lowerCamelCase_ ,"""wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = AlbertTokenizer.from_pretrained(lowerCamelCase_ ) finally: os.remove(lowerCamelCase_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" ,"""wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" ,lowerCamelCase_ ) UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def A__ ( self: List[str] ) -> Tuple: # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase_ : str = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class _snake_case ( unittest.TestCase ): '''simple docstring''' A__ : str = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def A__ ( cls: Dict ) -> Optional[int]: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def A__ ( cls: Optional[Any] ) -> List[str]: try: delete_repo(token=cls._token ,repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def A__ ( self: Any ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Tuple = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : List[Any] = BertTokenizer(lowerCamelCase_ ) tokenizer.push_to_hub("""test-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ,repo_id="""test-tokenizer""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def A__ ( self: Optional[int] ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[Any] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : Dict = BertTokenizer(lowerCamelCase_ ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" ,use_auth_token=self._token ) UpperCAmelCase_ : Dict = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowerCamelCase_ ,repo_id="""valid_org/test-tokenizer-org""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def A__ ( self: Optional[int] ) -> Optional[Any]: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Any = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : Optional[Any] = CustomTokenizer(lowerCamelCase_ ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[str] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : str = BertTokenizerFast.from_pretrained(lowerCamelCase_ ) bert_tokenizer.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = CustomTokenizerFast.from_pretrained(lowerCamelCase_ ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizerFast""" ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' ,use_fast=lowerCamelCase_ ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[Any] ) -> Any: UpperCAmelCase_ : Any = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def A__ ( self: Tuple ) -> Optional[int]: UpperCAmelCase_ : str = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS]""", """ This is a """, """extra_id_100"""] ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ : Dict = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) ,["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) ,["""BC""", """A"""] ) def A__ ( self: Union[str, Any] ) -> int: UpperCAmelCase_ : List[str] = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def A__ ( self: int ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def A__ ( self: int ) -> List[str]: UpperCAmelCase_ : int = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) ,["""AB""", """C"""] ) def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) ,["""ABC""", """D"""] ) def A__ ( self: List[Any] ) -> Any: # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCAmelCase_ : Tuple = Trie() UpperCAmelCase_ : Optional[Any] = trie.cut_text("""ABC""" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(lowerCamelCase_ ,["""AB""", """C"""] )
345
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: int ) -> Any: UpperCAmelCase_ : int = tempfile.mkdtemp() UpperCAmelCase_ : str = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """的""", """价""", """格""", """是""", """15""", """便""", """alex""", """##andra""", """,""", """。""", """-""", """t""", """shirt""", ] UpperCAmelCase_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) UpperCAmelCase_ : int = { """do_resize""": True, """size""": {"""height""": 224, """width""": 224}, """do_center_crop""": True, """crop_size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], """image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], """do_convert_rgb""": True, } UpperCAmelCase_ : Any = os.path.join(self.tmpdirname ,lowerCamelCase_ ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: Tuple ,**lowerCamelCase_: Any ) -> Dict: return BertTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase_ ) def A__ ( self: Dict ,**lowerCamelCase_: Union[str, Any] ) -> Optional[Any]: return BertTokenizerFast.from_pretrained(self.tmpdirname ,**lowerCamelCase_ ) def A__ ( self: Tuple ,**lowerCamelCase_: Optional[Any] ) -> Dict: return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname ,**lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Tuple: shutil.rmtree(self.tmpdirname ) def A__ ( self: Optional[int] ) -> str: UpperCAmelCase_ : Union[str, Any] = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] UpperCAmelCase_ : str = [Image.fromarray(np.moveaxis(lowerCamelCase_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def A__ ( self: List[Any] ) -> Dict: UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : Dict = self.get_rust_tokenizer() UpperCAmelCase_ : int = self.get_image_processor() UpperCAmelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=lowerCamelCase_ ,image_processor=lowerCamelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=lowerCamelCase_ ) UpperCAmelCase_ : Any = ChineseCLIPProcessor(tokenizer=lowerCamelCase_ ,image_processor=lowerCamelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : str = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,lowerCamelCase_ ) self.assertIsInstance(processor_fast.tokenizer ,lowerCamelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,lowerCamelCase_ ) self.assertIsInstance(processor_fast.image_processor ,lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> List[str]: UpperCAmelCase_ : int = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer(cls_token="""(CLS)""" ,sep_token="""(SEP)""" ) UpperCAmelCase_ : Optional[int] = self.get_image_processor(do_normalize=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname ,cls_token="""(CLS)""" ,sep_token="""(SEP)""" ,do_normalize=lowerCamelCase_ ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : Any = self.get_image_processor() UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Optional[int] = ChineseCLIPProcessor(tokenizer=lowerCamelCase_ ,image_processor=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = self.prepare_image_inputs() UpperCAmelCase_ : List[Any] = image_processor(lowerCamelCase_ ,return_tensors="""np""" ) UpperCAmelCase_ : Union[str, Any] = processor(images=lowerCamelCase_ ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def A__ ( self: List[Any] ) -> List[Any]: UpperCAmelCase_ : Tuple = self.get_image_processor() UpperCAmelCase_ : Dict = self.get_tokenizer() UpperCAmelCase_ : Optional[int] = ChineseCLIPProcessor(tokenizer=lowerCamelCase_ ,image_processor=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = """Alexandra,T-shirt的价格是15便士。""" UpperCAmelCase_ : Union[str, Any] = processor(text=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = tokenizer(lowerCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def A__ ( self: Union[str, Any] ) -> str: UpperCAmelCase_ : Optional[Any] = self.get_image_processor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=lowerCamelCase_ ,image_processor=lowerCamelCase_ ) UpperCAmelCase_ : Any = """Alexandra,T-shirt的价格是15便士。""" UpperCAmelCase_ : Any = self.prepare_image_inputs() UpperCAmelCase_ : Dict = processor(text=lowerCamelCase_ ,images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def A__ ( self: str ) -> Optional[Any]: UpperCAmelCase_ : int = self.get_image_processor() UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=lowerCamelCase_ ,image_processor=lowerCamelCase_ ) UpperCAmelCase_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ : Union[str, Any] = processor.batch_decode(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: str ) -> Tuple: UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : List[str] = self.get_tokenizer() UpperCAmelCase_ : Dict = ChineseCLIPProcessor(tokenizer=lowerCamelCase_ ,image_processor=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = """Alexandra,T-shirt的价格是15便士。""" UpperCAmelCase_ : str = self.prepare_image_inputs() UpperCAmelCase_ : Union[str, Any] = processor(text=lowerCamelCase_ ,images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
345
from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: int ,**lowerCamelCase_: List[str] ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: List[str] ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: int ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Any = ["flax"] def __init__( self: int ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[str] ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Dict = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[Any] ) -> Any: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: List[Any] ) -> str: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[str] = ["flax"] def __init__( self: str ,*lowerCamelCase_: List[str] ,**lowerCamelCase_: Optional[int] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : int = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[Any] ) -> str: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: str ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[int] ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Optional[Any] ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[Any] = ["flax"] def __init__( self: Union[str, Any] ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: int ) -> List[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Dict: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: Any ,**lowerCamelCase_: int ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: Union[str, Any] ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Dict ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : str = ["flax"] def __init__( self: Optional[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: int ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: int ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Union[str, Any] = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Optional[int] ) -> List[str]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Dict ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: List[str] ) -> int: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[Any] = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Optional[int] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Dict ) -> int: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Optional[Any]: requires_backends(cls ,["""flax"""] )
345
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
345
import random from typing import Any def lowerCamelCase_ ( _a : list ): '''simple docstring''' for _ in range(len(_a ) ): UpperCAmelCase_ : Tuple = random.randint(0 , len(_a ) - 1 ) UpperCAmelCase_ : List[Any] = random.randint(0 , len(_a ) - 1 ) UpperCAmelCase_ , UpperCAmelCase_ : int = data[b], data[a] return data if __name__ == "__main__": UpperCamelCase_ = [0, 1, 2, 3, 4, 5, 6, 7] UpperCamelCase_ = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
345
1
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class _snake_case ( __snake_case ): '''simple docstring''' def __init__( self: Optional[Any] ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: int ) -> None: warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" ,lowerCamelCase_ ,) super().__init__(*lowerCamelCase_ ,**lowerCamelCase_ )
345
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[int] = [] for i in range(self.num_layers ): UpperCAmelCase_ : List[Any] = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : List[Any] = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : int = resnets UpperCAmelCase_ : Tuple = attentions if self.add_downsample: UpperCAmelCase_ : List[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: int=True ) -> int: UpperCAmelCase_ : List[Any] = () for resnet, attn in zip(self.resnets ,self.attentions ): UpperCAmelCase_ : str = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[Any] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> int: UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : Dict = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnets if self.add_downsample: UpperCAmelCase_ : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any]=True ) -> Any: UpperCAmelCase_ : Union[str, Any] = () for resnet in self.resnets: UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[str] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: str ) -> Any: UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : int = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Optional[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : int = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = resnets UpperCAmelCase_ : Dict = attentions if self.add_upsample: UpperCAmelCase_ : Optional[Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[int] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: Any ,lowerCamelCase_: str ,lowerCamelCase_: List[str]=True ) -> List[str]: for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states UpperCAmelCase_ : List[str] = res_hidden_states_tuple[-1] UpperCAmelCase_ : Union[str, Any] = res_hidden_states_tuple[:-1] UpperCAmelCase_ : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Dict = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> Dict: UpperCAmelCase_ : Any = [] for i in range(self.num_layers ): UpperCAmelCase_ : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : str = resnets if self.add_upsample: UpperCAmelCase_ : Union[str, Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Dict ,lowerCamelCase_: Dict ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any=True ) -> List[str]: for resnet in self.resnets: # pop res hidden states UpperCAmelCase_ : Dict = res_hidden_states_tuple[-1] UpperCAmelCase_ : str = res_hidden_states_tuple[:-1] UpperCAmelCase_ : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : List[str] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Optional[Any] = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: # there is always at least one resnet UpperCAmelCase_ : List[Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] UpperCAmelCase_ : Any = [] for _ in range(self.num_layers ): UpperCAmelCase_ : Optional[Any] = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Dict = resnets UpperCAmelCase_ : Any = attentions def __call__( self: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any]=True ) -> List[Any]: UpperCAmelCase_ : List[Any] = self.resnets[0](lowerCamelCase_ ,lowerCamelCase_ ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): UpperCAmelCase_ : Optional[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) return hidden_states
345
1
def lowerCamelCase_ ( _a : list , _a : list , _a : int ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = len(_a ) UpperCAmelCase_ : Optional[int] = [[0] * n for i in range(_a )] for i in range(_a ): UpperCAmelCase_ : List[str] = y_points[i] for i in range(2 , _a ): for j in range(_a , _a ): UpperCAmelCase_ : Tuple = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
345
import pickle import numpy as np from matplotlib import pyplot as plt class _snake_case : '''simple docstring''' def __init__( self: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Tuple=0.2 ,lowerCamelCase_: Union[str, Any]=0.2 ) -> List[str]: UpperCAmelCase_ : List[Any] = bp_numa UpperCAmelCase_ : str = bp_numa UpperCAmelCase_ : List[Any] = bp_numa UpperCAmelCase_ : Optional[int] = conva_get[:2] UpperCAmelCase_ : List[Any] = conva_get[2] UpperCAmelCase_ : str = size_pa UpperCAmelCase_ : Optional[int] = rate_w UpperCAmelCase_ : Dict = rate_t UpperCAmelCase_ : List[Any] = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] UpperCAmelCase_ : int = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) UpperCAmelCase_ : int = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) UpperCAmelCase_ : Dict = -2 * np.random.rand(self.conva[1] ) + 1 UpperCAmelCase_ : str = -2 * np.random.rand(self.num_bpa ) + 1 UpperCAmelCase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def A__ ( self: str ,lowerCamelCase_: Optional[Any] ) -> Tuple: # save model dict with pickle UpperCAmelCase_ : Dict = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(lowerCamelCase_ ,"""wb""" ) as f: pickle.dump(lowerCamelCase_ ,lowerCamelCase_ ) print(F'''Model saved: {save_path}''' ) @classmethod def A__ ( cls: List[str] ,lowerCamelCase_: str ) -> List[str]: # read saved model with open(lowerCamelCase_ ,"""rb""" ) as f: UpperCAmelCase_ : Any = pickle.load(lowerCamelCase_ ) # noqa: S301 UpperCAmelCase_ : Union[str, Any] = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) UpperCAmelCase_ : List[str] = model_dic.get("""size_pooling1""" ) UpperCAmelCase_ : Tuple = model_dic.get("""num_bp1""" ) UpperCAmelCase_ : Optional[Any] = model_dic.get("""num_bp2""" ) UpperCAmelCase_ : List[str] = model_dic.get("""num_bp3""" ) UpperCAmelCase_ : List[Any] = model_dic.get("""rate_weight""" ) UpperCAmelCase_ : Dict = model_dic.get("""rate_thre""" ) # create model instance UpperCAmelCase_ : List[Any] = CNN(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # modify model parameter UpperCAmelCase_ : Any = model_dic.get("""w_conv1""" ) UpperCAmelCase_ : int = model_dic.get("""wkj""" ) UpperCAmelCase_ : int = model_dic.get("""vji""" ) UpperCAmelCase_ : Optional[int] = model_dic.get("""thre_conv1""" ) UpperCAmelCase_ : List[str] = model_dic.get("""thre_bp2""" ) UpperCAmelCase_ : Dict = model_dic.get("""thre_bp3""" ) return conv_ins def A__ ( self: List[Any] ,lowerCamelCase_: Union[str, Any] ) -> Tuple: return 1 / (1 + np.exp(-1 * x )) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Union[str, Any] ) -> Optional[Any]: return round(lowerCamelCase_ ,3 ) def A__ ( self: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any] ) -> Any: # convolution process UpperCAmelCase_ : Optional[Any] = convs[0] UpperCAmelCase_ : int = convs[1] UpperCAmelCase_ : int = np.shape(lowerCamelCase_ )[0] # get the data slice of original image data, data_focus UpperCAmelCase_ : Dict = [] for i_focus in range(0 ,size_data - size_conv + 1 ,lowerCamelCase_ ): for j_focus in range(0 ,size_data - size_conv + 1 ,lowerCamelCase_ ): UpperCAmelCase_ : Union[str, Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowerCamelCase_ ) # calculate the feature map of every single kernel, and saved as list of matrix UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowerCamelCase_ ): UpperCAmelCase_ : Optional[int] = [] for i_focus in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : int = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowerCamelCase_ ) ) UpperCAmelCase_ : Union[str, Any] = np.asmatrix(lowerCamelCase_ ).reshape( lowerCamelCase_ ,lowerCamelCase_ ) data_featuremap.append(lowerCamelCase_ ) # expanding the data slice to One dimenssion UpperCAmelCase_ : Optional[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[int] = np.asarray(lowerCamelCase_ ) return focus_list, data_featuremap def A__ ( self: Tuple ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any]="average_pool" ) -> List[Any]: # pooling process UpperCAmelCase_ : Optional[Any] = len(featuremaps[0] ) UpperCAmelCase_ : Any = int(size_map / size_pooling ) UpperCAmelCase_ : Optional[int] = [] for i_map in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : Any = featuremaps[i_map] UpperCAmelCase_ : Tuple = [] for i_focus in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): for j_focus in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : str = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowerCamelCase_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowerCamelCase_ ) ) UpperCAmelCase_ : int = np.asmatrix(lowerCamelCase_ ).reshape(lowerCamelCase_ ,lowerCamelCase_ ) featuremap_pooled.append(lowerCamelCase_ ) return featuremap_pooled def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tuple ) -> Optional[int]: # expanding three dimension data to one dimension list UpperCAmelCase_ : List[Any] = [] for i in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : Tuple = np.shape(data[i] ) UpperCAmelCase_ : Optional[int] = data[i].reshape(1 ,shapes[0] * shapes[1] ) UpperCAmelCase_ : Optional[int] = data_listed.getA().tolist()[0] data_expanded.extend(lowerCamelCase_ ) UpperCAmelCase_ : int = np.asarray(lowerCamelCase_ ) return data_expanded def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[int] ) -> Union[str, Any]: # expanding matrix to one dimension list UpperCAmelCase_ : List[Any] = np.asarray(lowerCamelCase_ ) UpperCAmelCase_ : str = np.shape(lowerCamelCase_ ) UpperCAmelCase_ : Dict = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def A__ ( self: str ,lowerCamelCase_: Dict ,lowerCamelCase_: int ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Any ) -> Union[str, Any]: UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = 0 for i_map in range(lowerCamelCase_ ): UpperCAmelCase_ : Optional[Any] = np.ones((size_map, size_map) ) for i in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): for j in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : Any = pd_pool[ i_pool ] UpperCAmelCase_ : List[str] = i_pool + 1 UpperCAmelCase_ : Optional[Any] = np.multiply( lowerCamelCase_ ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(lowerCamelCase_ ) return pd_all def A__ ( self: str ,lowerCamelCase_: int ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any=bool ) -> Optional[int]: # model traning print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(lowerCamelCase_ )) ) print((""" - - Shape: Teach_Data """, np.shape(lowerCamelCase_ )) ) UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : Any = 10000 while rp < n_repeat and mse >= error_accuracy: UpperCAmelCase_ : List[str] = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(lowerCamelCase_ ) ): # print('------------Learning Image: %d--------------'%p) UpperCAmelCase_ : str = np.asmatrix(datas_train[p] ) UpperCAmelCase_ : Optional[Any] = np.asarray(datas_teach[p] ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : List[Any] = self.pooling(lowerCamelCase_ ,self.size_poolinga ) UpperCAmelCase_ : int = np.shape(lowerCamelCase_ ) UpperCAmelCase_ : Dict = self._expand(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = data_bp_input UpperCAmelCase_ : Optional[Any] = np.dot(lowerCamelCase_ ,self.vji.T ) - self.thre_bpa UpperCAmelCase_ : int = self.sig(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = np.dot(lowerCamelCase_ ,self.wkj.T ) - self.thre_bpa UpperCAmelCase_ : Optional[Any] = self.sig(lowerCamelCase_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- UpperCAmelCase_ : List[str] = np.multiply( (data_teach - bp_outa) ,np.multiply(lowerCamelCase_ ,(1 - bp_outa) ) ) UpperCAmelCase_ : List[Any] = np.multiply( np.dot(lowerCamelCase_ ,self.wkj ) ,np.multiply(lowerCamelCase_ ,(1 - bp_outa) ) ) UpperCAmelCase_ : Any = np.dot(lowerCamelCase_ ,self.vji ) UpperCAmelCase_ : Tuple = pd_i_all / (self.size_poolinga * self.size_poolinga) UpperCAmelCase_ : List[str] = pd_conva_pooled.T.getA().tolist() UpperCAmelCase_ : str = self._calculate_gradient_from_pool( lowerCamelCase_ ,lowerCamelCase_ ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): UpperCAmelCase_ : List[str] = self._expand_mat(pd_conva_all[k_conv] ) UpperCAmelCase_ : Optional[Any] = self.rate_weight * np.dot(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : int = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) UpperCAmelCase_ : str = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer UpperCAmelCase_ : int = self.wkj + pd_k_all.T * bp_outa * self.rate_weight UpperCAmelCase_ : Tuple = self.vji + pd_j_all.T * bp_outa * self.rate_weight UpperCAmelCase_ : int = self.thre_bpa - pd_k_all * self.rate_thre UpperCAmelCase_ : str = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image UpperCAmelCase_ : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) UpperCAmelCase_ : int = rp + 1 UpperCAmelCase_ : Any = error_count / patterns all_mse.append(lowerCamelCase_ ) def draw_error(): UpperCAmelCase_ : Any = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowerCamelCase_ ,"""+-""" ) plt.plot(lowerCamelCase_ ,"""r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(lowerCamelCase_ ,alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def A__ ( self: Optional[int] ,lowerCamelCase_: Any ) -> Tuple: # model predict UpperCAmelCase_ : Union[str, Any] = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(lowerCamelCase_ )) ) for p in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : int = np.asmatrix(datas_test[p] ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : Optional[Any] = self.pooling(lowerCamelCase_ ,self.size_poolinga ) UpperCAmelCase_ : str = self._expand(lowerCamelCase_ ) UpperCAmelCase_ : str = data_bp_input UpperCAmelCase_ : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa UpperCAmelCase_ : Optional[int] = self.sig(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = bp_outa * self.wkj.T - self.thre_bpa UpperCAmelCase_ : List[Any] = self.sig(lowerCamelCase_ ) produce_out.extend(bp_outa.getA().tolist() ) UpperCAmelCase_ : int = [list(map(self.do_round ,lowerCamelCase_ ) ) for each in produce_out] return np.asarray(lowerCamelCase_ ) def A__ ( self: Optional[Any] ,lowerCamelCase_: Dict ) -> Tuple: # return the data of image after convoluting process so we can check it out UpperCAmelCase_ : Optional[int] = np.asmatrix(lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : Dict = self.pooling(lowerCamelCase_ ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
345
1
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : int = MobileBertTokenizer A__ : List[Any] = MobileBertTokenizerFast A__ : Optional[Any] = True A__ : List[str] = True A__ : Tuple = filter_non_english A__ : Optional[Any] = "google/mobilebert-uncased" def A__ ( self: Union[str, Any] ) -> Tuple: super().setUp() UpperCAmelCase_ : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] UpperCAmelCase_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) UpperCAmelCase_ : Optional[int] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def A__ ( self: Optional[int] ,lowerCamelCase_: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : List[str] = """UNwant\u00E9d,running""" UpperCAmelCase_ : Optional[int] = """unwanted, running""" return input_text, output_text def A__ ( self: Optional[int] ) -> Dict: UpperCAmelCase_ : List[str] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase_ : Optional[Any] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowerCamelCase_ ,["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[9, 6, 7, 12, 10, 11] ) def A__ ( self: Tuple ) -> Union[str, Any]: if not self.test_rust_tokenizer: return UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : str = """UNwant\u00E9d,running""" UpperCAmelCase_ : Optional[Any] = tokenizer.tokenize(lowerCamelCase_ ) UpperCAmelCase_ : int = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Any = tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = rust_tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = self.get_rust_tokenizer() UpperCAmelCase_ : List[str] = tokenizer.encode(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) # With lower casing UpperCAmelCase_ : Any = self.get_tokenizer(do_lower_case=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = self.get_rust_tokenizer(do_lower_case=lowerCamelCase_ ) UpperCAmelCase_ : str = """UNwant\u00E9d,running""" UpperCAmelCase_ : Optional[int] = tokenizer.tokenize(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = rust_tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : str = self.get_rust_tokenizer() UpperCAmelCase_ : Optional[Any] = tokenizer.encode(lowerCamelCase_ ) UpperCAmelCase_ : str = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: Any ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) ,["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def A__ ( self: str ) -> Any: UpperCAmelCase_ : Union[str, Any] = BasicTokenizer(do_lower_case=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def A__ ( self: Any ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = BasicTokenizer(do_lower_case=lowerCamelCase_ ,strip_accents=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""h\u00E9llo"""] ) def A__ ( self: Optional[Any] ) -> List[Any]: UpperCAmelCase_ : List[Any] = BasicTokenizer(do_lower_case=lowerCamelCase_ ,strip_accents=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def A__ ( self: Dict ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = BasicTokenizer(do_lower_case=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : int = BasicTokenizer(do_lower_case=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def A__ ( self: str ) -> Any: UpperCAmelCase_ : Tuple = BasicTokenizer(do_lower_case=lowerCamelCase_ ,strip_accents=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def A__ ( self: List[str] ) -> int: UpperCAmelCase_ : Any = BasicTokenizer(do_lower_case=lowerCamelCase_ ,strip_accents=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def A__ ( self: Any ) -> Dict: UpperCAmelCase_ : Optional[Any] = BasicTokenizer(do_lower_case=lowerCamelCase_ ,never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def A__ ( self: int ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] UpperCAmelCase_ : Any = {} for i, token in enumerate(lowerCamelCase_ ): UpperCAmelCase_ : int = i UpperCAmelCase_ : Optional[int] = WordpieceTokenizer(vocab=lowerCamelCase_ ,unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) ,[] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) ,["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) ,["""[UNK]""", """runn""", """##ing"""] ) def A__ ( self: List[Any] ) -> Any: self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def A__ ( self: Any ) -> str: self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def A__ ( self: Any ) -> str: self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def A__ ( self: Optional[int] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = self.get_tokenizer() UpperCAmelCase_ : List[Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCamelCase_ ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCamelCase_ ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def A__ ( self: Optional[int] ) -> str: UpperCAmelCase_ : int = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) UpperCAmelCase_ : Optional[Any] = tokenizer.encode("""sequence builders""" ,add_special_tokens=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=lowerCamelCase_ ) UpperCAmelCase_ : int = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) UpperCAmelCase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ,lowerCamelCase_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def A__ ( self: Any ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase_ : str = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Tuple = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' UpperCAmelCase_ : Optional[int] = tokenizer_r.encode_plus( lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,return_token_type_ids=lowerCamelCase_ ,return_offsets_mapping=lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ,) UpperCAmelCase_ : str = tokenizer_r.do_lower_case if hasattr(lowerCamelCase_ ,"""do_lower_case""" ) else False UpperCAmelCase_ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens["""offset_mapping"""] ) def A__ ( self: Any ) -> Any: UpperCAmelCase_ : Union[str, Any] = ["""的""", """人""", """有"""] UpperCAmelCase_ : Tuple = """""".join(lowerCamelCase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : List[Any] = self.tokenizer_class.from_pretrained(lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = tokenizer_p.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = tokenizer_r.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer_r.convert_ids_to_tokens(lowerCamelCase_ ) UpperCAmelCase_ : int = tokenizer_p.convert_ids_to_tokens(lowerCamelCase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Tuple = self.tokenizer_class.from_pretrained(lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Any = tokenizer_r.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = tokenizer_p.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer_r.convert_ids_to_tokens(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = tokenizer_p.convert_ids_to_tokens(lowerCamelCase_ ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase_ : Tuple = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(lowerCamelCase_ ) ] self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ )
345
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Optional[Any] = CTRLTokenizer A__ : Optional[Any] = False A__ : str = False def A__ ( self: Optional[int] ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ : Dict = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] UpperCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) UpperCAmelCase_ : List[Any] = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] UpperCAmelCase_ : Optional[Any] = {"""unk_token""": """<unk>"""} UpperCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase_ ) ) def A__ ( self: Optional[int] ,**lowerCamelCase_: Any ) -> str: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase_ ) def A__ ( self: int ,lowerCamelCase_: int ) -> str: UpperCAmelCase_ : List[str] = """adapt react readapt apt""" UpperCAmelCase_ : List[Any] = """adapt react readapt apt""" return input_text, output_text def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = CTRLTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) UpperCAmelCase_ : List[Any] = """adapt react readapt apt""" UpperCAmelCase_ : Optional[int] = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() UpperCAmelCase_ : Tuple = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokens + [tokenizer.unk_token] UpperCAmelCase_ : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,lowerCamelCase_ )
345
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _snake_case ( __snake_case ): '''simple docstring''' A__ : UNetaDModel A__ : ScoreSdeVeScheduler def __init__( self: Any ,lowerCamelCase_: UNetaDModel ,lowerCamelCase_: ScoreSdeVeScheduler ) -> Any: super().__init__() self.register_modules(unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self: Optional[int] ,lowerCamelCase_: int = 1 ,lowerCamelCase_: int = 2000 ,lowerCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,lowerCamelCase_: Optional[str] = "pil" ,lowerCamelCase_: bool = True ,**lowerCamelCase_: List[str] ,) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase_ : Union[str, Any] = self.unet.config.sample_size UpperCAmelCase_ : Tuple = (batch_size, 3, img_size, img_size) UpperCAmelCase_ : Tuple = self.unet UpperCAmelCase_ : Union[str, Any] = randn_tensor(lowerCamelCase_ ,generator=lowerCamelCase_ ) * self.scheduler.init_noise_sigma UpperCAmelCase_ : Dict = sample.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase_ ) self.scheduler.set_sigmas(lowerCamelCase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase_ : Union[str, Any] = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase_ : int = self.unet(lowerCamelCase_ ,lowerCamelCase_ ).sample UpperCAmelCase_ : List[str] = self.scheduler.step_correct(lowerCamelCase_ ,lowerCamelCase_ ,generator=lowerCamelCase_ ).prev_sample # prediction step UpperCAmelCase_ : Any = model(lowerCamelCase_ ,lowerCamelCase_ ).sample UpperCAmelCase_ : Any = self.scheduler.step_pred(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,generator=lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = output.prev_sample, output.prev_sample_mean UpperCAmelCase_ : Dict = sample_mean.clamp(0 ,1 ) UpperCAmelCase_ : List[Any] = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": UpperCAmelCase_ : Optional[Any] = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCamelCase_ )
345
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCamelCase_ = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Union[str, Any] = "ernie_m" A__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self: str ,lowerCamelCase_: int = 250002 ,lowerCamelCase_: int = 768 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 3072 ,lowerCamelCase_: str = "gelu" ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: int = 514 ,lowerCamelCase_: float = 0.0_2 ,lowerCamelCase_: int = 1 ,lowerCamelCase_: float = 1e-05 ,lowerCamelCase_: Any=None ,lowerCamelCase_: List[Any]=False ,lowerCamelCase_: Tuple=0.0 ,**lowerCamelCase_: Optional[int] ,) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : List[Any] = classifier_dropout UpperCAmelCase_ : str = is_decoder UpperCAmelCase_ : List[str] = act_dropout
345
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _snake_case ( __snake_case ): '''simple docstring''' A__ : Union[str, Any] = ["image_processor", "tokenizer"] A__ : Union[str, Any] = "ViTImageProcessor" A__ : Optional[Any] = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self: List[Any] ,lowerCamelCase_: Dict=None ,lowerCamelCase_: int=None ,**lowerCamelCase_: str ) -> Any: UpperCAmelCase_ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,lowerCamelCase_ ,) UpperCAmelCase_ : Optional[int] = kwargs.pop("""feature_extractor""" ) UpperCAmelCase_ : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase_ ,lowerCamelCase_ ) def __call__( self: Union[str, Any] ,lowerCamelCase_: Dict=None ,lowerCamelCase_: Tuple=None ,lowerCamelCase_: Optional[Any]=None ,lowerCamelCase_: List[str]=None ,**lowerCamelCase_: str ) -> str: if text is None and visual_prompt is None and images is None: raise ValueError("""You have to specify either text, visual prompt or images.""" ) if text is not None and visual_prompt is not None: raise ValueError("""You have to specify exactly one type of prompt. Either text or visual prompt.""" ) if text is not None: UpperCAmelCase_ : Optional[Any] = self.tokenizer(lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) if visual_prompt is not None: UpperCAmelCase_ : Tuple = self.image_processor(lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) if images is not None: UpperCAmelCase_ : List[Any] = self.image_processor(lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) if visual_prompt is not None and images is not None: UpperCAmelCase_ : Dict = { """pixel_values""": image_features.pixel_values, """conditional_pixel_values""": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase_ : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase_ : Optional[Any] = { """conditional_pixel_values""": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ) ,tensor_type=lowerCamelCase_ ) def A__ ( self: Tuple ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Union[str, Any] ) -> Any: return self.tokenizer.batch_decode(*lowerCamelCase_ ,**lowerCamelCase_ ) def A__ ( self: Union[str, Any] ,*lowerCamelCase_: List[str] ,**lowerCamelCase_: Optional[int] ) -> str: return self.tokenizer.decode(*lowerCamelCase_ ,**lowerCamelCase_ ) @property def A__ ( self: Any ) -> Dict: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,lowerCamelCase_ ,) return self.image_processor_class @property def A__ ( self: Tuple ) -> int: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,lowerCamelCase_ ,) return self.image_processor
345
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase_ = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowerCamelCase_ ( _a : str , _a : Any=100 , _a : int=" " ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = text.split(_a ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_a ) , _a )] def lowerCamelCase_ ( _a : dict ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Dict = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(_a ): titles.append(title if title is not None else """""" ) texts.append(_a ) return {"title": titles, "text": texts} def lowerCamelCase_ ( _a : dict , _a : DPRContextEncoder , _a : DPRContextEncoderTokenizerFast ): '''simple docstring''' UpperCAmelCase_ : List[str] = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=_a , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] UpperCAmelCase_ : Tuple = ctx_encoder(input_ids.to(device=_a ) , return_dict=_a ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowerCamelCase_ ( _a : "RagExampleArguments" , _a : "ProcessingArguments" , _a : "IndexHnswArguments" , ): '''simple docstring''' logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way UpperCAmelCase_ : Optional[int] = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words UpperCAmelCase_ : Tuple = dataset.map(_a , batched=_a , num_proc=processing_args.num_proc ) # And compute the embeddings UpperCAmelCase_ : List[str] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_a ) UpperCAmelCase_ : Dict = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) UpperCAmelCase_ : Any = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space UpperCAmelCase_ : List[str] = dataset.map( partial(_a , ctx_encoder=_a , ctx_tokenizer=_a ) , batched=_a , batch_size=processing_args.batch_size , features=_a , ) # And finally save your dataset UpperCAmelCase_ : Union[str, Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(_a ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search UpperCAmelCase_ : Union[str, Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=_a ) # And save the index UpperCAmelCase_ : Optional[Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(_a ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _snake_case : '''simple docstring''' A__ : str = field( default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) A__ : Optional[str] = field( default=__snake_case , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) A__ : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) A__ : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) A__ : Optional[str] = field( default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class _snake_case : '''simple docstring''' A__ : Optional[int] = field( default=__snake_case , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) A__ : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class _snake_case : '''simple docstring''' A__ : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) A__ : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase_ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase_ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
345
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _snake_case : '''simple docstring''' def __init__( self: Dict ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[Any]=13 ,lowerCamelCase_: List[str]=10 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: List[Any]=2 ,lowerCamelCase_: Tuple=2 ,lowerCamelCase_: Optional[Any]=True ,lowerCamelCase_: str=True ,lowerCamelCase_: Optional[Any]=32 ,lowerCamelCase_: str=5 ,lowerCamelCase_: List[Any]=4 ,lowerCamelCase_: str=37 ,lowerCamelCase_: int="gelu" ,lowerCamelCase_: Tuple=0.1 ,lowerCamelCase_: List[Any]=0.1 ,lowerCamelCase_: Dict=10 ,lowerCamelCase_: Optional[Any]=0.0_2 ,lowerCamelCase_: Optional[Any]="divided_space_time" ,lowerCamelCase_: Tuple=None ,) -> List[Any]: UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Union[str, Any] = patch_size UpperCAmelCase_ : List[Any] = num_frames UpperCAmelCase_ : Union[str, Any] = is_training UpperCAmelCase_ : Any = use_labels UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : Dict = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = attention_type UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = scope UpperCAmelCase_ : Optional[Any] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token UpperCAmelCase_ : Optional[int] = (image_size // patch_size) ** 2 UpperCAmelCase_ : List[Any] = (num_frames) * self.num_patches_per_frame + 1 def A__ ( self: str ) -> str: UpperCAmelCase_ : Any = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Dict = None if self.use_labels: UpperCAmelCase_ : int = ids_tensor([self.batch_size] ,self.num_labels ) UpperCAmelCase_ : Optional[int] = self.get_config() return config, pixel_values, labels def A__ ( self: Optional[int] ) -> Any: UpperCAmelCase_ : List[str] = TimesformerConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_frames=self.num_frames ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,attention_type=self.attention_type ,) UpperCAmelCase_ : Dict = self.num_labels return config def A__ ( self: List[str] ,lowerCamelCase_: int ,lowerCamelCase_: List[str] ,lowerCamelCase_: Optional[Any] ) -> Tuple: UpperCAmelCase_ : int = TimesformerModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self: Optional[Any] ,lowerCamelCase_: int ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any] ) -> Dict: UpperCAmelCase_ : Optional[Any] = TimesformerForVideoClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ) # verify the logits shape UpperCAmelCase_ : List[str] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape ,lowerCamelCase_ ) def A__ ( self: Tuple ) -> int: UpperCAmelCase_ : Dict = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = config_and_inputs UpperCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () A__ : int = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) A__ : Optional[Any] = False A__ : List[str] = False A__ : List[Any] = False A__ : int = False def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : Dict = TimesformerModelTester(self ) UpperCAmelCase_ : Tuple = ConfigTester( self ,config_class=lowerCamelCase_ ,has_text_modality=lowerCamelCase_ ,hidden_size=37 ) def A__ ( self: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any=False ) -> int: UpperCAmelCase_ : Dict = copy.deepcopy(lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): UpperCAmelCase_ : Optional[int] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase_ ) return inputs_dict def A__ ( self: List[str] ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def A__ ( self: List[str] ) -> List[Any]: pass def A__ ( self: List[str] ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Any = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) ) def A__ ( self: Any ) -> Any: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : int = [*signature.parameters.keys()] UpperCAmelCase_ : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) def A__ ( self: List[str] ) -> List[Any]: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Dict: UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCamelCase_ ) @slow def A__ ( self: Union[str, Any] ) -> Union[str, Any]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[int] = TimesformerModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def A__ ( self: Tuple ) -> Optional[int]: if not self.has_attentions: pass else: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[Any] = True for model_class in self.all_model_classes: UpperCAmelCase_ : int = self.model_tester.seq_length UpperCAmelCase_ : Optional[int] = self.model_tester.num_frames UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : Dict = True UpperCAmelCase_ : Dict = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : Tuple = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : str = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : Any = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) ,self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] ,) UpperCAmelCase_ : int = len(lowerCamelCase_ ) # Check attention is always last and order is fine UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : Any = True UpperCAmelCase_ : Union[str, Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : List[str] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) self.assertEqual(out_len + 1 ,len(lowerCamelCase_ ) ) UpperCAmelCase_ : Dict = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) ,self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] ,) def A__ ( self: List[Any] ) -> Optional[int]: def check_hidden_states_output(lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Optional[Any] ): UpperCAmelCase_ : str = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : Any = outputs.hidden_states UpperCAmelCase_ : List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) UpperCAmelCase_ : Dict = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[str] = True check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Union[str, Any] = True check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : str = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) UpperCAmelCase_ : Any = np.load(_a ) return list(_a ) @require_torch @require_vision class _snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self: int ) -> Any: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def A__ ( self: Optional[int] ) -> str: UpperCAmelCase_ : str = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : int = prepare_video() UpperCAmelCase_ : Any = image_processor(video[:8] ,return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**lowerCamelCase_ ) # verify the logits UpperCAmelCase_ : Union[str, Any] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) )
345
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Dict = AutoencoderKL A__ : Optional[int] = "sample" A__ : Tuple = 1E-2 @property def A__ ( self: List[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = 4 UpperCAmelCase_ : str = 3 UpperCAmelCase_ : Any = (32, 32) UpperCAmelCase_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCamelCase_ ) return {"sample": image} @property def A__ ( self: List[str] ) -> Tuple: return (3, 32, 32) @property def A__ ( self: Optional[Any] ) -> Any: return (3, 32, 32) def A__ ( self: Any ) -> Tuple: UpperCAmelCase_ : List[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } UpperCAmelCase_ : int = self.dummy_input return init_dict, inputs_dict def A__ ( self: Optional[Any] ) -> int: pass def A__ ( self: str ) -> Any: pass @unittest.skipIf(torch_device == """mps""" ,"""Gradient checkpointing skipped on MPS""" ) def A__ ( self: Union[str, Any] ) -> Dict: # enable deterministic behavior for gradient checkpointing UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ : List[Any] = self.model_class(**lowerCamelCase_ ) model.to(lowerCamelCase_ ) assert not model.is_gradient_checkpointing and model.training UpperCAmelCase_ : Optional[Any] = model(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() UpperCAmelCase_ : Any = torch.randn_like(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing UpperCAmelCase_ : str = self.model_class(**lowerCamelCase_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowerCamelCase_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training UpperCAmelCase_ : Optional[int] = model_a(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() UpperCAmelCase_ : Dict = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) UpperCAmelCase_ : Dict = dict(model.named_parameters() ) UpperCAmelCase_ : Union[str, Any] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5e-5 ) ) def A__ ( self: Optional[Any] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : int = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ,output_loading_info=lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) ,0 ) model.to(lowerCamelCase_ ) UpperCAmelCase_ : Dict = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def A__ ( self: Optional[int] ) -> int: UpperCAmelCase_ : Dict = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) UpperCAmelCase_ : Tuple = model.to(lowerCamelCase_ ) model.eval() if torch_device == "mps": UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) else: UpperCAmelCase_ : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : str = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) UpperCAmelCase_ : int = image.to(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Dict = model(lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ,generator=lowerCamelCase_ ).sample UpperCAmelCase_ : Optional[int] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": UpperCAmelCase_ : Tuple = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": UpperCAmelCase_ : List[str] = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: UpperCAmelCase_ : List[str] = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,rtol=1e-2 ) ) @slow class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ) -> Optional[Any]: return F'''gaussian_noise_s={seed}_shape={'_'.join([str(lowerCamelCase_ ) for s in shape] )}.npy''' def A__ ( self: Union[str, Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self: List[str] ,lowerCamelCase_: Optional[int]=0 ,lowerCamelCase_: List[Any]=(4, 3, 512, 512) ,lowerCamelCase_: Optional[Any]=False ) -> Optional[int]: UpperCAmelCase_ : Tuple = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ : Tuple = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCamelCase_ ,lowerCamelCase_ ) ) ).to(lowerCamelCase_ ).to(lowerCamelCase_ ) return image def A__ ( self: List[Any] ,lowerCamelCase_: List[str]="CompVis/stable-diffusion-v1-4" ,lowerCamelCase_: Union[str, Any]=False ) -> Any: UpperCAmelCase_ : Optional[Any] = """fp16""" if fpaa else None UpperCAmelCase_ : str = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ : int = AutoencoderKL.from_pretrained( lowerCamelCase_ ,subfolder="""vae""" ,torch_dtype=lowerCamelCase_ ,revision=lowerCamelCase_ ,) model.to(lowerCamelCase_ ).eval() return model def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any]=0 ) -> Optional[int]: if torch_device == "mps": return torch.manual_seed(lowerCamelCase_ ) return torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def A__ ( self: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Dict ) -> Tuple: UpperCAmelCase_ : List[Any] = self.get_sd_vae_model() UpperCAmelCase_ : int = self.get_sd_image(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ : Tuple = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def A__ ( self: Union[str, Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ) -> Tuple: UpperCAmelCase_ : List[str] = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : Any = self.get_sd_image(lowerCamelCase_ ,fpaa=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : Tuple = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ : Optional[int] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def A__ ( self: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[str] ) -> Dict: UpperCAmelCase_ : Optional[int] = self.get_sd_vae_model() UpperCAmelCase_ : Dict = self.get_sd_image(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : str = model(lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ : Any = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def A__ ( self: Optional[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: str ) -> Optional[Any]: UpperCAmelCase_ : List[str] = self.get_sd_vae_model() UpperCAmelCase_ : Optional[int] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase_ : str = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase_ : Any = sample[-1, -2:, :2, -2:].flatten().cpu() UpperCAmelCase_ : Union[str, Any] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def A__ ( self: str ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : List[str] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase_ : str = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ : str = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="""xformers is not required when using PyTorch 2.0.""" ) def A__ ( self: List[Any] ,lowerCamelCase_: Union[str, Any] ) -> int: UpperCAmelCase_ : Optional[Any] = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ : List[str] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="""xformers is not required when using PyTorch 2.0.""" ) def A__ ( self: Optional[Any] ,lowerCamelCase_: Dict ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = self.get_sd_vae_model() UpperCAmelCase_ : Any = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : Dict = self.get_sd_vae_model() UpperCAmelCase_ : Optional[Any] = self.get_sd_image(lowerCamelCase_ ) UpperCAmelCase_ : str = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : int = model.encode(lowerCamelCase_ ).latent_dist UpperCAmelCase_ : Optional[Any] = dist.sample(generator=lowerCamelCase_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] UpperCAmelCase_ : Tuple = sample[0, -1, -3:, -3:].flatten().cpu() UpperCAmelCase_ : Optional[Any] = torch.tensor(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = 3e-3 if torch_device != """mps""" else 1e-2 assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=lowerCamelCase_ )
345
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__snake_case ) class _snake_case ( __snake_case ): '''simple docstring''' A__ : str = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True} ) A__ : ClassVar[Features] = Features({"audio": Audio()} ) A__ : ClassVar[Features] = Features({"transcription": Value("string" )} ) A__ : str = "audio" A__ : str = "transcription" def A__ ( self: int ,lowerCamelCase_: Union[str, Any] ) -> Optional[Any]: if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] ,lowerCamelCase_ ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) UpperCAmelCase_ : Any = copy.deepcopy(self ) UpperCAmelCase_ : Union[str, Any] = self.input_schema.copy() UpperCAmelCase_ : Any = features[self.audio_column] UpperCAmelCase_ : Union[str, Any] = input_schema return task_template @property def A__ ( self: List[str] ) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
345
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__snake_case ) class _snake_case ( __snake_case ): '''simple docstring''' A__ : str = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True} ) A__ : ClassVar[Features] = Features({"audio": Audio()} ) A__ : ClassVar[Features] = Features({"transcription": Value("string" )} ) A__ : str = "audio" A__ : str = "transcription" def A__ ( self: int ,lowerCamelCase_: Union[str, Any] ) -> Optional[Any]: if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] ,lowerCamelCase_ ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) UpperCAmelCase_ : Any = copy.deepcopy(self ) UpperCAmelCase_ : Union[str, Any] = self.input_schema.copy() UpperCAmelCase_ : Any = features[self.audio_column] UpperCAmelCase_ : Union[str, Any] = input_schema return task_template @property def A__ ( self: List[str] ) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
345
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _snake_case ( __snake_case ): '''simple docstring''' A__ : List[Any] = "sew-d" def __init__( self: Any ,lowerCamelCase_: str=32 ,lowerCamelCase_: int=768 ,lowerCamelCase_: Union[str, Any]=12 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: Optional[Any]=3072 ,lowerCamelCase_: Optional[Any]=2 ,lowerCamelCase_: Dict=512 ,lowerCamelCase_: List[str]=256 ,lowerCamelCase_: str=True ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: Optional[int]=("p2c", "c2p") ,lowerCamelCase_: Optional[Any]="layer_norm" ,lowerCamelCase_: str="gelu_python" ,lowerCamelCase_: Optional[Any]=0.1 ,lowerCamelCase_: Dict=0.1 ,lowerCamelCase_: Union[str, Any]=0.1 ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: List[Any]=0.0_2 ,lowerCamelCase_: Any=1e-7 ,lowerCamelCase_: Optional[Any]=1e-5 ,lowerCamelCase_: List[Any]="group" ,lowerCamelCase_: List[str]="gelu" ,lowerCamelCase_: List[Any]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) ,lowerCamelCase_: Tuple=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,lowerCamelCase_: Optional[int]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,lowerCamelCase_: Optional[Any]=False ,lowerCamelCase_: List[str]=128 ,lowerCamelCase_: List[str]=16 ,lowerCamelCase_: Optional[Any]=True ,lowerCamelCase_: str=0.0_5 ,lowerCamelCase_: int=10 ,lowerCamelCase_: str=2 ,lowerCamelCase_: Any=0.0 ,lowerCamelCase_: Optional[int]=10 ,lowerCamelCase_: Optional[int]=0 ,lowerCamelCase_: Any="mean" ,lowerCamelCase_: List[str]=False ,lowerCamelCase_: str=False ,lowerCamelCase_: List[Any]=256 ,lowerCamelCase_: Dict=0 ,lowerCamelCase_: str=1 ,lowerCamelCase_: Union[str, Any]=2 ,**lowerCamelCase_: Dict ,) -> Union[str, Any]: super().__init__(**lowerCamelCase_ ,pad_token_id=lowerCamelCase_ ,bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : List[Any] = feat_extract_norm UpperCAmelCase_ : Optional[Any] = feat_extract_activation UpperCAmelCase_ : int = list(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = list(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = list(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = conv_bias UpperCAmelCase_ : List[Any] = num_conv_pos_embeddings UpperCAmelCase_ : Union[str, Any] = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Tuple = squeeze_factor UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : Optional[int] = position_buckets UpperCAmelCase_ : List[Any] = share_att_key UpperCAmelCase_ : str = relative_attention UpperCAmelCase_ : Optional[Any] = norm_rel_ebd UpperCAmelCase_ : Union[str, Any] = list(lowerCamelCase_ ) UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : List[str] = activation_dropout UpperCAmelCase_ : Tuple = feat_proj_dropout UpperCAmelCase_ : Optional[int] = final_dropout UpperCAmelCase_ : List[Any] = layer_norm_eps UpperCAmelCase_ : List[Any] = feature_layer_norm_eps UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[int] = mask_time_prob UpperCAmelCase_ : Tuple = mask_time_length UpperCAmelCase_ : str = mask_time_min_masks UpperCAmelCase_ : List[str] = mask_feature_prob UpperCAmelCase_ : int = mask_feature_length UpperCAmelCase_ : int = mask_feature_min_masks # ctc loss UpperCAmelCase_ : List[Any] = ctc_loss_reduction UpperCAmelCase_ : List[str] = ctc_zero_infinity # sequence classification UpperCAmelCase_ : Tuple = use_weighted_layer_sum UpperCAmelCase_ : Any = classifier_proj_size @property def A__ ( self: Union[str, Any] ) -> Union[str, Any]: return functools.reduce(operator.mul ,self.conv_stride ,1 )
345
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = "layoutlmv3" def __init__( self: str ,lowerCamelCase_: Any=50265 ,lowerCamelCase_: int=768 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: List[Any]=3072 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: Any=0.1 ,lowerCamelCase_: Tuple=512 ,lowerCamelCase_: Union[str, Any]=2 ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: List[str]=1e-5 ,lowerCamelCase_: int=1 ,lowerCamelCase_: int=0 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Dict=1024 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=32 ,lowerCamelCase_: Union[str, Any]=128 ,lowerCamelCase_: Tuple=64 ,lowerCamelCase_: Tuple=256 ,lowerCamelCase_: List[str]=True ,lowerCamelCase_: Optional[int]=True ,lowerCamelCase_: Any=True ,lowerCamelCase_: Dict=224 ,lowerCamelCase_: Optional[int]=3 ,lowerCamelCase_: Optional[int]=16 ,lowerCamelCase_: Dict=None ,**lowerCamelCase_: str ,) -> List[Any]: super().__init__( vocab_size=lowerCamelCase_ ,hidden_size=lowerCamelCase_ ,num_hidden_layers=lowerCamelCase_ ,num_attention_heads=lowerCamelCase_ ,intermediate_size=lowerCamelCase_ ,hidden_act=lowerCamelCase_ ,hidden_dropout_prob=lowerCamelCase_ ,attention_probs_dropout_prob=lowerCamelCase_ ,max_position_embeddings=lowerCamelCase_ ,type_vocab_size=lowerCamelCase_ ,initializer_range=lowerCamelCase_ ,layer_norm_eps=lowerCamelCase_ ,pad_token_id=lowerCamelCase_ ,bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,**lowerCamelCase_ ,) UpperCAmelCase_ : List[Any] = max_ad_position_embeddings UpperCAmelCase_ : Optional[int] = coordinate_size UpperCAmelCase_ : Optional[int] = shape_size UpperCAmelCase_ : Optional[Any] = has_relative_attention_bias UpperCAmelCase_ : Optional[int] = rel_pos_bins UpperCAmelCase_ : Union[str, Any] = max_rel_pos UpperCAmelCase_ : Dict = has_spatial_attention_bias UpperCAmelCase_ : Optional[int] = rel_ad_pos_bins UpperCAmelCase_ : Tuple = max_rel_ad_pos UpperCAmelCase_ : Union[str, Any] = text_embed UpperCAmelCase_ : Optional[Any] = visual_embed UpperCAmelCase_ : List[str] = input_size UpperCAmelCase_ : str = num_channels UpperCAmelCase_ : Optional[int] = patch_size UpperCAmelCase_ : Tuple = classifier_dropout class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = version.parse("1.12" ) @property def A__ ( self: Dict ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def A__ ( self: Any ) -> float: return 1e-5 @property def A__ ( self: int ) -> int: return 12 def A__ ( self: List[str] ,lowerCamelCase_: "ProcessorMixin" ,lowerCamelCase_: int = -1 ,lowerCamelCase_: int = -1 ,lowerCamelCase_: bool = False ,lowerCamelCase_: Optional["TensorType"] = None ,lowerCamelCase_: int = 3 ,lowerCamelCase_: int = 40 ,lowerCamelCase_: int = 40 ,) -> Mapping[str, Any]: setattr(processor.image_processor ,"""apply_ocr""" ,lowerCamelCase_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ : List[str] = compute_effective_axis_dimension( lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ : int = processor.tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) UpperCAmelCase_ : int = compute_effective_axis_dimension( lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ : Optional[int] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCAmelCase_ : List[Any] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCAmelCase_ : Any = self._generate_dummy_images(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = dict( processor( lowerCamelCase_ ,text=lowerCamelCase_ ,boxes=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,) ) return inputs
345
1
from collections import defaultdict from math import gcd def lowerCamelCase_ ( _a : int = 150_0000 ): '''simple docstring''' UpperCAmelCase_ : defaultdict = defaultdict(_a ) UpperCAmelCase_ : Optional[Any] = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , _a , 2 ): if gcd(_a , _a ) > 1: continue UpperCAmelCase_ : Union[str, Any] = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(_a , limit + 1 , _a ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
345
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def lowerCamelCase_ ( _a : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_a , _a ) def lowerCamelCase_ ( _a : Any ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = emb.weight.shape UpperCAmelCase_ : Tuple = nn.Linear(_a , _a , bias=_a ) UpperCAmelCase_ : List[Any] = emb.weight.data return lin_layer def lowerCamelCase_ ( _a : Dict ): '''simple docstring''' UpperCAmelCase_ : int = torch.load(_a , map_location="""cpu""" ) UpperCAmelCase_ : Dict = Namespace(**checkpoint["""cfg"""]["""model"""] ) UpperCAmelCase_ : Optional[int] = checkpoint["""model"""] remove_ignore_keys_(_a ) UpperCAmelCase_ : str = state_dict["""decoder.embed_tokens.weight"""].shape[0] UpperCAmelCase_ : List[str] = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} UpperCAmelCase_ : int = XGLMConfig( vocab_size=_a , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) UpperCAmelCase_ : List[str] = XGLMForCausalLM(_a ) UpperCAmelCase_ : Tuple = model.load_state_dict(_a , strict=_a ) print(_a ) UpperCAmelCase_ : Optional[Any] = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
345
1
from collections.abc import Callable def lowerCamelCase_ ( _a : Callable[[float], float] , _a : float , _a : float ): '''simple docstring''' UpperCAmelCase_ : float = a UpperCAmelCase_ : float = b if function(_a ) == 0: # one of the a or b is a root for the function return a elif function(_a ) == 0: return b elif ( function(_a ) * function(_a ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: UpperCAmelCase_ : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_a ) == 0: return mid elif function(_a ) * function(_a ) < 0: UpperCAmelCase_ : Tuple = mid else: UpperCAmelCase_ : Tuple = mid UpperCAmelCase_ : Optional[Any] = start + (end - start) / 2.0 return mid def lowerCamelCase_ ( _a : float ): '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
345
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : '''simple docstring''' def __init__( self: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any]=13 ,lowerCamelCase_: Optional[int]=32 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: int=16 ,lowerCamelCase_: Optional[Any]=[32, 64, 128] ,lowerCamelCase_: Optional[int]=[1, 2, 1] ,lowerCamelCase_: Union[str, Any]=[2, 2, 4] ,lowerCamelCase_: int=2 ,lowerCamelCase_: List[str]=2.0 ,lowerCamelCase_: List[Any]=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.1 ,lowerCamelCase_: Optional[int]="gelu" ,lowerCamelCase_: Any=False ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=0.0_2 ,lowerCamelCase_: int=1e-5 ,lowerCamelCase_: int=True ,lowerCamelCase_: Tuple=None ,lowerCamelCase_: str=True ,lowerCamelCase_: Dict=10 ,lowerCamelCase_: str=8 ,lowerCamelCase_: Union[str, Any]=["stage1", "stage2"] ,lowerCamelCase_: Optional[Any]=[1, 2] ,) -> str: UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : str = patch_size UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : Dict = embed_dim UpperCAmelCase_ : Dict = hidden_sizes UpperCAmelCase_ : str = depths UpperCAmelCase_ : int = num_heads UpperCAmelCase_ : List[Any] = window_size UpperCAmelCase_ : Union[str, Any] = mlp_ratio UpperCAmelCase_ : int = qkv_bias UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = drop_path_rate UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : List[Any] = use_absolute_embeddings UpperCAmelCase_ : List[Any] = patch_norm UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Optional[Any] = scope UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Optional[int] = encoder_stride UpperCAmelCase_ : Optional[int] = out_features UpperCAmelCase_ : Optional[int] = out_indices def A__ ( self: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : int = None if self.use_labels: UpperCAmelCase_ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Any = self.get_config() return config, pixel_values, labels def A__ ( self: List[Any] ) -> Tuple: return FocalNetConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> List[str]: UpperCAmelCase_ : Optional[int] = FocalNetModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ) UpperCAmelCase_ : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase_ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[int] ) -> List[str]: UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def A__ ( self: Optional[int] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : Any = FocalNetForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : int = 1 UpperCAmelCase_ : List[str] = FocalNetForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ) -> int: UpperCAmelCase_ : List[Any] = self.type_sequence_label_size UpperCAmelCase_ : int = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = config_and_inputs UpperCAmelCase_ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : List[Any] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) A__ : Union[str, Any] = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) A__ : Optional[Any] = False A__ : Any = False A__ : List[str] = False A__ : Any = False A__ : Any = False def A__ ( self: List[str] ) -> Tuple: UpperCAmelCase_ : Dict = FocalNetModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self ,config_class=lowerCamelCase_ ,embed_dim=37 ,has_text_modality=lowerCamelCase_ ) def A__ ( self: List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self: List[str] ) -> Union[str, Any]: return def A__ ( self: str ) -> List[str]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def A__ ( self: Tuple ) -> int: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def A__ ( self: int ) -> int: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def A__ ( self: int ) -> Dict: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def A__ ( self: Optional[Any] ) -> Optional[Any]: pass def A__ ( self: Optional[Any] ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Optional[Any] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) ) def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : str = model_class(lowerCamelCase_ ) UpperCAmelCase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Any = [*signature.parameters.keys()] UpperCAmelCase_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> List[str]: UpperCAmelCase_ : Tuple = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : Any = outputs.hidden_states UpperCAmelCase_ : List[Any] = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # FocalNet has a different seq_length UpperCAmelCase_ : int = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) UpperCAmelCase_ : Union[str, Any] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = reshaped_hidden_states[0].shape UpperCAmelCase_ : List[Any] = ( reshaped_hidden_states[0].view(lowerCamelCase_ ,lowerCamelCase_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def A__ ( self: Any ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : str = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Union[str, Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[str] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Optional[int] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) @slow def A__ ( self: Optional[int] ) -> Optional[Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = FocalNetModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @require_vision @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self: Optional[int] ) -> str: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = self.default_image_processor UpperCAmelCase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCAmelCase_ : Dict = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Dict = model(**lowerCamelCase_ ) # verify the logits UpperCAmelCase_ : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() ,281 ) @require_torch class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : List[Any] = (FocalNetBackbone,) if is_torch_available() else () A__ : int = FocalNetConfig A__ : List[str] = False def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : str = FocalNetModelTester(self )
345
1
from __future__ import annotations from scipy.special import comb # type: ignore class lowercase_ : '''simple docstring''' def __init__( self : Tuple , __UpperCAmelCase : list[tuple[float, float]] ) ->Optional[Any]: """simple docstring""" a = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. a = len(__UpperCAmelCase ) - 1 def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : float ) ->list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." a = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __UpperCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__UpperCAmelCase ) , 5 ) == 1 return output_values def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : float ) ->tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." a = self.basis_function(__UpperCAmelCase ) a = 0.0 a = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __lowerCAmelCase ( self : int , __UpperCAmelCase : float = 0.01 ) ->Optional[int]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore a = [] # x coordinates of points to plot a = [] # y coordinates of points to plot a = 0.0 while t <= 1: a = self.bezier_curve_function(__UpperCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size a = [i[0] for i in self.list_of_points] a = [i[1] for i in self.list_of_points] plt.plot( __UpperCAmelCase , __UpperCAmelCase , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(__UpperCAmelCase , __UpperCAmelCase , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
0
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : '''simple docstring''' def __init__( self: Tuple ,lowerCamelCase_: List[str] ,lowerCamelCase_: int=13 ,lowerCamelCase_: int=32 ,lowerCamelCase_: Optional[int]=2 ,lowerCamelCase_: Any=3 ,lowerCamelCase_: str=16 ,lowerCamelCase_: Optional[Any]=[1, 2, 1] ,lowerCamelCase_: Tuple=[2, 2, 4] ,lowerCamelCase_: int=2 ,lowerCamelCase_: List[Any]=2.0 ,lowerCamelCase_: str=True ,lowerCamelCase_: Optional[int]=0.0 ,lowerCamelCase_: List[Any]=0.0 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: Tuple="gelu" ,lowerCamelCase_: Union[str, Any]=False ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Optional[int]=0.0_2 ,lowerCamelCase_: int=1e-5 ,lowerCamelCase_: Optional[int]=True ,lowerCamelCase_: Union[str, Any]=None ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Optional[int]=10 ,lowerCamelCase_: Tuple=8 ,) -> List[Any]: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : int = image_size UpperCAmelCase_ : Union[str, Any] = patch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Union[str, Any] = depths UpperCAmelCase_ : List[str] = num_heads UpperCAmelCase_ : int = window_size UpperCAmelCase_ : List[str] = mlp_ratio UpperCAmelCase_ : Tuple = qkv_bias UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : str = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = drop_path_rate UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : int = use_absolute_embeddings UpperCAmelCase_ : Any = patch_norm UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Dict = scope UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Optional[Any] = type_sequence_label_size UpperCAmelCase_ : List[str] = encoder_stride def A__ ( self: Any ) -> int: UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : List[Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : str = self.get_config() return config, pixel_values, labels def A__ ( self: List[Any] ) -> Union[str, Any]: return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def A__ ( self: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ) -> str: UpperCAmelCase_ : str = SwinvaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase_ : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self: List[Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: int ) -> int: UpperCAmelCase_ : Any = SwinvaForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : str = 1 UpperCAmelCase_ : Optional[Any] = SwinvaForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self: int ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any] ) -> int: UpperCAmelCase_ : Union[str, Any] = self.type_sequence_label_size UpperCAmelCase_ : int = SwinvaForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def A__ ( self: str ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = config_and_inputs UpperCAmelCase_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Tuple = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) A__ : Optional[Any] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) A__ : List[Any] = False A__ : Tuple = False A__ : int = False A__ : Union[str, Any] = False def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : Any = SwinvaModelTester(self ) UpperCAmelCase_ : str = ConfigTester(self ,config_class=lowerCamelCase_ ,embed_dim=37 ) def A__ ( self: Optional[int] ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self: Any ) -> Dict: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def A__ ( self: int ) -> Dict: pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def A__ ( self: Tuple ) -> List[str]: pass def A__ ( self: str ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(lowerCamelCase_ ) UpperCAmelCase_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : int = [*signature.parameters.keys()] UpperCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Any = True for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : str = True UpperCAmelCase_ : List[Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[Any] = outputs.attentions UpperCAmelCase_ : List[str] = len(self.model_tester.depths ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase_ : str = True UpperCAmelCase_ : Optional[Any] = config.window_size**2 UpperCAmelCase_ : Optional[int] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : List[Any] = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) UpperCAmelCase_ : Optional[Any] = len(lowerCamelCase_ ) # Check attention is always last and order is fine UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Tuple = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) if hasattr(self.model_tester ,"""num_hidden_states_types""" ): UpperCAmelCase_ : List[Any] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase_ : List[str] = 2 self.assertEqual(out_len + added_hidden_states ,len(lowerCamelCase_ ) ) UpperCAmelCase_ : Any = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def A__ ( self: List[str] ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Optional[int] ) -> List[Any]: UpperCAmelCase_ : str = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : int = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : List[str] = outputs.hidden_states UpperCAmelCase_ : Optional[Any] = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # Swinv2 has a different seq_length UpperCAmelCase_ : Optional[Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) UpperCAmelCase_ : Optional[int] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = reshaped_hidden_states[0].shape UpperCAmelCase_ : Optional[Any] = ( reshaped_hidden_states[0].view(lowerCamelCase_ ,lowerCamelCase_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def A__ ( self: Any ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase_ : Any = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : str = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[str] ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Union[str, Any] = 3 UpperCAmelCase_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ : List[str] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ : Optional[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : List[str] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) def A__ ( self: Optional[int] ) -> str: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def A__ ( self: str ) -> Tuple: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Dict = SwinvaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def A__ ( self: Any ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @require_vision @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self: Dict ) -> Optional[Any]: return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def A__ ( self: str ) -> List[Any]: UpperCAmelCase_ : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( lowerCamelCase_ ) UpperCAmelCase_ : Any = self.default_image_processor UpperCAmelCase_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCAmelCase_ : Optional[int] = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(**lowerCamelCase_ ) # verify the logits UpperCAmelCase_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Any = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) )
345
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__(self : int , *__a : Dict , **__a : str ): warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
1
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED UpperCamelCase_ = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } UpperCamelCase_ = { '''allenai/led-base-16384''': 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : int = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCAmelCase_ : Dict = bs[:] UpperCAmelCase_ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(_a ) cs.append(2**8 + n ) n += 1 UpperCAmelCase_ : Any = [chr(_a ) for n in cs] return dict(zip(_a , _a ) ) def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = set() UpperCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ : Optional[int] = char return pairs class _snake_case ( __snake_case ): '''simple docstring''' A__ : str = VOCAB_FILES_NAMES A__ : List[str] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self: Union[str, Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any]="replace" ,lowerCamelCase_: Optional[Any]="<s>" ,lowerCamelCase_: List[Any]="</s>" ,lowerCamelCase_: List[str]="</s>" ,lowerCamelCase_: int="<s>" ,lowerCamelCase_: int="<unk>" ,lowerCamelCase_: str="<pad>" ,lowerCamelCase_: Optional[Any]="<mask>" ,lowerCamelCase_: List[str]=False ,**lowerCamelCase_: Tuple ,) -> Any: UpperCAmelCase_ : Union[str, Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else bos_token UpperCAmelCase_ : int = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else eos_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else sep_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else cls_token UpperCAmelCase_ : Optional[Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else unk_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : str = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ ,bos_token=lowerCamelCase_ ,eos_token=lowerCamelCase_ ,unk_token=lowerCamelCase_ ,sep_token=lowerCamelCase_ ,cls_token=lowerCamelCase_ ,pad_token=lowerCamelCase_ ,mask_token=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ,**lowerCamelCase_ ,) with open(lowerCamelCase_ ,encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase_ : Union[str, Any] = json.load(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ : Any = errors # how to handle errors in decoding UpperCAmelCase_ : int = bytes_to_unicode() UpperCAmelCase_ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ ,encoding="""utf-8""" ) as merges_handle: UpperCAmelCase_ : Any = merges_handle.read().split("""\n""" )[1:-1] UpperCAmelCase_ : int = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase_ : int = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self: List[str] ) -> List[str]: return len(self.encoder ) def A__ ( self: Any ) -> Union[str, Any]: return dict(self.encoder ,**self.added_tokens_encoder ) def A__ ( self: Tuple ,lowerCamelCase_: Dict ) -> Optional[Any]: if token in self.cache: return self.cache[token] UpperCAmelCase_ : Union[str, Any] = tuple(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: UpperCAmelCase_ : Union[str, Any] = min(lowerCamelCase_ ,key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ , UpperCAmelCase_ : Any = bigram UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : List[str] = 0 while i < len(lowerCamelCase_ ): try: UpperCAmelCase_ : str = word.index(lowerCamelCase_ ,lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase_ : Union[str, Any] = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ : List[str] = tuple(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = new_word if len(lowerCamelCase_ ) == 1: break else: UpperCAmelCase_ : List[str] = get_pairs(lowerCamelCase_ ) UpperCAmelCase_ : int = """ """.join(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = word return word def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tuple ) -> List[str]: UpperCAmelCase_ : str = [] for token in re.findall(self.pat ,lowerCamelCase_ ): UpperCAmelCase_ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) ) return bpe_tokens def A__ ( self: List[Any] ,lowerCamelCase_: Optional[Any] ) -> Optional[int]: return self.encoder.get(lowerCamelCase_ ,self.encoder.get(self.unk_token ) ) def A__ ( self: List[str] ,lowerCamelCase_: str ) -> Optional[Any]: return self.decoder.get(lowerCamelCase_ ) def A__ ( self: List[str] ,lowerCamelCase_: List[str] ) -> List[Any]: UpperCAmelCase_ : str = """""".join(lowerCamelCase_ ) UpperCAmelCase_ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors ) return text def A__ ( self: Optional[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : List[Any] = os.path.join( lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_ : List[str] = os.path.join( lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCamelCase_ ,ensure_ascii=lowerCamelCase_ ) + """\n""" ) UpperCAmelCase_ : str = 0 with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) UpperCAmelCase_ : Tuple = token_index writer.write(""" """.join(lowerCamelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file def A__ ( self: str ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] UpperCAmelCase_ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self: Union[str, Any] ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ,lowerCamelCase_: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ ,token_ids_a=lowerCamelCase_ ,already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def A__ ( self: str ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ) -> List[int]: UpperCAmelCase_ : Optional[Any] = [self.sep_token_id] UpperCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: str=False ,**lowerCamelCase_: List[str] ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = kwargs.pop("""add_prefix_space""" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): UpperCAmelCase_ : Dict = """ """ + text return (text, kwargs) def A__ ( self: List[str] ,lowerCamelCase_: Union[Dict[str, EncodedInput], BatchEncoding] ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: Optional[bool] = None ,) -> dict: UpperCAmelCase_ : Optional[int] = super()._pad( encoded_inputs=lowerCamelCase_ ,max_length=lowerCamelCase_ ,padding_strategy=lowerCamelCase_ ,pad_to_multiple_of=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,) # Load from model defaults if return_attention_mask is None: UpperCAmelCase_ : str = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase_ : str = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase_ : List[Any] = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ ) if needs_to_be_padded: UpperCAmelCase_ : Dict = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase_ : str = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase_ : List[str] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
345
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Tuple = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = """vit_mae""" def __init__(self : Any , UpperCamelCase : List[str]=768 , UpperCamelCase : Dict=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : Any=3072 , UpperCamelCase : Dict="gelu" , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : List[str]=0.02 , UpperCamelCase : str=1E-12 , UpperCamelCase : Optional[Any]=224 , UpperCamelCase : Tuple=16 , UpperCamelCase : str=3 , UpperCamelCase : int=True , UpperCamelCase : List[Any]=16 , UpperCamelCase : str=512 , UpperCamelCase : int=8 , UpperCamelCase : Optional[int]=2048 , UpperCamelCase : List[str]=0.75 , UpperCamelCase : Union[str, Any]=False , **UpperCamelCase : int , ): '''simple docstring''' super().__init__(**UpperCamelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias lowercase__ = decoder_num_attention_heads lowercase__ = decoder_hidden_size lowercase__ = decoder_num_hidden_layers lowercase__ = decoder_intermediate_size lowercase__ = mask_ratio lowercase__ = norm_pix_loss
2
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Union[str, Any] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self: List[str] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : Optional[Any] = (32, 32) UpperCAmelCase_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def A__ ( self: List[Any] ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : int = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def A__ ( self: str ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def A__ ( self: Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase_ : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(lowerCamelCase_ ) @property def A__ ( self: Tuple ) -> Tuple: def extract(*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: str ): class _snake_case : '''simple docstring''' def __init__( self: List[Any] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = torch.ones([0] ) def A__ ( self: List[Any] ,lowerCamelCase_: str ) -> int: self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def A__ ( self: Union[str, Any] ) -> Tuple: UpperCAmelCase_ : int = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : int = self.dummy_cond_unet UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule="""scaled_linear""" ,clip_sample=lowerCamelCase_ ,set_alpha_to_one=lowerCamelCase_ ,) UpperCAmelCase_ : str = self.dummy_vae UpperCAmelCase_ : List[str] = self.dummy_text_encoder UpperCAmelCase_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : str = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : int = sd_pipe([prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) UpperCAmelCase_ : List[Any] = output.images UpperCAmelCase_ : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : Dict = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=lowerCamelCase_ ,)[0] UpperCAmelCase_ : int = image[0, -3:, -3:, -1] UpperCAmelCase_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Optional[Any] ) -> Any: UpperCAmelCase_ : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Dict = self.dummy_cond_unet UpperCAmelCase_ : List[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCAmelCase_ : str = self.dummy_vae UpperCAmelCase_ : Union[str, Any] = self.dummy_text_encoder UpperCAmelCase_ : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Any = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : int = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = sd_pipe([prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) UpperCAmelCase_ : str = output.images UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : int = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=lowerCamelCase_ ,)[0] UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: str ) -> Dict: UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ ,lowerCamelCase_ ) assert isinstance(pipe.scheduler ,lowerCamelCase_ ) assert pipe.safety_checker is None UpperCAmelCase_ : List[Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase_ : Optional[int] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : Tuple = self.dummy_cond_unet UpperCAmelCase_ : Dict = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = self.dummy_vae UpperCAmelCase_ : List[str] = self.dummy_text_encoder UpperCAmelCase_ : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 UpperCAmelCase_ : Optional[Any] = unet.half() UpperCAmelCase_ : Optional[int] = vae.half() UpperCAmelCase_ : int = bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Any = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : List[Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : Optional[int] = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self: List[str] ) -> List[Any]: UpperCAmelCase_ : Tuple = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : str = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) UpperCAmelCase_ : Optional[int] = 4003660346 UpperCAmelCase_ : int = 7 # without safety guidance (sld_guidance_scale = 0) UpperCAmelCase_ : Dict = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Dict = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Any = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : str = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Optional[int] ) -> Any: UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=lowerCamelCase_ ) UpperCAmelCase_ : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" UpperCAmelCase_ : List[Any] = 2734971755 UpperCAmelCase_ : Optional[Any] = 7 UpperCAmelCase_ : int = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Dict = output.images UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 UpperCAmelCase_ : Any = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : Dict = output.images UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Union[str, Any] ) -> int: UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) UpperCAmelCase_ : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) UpperCAmelCase_ : Optional[Any] = 1044355234 UpperCAmelCase_ : List[str] = 12 UpperCAmelCase_ : List[Any] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Any = output.images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 UpperCAmelCase_ : Optional[int] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : List[str] = output.images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] UpperCAmelCase_ : Any = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
345
0
'''simple docstring''' from scipy.stats import pearsonr import datasets lowercase : Optional[int] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' lowercase : Optional[Any] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' lowercase : str = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: """simple docstring""" if return_pvalue: A : Union[str, Any] = pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0] )}
3
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _snake_case : '''simple docstring''' def __init__( self: Optional[int] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Tuple=13 ,lowerCamelCase_: int=7 ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Dict=True ,lowerCamelCase_: str=True ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: int=99 ,lowerCamelCase_: List[str]=64 ,lowerCamelCase_: Tuple=32 ,lowerCamelCase_: List[str]=5 ,lowerCamelCase_: str=4 ,lowerCamelCase_: str=37 ,lowerCamelCase_: Union[str, Any]="gelu" ,lowerCamelCase_: Union[str, Any]=0.1 ,lowerCamelCase_: str=0.1 ,lowerCamelCase_: List[str]=512 ,lowerCamelCase_: Dict=16 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: List[str]=0.0_2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: Union[str, Any]=4 ,lowerCamelCase_: str=None ,) -> List[str]: UpperCAmelCase_ : Any = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : Dict = use_input_mask UpperCAmelCase_ : Any = use_token_type_ids UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : List[str] = embedding_size UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : Any = type_sequence_label_size UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Optional[int] = num_labels UpperCAmelCase_ : Optional[int] = num_choices UpperCAmelCase_ : List[str] = scope def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : List[str] = None if self.use_input_mask: UpperCAmelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Dict = None if self.use_token_type_ids: UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : int = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase_ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self: Any ) -> Dict: return MobileBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase_ ,initializer_range=self.initializer_range ,) def A__ ( self: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> int: UpperCAmelCase_ : Any = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def A__ ( self: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Dict ) -> int: UpperCAmelCase_ : Union[str, Any] = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self: str ,lowerCamelCase_: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: int ) -> int: UpperCAmelCase_ : List[Any] = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def A__ ( self: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> Optional[Any]: UpperCAmelCase_ : Tuple = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,next_sentence_label=lowerCamelCase_ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def A__ ( self: Any ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,start_positions=lowerCamelCase_ ,end_positions=lowerCamelCase_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def A__ ( self: List[str] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Any ) -> str: UpperCAmelCase_ : Optional[Any] = self.num_labels UpperCAmelCase_ : Union[str, Any] = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ) -> Any: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self: Tuple ,lowerCamelCase_: str ,lowerCamelCase_: int ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = self.num_choices UpperCAmelCase_ : Tuple = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Dict = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : str = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Optional[int] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def A__ ( self: List[str] ) -> str: UpperCAmelCase_ : str = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) A__ : List[str] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) A__ : List[str] = True def A__ ( self: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: int=False ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = super()._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ,return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): UpperCAmelCase_ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase_ ) return inputs_dict def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : List[str] = MobileBertModelTester(self ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self ,config_class=lowerCamelCase_ ,hidden_size=37 ) def A__ ( self: Optional[Any] ) -> List[Any]: self.config_tester.run_common_tests() def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Tuple: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _a : Union[str, Any] ): '''simple docstring''' return torch.tensor( _a , dtype=torch.long , device=_a , ) UpperCamelCase_ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self: List[Any] ) -> str: UpperCAmelCase_ : Any = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : str = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ )[0] UpperCAmelCase_ : Union[str, Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = torch.tensor( [ [ [-2.473_6526e07, 8.269_1656e04, 1.652_1838e05], [-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00], [2.604_7359e00, 1.567_7652e00, -1.732_4188e-01], ] ] ,device=lowerCamelCase_ ,) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
345
0
'''simple docstring''' def a_ ( lowerCamelCase : list ): lowerCAmelCase = len(lowerCamelCase ) for i in range(1 , lowerCamelCase ): lowerCAmelCase = collection[i] lowerCAmelCase = 0 lowerCAmelCase = i - 1 while low <= high: lowerCAmelCase = (low + high) // 2 if val < collection[mid]: lowerCAmelCase = mid - 1 else: lowerCAmelCase = mid + 1 for j in range(lowerCamelCase , lowerCamelCase , -1 ): lowerCAmelCase = collection[j - 1] lowerCAmelCase = val return collection if __name__ == "__main__": __snake_case =input("""Enter numbers separated by a comma:\n""").strip() __snake_case =[int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
4
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: str ) -> int: UpperCAmelCase_ : List[Any] = """ylacombe/bark-small""" UpperCAmelCase_ : Tuple = tempfile.mkdtemp() UpperCAmelCase_ : Union[str, Any] = """en_speaker_1""" UpperCAmelCase_ : Optional[Any] = """This is a test string""" UpperCAmelCase_ : int = """speaker_embeddings_path.json""" UpperCAmelCase_ : Any = """speaker_embeddings""" def A__ ( self: Tuple ,**lowerCamelCase_: List[str] ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint ,**lowerCamelCase_ ) def A__ ( self: str ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def A__ ( self: List[Any] ) -> int: UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = BarkProcessor(tokenizer=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) @slow def A__ ( self: List[Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) processor.save_pretrained( self.tmpdirname ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,speaker_embeddings_directory=self.speaker_embeddings_directory ,) UpperCAmelCase_ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname ,self.speaker_embeddings_dict_path ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : Any = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) UpperCAmelCase_ : Optional[int] = 35 UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : Dict = 8 UpperCAmelCase_ : Optional[int] = { """semantic_prompt""": np.ones(lowerCamelCase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : str = processor(text=self.input_string ,voice_preset=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,"""file.npz""" ) np.savez(lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string ,voice_preset=lowerCamelCase_ ) UpperCAmelCase_ : int = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Union[str, Any] = processor(text=self.input_string ,voice_preset=self.voice_preset ) def A__ ( self: Dict ) -> Tuple: UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Dict = BarkProcessor(tokenizer=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string ) UpperCAmelCase_ : str = tokenizer( self.input_string ,padding="""max_length""" ,max_length=256 ,add_special_tokens=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,return_token_type_ids=lowerCamelCase_ ,) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key].squeeze().tolist() )
345
0
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Any: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : str = -1 UpperCAmelCase_ : Dict = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase_ : Optional[int] = cs.out[:-1] self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: Dict ) -> Optional[Any]: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = -1 UpperCAmelCase_ : List[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : Dict = tokenizer.decode(greedy_ids[0] ) UpperCAmelCase_ : str = TextIteratorStreamer(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} UpperCAmelCase_ : str = Thread(target=model.generate ,kwargs=lowerCamelCase_ ) thread.start() UpperCAmelCase_ : int = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[Any] ) -> Dict: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = -1 UpperCAmelCase_ : Tuple = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Dict = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : str = greedy_ids[:, input_ids.shape[1] :] UpperCAmelCase_ : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ ,skip_prompt=lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase_ : List[str] = cs.out[:-1] self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: str ) -> str: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained("""distilgpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Any = -1 UpperCAmelCase_ : Union[str, Any] = torch.ones((1, 5) ,device=lowerCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: UpperCAmelCase_ : Union[str, Any] = TextStreamer(lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=1 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token UpperCAmelCase_ : List[str] = cs.out[:-1] # Remove the final "\n" UpperCAmelCase_ : Dict = tokenizer(lowerCamelCase_ ,return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape ,(1, 1) ) def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Any = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = -1 UpperCAmelCase_ : Optional[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = TextIteratorStreamer(lowerCamelCase_ ,timeout=0.0_0_1 ) UpperCAmelCase_ : Any = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} UpperCAmelCase_ : Dict = Thread(target=model.generate ,kwargs=lowerCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCamelCase_ ): UpperCAmelCase_ : Union[str, Any] = """""" for new_text in streamer: streamer_text += new_text
345
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer A : List[Any] = logging.get_logger(__name__) A : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A : Dict = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Any = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Tuple = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } A : Optional[Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } A : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } A : List[Any] = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } A : Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } A : str = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } A : Union[str, Any] = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class __A( a ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION snake_case_ = DPRContextEncoderTokenizer class __A( a ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION snake_case_ = DPRQuestionEncoderTokenizer A : Optional[Any] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) A : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) A : Tuple = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(a ) class __A: def __call__( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = False , _snake_case = False , _snake_case = None , _snake_case = None , _snake_case = None , **_snake_case , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( _snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , return_tensors=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) elif titles is None or texts is None: __a = titles if texts is None else texts return super().__call__( _snake_case , _snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , return_tensors=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) __a = titles if not isinstance(_snake_case , _snake_case ) else [titles] __a = texts if not isinstance(_snake_case , _snake_case ) else [texts] __a = len(_snake_case ) __a = questions if not isinstance(_snake_case , _snake_case ) else [questions] * n_passages assert len(_snake_case ) == len( _snake_case ), F"""There should be as many titles than texts but got {len(_snake_case )} titles and {len(_snake_case )} texts.""" __a = super().__call__(_snake_case , _snake_case , padding=_snake_case , truncation=_snake_case )['''input_ids'''] __a = super().__call__(_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case )['''input_ids'''] __a = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_snake_case , _snake_case ) ] } if return_attention_mask is not False: __a = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __a = attention_mask return self.pad(_snake_case , padding=_snake_case , max_length=_snake_case , return_tensors=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 16 , _snake_case = 64 , _snake_case = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' __a = reader_input['''input_ids'''] __a , __a , __a = reader_output[:3] __a = len(_snake_case ) __a = sorted(range(_snake_case ) , reverse=_snake_case , key=relevance_logits.__getitem__ ) __a = [] for doc_id in sorted_docs: __a = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __a = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __a = sequence_ids.index(self.pad_token_id ) else: __a = len(_snake_case ) __a = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_snake_case , top_spans=_snake_case , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_snake_case , start_index=_snake_case , end_index=_snake_case , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_snake_case ) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , ) -> List[DPRSpanPrediction]: '''simple docstring''' __a = [] for start_index, start_score in enumerate(_snake_case ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __a = sorted(_snake_case , key=lambda _snake_case : x[1] , reverse=_snake_case ) __a = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" __a = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_snake_case ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a ) class __A( a , a ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = READER_PRETRAINED_VOCAB_FILES_MAP snake_case_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = READER_PRETRAINED_INIT_CONFIGURATION snake_case_ = ['''input_ids''', '''attention_mask'''] snake_case_ = DPRReaderTokenizer
6
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _snake_case ( unittest.TestCase ): '''simple docstring''' @property def A__ ( self: Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") ,up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") ,) return model @property def A__ ( self: Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=3 ,) return model @property def A__ ( self: Tuple ) -> Any: torch.manual_seed(0 ) UpperCAmelCase_ : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(lowerCamelCase_ ) def A__ ( self: str ) -> Optional[Any]: UpperCAmelCase_ : str = self.dummy_uncond_unet UpperCAmelCase_ : List[Any] = DDIMScheduler() UpperCAmelCase_ : List[Any] = self.dummy_vq_model UpperCAmelCase_ : Optional[int] = LDMPipeline(unet=lowerCamelCase_ ,vqvae=lowerCamelCase_ ,scheduler=lowerCamelCase_ ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = torch.manual_seed(0 ) UpperCAmelCase_ : int = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ).images UpperCAmelCase_ : List[str] = torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ,return_dict=lowerCamelCase_ )[0] UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : str = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) UpperCAmelCase_ : Tuple = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = ldm(generator=lowerCamelCase_ ,num_inference_steps=5 ,output_type="""numpy""" ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase_ : int = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) UpperCAmelCase_ : Union[str, Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
345
0
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: '''simple docstring''' A__ = 0 A__ = len(SCREAMING_SNAKE_CASE__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None A__ = sorted_collection[point] if current_item == item: return point else: if point < left: A__ = left A__ = point elif point > right: A__ = right A__ = point else: if item < current_item: A__ = point - 1 else: A__ = point + 1 return None def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif point > right: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point - 1 ) else: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point + 1 , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: '''simple docstring''' if collection != sorted(SCREAMING_SNAKE_CASE__ ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys lowercase_ = 0 if debug == 1: lowercase_ = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") lowercase_ = 67 lowercase_ = interpolation_search(collection, target) if result is not None: print(f"""{target} found at positions: {result}""") else: print("Not found")
7
def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' UpperCAmelCase_ : Tuple = [0] * len(_a ) UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Dict = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_a ) ): if indegree[i] == 0: queue.append(_a ) while queue: UpperCAmelCase_ : List[str] = queue.pop(0 ) cnt += 1 topo.append(_a ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_a ) if cnt != len(_a ): print("""Cycle exists""" ) else: print(_a ) # Adjacency List of Graph UpperCamelCase_ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
345
0
from __future__ import annotations from math import pi, sqrt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
8
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = "swinv2" A__ : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: List[str] ,lowerCamelCase_: List[str]=224 ,lowerCamelCase_: List[str]=4 ,lowerCamelCase_: List[Any]=3 ,lowerCamelCase_: Optional[Any]=96 ,lowerCamelCase_: Any=[2, 2, 6, 2] ,lowerCamelCase_: Dict=[3, 6, 12, 24] ,lowerCamelCase_: str=7 ,lowerCamelCase_: Optional[Any]=4.0 ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.0 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: str=False ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: Union[str, Any]=1e-5 ,lowerCamelCase_: str=32 ,**lowerCamelCase_: List[str] ,) -> Tuple: super().__init__(**lowerCamelCase_ ) UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : Tuple = patch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : List[Any] = embed_dim UpperCAmelCase_ : Dict = depths UpperCAmelCase_ : Dict = len(lowerCamelCase_ ) UpperCAmelCase_ : str = num_heads UpperCAmelCase_ : Tuple = window_size UpperCAmelCase_ : int = mlp_ratio UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : int = drop_path_rate UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : List[str] = use_absolute_embeddings UpperCAmelCase_ : Dict = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ : List[str] = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) UpperCAmelCase_ : Any = (0, 0, 0, 0)
345
0
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = DebertaTokenizer SCREAMING_SNAKE_CASE__ : Union[str, Any] = True SCREAMING_SNAKE_CASE__ : Optional[int] = DebertaTokenizerFast def __magic_name__( self :List[str] ) -> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __SCREAMING_SNAKE_CASE : Optional[int] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __SCREAMING_SNAKE_CASE : Union[str, Any] = {'''unk_token''': '''[UNK]'''} __SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase__ ) ) def __magic_name__( self :Any , **lowerCAmelCase__ :str ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__( self :int , lowerCAmelCase__ :int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[int] = '''lower newer''' __SCREAMING_SNAKE_CASE : int = '''lower newer''' return input_text, output_text def __magic_name__( self :str ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = '''lower newer''' __SCREAMING_SNAKE_CASE : str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token] __SCREAMING_SNAKE_CASE : Optional[Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : List[str] = tokenizer('''Hello''' , '''World''' ) __SCREAMING_SNAKE_CASE : Dict = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , lowerCAmelCase__ ) @slow def __magic_name__( self :Optional[int] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __SCREAMING_SNAKE_CASE : int = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __magic_name__( self :Any ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __SCREAMING_SNAKE_CASE : Dict = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = [tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) for seq in encoding['''input_ids''']] # fmt: off __SCREAMING_SNAKE_CASE : List[Any] = { '''input_ids''': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __SCREAMING_SNAKE_CASE : List[str] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , lowerCAmelCase__ ) for expected, decoded in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
9
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: int ) -> str: # A mock response for an HTTP head request to emulate server down UpperCAmelCase_ : List[str] = mock.Mock() UpperCAmelCase_ : List[Any] = 500 UpperCAmelCase_ : Union[str, Any] = {} UpperCAmelCase_ : Union[str, Any] = HTTPError UpperCAmelCase_ : Any = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ : Union[str, Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head: UpperCAmelCase_ : Any = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def A__ ( self: str ) -> int: # A mock response for an HTTP head request to emulate server down UpperCAmelCase_ : str = mock.Mock() UpperCAmelCase_ : Optional[int] = 500 UpperCAmelCase_ : int = {} UpperCAmelCase_ : Union[str, Any] = HTTPError UpperCAmelCase_ : List[Any] = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ : Optional[int] = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head: UpperCAmelCase_ : Any = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def A__ ( self: str ) -> Dict: # This test is for deprecated behavior and can be removed in v5 try: UpperCAmelCase_ : Any = tempfile.mktemp() with open(lowerCamelCase_ ,"""wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = AlbertTokenizer.from_pretrained(lowerCamelCase_ ) finally: os.remove(lowerCamelCase_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" ,"""wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" ,lowerCamelCase_ ) UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def A__ ( self: List[str] ) -> Tuple: # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase_ : str = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class _snake_case ( unittest.TestCase ): '''simple docstring''' A__ : str = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def A__ ( cls: Dict ) -> Optional[int]: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def A__ ( cls: Optional[Any] ) -> List[str]: try: delete_repo(token=cls._token ,repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def A__ ( self: Any ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Tuple = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : List[Any] = BertTokenizer(lowerCamelCase_ ) tokenizer.push_to_hub("""test-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ,repo_id="""test-tokenizer""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def A__ ( self: Optional[int] ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[Any] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : Dict = BertTokenizer(lowerCamelCase_ ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" ,use_auth_token=self._token ) UpperCAmelCase_ : Dict = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowerCamelCase_ ,repo_id="""valid_org/test-tokenizer-org""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def A__ ( self: Optional[int] ) -> Optional[Any]: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Any = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : Optional[Any] = CustomTokenizer(lowerCamelCase_ ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[str] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : str = BertTokenizerFast.from_pretrained(lowerCamelCase_ ) bert_tokenizer.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = CustomTokenizerFast.from_pretrained(lowerCamelCase_ ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizerFast""" ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' ,use_fast=lowerCamelCase_ ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[Any] ) -> Any: UpperCAmelCase_ : Any = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def A__ ( self: Tuple ) -> Optional[int]: UpperCAmelCase_ : str = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS]""", """ This is a """, """extra_id_100"""] ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ : Dict = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) ,["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) ,["""BC""", """A"""] ) def A__ ( self: Union[str, Any] ) -> int: UpperCAmelCase_ : List[str] = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def A__ ( self: int ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def A__ ( self: int ) -> List[str]: UpperCAmelCase_ : int = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) ,["""AB""", """C"""] ) def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) ,["""ABC""", """D"""] ) def A__ ( self: List[Any] ) -> Any: # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCAmelCase_ : Tuple = Trie() UpperCAmelCase_ : Optional[Any] = trie.cut_text("""ABC""" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(lowerCamelCase_ ,["""AB""", """C"""] )
345
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Union[str, Any] =R"\w+[.]\d+" lowerCamelCase__: int =re.findall(__a , __a ) for pat in pats: lowerCamelCase__: Optional[int] =key.replace(__a , "_".join(pat.split("." ) ) ) return key def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: int =pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCamelCase__: Optional[Any] =pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCamelCase__: int =pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCamelCase__: int =pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCamelCase__: Optional[Any] =pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCamelCase__: List[Any] =pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCamelCase__: Union[str, Any] =pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowerCamelCase__: int =pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCamelCase__: str =pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCamelCase__: int =pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCAmelCase_ ( __a , __a , __a=42 ) -> Tuple: """simple docstring""" lowerCamelCase__: int ={k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCamelCase__: int =flax_model.init_weights(PRNGKey(__a ) ) lowerCamelCase__: Optional[int] =flatten_dict(__a ) lowerCamelCase__: int ={} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase__: List[str] =rename_key(__a ) lowerCamelCase__: str =tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowerCamelCase__ , lowerCamelCase__: List[str] =rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown lowerCamelCase__: Union[str, Any] =jnp.asarray(__a ) return unflatten_dict(__a )
10
from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: int ,**lowerCamelCase_: List[str] ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: List[str] ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: int ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Any = ["flax"] def __init__( self: int ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[str] ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Dict = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[Any] ) -> Any: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: List[Any] ) -> str: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[str] = ["flax"] def __init__( self: str ,*lowerCamelCase_: List[str] ,**lowerCamelCase_: Optional[int] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : int = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[Any] ) -> str: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: str ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[int] ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Optional[Any] ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[Any] = ["flax"] def __init__( self: Union[str, Any] ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: int ) -> List[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Dict: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: Any ,**lowerCamelCase_: int ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: Union[str, Any] ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Dict ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : str = ["flax"] def __init__( self: Optional[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: int ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: int ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Union[str, Any] = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Optional[int] ) -> List[str]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Dict ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: List[str] ) -> int: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[Any] = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Optional[int] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Dict ) -> int: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Optional[Any]: requires_backends(cls ,["""flax"""] )
345
0
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) lowerCAmelCase__ = logging.getLogger(__name__) def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : str ): _A : Optional[int] = np.argmax(UpperCamelCase__ , axis=1 ) return np.sum(outputs == labels ) def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] ): with open(UpperCamelCase__ , encoding="utf_8" ) as f: _A : str = csv.reader(UpperCamelCase__ ) _A : List[Any] = [] next(UpperCamelCase__ ) # skip the first line for line in tqdm(UpperCamelCase__ ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _UpperCAmelCase (UpperCamelCase__ : Any , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ): _A : int = [] for dataset in encoded_datasets: _A : Tuple = len(UpperCamelCase__ ) _A : List[str] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) _A : Optional[int] = np.zeros((n_batch, 2) , dtype=np.intaa ) _A : Any = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) _A : List[Any] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(UpperCamelCase__ ): _A : Dict = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _A : List[str] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _A : int = with_conta _A : str = with_conta _A : int = len(UpperCamelCase__ ) - 1 _A : str = len(UpperCamelCase__ ) - 1 _A : List[Any] = with_conta _A : str = with_conta _A : Union[str, Any] = mc_label _A : int = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(UpperCamelCase__ ) for t in all_inputs ) ) return tensor_datasets def _UpperCAmelCase (): _A : Optional[int] = argparse.ArgumentParser() parser.add_argument("--model_name" , type=UpperCamelCase__ , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=UpperCamelCase__ , default="" ) parser.add_argument("--eval_dataset" , type=UpperCamelCase__ , default="" ) parser.add_argument("--seed" , type=UpperCamelCase__ , default=42 ) parser.add_argument("--num_train_epochs" , type=UpperCamelCase__ , default=3 ) parser.add_argument("--train_batch_size" , type=UpperCamelCase__ , default=8 ) parser.add_argument("--eval_batch_size" , type=UpperCamelCase__ , default=16 ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=UpperCamelCase__ , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=UpperCamelCase__ , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=UpperCamelCase__ , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=UpperCamelCase__ , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=UpperCamelCase__ , default=6.25E-5 ) parser.add_argument("--warmup_steps" , default=0 , type=UpperCamelCase__ , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=UpperCamelCase__ , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=UpperCamelCase__ , default=0.01 ) parser.add_argument("--lm_coef" , type=UpperCamelCase__ , default=0.9 ) parser.add_argument("--n_valid" , type=UpperCamelCase__ , default=374 ) parser.add_argument("--server_ip" , type=UpperCamelCase__ , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=UpperCamelCase__ , default="" , help="Can be used for distant debugging." ) _A : Optional[int] = parser.parse_args() print(UpperCamelCase__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=UpperCamelCase__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) _A : List[Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) _A : Optional[int] = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(UpperCamelCase__ , UpperCamelCase__ ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset _A : Tuple = ["_start_", "_delimiter_", "_classify_"] _A : Tuple = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(UpperCamelCase__ ) _A : Any = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) _A : Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) model.to(UpperCamelCase__ ) # Load and encode the datasets def tokenize_and_encode(UpperCamelCase__ : int ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(UpperCamelCase__ ) ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): return obj return [tokenize_and_encode(UpperCamelCase__ ) for o in obj] logger.info("Encoding dataset..." ) _A : Any = load_rocstories_dataset(args.train_dataset ) _A : Union[str, Any] = load_rocstories_dataset(args.eval_dataset ) _A : List[str] = (train_dataset, eval_dataset) _A : int = tokenize_and_encode(UpperCamelCase__ ) # Compute the max input length for the Transformer _A : str = model.config.n_positions // 2 - 2 _A : Any = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) _A : Dict = min(UpperCamelCase__ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders _A : Dict = pre_process_datasets(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ ) _A , _A : List[Any] = tensor_datasets[0], tensor_datasets[1] _A : Dict = TensorDataset(*UpperCamelCase__ ) _A : Optional[int] = RandomSampler(UpperCamelCase__ ) _A : int = DataLoader(UpperCamelCase__ , sampler=UpperCamelCase__ , batch_size=args.train_batch_size ) _A : int = TensorDataset(*UpperCamelCase__ ) _A : List[Any] = SequentialSampler(UpperCamelCase__ ) _A : Optional[Any] = DataLoader(UpperCamelCase__ , sampler=UpperCamelCase__ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: _A : Tuple = args.max_steps _A : Tuple = args.max_steps // (len(UpperCamelCase__ ) // args.gradient_accumulation_steps) + 1 else: _A : Any = len(UpperCamelCase__ ) // args.gradient_accumulation_steps * args.num_train_epochs _A : List[str] = list(model.named_parameters() ) _A : List[Any] = ["bias", "LayerNorm.bias", "LayerNorm.weight"] _A : Dict = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] _A : Union[str, Any] = AdamW(UpperCamelCase__ , lr=args.learning_rate , eps=args.adam_epsilon ) _A : List[Any] = get_linear_schedule_with_warmup( UpperCamelCase__ , num_warmup_steps=args.warmup_steps , num_training_steps=UpperCamelCase__ ) if args.do_train: _A , _A , _A : Union[str, Any] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): _A : Tuple = 0 _A : str = 0 _A : Dict = tqdm(UpperCamelCase__ , desc="Training" ) for step, batch in enumerate(UpperCamelCase__ ): _A : List[Any] = tuple(t.to(UpperCamelCase__ ) for t in batch ) _A , _A , _A , _A : List[str] = batch _A : int = model(UpperCamelCase__ , mc_token_ids=UpperCamelCase__ , lm_labels=UpperCamelCase__ , mc_labels=UpperCamelCase__ ) _A : str = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() _A : Any = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 _A : Optional[Any] = "Training loss: {:.2e} lr: {:.2e}".format(UpperCamelCase__ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer _A : List[Any] = model.module if hasattr(UpperCamelCase__ , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` _A : List[str] = os.path.join(args.output_dir , UpperCamelCase__ ) _A : Dict = os.path.join(args.output_dir , UpperCamelCase__ ) torch.save(model_to_save.state_dict() , UpperCamelCase__ ) model_to_save.config.to_json_file(UpperCamelCase__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned _A : Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) _A : int = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(UpperCamelCase__ ) if args.do_eval: model.eval() _A , _A : str = 0, 0 _A , _A : Any = 0, 0 for batch in tqdm(UpperCamelCase__ , desc="Evaluating" ): _A : Union[str, Any] = tuple(t.to(UpperCamelCase__ ) for t in batch ) _A , _A , _A , _A : Any = batch with torch.no_grad(): _A , _A , _A , _A : Tuple = model( UpperCamelCase__ , mc_token_ids=UpperCamelCase__ , lm_labels=UpperCamelCase__ , mc_labels=UpperCamelCase__ ) _A : List[Any] = mc_logits.detach().cpu().numpy() _A : Optional[Any] = mc_labels.to("cpu" ).numpy() _A : Union[str, Any] = accuracy(UpperCamelCase__ , UpperCamelCase__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 _A : Any = eval_loss / nb_eval_steps _A : int = eval_accuracy / nb_eval_examples _A : Dict = tr_loss / nb_tr_steps if args.do_train else None _A : Any = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} _A : Union[str, Any] = os.path.join(args.output_dir , "eval_results.txt" ) with open(UpperCamelCase__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , UpperCamelCase__ , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
11
import random from typing import Any def lowerCamelCase_ ( _a : list ): '''simple docstring''' for _ in range(len(_a ) ): UpperCAmelCase_ : Tuple = random.randint(0 , len(_a ) - 1 ) UpperCAmelCase_ : List[Any] = random.randint(0 , len(_a ) - 1 ) UpperCAmelCase_ , UpperCAmelCase_ : int = data[b], data[a] return data if __name__ == "__main__": UpperCamelCase_ = [0, 1, 2, 3, 4, 5, 6, 7] UpperCamelCase_ = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
345
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[int] = [] for i in range(self.num_layers ): UpperCAmelCase_ : List[Any] = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : List[Any] = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : int = resnets UpperCAmelCase_ : Tuple = attentions if self.add_downsample: UpperCAmelCase_ : List[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: int=True ) -> int: UpperCAmelCase_ : List[Any] = () for resnet, attn in zip(self.resnets ,self.attentions ): UpperCAmelCase_ : str = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[Any] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> int: UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : Dict = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnets if self.add_downsample: UpperCAmelCase_ : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any]=True ) -> Any: UpperCAmelCase_ : Union[str, Any] = () for resnet in self.resnets: UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[str] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: str ) -> Any: UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : int = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Optional[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : int = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = resnets UpperCAmelCase_ : Dict = attentions if self.add_upsample: UpperCAmelCase_ : Optional[Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[int] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: Any ,lowerCamelCase_: str ,lowerCamelCase_: List[str]=True ) -> List[str]: for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states UpperCAmelCase_ : List[str] = res_hidden_states_tuple[-1] UpperCAmelCase_ : Union[str, Any] = res_hidden_states_tuple[:-1] UpperCAmelCase_ : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Dict = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> Dict: UpperCAmelCase_ : Any = [] for i in range(self.num_layers ): UpperCAmelCase_ : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : str = resnets if self.add_upsample: UpperCAmelCase_ : Union[str, Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Dict ,lowerCamelCase_: Dict ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any=True ) -> List[str]: for resnet in self.resnets: # pop res hidden states UpperCAmelCase_ : Dict = res_hidden_states_tuple[-1] UpperCAmelCase_ : str = res_hidden_states_tuple[:-1] UpperCAmelCase_ : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : List[str] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Optional[Any] = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: # there is always at least one resnet UpperCAmelCase_ : List[Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] UpperCAmelCase_ : Any = [] for _ in range(self.num_layers ): UpperCAmelCase_ : Optional[Any] = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Dict = resnets UpperCAmelCase_ : Any = attentions def __call__( self: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any]=True ) -> List[Any]: UpperCAmelCase_ : List[Any] = self.resnets[0](lowerCamelCase_ ,lowerCamelCase_ ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): UpperCAmelCase_ : Optional[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) return hidden_states
345
0
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Any = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_: List[Any] = 8 # DPR tok SCREAMING_SNAKE_CASE_: str = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] SCREAMING_SNAKE_CASE_: Tuple = os.path.join(self.tmpdirname , "dpr_tokenizer") os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = os.path.join(lowerCAmelCase__ , DPR_VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) # BART tok SCREAMING_SNAKE_CASE_: Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] SCREAMING_SNAKE_CASE_: Tuple = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: List[str] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] SCREAMING_SNAKE_CASE_: Optional[int] = {"unk_token": "<unk>"} SCREAMING_SNAKE_CASE_: Optional[Any] = os.path.join(self.tmpdirname , "bart_tokenizer") os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = os.path.join(lowerCAmelCase__ , BART_VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Tuple = os.path.join(lowerCAmelCase__ , BART_VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(lowerCAmelCase__) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(lowerCAmelCase__)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer")) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer")) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): shutil.rmtree(self.tmpdirname) @require_tokenizers def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Union[str, Any] = os.path.join(self.tmpdirname , "rag_tokenizer") SCREAMING_SNAKE_CASE_: Tuple = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict()) SCREAMING_SNAKE_CASE_: Union[str, Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer()) rag_config.save_pretrained(lowerCAmelCase__) rag_tokenizer.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = RagTokenizer.from_pretrained(lowerCAmelCase__ , config=lowerCAmelCase__) self.assertIsInstance(new_rag_tokenizer.question_encoder , lowerCAmelCase__) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab()) self.assertIsInstance(new_rag_tokenizer.generator , lowerCAmelCase__) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab()) @slow def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: int = RagTokenizer.from_pretrained("facebook/rag-token-nq") SCREAMING_SNAKE_CASE_: str = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] SCREAMING_SNAKE_CASE_: List[str] = tokenizer(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: List[str] = RagTokenizer.from_pretrained("facebook/rag-sequence-nq") SCREAMING_SNAKE_CASE_: Any = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] SCREAMING_SNAKE_CASE_: Tuple = tokenizer(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__)
13
import pickle import numpy as np from matplotlib import pyplot as plt class _snake_case : '''simple docstring''' def __init__( self: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Tuple=0.2 ,lowerCamelCase_: Union[str, Any]=0.2 ) -> List[str]: UpperCAmelCase_ : List[Any] = bp_numa UpperCAmelCase_ : str = bp_numa UpperCAmelCase_ : List[Any] = bp_numa UpperCAmelCase_ : Optional[int] = conva_get[:2] UpperCAmelCase_ : List[Any] = conva_get[2] UpperCAmelCase_ : str = size_pa UpperCAmelCase_ : Optional[int] = rate_w UpperCAmelCase_ : Dict = rate_t UpperCAmelCase_ : List[Any] = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] UpperCAmelCase_ : int = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) UpperCAmelCase_ : int = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) UpperCAmelCase_ : Dict = -2 * np.random.rand(self.conva[1] ) + 1 UpperCAmelCase_ : str = -2 * np.random.rand(self.num_bpa ) + 1 UpperCAmelCase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def A__ ( self: str ,lowerCamelCase_: Optional[Any] ) -> Tuple: # save model dict with pickle UpperCAmelCase_ : Dict = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(lowerCamelCase_ ,"""wb""" ) as f: pickle.dump(lowerCamelCase_ ,lowerCamelCase_ ) print(F'''Model saved: {save_path}''' ) @classmethod def A__ ( cls: List[str] ,lowerCamelCase_: str ) -> List[str]: # read saved model with open(lowerCamelCase_ ,"""rb""" ) as f: UpperCAmelCase_ : Any = pickle.load(lowerCamelCase_ ) # noqa: S301 UpperCAmelCase_ : Union[str, Any] = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) UpperCAmelCase_ : List[str] = model_dic.get("""size_pooling1""" ) UpperCAmelCase_ : Tuple = model_dic.get("""num_bp1""" ) UpperCAmelCase_ : Optional[Any] = model_dic.get("""num_bp2""" ) UpperCAmelCase_ : List[str] = model_dic.get("""num_bp3""" ) UpperCAmelCase_ : List[Any] = model_dic.get("""rate_weight""" ) UpperCAmelCase_ : Dict = model_dic.get("""rate_thre""" ) # create model instance UpperCAmelCase_ : List[Any] = CNN(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # modify model parameter UpperCAmelCase_ : Any = model_dic.get("""w_conv1""" ) UpperCAmelCase_ : int = model_dic.get("""wkj""" ) UpperCAmelCase_ : int = model_dic.get("""vji""" ) UpperCAmelCase_ : Optional[int] = model_dic.get("""thre_conv1""" ) UpperCAmelCase_ : List[str] = model_dic.get("""thre_bp2""" ) UpperCAmelCase_ : Dict = model_dic.get("""thre_bp3""" ) return conv_ins def A__ ( self: List[Any] ,lowerCamelCase_: Union[str, Any] ) -> Tuple: return 1 / (1 + np.exp(-1 * x )) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Union[str, Any] ) -> Optional[Any]: return round(lowerCamelCase_ ,3 ) def A__ ( self: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any] ) -> Any: # convolution process UpperCAmelCase_ : Optional[Any] = convs[0] UpperCAmelCase_ : int = convs[1] UpperCAmelCase_ : int = np.shape(lowerCamelCase_ )[0] # get the data slice of original image data, data_focus UpperCAmelCase_ : Dict = [] for i_focus in range(0 ,size_data - size_conv + 1 ,lowerCamelCase_ ): for j_focus in range(0 ,size_data - size_conv + 1 ,lowerCamelCase_ ): UpperCAmelCase_ : Union[str, Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowerCamelCase_ ) # calculate the feature map of every single kernel, and saved as list of matrix UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowerCamelCase_ ): UpperCAmelCase_ : Optional[int] = [] for i_focus in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : int = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowerCamelCase_ ) ) UpperCAmelCase_ : Union[str, Any] = np.asmatrix(lowerCamelCase_ ).reshape( lowerCamelCase_ ,lowerCamelCase_ ) data_featuremap.append(lowerCamelCase_ ) # expanding the data slice to One dimenssion UpperCAmelCase_ : Optional[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[int] = np.asarray(lowerCamelCase_ ) return focus_list, data_featuremap def A__ ( self: Tuple ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any]="average_pool" ) -> List[Any]: # pooling process UpperCAmelCase_ : Optional[Any] = len(featuremaps[0] ) UpperCAmelCase_ : Any = int(size_map / size_pooling ) UpperCAmelCase_ : Optional[int] = [] for i_map in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : Any = featuremaps[i_map] UpperCAmelCase_ : Tuple = [] for i_focus in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): for j_focus in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : str = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowerCamelCase_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowerCamelCase_ ) ) UpperCAmelCase_ : int = np.asmatrix(lowerCamelCase_ ).reshape(lowerCamelCase_ ,lowerCamelCase_ ) featuremap_pooled.append(lowerCamelCase_ ) return featuremap_pooled def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tuple ) -> Optional[int]: # expanding three dimension data to one dimension list UpperCAmelCase_ : List[Any] = [] for i in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : Tuple = np.shape(data[i] ) UpperCAmelCase_ : Optional[int] = data[i].reshape(1 ,shapes[0] * shapes[1] ) UpperCAmelCase_ : Optional[int] = data_listed.getA().tolist()[0] data_expanded.extend(lowerCamelCase_ ) UpperCAmelCase_ : int = np.asarray(lowerCamelCase_ ) return data_expanded def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[int] ) -> Union[str, Any]: # expanding matrix to one dimension list UpperCAmelCase_ : List[Any] = np.asarray(lowerCamelCase_ ) UpperCAmelCase_ : str = np.shape(lowerCamelCase_ ) UpperCAmelCase_ : Dict = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def A__ ( self: str ,lowerCamelCase_: Dict ,lowerCamelCase_: int ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Any ) -> Union[str, Any]: UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = 0 for i_map in range(lowerCamelCase_ ): UpperCAmelCase_ : Optional[Any] = np.ones((size_map, size_map) ) for i in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): for j in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : Any = pd_pool[ i_pool ] UpperCAmelCase_ : List[str] = i_pool + 1 UpperCAmelCase_ : Optional[Any] = np.multiply( lowerCamelCase_ ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(lowerCamelCase_ ) return pd_all def A__ ( self: str ,lowerCamelCase_: int ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any=bool ) -> Optional[int]: # model traning print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(lowerCamelCase_ )) ) print((""" - - Shape: Teach_Data """, np.shape(lowerCamelCase_ )) ) UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : Any = 10000 while rp < n_repeat and mse >= error_accuracy: UpperCAmelCase_ : List[str] = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(lowerCamelCase_ ) ): # print('------------Learning Image: %d--------------'%p) UpperCAmelCase_ : str = np.asmatrix(datas_train[p] ) UpperCAmelCase_ : Optional[Any] = np.asarray(datas_teach[p] ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : List[Any] = self.pooling(lowerCamelCase_ ,self.size_poolinga ) UpperCAmelCase_ : int = np.shape(lowerCamelCase_ ) UpperCAmelCase_ : Dict = self._expand(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = data_bp_input UpperCAmelCase_ : Optional[Any] = np.dot(lowerCamelCase_ ,self.vji.T ) - self.thre_bpa UpperCAmelCase_ : int = self.sig(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = np.dot(lowerCamelCase_ ,self.wkj.T ) - self.thre_bpa UpperCAmelCase_ : Optional[Any] = self.sig(lowerCamelCase_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- UpperCAmelCase_ : List[str] = np.multiply( (data_teach - bp_outa) ,np.multiply(lowerCamelCase_ ,(1 - bp_outa) ) ) UpperCAmelCase_ : List[Any] = np.multiply( np.dot(lowerCamelCase_ ,self.wkj ) ,np.multiply(lowerCamelCase_ ,(1 - bp_outa) ) ) UpperCAmelCase_ : Any = np.dot(lowerCamelCase_ ,self.vji ) UpperCAmelCase_ : Tuple = pd_i_all / (self.size_poolinga * self.size_poolinga) UpperCAmelCase_ : List[str] = pd_conva_pooled.T.getA().tolist() UpperCAmelCase_ : str = self._calculate_gradient_from_pool( lowerCamelCase_ ,lowerCamelCase_ ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): UpperCAmelCase_ : List[str] = self._expand_mat(pd_conva_all[k_conv] ) UpperCAmelCase_ : Optional[Any] = self.rate_weight * np.dot(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : int = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) UpperCAmelCase_ : str = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer UpperCAmelCase_ : int = self.wkj + pd_k_all.T * bp_outa * self.rate_weight UpperCAmelCase_ : Tuple = self.vji + pd_j_all.T * bp_outa * self.rate_weight UpperCAmelCase_ : int = self.thre_bpa - pd_k_all * self.rate_thre UpperCAmelCase_ : str = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image UpperCAmelCase_ : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) UpperCAmelCase_ : int = rp + 1 UpperCAmelCase_ : Any = error_count / patterns all_mse.append(lowerCamelCase_ ) def draw_error(): UpperCAmelCase_ : Any = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowerCamelCase_ ,"""+-""" ) plt.plot(lowerCamelCase_ ,"""r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(lowerCamelCase_ ,alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def A__ ( self: Optional[int] ,lowerCamelCase_: Any ) -> Tuple: # model predict UpperCAmelCase_ : Union[str, Any] = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(lowerCamelCase_ )) ) for p in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : int = np.asmatrix(datas_test[p] ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : Optional[Any] = self.pooling(lowerCamelCase_ ,self.size_poolinga ) UpperCAmelCase_ : str = self._expand(lowerCamelCase_ ) UpperCAmelCase_ : str = data_bp_input UpperCAmelCase_ : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa UpperCAmelCase_ : Optional[int] = self.sig(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = bp_outa * self.wkj.T - self.thre_bpa UpperCAmelCase_ : List[Any] = self.sig(lowerCamelCase_ ) produce_out.extend(bp_outa.getA().tolist() ) UpperCAmelCase_ : int = [list(map(self.do_round ,lowerCamelCase_ ) ) for each in produce_out] return np.asarray(lowerCamelCase_ ) def A__ ( self: Optional[Any] ,lowerCamelCase_: Dict ) -> Tuple: # return the data of image after convoluting process so we can check it out UpperCAmelCase_ : Optional[int] = np.asmatrix(lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : Dict = self.pooling(lowerCamelCase_ ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
345
0
from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> float: """simple docstring""" A__ = sorted(numsa + numsa ) A__ , A__ = divmod(len(lowercase_ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase : Tuple = [float(x) for x in input("""Enter the elements of first array: """).split()] _lowerCamelCase : List[Any] = [float(x) for x in input("""Enter the elements of second array: """).split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
14
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Optional[Any] = CTRLTokenizer A__ : Optional[Any] = False A__ : str = False def A__ ( self: Optional[int] ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ : Dict = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] UpperCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) UpperCAmelCase_ : List[Any] = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] UpperCAmelCase_ : Optional[Any] = {"""unk_token""": """<unk>"""} UpperCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase_ ) ) def A__ ( self: Optional[int] ,**lowerCamelCase_: Any ) -> str: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase_ ) def A__ ( self: int ,lowerCamelCase_: int ) -> str: UpperCAmelCase_ : List[str] = """adapt react readapt apt""" UpperCAmelCase_ : List[Any] = """adapt react readapt apt""" return input_text, output_text def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = CTRLTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) UpperCAmelCase_ : List[Any] = """adapt react readapt apt""" UpperCAmelCase_ : Optional[int] = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() UpperCAmelCase_ : Tuple = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokens + [tokenizer.unk_token] UpperCAmelCase_ : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,lowerCamelCase_ )
345
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :str = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "time_series_transformer" snake_case_ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Tuple ,A : Optional[int] = None ,A : Optional[int] = None ,A : str = "student_t" ,A : str = "nll" ,A : int = 1 ,A : List[int] = [1, 2, 3, 4, 5, 6, 7] ,A : Optional[Union[str, bool]] = "mean" ,A : int = 0 ,A : int = 0 ,A : int = 0 ,A : int = 0 ,A : Optional[List[int]] = None ,A : Optional[List[int]] = None ,A : int = 32 ,A : int = 32 ,A : int = 2 ,A : int = 2 ,A : int = 2 ,A : int = 2 ,A : bool = True ,A : str = "gelu" ,A : int = 64 ,A : float = 0.1 ,A : float = 0.1 ,A : float = 0.1 ,A : float = 0.1 ,A : float = 0.1 ,A : int = 1_00 ,A : float = 0.02 ,A : Union[str, Any]=True ,**A : Optional[int] ,): # time series specific configuration __A = prediction_length __A = context_length or prediction_length __A = distribution_output __A = loss __A = input_size __A = num_time_features __A = lags_sequence __A = scaling __A = num_dynamic_real_features __A = num_static_real_features __A = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(A ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __A = cardinality else: __A = [0] if embedding_dimension and num_static_categorical_features > 0: if len(A ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __A = embedding_dimension else: __A = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality] __A = num_parallel_samples # Transformer architecture configuration __A = input_size * len(A ) + self._number_of_features __A = d_model __A = encoder_attention_heads __A = decoder_attention_heads __A = encoder_ffn_dim __A = decoder_ffn_dim __A = encoder_layers __A = decoder_layers __A = dropout __A = attention_dropout __A = activation_dropout __A = encoder_layerdrop __A = decoder_layerdrop __A = activation_function __A = init_std __A = use_cache super().__init__(is_encoder_decoder=A ,**A ) @property def UpperCamelCase_ ( self : Optional[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
15
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCamelCase_ = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Union[str, Any] = "ernie_m" A__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self: str ,lowerCamelCase_: int = 250002 ,lowerCamelCase_: int = 768 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 3072 ,lowerCamelCase_: str = "gelu" ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: int = 514 ,lowerCamelCase_: float = 0.0_2 ,lowerCamelCase_: int = 1 ,lowerCamelCase_: float = 1e-05 ,lowerCamelCase_: Any=None ,lowerCamelCase_: List[Any]=False ,lowerCamelCase_: Tuple=0.0 ,**lowerCamelCase_: Optional[int] ,) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : List[Any] = classifier_dropout UpperCAmelCase_ : str = is_decoder UpperCAmelCase_ : List[str] = act_dropout
345
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
16
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase_ = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowerCamelCase_ ( _a : str , _a : Any=100 , _a : int=" " ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = text.split(_a ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_a ) , _a )] def lowerCamelCase_ ( _a : dict ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Dict = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(_a ): titles.append(title if title is not None else """""" ) texts.append(_a ) return {"title": titles, "text": texts} def lowerCamelCase_ ( _a : dict , _a : DPRContextEncoder , _a : DPRContextEncoderTokenizerFast ): '''simple docstring''' UpperCAmelCase_ : List[str] = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=_a , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] UpperCAmelCase_ : Tuple = ctx_encoder(input_ids.to(device=_a ) , return_dict=_a ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowerCamelCase_ ( _a : "RagExampleArguments" , _a : "ProcessingArguments" , _a : "IndexHnswArguments" , ): '''simple docstring''' logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way UpperCAmelCase_ : Optional[int] = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words UpperCAmelCase_ : Tuple = dataset.map(_a , batched=_a , num_proc=processing_args.num_proc ) # And compute the embeddings UpperCAmelCase_ : List[str] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_a ) UpperCAmelCase_ : Dict = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) UpperCAmelCase_ : Any = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space UpperCAmelCase_ : List[str] = dataset.map( partial(_a , ctx_encoder=_a , ctx_tokenizer=_a ) , batched=_a , batch_size=processing_args.batch_size , features=_a , ) # And finally save your dataset UpperCAmelCase_ : Union[str, Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(_a ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search UpperCAmelCase_ : Union[str, Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=_a ) # And save the index UpperCAmelCase_ : Optional[Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(_a ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _snake_case : '''simple docstring''' A__ : str = field( default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) A__ : Optional[str] = field( default=__snake_case , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) A__ : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) A__ : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) A__ : Optional[str] = field( default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class _snake_case : '''simple docstring''' A__ : Optional[int] = field( default=__snake_case , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) A__ : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class _snake_case : '''simple docstring''' A__ : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) A__ : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase_ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase_ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
345
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json', 'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json', 'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json', 'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json', 'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json', 'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json', 'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json', 'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json', 'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json', 'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json', } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : List[str] = "rwkv" __UpperCAmelCase : List[Any] = {"max_position_embeddings": "context_length"} def __init__( self : Optional[Any], UpperCAmelCase__ : Any=5_0_2_7_7, UpperCAmelCase__ : Union[str, Any]=1_0_2_4, UpperCAmelCase__ : int=4_0_9_6, UpperCAmelCase__ : str=3_2, UpperCAmelCase__ : int=None, UpperCAmelCase__ : Optional[int]=None, UpperCAmelCase__ : Optional[int]=1E-5, UpperCAmelCase__ : str=0, UpperCAmelCase__ : Optional[int]=0, UpperCAmelCase__ : Optional[int]=6, UpperCAmelCase__ : Any=False, UpperCAmelCase__ : Any=True, **UpperCAmelCase__ : int, ): __lowercase = vocab_size __lowercase = context_length __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = attention_hidden_size if attention_hidden_size is not None else hidden_size __lowercase = intermediate_size if intermediate_size is not None else 4 * hidden_size __lowercase = layer_norm_epsilon __lowercase = rescale_every __lowercase = use_cache __lowercase = bos_token_id __lowercase = eos_token_id super().__init__( tie_word_embeddings=UpperCAmelCase__, bos_token_id=UpperCAmelCase__, eos_token_id=UpperCAmelCase__, **UpperCAmelCase__ )
17
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Dict = AutoencoderKL A__ : Optional[int] = "sample" A__ : Tuple = 1E-2 @property def A__ ( self: List[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = 4 UpperCAmelCase_ : str = 3 UpperCAmelCase_ : Any = (32, 32) UpperCAmelCase_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCamelCase_ ) return {"sample": image} @property def A__ ( self: List[str] ) -> Tuple: return (3, 32, 32) @property def A__ ( self: Optional[Any] ) -> Any: return (3, 32, 32) def A__ ( self: Any ) -> Tuple: UpperCAmelCase_ : List[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } UpperCAmelCase_ : int = self.dummy_input return init_dict, inputs_dict def A__ ( self: Optional[Any] ) -> int: pass def A__ ( self: str ) -> Any: pass @unittest.skipIf(torch_device == """mps""" ,"""Gradient checkpointing skipped on MPS""" ) def A__ ( self: Union[str, Any] ) -> Dict: # enable deterministic behavior for gradient checkpointing UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ : List[Any] = self.model_class(**lowerCamelCase_ ) model.to(lowerCamelCase_ ) assert not model.is_gradient_checkpointing and model.training UpperCAmelCase_ : Optional[Any] = model(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() UpperCAmelCase_ : Any = torch.randn_like(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing UpperCAmelCase_ : str = self.model_class(**lowerCamelCase_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowerCamelCase_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training UpperCAmelCase_ : Optional[int] = model_a(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() UpperCAmelCase_ : Dict = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) UpperCAmelCase_ : Dict = dict(model.named_parameters() ) UpperCAmelCase_ : Union[str, Any] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5e-5 ) ) def A__ ( self: Optional[Any] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : int = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ,output_loading_info=lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) ,0 ) model.to(lowerCamelCase_ ) UpperCAmelCase_ : Dict = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def A__ ( self: Optional[int] ) -> int: UpperCAmelCase_ : Dict = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) UpperCAmelCase_ : Tuple = model.to(lowerCamelCase_ ) model.eval() if torch_device == "mps": UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) else: UpperCAmelCase_ : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : str = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) UpperCAmelCase_ : int = image.to(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Dict = model(lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ,generator=lowerCamelCase_ ).sample UpperCAmelCase_ : Optional[int] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": UpperCAmelCase_ : Tuple = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": UpperCAmelCase_ : List[str] = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: UpperCAmelCase_ : List[str] = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,rtol=1e-2 ) ) @slow class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ) -> Optional[Any]: return F'''gaussian_noise_s={seed}_shape={'_'.join([str(lowerCamelCase_ ) for s in shape] )}.npy''' def A__ ( self: Union[str, Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self: List[str] ,lowerCamelCase_: Optional[int]=0 ,lowerCamelCase_: List[Any]=(4, 3, 512, 512) ,lowerCamelCase_: Optional[Any]=False ) -> Optional[int]: UpperCAmelCase_ : Tuple = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ : Tuple = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCamelCase_ ,lowerCamelCase_ ) ) ).to(lowerCamelCase_ ).to(lowerCamelCase_ ) return image def A__ ( self: List[Any] ,lowerCamelCase_: List[str]="CompVis/stable-diffusion-v1-4" ,lowerCamelCase_: Union[str, Any]=False ) -> Any: UpperCAmelCase_ : Optional[Any] = """fp16""" if fpaa else None UpperCAmelCase_ : str = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ : int = AutoencoderKL.from_pretrained( lowerCamelCase_ ,subfolder="""vae""" ,torch_dtype=lowerCamelCase_ ,revision=lowerCamelCase_ ,) model.to(lowerCamelCase_ ).eval() return model def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any]=0 ) -> Optional[int]: if torch_device == "mps": return torch.manual_seed(lowerCamelCase_ ) return torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def A__ ( self: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Dict ) -> Tuple: UpperCAmelCase_ : List[Any] = self.get_sd_vae_model() UpperCAmelCase_ : int = self.get_sd_image(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ : Tuple = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def A__ ( self: Union[str, Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ) -> Tuple: UpperCAmelCase_ : List[str] = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : Any = self.get_sd_image(lowerCamelCase_ ,fpaa=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : Tuple = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ : Optional[int] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def A__ ( self: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[str] ) -> Dict: UpperCAmelCase_ : Optional[int] = self.get_sd_vae_model() UpperCAmelCase_ : Dict = self.get_sd_image(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : str = model(lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ : Any = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def A__ ( self: Optional[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: str ) -> Optional[Any]: UpperCAmelCase_ : List[str] = self.get_sd_vae_model() UpperCAmelCase_ : Optional[int] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase_ : str = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase_ : Any = sample[-1, -2:, :2, -2:].flatten().cpu() UpperCAmelCase_ : Union[str, Any] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def A__ ( self: str ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : List[str] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase_ : str = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ : str = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="""xformers is not required when using PyTorch 2.0.""" ) def A__ ( self: List[Any] ,lowerCamelCase_: Union[str, Any] ) -> int: UpperCAmelCase_ : Optional[Any] = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ : List[str] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="""xformers is not required when using PyTorch 2.0.""" ) def A__ ( self: Optional[Any] ,lowerCamelCase_: Dict ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = self.get_sd_vae_model() UpperCAmelCase_ : Any = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : Dict = self.get_sd_vae_model() UpperCAmelCase_ : Optional[Any] = self.get_sd_image(lowerCamelCase_ ) UpperCAmelCase_ : str = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : int = model.encode(lowerCamelCase_ ).latent_dist UpperCAmelCase_ : Optional[Any] = dist.sample(generator=lowerCamelCase_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] UpperCAmelCase_ : Tuple = sample[0, -1, -3:, -3:].flatten().cpu() UpperCAmelCase_ : Optional[Any] = torch.tensor(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = 3e-3 if torch_device != """mps""" else 1e-2 assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=lowerCamelCase_ )
345
0
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class a__ ( unittest.TestCase , A__ ): def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = load_tool("text-to-speech" ) self.tool.setup() def __UpperCamelCase ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = self.tool("hey" ) SCREAMING_SNAKE_CASE_ : Optional[int] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3],torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ),) ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = self.tool("hey" ) SCREAMING_SNAKE_CASE_ : Any = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3],torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ),) )
18
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__snake_case ) class _snake_case ( __snake_case ): '''simple docstring''' A__ : str = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True} ) A__ : ClassVar[Features] = Features({"audio": Audio()} ) A__ : ClassVar[Features] = Features({"transcription": Value("string" )} ) A__ : str = "audio" A__ : str = "transcription" def A__ ( self: int ,lowerCamelCase_: Union[str, Any] ) -> Optional[Any]: if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] ,lowerCamelCase_ ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) UpperCAmelCase_ : Any = copy.deepcopy(self ) UpperCAmelCase_ : Union[str, Any] = self.input_schema.copy() UpperCAmelCase_ : Any = features[self.audio_column] UpperCAmelCase_ : Union[str, Any] = input_schema return task_template @property def A__ ( self: List[str] ) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
345
0
class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase , lowercase ) -> str: lowerCamelCase_ = name lowerCamelCase_ = value lowerCamelCase_ = weight def __repr__( self ) -> Dict: return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return self.value def SCREAMING_SNAKE_CASE_( self ) -> Tuple: return self.name def SCREAMING_SNAKE_CASE_( self ) -> int: return self.weight def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: return self.value / self.weight def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [] for i in range(len(lowerCamelCase__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = sorted(lowerCamelCase__ , key=lowerCamelCase__ , reverse=lowerCamelCase__ ) lowerCamelCase_ = [] lowerCamelCase_ , lowerCamelCase_ = 0.0, 0.0 for i in range(len(lowerCamelCase__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def lowerCamelCase_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
19
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = "layoutlmv3" def __init__( self: str ,lowerCamelCase_: Any=50265 ,lowerCamelCase_: int=768 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: List[Any]=3072 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: Any=0.1 ,lowerCamelCase_: Tuple=512 ,lowerCamelCase_: Union[str, Any]=2 ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: List[str]=1e-5 ,lowerCamelCase_: int=1 ,lowerCamelCase_: int=0 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Dict=1024 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=32 ,lowerCamelCase_: Union[str, Any]=128 ,lowerCamelCase_: Tuple=64 ,lowerCamelCase_: Tuple=256 ,lowerCamelCase_: List[str]=True ,lowerCamelCase_: Optional[int]=True ,lowerCamelCase_: Any=True ,lowerCamelCase_: Dict=224 ,lowerCamelCase_: Optional[int]=3 ,lowerCamelCase_: Optional[int]=16 ,lowerCamelCase_: Dict=None ,**lowerCamelCase_: str ,) -> List[Any]: super().__init__( vocab_size=lowerCamelCase_ ,hidden_size=lowerCamelCase_ ,num_hidden_layers=lowerCamelCase_ ,num_attention_heads=lowerCamelCase_ ,intermediate_size=lowerCamelCase_ ,hidden_act=lowerCamelCase_ ,hidden_dropout_prob=lowerCamelCase_ ,attention_probs_dropout_prob=lowerCamelCase_ ,max_position_embeddings=lowerCamelCase_ ,type_vocab_size=lowerCamelCase_ ,initializer_range=lowerCamelCase_ ,layer_norm_eps=lowerCamelCase_ ,pad_token_id=lowerCamelCase_ ,bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,**lowerCamelCase_ ,) UpperCAmelCase_ : List[Any] = max_ad_position_embeddings UpperCAmelCase_ : Optional[int] = coordinate_size UpperCAmelCase_ : Optional[int] = shape_size UpperCAmelCase_ : Optional[Any] = has_relative_attention_bias UpperCAmelCase_ : Optional[int] = rel_pos_bins UpperCAmelCase_ : Union[str, Any] = max_rel_pos UpperCAmelCase_ : Dict = has_spatial_attention_bias UpperCAmelCase_ : Optional[int] = rel_ad_pos_bins UpperCAmelCase_ : Tuple = max_rel_ad_pos UpperCAmelCase_ : Union[str, Any] = text_embed UpperCAmelCase_ : Optional[Any] = visual_embed UpperCAmelCase_ : List[str] = input_size UpperCAmelCase_ : str = num_channels UpperCAmelCase_ : Optional[int] = patch_size UpperCAmelCase_ : Tuple = classifier_dropout class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = version.parse("1.12" ) @property def A__ ( self: Dict ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def A__ ( self: Any ) -> float: return 1e-5 @property def A__ ( self: int ) -> int: return 12 def A__ ( self: List[str] ,lowerCamelCase_: "ProcessorMixin" ,lowerCamelCase_: int = -1 ,lowerCamelCase_: int = -1 ,lowerCamelCase_: bool = False ,lowerCamelCase_: Optional["TensorType"] = None ,lowerCamelCase_: int = 3 ,lowerCamelCase_: int = 40 ,lowerCamelCase_: int = 40 ,) -> Mapping[str, Any]: setattr(processor.image_processor ,"""apply_ocr""" ,lowerCamelCase_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ : List[str] = compute_effective_axis_dimension( lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ : int = processor.tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) UpperCAmelCase_ : int = compute_effective_axis_dimension( lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ : Optional[int] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCAmelCase_ : List[Any] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCAmelCase_ : Any = self._generate_dummy_images(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = dict( processor( lowerCamelCase_ ,text=lowerCamelCase_ ,boxes=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,) ) return inputs
345
0
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : str= None _a : int= BloomTokenizerFast _a : Optional[Any]= BloomTokenizerFast _a : Dict= True _a : str= False _a : Union[str, Any]= "tokenizer_file" _a : Union[str, Any]= {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() lowercase : Optional[int] = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.get_rust_tokenizer() lowercase : List[str] = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] lowercase : int = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] lowercase : int = tokenizer.batch_encode_plus(snake_case )["""input_ids"""] self.assertListEqual(snake_case ,snake_case ) lowercase : int = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case=6 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained(snake_case ,**snake_case ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase : str = """This is a simple input""" lowercase : List[str] = ["""This is a simple input 1""", """This is a simple input 2"""] lowercase : Optional[int] = ("""This is a simple input""", """This is a pair""") lowercase : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(snake_case ,max_length=snake_case ) tokenizer_r.encode_plus(snake_case ,max_length=snake_case ) tokenizer_r.batch_encode_plus(snake_case ,max_length=snake_case ) tokenizer_r.encode(snake_case ,max_length=snake_case ) tokenizer_r.batch_encode_plus(snake_case ,max_length=snake_case ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) lowercase : List[Any] = None # Hotfixing padding = None self.assertRaises(snake_case ,tokenizer_r.encode ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Simple input self.assertRaises(snake_case ,tokenizer_r.encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Simple input self.assertRaises( snake_case ,tokenizer_r.batch_encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ,) # Pair input self.assertRaises(snake_case ,tokenizer_r.encode ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Pair input self.assertRaises(snake_case ,tokenizer_r.encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Pair input self.assertRaises( snake_case ,tokenizer_r.batch_encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.get_rust_tokenizer() lowercase : Optional[Any] = load_dataset("""xnli""" ,"""all_languages""" ,split="""test""" ,streaming=snake_case ) lowercase : Tuple = next(iter(snake_case ) )["""premise"""] # pick up one data lowercase : Any = list(sample_data.values() ) lowercase : str = list(map(tokenizer.encode ,snake_case ) ) lowercase : Tuple = [tokenizer.decode(snake_case ,clean_up_tokenization_spaces=snake_case ) for x in output_tokens] self.assertListEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) ,1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) ,1 )
20
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def lowerCamelCase_ ( _a : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_a , _a ) def lowerCamelCase_ ( _a : Any ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = emb.weight.shape UpperCAmelCase_ : Tuple = nn.Linear(_a , _a , bias=_a ) UpperCAmelCase_ : List[Any] = emb.weight.data return lin_layer def lowerCamelCase_ ( _a : Dict ): '''simple docstring''' UpperCAmelCase_ : int = torch.load(_a , map_location="""cpu""" ) UpperCAmelCase_ : Dict = Namespace(**checkpoint["""cfg"""]["""model"""] ) UpperCAmelCase_ : Optional[int] = checkpoint["""model"""] remove_ignore_keys_(_a ) UpperCAmelCase_ : str = state_dict["""decoder.embed_tokens.weight"""].shape[0] UpperCAmelCase_ : List[str] = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} UpperCAmelCase_ : int = XGLMConfig( vocab_size=_a , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) UpperCAmelCase_ : List[str] = XGLMForCausalLM(_a ) UpperCAmelCase_ : Tuple = model.load_state_dict(_a , strict=_a ) print(_a ) UpperCAmelCase_ : Optional[Any] = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
345
0
import os from collections.abc import Iterator def UpperCamelCase_( lowerCamelCase_ = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(lowerCamelCase_ ): _lowercase : Union[str, Any] = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(lowerCamelCase_ )[1] in (".py", ".ipynb"): yield os.path.join(lowerCamelCase_ , lowerCamelCase_ ).lstrip('./' ) def UpperCamelCase_( lowerCamelCase_ ) -> Dict: return F'''{i * " "}*''' if i else "\n##" def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> str: _lowercase : int = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(lowerCamelCase_ ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(lowerCamelCase_ )} {new_part.replace("_" , " " ).title()}''' ) return new_path def UpperCamelCase_( lowerCamelCase_ = "." ) -> None: _lowercase : List[str] = '' for filepath in sorted(good_file_paths(lowerCamelCase_ ) ): _lowercase , _lowercase : int = os.path.split(lowerCamelCase_ ) if filepath != old_path: _lowercase : List[str] = print_path(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : Optional[Any] = (filepath.count(os.sep ) + 1) if filepath else 0 _lowercase : List[str] = F'''{filepath}/{filename}'''.replace(' ' , '%20' ) _lowercase : Optional[int] = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F'''{md_prefix(lowerCamelCase_ )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
21
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : '''simple docstring''' def __init__( self: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any]=13 ,lowerCamelCase_: Optional[int]=32 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: int=16 ,lowerCamelCase_: Optional[Any]=[32, 64, 128] ,lowerCamelCase_: Optional[int]=[1, 2, 1] ,lowerCamelCase_: Union[str, Any]=[2, 2, 4] ,lowerCamelCase_: int=2 ,lowerCamelCase_: List[str]=2.0 ,lowerCamelCase_: List[Any]=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.1 ,lowerCamelCase_: Optional[int]="gelu" ,lowerCamelCase_: Any=False ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=0.0_2 ,lowerCamelCase_: int=1e-5 ,lowerCamelCase_: int=True ,lowerCamelCase_: Tuple=None ,lowerCamelCase_: str=True ,lowerCamelCase_: Dict=10 ,lowerCamelCase_: str=8 ,lowerCamelCase_: Union[str, Any]=["stage1", "stage2"] ,lowerCamelCase_: Optional[Any]=[1, 2] ,) -> str: UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : str = patch_size UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : Dict = embed_dim UpperCAmelCase_ : Dict = hidden_sizes UpperCAmelCase_ : str = depths UpperCAmelCase_ : int = num_heads UpperCAmelCase_ : List[Any] = window_size UpperCAmelCase_ : Union[str, Any] = mlp_ratio UpperCAmelCase_ : int = qkv_bias UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = drop_path_rate UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : List[Any] = use_absolute_embeddings UpperCAmelCase_ : List[Any] = patch_norm UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Optional[Any] = scope UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Optional[int] = encoder_stride UpperCAmelCase_ : Optional[int] = out_features UpperCAmelCase_ : Optional[int] = out_indices def A__ ( self: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : int = None if self.use_labels: UpperCAmelCase_ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Any = self.get_config() return config, pixel_values, labels def A__ ( self: List[Any] ) -> Tuple: return FocalNetConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> List[str]: UpperCAmelCase_ : Optional[int] = FocalNetModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ) UpperCAmelCase_ : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase_ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[int] ) -> List[str]: UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def A__ ( self: Optional[int] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : Any = FocalNetForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : int = 1 UpperCAmelCase_ : List[str] = FocalNetForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ) -> int: UpperCAmelCase_ : List[Any] = self.type_sequence_label_size UpperCAmelCase_ : int = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = config_and_inputs UpperCAmelCase_ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : List[Any] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) A__ : Union[str, Any] = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) A__ : Optional[Any] = False A__ : Any = False A__ : List[str] = False A__ : Any = False A__ : Any = False def A__ ( self: List[str] ) -> Tuple: UpperCAmelCase_ : Dict = FocalNetModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self ,config_class=lowerCamelCase_ ,embed_dim=37 ,has_text_modality=lowerCamelCase_ ) def A__ ( self: List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self: List[str] ) -> Union[str, Any]: return def A__ ( self: str ) -> List[str]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def A__ ( self: Tuple ) -> int: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def A__ ( self: int ) -> int: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def A__ ( self: int ) -> Dict: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def A__ ( self: Optional[Any] ) -> Optional[Any]: pass def A__ ( self: Optional[Any] ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Optional[Any] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) ) def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : str = model_class(lowerCamelCase_ ) UpperCAmelCase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Any = [*signature.parameters.keys()] UpperCAmelCase_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> List[str]: UpperCAmelCase_ : Tuple = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : Any = outputs.hidden_states UpperCAmelCase_ : List[Any] = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # FocalNet has a different seq_length UpperCAmelCase_ : int = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) UpperCAmelCase_ : Union[str, Any] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = reshaped_hidden_states[0].shape UpperCAmelCase_ : List[Any] = ( reshaped_hidden_states[0].view(lowerCamelCase_ ,lowerCamelCase_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def A__ ( self: Any ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : str = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Union[str, Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[str] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Optional[int] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) @slow def A__ ( self: Optional[int] ) -> Optional[Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = FocalNetModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @require_vision @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self: Optional[int] ) -> str: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = self.default_image_processor UpperCAmelCase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCAmelCase_ : Dict = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Dict = model(**lowerCamelCase_ ) # verify the logits UpperCAmelCase_ : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() ,281 ) @require_torch class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : List[Any] = (FocalNetBackbone,) if is_torch_available() else () A__ : int = FocalNetConfig A__ : List[str] = False def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : str = FocalNetModelTester(self )
345
0
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_ ( __lowercase : int , __lowercase : Dict , __lowercase : str , __lowercase : Optional[Any] , __lowercase : str ) -> List[str]: '''simple docstring''' _UpperCAmelCase = TapasConfig.from_json_file(__lowercase ) # set absolute/relative position embeddings parameter _UpperCAmelCase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _UpperCAmelCase = TapasForQuestionAnswering(config=__lowercase ) elif task == "WTQ": # run_task_main.py hparams _UpperCAmelCase = 4 _UpperCAmelCase = True # hparam_utils.py hparams _UpperCAmelCase = 0.66_4694 _UpperCAmelCase = 0.20_7951 _UpperCAmelCase = 0.12_1194 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = 0.035_2513 _UpperCAmelCase = TapasForQuestionAnswering(config=__lowercase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _UpperCAmelCase = 4 _UpperCAmelCase = False # hparam_utils.py hparams _UpperCAmelCase = 36.4519 _UpperCAmelCase = 0.90_3421 _UpperCAmelCase = 222.088 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = 0.76_3141 _UpperCAmelCase = TapasForQuestionAnswering(config=__lowercase ) elif task == "TABFACT": _UpperCAmelCase = TapasForSequenceClassification(config=__lowercase ) elif task == "MLM": _UpperCAmelCase = TapasForMaskedLM(config=__lowercase ) elif task == "INTERMEDIATE_PRETRAINING": _UpperCAmelCase = TapasModel(config=__lowercase ) else: raise ValueError(f'Task {task} not supported.' ) print(f'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(__lowercase , __lowercase , __lowercase ) # Save pytorch-model (weights and configuration) print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__lowercase ) # Save tokenizer files print(f'Save tokenizer files to {pytorch_dump_path}' ) _UpperCAmelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=512 ) tokenizer.save_pretrained(__lowercase ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.''' ) parser.add_argument( '''--reset_position_index_per_cell''', default=False, action='''store_true''', help='''Whether to use relative position embeddings or not. Defaults to True.''', ) parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--tapas_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained TAPAS model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __SCREAMING_SNAKE_CASE :List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
22
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : '''simple docstring''' def __init__( self: Tuple ,lowerCamelCase_: List[str] ,lowerCamelCase_: int=13 ,lowerCamelCase_: int=32 ,lowerCamelCase_: Optional[int]=2 ,lowerCamelCase_: Any=3 ,lowerCamelCase_: str=16 ,lowerCamelCase_: Optional[Any]=[1, 2, 1] ,lowerCamelCase_: Tuple=[2, 2, 4] ,lowerCamelCase_: int=2 ,lowerCamelCase_: List[Any]=2.0 ,lowerCamelCase_: str=True ,lowerCamelCase_: Optional[int]=0.0 ,lowerCamelCase_: List[Any]=0.0 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: Tuple="gelu" ,lowerCamelCase_: Union[str, Any]=False ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Optional[int]=0.0_2 ,lowerCamelCase_: int=1e-5 ,lowerCamelCase_: Optional[int]=True ,lowerCamelCase_: Union[str, Any]=None ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Optional[int]=10 ,lowerCamelCase_: Tuple=8 ,) -> List[Any]: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : int = image_size UpperCAmelCase_ : Union[str, Any] = patch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Union[str, Any] = depths UpperCAmelCase_ : List[str] = num_heads UpperCAmelCase_ : int = window_size UpperCAmelCase_ : List[str] = mlp_ratio UpperCAmelCase_ : Tuple = qkv_bias UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : str = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = drop_path_rate UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : int = use_absolute_embeddings UpperCAmelCase_ : Any = patch_norm UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Dict = scope UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Optional[Any] = type_sequence_label_size UpperCAmelCase_ : List[str] = encoder_stride def A__ ( self: Any ) -> int: UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : List[Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : str = self.get_config() return config, pixel_values, labels def A__ ( self: List[Any] ) -> Union[str, Any]: return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def A__ ( self: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ) -> str: UpperCAmelCase_ : str = SwinvaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase_ : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self: List[Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: int ) -> int: UpperCAmelCase_ : Any = SwinvaForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : str = 1 UpperCAmelCase_ : Optional[Any] = SwinvaForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self: int ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any] ) -> int: UpperCAmelCase_ : Union[str, Any] = self.type_sequence_label_size UpperCAmelCase_ : int = SwinvaForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def A__ ( self: str ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = config_and_inputs UpperCAmelCase_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Tuple = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) A__ : Optional[Any] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) A__ : List[Any] = False A__ : Tuple = False A__ : int = False A__ : Union[str, Any] = False def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : Any = SwinvaModelTester(self ) UpperCAmelCase_ : str = ConfigTester(self ,config_class=lowerCamelCase_ ,embed_dim=37 ) def A__ ( self: Optional[int] ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self: Any ) -> Dict: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def A__ ( self: int ) -> Dict: pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def A__ ( self: Tuple ) -> List[str]: pass def A__ ( self: str ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(lowerCamelCase_ ) UpperCAmelCase_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : int = [*signature.parameters.keys()] UpperCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Any = True for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : str = True UpperCAmelCase_ : List[Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[Any] = outputs.attentions UpperCAmelCase_ : List[str] = len(self.model_tester.depths ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase_ : str = True UpperCAmelCase_ : Optional[Any] = config.window_size**2 UpperCAmelCase_ : Optional[int] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : List[Any] = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) UpperCAmelCase_ : Optional[Any] = len(lowerCamelCase_ ) # Check attention is always last and order is fine UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Tuple = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) if hasattr(self.model_tester ,"""num_hidden_states_types""" ): UpperCAmelCase_ : List[Any] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase_ : List[str] = 2 self.assertEqual(out_len + added_hidden_states ,len(lowerCamelCase_ ) ) UpperCAmelCase_ : Any = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def A__ ( self: List[str] ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Optional[int] ) -> List[Any]: UpperCAmelCase_ : str = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : int = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : List[str] = outputs.hidden_states UpperCAmelCase_ : Optional[Any] = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # Swinv2 has a different seq_length UpperCAmelCase_ : Optional[Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) UpperCAmelCase_ : Optional[int] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = reshaped_hidden_states[0].shape UpperCAmelCase_ : Optional[Any] = ( reshaped_hidden_states[0].view(lowerCamelCase_ ,lowerCamelCase_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def A__ ( self: Any ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase_ : Any = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : str = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[str] ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Union[str, Any] = 3 UpperCAmelCase_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ : List[str] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ : Optional[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : List[str] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) def A__ ( self: Optional[int] ) -> str: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def A__ ( self: str ) -> Tuple: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Dict = SwinvaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def A__ ( self: Any ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @require_vision @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self: Dict ) -> Optional[Any]: return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def A__ ( self: str ) -> List[Any]: UpperCAmelCase_ : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( lowerCamelCase_ ) UpperCAmelCase_ : Any = self.default_image_processor UpperCAmelCase_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCAmelCase_ : Optional[int] = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(**lowerCamelCase_ ) # verify the logits UpperCAmelCase_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Any = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) )
345
0
'''simple docstring''' import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" lowerCamelCase__ = inspect.getfile(accelerate.test_utils ) lowerCamelCase__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_cli.py"""] ) lowerCamelCase__ = ["""accelerate""", """launch"""] lowerCamelCase__ = Path.home() / """.cache/huggingface/accelerate""" lowerCamelCase__ = """default_config.yaml""" lowerCamelCase__ = config_folder / config_file lowerCamelCase__ = config_folder / """_default_config.yaml""" lowerCamelCase__ = Path("""tests/test_configs""" ) @classmethod def A ( cls : int ) -> Any: if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def A ( cls : Dict ) -> Optional[int]: if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def A ( self : Union[str, Any] ) -> Tuple: UpperCAmelCase : Tuple = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def A ( self : Any ) -> Tuple: for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=__snake_case ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(__snake_case ), self.test_file_path] , env=os.environ.copy() ) def A ( self : str ) -> Optional[int]: execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" lowerCamelCase__ = """test-tpu""" lowerCamelCase__ = """us-central1-a""" lowerCamelCase__ = """ls""" lowerCamelCase__ = ["""accelerate""", """tpu-config"""] lowerCamelCase__ = """cd /usr/share""" lowerCamelCase__ = """tests/test_samples/test_command_file.sh""" lowerCamelCase__ = """Running gcloud compute tpus tpu-vm ssh""" def A ( self : List[Any] ) -> Tuple: UpperCAmelCase : int = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , __snake_case , ) def A ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : Tuple = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , __snake_case , ) def A ( self : str ) -> Optional[Any]: UpperCAmelCase : List[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=__snake_case ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , ) def A ( self : str ) -> Optional[int]: UpperCAmelCase : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , __snake_case , ) def A ( self : Optional[int] ) -> Tuple: UpperCAmelCase : Any = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , __snake_case , ) def A ( self : Union[str, Any] ) -> Tuple: UpperCAmelCase : List[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , ) def A ( self : Tuple ) -> Any: UpperCAmelCase : int = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , ) def A ( self : int ) -> Any: UpperCAmelCase : Tuple = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , ) def A ( self : Union[str, Any] ) -> str: UpperCAmelCase : Optional[int] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , )
23
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED UpperCamelCase_ = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } UpperCamelCase_ = { '''allenai/led-base-16384''': 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : int = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCAmelCase_ : Dict = bs[:] UpperCAmelCase_ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(_a ) cs.append(2**8 + n ) n += 1 UpperCAmelCase_ : Any = [chr(_a ) for n in cs] return dict(zip(_a , _a ) ) def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = set() UpperCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ : Optional[int] = char return pairs class _snake_case ( __snake_case ): '''simple docstring''' A__ : str = VOCAB_FILES_NAMES A__ : List[str] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self: Union[str, Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any]="replace" ,lowerCamelCase_: Optional[Any]="<s>" ,lowerCamelCase_: List[Any]="</s>" ,lowerCamelCase_: List[str]="</s>" ,lowerCamelCase_: int="<s>" ,lowerCamelCase_: int="<unk>" ,lowerCamelCase_: str="<pad>" ,lowerCamelCase_: Optional[Any]="<mask>" ,lowerCamelCase_: List[str]=False ,**lowerCamelCase_: Tuple ,) -> Any: UpperCAmelCase_ : Union[str, Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else bos_token UpperCAmelCase_ : int = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else eos_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else sep_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else cls_token UpperCAmelCase_ : Optional[Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else unk_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : str = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ ,bos_token=lowerCamelCase_ ,eos_token=lowerCamelCase_ ,unk_token=lowerCamelCase_ ,sep_token=lowerCamelCase_ ,cls_token=lowerCamelCase_ ,pad_token=lowerCamelCase_ ,mask_token=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ,**lowerCamelCase_ ,) with open(lowerCamelCase_ ,encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase_ : Union[str, Any] = json.load(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ : Any = errors # how to handle errors in decoding UpperCAmelCase_ : int = bytes_to_unicode() UpperCAmelCase_ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ ,encoding="""utf-8""" ) as merges_handle: UpperCAmelCase_ : Any = merges_handle.read().split("""\n""" )[1:-1] UpperCAmelCase_ : int = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase_ : int = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self: List[str] ) -> List[str]: return len(self.encoder ) def A__ ( self: Any ) -> Union[str, Any]: return dict(self.encoder ,**self.added_tokens_encoder ) def A__ ( self: Tuple ,lowerCamelCase_: Dict ) -> Optional[Any]: if token in self.cache: return self.cache[token] UpperCAmelCase_ : Union[str, Any] = tuple(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: UpperCAmelCase_ : Union[str, Any] = min(lowerCamelCase_ ,key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ , UpperCAmelCase_ : Any = bigram UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : List[str] = 0 while i < len(lowerCamelCase_ ): try: UpperCAmelCase_ : str = word.index(lowerCamelCase_ ,lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase_ : Union[str, Any] = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ : List[str] = tuple(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = new_word if len(lowerCamelCase_ ) == 1: break else: UpperCAmelCase_ : List[str] = get_pairs(lowerCamelCase_ ) UpperCAmelCase_ : int = """ """.join(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = word return word def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tuple ) -> List[str]: UpperCAmelCase_ : str = [] for token in re.findall(self.pat ,lowerCamelCase_ ): UpperCAmelCase_ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) ) return bpe_tokens def A__ ( self: List[Any] ,lowerCamelCase_: Optional[Any] ) -> Optional[int]: return self.encoder.get(lowerCamelCase_ ,self.encoder.get(self.unk_token ) ) def A__ ( self: List[str] ,lowerCamelCase_: str ) -> Optional[Any]: return self.decoder.get(lowerCamelCase_ ) def A__ ( self: List[str] ,lowerCamelCase_: List[str] ) -> List[Any]: UpperCAmelCase_ : str = """""".join(lowerCamelCase_ ) UpperCAmelCase_ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors ) return text def A__ ( self: Optional[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : List[Any] = os.path.join( lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_ : List[str] = os.path.join( lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCamelCase_ ,ensure_ascii=lowerCamelCase_ ) + """\n""" ) UpperCAmelCase_ : str = 0 with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) UpperCAmelCase_ : Tuple = token_index writer.write(""" """.join(lowerCamelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file def A__ ( self: str ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] UpperCAmelCase_ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self: Union[str, Any] ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ,lowerCamelCase_: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ ,token_ids_a=lowerCamelCase_ ,already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def A__ ( self: str ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ) -> List[int]: UpperCAmelCase_ : Optional[Any] = [self.sep_token_id] UpperCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: str=False ,**lowerCamelCase_: List[str] ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = kwargs.pop("""add_prefix_space""" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): UpperCAmelCase_ : Dict = """ """ + text return (text, kwargs) def A__ ( self: List[str] ,lowerCamelCase_: Union[Dict[str, EncodedInput], BatchEncoding] ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: Optional[bool] = None ,) -> dict: UpperCAmelCase_ : Optional[int] = super()._pad( encoded_inputs=lowerCamelCase_ ,max_length=lowerCamelCase_ ,padding_strategy=lowerCamelCase_ ,pad_to_multiple_of=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,) # Load from model defaults if return_attention_mask is None: UpperCAmelCase_ : str = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase_ : str = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase_ : List[Any] = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ ) if needs_to_be_padded: UpperCAmelCase_ : Dict = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase_ : str = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase_ : List[str] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
345
0
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() snake_case_ = logging.get_logger(__name__) snake_case_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } snake_case_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def lowerCamelCase__ ( snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : str ) -> List[str]: for attribute in key.split('''.''' ): __snake_case = getattr(snake_case_ , snake_case_ ) if weight_type is not None: __snake_case = getattr(snake_case_ , snake_case_ ).shape else: __snake_case = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case = value elif weight_type == "weight_g": __snake_case = value elif weight_type == "weight_v": __snake_case = value elif weight_type == "bias": __snake_case = value else: __snake_case = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase__ ( snake_case_ : Any , snake_case_ : List[str] ) -> List[str]: __snake_case = [] __snake_case = fairseq_model.state_dict() __snake_case = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __snake_case = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case = True else: for key, mapped_key in MAPPING.items(): __snake_case = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __snake_case = True if "*" in mapped_key: __snake_case = name.split(snake_case_ )[0].split('''.''' )[-2] __snake_case = mapped_key.replace('''*''' , snake_case_ ) if "weight_g" in name: __snake_case = '''weight_g''' elif "weight_v" in name: __snake_case = '''weight_v''' elif "bias" in name: __snake_case = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case = '''weight''' else: __snake_case = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCamelCase__ ( snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : Optional[int] ) -> List[Any]: __snake_case = full_name.split('''conv_layers.''' )[-1] __snake_case = name.split('''.''' ) __snake_case = int(items[0] ) __snake_case = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def lowerCamelCase__ ( snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : int=None , snake_case_ : str=None , snake_case_ : Optional[int]=True ) -> int: if config_path is not None: __snake_case = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: __snake_case = UniSpeechSatConfig() __snake_case = '''''' if is_finetuned: __snake_case = UniSpeechSatForCTC(snake_case_ ) else: __snake_case = UniSpeechSatForPreTraining(snake_case_ ) __snake_case , __snake_case , __snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __snake_case = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case_ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
24
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Union[str, Any] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self: List[str] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : Optional[Any] = (32, 32) UpperCAmelCase_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def A__ ( self: List[Any] ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : int = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def A__ ( self: str ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def A__ ( self: Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase_ : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(lowerCamelCase_ ) @property def A__ ( self: Tuple ) -> Tuple: def extract(*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: str ): class _snake_case : '''simple docstring''' def __init__( self: List[Any] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = torch.ones([0] ) def A__ ( self: List[Any] ,lowerCamelCase_: str ) -> int: self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def A__ ( self: Union[str, Any] ) -> Tuple: UpperCAmelCase_ : int = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : int = self.dummy_cond_unet UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule="""scaled_linear""" ,clip_sample=lowerCamelCase_ ,set_alpha_to_one=lowerCamelCase_ ,) UpperCAmelCase_ : str = self.dummy_vae UpperCAmelCase_ : List[str] = self.dummy_text_encoder UpperCAmelCase_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : str = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : int = sd_pipe([prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) UpperCAmelCase_ : List[Any] = output.images UpperCAmelCase_ : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : Dict = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=lowerCamelCase_ ,)[0] UpperCAmelCase_ : int = image[0, -3:, -3:, -1] UpperCAmelCase_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Optional[Any] ) -> Any: UpperCAmelCase_ : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Dict = self.dummy_cond_unet UpperCAmelCase_ : List[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCAmelCase_ : str = self.dummy_vae UpperCAmelCase_ : Union[str, Any] = self.dummy_text_encoder UpperCAmelCase_ : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Any = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : int = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = sd_pipe([prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) UpperCAmelCase_ : str = output.images UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : int = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=lowerCamelCase_ ,)[0] UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: str ) -> Dict: UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ ,lowerCamelCase_ ) assert isinstance(pipe.scheduler ,lowerCamelCase_ ) assert pipe.safety_checker is None UpperCAmelCase_ : List[Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase_ : Optional[int] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : Tuple = self.dummy_cond_unet UpperCAmelCase_ : Dict = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = self.dummy_vae UpperCAmelCase_ : List[str] = self.dummy_text_encoder UpperCAmelCase_ : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 UpperCAmelCase_ : Optional[Any] = unet.half() UpperCAmelCase_ : Optional[int] = vae.half() UpperCAmelCase_ : int = bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Any = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : List[Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : Optional[int] = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self: List[str] ) -> List[Any]: UpperCAmelCase_ : Tuple = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : str = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) UpperCAmelCase_ : Optional[int] = 4003660346 UpperCAmelCase_ : int = 7 # without safety guidance (sld_guidance_scale = 0) UpperCAmelCase_ : Dict = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Dict = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Any = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : str = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Optional[int] ) -> Any: UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=lowerCamelCase_ ) UpperCAmelCase_ : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" UpperCAmelCase_ : List[Any] = 2734971755 UpperCAmelCase_ : Optional[Any] = 7 UpperCAmelCase_ : int = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Dict = output.images UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 UpperCAmelCase_ : Any = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : Dict = output.images UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Union[str, Any] ) -> int: UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) UpperCAmelCase_ : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) UpperCAmelCase_ : Optional[Any] = 1044355234 UpperCAmelCase_ : List[str] = 12 UpperCAmelCase_ : List[Any] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Any = output.images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 UpperCAmelCase_ : Optional[int] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : List[str] = output.images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] UpperCAmelCase_ : Any = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
345
0
"""simple docstring""" import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase__ : List[str] = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase__ : List[Any] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = SavedModel() SCREAMING_SNAKE_CASE__ : Dict = [] with open(os.path.join(_snake_case ,"""utils""" ,"""tf_ops""" ,"""onnx.json""" ) ) as f: SCREAMING_SNAKE_CASE__ : Any = json.load(_snake_case )["""opsets"""] for i in range(1 ,opset + 1 ): onnx_ops.extend(onnx_opsets[str(_snake_case )] ) with open(_snake_case ,"""rb""" ) as f: saved_model.ParseFromString(f.read() ) SCREAMING_SNAKE_CASE__ : List[str] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want SCREAMING_SNAKE_CASE__ : int = sorted(_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_snake_case ) if strict and len(_snake_case ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(_snake_case ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*_snake_case ,sep="""\n""" ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=1_2, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) UpperCAmelCase__ : Dict = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
25
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _snake_case : '''simple docstring''' def __init__( self: Optional[int] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Tuple=13 ,lowerCamelCase_: int=7 ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Dict=True ,lowerCamelCase_: str=True ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: int=99 ,lowerCamelCase_: List[str]=64 ,lowerCamelCase_: Tuple=32 ,lowerCamelCase_: List[str]=5 ,lowerCamelCase_: str=4 ,lowerCamelCase_: str=37 ,lowerCamelCase_: Union[str, Any]="gelu" ,lowerCamelCase_: Union[str, Any]=0.1 ,lowerCamelCase_: str=0.1 ,lowerCamelCase_: List[str]=512 ,lowerCamelCase_: Dict=16 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: List[str]=0.0_2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: Union[str, Any]=4 ,lowerCamelCase_: str=None ,) -> List[str]: UpperCAmelCase_ : Any = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : Dict = use_input_mask UpperCAmelCase_ : Any = use_token_type_ids UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : List[str] = embedding_size UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : Any = type_sequence_label_size UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Optional[int] = num_labels UpperCAmelCase_ : Optional[int] = num_choices UpperCAmelCase_ : List[str] = scope def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : List[str] = None if self.use_input_mask: UpperCAmelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Dict = None if self.use_token_type_ids: UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : int = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase_ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self: Any ) -> Dict: return MobileBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase_ ,initializer_range=self.initializer_range ,) def A__ ( self: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> int: UpperCAmelCase_ : Any = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def A__ ( self: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Dict ) -> int: UpperCAmelCase_ : Union[str, Any] = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self: str ,lowerCamelCase_: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: int ) -> int: UpperCAmelCase_ : List[Any] = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def A__ ( self: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> Optional[Any]: UpperCAmelCase_ : Tuple = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,next_sentence_label=lowerCamelCase_ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def A__ ( self: Any ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,start_positions=lowerCamelCase_ ,end_positions=lowerCamelCase_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def A__ ( self: List[str] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Any ) -> str: UpperCAmelCase_ : Optional[Any] = self.num_labels UpperCAmelCase_ : Union[str, Any] = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ) -> Any: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self: Tuple ,lowerCamelCase_: str ,lowerCamelCase_: int ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = self.num_choices UpperCAmelCase_ : Tuple = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Dict = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : str = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Optional[int] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def A__ ( self: List[str] ) -> str: UpperCAmelCase_ : str = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) A__ : List[str] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) A__ : List[str] = True def A__ ( self: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: int=False ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = super()._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ,return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): UpperCAmelCase_ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase_ ) return inputs_dict def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : List[str] = MobileBertModelTester(self ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self ,config_class=lowerCamelCase_ ,hidden_size=37 ) def A__ ( self: Optional[Any] ) -> List[Any]: self.config_tester.run_common_tests() def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Tuple: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _a : Union[str, Any] ): '''simple docstring''' return torch.tensor( _a , dtype=torch.long , device=_a , ) UpperCamelCase_ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self: List[Any] ) -> str: UpperCAmelCase_ : Any = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : str = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ )[0] UpperCAmelCase_ : Union[str, Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = torch.tensor( [ [ [-2.473_6526e07, 8.269_1656e04, 1.652_1838e05], [-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00], [2.604_7359e00, 1.567_7652e00, -1.732_4188e-01], ] ] ,device=lowerCamelCase_ ,) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
345
0
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase : def __init__( self , _a , _a=2 , _a=3 , _a=4 , _a=2 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=36 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=6 , _a=6 , _a=3 , _a=4 , _a=None , _a=1000 , ) -> int: _A : Tuple = parent _A : int = batch_size _A : Union[str, Any] = num_channels _A : int = image_size _A : Tuple = patch_size _A : Union[str, Any] = is_training _A : List[Any] = use_input_mask _A : Tuple = use_token_type_ids _A : Optional[int] = use_labels _A : Any = vocab_size _A : Union[str, Any] = hidden_size _A : Dict = num_hidden_layers _A : Dict = num_attention_heads _A : List[Any] = intermediate_size _A : Optional[Any] = hidden_act _A : Optional[Any] = hidden_dropout_prob _A : Dict = attention_probs_dropout_prob _A : Any = max_position_embeddings _A : int = type_vocab_size _A : Tuple = type_sequence_label_size _A : Optional[int] = initializer_range _A : List[Any] = coordinate_size _A : Dict = shape_size _A : Tuple = num_labels _A : str = num_choices _A : str = scope _A : Optional[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _A : Union[str, Any] = text_seq_length _A : Optional[Any] = (image_size // patch_size) ** 2 + 1 _A : List[str] = self.text_seq_length + self.image_seq_length def a__ ( self ) -> str: _A : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _A : Any = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) _A : Dict = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _A : Union[str, Any] = bbox[i, j, 3] _A : Optional[int] = bbox[i, j, 1] _A : Dict = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: _A : Union[str, Any] = bbox[i, j, 2] _A : Dict = bbox[i, j, 0] _A : Union[str, Any] = tmp_coordinate _A : Any = tf.constant(_a ) _A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : List[Any] = None if self.use_input_mask: _A : List[str] = random_attention_mask([self.batch_size, self.text_seq_length] ) _A : List[Any] = None if self.use_token_type_ids: _A : str = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _A : Union[str, Any] = None _A : Union[str, Any] = None if self.use_labels: _A : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _A : Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def a__ ( self , _a , _a , _a , _a , _a , _a ) -> Optional[int]: _A : str = TFLayoutLMvaModel(config=_a ) # text + image _A : List[str] = model(_a , pixel_values=_a , training=_a ) _A : Union[str, Any] = model( _a , bbox=_a , pixel_values=_a , attention_mask=_a , token_type_ids=_a , training=_a , ) _A : int = model(_a , bbox=_a , pixel_values=_a , training=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _A : Dict = model(_a , training=_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _A : Union[str, Any] = model({"""pixel_values""": pixel_values} , training=_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> int: _A : str = self.num_labels _A : List[str] = TFLayoutLMvaForSequenceClassification(config=_a ) _A : int = model( _a , bbox=_a , pixel_values=_a , attention_mask=_a , token_type_ids=_a , labels=_a , training=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> Any: _A : str = self.num_labels _A : Any = TFLayoutLMvaForTokenClassification(config=_a ) _A : Union[str, Any] = model( _a , bbox=_a , pixel_values=_a , attention_mask=_a , token_type_ids=_a , labels=_a , training=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]: _A : int = 2 _A : Dict = TFLayoutLMvaForQuestionAnswering(config=_a ) _A : Tuple = model( _a , bbox=_a , pixel_values=_a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , training=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self ) -> Union[str, Any]: _A : int = self.prepare_config_and_inputs() ((_A) , (_A) , (_A) , (_A) , (_A) , (_A) , (_A) , (_A)) : Any = config_and_inputs _A : List[Any] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _a = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) _a = False _a = False _a = False def a__ ( self , _a , _a , _a , _a , _a ) -> Optional[int]: return True def a__ ( self , _a , _a , _a=False ) -> dict: _A : int = copy.deepcopy(_a ) if model_class in get_values(_a ): _A : List[Any] = { k: tf.tile(tf.expand_dims(_a , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(_a , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_a ): _A : List[str] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_a ): _A : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) _A : List[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_a ): _A : str = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_a ): _A : Tuple = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def a__ ( self ) -> List[str]: _A : List[str] = TFLayoutLMvaModelTester(self ) _A : Optional[Any] = ConfigTester(self , config_class=_a , hidden_size=37 ) def a__ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def a__ ( self ) -> List[str]: _A , _A : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Dict = model_class(_a ) if getattr(_a , """hf_compute_loss""" , _a ): # The number of elements in the loss should be the same as the number of elements in the label _A : int = self._prepare_for_class(inputs_dict.copy() , _a , return_labels=_a ) _A : int = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=_a )[0] ] _A : int = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs _A : List[str] = self._prepare_for_class(inputs_dict.copy() , _a , return_labels=_a ) _A : Union[str, Any] = prepared_for_class.pop("""input_ids""" ) _A : Tuple = model(_a , **_a )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions _A : Tuple = self._prepare_for_class(inputs_dict.copy() , _a , return_labels=_a ) _A : Any = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: _A : int = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: _A : Tuple = -100 _A : Dict = tf.convert_to_tensor(_a ) _A : Any = model(_a , **_a )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict _A : List[str] = self._prepare_for_class(inputs_dict.copy() , _a , return_labels=_a ) _A : int = model(_a )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple _A : List[str] = self._prepare_for_class(inputs_dict.copy() , _a , return_labels=_a ) # Get keys that were added with the _prepare_for_class function _A : str = prepared_for_class.keys() - inputs_dict.keys() _A : Dict = inspect.signature(model.call ).parameters _A : Dict = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple _A : Dict = {0: """input_ids"""} for label_key in label_keys: _A : str = signature_names.index(_a ) _A : int = label_key _A : Dict = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple _A : List[str] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: _A : Tuple = prepared_for_class[value] _A : int = tuple(_a ) # Send to model _A : List[str] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def a__ ( self ) -> Optional[int]: ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_a , _a , _a , _a , _a , _a ) def a__ ( self ) -> Any: ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A : Optional[Any] = type self.model_tester.create_and_check_model(_a , _a , _a , _a , _a , _a ) def a__ ( self ) -> Tuple: ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( _a , _a , _a , _a , _a , _a , _a ) def a__ ( self ) -> Tuple: ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( _a , _a , _a , _a , _a , _a , _a ) def a__ ( self ) -> List[str]: ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( _a , _a , _a , _a , _a , _a , _a ) @slow def a__ ( self ) -> str: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Tuple = TFLayoutLMvaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> Tuple: return LayoutLMvaImageProcessor(apply_ocr=_a ) if is_vision_available() else None @slow def a__ ( self ) -> Union[str, Any]: _A : Optional[int] = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) _A : Tuple = self.default_image_processor _A : int = prepare_img() _A : List[Any] = image_processor(images=_a , return_tensors="""tf""" ).pixel_values _A : str = tf.constant([[1, 2]] ) _A : int = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass _A : Tuple = model(input_ids=_a , bbox=_a , pixel_values=_a , training=_a ) # verify the logits _A : int = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , _a ) _A : List[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _a , atol=1e-4 ) )
26
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: str ) -> int: UpperCAmelCase_ : List[Any] = """ylacombe/bark-small""" UpperCAmelCase_ : Tuple = tempfile.mkdtemp() UpperCAmelCase_ : Union[str, Any] = """en_speaker_1""" UpperCAmelCase_ : Optional[Any] = """This is a test string""" UpperCAmelCase_ : int = """speaker_embeddings_path.json""" UpperCAmelCase_ : Any = """speaker_embeddings""" def A__ ( self: Tuple ,**lowerCamelCase_: List[str] ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint ,**lowerCamelCase_ ) def A__ ( self: str ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def A__ ( self: List[Any] ) -> int: UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = BarkProcessor(tokenizer=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) @slow def A__ ( self: List[Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) processor.save_pretrained( self.tmpdirname ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,speaker_embeddings_directory=self.speaker_embeddings_directory ,) UpperCAmelCase_ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname ,self.speaker_embeddings_dict_path ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : Any = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) UpperCAmelCase_ : Optional[int] = 35 UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : Dict = 8 UpperCAmelCase_ : Optional[int] = { """semantic_prompt""": np.ones(lowerCamelCase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : str = processor(text=self.input_string ,voice_preset=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,"""file.npz""" ) np.savez(lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string ,voice_preset=lowerCamelCase_ ) UpperCAmelCase_ : int = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Union[str, Any] = processor(text=self.input_string ,voice_preset=self.voice_preset ) def A__ ( self: Dict ) -> Tuple: UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Dict = BarkProcessor(tokenizer=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string ) UpperCAmelCase_ : str = tokenizer( self.input_string ,padding="""max_length""" ,max_length=256 ,add_special_tokens=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,return_token_type_ids=lowerCamelCase_ ,) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key].squeeze().tolist() )
345
0
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __lowercase : Union[str, Any] = Mapping[str, np.ndarray] __lowercase : Tuple = Mapping[str, Any] # Is a nested dict. __lowercase : Any = 0.01 @dataclasses.dataclass(frozen=lowerCAmelCase_ ) class __UpperCamelCase : A_ = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. A_ = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. A_ = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. A_ = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. A_ = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions A_ = None # Optional remark about the protein. Included as a comment in output PDB # files A_ = None # Templates used to generate this protein (prediction-only) A_ = None # Chain corresponding to each parent A_ = None def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): __a : List[str] = r'(\[[A-Z]+\]\n)' __a : List[str] = [tag.strip() for tag in re.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0] __a : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] ) __a : List[str] = ["N", "CA", "C"] __a : Dict = None __a : Optional[int] = None __a : Optional[Any] = None for g in groups: if "[PRIMARY]" == g[0]: __a : str = g[1][0].strip() for i in range(len(_SCREAMING_SNAKE_CASE ) ): if seq[i] not in residue_constants.restypes: __a : Union[str, Any] = 'X' # FIXME: strings are immutable __a : List[Any] = np.array( [residue_constants.restype_order.get(_SCREAMING_SNAKE_CASE , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: __a : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(_SCREAMING_SNAKE_CASE , g[1][axis].split() ) ) ) __a : List[Any] = np.array(_SCREAMING_SNAKE_CASE ) __a : str = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_SCREAMING_SNAKE_CASE ): __a : Dict = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: __a : int = np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) ) __a : str = np.zeros( ( len(_SCREAMING_SNAKE_CASE ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_SCREAMING_SNAKE_CASE ): __a : Optional[Any] = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_SCREAMING_SNAKE_CASE , atom_mask=_SCREAMING_SNAKE_CASE , aatype=_SCREAMING_SNAKE_CASE , residue_index=np.arange(len(_SCREAMING_SNAKE_CASE ) ) , b_factors=_SCREAMING_SNAKE_CASE , ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Protein , _SCREAMING_SNAKE_CASE : int = 0 ): __a : List[str] = [] __a : Any = prot.remark if remark is not None: pdb_headers.append(F"""REMARK {remark}""" ) __a : Any = prot.parents __a : Tuple = prot.parents_chain_index if parents is not None and parents_chain_index is not None: __a : Tuple = [p for i, p in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if i == chain_id] if parents is None or len(_SCREAMING_SNAKE_CASE ) == 0: __a : List[str] = ['N/A'] pdb_headers.append(F"""PARENT {" ".join(_SCREAMING_SNAKE_CASE )}""" ) return pdb_headers def lowerCamelCase (_SCREAMING_SNAKE_CASE : Protein , _SCREAMING_SNAKE_CASE : str ): __a : List[str] = [] __a : List[str] = pdb_str.split('\n' ) __a : List[Any] = prot.remark if remark is not None: out_pdb_lines.append(F"""REMARK {remark}""" ) __a : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: __a : List[Any] = [] if prot.parents_chain_index is not None: __a : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(_SCREAMING_SNAKE_CASE ) , [] ) parent_dict[str(_SCREAMING_SNAKE_CASE )].append(_SCREAMING_SNAKE_CASE ) __a : Any = max([int(_SCREAMING_SNAKE_CASE ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): __a : str = parent_dict.get(str(_SCREAMING_SNAKE_CASE ) , ['N/A'] ) parents_per_chain.append(_SCREAMING_SNAKE_CASE ) else: parents_per_chain.append(list(prot.parents ) ) else: __a : List[str] = [['N/A']] def make_parent_line(_SCREAMING_SNAKE_CASE : Sequence[str] ) -> str: return F"""PARENT {" ".join(_SCREAMING_SNAKE_CASE )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) __a : int = 0 for i, l in enumerate(_SCREAMING_SNAKE_CASE ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_SCREAMING_SNAKE_CASE ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_SCREAMING_SNAKE_CASE ): __a : Optional[int] = parents_per_chain[chain_counter] else: __a : int = ['N/A'] out_pdb_lines.append(make_parent_line(_SCREAMING_SNAKE_CASE ) ) return "\n".join(_SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Protein ): __a : Union[str, Any] = residue_constants.restypes + ['X'] def res_atoa(_SCREAMING_SNAKE_CASE : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , 'UNK' ) __a : Any = residue_constants.atom_types __a : List[str] = [] __a : str = prot.atom_mask __a : str = prot.aatype __a : str = prot.atom_positions __a : Union[str, Any] = prot.residue_index.astype(np.intaa ) __a : int = prot.b_factors __a : Tuple = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('Invalid aatypes.' ) __a : Tuple = get_pdb_headers(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: pdb_lines.extend(_SCREAMING_SNAKE_CASE ) __a : List[Any] = aatype.shape[0] __a : Any = 1 __a : List[Any] = 0 __a : Optional[Any] = string.ascii_uppercase __a : Any = None # Add all atom sites. for i in range(_SCREAMING_SNAKE_CASE ): __a : Optional[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_SCREAMING_SNAKE_CASE , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue __a : int = 'ATOM' __a : Tuple = atom_name if len(_SCREAMING_SNAKE_CASE ) == 4 else F""" {atom_name}""" __a : Union[str, Any] = '' __a : Tuple = '' __a : str = 1.0_0 __a : Union[str, Any] = atom_name[0] # Protein supports only C, N, O, S, this works. __a : str = '' __a : List[Any] = 'A' if chain_index is not None: __a : Any = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! __a : int = ( F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" F"""{res_name_a:>3} {chain_tag:>1}""" F"""{residue_index[i]:>4}{insertion_code:>1} """ F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" F"""{occupancy:>6.2f}{b_factor:>6.2f} """ F"""{element:>2}{charge:>2}""" ) pdb_lines.append(_SCREAMING_SNAKE_CASE ) atom_index += 1 __a : Union[str, Any] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: __a : Tuple = True __a : Dict = chain_index[i + 1] if should_terminate: # Close the chain. __a : int = 'TER' __a : List[Any] = ( F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(_SCREAMING_SNAKE_CASE ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) pdb_lines.append('END' ) pdb_lines.append('' ) return "\n".join(_SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def lowerCamelCase (_SCREAMING_SNAKE_CASE : FeatureDict , _SCREAMING_SNAKE_CASE : ModelOutput , _SCREAMING_SNAKE_CASE : Optional[np.ndarray] = None , _SCREAMING_SNAKE_CASE : Optional[np.ndarray] = None , _SCREAMING_SNAKE_CASE : Optional[str] = None , _SCREAMING_SNAKE_CASE : Optional[Sequence[str]] = None , _SCREAMING_SNAKE_CASE : Optional[Sequence[int]] = None , ): return Protein( aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=_SCREAMING_SNAKE_CASE , remark=_SCREAMING_SNAKE_CASE , parents=_SCREAMING_SNAKE_CASE , parents_chain_index=_SCREAMING_SNAKE_CASE , )
27
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Any: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : str = -1 UpperCAmelCase_ : Dict = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase_ : Optional[int] = cs.out[:-1] self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: Dict ) -> Optional[Any]: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = -1 UpperCAmelCase_ : List[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : Dict = tokenizer.decode(greedy_ids[0] ) UpperCAmelCase_ : str = TextIteratorStreamer(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} UpperCAmelCase_ : str = Thread(target=model.generate ,kwargs=lowerCamelCase_ ) thread.start() UpperCAmelCase_ : int = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[Any] ) -> Dict: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = -1 UpperCAmelCase_ : Tuple = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Dict = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : str = greedy_ids[:, input_ids.shape[1] :] UpperCAmelCase_ : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ ,skip_prompt=lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase_ : List[str] = cs.out[:-1] self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: str ) -> str: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained("""distilgpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Any = -1 UpperCAmelCase_ : Union[str, Any] = torch.ones((1, 5) ,device=lowerCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: UpperCAmelCase_ : Union[str, Any] = TextStreamer(lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=1 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token UpperCAmelCase_ : List[str] = cs.out[:-1] # Remove the final "\n" UpperCAmelCase_ : Dict = tokenizer(lowerCamelCase_ ,return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape ,(1, 1) ) def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Any = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = -1 UpperCAmelCase_ : Optional[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = TextIteratorStreamer(lowerCamelCase_ ,timeout=0.0_0_1 ) UpperCAmelCase_ : Any = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} UpperCAmelCase_ : Dict = Thread(target=model.generate ,kwargs=lowerCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCamelCase_ ): UpperCAmelCase_ : Union[str, Any] = """""" for new_text in streamer: streamer_text += new_text
345
0
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( A__ ) -> float: """simple docstring""" UpperCamelCase = 0.00 UpperCamelCase = 0 for resistor in resistors: if resistor <= 0: UpperCamelCase = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(A__ ) first_sum += 1 / float(A__ ) index += 1 return 1 / first_sum def __lowerCamelCase ( A__ ) -> float: """simple docstring""" UpperCamelCase = 0.00 UpperCamelCase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: UpperCamelCase = F"""Resistor at index {index} has a negative value!""" raise ValueError(A__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
28
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _snake_case ( unittest.TestCase ): '''simple docstring''' @property def A__ ( self: Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") ,up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") ,) return model @property def A__ ( self: Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=3 ,) return model @property def A__ ( self: Tuple ) -> Any: torch.manual_seed(0 ) UpperCAmelCase_ : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(lowerCamelCase_ ) def A__ ( self: str ) -> Optional[Any]: UpperCAmelCase_ : str = self.dummy_uncond_unet UpperCAmelCase_ : List[Any] = DDIMScheduler() UpperCAmelCase_ : List[Any] = self.dummy_vq_model UpperCAmelCase_ : Optional[int] = LDMPipeline(unet=lowerCamelCase_ ,vqvae=lowerCamelCase_ ,scheduler=lowerCamelCase_ ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = torch.manual_seed(0 ) UpperCAmelCase_ : int = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ).images UpperCAmelCase_ : List[str] = torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ,return_dict=lowerCamelCase_ )[0] UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : str = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) UpperCAmelCase_ : Tuple = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = ldm(generator=lowerCamelCase_ ,num_inference_steps=5 ,output_type="""numpy""" ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase_ : int = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) UpperCAmelCase_ : Union[str, Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
345
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' UpperCAmelCase_ : Tuple = [0] * len(_a ) UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Dict = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_a ) ): if indegree[i] == 0: queue.append(_a ) while queue: UpperCAmelCase_ : List[str] = queue.pop(0 ) cnt += 1 topo.append(_a ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_a ) if cnt != len(_a ): print("""Cycle exists""" ) else: print(_a ) # Adjacency List of Graph UpperCamelCase_ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
345
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class lowercase__( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(SCREAMING_SNAKE_CASE_ ) for s in shape] )}.npy''' def _lowercase ( self : List[str] ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=(4, 4, 6_4, 6_4) , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> List[str]: lowercase_ = jnp.bfloataa if fpaa else jnp.floataa lowercase_ = jnp.array(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) , dtype=SCREAMING_SNAKE_CASE_ ) return image def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Any=False , SCREAMING_SNAKE_CASE_ : Any="CompVis/stable-diffusion-v1-4" ) -> str: lowercase_ = jnp.bfloataa if fpaa else jnp.floataa lowercase_ = '''bf16''' if fpaa else None lowercase_ , lowercase_ = FlaxUNetaDConditionModel.from_pretrained( SCREAMING_SNAKE_CASE_ , subfolder='''unet''' , dtype=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ ) return model, params def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any=0 , SCREAMING_SNAKE_CASE_ : Dict=(4, 7_7, 7_6_8) , SCREAMING_SNAKE_CASE_ : List[str]=False ) -> Dict: lowercase_ = jnp.bfloataa if fpaa else jnp.floataa lowercase_ = jnp.array(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) , dtype=SCREAMING_SNAKE_CASE_ ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.23_23, -0.13_04, 0.08_13, -0.30_93, -0.09_19, -0.15_71, -0.11_25, -0.58_06]], [1_7, 0.55, [-0.08_31, -0.24_43, 0.09_01, -0.09_19, 0.33_96, 0.01_03, -0.37_43, 0.07_01]], [8, 0.89, [-0.48_63, 0.08_59, 0.08_75, -0.16_58, 0.91_99, -0.01_14, 0.48_39, 0.46_39]], [3, 1_0_0_0, [-0.56_49, 0.24_02, -0.55_18, 0.12_48, 1.13_28, -0.24_43, -0.03_25, -1.00_78]], # fmt: on ] ) def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> int: lowercase_ , lowercase_ = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=SCREAMING_SNAKE_CASE_ ) lowercase_ = self.get_latents(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ ) lowercase_ = self.get_encoder_hidden_states(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ ) lowercase_ = model.apply( {'''params''': params} , SCREAMING_SNAKE_CASE_ , jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa ) , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , ).sample assert sample.shape == latents.shape lowercase_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowercase_ = jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.15_14, 0.08_07, 0.16_24, 0.10_16, -0.18_96, 0.02_63, 0.06_77, 0.23_10]], [1_7, 0.55, [0.11_64, -0.02_16, 0.01_70, 0.15_89, -0.31_20, 0.10_05, -0.05_81, -0.14_58]], [8, 0.89, [-0.17_58, -0.01_69, 0.10_04, -0.14_11, 0.13_12, 0.11_03, -0.19_96, 0.21_39]], [3, 1_0_0_0, [0.12_14, 0.03_52, -0.07_31, -0.15_62, -0.09_94, -0.09_06, -0.23_40, -0.05_39]], # fmt: on ] ) def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int ) -> Dict: lowercase_ , lowercase_ = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=SCREAMING_SNAKE_CASE_ ) lowercase_ = self.get_latents(SCREAMING_SNAKE_CASE_ , shape=(4, 4, 9_6, 9_6) , fpaa=SCREAMING_SNAKE_CASE_ ) lowercase_ = self.get_encoder_hidden_states(SCREAMING_SNAKE_CASE_ , shape=(4, 7_7, 1_0_2_4) , fpaa=SCREAMING_SNAKE_CASE_ ) lowercase_ = model.apply( {'''params''': params} , SCREAMING_SNAKE_CASE_ , jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa ) , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , ).sample assert sample.shape == latents.shape lowercase_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowercase_ = jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 )
30
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = "swinv2" A__ : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: List[str] ,lowerCamelCase_: List[str]=224 ,lowerCamelCase_: List[str]=4 ,lowerCamelCase_: List[Any]=3 ,lowerCamelCase_: Optional[Any]=96 ,lowerCamelCase_: Any=[2, 2, 6, 2] ,lowerCamelCase_: Dict=[3, 6, 12, 24] ,lowerCamelCase_: str=7 ,lowerCamelCase_: Optional[Any]=4.0 ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.0 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: str=False ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: Union[str, Any]=1e-5 ,lowerCamelCase_: str=32 ,**lowerCamelCase_: List[str] ,) -> Tuple: super().__init__(**lowerCamelCase_ ) UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : Tuple = patch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : List[Any] = embed_dim UpperCAmelCase_ : Dict = depths UpperCAmelCase_ : Dict = len(lowerCamelCase_ ) UpperCAmelCase_ : str = num_heads UpperCAmelCase_ : Tuple = window_size UpperCAmelCase_ : int = mlp_ratio UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : int = drop_path_rate UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : List[str] = use_absolute_embeddings UpperCAmelCase_ : Dict = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ : List[str] = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) UpperCAmelCase_ : Any = (0, 0, 0, 0)
345
0
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class lowerCamelCase_ (snake_case__ , snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[Any] = 1 @register_to_config def __init__( self : Optional[int] , A : int = 1000 , A : Optional[Union[np.ndarray, List[float]]] = None ): # set `betas`, `alphas`, `timesteps` self.set_timesteps(A ) # standard deviation of the initial noise distribution _UpperCAmelCase : int = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. _UpperCAmelCase : int = 4 # running values _UpperCAmelCase : Dict = [] def _A ( self : Optional[int] , A : int , A : Union[str, torch.device] = None ): _UpperCAmelCase : int = num_inference_steps _UpperCAmelCase : Union[str, Any] = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] _UpperCAmelCase : Any = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: _UpperCAmelCase : str = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: _UpperCAmelCase : Dict = torch.sin(steps * math.pi / 2 ) ** 2 _UpperCAmelCase : List[Any] = (1.0 - self.betas**2) ** 0.5 _UpperCAmelCase : List[str] = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] _UpperCAmelCase : Dict = timesteps.to(A ) _UpperCAmelCase : Dict = [] def _A ( self : Optional[int] , A : torch.FloatTensor , A : int , A : torch.FloatTensor , A : bool = True , ): if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) _UpperCAmelCase : Tuple = (self.timesteps == timestep).nonzero().item() _UpperCAmelCase : Optional[Any] = timestep_index + 1 _UpperCAmelCase : int = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(A ) if len(self.ets ) == 1: _UpperCAmelCase : List[Any] = self.ets[-1] elif len(self.ets ) == 2: _UpperCAmelCase : str = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: _UpperCAmelCase : Tuple = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: _UpperCAmelCase : Union[str, Any] = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) _UpperCAmelCase : Union[str, Any] = self._get_prev_sample(A , A , A , A ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A ) def _A ( self : Union[str, Any] , A : torch.FloatTensor , *A : Union[str, Any] , **A : Dict ): return sample def _A ( self : Optional[Any] , A : Optional[int] , A : int , A : Optional[Any] , A : List[str] ): _UpperCAmelCase : List[str] = self.alphas[timestep_index] _UpperCAmelCase : List[Any] = self.betas[timestep_index] _UpperCAmelCase : Optional[Any] = self.alphas[prev_timestep_index] _UpperCAmelCase : Dict = self.betas[prev_timestep_index] _UpperCAmelCase : Tuple = (sample - sigma * ets) / max(A , 1E-8 ) _UpperCAmelCase : List[str] = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : Union[str, Any] ): return self.config.num_train_timesteps
31
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: int ) -> str: # A mock response for an HTTP head request to emulate server down UpperCAmelCase_ : List[str] = mock.Mock() UpperCAmelCase_ : List[Any] = 500 UpperCAmelCase_ : Union[str, Any] = {} UpperCAmelCase_ : Union[str, Any] = HTTPError UpperCAmelCase_ : Any = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ : Union[str, Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head: UpperCAmelCase_ : Any = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def A__ ( self: str ) -> int: # A mock response for an HTTP head request to emulate server down UpperCAmelCase_ : str = mock.Mock() UpperCAmelCase_ : Optional[int] = 500 UpperCAmelCase_ : int = {} UpperCAmelCase_ : Union[str, Any] = HTTPError UpperCAmelCase_ : List[Any] = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ : Optional[int] = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head: UpperCAmelCase_ : Any = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def A__ ( self: str ) -> Dict: # This test is for deprecated behavior and can be removed in v5 try: UpperCAmelCase_ : Any = tempfile.mktemp() with open(lowerCamelCase_ ,"""wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = AlbertTokenizer.from_pretrained(lowerCamelCase_ ) finally: os.remove(lowerCamelCase_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" ,"""wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" ,lowerCamelCase_ ) UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def A__ ( self: List[str] ) -> Tuple: # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase_ : str = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class _snake_case ( unittest.TestCase ): '''simple docstring''' A__ : str = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def A__ ( cls: Dict ) -> Optional[int]: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def A__ ( cls: Optional[Any] ) -> List[str]: try: delete_repo(token=cls._token ,repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def A__ ( self: Any ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Tuple = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : List[Any] = BertTokenizer(lowerCamelCase_ ) tokenizer.push_to_hub("""test-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ,repo_id="""test-tokenizer""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def A__ ( self: Optional[int] ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[Any] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : Dict = BertTokenizer(lowerCamelCase_ ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" ,use_auth_token=self._token ) UpperCAmelCase_ : Dict = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowerCamelCase_ ,repo_id="""valid_org/test-tokenizer-org""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def A__ ( self: Optional[int] ) -> Optional[Any]: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Any = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : Optional[Any] = CustomTokenizer(lowerCamelCase_ ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[str] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : str = BertTokenizerFast.from_pretrained(lowerCamelCase_ ) bert_tokenizer.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = CustomTokenizerFast.from_pretrained(lowerCamelCase_ ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizerFast""" ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' ,use_fast=lowerCamelCase_ ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[Any] ) -> Any: UpperCAmelCase_ : Any = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def A__ ( self: Tuple ) -> Optional[int]: UpperCAmelCase_ : str = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS]""", """ This is a """, """extra_id_100"""] ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ : Dict = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) ,["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) ,["""BC""", """A"""] ) def A__ ( self: Union[str, Any] ) -> int: UpperCAmelCase_ : List[str] = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def A__ ( self: int ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def A__ ( self: int ) -> List[str]: UpperCAmelCase_ : int = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) ,["""AB""", """C"""] ) def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) ,["""ABC""", """D"""] ) def A__ ( self: List[Any] ) -> Any: # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCAmelCase_ : Tuple = Trie() UpperCAmelCase_ : Optional[Any] = trie.cut_text("""ABC""" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(lowerCamelCase_ ,["""AB""", """C"""] )
345
0
from collections import defaultdict def SCREAMING_SNAKE_CASE_ ( __A : int ) -> int: """simple docstring""" a_ : str = 1 a_ : Optional[Any] = True for v in tree[start]: if v not in visited: ret += dfs(__A ) if ret % 2 == 0: cuts.append(__A ) return ret def SCREAMING_SNAKE_CASE_ ( ) -> Dict: """simple docstring""" dfs(1 ) if __name__ == "__main__": UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = 10, 9 UpperCAmelCase_ : List[Any] = defaultdict(list) UpperCAmelCase_ : dict[int, bool] = {} UpperCAmelCase_ : list[int] = [] UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : List[Any] = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
32
from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: int ,**lowerCamelCase_: List[str] ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: List[str] ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: int ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Any = ["flax"] def __init__( self: int ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[str] ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Dict = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[Any] ) -> Any: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: List[Any] ) -> str: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[str] = ["flax"] def __init__( self: str ,*lowerCamelCase_: List[str] ,**lowerCamelCase_: Optional[int] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : int = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[Any] ) -> str: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: str ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[int] ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Optional[Any] ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[Any] = ["flax"] def __init__( self: Union[str, Any] ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: int ) -> List[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Dict: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: Any ,**lowerCamelCase_: int ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: Union[str, Any] ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Dict ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : str = ["flax"] def __init__( self: Optional[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: int ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: int ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Union[str, Any] = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Optional[int] ) -> List[str]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Dict ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: List[str] ) -> int: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[Any] = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Optional[int] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Dict ) -> int: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Optional[Any]: requires_backends(cls ,["""flax"""] )
345
0
"""simple docstring""" def lowercase ( __snake_case : list ): for i in range(len(__snake_case ) - 1 , 0 , -1 ): lowercase_ : int = False for j in range(__snake_case , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ , lowercase_ : Dict = unsorted[j - 1], unsorted[j] lowercase_ : List[str] = True for j in range(__snake_case ): if unsorted[j] > unsorted[j + 1]: lowercase_ , lowercase_ : int = unsorted[j + 1], unsorted[j] lowercase_ : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __A : List[str] = input('''Enter numbers separated by a comma:\n''').strip() __A : str = [int(item) for item in user_input.split(''',''')] print(F"""{cocktail_shaker_sort(unsorted) = }""")
33
import random from typing import Any def lowerCamelCase_ ( _a : list ): '''simple docstring''' for _ in range(len(_a ) ): UpperCAmelCase_ : Tuple = random.randint(0 , len(_a ) - 1 ) UpperCAmelCase_ : List[Any] = random.randint(0 , len(_a ) - 1 ) UpperCAmelCase_ , UpperCAmelCase_ : int = data[b], data[a] return data if __name__ == "__main__": UpperCamelCase_ = [0, 1, 2, 3, 4, 5, 6, 7] UpperCamelCase_ = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
345
0
'''simple docstring''' def snake_case_ (_a : int ): if not isinstance(_a , _a ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
34
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[int] = [] for i in range(self.num_layers ): UpperCAmelCase_ : List[Any] = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : List[Any] = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : int = resnets UpperCAmelCase_ : Tuple = attentions if self.add_downsample: UpperCAmelCase_ : List[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: int=True ) -> int: UpperCAmelCase_ : List[Any] = () for resnet, attn in zip(self.resnets ,self.attentions ): UpperCAmelCase_ : str = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[Any] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> int: UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : Dict = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnets if self.add_downsample: UpperCAmelCase_ : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any]=True ) -> Any: UpperCAmelCase_ : Union[str, Any] = () for resnet in self.resnets: UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[str] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: str ) -> Any: UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : int = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Optional[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : int = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = resnets UpperCAmelCase_ : Dict = attentions if self.add_upsample: UpperCAmelCase_ : Optional[Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[int] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: Any ,lowerCamelCase_: str ,lowerCamelCase_: List[str]=True ) -> List[str]: for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states UpperCAmelCase_ : List[str] = res_hidden_states_tuple[-1] UpperCAmelCase_ : Union[str, Any] = res_hidden_states_tuple[:-1] UpperCAmelCase_ : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Dict = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> Dict: UpperCAmelCase_ : Any = [] for i in range(self.num_layers ): UpperCAmelCase_ : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : str = resnets if self.add_upsample: UpperCAmelCase_ : Union[str, Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Dict ,lowerCamelCase_: Dict ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any=True ) -> List[str]: for resnet in self.resnets: # pop res hidden states UpperCAmelCase_ : Dict = res_hidden_states_tuple[-1] UpperCAmelCase_ : str = res_hidden_states_tuple[:-1] UpperCAmelCase_ : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : List[str] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Optional[Any] = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: # there is always at least one resnet UpperCAmelCase_ : List[Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] UpperCAmelCase_ : Any = [] for _ in range(self.num_layers ): UpperCAmelCase_ : Optional[Any] = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Dict = resnets UpperCAmelCase_ : Any = attentions def __call__( self: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any]=True ) -> List[Any]: UpperCAmelCase_ : List[Any] = self.resnets[0](lowerCamelCase_ ,lowerCamelCase_ ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): UpperCAmelCase_ : Optional[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) return hidden_states
345
0
'''simple docstring''' def __snake_case( _lowerCAmelCase ) -> int: if n == 1 or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return 0 elif n == 2: return 1 else: snake_case__ : Optional[int] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : Union[str, Any] = 0 snake_case__ : List[str] = 2 while digits < n: index += 1 snake_case__ : Any = len(str(fibonacci(_lowerCAmelCase ) ) ) return index def __snake_case( _lowerCAmelCase = 1_000 ) -> int: return fibonacci_digits_index(_lowerCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
35
import pickle import numpy as np from matplotlib import pyplot as plt class _snake_case : '''simple docstring''' def __init__( self: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Tuple=0.2 ,lowerCamelCase_: Union[str, Any]=0.2 ) -> List[str]: UpperCAmelCase_ : List[Any] = bp_numa UpperCAmelCase_ : str = bp_numa UpperCAmelCase_ : List[Any] = bp_numa UpperCAmelCase_ : Optional[int] = conva_get[:2] UpperCAmelCase_ : List[Any] = conva_get[2] UpperCAmelCase_ : str = size_pa UpperCAmelCase_ : Optional[int] = rate_w UpperCAmelCase_ : Dict = rate_t UpperCAmelCase_ : List[Any] = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] UpperCAmelCase_ : int = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) UpperCAmelCase_ : int = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) UpperCAmelCase_ : Dict = -2 * np.random.rand(self.conva[1] ) + 1 UpperCAmelCase_ : str = -2 * np.random.rand(self.num_bpa ) + 1 UpperCAmelCase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def A__ ( self: str ,lowerCamelCase_: Optional[Any] ) -> Tuple: # save model dict with pickle UpperCAmelCase_ : Dict = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(lowerCamelCase_ ,"""wb""" ) as f: pickle.dump(lowerCamelCase_ ,lowerCamelCase_ ) print(F'''Model saved: {save_path}''' ) @classmethod def A__ ( cls: List[str] ,lowerCamelCase_: str ) -> List[str]: # read saved model with open(lowerCamelCase_ ,"""rb""" ) as f: UpperCAmelCase_ : Any = pickle.load(lowerCamelCase_ ) # noqa: S301 UpperCAmelCase_ : Union[str, Any] = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) UpperCAmelCase_ : List[str] = model_dic.get("""size_pooling1""" ) UpperCAmelCase_ : Tuple = model_dic.get("""num_bp1""" ) UpperCAmelCase_ : Optional[Any] = model_dic.get("""num_bp2""" ) UpperCAmelCase_ : List[str] = model_dic.get("""num_bp3""" ) UpperCAmelCase_ : List[Any] = model_dic.get("""rate_weight""" ) UpperCAmelCase_ : Dict = model_dic.get("""rate_thre""" ) # create model instance UpperCAmelCase_ : List[Any] = CNN(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # modify model parameter UpperCAmelCase_ : Any = model_dic.get("""w_conv1""" ) UpperCAmelCase_ : int = model_dic.get("""wkj""" ) UpperCAmelCase_ : int = model_dic.get("""vji""" ) UpperCAmelCase_ : Optional[int] = model_dic.get("""thre_conv1""" ) UpperCAmelCase_ : List[str] = model_dic.get("""thre_bp2""" ) UpperCAmelCase_ : Dict = model_dic.get("""thre_bp3""" ) return conv_ins def A__ ( self: List[Any] ,lowerCamelCase_: Union[str, Any] ) -> Tuple: return 1 / (1 + np.exp(-1 * x )) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Union[str, Any] ) -> Optional[Any]: return round(lowerCamelCase_ ,3 ) def A__ ( self: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any] ) -> Any: # convolution process UpperCAmelCase_ : Optional[Any] = convs[0] UpperCAmelCase_ : int = convs[1] UpperCAmelCase_ : int = np.shape(lowerCamelCase_ )[0] # get the data slice of original image data, data_focus UpperCAmelCase_ : Dict = [] for i_focus in range(0 ,size_data - size_conv + 1 ,lowerCamelCase_ ): for j_focus in range(0 ,size_data - size_conv + 1 ,lowerCamelCase_ ): UpperCAmelCase_ : Union[str, Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowerCamelCase_ ) # calculate the feature map of every single kernel, and saved as list of matrix UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowerCamelCase_ ): UpperCAmelCase_ : Optional[int] = [] for i_focus in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : int = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowerCamelCase_ ) ) UpperCAmelCase_ : Union[str, Any] = np.asmatrix(lowerCamelCase_ ).reshape( lowerCamelCase_ ,lowerCamelCase_ ) data_featuremap.append(lowerCamelCase_ ) # expanding the data slice to One dimenssion UpperCAmelCase_ : Optional[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[int] = np.asarray(lowerCamelCase_ ) return focus_list, data_featuremap def A__ ( self: Tuple ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any]="average_pool" ) -> List[Any]: # pooling process UpperCAmelCase_ : Optional[Any] = len(featuremaps[0] ) UpperCAmelCase_ : Any = int(size_map / size_pooling ) UpperCAmelCase_ : Optional[int] = [] for i_map in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : Any = featuremaps[i_map] UpperCAmelCase_ : Tuple = [] for i_focus in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): for j_focus in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : str = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowerCamelCase_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowerCamelCase_ ) ) UpperCAmelCase_ : int = np.asmatrix(lowerCamelCase_ ).reshape(lowerCamelCase_ ,lowerCamelCase_ ) featuremap_pooled.append(lowerCamelCase_ ) return featuremap_pooled def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tuple ) -> Optional[int]: # expanding three dimension data to one dimension list UpperCAmelCase_ : List[Any] = [] for i in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : Tuple = np.shape(data[i] ) UpperCAmelCase_ : Optional[int] = data[i].reshape(1 ,shapes[0] * shapes[1] ) UpperCAmelCase_ : Optional[int] = data_listed.getA().tolist()[0] data_expanded.extend(lowerCamelCase_ ) UpperCAmelCase_ : int = np.asarray(lowerCamelCase_ ) return data_expanded def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[int] ) -> Union[str, Any]: # expanding matrix to one dimension list UpperCAmelCase_ : List[Any] = np.asarray(lowerCamelCase_ ) UpperCAmelCase_ : str = np.shape(lowerCamelCase_ ) UpperCAmelCase_ : Dict = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def A__ ( self: str ,lowerCamelCase_: Dict ,lowerCamelCase_: int ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Any ) -> Union[str, Any]: UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = 0 for i_map in range(lowerCamelCase_ ): UpperCAmelCase_ : Optional[Any] = np.ones((size_map, size_map) ) for i in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): for j in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : Any = pd_pool[ i_pool ] UpperCAmelCase_ : List[str] = i_pool + 1 UpperCAmelCase_ : Optional[Any] = np.multiply( lowerCamelCase_ ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(lowerCamelCase_ ) return pd_all def A__ ( self: str ,lowerCamelCase_: int ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any=bool ) -> Optional[int]: # model traning print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(lowerCamelCase_ )) ) print((""" - - Shape: Teach_Data """, np.shape(lowerCamelCase_ )) ) UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : Any = 10000 while rp < n_repeat and mse >= error_accuracy: UpperCAmelCase_ : List[str] = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(lowerCamelCase_ ) ): # print('------------Learning Image: %d--------------'%p) UpperCAmelCase_ : str = np.asmatrix(datas_train[p] ) UpperCAmelCase_ : Optional[Any] = np.asarray(datas_teach[p] ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : List[Any] = self.pooling(lowerCamelCase_ ,self.size_poolinga ) UpperCAmelCase_ : int = np.shape(lowerCamelCase_ ) UpperCAmelCase_ : Dict = self._expand(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = data_bp_input UpperCAmelCase_ : Optional[Any] = np.dot(lowerCamelCase_ ,self.vji.T ) - self.thre_bpa UpperCAmelCase_ : int = self.sig(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = np.dot(lowerCamelCase_ ,self.wkj.T ) - self.thre_bpa UpperCAmelCase_ : Optional[Any] = self.sig(lowerCamelCase_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- UpperCAmelCase_ : List[str] = np.multiply( (data_teach - bp_outa) ,np.multiply(lowerCamelCase_ ,(1 - bp_outa) ) ) UpperCAmelCase_ : List[Any] = np.multiply( np.dot(lowerCamelCase_ ,self.wkj ) ,np.multiply(lowerCamelCase_ ,(1 - bp_outa) ) ) UpperCAmelCase_ : Any = np.dot(lowerCamelCase_ ,self.vji ) UpperCAmelCase_ : Tuple = pd_i_all / (self.size_poolinga * self.size_poolinga) UpperCAmelCase_ : List[str] = pd_conva_pooled.T.getA().tolist() UpperCAmelCase_ : str = self._calculate_gradient_from_pool( lowerCamelCase_ ,lowerCamelCase_ ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): UpperCAmelCase_ : List[str] = self._expand_mat(pd_conva_all[k_conv] ) UpperCAmelCase_ : Optional[Any] = self.rate_weight * np.dot(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : int = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) UpperCAmelCase_ : str = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer UpperCAmelCase_ : int = self.wkj + pd_k_all.T * bp_outa * self.rate_weight UpperCAmelCase_ : Tuple = self.vji + pd_j_all.T * bp_outa * self.rate_weight UpperCAmelCase_ : int = self.thre_bpa - pd_k_all * self.rate_thre UpperCAmelCase_ : str = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image UpperCAmelCase_ : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) UpperCAmelCase_ : int = rp + 1 UpperCAmelCase_ : Any = error_count / patterns all_mse.append(lowerCamelCase_ ) def draw_error(): UpperCAmelCase_ : Any = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowerCamelCase_ ,"""+-""" ) plt.plot(lowerCamelCase_ ,"""r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(lowerCamelCase_ ,alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def A__ ( self: Optional[int] ,lowerCamelCase_: Any ) -> Tuple: # model predict UpperCAmelCase_ : Union[str, Any] = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(lowerCamelCase_ )) ) for p in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : int = np.asmatrix(datas_test[p] ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : Optional[Any] = self.pooling(lowerCamelCase_ ,self.size_poolinga ) UpperCAmelCase_ : str = self._expand(lowerCamelCase_ ) UpperCAmelCase_ : str = data_bp_input UpperCAmelCase_ : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa UpperCAmelCase_ : Optional[int] = self.sig(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = bp_outa * self.wkj.T - self.thre_bpa UpperCAmelCase_ : List[Any] = self.sig(lowerCamelCase_ ) produce_out.extend(bp_outa.getA().tolist() ) UpperCAmelCase_ : int = [list(map(self.do_round ,lowerCamelCase_ ) ) for each in produce_out] return np.asarray(lowerCamelCase_ ) def A__ ( self: Optional[Any] ,lowerCamelCase_: Dict ) -> Tuple: # return the data of image after convoluting process so we can check it out UpperCAmelCase_ : Optional[int] = np.asmatrix(lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : Dict = self.pooling(lowerCamelCase_ ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
345
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _snake_case = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
36
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Optional[Any] = CTRLTokenizer A__ : Optional[Any] = False A__ : str = False def A__ ( self: Optional[int] ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ : Dict = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] UpperCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) UpperCAmelCase_ : List[Any] = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] UpperCAmelCase_ : Optional[Any] = {"""unk_token""": """<unk>"""} UpperCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase_ ) ) def A__ ( self: Optional[int] ,**lowerCamelCase_: Any ) -> str: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase_ ) def A__ ( self: int ,lowerCamelCase_: int ) -> str: UpperCAmelCase_ : List[str] = """adapt react readapt apt""" UpperCAmelCase_ : List[Any] = """adapt react readapt apt""" return input_text, output_text def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = CTRLTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) UpperCAmelCase_ : List[Any] = """adapt react readapt apt""" UpperCAmelCase_ : Optional[int] = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() UpperCAmelCase_ : Tuple = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokens + [tokenizer.unk_token] UpperCAmelCase_ : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,lowerCamelCase_ )
345
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if any(not isinstance(UpperCamelCase , UpperCamelCase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(UpperCamelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(UpperCamelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
37
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCamelCase_ = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Union[str, Any] = "ernie_m" A__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self: str ,lowerCamelCase_: int = 250002 ,lowerCamelCase_: int = 768 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 3072 ,lowerCamelCase_: str = "gelu" ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: int = 514 ,lowerCamelCase_: float = 0.0_2 ,lowerCamelCase_: int = 1 ,lowerCamelCase_: float = 1e-05 ,lowerCamelCase_: Any=None ,lowerCamelCase_: List[Any]=False ,lowerCamelCase_: Tuple=0.0 ,**lowerCamelCase_: Optional[int] ,) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : List[Any] = classifier_dropout UpperCAmelCase_ : str = is_decoder UpperCAmelCase_ : List[str] = act_dropout
345
0
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase_ : int = '''bart''' UpperCAmelCase_ : int = True @st.cache(allow_output_mutation=__magic_name__ ) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: """simple docstring""" if LOAD_DENSE_INDEX: UpperCamelCase :Optional[Any] = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) UpperCamelCase :Union[str, Any] = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) UpperCamelCase :Optional[int] = qar_model.eval() else: UpperCamelCase , UpperCamelCase :Optional[int] = (None, None) if MODEL_TYPE == "bart": UpperCamelCase :Any = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) UpperCamelCase :Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) UpperCamelCase :Optional[int] = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) UpperCamelCase :Optional[Any] = sas_model.eval() else: UpperCamelCase , UpperCamelCase :Dict = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__magic_name__ ) def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: """simple docstring""" if LOAD_DENSE_INDEX: UpperCamelCase :Tuple = faiss.StandardGpuResources() UpperCamelCase :Dict = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] UpperCamelCase :str = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) UpperCamelCase :Optional[Any] = faiss.IndexFlatIP(128 ) UpperCamelCase :Optional[int] = faiss.index_cpu_to_gpu(__magic_name__ , 1 , __magic_name__ ) wikiaab_gpu_index_flat.add(__magic_name__ ) # TODO fix for larger GPU else: UpperCamelCase , UpperCamelCase :Optional[Any] = (None, None) UpperCamelCase :List[str] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__magic_name__ ) def SCREAMING_SNAKE_CASE_ ( ) -> str: """simple docstring""" UpperCamelCase :Dict = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) UpperCamelCase :List[Any] = elia["""train_eli5"""] UpperCamelCase :Optional[Any] = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) UpperCamelCase :Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(__magic_name__ ) return (elia_train, eli5_train_q_index) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = load_indexes() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = load_models() UpperCAmelCase_ , UpperCAmelCase_ : str = load_train_data() def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : Any=10 ) -> Any: """simple docstring""" UpperCamelCase :List[str] = embed_questions_for_retrieval([question] , __magic_name__ , __magic_name__ ) UpperCamelCase , UpperCamelCase :int = eli5_train_q_index.search(__magic_name__ , __magic_name__ ) UpperCamelCase :Any = [elia_train[int(__magic_name__ )] for i in I[0]] return nn_examples def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] , __magic_name__ : List[str]="wiki40b" , __magic_name__ : str="dense" , __magic_name__ : Tuple=10 ) -> List[str]: """simple docstring""" if source == "none": UpperCamelCase , UpperCamelCase :Dict = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": UpperCamelCase , UpperCamelCase :List[Any] = query_qa_dense_index( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) else: UpperCamelCase , UpperCamelCase :List[Any] = query_es_index( __magic_name__ , __magic_name__ , index_name="""english_wiki40b_snippets_100w""" , n_results=__magic_name__ , ) UpperCamelCase :str = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] UpperCamelCase :Tuple = """question: {} context: {}""".format(__magic_name__ , __magic_name__ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __magic_name__ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __magic_name__ : None), } ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=64 , __magic_name__ : int=256 , __magic_name__ : Dict=False , __magic_name__ : str=2 , __magic_name__ : str=0.95 , __magic_name__ : Dict=0.8 ) -> Dict: """simple docstring""" with torch.no_grad(): UpperCamelCase :Optional[Any] = qa_sas_generate( __magic_name__ , __magic_name__ , __magic_name__ , num_answers=1 , num_beams=__magic_name__ , min_len=__magic_name__ , max_len=__magic_name__ , do_sample=__magic_name__ , temp=__magic_name__ , top_p=__magic_name__ , top_k=__magic_name__ , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar UpperCAmelCase_ : List[Any] = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' UpperCAmelCase_ : Union[str, Any] = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase_ : List[str] = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase_ : Dict = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] UpperCAmelCase_ : Tuple = st.sidebar.checkbox('''Demo options''') if demo_options: UpperCAmelCase_ : str = st.sidebar.selectbox( '''''', action_list, index=3, ) UpperCAmelCase_ : str = action_list.index(action_st) UpperCAmelCase_ : int = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) UpperCAmelCase_ : str = show_type == '''Show full text of passages''' else: UpperCAmelCase_ : str = 3 UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Optional[Any] = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: UpperCAmelCase_ : Any = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) UpperCAmelCase_ : int = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) UpperCAmelCase_ : List[Any] = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: UpperCAmelCase_ : Optional[Any] = '''wiki40b''' UpperCAmelCase_ : Any = '''dense''' UpperCAmelCase_ : int = '''beam''' UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : Optional[Any] = 64 UpperCAmelCase_ : str = 2_56 UpperCAmelCase_ : Any = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : str = st.sidebar.checkbox('''Generation options''') if generate_options: UpperCAmelCase_ : Optional[Any] = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) UpperCAmelCase_ : Optional[Any] = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) UpperCAmelCase_ : int = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) UpperCAmelCase_ : Optional[Any] = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase_ : Optional[Any] = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase_ : int = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase_ : Tuple = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase_ : Optional[int] = None # start main text UpperCAmelCase_ : Optional[int] = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] UpperCAmelCase_ : List[Any] = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase_ : Union[str, Any] = st.text_input('''Enter your question here:''', '''''') else: UpperCAmelCase_ : Optional[Any] = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase_ , UpperCAmelCase_ : Dict = make_support(question, source=wiki_source, method='''dense''', n_results=10) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = make_support(question, source=wiki_source, method='''sparse''', n_results=10) UpperCAmelCase_ : Tuple = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase_ : Any = support_list[:10] UpperCAmelCase_ : Optional[Any] = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase_ , UpperCAmelCase_ : str = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): UpperCAmelCase_ : Any = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) UpperCAmelCase_ : List[Any] = res[1].strip() if sec_titles == "": UpperCAmelCase_ : Union[str, Any] = '''[{}]({})'''.format(res[0], wiki_url) else: UpperCAmelCase_ : str = sec_titles.split(''' & ''') UpperCAmelCase_ : str = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase_ : Any = find_nearest_training(question) UpperCAmelCase_ : Optional[int] = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) UpperCAmelCase_ : Dict = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) UpperCAmelCase_ : int = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
38
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase_ = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowerCamelCase_ ( _a : str , _a : Any=100 , _a : int=" " ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = text.split(_a ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_a ) , _a )] def lowerCamelCase_ ( _a : dict ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Dict = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(_a ): titles.append(title if title is not None else """""" ) texts.append(_a ) return {"title": titles, "text": texts} def lowerCamelCase_ ( _a : dict , _a : DPRContextEncoder , _a : DPRContextEncoderTokenizerFast ): '''simple docstring''' UpperCAmelCase_ : List[str] = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=_a , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] UpperCAmelCase_ : Tuple = ctx_encoder(input_ids.to(device=_a ) , return_dict=_a ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowerCamelCase_ ( _a : "RagExampleArguments" , _a : "ProcessingArguments" , _a : "IndexHnswArguments" , ): '''simple docstring''' logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way UpperCAmelCase_ : Optional[int] = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words UpperCAmelCase_ : Tuple = dataset.map(_a , batched=_a , num_proc=processing_args.num_proc ) # And compute the embeddings UpperCAmelCase_ : List[str] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_a ) UpperCAmelCase_ : Dict = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) UpperCAmelCase_ : Any = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space UpperCAmelCase_ : List[str] = dataset.map( partial(_a , ctx_encoder=_a , ctx_tokenizer=_a ) , batched=_a , batch_size=processing_args.batch_size , features=_a , ) # And finally save your dataset UpperCAmelCase_ : Union[str, Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(_a ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search UpperCAmelCase_ : Union[str, Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=_a ) # And save the index UpperCAmelCase_ : Optional[Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(_a ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _snake_case : '''simple docstring''' A__ : str = field( default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) A__ : Optional[str] = field( default=__snake_case , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) A__ : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) A__ : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) A__ : Optional[str] = field( default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class _snake_case : '''simple docstring''' A__ : Optional[int] = field( default=__snake_case , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) A__ : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class _snake_case : '''simple docstring''' A__ : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) A__ : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase_ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase_ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
345
0
class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase = "" , UpperCAmelCase = False ): """simple docstring""" _UpperCAmelCase = {} # A node will be a leaf if the tree contains its word _UpperCAmelCase = is_leaf _UpperCAmelCase = prefix def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 0 for q, w in zip(self.prefix , UpperCAmelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" for word in words: self.insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" if self.prefix == word: _UpperCAmelCase = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _UpperCAmelCase = RadixNode(prefix=UpperCAmelCase , is_leaf=UpperCAmelCase ) else: _UpperCAmelCase = self.nodes[word[0]] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _UpperCAmelCase = remaining_prefix _UpperCAmelCase = self.nodes[matching_string[0]] _UpperCAmelCase = RadixNode(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = aux_node if remaining_word == "": _UpperCAmelCase = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.nodes.get(word[0] , UpperCAmelCase ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.nodes.get(word[0] , UpperCAmelCase ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: _UpperCAmelCase = list(self.nodes.values() )[0] _UpperCAmelCase = merging_node.is_leaf self.prefix += merging_node.prefix _UpperCAmelCase = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: _UpperCAmelCase = False # If there is 1 edge, we merge it with its child else: _UpperCAmelCase = list(incoming_node.nodes.values() )[0] _UpperCAmelCase = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _UpperCAmelCase = merging_node.nodes return True def UpperCamelCase ( self , UpperCAmelCase = 0 ): """simple docstring""" if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __A ( )-> bool: """simple docstring""" _UpperCAmelCase = 'banana bananas bandana band apple all beast'.split() _UpperCAmelCase = RadixNode() root.insert_many(__lowerCAmelCase ) assert all(root.find(__lowerCAmelCase ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def __A ( )-> None: """simple docstring""" assert test_trie() def __A ( )-> None: """simple docstring""" _UpperCAmelCase = RadixNode() _UpperCAmelCase = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(__lowerCAmelCase ) print('Words:' , __lowerCAmelCase ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
39
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Dict = AutoencoderKL A__ : Optional[int] = "sample" A__ : Tuple = 1E-2 @property def A__ ( self: List[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = 4 UpperCAmelCase_ : str = 3 UpperCAmelCase_ : Any = (32, 32) UpperCAmelCase_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCamelCase_ ) return {"sample": image} @property def A__ ( self: List[str] ) -> Tuple: return (3, 32, 32) @property def A__ ( self: Optional[Any] ) -> Any: return (3, 32, 32) def A__ ( self: Any ) -> Tuple: UpperCAmelCase_ : List[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } UpperCAmelCase_ : int = self.dummy_input return init_dict, inputs_dict def A__ ( self: Optional[Any] ) -> int: pass def A__ ( self: str ) -> Any: pass @unittest.skipIf(torch_device == """mps""" ,"""Gradient checkpointing skipped on MPS""" ) def A__ ( self: Union[str, Any] ) -> Dict: # enable deterministic behavior for gradient checkpointing UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ : List[Any] = self.model_class(**lowerCamelCase_ ) model.to(lowerCamelCase_ ) assert not model.is_gradient_checkpointing and model.training UpperCAmelCase_ : Optional[Any] = model(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() UpperCAmelCase_ : Any = torch.randn_like(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing UpperCAmelCase_ : str = self.model_class(**lowerCamelCase_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowerCamelCase_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training UpperCAmelCase_ : Optional[int] = model_a(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() UpperCAmelCase_ : Dict = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) UpperCAmelCase_ : Dict = dict(model.named_parameters() ) UpperCAmelCase_ : Union[str, Any] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5e-5 ) ) def A__ ( self: Optional[Any] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : int = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ,output_loading_info=lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) ,0 ) model.to(lowerCamelCase_ ) UpperCAmelCase_ : Dict = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def A__ ( self: Optional[int] ) -> int: UpperCAmelCase_ : Dict = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) UpperCAmelCase_ : Tuple = model.to(lowerCamelCase_ ) model.eval() if torch_device == "mps": UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) else: UpperCAmelCase_ : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : str = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) UpperCAmelCase_ : int = image.to(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Dict = model(lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ,generator=lowerCamelCase_ ).sample UpperCAmelCase_ : Optional[int] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": UpperCAmelCase_ : Tuple = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": UpperCAmelCase_ : List[str] = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: UpperCAmelCase_ : List[str] = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,rtol=1e-2 ) ) @slow class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ) -> Optional[Any]: return F'''gaussian_noise_s={seed}_shape={'_'.join([str(lowerCamelCase_ ) for s in shape] )}.npy''' def A__ ( self: Union[str, Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self: List[str] ,lowerCamelCase_: Optional[int]=0 ,lowerCamelCase_: List[Any]=(4, 3, 512, 512) ,lowerCamelCase_: Optional[Any]=False ) -> Optional[int]: UpperCAmelCase_ : Tuple = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ : Tuple = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCamelCase_ ,lowerCamelCase_ ) ) ).to(lowerCamelCase_ ).to(lowerCamelCase_ ) return image def A__ ( self: List[Any] ,lowerCamelCase_: List[str]="CompVis/stable-diffusion-v1-4" ,lowerCamelCase_: Union[str, Any]=False ) -> Any: UpperCAmelCase_ : Optional[Any] = """fp16""" if fpaa else None UpperCAmelCase_ : str = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ : int = AutoencoderKL.from_pretrained( lowerCamelCase_ ,subfolder="""vae""" ,torch_dtype=lowerCamelCase_ ,revision=lowerCamelCase_ ,) model.to(lowerCamelCase_ ).eval() return model def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any]=0 ) -> Optional[int]: if torch_device == "mps": return torch.manual_seed(lowerCamelCase_ ) return torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def A__ ( self: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Dict ) -> Tuple: UpperCAmelCase_ : List[Any] = self.get_sd_vae_model() UpperCAmelCase_ : int = self.get_sd_image(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ : Tuple = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def A__ ( self: Union[str, Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ) -> Tuple: UpperCAmelCase_ : List[str] = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : Any = self.get_sd_image(lowerCamelCase_ ,fpaa=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : Tuple = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ : Optional[int] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def A__ ( self: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[str] ) -> Dict: UpperCAmelCase_ : Optional[int] = self.get_sd_vae_model() UpperCAmelCase_ : Dict = self.get_sd_image(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : str = model(lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ : Any = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def A__ ( self: Optional[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: str ) -> Optional[Any]: UpperCAmelCase_ : List[str] = self.get_sd_vae_model() UpperCAmelCase_ : Optional[int] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase_ : str = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase_ : Any = sample[-1, -2:, :2, -2:].flatten().cpu() UpperCAmelCase_ : Union[str, Any] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def A__ ( self: str ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : List[str] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase_ : str = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ : str = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="""xformers is not required when using PyTorch 2.0.""" ) def A__ ( self: List[Any] ,lowerCamelCase_: Union[str, Any] ) -> int: UpperCAmelCase_ : Optional[Any] = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ : List[str] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="""xformers is not required when using PyTorch 2.0.""" ) def A__ ( self: Optional[Any] ,lowerCamelCase_: Dict ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = self.get_sd_vae_model() UpperCAmelCase_ : Any = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : Dict = self.get_sd_vae_model() UpperCAmelCase_ : Optional[Any] = self.get_sd_image(lowerCamelCase_ ) UpperCAmelCase_ : str = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : int = model.encode(lowerCamelCase_ ).latent_dist UpperCAmelCase_ : Optional[Any] = dist.sample(generator=lowerCamelCase_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] UpperCAmelCase_ : Tuple = sample[0, -1, -3:, -3:].flatten().cpu() UpperCAmelCase_ : Optional[Any] = torch.tensor(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = 3e-3 if torch_device != """mps""" else 1e-2 assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=lowerCamelCase_ )
345
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __lowercase = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class _A ( _a ): """simple docstring""" UpperCAmelCase : Dict = """facebook/nllb-200-distilled-600M""" UpperCAmelCase : Dict = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) UpperCAmelCase : Any = """translator""" UpperCAmelCase : Optional[int] = AutoTokenizer UpperCAmelCase : str = AutoModelForSeqaSeqLM UpperCAmelCase : List[Any] = LANGUAGE_CODES UpperCAmelCase : Tuple = ["""text""", """text""", """text"""] UpperCAmelCase : List[str] = ["""text"""] def __snake_case ( self : int , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any): if src_lang not in self.lang_to_code: raise ValueError(f'''{src_lang} is not a supported language.''') if tgt_lang not in self.lang_to_code: raise ValueError(f'''{tgt_lang} is not a supported language.''') a : Dict = self.lang_to_code[src_lang] a : Any = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __UpperCAmelCase , return_tensors="pt" , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase) def __snake_case ( self : List[Any] , __UpperCAmelCase : int): return self.model.generate(**__UpperCAmelCase) def __snake_case ( self : int , __UpperCAmelCase : Union[str, Any]): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__UpperCAmelCase)
40
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__snake_case ) class _snake_case ( __snake_case ): '''simple docstring''' A__ : str = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True} ) A__ : ClassVar[Features] = Features({"audio": Audio()} ) A__ : ClassVar[Features] = Features({"transcription": Value("string" )} ) A__ : str = "audio" A__ : str = "transcription" def A__ ( self: int ,lowerCamelCase_: Union[str, Any] ) -> Optional[Any]: if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] ,lowerCamelCase_ ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) UpperCAmelCase_ : Any = copy.deepcopy(self ) UpperCAmelCase_ : Union[str, Any] = self.input_schema.copy() UpperCAmelCase_ : Any = features[self.audio_column] UpperCAmelCase_ : Union[str, Any] = input_schema return task_template @property def A__ ( self: List[str] ) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
345
0
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> bool: if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) lowerCamelCase__ : Any = str(UpperCamelCase ) lowerCamelCase__ : Optional[Any] = """""".join(sorted(UpperCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def SCREAMING_SNAKE_CASE_ (UpperCamelCase = 99 ) -> int: if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) lowerCamelCase__ : Union[str, Any] = 0 lowerCamelCase__ : Tuple = 1 while True: if check_bouncy(UpperCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'{solution(99)}')
41
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = "layoutlmv3" def __init__( self: str ,lowerCamelCase_: Any=50265 ,lowerCamelCase_: int=768 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: List[Any]=3072 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: Any=0.1 ,lowerCamelCase_: Tuple=512 ,lowerCamelCase_: Union[str, Any]=2 ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: List[str]=1e-5 ,lowerCamelCase_: int=1 ,lowerCamelCase_: int=0 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Dict=1024 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=32 ,lowerCamelCase_: Union[str, Any]=128 ,lowerCamelCase_: Tuple=64 ,lowerCamelCase_: Tuple=256 ,lowerCamelCase_: List[str]=True ,lowerCamelCase_: Optional[int]=True ,lowerCamelCase_: Any=True ,lowerCamelCase_: Dict=224 ,lowerCamelCase_: Optional[int]=3 ,lowerCamelCase_: Optional[int]=16 ,lowerCamelCase_: Dict=None ,**lowerCamelCase_: str ,) -> List[Any]: super().__init__( vocab_size=lowerCamelCase_ ,hidden_size=lowerCamelCase_ ,num_hidden_layers=lowerCamelCase_ ,num_attention_heads=lowerCamelCase_ ,intermediate_size=lowerCamelCase_ ,hidden_act=lowerCamelCase_ ,hidden_dropout_prob=lowerCamelCase_ ,attention_probs_dropout_prob=lowerCamelCase_ ,max_position_embeddings=lowerCamelCase_ ,type_vocab_size=lowerCamelCase_ ,initializer_range=lowerCamelCase_ ,layer_norm_eps=lowerCamelCase_ ,pad_token_id=lowerCamelCase_ ,bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,**lowerCamelCase_ ,) UpperCAmelCase_ : List[Any] = max_ad_position_embeddings UpperCAmelCase_ : Optional[int] = coordinate_size UpperCAmelCase_ : Optional[int] = shape_size UpperCAmelCase_ : Optional[Any] = has_relative_attention_bias UpperCAmelCase_ : Optional[int] = rel_pos_bins UpperCAmelCase_ : Union[str, Any] = max_rel_pos UpperCAmelCase_ : Dict = has_spatial_attention_bias UpperCAmelCase_ : Optional[int] = rel_ad_pos_bins UpperCAmelCase_ : Tuple = max_rel_ad_pos UpperCAmelCase_ : Union[str, Any] = text_embed UpperCAmelCase_ : Optional[Any] = visual_embed UpperCAmelCase_ : List[str] = input_size UpperCAmelCase_ : str = num_channels UpperCAmelCase_ : Optional[int] = patch_size UpperCAmelCase_ : Tuple = classifier_dropout class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = version.parse("1.12" ) @property def A__ ( self: Dict ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def A__ ( self: Any ) -> float: return 1e-5 @property def A__ ( self: int ) -> int: return 12 def A__ ( self: List[str] ,lowerCamelCase_: "ProcessorMixin" ,lowerCamelCase_: int = -1 ,lowerCamelCase_: int = -1 ,lowerCamelCase_: bool = False ,lowerCamelCase_: Optional["TensorType"] = None ,lowerCamelCase_: int = 3 ,lowerCamelCase_: int = 40 ,lowerCamelCase_: int = 40 ,) -> Mapping[str, Any]: setattr(processor.image_processor ,"""apply_ocr""" ,lowerCamelCase_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ : List[str] = compute_effective_axis_dimension( lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ : int = processor.tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) UpperCAmelCase_ : int = compute_effective_axis_dimension( lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ : Optional[int] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCAmelCase_ : List[Any] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCAmelCase_ : Any = self._generate_dummy_images(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = dict( processor( lowerCamelCase_ ,text=lowerCamelCase_ ,boxes=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,) ) return inputs
345
0
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=32 , lowerCAmelCase_=2 , lowerCAmelCase_=3 , lowerCAmelCase_=16 , lowerCAmelCase_=[1, 2, 1] , lowerCAmelCase_=[2, 2, 4] , lowerCAmelCase_=2 , lowerCAmelCase_=2.0 , lowerCAmelCase_=True , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.1 , lowerCAmelCase_="gelu" , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-5 , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=10 , lowerCAmelCase_=8 , lowerCAmelCase_=["stage1", "stage2", "stage3"] , lowerCAmelCase_=[1, 2, 3] , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = patch_norm _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = is_training _snake_case = scope _snake_case = use_labels _snake_case = type_sequence_label_size _snake_case = encoder_stride _snake_case = out_features _snake_case = out_indices def lowerCamelCase ( self ): """simple docstring""" _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self ): """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = MaskFormerSwinModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ ) _snake_case = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _snake_case = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = MaskFormerSwinBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(lowerCAmelCase_ ): _snake_case = ['stem'] _snake_case = MaskFormerSwinBackbone(config=lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __lowercase = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} __lowercase = False __lowercase = False __lowercase = False __lowercase = False __lowercase = False def lowerCamelCase ( self ): """simple docstring""" _snake_case = MaskFormerSwinModelTester(self ) _snake_case = ConfigTester(self , config_class=lowerCAmelCase_ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self ): """simple docstring""" return def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase_ ) @unittest.skip('Swin does not use inputs_embeds' ) def lowerCamelCase ( self ): """simple docstring""" pass @unittest.skip('Swin does not support feedforward chunking' ) def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def lowerCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = outputs.hidden_states _snake_case = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) # Swin has a different seq_length _snake_case = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _snake_case = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _snake_case = True self.check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True self.check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = 3 _snake_case = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _snake_case = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _snake_case = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _snake_case = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _snake_case = True self.check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True self.check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def lowerCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowerCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowerCAmelCase_ ): _snake_case = 0 return t def check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_={} ): with torch.no_grad(): _snake_case = model(**lowerCAmelCase_ , return_dict=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = model(**lowerCAmelCase_ , return_dict=lowerCAmelCase_ , **lowerCAmelCase_ ).to_tuple() def recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ): if isinstance(lowerCAmelCase_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowerCAmelCase_ , lowerCAmelCase_ ): recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(lowerCAmelCase_ ) , set_nan_tensor_to_zero(lowerCAmelCase_ ) , atol=1E-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' F' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' F' {torch.isnan(lowerCAmelCase_ ).any()} and `inf`: {torch.isinf(lowerCAmelCase_ )}. Dict has' F' `nan`: {torch.isnan(lowerCAmelCase_ ).any()} and `inf`: {torch.isinf(lowerCAmelCase_ )}.' ) , ) recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ) for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) _snake_case = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , {'output_hidden_states': True} ) _snake_case = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) _snake_case = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , {'output_hidden_states': True} ) @require_torch class __UpperCAmelCase ( unittest.TestCase , _lowerCamelCase ): __lowercase = (MaskFormerSwinBackbone,) if is_torch_available() else () __lowercase = MaskFormerSwinConfig def lowerCamelCase ( self ): """simple docstring""" _snake_case = MaskFormerSwinModelTester(self ) def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: _snake_case = backbone_class(lowerCAmelCase_ ) backbone.to(lowerCAmelCase_ ) backbone.eval() _snake_case = backbone(**lowerCAmelCase_ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , lowerCAmelCase_ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _snake_case = backbone(**lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _snake_case , _snake_case , _snake_case = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _snake_case = backbone(**lowerCAmelCase_ , output_attentions=lowerCAmelCase_ ) self.assertIsNotNone(outputs.attentions )
42
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def lowerCamelCase_ ( _a : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_a , _a ) def lowerCamelCase_ ( _a : Any ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = emb.weight.shape UpperCAmelCase_ : Tuple = nn.Linear(_a , _a , bias=_a ) UpperCAmelCase_ : List[Any] = emb.weight.data return lin_layer def lowerCamelCase_ ( _a : Dict ): '''simple docstring''' UpperCAmelCase_ : int = torch.load(_a , map_location="""cpu""" ) UpperCAmelCase_ : Dict = Namespace(**checkpoint["""cfg"""]["""model"""] ) UpperCAmelCase_ : Optional[int] = checkpoint["""model"""] remove_ignore_keys_(_a ) UpperCAmelCase_ : str = state_dict["""decoder.embed_tokens.weight"""].shape[0] UpperCAmelCase_ : List[str] = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} UpperCAmelCase_ : int = XGLMConfig( vocab_size=_a , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) UpperCAmelCase_ : List[str] = XGLMForCausalLM(_a ) UpperCAmelCase_ : Tuple = model.load_state_dict(_a , strict=_a ) print(_a ) UpperCAmelCase_ : Optional[Any] = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
345
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __lowercase = logging.get_logger(__name__) __lowercase = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Optional[Any] = """marian""" a__ : str = ["""past_key_values"""] a__ : str = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __lowercase=58_101 , __lowercase=None , __lowercase=1_024 , __lowercase=12 , __lowercase=4_096 , __lowercase=16 , __lowercase=12 , __lowercase=4_096 , __lowercase=16 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=True , __lowercase=True , __lowercase="gelu" , __lowercase=1_024 , __lowercase=0.1 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.02 , __lowercase=58_100 , __lowercase=False , __lowercase=58_100 , __lowercase=0 , __lowercase=0 , __lowercase=True , **__lowercase , ) -> Union[str, Any]: __UpperCamelCase :List[Any] = vocab_size __UpperCamelCase :Dict = decoder_vocab_size or vocab_size __UpperCamelCase :Union[str, Any] = max_position_embeddings __UpperCamelCase :List[Any] = d_model __UpperCamelCase :Optional[int] = encoder_ffn_dim __UpperCamelCase :Tuple = encoder_layers __UpperCamelCase :Union[str, Any] = encoder_attention_heads __UpperCamelCase :Dict = decoder_ffn_dim __UpperCamelCase :Union[str, Any] = decoder_layers __UpperCamelCase :Union[str, Any] = decoder_attention_heads __UpperCamelCase :int = dropout __UpperCamelCase :List[str] = attention_dropout __UpperCamelCase :List[Any] = activation_dropout __UpperCamelCase :Tuple = activation_function __UpperCamelCase :Union[str, Any] = init_std __UpperCamelCase :List[str] = encoder_layerdrop __UpperCamelCase :List[Any] = decoder_layerdrop __UpperCamelCase :str = use_cache __UpperCamelCase :Dict = encoder_layers __UpperCamelCase :Dict = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase :Union[str, Any] = share_encoder_decoder_embeddings super().__init__( pad_token_id=__lowercase , eos_token_id=__lowercase , is_encoder_decoder=__lowercase , decoder_start_token_id=__lowercase , forced_eos_token_id=__lowercase , **__lowercase , ) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def UpperCamelCase__ ( self) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase :Dict = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ]) if self.use_past: __UpperCamelCase :int = {0: '''batch'''} __UpperCamelCase :Optional[int] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __UpperCamelCase :Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} __UpperCamelCase :List[str] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__lowercase , direction='''inputs''') elif self.task == "causal-lm": # TODO: figure this case out. __UpperCamelCase :List[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ]) if self.use_past: __UpperCamelCase , __UpperCamelCase :List[str] = self.num_layers for i in range(__lowercase): __UpperCamelCase :int = {0: '''batch''', 2: '''past_sequence + sequence'''} __UpperCamelCase :List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __UpperCamelCase :int = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ]) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def UpperCamelCase__ ( self) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase :List[str] = super().outputs else: __UpperCamelCase :Any = super(__lowercase , self).outputs if self.use_past: __UpperCamelCase , __UpperCamelCase :Dict = self.num_layers for i in range(__lowercase): __UpperCamelCase :List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} __UpperCamelCase :Tuple = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def UpperCamelCase__ ( self , __lowercase , __lowercase = -1 , __lowercase = -1 , __lowercase = False , __lowercase = None , ) -> Mapping[str, Any]: __UpperCamelCase :Dict = self._generate_dummy_inputs_for_encoder_and_decoder( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) # Generate decoder inputs __UpperCamelCase :str = seq_length if not self.use_past else 1 __UpperCamelCase :List[str] = self._generate_dummy_inputs_for_encoder_and_decoder( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) __UpperCamelCase :List[Any] = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} __UpperCamelCase :Union[str, Any] = dict(**__lowercase , **__lowercase) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''') else: import torch __UpperCamelCase , __UpperCamelCase :List[str] = common_inputs['''input_ids'''].shape __UpperCamelCase :Optional[Any] = common_inputs['''decoder_input_ids'''].shape[1] __UpperCamelCase , __UpperCamelCase :Union[str, Any] = self.num_attention_heads __UpperCamelCase :Optional[int] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCamelCase :Optional[int] = decoder_seq_length + 3 __UpperCamelCase :Tuple = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __UpperCamelCase :Optional[Any] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__lowercase , __lowercase)] , dim=1) __UpperCamelCase :Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __UpperCamelCase , __UpperCamelCase :Union[str, Any] = self.num_layers __UpperCamelCase :Dict = min(__lowercase , __lowercase) __UpperCamelCase :Dict = max(__lowercase , __lowercase) - min_num_layers __UpperCamelCase :str = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__lowercase): common_inputs["past_key_values"].append( ( torch.zeros(__lowercase), torch.zeros(__lowercase), torch.zeros(__lowercase), torch.zeros(__lowercase), )) # TODO: test this. __UpperCamelCase :Optional[int] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__lowercase , __lowercase): common_inputs["past_key_values"].append((torch.zeros(__lowercase), torch.zeros(__lowercase))) return common_inputs def UpperCamelCase__ ( self , __lowercase , __lowercase = -1 , __lowercase = -1 , __lowercase = False , __lowercase = None , ) -> Mapping[str, Any]: __UpperCamelCase :int = self._generate_dummy_inputs_for_encoder_and_decoder( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''') else: import torch __UpperCamelCase , __UpperCamelCase :Dict = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __UpperCamelCase :Tuple = seqlen + 2 __UpperCamelCase , __UpperCamelCase :List[str] = self.num_layers __UpperCamelCase , __UpperCamelCase :Tuple = self.num_attention_heads __UpperCamelCase :Optional[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCamelCase :Optional[Any] = common_inputs['''attention_mask'''].dtype __UpperCamelCase :int = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__lowercase , __lowercase , dtype=__lowercase)] , dim=1) __UpperCamelCase :Union[str, Any] = [ (torch.zeros(__lowercase), torch.zeros(__lowercase)) for _ in range(__lowercase) ] return common_inputs def UpperCamelCase__ ( self , __lowercase , __lowercase = -1 , __lowercase = -1 , __lowercase = False , __lowercase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __UpperCamelCase :Optional[Any] = compute_effective_axis_dimension( __lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __UpperCamelCase :Optional[int] = tokenizer.num_special_tokens_to_add(__lowercase) __UpperCamelCase :List[Any] = compute_effective_axis_dimension( __lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowercase) # Generate dummy inputs according to compute batch and sequence __UpperCamelCase :Any = [''' '''.join([tokenizer.unk_token]) * seq_length] * batch_size __UpperCamelCase :Optional[Any] = dict(tokenizer(__lowercase , return_tensors=__lowercase)) return common_inputs def UpperCamelCase__ ( self , __lowercase , __lowercase = -1 , __lowercase = -1 , __lowercase = False , __lowercase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase :Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase) else: __UpperCamelCase :Dict = self._generate_dummy_inputs_for_causal_lm( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase) return common_inputs def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase) -> List[str]: if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase :Optional[int] = super()._flatten_past_key_values_(__lowercase , __lowercase , __lowercase , __lowercase) else: __UpperCamelCase :List[str] = super(__lowercase , self)._flatten_past_key_values_( __lowercase , __lowercase , __lowercase , __lowercase) @property def UpperCamelCase__ ( self) -> float: return 1E-4
43
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : '''simple docstring''' def __init__( self: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any]=13 ,lowerCamelCase_: Optional[int]=32 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: int=16 ,lowerCamelCase_: Optional[Any]=[32, 64, 128] ,lowerCamelCase_: Optional[int]=[1, 2, 1] ,lowerCamelCase_: Union[str, Any]=[2, 2, 4] ,lowerCamelCase_: int=2 ,lowerCamelCase_: List[str]=2.0 ,lowerCamelCase_: List[Any]=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.1 ,lowerCamelCase_: Optional[int]="gelu" ,lowerCamelCase_: Any=False ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=0.0_2 ,lowerCamelCase_: int=1e-5 ,lowerCamelCase_: int=True ,lowerCamelCase_: Tuple=None ,lowerCamelCase_: str=True ,lowerCamelCase_: Dict=10 ,lowerCamelCase_: str=8 ,lowerCamelCase_: Union[str, Any]=["stage1", "stage2"] ,lowerCamelCase_: Optional[Any]=[1, 2] ,) -> str: UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : str = patch_size UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : Dict = embed_dim UpperCAmelCase_ : Dict = hidden_sizes UpperCAmelCase_ : str = depths UpperCAmelCase_ : int = num_heads UpperCAmelCase_ : List[Any] = window_size UpperCAmelCase_ : Union[str, Any] = mlp_ratio UpperCAmelCase_ : int = qkv_bias UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = drop_path_rate UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : List[Any] = use_absolute_embeddings UpperCAmelCase_ : List[Any] = patch_norm UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Optional[Any] = scope UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Optional[int] = encoder_stride UpperCAmelCase_ : Optional[int] = out_features UpperCAmelCase_ : Optional[int] = out_indices def A__ ( self: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : int = None if self.use_labels: UpperCAmelCase_ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Any = self.get_config() return config, pixel_values, labels def A__ ( self: List[Any] ) -> Tuple: return FocalNetConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> List[str]: UpperCAmelCase_ : Optional[int] = FocalNetModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ) UpperCAmelCase_ : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase_ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[int] ) -> List[str]: UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def A__ ( self: Optional[int] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : Any = FocalNetForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : int = 1 UpperCAmelCase_ : List[str] = FocalNetForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ) -> int: UpperCAmelCase_ : List[Any] = self.type_sequence_label_size UpperCAmelCase_ : int = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = config_and_inputs UpperCAmelCase_ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : List[Any] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) A__ : Union[str, Any] = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) A__ : Optional[Any] = False A__ : Any = False A__ : List[str] = False A__ : Any = False A__ : Any = False def A__ ( self: List[str] ) -> Tuple: UpperCAmelCase_ : Dict = FocalNetModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self ,config_class=lowerCamelCase_ ,embed_dim=37 ,has_text_modality=lowerCamelCase_ ) def A__ ( self: List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self: List[str] ) -> Union[str, Any]: return def A__ ( self: str ) -> List[str]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def A__ ( self: Tuple ) -> int: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def A__ ( self: int ) -> int: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def A__ ( self: int ) -> Dict: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def A__ ( self: Optional[Any] ) -> Optional[Any]: pass def A__ ( self: Optional[Any] ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Optional[Any] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) ) def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : str = model_class(lowerCamelCase_ ) UpperCAmelCase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Any = [*signature.parameters.keys()] UpperCAmelCase_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> List[str]: UpperCAmelCase_ : Tuple = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : Any = outputs.hidden_states UpperCAmelCase_ : List[Any] = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # FocalNet has a different seq_length UpperCAmelCase_ : int = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) UpperCAmelCase_ : Union[str, Any] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = reshaped_hidden_states[0].shape UpperCAmelCase_ : List[Any] = ( reshaped_hidden_states[0].view(lowerCamelCase_ ,lowerCamelCase_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def A__ ( self: Any ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : str = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Union[str, Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[str] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Optional[int] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) @slow def A__ ( self: Optional[int] ) -> Optional[Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = FocalNetModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @require_vision @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self: Optional[int] ) -> str: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = self.default_image_processor UpperCAmelCase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCAmelCase_ : Dict = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Dict = model(**lowerCamelCase_ ) # verify the logits UpperCAmelCase_ : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() ,281 ) @require_torch class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : List[Any] = (FocalNetBackbone,) if is_torch_available() else () A__ : int = FocalNetConfig A__ : List[str] = False def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : str = FocalNetModelTester(self )
345
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _a : Dict = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = ['BeitFeatureExtractor'] _a : Dict = ['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = [ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _a : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : '''simple docstring''' def __init__( self: Tuple ,lowerCamelCase_: List[str] ,lowerCamelCase_: int=13 ,lowerCamelCase_: int=32 ,lowerCamelCase_: Optional[int]=2 ,lowerCamelCase_: Any=3 ,lowerCamelCase_: str=16 ,lowerCamelCase_: Optional[Any]=[1, 2, 1] ,lowerCamelCase_: Tuple=[2, 2, 4] ,lowerCamelCase_: int=2 ,lowerCamelCase_: List[Any]=2.0 ,lowerCamelCase_: str=True ,lowerCamelCase_: Optional[int]=0.0 ,lowerCamelCase_: List[Any]=0.0 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: Tuple="gelu" ,lowerCamelCase_: Union[str, Any]=False ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Optional[int]=0.0_2 ,lowerCamelCase_: int=1e-5 ,lowerCamelCase_: Optional[int]=True ,lowerCamelCase_: Union[str, Any]=None ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Optional[int]=10 ,lowerCamelCase_: Tuple=8 ,) -> List[Any]: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : int = image_size UpperCAmelCase_ : Union[str, Any] = patch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Union[str, Any] = depths UpperCAmelCase_ : List[str] = num_heads UpperCAmelCase_ : int = window_size UpperCAmelCase_ : List[str] = mlp_ratio UpperCAmelCase_ : Tuple = qkv_bias UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : str = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = drop_path_rate UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : int = use_absolute_embeddings UpperCAmelCase_ : Any = patch_norm UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Dict = scope UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Optional[Any] = type_sequence_label_size UpperCAmelCase_ : List[str] = encoder_stride def A__ ( self: Any ) -> int: UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : List[Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : str = self.get_config() return config, pixel_values, labels def A__ ( self: List[Any] ) -> Union[str, Any]: return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def A__ ( self: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ) -> str: UpperCAmelCase_ : str = SwinvaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase_ : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self: List[Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: int ) -> int: UpperCAmelCase_ : Any = SwinvaForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : str = 1 UpperCAmelCase_ : Optional[Any] = SwinvaForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self: int ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any] ) -> int: UpperCAmelCase_ : Union[str, Any] = self.type_sequence_label_size UpperCAmelCase_ : int = SwinvaForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def A__ ( self: str ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = config_and_inputs UpperCAmelCase_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Tuple = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) A__ : Optional[Any] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) A__ : List[Any] = False A__ : Tuple = False A__ : int = False A__ : Union[str, Any] = False def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : Any = SwinvaModelTester(self ) UpperCAmelCase_ : str = ConfigTester(self ,config_class=lowerCamelCase_ ,embed_dim=37 ) def A__ ( self: Optional[int] ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self: Any ) -> Dict: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def A__ ( self: int ) -> Dict: pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def A__ ( self: Tuple ) -> List[str]: pass def A__ ( self: str ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(lowerCamelCase_ ) UpperCAmelCase_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : int = [*signature.parameters.keys()] UpperCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Any = True for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : str = True UpperCAmelCase_ : List[Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[Any] = outputs.attentions UpperCAmelCase_ : List[str] = len(self.model_tester.depths ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase_ : str = True UpperCAmelCase_ : Optional[Any] = config.window_size**2 UpperCAmelCase_ : Optional[int] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : List[Any] = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) UpperCAmelCase_ : Optional[Any] = len(lowerCamelCase_ ) # Check attention is always last and order is fine UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Tuple = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) if hasattr(self.model_tester ,"""num_hidden_states_types""" ): UpperCAmelCase_ : List[Any] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase_ : List[str] = 2 self.assertEqual(out_len + added_hidden_states ,len(lowerCamelCase_ ) ) UpperCAmelCase_ : Any = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def A__ ( self: List[str] ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Optional[int] ) -> List[Any]: UpperCAmelCase_ : str = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : int = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : List[str] = outputs.hidden_states UpperCAmelCase_ : Optional[Any] = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # Swinv2 has a different seq_length UpperCAmelCase_ : Optional[Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) UpperCAmelCase_ : Optional[int] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = reshaped_hidden_states[0].shape UpperCAmelCase_ : Optional[Any] = ( reshaped_hidden_states[0].view(lowerCamelCase_ ,lowerCamelCase_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def A__ ( self: Any ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase_ : Any = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : str = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[str] ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Union[str, Any] = 3 UpperCAmelCase_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ : List[str] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ : Optional[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : List[str] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) def A__ ( self: Optional[int] ) -> str: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def A__ ( self: str ) -> Tuple: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Dict = SwinvaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def A__ ( self: Any ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @require_vision @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self: Dict ) -> Optional[Any]: return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def A__ ( self: str ) -> List[Any]: UpperCAmelCase_ : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( lowerCamelCase_ ) UpperCAmelCase_ : Any = self.default_image_processor UpperCAmelCase_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCAmelCase_ : Optional[int] = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(**lowerCamelCase_ ) # verify the logits UpperCAmelCase_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Any = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) )
345
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] ) -> Optional[Any]: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str]=0 ) -> str: return sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[column] ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str]=float('''inf''' ) ) -> Any: for i in range(points_counts - 1 ): for j in range(i + 1 , lowerCAmelCase__ ): __a = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __a = current_dis return min_dis def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=float('''inf''' ) ) -> Union[str, Any]: for i in range(min(6 , points_counts - 1 ) , lowerCAmelCase__ ): for j in range(max(0 , i - 6 ) , lowerCAmelCase__ ): __a = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __a = current_dis return min_dis def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] ) -> List[str]: # base case if points_counts <= 3: return dis_between_closest_pair(lowerCAmelCase__ , lowerCAmelCase__ ) # recursion __a = points_counts // 2 __a = closest_pair_of_points_sqr( lowerCAmelCase__ , points_sorted_on_y[:mid] , lowerCAmelCase__ ) __a = closest_pair_of_points_sqr( lowerCAmelCase__ , points_sorted_on_y[mid:] , points_counts - mid ) __a = min(lowerCAmelCase__ , lowerCAmelCase__ ) __a = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(lowerCAmelCase__ ) __a = dis_between_closest_in_strip( lowerCAmelCase__ , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) return min(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ) -> List[Any]: __a = column_based_sort(lowerCAmelCase__ , column=0 ) __a = column_based_sort(lowerCAmelCase__ , column=1 ) return ( closest_pair_of_points_sqr( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) ** 0.5 if __name__ == "__main__": lowercase_ = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
45
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED UpperCamelCase_ = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } UpperCamelCase_ = { '''allenai/led-base-16384''': 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : int = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCAmelCase_ : Dict = bs[:] UpperCAmelCase_ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(_a ) cs.append(2**8 + n ) n += 1 UpperCAmelCase_ : Any = [chr(_a ) for n in cs] return dict(zip(_a , _a ) ) def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = set() UpperCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ : Optional[int] = char return pairs class _snake_case ( __snake_case ): '''simple docstring''' A__ : str = VOCAB_FILES_NAMES A__ : List[str] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self: Union[str, Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any]="replace" ,lowerCamelCase_: Optional[Any]="<s>" ,lowerCamelCase_: List[Any]="</s>" ,lowerCamelCase_: List[str]="</s>" ,lowerCamelCase_: int="<s>" ,lowerCamelCase_: int="<unk>" ,lowerCamelCase_: str="<pad>" ,lowerCamelCase_: Optional[Any]="<mask>" ,lowerCamelCase_: List[str]=False ,**lowerCamelCase_: Tuple ,) -> Any: UpperCAmelCase_ : Union[str, Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else bos_token UpperCAmelCase_ : int = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else eos_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else sep_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else cls_token UpperCAmelCase_ : Optional[Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else unk_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : str = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ ,bos_token=lowerCamelCase_ ,eos_token=lowerCamelCase_ ,unk_token=lowerCamelCase_ ,sep_token=lowerCamelCase_ ,cls_token=lowerCamelCase_ ,pad_token=lowerCamelCase_ ,mask_token=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ,**lowerCamelCase_ ,) with open(lowerCamelCase_ ,encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase_ : Union[str, Any] = json.load(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ : Any = errors # how to handle errors in decoding UpperCAmelCase_ : int = bytes_to_unicode() UpperCAmelCase_ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ ,encoding="""utf-8""" ) as merges_handle: UpperCAmelCase_ : Any = merges_handle.read().split("""\n""" )[1:-1] UpperCAmelCase_ : int = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase_ : int = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self: List[str] ) -> List[str]: return len(self.encoder ) def A__ ( self: Any ) -> Union[str, Any]: return dict(self.encoder ,**self.added_tokens_encoder ) def A__ ( self: Tuple ,lowerCamelCase_: Dict ) -> Optional[Any]: if token in self.cache: return self.cache[token] UpperCAmelCase_ : Union[str, Any] = tuple(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: UpperCAmelCase_ : Union[str, Any] = min(lowerCamelCase_ ,key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ , UpperCAmelCase_ : Any = bigram UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : List[str] = 0 while i < len(lowerCamelCase_ ): try: UpperCAmelCase_ : str = word.index(lowerCamelCase_ ,lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase_ : Union[str, Any] = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ : List[str] = tuple(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = new_word if len(lowerCamelCase_ ) == 1: break else: UpperCAmelCase_ : List[str] = get_pairs(lowerCamelCase_ ) UpperCAmelCase_ : int = """ """.join(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = word return word def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tuple ) -> List[str]: UpperCAmelCase_ : str = [] for token in re.findall(self.pat ,lowerCamelCase_ ): UpperCAmelCase_ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) ) return bpe_tokens def A__ ( self: List[Any] ,lowerCamelCase_: Optional[Any] ) -> Optional[int]: return self.encoder.get(lowerCamelCase_ ,self.encoder.get(self.unk_token ) ) def A__ ( self: List[str] ,lowerCamelCase_: str ) -> Optional[Any]: return self.decoder.get(lowerCamelCase_ ) def A__ ( self: List[str] ,lowerCamelCase_: List[str] ) -> List[Any]: UpperCAmelCase_ : str = """""".join(lowerCamelCase_ ) UpperCAmelCase_ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors ) return text def A__ ( self: Optional[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : List[Any] = os.path.join( lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_ : List[str] = os.path.join( lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCamelCase_ ,ensure_ascii=lowerCamelCase_ ) + """\n""" ) UpperCAmelCase_ : str = 0 with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) UpperCAmelCase_ : Tuple = token_index writer.write(""" """.join(lowerCamelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file def A__ ( self: str ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] UpperCAmelCase_ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self: Union[str, Any] ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ,lowerCamelCase_: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ ,token_ids_a=lowerCamelCase_ ,already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def A__ ( self: str ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ) -> List[int]: UpperCAmelCase_ : Optional[Any] = [self.sep_token_id] UpperCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: str=False ,**lowerCamelCase_: List[str] ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = kwargs.pop("""add_prefix_space""" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): UpperCAmelCase_ : Dict = """ """ + text return (text, kwargs) def A__ ( self: List[str] ,lowerCamelCase_: Union[Dict[str, EncodedInput], BatchEncoding] ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: Optional[bool] = None ,) -> dict: UpperCAmelCase_ : Optional[int] = super()._pad( encoded_inputs=lowerCamelCase_ ,max_length=lowerCamelCase_ ,padding_strategy=lowerCamelCase_ ,pad_to_multiple_of=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,) # Load from model defaults if return_attention_mask is None: UpperCAmelCase_ : str = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase_ : str = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase_ : List[Any] = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ ) if needs_to_be_padded: UpperCAmelCase_ : Dict = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase_ : str = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase_ : List[str] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
345
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> int: lowerCAmelCase = tempfile.mkdtemp() # fmt: off lowerCAmelCase = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on lowerCAmelCase = dict(zip(lowercase , range(len(lowercase ) ) ) ) lowerCAmelCase = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] lowerCAmelCase = {"""unk_token""": """<unk>"""} lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowercase ) ) lowerCAmelCase = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCAmelCase = os.path.join(self.tmpdirname , lowercase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowercase , lowercase ) def _snake_case ( self , **lowercase ) -> Dict: return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase ) def _snake_case ( self , **lowercase ) -> List[str]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase ) def _snake_case ( self , **lowercase ) -> int: return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase ) def _snake_case ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase = [Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = self.get_image_processor() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase ) lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase ) self.assertIsInstance(processor_fast.tokenizer , lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase ) self.assertIsInstance(processor_fast.image_processor , lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase = self.get_image_processor(do_normalize=lowercase , padding_value=1.0 ) lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase ) def _snake_case ( self ) -> int: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(lowercase , return_tensors="""np""" ) lowerCAmelCase = processor(images=lowercase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = processor(text=lowercase ) lowerCAmelCase = tokenizer(lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def _snake_case ( self ) -> int: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.batch_decode(lowercase ) lowerCAmelCase = tokenizer.batch_decode(lowercase ) self.assertListEqual(lowercase , lowercase ) def _snake_case ( self ) -> str: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
46
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Union[str, Any] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self: List[str] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : Optional[Any] = (32, 32) UpperCAmelCase_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def A__ ( self: List[Any] ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : int = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def A__ ( self: str ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def A__ ( self: Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase_ : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(lowerCamelCase_ ) @property def A__ ( self: Tuple ) -> Tuple: def extract(*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: str ): class _snake_case : '''simple docstring''' def __init__( self: List[Any] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = torch.ones([0] ) def A__ ( self: List[Any] ,lowerCamelCase_: str ) -> int: self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def A__ ( self: Union[str, Any] ) -> Tuple: UpperCAmelCase_ : int = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : int = self.dummy_cond_unet UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule="""scaled_linear""" ,clip_sample=lowerCamelCase_ ,set_alpha_to_one=lowerCamelCase_ ,) UpperCAmelCase_ : str = self.dummy_vae UpperCAmelCase_ : List[str] = self.dummy_text_encoder UpperCAmelCase_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : str = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : int = sd_pipe([prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) UpperCAmelCase_ : List[Any] = output.images UpperCAmelCase_ : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : Dict = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=lowerCamelCase_ ,)[0] UpperCAmelCase_ : int = image[0, -3:, -3:, -1] UpperCAmelCase_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Optional[Any] ) -> Any: UpperCAmelCase_ : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Dict = self.dummy_cond_unet UpperCAmelCase_ : List[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCAmelCase_ : str = self.dummy_vae UpperCAmelCase_ : Union[str, Any] = self.dummy_text_encoder UpperCAmelCase_ : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Any = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : int = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = sd_pipe([prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) UpperCAmelCase_ : str = output.images UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : int = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=lowerCamelCase_ ,)[0] UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: str ) -> Dict: UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ ,lowerCamelCase_ ) assert isinstance(pipe.scheduler ,lowerCamelCase_ ) assert pipe.safety_checker is None UpperCAmelCase_ : List[Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase_ : Optional[int] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : Tuple = self.dummy_cond_unet UpperCAmelCase_ : Dict = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = self.dummy_vae UpperCAmelCase_ : List[str] = self.dummy_text_encoder UpperCAmelCase_ : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 UpperCAmelCase_ : Optional[Any] = unet.half() UpperCAmelCase_ : Optional[int] = vae.half() UpperCAmelCase_ : int = bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Any = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : List[Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : Optional[int] = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self: List[str] ) -> List[Any]: UpperCAmelCase_ : Tuple = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : str = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) UpperCAmelCase_ : Optional[int] = 4003660346 UpperCAmelCase_ : int = 7 # without safety guidance (sld_guidance_scale = 0) UpperCAmelCase_ : Dict = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Dict = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Any = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : str = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Optional[int] ) -> Any: UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=lowerCamelCase_ ) UpperCAmelCase_ : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" UpperCAmelCase_ : List[Any] = 2734971755 UpperCAmelCase_ : Optional[Any] = 7 UpperCAmelCase_ : int = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Dict = output.images UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 UpperCAmelCase_ : Any = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : Dict = output.images UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Union[str, Any] ) -> int: UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) UpperCAmelCase_ : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) UpperCAmelCase_ : Optional[Any] = 1044355234 UpperCAmelCase_ : List[str] = 12 UpperCAmelCase_ : List[Any] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Any = output.images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 UpperCAmelCase_ : Optional[int] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : List[str] = output.images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] UpperCAmelCase_ : Any = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
345
0
'''simple docstring''' import cva import numpy as np class A__ : def __init__( self : Tuple , _a : float , _a : int ) -> List[Any]: '''simple docstring''' if k in (0.04, 0.06): _SCREAMING_SNAKE_CASE =k _SCREAMING_SNAKE_CASE =window_size else: raise ValueError('invalid k value' ) def __str__( self : Any ) -> str: '''simple docstring''' return str(self.k ) def A ( self : Optional[int] , _a : str ) -> tuple[cva.Mat, list[list[int]]]: '''simple docstring''' _SCREAMING_SNAKE_CASE =cva.imread(_a , 0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =img.shape _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =img.copy() _SCREAMING_SNAKE_CASE =cva.cvtColor(_a , cva.COLOR_GRAY2RGB ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =np.gradient(_a ) _SCREAMING_SNAKE_CASE =dx**2 _SCREAMING_SNAKE_CASE =dy**2 _SCREAMING_SNAKE_CASE =dx * dy _SCREAMING_SNAKE_CASE =0.04 _SCREAMING_SNAKE_CASE =self.window_size // 2 for y in range(_a , h - offset ): for x in range(_a , w - offset ): _SCREAMING_SNAKE_CASE =ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _SCREAMING_SNAKE_CASE =iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _SCREAMING_SNAKE_CASE =ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _SCREAMING_SNAKE_CASE =(wxx * wyy) - (wxy**2) _SCREAMING_SNAKE_CASE =wxx + wyy _SCREAMING_SNAKE_CASE =det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase : str = HarrisCorner(0.0_4, 3) lowerCamelCase , lowerCamelCase : Union[str, Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
47
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _snake_case : '''simple docstring''' def __init__( self: Optional[int] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Tuple=13 ,lowerCamelCase_: int=7 ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Dict=True ,lowerCamelCase_: str=True ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: int=99 ,lowerCamelCase_: List[str]=64 ,lowerCamelCase_: Tuple=32 ,lowerCamelCase_: List[str]=5 ,lowerCamelCase_: str=4 ,lowerCamelCase_: str=37 ,lowerCamelCase_: Union[str, Any]="gelu" ,lowerCamelCase_: Union[str, Any]=0.1 ,lowerCamelCase_: str=0.1 ,lowerCamelCase_: List[str]=512 ,lowerCamelCase_: Dict=16 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: List[str]=0.0_2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: Union[str, Any]=4 ,lowerCamelCase_: str=None ,) -> List[str]: UpperCAmelCase_ : Any = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : Dict = use_input_mask UpperCAmelCase_ : Any = use_token_type_ids UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : List[str] = embedding_size UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : Any = type_sequence_label_size UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Optional[int] = num_labels UpperCAmelCase_ : Optional[int] = num_choices UpperCAmelCase_ : List[str] = scope def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : List[str] = None if self.use_input_mask: UpperCAmelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Dict = None if self.use_token_type_ids: UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : int = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase_ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self: Any ) -> Dict: return MobileBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase_ ,initializer_range=self.initializer_range ,) def A__ ( self: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> int: UpperCAmelCase_ : Any = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def A__ ( self: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Dict ) -> int: UpperCAmelCase_ : Union[str, Any] = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self: str ,lowerCamelCase_: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: int ) -> int: UpperCAmelCase_ : List[Any] = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def A__ ( self: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> Optional[Any]: UpperCAmelCase_ : Tuple = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,next_sentence_label=lowerCamelCase_ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def A__ ( self: Any ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,start_positions=lowerCamelCase_ ,end_positions=lowerCamelCase_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def A__ ( self: List[str] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Any ) -> str: UpperCAmelCase_ : Optional[Any] = self.num_labels UpperCAmelCase_ : Union[str, Any] = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ) -> Any: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self: Tuple ,lowerCamelCase_: str ,lowerCamelCase_: int ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = self.num_choices UpperCAmelCase_ : Tuple = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Dict = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : str = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Optional[int] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def A__ ( self: List[str] ) -> str: UpperCAmelCase_ : str = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) A__ : List[str] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) A__ : List[str] = True def A__ ( self: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: int=False ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = super()._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ,return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): UpperCAmelCase_ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase_ ) return inputs_dict def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : List[str] = MobileBertModelTester(self ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self ,config_class=lowerCamelCase_ ,hidden_size=37 ) def A__ ( self: Optional[Any] ) -> List[Any]: self.config_tester.run_common_tests() def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Tuple: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _a : Union[str, Any] ): '''simple docstring''' return torch.tensor( _a , dtype=torch.long , device=_a , ) UpperCamelCase_ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self: List[Any] ) -> str: UpperCAmelCase_ : Any = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : str = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ )[0] UpperCAmelCase_ : Union[str, Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = torch.tensor( [ [ [-2.473_6526e07, 8.269_1656e04, 1.652_1838e05], [-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00], [2.604_7359e00, 1.567_7652e00, -1.732_4188e-01], ] ] ,device=lowerCamelCase_ ,) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
345
0
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder SCREAMING_SNAKE_CASE__ : Dict = 'base_with_context' def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) ) lowerCamelCase : List[str] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) ,requires_grad=_SCREAMING_SNAKE_CASE ) for lyr_num, lyr in enumerate(model.encoders ): lowerCamelCase : List[str] = weights[f'''layers_{lyr_num}'''] lowerCamelCase : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) lowerCamelCase : Dict = ly_weight["attention"] lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[str]: lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) ) lowerCamelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) ,requires_grad=_SCREAMING_SNAKE_CASE ) for lyr_num, lyr in enumerate(model.encoders ): lowerCamelCase : Optional[Any] = weights[f'''layers_{lyr_num}'''] lowerCamelCase : Union[str, Any] = ly_weight["attention"] lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) lowerCamelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) lowerCamelCase : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) lowerCamelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) lowerCamelCase : str = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) ) lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) ) lowerCamelCase : List[Any] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) ,requires_grad=_SCREAMING_SNAKE_CASE ) lowerCamelCase : List[Any] = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowerCamelCase : int = weights[f'''layers_{lyr_num}'''] lowerCamelCase : Optional[int] = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) ) lowerCamelCase : Any = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) ) lowerCamelCase : Optional[Any] = ly_weight["self_attention"] lowerCamelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) lowerCamelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) lowerCamelCase : str = ly_weight["MultiHeadDotProductAttention_0"] lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) lowerCamelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) lowerCamelCase : Any = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) ) lowerCamelCase : str = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) lowerCamelCase : str = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) ) lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) lowerCamelCase : str = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) ) lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) ) return model def A ( _SCREAMING_SNAKE_CASE ) -> int: lowerCamelCase : str = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowerCamelCase : Union[str, Any] = jnp.tree_util.tree_map(onp.array ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : Union[str, Any] = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] lowerCamelCase : Tuple = os.path.join(args.checkpoint_path ,".." ,"config.gin" ) lowerCamelCase : Optional[Any] = inference.parse_training_gin_file(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : str = inference.InferenceModel(args.checkpoint_path ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : Optional[int] = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ,variance_type="fixed_large" ) lowerCamelCase : Dict = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"] ,vocab_size=synth_model.model.module.config.vocab_size ,d_model=synth_model.model.module.config.emb_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,num_layers=synth_model.model.module.config.num_encoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,feed_forward_proj="gated-gelu" ,) lowerCamelCase : List[str] = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims ,targets_context_length=synth_model.sequence_length["targets_context"] ,d_model=synth_model.model.module.config.emb_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,num_layers=synth_model.model.module.config.num_encoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,feed_forward_proj="gated-gelu" ,) lowerCamelCase : Optional[int] = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims ,targets_length=synth_model.sequence_length["targets_context"] ,max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time ,d_model=synth_model.model.module.config.emb_dim ,num_layers=synth_model.model.module.config.num_decoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,) lowerCamelCase : List[str] = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : Union[str, Any] = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : Optional[Any] = load_decoder(ta_checkpoint["target"]["decoder"] ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : Any = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" ) lowerCamelCase : List[Any] = SpectrogramDiffusionPipeline( notes_encoder=_SCREAMING_SNAKE_CASE ,continuous_encoder=_SCREAMING_SNAKE_CASE ,decoder=_SCREAMING_SNAKE_CASE ,scheduler=_SCREAMING_SNAKE_CASE ,melgan=_SCREAMING_SNAKE_CASE ,) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : List[str] = argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=f'''{MODEL}/checkpoint_500000''', type=str, required=False, help='Path to the original jax model checkpoint.', ) SCREAMING_SNAKE_CASE__ : int = parser.parse_args() main(args)
48
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: str ) -> int: UpperCAmelCase_ : List[Any] = """ylacombe/bark-small""" UpperCAmelCase_ : Tuple = tempfile.mkdtemp() UpperCAmelCase_ : Union[str, Any] = """en_speaker_1""" UpperCAmelCase_ : Optional[Any] = """This is a test string""" UpperCAmelCase_ : int = """speaker_embeddings_path.json""" UpperCAmelCase_ : Any = """speaker_embeddings""" def A__ ( self: Tuple ,**lowerCamelCase_: List[str] ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint ,**lowerCamelCase_ ) def A__ ( self: str ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def A__ ( self: List[Any] ) -> int: UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = BarkProcessor(tokenizer=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) @slow def A__ ( self: List[Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) processor.save_pretrained( self.tmpdirname ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,speaker_embeddings_directory=self.speaker_embeddings_directory ,) UpperCAmelCase_ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname ,self.speaker_embeddings_dict_path ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : Any = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) UpperCAmelCase_ : Optional[int] = 35 UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : Dict = 8 UpperCAmelCase_ : Optional[int] = { """semantic_prompt""": np.ones(lowerCamelCase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : str = processor(text=self.input_string ,voice_preset=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,"""file.npz""" ) np.savez(lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string ,voice_preset=lowerCamelCase_ ) UpperCAmelCase_ : int = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Union[str, Any] = processor(text=self.input_string ,voice_preset=self.voice_preset ) def A__ ( self: Dict ) -> Tuple: UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Dict = BarkProcessor(tokenizer=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string ) UpperCAmelCase_ : str = tokenizer( self.input_string ,padding="""max_length""" ,max_length=256 ,add_special_tokens=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,return_token_type_ids=lowerCamelCase_ ,) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key].squeeze().tolist() )
345
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class _A ( unittest.TestCase ): def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int=7 , __SCREAMING_SNAKE_CASE : Optional[int]=3 , __SCREAMING_SNAKE_CASE : Optional[int]=18 , __SCREAMING_SNAKE_CASE : str=30 , __SCREAMING_SNAKE_CASE : List[str]=400 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=32 , __SCREAMING_SNAKE_CASE : Optional[int]=True , ): '''simple docstring''' __a = parent __a = batch_size __a = num_channels __a = image_size __a = min_resolution __a = max_resolution __a = do_resize __a = size_divisor __a = do_rescale def _lowerCamelCase ( self : Dict): '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class _A ( __UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ : Tuple = GLPNImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : str): '''simple docstring''' __a = GLPNImageProcessingTester(self) @property def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''')) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size_divisor''')) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''resample''')) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_rescale''')) def _lowerCamelCase ( self : Tuple): '''simple docstring''' pass def _lowerCamelCase ( self : str): '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict) # create random PIL images __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image) # Test not batched input (GLPNImageProcessor doesn't support batching) __a = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray) # Test not batched input (GLPNImageProcessor doesn't support batching) __a = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor) # Test not batched input (GLPNImageProcessor doesn't support batching) __a = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0)
49
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Any: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : str = -1 UpperCAmelCase_ : Dict = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase_ : Optional[int] = cs.out[:-1] self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: Dict ) -> Optional[Any]: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = -1 UpperCAmelCase_ : List[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : Dict = tokenizer.decode(greedy_ids[0] ) UpperCAmelCase_ : str = TextIteratorStreamer(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} UpperCAmelCase_ : str = Thread(target=model.generate ,kwargs=lowerCamelCase_ ) thread.start() UpperCAmelCase_ : int = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[Any] ) -> Dict: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = -1 UpperCAmelCase_ : Tuple = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Dict = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : str = greedy_ids[:, input_ids.shape[1] :] UpperCAmelCase_ : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ ,skip_prompt=lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase_ : List[str] = cs.out[:-1] self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: str ) -> str: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained("""distilgpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Any = -1 UpperCAmelCase_ : Union[str, Any] = torch.ones((1, 5) ,device=lowerCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: UpperCAmelCase_ : Union[str, Any] = TextStreamer(lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=1 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token UpperCAmelCase_ : List[str] = cs.out[:-1] # Remove the final "\n" UpperCAmelCase_ : Dict = tokenizer(lowerCamelCase_ ,return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape ,(1, 1) ) def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Any = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = -1 UpperCAmelCase_ : Optional[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = TextIteratorStreamer(lowerCamelCase_ ,timeout=0.0_0_1 ) UpperCAmelCase_ : Any = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} UpperCAmelCase_ : Dict = Thread(target=model.generate ,kwargs=lowerCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCamelCase_ ): UpperCAmelCase_ : Union[str, Any] = """""" for new_text in streamer: streamer_text += new_text
345
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 class lowerCAmelCase ( nn.Module ): def __init__( self : Tuple , UpperCAmelCase : Dict=3 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Optional[Any]=("DownEncoderBlock2D",) , UpperCAmelCase : List[str]=(64,) , UpperCAmelCase : Any=2 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : List[str]="silu" , UpperCAmelCase : Tuple=True , ) -> Tuple: super().__init__() lowerCamelCase__ : Optional[Any] = layers_per_block lowerCamelCase__ : Dict = torch.nn.Convad( UpperCAmelCase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : Union[str, Any] = nn.ModuleList([] ) # down lowerCamelCase__ : Tuple = block_out_channels[0] for i, down_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : List[Any] = output_channel lowerCamelCase__ : Dict = block_out_channels[i] lowerCamelCase__ : int = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : int = get_down_block( UpperCAmelCase , num_layers=self.layers_per_block , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCAmelCase , resnet_groups=UpperCAmelCase , attention_head_dim=UpperCAmelCase , temb_channels=UpperCAmelCase , ) self.down_blocks.append(UpperCAmelCase ) # mid lowerCamelCase__ : Tuple = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCAmelCase , temb_channels=UpperCAmelCase , ) # out lowerCamelCase__ : Optional[Any] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCAmelCase , eps=1e-6 ) lowerCamelCase__ : List[Any] = nn.SiLU() lowerCamelCase__ : List[str] = 2 * out_channels if double_z else out_channels lowerCamelCase__ : Any = nn.Convad(block_out_channels[-1] , UpperCAmelCase , 3 , padding=1 ) lowerCamelCase__ : List[Any] = False def A_ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Union[str, Any]: lowerCamelCase__ : Dict = x lowerCamelCase__ : Dict = self.conv_in(UpperCAmelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCAmelCase : Dict ): def custom_forward(*UpperCAmelCase : Any ): return module(*UpperCAmelCase ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: lowerCamelCase__ : Optional[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCAmelCase ) , UpperCAmelCase , use_reentrant=UpperCAmelCase ) # middle lowerCamelCase__ : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase , use_reentrant=UpperCAmelCase ) else: for down_block in self.down_blocks: lowerCamelCase__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCAmelCase ) , UpperCAmelCase ) # middle lowerCamelCase__ : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCAmelCase ) else: # down for down_block in self.down_blocks: lowerCamelCase__ : Optional[Any] = down_block(UpperCAmelCase ) # middle lowerCamelCase__ : List[str] = self.mid_block(UpperCAmelCase ) # post-process lowerCamelCase__ : str = self.conv_norm_out(UpperCAmelCase ) lowerCamelCase__ : List[Any] = self.conv_act(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = self.conv_out(UpperCAmelCase ) return sample class lowerCAmelCase ( nn.Module ): def __init__( self : Any , UpperCAmelCase : Optional[int]=3 , UpperCAmelCase : List[Any]=3 , UpperCAmelCase : int=("UpDecoderBlock2D",) , UpperCAmelCase : Optional[Any]=(64,) , UpperCAmelCase : str=2 , UpperCAmelCase : Union[str, Any]=32 , UpperCAmelCase : int="silu" , UpperCAmelCase : List[str]="group" , ) -> Any: super().__init__() lowerCamelCase__ : List[str] = layers_per_block lowerCamelCase__ : Optional[Any] = nn.Convad( UpperCAmelCase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) lowerCamelCase__ : Dict = None lowerCamelCase__ : List[str] = nn.ModuleList([] ) lowerCamelCase__ : Dict = in_channels if norm_type == 'spatial' else None # mid lowerCamelCase__ : List[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCAmelCase , temb_channels=UpperCAmelCase , ) # up lowerCamelCase__ : Tuple = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Dict = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Dict = output_channel lowerCamelCase__ : List[Any] = reversed_block_out_channels[i] lowerCamelCase__ : Union[str, Any] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Union[str, Any] = get_up_block( UpperCAmelCase , num_layers=self.layers_per_block + 1 , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , prev_output_channel=UpperCAmelCase , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCAmelCase , resnet_groups=UpperCAmelCase , attention_head_dim=UpperCAmelCase , temb_channels=UpperCAmelCase , resnet_time_scale_shift=UpperCAmelCase , ) self.up_blocks.append(UpperCAmelCase ) lowerCamelCase__ : str = output_channel # out if norm_type == "spatial": lowerCamelCase__ : Any = SpatialNorm(block_out_channels[0] , UpperCAmelCase ) else: lowerCamelCase__ : Optional[Any] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCAmelCase , eps=1e-6 ) lowerCamelCase__ : Tuple = nn.SiLU() lowerCamelCase__ : Union[str, Any] = nn.Convad(block_out_channels[0] , UpperCAmelCase , 3 , padding=1 ) lowerCamelCase__ : Dict = False def A_ ( self : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Any=None ) -> List[str]: lowerCamelCase__ : Any = z lowerCamelCase__ : Union[str, Any] = self.conv_in(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCAmelCase : Any ): def custom_forward(*UpperCAmelCase : Any ): return module(*UpperCAmelCase ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle lowerCamelCase__ : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase , UpperCAmelCase , use_reentrant=UpperCAmelCase ) lowerCamelCase__ : Tuple = sample.to(UpperCAmelCase ) # up for up_block in self.up_blocks: lowerCamelCase__ : str = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase , use_reentrant=UpperCAmelCase ) else: # middle lowerCamelCase__ : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Dict = sample.to(UpperCAmelCase ) # up for up_block in self.up_blocks: lowerCamelCase__ : Tuple = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase ) else: # middle lowerCamelCase__ : Any = self.mid_block(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[int] = sample.to(UpperCAmelCase ) # up for up_block in self.up_blocks: lowerCamelCase__ : List[Any] = up_block(UpperCAmelCase , UpperCAmelCase ) # post-process if latent_embeds is None: lowerCamelCase__ : str = self.conv_norm_out(UpperCAmelCase ) else: lowerCamelCase__ : Optional[Any] = self.conv_norm_out(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : List[str] = self.conv_act(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.conv_out(UpperCAmelCase ) return sample class lowerCAmelCase ( nn.Module ): def __init__( self : Dict , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=None , UpperCAmelCase : Optional[Any]="random" , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : List[Any]=True ) -> Optional[int]: super().__init__() lowerCamelCase__ : int = n_e lowerCamelCase__ : Any = vq_embed_dim lowerCamelCase__ : Optional[int] = beta lowerCamelCase__ : Optional[Any] = legacy lowerCamelCase__ : Any = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) lowerCamelCase__ : Any = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) lowerCamelCase__ : str = self.used.shape[0] lowerCamelCase__ : Any = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": lowerCamelCase__ : List[Any] = self.re_embed lowerCamelCase__ : List[Any] = self.re_embed + 1 print( F"""Remapping {self.n_e} indices to {self.re_embed} indices. """ F"""Using {self.unknown_index} for unknown indices.""" ) else: lowerCamelCase__ : List[Any] = n_e lowerCamelCase__ : Optional[Any] = sane_index_shape def A_ ( self : Union[str, Any] , UpperCAmelCase : Any ) -> Dict: lowerCamelCase__ : Any = inds.shape assert len(UpperCAmelCase ) > 1 lowerCamelCase__ : str = inds.reshape(ishape[0] , -1 ) lowerCamelCase__ : str = self.used.to(UpperCAmelCase ) lowerCamelCase__ : Dict = (inds[:, :, None] == used[None, None, ...]).long() lowerCamelCase__ : Optional[int] = match.argmax(-1 ) lowerCamelCase__ : Dict = match.sum(2 ) < 1 if self.unknown_index == "random": lowerCamelCase__ : Optional[int] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: lowerCamelCase__ : int = self.unknown_index return new.reshape(UpperCAmelCase ) def A_ ( self : List[str] , UpperCAmelCase : Tuple ) -> Optional[int]: lowerCamelCase__ : List[Any] = inds.shape assert len(UpperCAmelCase ) > 1 lowerCamelCase__ : List[Any] = inds.reshape(ishape[0] , -1 ) lowerCamelCase__ : str = self.used.to(UpperCAmelCase ) if self.re_embed > self.used.shape[0]: # extra token lowerCamelCase__ : Any = 0 # simply set to zero lowerCamelCase__ : Any = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCAmelCase ) return back.reshape(UpperCAmelCase ) def A_ ( self : Tuple , UpperCAmelCase : Union[str, Any] ) -> Optional[int]: # reshape z -> (batch, height, width, channel) and flatten lowerCamelCase__ : Tuple = z.permute(0 , 2 , 3 , 1 ).contiguous() lowerCamelCase__ : List[Any] = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z lowerCamelCase__ : List[str] = torch.argmin(torch.cdist(UpperCAmelCase , self.embedding.weight ) , dim=1 ) lowerCamelCase__ : Optional[Any] = self.embedding(UpperCAmelCase ).view(z.shape ) lowerCamelCase__ : int = None lowerCamelCase__ : Union[str, Any] = None # compute loss for embedding if not self.legacy: lowerCamelCase__ : Dict = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: lowerCamelCase__ : List[str] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients lowerCamelCase__ : Union[str, Any] = z + (z_q - z).detach() # reshape back to match original input shape lowerCamelCase__ : Any = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: lowerCamelCase__ : int = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis lowerCamelCase__ : Union[str, Any] = self.remap_to_used(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: lowerCamelCase__ : Any = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def A_ ( self : int , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] ) -> List[Any]: # shape specifying (batch, height, width, channel) if self.remap is not None: lowerCamelCase__ : str = indices.reshape(shape[0] , -1 ) # add batch axis lowerCamelCase__ : Optional[Any] = self.unmap_to_all(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = indices.reshape(-1 ) # flatten again # get quantized latent vectors lowerCamelCase__ : str = self.embedding(UpperCAmelCase ) if shape is not None: lowerCamelCase__ : List[str] = z_q.view(UpperCAmelCase ) # reshape back to match original input shape lowerCamelCase__ : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class lowerCAmelCase ( __UpperCamelCase ): def __init__( self : Any , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=False ) -> List[str]: lowerCamelCase__ : List[str] = parameters lowerCamelCase__ , lowerCamelCase__ : List[str] = torch.chunk(UpperCAmelCase , 2 , dim=1 ) lowerCamelCase__ : Union[str, Any] = torch.clamp(self.logvar , -3_0.0 , 2_0.0 ) lowerCamelCase__ : List[Any] = deterministic lowerCamelCase__ : Optional[int] = torch.exp(0.5 * self.logvar ) lowerCamelCase__ : Optional[Any] = torch.exp(self.logvar ) if self.deterministic: lowerCamelCase__ : str = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def A_ ( self : List[str] , UpperCAmelCase : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype lowerCamelCase__ : Any = randn_tensor( self.mean.shape , generator=UpperCAmelCase , device=self.parameters.device , dtype=self.parameters.dtype ) lowerCamelCase__ : Optional[int] = self.mean + self.std * sample return x def A_ ( self : Dict , UpperCAmelCase : Optional[Any]=None ) -> Optional[Any]: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def A_ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[Any]=[1, 2, 3] ) -> List[str]: if self.deterministic: return torch.Tensor([0.0] ) lowerCamelCase__ : int = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCAmelCase ) def A_ ( self : Optional[int] ) -> List[str]: return self.mean
50
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _snake_case ( unittest.TestCase ): '''simple docstring''' @property def A__ ( self: Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") ,up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") ,) return model @property def A__ ( self: Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=3 ,) return model @property def A__ ( self: Tuple ) -> Any: torch.manual_seed(0 ) UpperCAmelCase_ : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(lowerCamelCase_ ) def A__ ( self: str ) -> Optional[Any]: UpperCAmelCase_ : str = self.dummy_uncond_unet UpperCAmelCase_ : List[Any] = DDIMScheduler() UpperCAmelCase_ : List[Any] = self.dummy_vq_model UpperCAmelCase_ : Optional[int] = LDMPipeline(unet=lowerCamelCase_ ,vqvae=lowerCamelCase_ ,scheduler=lowerCamelCase_ ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = torch.manual_seed(0 ) UpperCAmelCase_ : int = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ).images UpperCAmelCase_ : List[str] = torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ,return_dict=lowerCamelCase_ )[0] UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : str = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) UpperCAmelCase_ : Tuple = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = ldm(generator=lowerCamelCase_ ,num_inference_steps=5 ,output_type="""numpy""" ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase_ : int = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) UpperCAmelCase_ : Union[str, Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
345
0
def A (__A : int ) -> int: """simple docstring""" if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(__A , __A ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(__A ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
51
def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' UpperCAmelCase_ : Tuple = [0] * len(_a ) UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Dict = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_a ) ): if indegree[i] == 0: queue.append(_a ) while queue: UpperCAmelCase_ : List[str] = queue.pop(0 ) cnt += 1 topo.append(_a ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_a ) if cnt != len(_a ): print("""Cycle exists""" ) else: print(_a ) # Adjacency List of Graph UpperCamelCase_ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
345
0
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __lowerCamelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class A__ ( __snake_case ): _UpperCAmelCase :Optional[float] = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) _UpperCAmelCase :bool = field(default=__snake_case , metadata={'help': 'Whether to SortishSamler or not.'} ) _UpperCAmelCase :bool = field( default=__snake_case , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) _UpperCAmelCase :bool = field(default=__snake_case , metadata={'help': 'whether to use adafactor'} ) _UpperCAmelCase :Optional[float] = field( default=__snake_case , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) _UpperCAmelCase :Optional[float] = field( default=__snake_case , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) _UpperCAmelCase :Optional[float] = field(default=__snake_case , metadata={'help': 'Dropout probability. Goes into model.config.'} ) _UpperCAmelCase :Optional[float] = field( default=__snake_case , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) _UpperCAmelCase :Optional[str] = field( default='linear' , metadata={'help': f"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
52
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = "swinv2" A__ : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: List[str] ,lowerCamelCase_: List[str]=224 ,lowerCamelCase_: List[str]=4 ,lowerCamelCase_: List[Any]=3 ,lowerCamelCase_: Optional[Any]=96 ,lowerCamelCase_: Any=[2, 2, 6, 2] ,lowerCamelCase_: Dict=[3, 6, 12, 24] ,lowerCamelCase_: str=7 ,lowerCamelCase_: Optional[Any]=4.0 ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.0 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: str=False ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: Union[str, Any]=1e-5 ,lowerCamelCase_: str=32 ,**lowerCamelCase_: List[str] ,) -> Tuple: super().__init__(**lowerCamelCase_ ) UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : Tuple = patch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : List[Any] = embed_dim UpperCAmelCase_ : Dict = depths UpperCAmelCase_ : Dict = len(lowerCamelCase_ ) UpperCAmelCase_ : str = num_heads UpperCAmelCase_ : Tuple = window_size UpperCAmelCase_ : int = mlp_ratio UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : int = drop_path_rate UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : List[str] = use_absolute_embeddings UpperCAmelCase_ : Dict = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ : List[str] = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) UpperCAmelCase_ : Any = (0, 0, 0, 0)
345
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable a__ : Optional[int] ={ '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str =[ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys a__ : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
53
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: int ) -> str: # A mock response for an HTTP head request to emulate server down UpperCAmelCase_ : List[str] = mock.Mock() UpperCAmelCase_ : List[Any] = 500 UpperCAmelCase_ : Union[str, Any] = {} UpperCAmelCase_ : Union[str, Any] = HTTPError UpperCAmelCase_ : Any = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ : Union[str, Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head: UpperCAmelCase_ : Any = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def A__ ( self: str ) -> int: # A mock response for an HTTP head request to emulate server down UpperCAmelCase_ : str = mock.Mock() UpperCAmelCase_ : Optional[int] = 500 UpperCAmelCase_ : int = {} UpperCAmelCase_ : Union[str, Any] = HTTPError UpperCAmelCase_ : List[Any] = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ : Optional[int] = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head: UpperCAmelCase_ : Any = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def A__ ( self: str ) -> Dict: # This test is for deprecated behavior and can be removed in v5 try: UpperCAmelCase_ : Any = tempfile.mktemp() with open(lowerCamelCase_ ,"""wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = AlbertTokenizer.from_pretrained(lowerCamelCase_ ) finally: os.remove(lowerCamelCase_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" ,"""wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" ,lowerCamelCase_ ) UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def A__ ( self: List[str] ) -> Tuple: # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase_ : str = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class _snake_case ( unittest.TestCase ): '''simple docstring''' A__ : str = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def A__ ( cls: Dict ) -> Optional[int]: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def A__ ( cls: Optional[Any] ) -> List[str]: try: delete_repo(token=cls._token ,repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def A__ ( self: Any ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Tuple = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : List[Any] = BertTokenizer(lowerCamelCase_ ) tokenizer.push_to_hub("""test-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ,repo_id="""test-tokenizer""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def A__ ( self: Optional[int] ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[Any] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : Dict = BertTokenizer(lowerCamelCase_ ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" ,use_auth_token=self._token ) UpperCAmelCase_ : Dict = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowerCamelCase_ ,repo_id="""valid_org/test-tokenizer-org""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def A__ ( self: Optional[int] ) -> Optional[Any]: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Any = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : Optional[Any] = CustomTokenizer(lowerCamelCase_ ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[str] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : str = BertTokenizerFast.from_pretrained(lowerCamelCase_ ) bert_tokenizer.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = CustomTokenizerFast.from_pretrained(lowerCamelCase_ ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizerFast""" ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' ,use_fast=lowerCamelCase_ ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[Any] ) -> Any: UpperCAmelCase_ : Any = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def A__ ( self: Tuple ) -> Optional[int]: UpperCAmelCase_ : str = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS]""", """ This is a """, """extra_id_100"""] ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ : Dict = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) ,["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) ,["""BC""", """A"""] ) def A__ ( self: Union[str, Any] ) -> int: UpperCAmelCase_ : List[str] = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def A__ ( self: int ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def A__ ( self: int ) -> List[str]: UpperCAmelCase_ : int = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) ,["""AB""", """C"""] ) def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) ,["""ABC""", """D"""] ) def A__ ( self: List[Any] ) -> Any: # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCAmelCase_ : Tuple = Trie() UpperCAmelCase_ : Optional[Any] = trie.cut_text("""ABC""" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(lowerCamelCase_ ,["""AB""", """C"""] )
345
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=lowerCAmelCase_ ) env_command_parser(subparsers=lowerCAmelCase_ ) launch_command_parser(subparsers=lowerCAmelCase_ ) tpu_command_parser(subparsers=lowerCAmelCase_ ) test_command_parser(subparsers=lowerCAmelCase_ ) # Let's go __SCREAMING_SNAKE_CASE = parser.parse_args() if not hasattr(lowerCAmelCase_ , "func" ): parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase_ ) if __name__ == "__main__": main()
54
from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: int ,**lowerCamelCase_: List[str] ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: List[str] ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: int ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Any = ["flax"] def __init__( self: int ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[str] ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Dict = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[Any] ) -> Any: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: List[Any] ) -> str: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[str] = ["flax"] def __init__( self: str ,*lowerCamelCase_: List[str] ,**lowerCamelCase_: Optional[int] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : int = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[Any] ) -> str: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: str ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[int] ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Optional[Any] ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[Any] = ["flax"] def __init__( self: Union[str, Any] ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: int ) -> List[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Dict: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: Any ,**lowerCamelCase_: int ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: Union[str, Any] ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Dict ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : str = ["flax"] def __init__( self: Optional[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: int ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: int ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Union[str, Any] = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Optional[int] ) -> List[str]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Dict ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: List[str] ) -> int: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[Any] = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Optional[int] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Dict ) -> int: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Optional[Any]: requires_backends(cls ,["""flax"""] )
345
0
'''simple docstring''' def __snake_case ( UpperCAmelCase_ : int ): lowerCamelCase_ = int(UpperCAmelCase_ ) if decimal in (0, 1): # Exit cases for the recursion return str(UpperCAmelCase_ ) lowerCamelCase_ ,lowerCamelCase_ = divmod(UpperCAmelCase_ , 2 ) return binary_recursive(UpperCAmelCase_ ) + str(UpperCAmelCase_ ) def __snake_case ( UpperCAmelCase_ : str ): lowerCamelCase_ = str(UpperCAmelCase_ ).strip() if not number: raise ValueError("No input value was provided" ) lowerCamelCase_ = "-" if number.startswith("-" ) else "" lowerCamelCase_ = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return F'''{negative}0b{binary_recursive(int(UpperCAmelCase_ ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
55
import random from typing import Any def lowerCamelCase_ ( _a : list ): '''simple docstring''' for _ in range(len(_a ) ): UpperCAmelCase_ : Tuple = random.randint(0 , len(_a ) - 1 ) UpperCAmelCase_ : List[Any] = random.randint(0 , len(_a ) - 1 ) UpperCAmelCase_ , UpperCAmelCase_ : int = data[b], data[a] return data if __name__ == "__main__": UpperCamelCase_ = [0, 1, 2, 3, 4, 5, 6, 7] UpperCamelCase_ = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
345
0
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets a : Tuple = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' a : Optional[int] = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' a : Optional[Any] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def A_ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def A_ ( self : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : str=None , lowercase_ : Dict=None , lowercase_ : int=None , lowercase_ : str=None , lowercase_ : Any="auto" , lowercase_ : Union[str, Any]=-1 , lowercase_ : Dict=0.9 , lowercase_ : Optional[int]=5 , lowercase_ : Tuple=500 , lowercase_ : Union[str, Any]="gpt2-large" , lowercase_ : Optional[int]=-1 , lowercase_ : Any=1024 , lowercase_ : List[str]=25 , lowercase_ : Any=5 , lowercase_ : Union[str, Any]=True , lowercase_ : str=25 , ): snake_case_ = compute_mauve( p_text=lowercase_ , q_text=lowercase_ , p_features=lowercase_ , q_features=lowercase_ , p_tokens=lowercase_ , q_tokens=lowercase_ , num_buckets=lowercase_ , pca_max_data=lowercase_ , kmeans_explained_var=lowercase_ , kmeans_num_redo=lowercase_ , kmeans_max_iter=lowercase_ , featurize_model_name=lowercase_ , device_id=lowercase_ , max_text_length=lowercase_ , divergence_curve_discretization_size=lowercase_ , mauve_scaling_factor=lowercase_ , verbose=lowercase_ , seed=lowercase_ , ) return out
56
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[int] = [] for i in range(self.num_layers ): UpperCAmelCase_ : List[Any] = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : List[Any] = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : int = resnets UpperCAmelCase_ : Tuple = attentions if self.add_downsample: UpperCAmelCase_ : List[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: int=True ) -> int: UpperCAmelCase_ : List[Any] = () for resnet, attn in zip(self.resnets ,self.attentions ): UpperCAmelCase_ : str = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[Any] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> int: UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : Dict = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnets if self.add_downsample: UpperCAmelCase_ : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any]=True ) -> Any: UpperCAmelCase_ : Union[str, Any] = () for resnet in self.resnets: UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[str] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: str ) -> Any: UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : int = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Optional[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : int = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = resnets UpperCAmelCase_ : Dict = attentions if self.add_upsample: UpperCAmelCase_ : Optional[Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[int] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: Any ,lowerCamelCase_: str ,lowerCamelCase_: List[str]=True ) -> List[str]: for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states UpperCAmelCase_ : List[str] = res_hidden_states_tuple[-1] UpperCAmelCase_ : Union[str, Any] = res_hidden_states_tuple[:-1] UpperCAmelCase_ : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Dict = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> Dict: UpperCAmelCase_ : Any = [] for i in range(self.num_layers ): UpperCAmelCase_ : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : str = resnets if self.add_upsample: UpperCAmelCase_ : Union[str, Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Dict ,lowerCamelCase_: Dict ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any=True ) -> List[str]: for resnet in self.resnets: # pop res hidden states UpperCAmelCase_ : Dict = res_hidden_states_tuple[-1] UpperCAmelCase_ : str = res_hidden_states_tuple[:-1] UpperCAmelCase_ : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : List[str] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Optional[Any] = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: # there is always at least one resnet UpperCAmelCase_ : List[Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] UpperCAmelCase_ : Any = [] for _ in range(self.num_layers ): UpperCAmelCase_ : Optional[Any] = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Dict = resnets UpperCAmelCase_ : Any = attentions def __call__( self: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any]=True ) -> List[Any]: UpperCAmelCase_ : List[Any] = self.resnets[0](lowerCamelCase_ ,lowerCamelCase_ ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): UpperCAmelCase_ : Optional[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) return hidden_states
345
0
"""simple docstring""" from math import ceil def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = list(range(0 , _UpperCamelCase ) ) __lowerCAmelCase = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __lowerCAmelCase = [] for i in device_map_blocks: if device_map_blocks.count(_UpperCamelCase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(_UpperCamelCase ) # Missing blocks __lowerCAmelCase = [i for i in blocks if i not in device_map_blocks] __lowerCAmelCase = [i for i in device_map_blocks if i not in blocks] if len(_UpperCamelCase ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(_UpperCamelCase ) ) if len(_UpperCamelCase ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(_UpperCamelCase ) ) if len(_UpperCamelCase ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(_UpperCamelCase ) ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = list(range(_UpperCamelCase ) ) __lowerCAmelCase = int(ceil(n_layers / len(_UpperCamelCase ) ) ) __lowerCAmelCase = [layers[i : i + n_blocks] for i in range(0 , _UpperCamelCase , _UpperCamelCase )] return dict(zip(_UpperCamelCase , _UpperCamelCase ) )
57
import pickle import numpy as np from matplotlib import pyplot as plt class _snake_case : '''simple docstring''' def __init__( self: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Tuple=0.2 ,lowerCamelCase_: Union[str, Any]=0.2 ) -> List[str]: UpperCAmelCase_ : List[Any] = bp_numa UpperCAmelCase_ : str = bp_numa UpperCAmelCase_ : List[Any] = bp_numa UpperCAmelCase_ : Optional[int] = conva_get[:2] UpperCAmelCase_ : List[Any] = conva_get[2] UpperCAmelCase_ : str = size_pa UpperCAmelCase_ : Optional[int] = rate_w UpperCAmelCase_ : Dict = rate_t UpperCAmelCase_ : List[Any] = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] UpperCAmelCase_ : int = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) UpperCAmelCase_ : int = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) UpperCAmelCase_ : Dict = -2 * np.random.rand(self.conva[1] ) + 1 UpperCAmelCase_ : str = -2 * np.random.rand(self.num_bpa ) + 1 UpperCAmelCase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def A__ ( self: str ,lowerCamelCase_: Optional[Any] ) -> Tuple: # save model dict with pickle UpperCAmelCase_ : Dict = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(lowerCamelCase_ ,"""wb""" ) as f: pickle.dump(lowerCamelCase_ ,lowerCamelCase_ ) print(F'''Model saved: {save_path}''' ) @classmethod def A__ ( cls: List[str] ,lowerCamelCase_: str ) -> List[str]: # read saved model with open(lowerCamelCase_ ,"""rb""" ) as f: UpperCAmelCase_ : Any = pickle.load(lowerCamelCase_ ) # noqa: S301 UpperCAmelCase_ : Union[str, Any] = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) UpperCAmelCase_ : List[str] = model_dic.get("""size_pooling1""" ) UpperCAmelCase_ : Tuple = model_dic.get("""num_bp1""" ) UpperCAmelCase_ : Optional[Any] = model_dic.get("""num_bp2""" ) UpperCAmelCase_ : List[str] = model_dic.get("""num_bp3""" ) UpperCAmelCase_ : List[Any] = model_dic.get("""rate_weight""" ) UpperCAmelCase_ : Dict = model_dic.get("""rate_thre""" ) # create model instance UpperCAmelCase_ : List[Any] = CNN(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # modify model parameter UpperCAmelCase_ : Any = model_dic.get("""w_conv1""" ) UpperCAmelCase_ : int = model_dic.get("""wkj""" ) UpperCAmelCase_ : int = model_dic.get("""vji""" ) UpperCAmelCase_ : Optional[int] = model_dic.get("""thre_conv1""" ) UpperCAmelCase_ : List[str] = model_dic.get("""thre_bp2""" ) UpperCAmelCase_ : Dict = model_dic.get("""thre_bp3""" ) return conv_ins def A__ ( self: List[Any] ,lowerCamelCase_: Union[str, Any] ) -> Tuple: return 1 / (1 + np.exp(-1 * x )) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Union[str, Any] ) -> Optional[Any]: return round(lowerCamelCase_ ,3 ) def A__ ( self: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any] ) -> Any: # convolution process UpperCAmelCase_ : Optional[Any] = convs[0] UpperCAmelCase_ : int = convs[1] UpperCAmelCase_ : int = np.shape(lowerCamelCase_ )[0] # get the data slice of original image data, data_focus UpperCAmelCase_ : Dict = [] for i_focus in range(0 ,size_data - size_conv + 1 ,lowerCamelCase_ ): for j_focus in range(0 ,size_data - size_conv + 1 ,lowerCamelCase_ ): UpperCAmelCase_ : Union[str, Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowerCamelCase_ ) # calculate the feature map of every single kernel, and saved as list of matrix UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowerCamelCase_ ): UpperCAmelCase_ : Optional[int] = [] for i_focus in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : int = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowerCamelCase_ ) ) UpperCAmelCase_ : Union[str, Any] = np.asmatrix(lowerCamelCase_ ).reshape( lowerCamelCase_ ,lowerCamelCase_ ) data_featuremap.append(lowerCamelCase_ ) # expanding the data slice to One dimenssion UpperCAmelCase_ : Optional[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[int] = np.asarray(lowerCamelCase_ ) return focus_list, data_featuremap def A__ ( self: Tuple ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any]="average_pool" ) -> List[Any]: # pooling process UpperCAmelCase_ : Optional[Any] = len(featuremaps[0] ) UpperCAmelCase_ : Any = int(size_map / size_pooling ) UpperCAmelCase_ : Optional[int] = [] for i_map in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : Any = featuremaps[i_map] UpperCAmelCase_ : Tuple = [] for i_focus in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): for j_focus in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : str = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowerCamelCase_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowerCamelCase_ ) ) UpperCAmelCase_ : int = np.asmatrix(lowerCamelCase_ ).reshape(lowerCamelCase_ ,lowerCamelCase_ ) featuremap_pooled.append(lowerCamelCase_ ) return featuremap_pooled def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tuple ) -> Optional[int]: # expanding three dimension data to one dimension list UpperCAmelCase_ : List[Any] = [] for i in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : Tuple = np.shape(data[i] ) UpperCAmelCase_ : Optional[int] = data[i].reshape(1 ,shapes[0] * shapes[1] ) UpperCAmelCase_ : Optional[int] = data_listed.getA().tolist()[0] data_expanded.extend(lowerCamelCase_ ) UpperCAmelCase_ : int = np.asarray(lowerCamelCase_ ) return data_expanded def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[int] ) -> Union[str, Any]: # expanding matrix to one dimension list UpperCAmelCase_ : List[Any] = np.asarray(lowerCamelCase_ ) UpperCAmelCase_ : str = np.shape(lowerCamelCase_ ) UpperCAmelCase_ : Dict = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def A__ ( self: str ,lowerCamelCase_: Dict ,lowerCamelCase_: int ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Any ) -> Union[str, Any]: UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = 0 for i_map in range(lowerCamelCase_ ): UpperCAmelCase_ : Optional[Any] = np.ones((size_map, size_map) ) for i in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): for j in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : Any = pd_pool[ i_pool ] UpperCAmelCase_ : List[str] = i_pool + 1 UpperCAmelCase_ : Optional[Any] = np.multiply( lowerCamelCase_ ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(lowerCamelCase_ ) return pd_all def A__ ( self: str ,lowerCamelCase_: int ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any=bool ) -> Optional[int]: # model traning print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(lowerCamelCase_ )) ) print((""" - - Shape: Teach_Data """, np.shape(lowerCamelCase_ )) ) UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : Any = 10000 while rp < n_repeat and mse >= error_accuracy: UpperCAmelCase_ : List[str] = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(lowerCamelCase_ ) ): # print('------------Learning Image: %d--------------'%p) UpperCAmelCase_ : str = np.asmatrix(datas_train[p] ) UpperCAmelCase_ : Optional[Any] = np.asarray(datas_teach[p] ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : List[Any] = self.pooling(lowerCamelCase_ ,self.size_poolinga ) UpperCAmelCase_ : int = np.shape(lowerCamelCase_ ) UpperCAmelCase_ : Dict = self._expand(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = data_bp_input UpperCAmelCase_ : Optional[Any] = np.dot(lowerCamelCase_ ,self.vji.T ) - self.thre_bpa UpperCAmelCase_ : int = self.sig(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = np.dot(lowerCamelCase_ ,self.wkj.T ) - self.thre_bpa UpperCAmelCase_ : Optional[Any] = self.sig(lowerCamelCase_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- UpperCAmelCase_ : List[str] = np.multiply( (data_teach - bp_outa) ,np.multiply(lowerCamelCase_ ,(1 - bp_outa) ) ) UpperCAmelCase_ : List[Any] = np.multiply( np.dot(lowerCamelCase_ ,self.wkj ) ,np.multiply(lowerCamelCase_ ,(1 - bp_outa) ) ) UpperCAmelCase_ : Any = np.dot(lowerCamelCase_ ,self.vji ) UpperCAmelCase_ : Tuple = pd_i_all / (self.size_poolinga * self.size_poolinga) UpperCAmelCase_ : List[str] = pd_conva_pooled.T.getA().tolist() UpperCAmelCase_ : str = self._calculate_gradient_from_pool( lowerCamelCase_ ,lowerCamelCase_ ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): UpperCAmelCase_ : List[str] = self._expand_mat(pd_conva_all[k_conv] ) UpperCAmelCase_ : Optional[Any] = self.rate_weight * np.dot(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : int = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) UpperCAmelCase_ : str = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer UpperCAmelCase_ : int = self.wkj + pd_k_all.T * bp_outa * self.rate_weight UpperCAmelCase_ : Tuple = self.vji + pd_j_all.T * bp_outa * self.rate_weight UpperCAmelCase_ : int = self.thre_bpa - pd_k_all * self.rate_thre UpperCAmelCase_ : str = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image UpperCAmelCase_ : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) UpperCAmelCase_ : int = rp + 1 UpperCAmelCase_ : Any = error_count / patterns all_mse.append(lowerCamelCase_ ) def draw_error(): UpperCAmelCase_ : Any = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowerCamelCase_ ,"""+-""" ) plt.plot(lowerCamelCase_ ,"""r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(lowerCamelCase_ ,alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def A__ ( self: Optional[int] ,lowerCamelCase_: Any ) -> Tuple: # model predict UpperCAmelCase_ : Union[str, Any] = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(lowerCamelCase_ )) ) for p in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : int = np.asmatrix(datas_test[p] ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : Optional[Any] = self.pooling(lowerCamelCase_ ,self.size_poolinga ) UpperCAmelCase_ : str = self._expand(lowerCamelCase_ ) UpperCAmelCase_ : str = data_bp_input UpperCAmelCase_ : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa UpperCAmelCase_ : Optional[int] = self.sig(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = bp_outa * self.wkj.T - self.thre_bpa UpperCAmelCase_ : List[Any] = self.sig(lowerCamelCase_ ) produce_out.extend(bp_outa.getA().tolist() ) UpperCAmelCase_ : int = [list(map(self.do_round ,lowerCamelCase_ ) ) for each in produce_out] return np.asarray(lowerCamelCase_ ) def A__ ( self: Optional[Any] ,lowerCamelCase_: Dict ) -> Tuple: # return the data of image after convoluting process so we can check it out UpperCAmelCase_ : Optional[int] = np.asmatrix(lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : Dict = self.pooling(lowerCamelCase_ ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
345
0
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter lowercase_ = True except ImportError: lowercase_ = False lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase ( __lowerCamelCase : Namespace ) ->Optional[Any]: return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class a_ ( snake_case_ ): '''simple docstring''' @staticmethod def snake_case_( A ) -> Tuple: _SCREAMING_SNAKE_CASE = parser.add_parser("""add-new-model""" ) add_new_model_parser.add_argument("""--testing""" , action="""store_true""" , help="""If in testing mode.""" ) add_new_model_parser.add_argument("""--testing_file""" , type=A , help="""Configuration file on which to run.""" ) add_new_model_parser.add_argument( """--path""" , type=A , help="""Path to cookiecutter. Should only be used for testing purposes.""" ) add_new_model_parser.set_defaults(func=A ) def __init__( self , A , A , A=None , *A ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = testing _SCREAMING_SNAKE_CASE = testing_file _SCREAMING_SNAKE_CASE = path def snake_case_( self ) -> List[str]: warnings.warn( """The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. """ """It is not actively maintained anymore, so might give a result that won't pass all tests and quality """ """checks, you should use `transformers-cli add-new-model-like` instead.""" ) if not _has_cookiecutter: raise ImportError( """Model creation dependencies are required to use the `add_new_model` command. Install them by running """ """the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n""" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory _SCREAMING_SNAKE_CASE = [directory for directory in os.listdir() if """cookiecutter-template-""" == directory[:22]] if len(A ) > 0: raise ValueError( """Several directories starting with `cookiecutter-template-` in current working directory. """ """Please clean your directory by removing all folders starting with `cookiecutter-template-` or """ """change your working directory.""" ) _SCREAMING_SNAKE_CASE = ( Path(A ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) _SCREAMING_SNAKE_CASE = path_to_transformer_root / """templates""" / """adding_a_new_model""" # Execute cookiecutter if not self._testing: cookiecutter(str(A ) ) else: with open(self._testing_file , """r""" ) as configuration_file: _SCREAMING_SNAKE_CASE = json.load(A ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=A , extra_context=A , ) _SCREAMING_SNAKE_CASE = [directory for directory in os.listdir() if """cookiecutter-template-""" in directory[:22]][0] # Retrieve configuration with open(directory + """/configuration.json""" , """r""" ) as configuration_file: _SCREAMING_SNAKE_CASE = json.load(A ) _SCREAMING_SNAKE_CASE = configuration["""lowercase_modelname"""] _SCREAMING_SNAKE_CASE = configuration["""generate_tensorflow_pytorch_and_flax"""] os.remove(f'{directory}/configuration.json' ) _SCREAMING_SNAKE_CASE = """PyTorch""" in generate_tensorflow_pytorch_and_flax _SCREAMING_SNAKE_CASE = """TensorFlow""" in generate_tensorflow_pytorch_and_flax _SCREAMING_SNAKE_CASE = """Flax""" in generate_tensorflow_pytorch_and_flax _SCREAMING_SNAKE_CASE = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(A , exist_ok=A ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' , exist_ok=A ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' , """w""" ): pass shutil.move( f'{directory}/__init__.py' , f'{model_dir}/__init__.py' , ) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' , f'{model_dir}/configuration_{lowercase_model_name}.py' , ) def remove_copy_lines(A ): with open(A , """r""" ) as f: _SCREAMING_SNAKE_CASE = f.readlines() with open(A , """w""" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(A ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' , f'{model_dir}/modeling_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' , f'{model_dir}/modeling_tf_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' , f'{model_dir}/modeling_flax_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' , f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' , ) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' , f'{model_dir}/tokenization_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' , f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(A , A , A ): # Create temp file _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = mkstemp() _SCREAMING_SNAKE_CASE = False with fdopen(A , """w""" ) as new_file: with open(A ) as old_file: for line in old_file: new_file.write(A ) if line_to_copy_below in line: _SCREAMING_SNAKE_CASE = True for line_to_copy in lines_to_copy: new_file.write(A ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(A , A ) # Remove original file remove(A ) # Move new file move(A , A ) def skip_units(A ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(A ): with open(A ) as datafile: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False for line in datafile: if "# To replace in: " in line and "##" not in line: _SCREAMING_SNAKE_CASE = line.split("""\"""" )[1] _SCREAMING_SNAKE_CASE = skip_units(A ) elif "# Below: " in line and "##" not in line: _SCREAMING_SNAKE_CASE = line.split("""\"""" )[1] _SCREAMING_SNAKE_CASE = skip_units(A ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(A , A , A ) _SCREAMING_SNAKE_CASE = [] elif "# Replace with" in line and "##" not in line: _SCREAMING_SNAKE_CASE = [] elif "##" not in line: lines_to_copy.append(A ) remove(A ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(A )
58
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Optional[Any] = CTRLTokenizer A__ : Optional[Any] = False A__ : str = False def A__ ( self: Optional[int] ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ : Dict = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] UpperCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) UpperCAmelCase_ : List[Any] = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] UpperCAmelCase_ : Optional[Any] = {"""unk_token""": """<unk>"""} UpperCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase_ ) ) def A__ ( self: Optional[int] ,**lowerCamelCase_: Any ) -> str: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase_ ) def A__ ( self: int ,lowerCamelCase_: int ) -> str: UpperCAmelCase_ : List[str] = """adapt react readapt apt""" UpperCAmelCase_ : List[Any] = """adapt react readapt apt""" return input_text, output_text def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = CTRLTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) UpperCAmelCase_ : List[Any] = """adapt react readapt apt""" UpperCAmelCase_ : Optional[int] = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() UpperCAmelCase_ : Tuple = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokens + [tokenizer.unk_token] UpperCAmelCase_ : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,lowerCamelCase_ )
345
0
import argparse from collections import defaultdict import yaml __lowerCamelCase = """docs/source/en/_toctree.yml""" def UpperCamelCase ( __lowerCamelCase : Optional[Any] ): snake_case : Any = defaultdict(__lowerCamelCase ) snake_case : List[Any] = [] snake_case : List[str] = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"local": doc["local"], "title": doc["title"]} ) else: new_doc_list.append(__lowerCamelCase ) snake_case : List[str] = new_doc_list snake_case : Optional[int] = [key for key, value in counts.items() if value > 1] snake_case : Any = [] for duplicate_key in duplicates: snake_case : List[str] = list({doc["title"] for doc in doc_list if doc["local"] == duplicate_key} ) if len(__lowerCamelCase ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if "local" not in counts or counts[doc["local"]] == 1] ) snake_case : Union[str, Any] = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__lowerCamelCase ) > 1: raise ValueError("{doc_list} has two 'overview' docs which is not allowed." ) overview_doc.extend(__lowerCamelCase ) # Sort return overview_doc def UpperCamelCase ( __lowerCamelCase : Any=False ): with open(__lowerCamelCase , encoding="utf-8" ) as f: snake_case : Optional[Any] = yaml.safe_load(f.read() ) # Get to the API doc snake_case : List[str] = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case : str = content[api_idx]["sections"] # Then to the model doc snake_case : Optional[int] = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 snake_case : Dict = api_doc[scheduler_idx]["sections"] snake_case : Any = clean_doc_toc(__lowerCamelCase ) snake_case : str = False if new_scheduler_doc != scheduler_doc: snake_case : Dict = True if overwrite: snake_case : int = new_scheduler_doc if diff: if overwrite: snake_case : Dict = api_doc with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(__lowerCamelCase , allow_unicode=__lowerCamelCase ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) def UpperCamelCase ( __lowerCamelCase : int=False ): with open(__lowerCamelCase , encoding="utf-8" ) as f: snake_case : str = yaml.safe_load(f.read() ) # Get to the API doc snake_case : str = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case : List[Any] = content[api_idx]["sections"] # Then to the model doc snake_case : Tuple = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 snake_case : int = False snake_case : Optional[int] = api_doc[pipeline_idx]["sections"] snake_case : Any = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: snake_case : str = pipeline_doc["section"] snake_case : Optional[int] = clean_doc_toc(__lowerCamelCase ) if overwrite: snake_case : Any = new_sub_pipeline_doc new_pipeline_docs.append(__lowerCamelCase ) # sort overall pipeline doc snake_case : Tuple = clean_doc_toc(__lowerCamelCase ) if new_pipeline_docs != pipeline_docs: snake_case : Optional[int] = True if overwrite: snake_case : Optional[int] = new_pipeline_docs if diff: if overwrite: snake_case : int = api_doc with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(__lowerCamelCase , allow_unicode=__lowerCamelCase ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __lowerCamelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
59
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCamelCase_ = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Union[str, Any] = "ernie_m" A__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self: str ,lowerCamelCase_: int = 250002 ,lowerCamelCase_: int = 768 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 3072 ,lowerCamelCase_: str = "gelu" ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: int = 514 ,lowerCamelCase_: float = 0.0_2 ,lowerCamelCase_: int = 1 ,lowerCamelCase_: float = 1e-05 ,lowerCamelCase_: Any=None ,lowerCamelCase_: List[Any]=False ,lowerCamelCase_: Tuple=0.0 ,**lowerCamelCase_: Optional[int] ,) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : List[Any] = classifier_dropout UpperCAmelCase_ : str = is_decoder UpperCAmelCase_ : List[str] = act_dropout
345
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = KandinskyVaaImgaImgPipeline __UpperCamelCase = ['''image_embeds''', '''negative_image_embeds''', '''image'''] __UpperCamelCase = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] __UpperCamelCase = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __UpperCamelCase = False @property def lowerCamelCase__ ( self : str ): return 3_2 @property def lowerCamelCase__ ( self : Union[str, Any] ): return 3_2 @property def lowerCamelCase__ ( self : List[Any] ): return self.time_input_dim @property def lowerCamelCase__ ( self : Union[str, Any] ): return self.time_input_dim * 4 @property def lowerCamelCase__ ( self : Optional[Any] ): return 1_0_0 @property def lowerCamelCase__ ( self : Any ): torch.manual_seed(0 ) lowerCAmelCase : Optional[Any] = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowerCAmelCase : List[str] = UNetaDConditionModel(**UpperCamelCase_ ) return model @property def lowerCamelCase__ ( self : str ): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase__ ( self : List[Any] ): torch.manual_seed(0 ) lowerCAmelCase : int = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Dict = self.dummy_unet lowerCAmelCase : Any = self.dummy_movq lowerCAmelCase : Dict = { '''num_train_timesteps''': 1_0_0_0, '''beta_schedule''': '''linear''', '''beta_start''': 0.00_085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } lowerCAmelCase : Optional[int] = DDIMScheduler(**UpperCamelCase_ ) lowerCAmelCase : Dict = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=0 ): lowerCAmelCase : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) lowerCAmelCase : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCamelCase_ ) # create init_image lowerCAmelCase : List[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) lowerCAmelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase : Tuple = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) if str(UpperCamelCase_ ).startswith('''mps''' ): lowerCAmelCase : Optional[Any] = torch.manual_seed(UpperCamelCase_ ) else: lowerCAmelCase : int = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 1_0, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : int = '''cpu''' lowerCAmelCase : int = self.get_dummy_components() lowerCAmelCase : Optional[Any] = self.pipeline_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase : Any = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) lowerCAmelCase : Tuple = output.images lowerCAmelCase : str = pipe( **self.get_dummy_inputs(UpperCamelCase_ ) , return_dict=UpperCamelCase_ , )[0] lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] lowerCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCAmelCase : Tuple = np.array( [0.6_199_778, 0.63_984_406, 0.46_145_785, 0.62_944_984, 0.5_622_215, 0.47_306_132, 0.47_441_456, 0.4_607_606, 0.48_719_263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) lowerCAmelCase : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowerCAmelCase : Union[str, Any] = '''A red cartoon frog, 4k''' lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) lowerCAmelCase : Dict = pipeline.to(UpperCamelCase_ ) pipeline.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCAmelCase, lowerCAmelCase : Dict = pipe_prior( UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowerCAmelCase : List[str] = pipeline( image=UpperCamelCase_ , image_embeds=UpperCamelCase_ , negative_image_embeds=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type='''np''' , ) lowerCAmelCase : Dict = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
60
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase_ = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowerCamelCase_ ( _a : str , _a : Any=100 , _a : int=" " ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = text.split(_a ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_a ) , _a )] def lowerCamelCase_ ( _a : dict ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Dict = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(_a ): titles.append(title if title is not None else """""" ) texts.append(_a ) return {"title": titles, "text": texts} def lowerCamelCase_ ( _a : dict , _a : DPRContextEncoder , _a : DPRContextEncoderTokenizerFast ): '''simple docstring''' UpperCAmelCase_ : List[str] = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=_a , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] UpperCAmelCase_ : Tuple = ctx_encoder(input_ids.to(device=_a ) , return_dict=_a ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowerCamelCase_ ( _a : "RagExampleArguments" , _a : "ProcessingArguments" , _a : "IndexHnswArguments" , ): '''simple docstring''' logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way UpperCAmelCase_ : Optional[int] = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words UpperCAmelCase_ : Tuple = dataset.map(_a , batched=_a , num_proc=processing_args.num_proc ) # And compute the embeddings UpperCAmelCase_ : List[str] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_a ) UpperCAmelCase_ : Dict = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) UpperCAmelCase_ : Any = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space UpperCAmelCase_ : List[str] = dataset.map( partial(_a , ctx_encoder=_a , ctx_tokenizer=_a ) , batched=_a , batch_size=processing_args.batch_size , features=_a , ) # And finally save your dataset UpperCAmelCase_ : Union[str, Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(_a ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search UpperCAmelCase_ : Union[str, Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=_a ) # And save the index UpperCAmelCase_ : Optional[Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(_a ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _snake_case : '''simple docstring''' A__ : str = field( default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) A__ : Optional[str] = field( default=__snake_case , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) A__ : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) A__ : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) A__ : Optional[str] = field( default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class _snake_case : '''simple docstring''' A__ : Optional[int] = field( default=__snake_case , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) A__ : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class _snake_case : '''simple docstring''' A__ : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) A__ : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase_ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase_ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
345
0
"""simple docstring""" def __a ( __lowerCamelCase = 3, __lowerCamelCase = 7, __lowerCamelCase = 100_0000 ): UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[Any] = 1 for current_denominator in range(1, limit + 1 ): UpperCAmelCase_ : Dict = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: UpperCAmelCase_ : List[Any] = current_numerator UpperCAmelCase_ : Optional[int] = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_000_000))
61
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Dict = AutoencoderKL A__ : Optional[int] = "sample" A__ : Tuple = 1E-2 @property def A__ ( self: List[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = 4 UpperCAmelCase_ : str = 3 UpperCAmelCase_ : Any = (32, 32) UpperCAmelCase_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCamelCase_ ) return {"sample": image} @property def A__ ( self: List[str] ) -> Tuple: return (3, 32, 32) @property def A__ ( self: Optional[Any] ) -> Any: return (3, 32, 32) def A__ ( self: Any ) -> Tuple: UpperCAmelCase_ : List[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } UpperCAmelCase_ : int = self.dummy_input return init_dict, inputs_dict def A__ ( self: Optional[Any] ) -> int: pass def A__ ( self: str ) -> Any: pass @unittest.skipIf(torch_device == """mps""" ,"""Gradient checkpointing skipped on MPS""" ) def A__ ( self: Union[str, Any] ) -> Dict: # enable deterministic behavior for gradient checkpointing UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ : List[Any] = self.model_class(**lowerCamelCase_ ) model.to(lowerCamelCase_ ) assert not model.is_gradient_checkpointing and model.training UpperCAmelCase_ : Optional[Any] = model(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() UpperCAmelCase_ : Any = torch.randn_like(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing UpperCAmelCase_ : str = self.model_class(**lowerCamelCase_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowerCamelCase_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training UpperCAmelCase_ : Optional[int] = model_a(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() UpperCAmelCase_ : Dict = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) UpperCAmelCase_ : Dict = dict(model.named_parameters() ) UpperCAmelCase_ : Union[str, Any] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5e-5 ) ) def A__ ( self: Optional[Any] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : int = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ,output_loading_info=lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) ,0 ) model.to(lowerCamelCase_ ) UpperCAmelCase_ : Dict = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def A__ ( self: Optional[int] ) -> int: UpperCAmelCase_ : Dict = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) UpperCAmelCase_ : Tuple = model.to(lowerCamelCase_ ) model.eval() if torch_device == "mps": UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) else: UpperCAmelCase_ : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : str = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) UpperCAmelCase_ : int = image.to(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Dict = model(lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ,generator=lowerCamelCase_ ).sample UpperCAmelCase_ : Optional[int] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": UpperCAmelCase_ : Tuple = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": UpperCAmelCase_ : List[str] = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: UpperCAmelCase_ : List[str] = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,rtol=1e-2 ) ) @slow class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ) -> Optional[Any]: return F'''gaussian_noise_s={seed}_shape={'_'.join([str(lowerCamelCase_ ) for s in shape] )}.npy''' def A__ ( self: Union[str, Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self: List[str] ,lowerCamelCase_: Optional[int]=0 ,lowerCamelCase_: List[Any]=(4, 3, 512, 512) ,lowerCamelCase_: Optional[Any]=False ) -> Optional[int]: UpperCAmelCase_ : Tuple = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ : Tuple = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCamelCase_ ,lowerCamelCase_ ) ) ).to(lowerCamelCase_ ).to(lowerCamelCase_ ) return image def A__ ( self: List[Any] ,lowerCamelCase_: List[str]="CompVis/stable-diffusion-v1-4" ,lowerCamelCase_: Union[str, Any]=False ) -> Any: UpperCAmelCase_ : Optional[Any] = """fp16""" if fpaa else None UpperCAmelCase_ : str = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ : int = AutoencoderKL.from_pretrained( lowerCamelCase_ ,subfolder="""vae""" ,torch_dtype=lowerCamelCase_ ,revision=lowerCamelCase_ ,) model.to(lowerCamelCase_ ).eval() return model def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any]=0 ) -> Optional[int]: if torch_device == "mps": return torch.manual_seed(lowerCamelCase_ ) return torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def A__ ( self: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Dict ) -> Tuple: UpperCAmelCase_ : List[Any] = self.get_sd_vae_model() UpperCAmelCase_ : int = self.get_sd_image(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ : Tuple = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def A__ ( self: Union[str, Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ) -> Tuple: UpperCAmelCase_ : List[str] = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : Any = self.get_sd_image(lowerCamelCase_ ,fpaa=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : Tuple = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ : Optional[int] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def A__ ( self: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[str] ) -> Dict: UpperCAmelCase_ : Optional[int] = self.get_sd_vae_model() UpperCAmelCase_ : Dict = self.get_sd_image(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : str = model(lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ : Any = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def A__ ( self: Optional[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: str ) -> Optional[Any]: UpperCAmelCase_ : List[str] = self.get_sd_vae_model() UpperCAmelCase_ : Optional[int] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase_ : str = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase_ : Any = sample[-1, -2:, :2, -2:].flatten().cpu() UpperCAmelCase_ : Union[str, Any] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def A__ ( self: str ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : List[str] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase_ : str = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ : str = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="""xformers is not required when using PyTorch 2.0.""" ) def A__ ( self: List[Any] ,lowerCamelCase_: Union[str, Any] ) -> int: UpperCAmelCase_ : Optional[Any] = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ : List[str] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="""xformers is not required when using PyTorch 2.0.""" ) def A__ ( self: Optional[Any] ,lowerCamelCase_: Dict ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = self.get_sd_vae_model() UpperCAmelCase_ : Any = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : Dict = self.get_sd_vae_model() UpperCAmelCase_ : Optional[Any] = self.get_sd_image(lowerCamelCase_ ) UpperCAmelCase_ : str = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : int = model.encode(lowerCamelCase_ ).latent_dist UpperCAmelCase_ : Optional[Any] = dist.sample(generator=lowerCamelCase_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] UpperCAmelCase_ : Tuple = sample[0, -1, -3:, -3:].flatten().cpu() UpperCAmelCase_ : Optional[Any] = torch.tensor(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = 3e-3 if torch_device != """mps""" else 1e-2 assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=lowerCamelCase_ )
345
0
import sys from collections import defaultdict class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> List[str]: __UpperCamelCase =[] def _a ( self , A_ ) -> List[Any]: return self.node_position[vertex] def _a ( self , A_ , A_ ) -> List[Any]: __UpperCamelCase =pos def _a ( self , A_ , A_ , A_ , A_ ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __UpperCamelCase =2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __UpperCamelCase =2 * start + 1 else: __UpperCamelCase =2 * start + 2 if heap[smallest_child] < heap[start]: __UpperCamelCase , __UpperCamelCase =heap[smallest_child], positions[smallest_child] __UpperCamelCase , __UpperCamelCase =( heap[start], positions[start], ) __UpperCamelCase , __UpperCamelCase =temp, tempa __UpperCamelCase =self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , A_ ) self.top_to_bottom(A_ , A_ , A_ , A_ ) def _a ( self , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =position[index] while index != 0: __UpperCamelCase =int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __UpperCamelCase =heap[parent] __UpperCamelCase =position[parent] self.set_position(position[parent] , A_ ) else: __UpperCamelCase =val __UpperCamelCase =temp self.set_position(A_ , A_ ) break __UpperCamelCase =parent else: __UpperCamelCase =val __UpperCamelCase =temp self.set_position(A_ , 0 ) def _a ( self , A_ , A_ ) -> List[str]: __UpperCamelCase =len(A_ ) // 2 - 1 for i in range(A_ , -1 , -1 ): self.top_to_bottom(A_ , A_ , len(A_ ) , A_ ) def _a ( self , A_ , A_ ) -> str: __UpperCamelCase =positions[0] __UpperCamelCase =sys.maxsize self.top_to_bottom(A_ , 0 , len(A_ ) , A_ ) return temp def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =Heap() __UpperCamelCase =[0] * len(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[-1] * len(SCREAMING_SNAKE_CASE__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __UpperCamelCase =[] # Heap of Distance of vertices from their neighboring vertex __UpperCamelCase =[] for vertex in range(len(SCREAMING_SNAKE_CASE__ ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE__ ) heap.node_position.append(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] __UpperCamelCase =1 __UpperCamelCase =sys.maxsize for neighbor, distance in adjacency_list[0]: __UpperCamelCase =0 __UpperCamelCase =distance heap.heapify(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =heap.delete_minimum(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __UpperCamelCase =1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE__ )] ): __UpperCamelCase =distance heap.bottom_to_top( SCREAMING_SNAKE_CASE__ , heap.get_position(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _A = int(input('Enter number of edges: ').strip()) _A = defaultdict(list) for _ in range(edges_number): _A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
62
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__snake_case ) class _snake_case ( __snake_case ): '''simple docstring''' A__ : str = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True} ) A__ : ClassVar[Features] = Features({"audio": Audio()} ) A__ : ClassVar[Features] = Features({"transcription": Value("string" )} ) A__ : str = "audio" A__ : str = "transcription" def A__ ( self: int ,lowerCamelCase_: Union[str, Any] ) -> Optional[Any]: if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] ,lowerCamelCase_ ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) UpperCAmelCase_ : Any = copy.deepcopy(self ) UpperCAmelCase_ : Union[str, Any] = self.input_schema.copy() UpperCAmelCase_ : Any = features[self.audio_column] UpperCAmelCase_ : Union[str, Any] = input_schema return task_template @property def A__ ( self: List[str] ) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
345
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: lowerCAmelCase_ : Optional[Any] = None lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase_ : Tuple = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ : Tuple = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', }, 'tokenizer_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json', }, } lowerCAmelCase_ : Union[str, Any] = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } lowerCAmelCase_ : int = '▁' # Segments (not really needed) lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : int = 1 lowerCAmelCase_ : Optional[Any] = 2 lowerCAmelCase_ : List[str] = 3 lowerCAmelCase_ : List[str] = 4 class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =VOCAB_FILES_NAMES __a =PRETRAINED_VOCAB_FILES_MAP __a =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a ='left' __a =XLNetTokenizer def __init__( self : Optional[int] , __a : Optional[int]=None , __a : str=None , __a : Any=False , __a : List[Any]=True , __a : List[Any]=False , __a : List[str]="<s>" , __a : Optional[Any]="</s>" , __a : str="<unk>" , __a : Union[str, Any]="<sep>" , __a : List[str]="<pad>" , __a : int="<cls>" , __a : Tuple="<mask>" , __a : Any=["<eop>", "<eod>"] , **__a : int , ): # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( vocab_file=__a , tokenizer_file=__a , do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , additional_special_tokens=__a , **__a , ) _a = 3 _a = do_lower_case _a = remove_space _a = keep_accents _a = vocab_file _a = False if not self.vocab_file else True def UpperCamelCase__ ( self : str , __a : List[int] , __a : Optional[List[int]] = None ): _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCamelCase__ ( self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None ): _a = [self.sep_token_id] _a = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCamelCase__ ( self : Optional[int] , __a : str , __a : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _a = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
63
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = "layoutlmv3" def __init__( self: str ,lowerCamelCase_: Any=50265 ,lowerCamelCase_: int=768 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: List[Any]=3072 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: Any=0.1 ,lowerCamelCase_: Tuple=512 ,lowerCamelCase_: Union[str, Any]=2 ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: List[str]=1e-5 ,lowerCamelCase_: int=1 ,lowerCamelCase_: int=0 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Dict=1024 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=32 ,lowerCamelCase_: Union[str, Any]=128 ,lowerCamelCase_: Tuple=64 ,lowerCamelCase_: Tuple=256 ,lowerCamelCase_: List[str]=True ,lowerCamelCase_: Optional[int]=True ,lowerCamelCase_: Any=True ,lowerCamelCase_: Dict=224 ,lowerCamelCase_: Optional[int]=3 ,lowerCamelCase_: Optional[int]=16 ,lowerCamelCase_: Dict=None ,**lowerCamelCase_: str ,) -> List[Any]: super().__init__( vocab_size=lowerCamelCase_ ,hidden_size=lowerCamelCase_ ,num_hidden_layers=lowerCamelCase_ ,num_attention_heads=lowerCamelCase_ ,intermediate_size=lowerCamelCase_ ,hidden_act=lowerCamelCase_ ,hidden_dropout_prob=lowerCamelCase_ ,attention_probs_dropout_prob=lowerCamelCase_ ,max_position_embeddings=lowerCamelCase_ ,type_vocab_size=lowerCamelCase_ ,initializer_range=lowerCamelCase_ ,layer_norm_eps=lowerCamelCase_ ,pad_token_id=lowerCamelCase_ ,bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,**lowerCamelCase_ ,) UpperCAmelCase_ : List[Any] = max_ad_position_embeddings UpperCAmelCase_ : Optional[int] = coordinate_size UpperCAmelCase_ : Optional[int] = shape_size UpperCAmelCase_ : Optional[Any] = has_relative_attention_bias UpperCAmelCase_ : Optional[int] = rel_pos_bins UpperCAmelCase_ : Union[str, Any] = max_rel_pos UpperCAmelCase_ : Dict = has_spatial_attention_bias UpperCAmelCase_ : Optional[int] = rel_ad_pos_bins UpperCAmelCase_ : Tuple = max_rel_ad_pos UpperCAmelCase_ : Union[str, Any] = text_embed UpperCAmelCase_ : Optional[Any] = visual_embed UpperCAmelCase_ : List[str] = input_size UpperCAmelCase_ : str = num_channels UpperCAmelCase_ : Optional[int] = patch_size UpperCAmelCase_ : Tuple = classifier_dropout class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = version.parse("1.12" ) @property def A__ ( self: Dict ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def A__ ( self: Any ) -> float: return 1e-5 @property def A__ ( self: int ) -> int: return 12 def A__ ( self: List[str] ,lowerCamelCase_: "ProcessorMixin" ,lowerCamelCase_: int = -1 ,lowerCamelCase_: int = -1 ,lowerCamelCase_: bool = False ,lowerCamelCase_: Optional["TensorType"] = None ,lowerCamelCase_: int = 3 ,lowerCamelCase_: int = 40 ,lowerCamelCase_: int = 40 ,) -> Mapping[str, Any]: setattr(processor.image_processor ,"""apply_ocr""" ,lowerCamelCase_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ : List[str] = compute_effective_axis_dimension( lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ : int = processor.tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) UpperCAmelCase_ : int = compute_effective_axis_dimension( lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ : Optional[int] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCAmelCase_ : List[Any] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCAmelCase_ : Any = self._generate_dummy_images(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = dict( processor( lowerCamelCase_ ,text=lowerCamelCase_ ,boxes=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,) ) return inputs
345
0
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase__ (snake_case__ : int , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : int , snake_case__ : Optional[int]=True , snake_case__ : Optional[int]="pt" ): """simple docstring""" _snake_case : Dict = {"""add_prefix_space""": True} if isinstance(snake_case__ , snake_case__ ) and not line.startswith(""" """ ) else {} _snake_case : Optional[Any] = padding_side return tokenizer( [line] , max_length=snake_case__ , padding="""max_length""" if pad_to_max_length else None , truncation=snake_case__ , return_tensors=snake_case__ , add_special_tokens=snake_case__ , **snake_case__ , ) def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Any=None , ): """simple docstring""" _snake_case : List[Any] = input_ids.ne(snake_case__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowercase( __a ): '''simple docstring''' def __init__( self: str, a_: Any, a_: Union[str, Any], a_: Dict, a_: Dict, a_: int="train", a_: Any=None, a_: Any=None, a_: Any=None, a_: Tuple="", ): '''simple docstring''' super().__init__() _snake_case : str = Path(a_ ).joinpath(type_path + """.source""" ) _snake_case : Optional[int] = Path(a_ ).joinpath(type_path + """.target""" ) _snake_case : Optional[Any] = self.get_char_lens(self.src_file ) _snake_case : Tuple = max_source_length _snake_case : Any = max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" _snake_case : List[str] = tokenizer _snake_case : Union[str, Any] = prefix if n_obs is not None: _snake_case : List[Any] = self.src_lens[:n_obs] _snake_case : Dict = src_lang _snake_case : List[Any] = tgt_lang def __len__( self: Any ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self: Union[str, Any], a_: List[Any] ): '''simple docstring''' _snake_case : Optional[int] = index + 1 # linecache starts at 1 _snake_case : Optional[Any] = self.prefix + linecache.getline(str(self.src_file ), a_ ).rstrip("""\n""" ) _snake_case : int = linecache.getline(str(self.tgt_file ), a_ ).rstrip("""\n""" ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer, a_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _snake_case : Dict = ( self.tokenizer.question_encoder if isinstance(self.tokenizer, a_ ) else self.tokenizer ) _snake_case : str = self.tokenizer.generator if isinstance(self.tokenizer, a_ ) else self.tokenizer _snake_case : Tuple = encode_line(a_, a_, self.max_source_length, """right""" ) _snake_case : Optional[Any] = encode_line(a_, a_, self.max_target_length, """right""" ) _snake_case : Optional[int] = source_inputs["""input_ids"""].squeeze() _snake_case : Optional[Any] = target_inputs["""input_ids"""].squeeze() _snake_case : List[Any] = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCamelCase_ ( a_: Union[str, Any] ): '''simple docstring''' return [len(a_ ) for x in Path(a_ ).open().readlines()] def UpperCamelCase_ ( self: Optional[int], a_: List[str] ): '''simple docstring''' _snake_case : Any = torch.stack([x["""input_ids"""] for x in batch] ) _snake_case : Optional[int] = torch.stack([x["""attention_mask"""] for x in batch] ) _snake_case : Tuple = torch.stack([x["""decoder_input_ids"""] for x in batch] ) _snake_case : Tuple = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer, a_ ) else self.tokenizer.pad_token_id ) _snake_case : str = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer, a_ ) else self.tokenizer.pad_token_id ) _snake_case : Optional[int] = trim_batch(a_, a_ ) _snake_case , _snake_case : List[Any] = trim_batch(a_, a_, attention_mask=a_ ) _snake_case : Tuple = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch A_ = getLogger(__name__) def UpperCAmelCase__ (snake_case__ : List[List] ): """simple docstring""" return list(itertools.chain.from_iterable(snake_case__ ) ) def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : Any = get_git_info() save_json(snake_case__ , os.path.join(snake_case__ , """git_log.json""" ) ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Any=4 , **snake_case__ : str ): """simple docstring""" with open(snake_case__ , """w""" ) as f: json.dump(snake_case__ , snake_case__ , indent=snake_case__ , **snake_case__ ) def UpperCAmelCase__ (snake_case__ : Tuple ): """simple docstring""" with open(snake_case__ ) as f: return json.load(snake_case__ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : int = git.Repo(search_parent_directories=snake_case__ ) _snake_case : List[str] = { """repo_id""": str(snake_case__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def UpperCAmelCase__ (snake_case__ : Callable , snake_case__ : Iterable ): """simple docstring""" return list(map(snake_case__ , snake_case__ ) ) def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" with open(snake_case__ , """wb""" ) as f: return pickle.dump(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : Union[str, Any] ): """simple docstring""" def remove_articles(snake_case__ : Optional[Any] ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , snake_case__ ) def white_space_fix(snake_case__ : Dict ): return " ".join(text.split() ) def remove_punc(snake_case__ : Any ): _snake_case : List[str] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(snake_case__ : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__ ) ) ) ) def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Optional[int] ): """simple docstring""" _snake_case : Tuple = normalize_answer(snake_case__ ).split() _snake_case : Tuple = normalize_answer(snake_case__ ).split() _snake_case : List[str] = Counter(snake_case__ ) & Counter(snake_case__ ) _snake_case : Dict = sum(common.values() ) if num_same == 0: return 0 _snake_case : List[str] = 1.0 * num_same / len(snake_case__ ) _snake_case : Optional[int] = 1.0 * num_same / len(snake_case__ ) _snake_case : List[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : Tuple ): """simple docstring""" return normalize_answer(snake_case__ ) == normalize_answer(snake_case__ ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : List[str] ): """simple docstring""" assert len(snake_case__ ) == len(snake_case__ ) _snake_case : Union[str, Any] = 0 for hypo, pred in zip(snake_case__ , snake_case__ ): em += exact_match_score(snake_case__ , snake_case__ ) if len(snake_case__ ) > 0: em /= len(snake_case__ ) return {"em": em} def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" return model_prefix.startswith("""rag""" ) def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int , snake_case__ : str ): """simple docstring""" _snake_case : int = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _snake_case : List[Any] = """dropout_rate""" for p in extra_params: if getattr(snake_case__ , snake_case__ , snake_case__ ): if not hasattr(snake_case__ , snake_case__ ) and not hasattr(snake_case__ , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(snake_case__ ) ) delattr(snake_case__ , snake_case__ ) continue _snake_case : str = p if hasattr(snake_case__ , snake_case__ ) else equivalent_param[p] setattr(snake_case__ , snake_case__ , getattr(snake_case__ , snake_case__ ) ) delattr(snake_case__ , snake_case__ ) return hparams, config
64
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def lowerCamelCase_ ( _a : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_a , _a ) def lowerCamelCase_ ( _a : Any ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = emb.weight.shape UpperCAmelCase_ : Tuple = nn.Linear(_a , _a , bias=_a ) UpperCAmelCase_ : List[Any] = emb.weight.data return lin_layer def lowerCamelCase_ ( _a : Dict ): '''simple docstring''' UpperCAmelCase_ : int = torch.load(_a , map_location="""cpu""" ) UpperCAmelCase_ : Dict = Namespace(**checkpoint["""cfg"""]["""model"""] ) UpperCAmelCase_ : Optional[int] = checkpoint["""model"""] remove_ignore_keys_(_a ) UpperCAmelCase_ : str = state_dict["""decoder.embed_tokens.weight"""].shape[0] UpperCAmelCase_ : List[str] = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} UpperCAmelCase_ : int = XGLMConfig( vocab_size=_a , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) UpperCAmelCase_ : List[str] = XGLMForCausalLM(_a ) UpperCAmelCase_ : Tuple = model.load_state_dict(_a , strict=_a ) print(_a ) UpperCAmelCase_ : Optional[Any] = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
345
0
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class A ( UpperCAmelCase_ ): def __init__(self : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : Dict=1_3 , __UpperCAmelCase : str=7 , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=True , __UpperCAmelCase : Dict=9_9 , __UpperCAmelCase : List[Any]=3_2 , __UpperCAmelCase : str=5 , __UpperCAmelCase : List[str]=4 , __UpperCAmelCase : int=6_4 , __UpperCAmelCase : int="gelu" , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : Optional[Any]=5_1_2 , __UpperCAmelCase : Optional[Any]=1_6 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : str=3 , __UpperCAmelCase : Union[str, Any]=4 , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[Any]=2 , __UpperCAmelCase : List[str]=2 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : int=4 , __UpperCAmelCase : Dict=1 , ) -> Any: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_input_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_labels UpperCAmelCase__ = num_choices UpperCAmelCase__ = scope UpperCAmelCase__ = q_groups UpperCAmelCase__ = k_groups UpperCAmelCase__ = v_groups UpperCAmelCase__ = post_attention_groups UpperCAmelCase__ = intermediate_groups UpperCAmelCase__ = output_groups def lowercase_ (self : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def lowercase_ (self : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] ) -> int: """simple docstring""" UpperCAmelCase__ = SqueezeBertModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ (self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = SqueezeBertForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ (self : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase__ = SqueezeBertForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase__ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ (self : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = SqueezeBertForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ (self : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = SqueezeBertForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ (self : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = SqueezeBertForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ (self : Dict ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = config_and_inputs UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Optional[int] = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __UpperCAmelCase : Any = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : str = False __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = False def lowercase_ (self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = SqueezeBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase , dim=3_7 ) def lowercase_ (self : Any ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def lowercase_ (self : List[str] ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*__UpperCAmelCase ) def lowercase_ (self : Any ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*__UpperCAmelCase ) def lowercase_ (self : str ) -> Any: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*__UpperCAmelCase ) def lowercase_ (self : Dict ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*__UpperCAmelCase ) def lowercase_ (self : Any ) -> int: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*__UpperCAmelCase ) def lowercase_ (self : Dict ) -> Any: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*__UpperCAmelCase ) @slow def lowercase_ (self : List[str] ) -> List[Any]: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = SqueezeBertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_torch class A ( unittest.TestCase ): @slow def lowercase_ (self : int ) -> int: """simple docstring""" UpperCAmelCase__ = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" ) UpperCAmelCase__ = torch.tensor([[1, 2_9_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 1_3, 1_5_8_8, 2]] ) UpperCAmelCase__ = model(__UpperCAmelCase )[0] UpperCAmelCase__ = torch.Size((1, 3) ) self.assertEqual(output.shape , __UpperCAmelCase ) UpperCAmelCase__ = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-4 ) )
65
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : '''simple docstring''' def __init__( self: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any]=13 ,lowerCamelCase_: Optional[int]=32 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: int=16 ,lowerCamelCase_: Optional[Any]=[32, 64, 128] ,lowerCamelCase_: Optional[int]=[1, 2, 1] ,lowerCamelCase_: Union[str, Any]=[2, 2, 4] ,lowerCamelCase_: int=2 ,lowerCamelCase_: List[str]=2.0 ,lowerCamelCase_: List[Any]=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.1 ,lowerCamelCase_: Optional[int]="gelu" ,lowerCamelCase_: Any=False ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=0.0_2 ,lowerCamelCase_: int=1e-5 ,lowerCamelCase_: int=True ,lowerCamelCase_: Tuple=None ,lowerCamelCase_: str=True ,lowerCamelCase_: Dict=10 ,lowerCamelCase_: str=8 ,lowerCamelCase_: Union[str, Any]=["stage1", "stage2"] ,lowerCamelCase_: Optional[Any]=[1, 2] ,) -> str: UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : str = patch_size UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : Dict = embed_dim UpperCAmelCase_ : Dict = hidden_sizes UpperCAmelCase_ : str = depths UpperCAmelCase_ : int = num_heads UpperCAmelCase_ : List[Any] = window_size UpperCAmelCase_ : Union[str, Any] = mlp_ratio UpperCAmelCase_ : int = qkv_bias UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = drop_path_rate UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : List[Any] = use_absolute_embeddings UpperCAmelCase_ : List[Any] = patch_norm UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Optional[Any] = scope UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Optional[int] = encoder_stride UpperCAmelCase_ : Optional[int] = out_features UpperCAmelCase_ : Optional[int] = out_indices def A__ ( self: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : int = None if self.use_labels: UpperCAmelCase_ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Any = self.get_config() return config, pixel_values, labels def A__ ( self: List[Any] ) -> Tuple: return FocalNetConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> List[str]: UpperCAmelCase_ : Optional[int] = FocalNetModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ) UpperCAmelCase_ : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase_ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[int] ) -> List[str]: UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def A__ ( self: Optional[int] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : Any = FocalNetForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : int = 1 UpperCAmelCase_ : List[str] = FocalNetForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ) -> int: UpperCAmelCase_ : List[Any] = self.type_sequence_label_size UpperCAmelCase_ : int = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = config_and_inputs UpperCAmelCase_ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : List[Any] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) A__ : Union[str, Any] = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) A__ : Optional[Any] = False A__ : Any = False A__ : List[str] = False A__ : Any = False A__ : Any = False def A__ ( self: List[str] ) -> Tuple: UpperCAmelCase_ : Dict = FocalNetModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self ,config_class=lowerCamelCase_ ,embed_dim=37 ,has_text_modality=lowerCamelCase_ ) def A__ ( self: List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self: List[str] ) -> Union[str, Any]: return def A__ ( self: str ) -> List[str]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def A__ ( self: Tuple ) -> int: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def A__ ( self: int ) -> int: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def A__ ( self: int ) -> Dict: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def A__ ( self: Optional[Any] ) -> Optional[Any]: pass def A__ ( self: Optional[Any] ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Optional[Any] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) ) def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : str = model_class(lowerCamelCase_ ) UpperCAmelCase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Any = [*signature.parameters.keys()] UpperCAmelCase_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> List[str]: UpperCAmelCase_ : Tuple = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : Any = outputs.hidden_states UpperCAmelCase_ : List[Any] = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # FocalNet has a different seq_length UpperCAmelCase_ : int = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) UpperCAmelCase_ : Union[str, Any] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = reshaped_hidden_states[0].shape UpperCAmelCase_ : List[Any] = ( reshaped_hidden_states[0].view(lowerCamelCase_ ,lowerCamelCase_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def A__ ( self: Any ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : str = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Union[str, Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[str] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Optional[int] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) @slow def A__ ( self: Optional[int] ) -> Optional[Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = FocalNetModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @require_vision @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self: Optional[int] ) -> str: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = self.default_image_processor UpperCAmelCase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCAmelCase_ : Dict = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Dict = model(**lowerCamelCase_ ) # verify the logits UpperCAmelCase_ : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() ,281 ) @require_torch class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : List[Any] = (FocalNetBackbone,) if is_torch_available() else () A__ : int = FocalNetConfig A__ : List[str] = False def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : str = FocalNetModelTester(self )
345
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = {"vocab_file": "spiece.model"} __a = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } __a = { "albert-base-v1": 5_12, "albert-large-v1": 5_12, "albert-xlarge-v1": 5_12, "albert-xxlarge-v1": 5_12, "albert-base-v2": 5_12, "albert-large-v2": 5_12, "albert-xlarge-v2": 5_12, "albert-xxlarge-v2": 5_12, } __a = "▁" class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : List[Any] = VOCAB_FILES_NAMES _A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _A : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self: List[Any] , snake_case: Union[str, Any] , snake_case: Tuple=True , snake_case: Tuple=True , snake_case: List[str]=False , snake_case: str="[CLS]" , snake_case: Union[str, Any]="[SEP]" , snake_case: Union[str, Any]="<unk>" , snake_case: int="[SEP]" , snake_case: Optional[Any]="<pad>" , snake_case: Dict="[CLS]" , snake_case: Any="[MASK]" , snake_case: Optional[Dict[str, Any]] = None , **snake_case: int , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. snake_case_ :int = ( AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case , normalized=snake_case ) if isinstance(snake_case , snake_case ) else mask_token ) snake_case_ :List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case , remove_space=snake_case , keep_accents=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) snake_case_ :Any = do_lower_case snake_case_ :Optional[int] = remove_space snake_case_ :Optional[Any] = keep_accents snake_case_ :List[str] = vocab_file snake_case_ :int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) @property def lowerCAmelCase_ ( self: int ) -> str: return len(self.sp_model ) def lowerCAmelCase_ ( self: Tuple ) -> Optional[Any]: snake_case_ :Optional[int] = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: str ) -> List[str]: snake_case_ :List[str] = self.__dict__.copy() snake_case_ :Optional[Any] = None return state def __setstate__( self: Optional[int] , snake_case: Union[str, Any] ) -> Dict: snake_case_ :List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case_ :str = {} snake_case_ :str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self: Tuple , snake_case: List[str] ) -> List[str]: if self.remove_space: snake_case_ :str = """ """.join(inputs.strip().split() ) else: snake_case_ :List[str] = inputs snake_case_ :Union[str, Any] = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: snake_case_ :Optional[Any] = unicodedata.normalize("""NFKD""" , snake_case ) snake_case_ :Tuple = """""".join([c for c in outputs if not unicodedata.combining(snake_case )] ) if self.do_lower_case: snake_case_ :Optional[Any] = outputs.lower() return outputs def lowerCAmelCase_ ( self: List[str] , snake_case: str ) -> List[str]: snake_case_ :Tuple = self.preprocess_text(snake_case ) snake_case_ :str = self.sp_model.encode(snake_case , out_type=snake_case ) snake_case_ :List[str] = [] for piece in pieces: if len(snake_case ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): snake_case_ :Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case_ :List[Any] = cur_pieces[1:] else: snake_case_ :Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case ) else: new_pieces.append(snake_case ) return new_pieces def lowerCAmelCase_ ( self: Optional[int] , snake_case: Union[str, Any] ) -> Any: return self.sp_model.PieceToId(snake_case ) def lowerCAmelCase_ ( self: Tuple , snake_case: Dict ) -> str: return self.sp_model.IdToPiece(snake_case ) def lowerCAmelCase_ ( self: List[str] , snake_case: Dict ) -> Optional[int]: snake_case_ :str = [] snake_case_ :Tuple = """""" snake_case_ :Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case ) + token snake_case_ :Dict = True snake_case_ :Dict = [] else: current_sub_tokens.append(snake_case ) snake_case_ :Dict = False out_string += self.sp_model.decode(snake_case ) return out_string.strip() def lowerCAmelCase_ ( self: Optional[int] , snake_case: List[int] , snake_case: Optional[List[int]] = None ) -> List[int]: snake_case_ :int = [self.sep_token_id] snake_case_ :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self: Optional[int] , snake_case: List[int] , snake_case: Optional[List[int]] = None , snake_case: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is not None: return [1] + ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1] def lowerCAmelCase_ ( self: Any , snake_case: List[int] , snake_case: Optional[List[int]] = None ) -> List[int]: snake_case_ :Tuple = [self.sep_token_id] snake_case_ :Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self: Dict , snake_case: str , snake_case: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case_ :Any = os.path.join( snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , """wb""" ) as fi: snake_case_ :Dict = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
66
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : '''simple docstring''' def __init__( self: Tuple ,lowerCamelCase_: List[str] ,lowerCamelCase_: int=13 ,lowerCamelCase_: int=32 ,lowerCamelCase_: Optional[int]=2 ,lowerCamelCase_: Any=3 ,lowerCamelCase_: str=16 ,lowerCamelCase_: Optional[Any]=[1, 2, 1] ,lowerCamelCase_: Tuple=[2, 2, 4] ,lowerCamelCase_: int=2 ,lowerCamelCase_: List[Any]=2.0 ,lowerCamelCase_: str=True ,lowerCamelCase_: Optional[int]=0.0 ,lowerCamelCase_: List[Any]=0.0 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: Tuple="gelu" ,lowerCamelCase_: Union[str, Any]=False ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Optional[int]=0.0_2 ,lowerCamelCase_: int=1e-5 ,lowerCamelCase_: Optional[int]=True ,lowerCamelCase_: Union[str, Any]=None ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Optional[int]=10 ,lowerCamelCase_: Tuple=8 ,) -> List[Any]: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : int = image_size UpperCAmelCase_ : Union[str, Any] = patch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Union[str, Any] = depths UpperCAmelCase_ : List[str] = num_heads UpperCAmelCase_ : int = window_size UpperCAmelCase_ : List[str] = mlp_ratio UpperCAmelCase_ : Tuple = qkv_bias UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : str = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = drop_path_rate UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : int = use_absolute_embeddings UpperCAmelCase_ : Any = patch_norm UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Dict = scope UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Optional[Any] = type_sequence_label_size UpperCAmelCase_ : List[str] = encoder_stride def A__ ( self: Any ) -> int: UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : List[Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : str = self.get_config() return config, pixel_values, labels def A__ ( self: List[Any] ) -> Union[str, Any]: return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def A__ ( self: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ) -> str: UpperCAmelCase_ : str = SwinvaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase_ : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self: List[Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: int ) -> int: UpperCAmelCase_ : Any = SwinvaForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : str = 1 UpperCAmelCase_ : Optional[Any] = SwinvaForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self: int ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any] ) -> int: UpperCAmelCase_ : Union[str, Any] = self.type_sequence_label_size UpperCAmelCase_ : int = SwinvaForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def A__ ( self: str ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = config_and_inputs UpperCAmelCase_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Tuple = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) A__ : Optional[Any] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) A__ : List[Any] = False A__ : Tuple = False A__ : int = False A__ : Union[str, Any] = False def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : Any = SwinvaModelTester(self ) UpperCAmelCase_ : str = ConfigTester(self ,config_class=lowerCamelCase_ ,embed_dim=37 ) def A__ ( self: Optional[int] ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self: Any ) -> Dict: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def A__ ( self: int ) -> Dict: pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def A__ ( self: Tuple ) -> List[str]: pass def A__ ( self: str ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(lowerCamelCase_ ) UpperCAmelCase_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : int = [*signature.parameters.keys()] UpperCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Any = True for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : str = True UpperCAmelCase_ : List[Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[Any] = outputs.attentions UpperCAmelCase_ : List[str] = len(self.model_tester.depths ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase_ : str = True UpperCAmelCase_ : Optional[Any] = config.window_size**2 UpperCAmelCase_ : Optional[int] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : List[Any] = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) UpperCAmelCase_ : Optional[Any] = len(lowerCamelCase_ ) # Check attention is always last and order is fine UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Tuple = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) if hasattr(self.model_tester ,"""num_hidden_states_types""" ): UpperCAmelCase_ : List[Any] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase_ : List[str] = 2 self.assertEqual(out_len + added_hidden_states ,len(lowerCamelCase_ ) ) UpperCAmelCase_ : Any = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def A__ ( self: List[str] ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Optional[int] ) -> List[Any]: UpperCAmelCase_ : str = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : int = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : List[str] = outputs.hidden_states UpperCAmelCase_ : Optional[Any] = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # Swinv2 has a different seq_length UpperCAmelCase_ : Optional[Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) UpperCAmelCase_ : Optional[int] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = reshaped_hidden_states[0].shape UpperCAmelCase_ : Optional[Any] = ( reshaped_hidden_states[0].view(lowerCamelCase_ ,lowerCamelCase_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def A__ ( self: Any ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase_ : Any = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : str = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[str] ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Union[str, Any] = 3 UpperCAmelCase_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ : List[str] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ : Optional[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : List[str] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) def A__ ( self: Optional[int] ) -> str: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def A__ ( self: str ) -> Tuple: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Dict = SwinvaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def A__ ( self: Any ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @require_vision @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self: Dict ) -> Optional[Any]: return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def A__ ( self: str ) -> List[Any]: UpperCAmelCase_ : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( lowerCamelCase_ ) UpperCAmelCase_ : Any = self.default_image_processor UpperCAmelCase_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCAmelCase_ : Optional[int] = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(**lowerCamelCase_ ) # verify the logits UpperCAmelCase_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Any = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) )
345
0
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
67
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED UpperCamelCase_ = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } UpperCamelCase_ = { '''allenai/led-base-16384''': 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : int = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCAmelCase_ : Dict = bs[:] UpperCAmelCase_ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(_a ) cs.append(2**8 + n ) n += 1 UpperCAmelCase_ : Any = [chr(_a ) for n in cs] return dict(zip(_a , _a ) ) def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = set() UpperCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ : Optional[int] = char return pairs class _snake_case ( __snake_case ): '''simple docstring''' A__ : str = VOCAB_FILES_NAMES A__ : List[str] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self: Union[str, Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any]="replace" ,lowerCamelCase_: Optional[Any]="<s>" ,lowerCamelCase_: List[Any]="</s>" ,lowerCamelCase_: List[str]="</s>" ,lowerCamelCase_: int="<s>" ,lowerCamelCase_: int="<unk>" ,lowerCamelCase_: str="<pad>" ,lowerCamelCase_: Optional[Any]="<mask>" ,lowerCamelCase_: List[str]=False ,**lowerCamelCase_: Tuple ,) -> Any: UpperCAmelCase_ : Union[str, Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else bos_token UpperCAmelCase_ : int = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else eos_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else sep_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else cls_token UpperCAmelCase_ : Optional[Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else unk_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : str = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ ,bos_token=lowerCamelCase_ ,eos_token=lowerCamelCase_ ,unk_token=lowerCamelCase_ ,sep_token=lowerCamelCase_ ,cls_token=lowerCamelCase_ ,pad_token=lowerCamelCase_ ,mask_token=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ,**lowerCamelCase_ ,) with open(lowerCamelCase_ ,encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase_ : Union[str, Any] = json.load(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ : Any = errors # how to handle errors in decoding UpperCAmelCase_ : int = bytes_to_unicode() UpperCAmelCase_ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ ,encoding="""utf-8""" ) as merges_handle: UpperCAmelCase_ : Any = merges_handle.read().split("""\n""" )[1:-1] UpperCAmelCase_ : int = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase_ : int = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self: List[str] ) -> List[str]: return len(self.encoder ) def A__ ( self: Any ) -> Union[str, Any]: return dict(self.encoder ,**self.added_tokens_encoder ) def A__ ( self: Tuple ,lowerCamelCase_: Dict ) -> Optional[Any]: if token in self.cache: return self.cache[token] UpperCAmelCase_ : Union[str, Any] = tuple(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: UpperCAmelCase_ : Union[str, Any] = min(lowerCamelCase_ ,key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ , UpperCAmelCase_ : Any = bigram UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : List[str] = 0 while i < len(lowerCamelCase_ ): try: UpperCAmelCase_ : str = word.index(lowerCamelCase_ ,lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase_ : Union[str, Any] = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ : List[str] = tuple(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = new_word if len(lowerCamelCase_ ) == 1: break else: UpperCAmelCase_ : List[str] = get_pairs(lowerCamelCase_ ) UpperCAmelCase_ : int = """ """.join(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = word return word def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tuple ) -> List[str]: UpperCAmelCase_ : str = [] for token in re.findall(self.pat ,lowerCamelCase_ ): UpperCAmelCase_ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) ) return bpe_tokens def A__ ( self: List[Any] ,lowerCamelCase_: Optional[Any] ) -> Optional[int]: return self.encoder.get(lowerCamelCase_ ,self.encoder.get(self.unk_token ) ) def A__ ( self: List[str] ,lowerCamelCase_: str ) -> Optional[Any]: return self.decoder.get(lowerCamelCase_ ) def A__ ( self: List[str] ,lowerCamelCase_: List[str] ) -> List[Any]: UpperCAmelCase_ : str = """""".join(lowerCamelCase_ ) UpperCAmelCase_ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors ) return text def A__ ( self: Optional[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : List[Any] = os.path.join( lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_ : List[str] = os.path.join( lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCamelCase_ ,ensure_ascii=lowerCamelCase_ ) + """\n""" ) UpperCAmelCase_ : str = 0 with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) UpperCAmelCase_ : Tuple = token_index writer.write(""" """.join(lowerCamelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file def A__ ( self: str ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] UpperCAmelCase_ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self: Union[str, Any] ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ,lowerCamelCase_: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ ,token_ids_a=lowerCamelCase_ ,already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def A__ ( self: str ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ) -> List[int]: UpperCAmelCase_ : Optional[Any] = [self.sep_token_id] UpperCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: str=False ,**lowerCamelCase_: List[str] ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = kwargs.pop("""add_prefix_space""" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): UpperCAmelCase_ : Dict = """ """ + text return (text, kwargs) def A__ ( self: List[str] ,lowerCamelCase_: Union[Dict[str, EncodedInput], BatchEncoding] ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: Optional[bool] = None ,) -> dict: UpperCAmelCase_ : Optional[int] = super()._pad( encoded_inputs=lowerCamelCase_ ,max_length=lowerCamelCase_ ,padding_strategy=lowerCamelCase_ ,pad_to_multiple_of=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,) # Load from model defaults if return_attention_mask is None: UpperCAmelCase_ : str = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase_ : str = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase_ : List[Any] = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ ) if needs_to_be_padded: UpperCAmelCase_ : Dict = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase_ : str = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase_ : List[str] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
345
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int = 1_0_0 ) -> int: '''simple docstring''' A__ = (n * (n + 1) // 2) ** 2 A__ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
68
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Union[str, Any] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self: List[str] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : Optional[Any] = (32, 32) UpperCAmelCase_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def A__ ( self: List[Any] ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : int = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def A__ ( self: str ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def A__ ( self: Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase_ : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(lowerCamelCase_ ) @property def A__ ( self: Tuple ) -> Tuple: def extract(*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: str ): class _snake_case : '''simple docstring''' def __init__( self: List[Any] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = torch.ones([0] ) def A__ ( self: List[Any] ,lowerCamelCase_: str ) -> int: self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def A__ ( self: Union[str, Any] ) -> Tuple: UpperCAmelCase_ : int = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : int = self.dummy_cond_unet UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule="""scaled_linear""" ,clip_sample=lowerCamelCase_ ,set_alpha_to_one=lowerCamelCase_ ,) UpperCAmelCase_ : str = self.dummy_vae UpperCAmelCase_ : List[str] = self.dummy_text_encoder UpperCAmelCase_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : str = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : int = sd_pipe([prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) UpperCAmelCase_ : List[Any] = output.images UpperCAmelCase_ : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : Dict = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=lowerCamelCase_ ,)[0] UpperCAmelCase_ : int = image[0, -3:, -3:, -1] UpperCAmelCase_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Optional[Any] ) -> Any: UpperCAmelCase_ : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Dict = self.dummy_cond_unet UpperCAmelCase_ : List[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCAmelCase_ : str = self.dummy_vae UpperCAmelCase_ : Union[str, Any] = self.dummy_text_encoder UpperCAmelCase_ : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Any = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : int = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = sd_pipe([prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) UpperCAmelCase_ : str = output.images UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : int = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=lowerCamelCase_ ,)[0] UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: str ) -> Dict: UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ ,lowerCamelCase_ ) assert isinstance(pipe.scheduler ,lowerCamelCase_ ) assert pipe.safety_checker is None UpperCAmelCase_ : List[Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase_ : Optional[int] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : Tuple = self.dummy_cond_unet UpperCAmelCase_ : Dict = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = self.dummy_vae UpperCAmelCase_ : List[str] = self.dummy_text_encoder UpperCAmelCase_ : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 UpperCAmelCase_ : Optional[Any] = unet.half() UpperCAmelCase_ : Optional[int] = vae.half() UpperCAmelCase_ : int = bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Any = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : List[Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : Optional[int] = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self: List[str] ) -> List[Any]: UpperCAmelCase_ : Tuple = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : str = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) UpperCAmelCase_ : Optional[int] = 4003660346 UpperCAmelCase_ : int = 7 # without safety guidance (sld_guidance_scale = 0) UpperCAmelCase_ : Dict = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Dict = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Any = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : str = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Optional[int] ) -> Any: UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=lowerCamelCase_ ) UpperCAmelCase_ : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" UpperCAmelCase_ : List[Any] = 2734971755 UpperCAmelCase_ : Optional[Any] = 7 UpperCAmelCase_ : int = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Dict = output.images UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 UpperCAmelCase_ : Any = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : Dict = output.images UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Union[str, Any] ) -> int: UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) UpperCAmelCase_ : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) UpperCAmelCase_ : Optional[Any] = 1044355234 UpperCAmelCase_ : List[str] = 12 UpperCAmelCase_ : List[Any] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Any = output.images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 UpperCAmelCase_ : Optional[int] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : List[str] = output.images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] UpperCAmelCase_ : Any = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
345
0
"""simple docstring""" import math import sys def UpperCAmelCase ( UpperCAmelCase ) -> int: if number != int(UpperCAmelCase ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 snake_case_ = [-1] * (number + 1) snake_case_ = 0 for i in range(1 , number + 1 ): snake_case_ = sys.maxsize snake_case_ = int(math.sqrt(UpperCAmelCase ) ) for j in range(1 , root + 1 ): snake_case_ = 1 + answers[i - (j**2)] snake_case_ = min(UpperCAmelCase , UpperCAmelCase ) snake_case_ = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
69
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _snake_case : '''simple docstring''' def __init__( self: Optional[int] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Tuple=13 ,lowerCamelCase_: int=7 ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Dict=True ,lowerCamelCase_: str=True ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: int=99 ,lowerCamelCase_: List[str]=64 ,lowerCamelCase_: Tuple=32 ,lowerCamelCase_: List[str]=5 ,lowerCamelCase_: str=4 ,lowerCamelCase_: str=37 ,lowerCamelCase_: Union[str, Any]="gelu" ,lowerCamelCase_: Union[str, Any]=0.1 ,lowerCamelCase_: str=0.1 ,lowerCamelCase_: List[str]=512 ,lowerCamelCase_: Dict=16 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: List[str]=0.0_2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: Union[str, Any]=4 ,lowerCamelCase_: str=None ,) -> List[str]: UpperCAmelCase_ : Any = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : Dict = use_input_mask UpperCAmelCase_ : Any = use_token_type_ids UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : List[str] = embedding_size UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : Any = type_sequence_label_size UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Optional[int] = num_labels UpperCAmelCase_ : Optional[int] = num_choices UpperCAmelCase_ : List[str] = scope def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : List[str] = None if self.use_input_mask: UpperCAmelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Dict = None if self.use_token_type_ids: UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : int = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase_ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self: Any ) -> Dict: return MobileBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase_ ,initializer_range=self.initializer_range ,) def A__ ( self: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> int: UpperCAmelCase_ : Any = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def A__ ( self: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Dict ) -> int: UpperCAmelCase_ : Union[str, Any] = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self: str ,lowerCamelCase_: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: int ) -> int: UpperCAmelCase_ : List[Any] = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def A__ ( self: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> Optional[Any]: UpperCAmelCase_ : Tuple = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,next_sentence_label=lowerCamelCase_ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def A__ ( self: Any ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,start_positions=lowerCamelCase_ ,end_positions=lowerCamelCase_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def A__ ( self: List[str] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Any ) -> str: UpperCAmelCase_ : Optional[Any] = self.num_labels UpperCAmelCase_ : Union[str, Any] = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ) -> Any: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self: Tuple ,lowerCamelCase_: str ,lowerCamelCase_: int ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = self.num_choices UpperCAmelCase_ : Tuple = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Dict = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : str = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Optional[int] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def A__ ( self: List[str] ) -> str: UpperCAmelCase_ : str = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) A__ : List[str] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) A__ : List[str] = True def A__ ( self: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: int=False ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = super()._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ,return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): UpperCAmelCase_ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase_ ) return inputs_dict def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : List[str] = MobileBertModelTester(self ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self ,config_class=lowerCamelCase_ ,hidden_size=37 ) def A__ ( self: Optional[Any] ) -> List[Any]: self.config_tester.run_common_tests() def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Tuple: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _a : Union[str, Any] ): '''simple docstring''' return torch.tensor( _a , dtype=torch.long , device=_a , ) UpperCamelCase_ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self: List[Any] ) -> str: UpperCAmelCase_ : Any = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : str = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ )[0] UpperCAmelCase_ : Union[str, Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = torch.tensor( [ [ [-2.473_6526e07, 8.269_1656e04, 1.652_1838e05], [-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00], [2.604_7359e00, 1.567_7652e00, -1.732_4188e-01], ] ] ,device=lowerCamelCase_ ,) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
345
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : int ={ '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] =['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] =[ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] =[ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys A__ : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: str ) -> int: UpperCAmelCase_ : List[Any] = """ylacombe/bark-small""" UpperCAmelCase_ : Tuple = tempfile.mkdtemp() UpperCAmelCase_ : Union[str, Any] = """en_speaker_1""" UpperCAmelCase_ : Optional[Any] = """This is a test string""" UpperCAmelCase_ : int = """speaker_embeddings_path.json""" UpperCAmelCase_ : Any = """speaker_embeddings""" def A__ ( self: Tuple ,**lowerCamelCase_: List[str] ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint ,**lowerCamelCase_ ) def A__ ( self: str ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def A__ ( self: List[Any] ) -> int: UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = BarkProcessor(tokenizer=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) @slow def A__ ( self: List[Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) processor.save_pretrained( self.tmpdirname ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,speaker_embeddings_directory=self.speaker_embeddings_directory ,) UpperCAmelCase_ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname ,self.speaker_embeddings_dict_path ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : Any = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) UpperCAmelCase_ : Optional[int] = 35 UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : Dict = 8 UpperCAmelCase_ : Optional[int] = { """semantic_prompt""": np.ones(lowerCamelCase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : str = processor(text=self.input_string ,voice_preset=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,"""file.npz""" ) np.savez(lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string ,voice_preset=lowerCamelCase_ ) UpperCAmelCase_ : int = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Union[str, Any] = processor(text=self.input_string ,voice_preset=self.voice_preset ) def A__ ( self: Dict ) -> Tuple: UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Dict = BarkProcessor(tokenizer=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string ) UpperCAmelCase_ : str = tokenizer( self.input_string ,padding="""max_length""" ,max_length=256 ,add_special_tokens=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,return_token_type_ids=lowerCamelCase_ ,) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key].squeeze().tolist() )
345
0
import sys A_ :List[Any] = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def A ( a_ = N ) -> int: __UpperCamelCase : List[str] =-sys.maxsize - 1 for i in range(len(a_ ) - 12 ): __UpperCamelCase : Optional[int] =1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: __UpperCamelCase : List[str] =product return largest_product if __name__ == "__main__": print(f"{solution() = }")
71
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Any: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : str = -1 UpperCAmelCase_ : Dict = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase_ : Optional[int] = cs.out[:-1] self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: Dict ) -> Optional[Any]: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = -1 UpperCAmelCase_ : List[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : Dict = tokenizer.decode(greedy_ids[0] ) UpperCAmelCase_ : str = TextIteratorStreamer(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} UpperCAmelCase_ : str = Thread(target=model.generate ,kwargs=lowerCamelCase_ ) thread.start() UpperCAmelCase_ : int = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[Any] ) -> Dict: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = -1 UpperCAmelCase_ : Tuple = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Dict = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : str = greedy_ids[:, input_ids.shape[1] :] UpperCAmelCase_ : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ ,skip_prompt=lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase_ : List[str] = cs.out[:-1] self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: str ) -> str: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained("""distilgpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Any = -1 UpperCAmelCase_ : Union[str, Any] = torch.ones((1, 5) ,device=lowerCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: UpperCAmelCase_ : Union[str, Any] = TextStreamer(lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=1 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token UpperCAmelCase_ : List[str] = cs.out[:-1] # Remove the final "\n" UpperCAmelCase_ : Dict = tokenizer(lowerCamelCase_ ,return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape ,(1, 1) ) def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Any = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = -1 UpperCAmelCase_ : Optional[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = TextIteratorStreamer(lowerCamelCase_ ,timeout=0.0_0_1 ) UpperCAmelCase_ : Any = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} UpperCAmelCase_ : Dict = Thread(target=model.generate ,kwargs=lowerCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCamelCase_ ): UpperCAmelCase_ : Union[str, Any] = """""" for new_text in streamer: streamer_text += new_text
345
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _snake_case ( unittest.TestCase ): '''simple docstring''' @property def A__ ( self: Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") ,up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") ,) return model @property def A__ ( self: Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=3 ,) return model @property def A__ ( self: Tuple ) -> Any: torch.manual_seed(0 ) UpperCAmelCase_ : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(lowerCamelCase_ ) def A__ ( self: str ) -> Optional[Any]: UpperCAmelCase_ : str = self.dummy_uncond_unet UpperCAmelCase_ : List[Any] = DDIMScheduler() UpperCAmelCase_ : List[Any] = self.dummy_vq_model UpperCAmelCase_ : Optional[int] = LDMPipeline(unet=lowerCamelCase_ ,vqvae=lowerCamelCase_ ,scheduler=lowerCamelCase_ ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = torch.manual_seed(0 ) UpperCAmelCase_ : int = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ).images UpperCAmelCase_ : List[str] = torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ,return_dict=lowerCamelCase_ )[0] UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : str = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) UpperCAmelCase_ : Tuple = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = ldm(generator=lowerCamelCase_ ,num_inference_steps=5 ,output_type="""numpy""" ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase_ : int = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) UpperCAmelCase_ : Union[str, Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
345
0
from math import sqrt def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = 1_0_0_0_1 ) -> int: __lowerCamelCase : List[Any] = 0 __lowerCamelCase : str = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase__ ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase__ ): count += 1 return number if __name__ == "__main__": print(F"""{solution() = }""")
73
def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' UpperCAmelCase_ : Tuple = [0] * len(_a ) UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Dict = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_a ) ): if indegree[i] == 0: queue.append(_a ) while queue: UpperCAmelCase_ : List[str] = queue.pop(0 ) cnt += 1 topo.append(_a ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_a ) if cnt != len(_a ): print("""Cycle exists""" ) else: print(_a ) # Adjacency List of Graph UpperCamelCase_ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
345
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = '''speech_to_text''' _lowerCamelCase: Union[str, Any] = ['''past_key_values'''] _lowerCamelCase: Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Union[str, Any] ,A_ : Tuple=1_0000 ,A_ : Union[str, Any]=12 ,A_ : int=2048 ,A_ : List[Any]=4 ,A_ : int=6 ,A_ : List[Any]=2048 ,A_ : List[str]=4 ,A_ : Optional[Any]=0.0 ,A_ : str=0.0 ,A_ : Dict=True ,A_ : List[Any]=True ,A_ : int="relu" ,A_ : List[str]=256 ,A_ : Dict=0.1 ,A_ : List[Any]=0.0 ,A_ : List[Any]=0.0 ,A_ : Union[str, Any]=0.02 ,A_ : str=2 ,A_ : Union[str, Any]=True ,A_ : List[str]=1 ,A_ : Union[str, Any]=0 ,A_ : int=2 ,A_ : int=6000 ,A_ : Dict=1024 ,A_ : str=2 ,A_ : Tuple=(5, 5) ,A_ : List[str]=1024 ,A_ : str=80 ,A_ : int=1 ,**A_ : Union[str, Any] ,) -> Optional[Any]: A = vocab_size A = d_model A = encoder_ffn_dim A = encoder_layers A = encoder_attention_heads A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = encoder_layerdrop A = decoder_layerdrop A = use_cache A = encoder_layers A = scale_embedding # scale factor will be sqrt(d_model) if True A = max_source_positions A = max_target_positions A = num_conv_layers A = list(A_ ) A = conv_channels A = input_feat_per_channel A = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F'but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ' F'`config.num_conv_layers = {self.num_conv_layers}`.' ) super().__init__( pad_token_id=A_ ,bos_token_id=A_ ,eos_token_id=A_ ,is_encoder_decoder=A_ ,decoder_start_token_id=A_ ,**A_ ,)
74
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = "swinv2" A__ : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: List[str] ,lowerCamelCase_: List[str]=224 ,lowerCamelCase_: List[str]=4 ,lowerCamelCase_: List[Any]=3 ,lowerCamelCase_: Optional[Any]=96 ,lowerCamelCase_: Any=[2, 2, 6, 2] ,lowerCamelCase_: Dict=[3, 6, 12, 24] ,lowerCamelCase_: str=7 ,lowerCamelCase_: Optional[Any]=4.0 ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.0 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: str=False ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: Union[str, Any]=1e-5 ,lowerCamelCase_: str=32 ,**lowerCamelCase_: List[str] ,) -> Tuple: super().__init__(**lowerCamelCase_ ) UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : Tuple = patch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : List[Any] = embed_dim UpperCAmelCase_ : Dict = depths UpperCAmelCase_ : Dict = len(lowerCamelCase_ ) UpperCAmelCase_ : str = num_heads UpperCAmelCase_ : Tuple = window_size UpperCAmelCase_ : int = mlp_ratio UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : int = drop_path_rate UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : List[str] = use_absolute_embeddings UpperCAmelCase_ : Dict = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ : List[str] = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) UpperCAmelCase_ : Any = (0, 0, 0, 0)
345
0
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __UpperCamelCase : lowercase : List[str] lowercase : Optional[str] =None # Automatically constructed lowercase : ClassVar[str] ="dict" lowercase : ClassVar[Any] =None lowercase : str =field(default='Translation' , init=lowerCamelCase__ , repr=lowerCamelCase__ ) def __call__( self ): """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase__ ( self ): """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __UpperCamelCase : lowercase : Optional[List] =None lowercase : Optional[int] =None lowercase : Optional[str] =None # Automatically constructed lowercase : ClassVar[str] ="dict" lowercase : ClassVar[Any] =None lowercase : str =field(default='TranslationVariableLanguages' , init=lowerCamelCase__ , repr=lowerCamelCase__ ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =sorted(set(self.languages ) ) if self.languages else None lowerCamelCase_ =len(self.languages ) if self.languages else None def __call__( self ): """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =set(self.languages ) if self.languages and set(lowerCAmelCase ) - lang_set: raise ValueError( f'''Some languages in example ({', '.join(sorted(set(lowerCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(lowerCAmelCase )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowerCamelCase_ =[] for lang, text in translation_dict.items(): if isinstance(lowerCAmelCase, lowerCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowerCamelCase_, lowerCamelCase_ =zip(*sorted(lowerCAmelCase ) ) return {"language": languages, "translation": translations} def lowercase__ ( self ): """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
75
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: int ) -> str: # A mock response for an HTTP head request to emulate server down UpperCAmelCase_ : List[str] = mock.Mock() UpperCAmelCase_ : List[Any] = 500 UpperCAmelCase_ : Union[str, Any] = {} UpperCAmelCase_ : Union[str, Any] = HTTPError UpperCAmelCase_ : Any = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ : Union[str, Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head: UpperCAmelCase_ : Any = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def A__ ( self: str ) -> int: # A mock response for an HTTP head request to emulate server down UpperCAmelCase_ : str = mock.Mock() UpperCAmelCase_ : Optional[int] = 500 UpperCAmelCase_ : int = {} UpperCAmelCase_ : Union[str, Any] = HTTPError UpperCAmelCase_ : List[Any] = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ : Optional[int] = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head: UpperCAmelCase_ : Any = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def A__ ( self: str ) -> Dict: # This test is for deprecated behavior and can be removed in v5 try: UpperCAmelCase_ : Any = tempfile.mktemp() with open(lowerCamelCase_ ,"""wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = AlbertTokenizer.from_pretrained(lowerCamelCase_ ) finally: os.remove(lowerCamelCase_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" ,"""wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" ,lowerCamelCase_ ) UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def A__ ( self: List[str] ) -> Tuple: # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase_ : str = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class _snake_case ( unittest.TestCase ): '''simple docstring''' A__ : str = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def A__ ( cls: Dict ) -> Optional[int]: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def A__ ( cls: Optional[Any] ) -> List[str]: try: delete_repo(token=cls._token ,repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def A__ ( self: Any ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Tuple = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : List[Any] = BertTokenizer(lowerCamelCase_ ) tokenizer.push_to_hub("""test-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ,repo_id="""test-tokenizer""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def A__ ( self: Optional[int] ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[Any] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : Dict = BertTokenizer(lowerCamelCase_ ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" ,use_auth_token=self._token ) UpperCAmelCase_ : Dict = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowerCamelCase_ ,repo_id="""valid_org/test-tokenizer-org""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def A__ ( self: Optional[int] ) -> Optional[Any]: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Any = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : Optional[Any] = CustomTokenizer(lowerCamelCase_ ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[str] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : str = BertTokenizerFast.from_pretrained(lowerCamelCase_ ) bert_tokenizer.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = CustomTokenizerFast.from_pretrained(lowerCamelCase_ ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizerFast""" ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' ,use_fast=lowerCamelCase_ ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[Any] ) -> Any: UpperCAmelCase_ : Any = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def A__ ( self: Tuple ) -> Optional[int]: UpperCAmelCase_ : str = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS]""", """ This is a """, """extra_id_100"""] ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ : Dict = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) ,["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) ,["""BC""", """A"""] ) def A__ ( self: Union[str, Any] ) -> int: UpperCAmelCase_ : List[str] = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def A__ ( self: int ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def A__ ( self: int ) -> List[str]: UpperCAmelCase_ : int = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) ,["""AB""", """C"""] ) def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) ,["""ABC""", """D"""] ) def A__ ( self: List[Any] ) -> Any: # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCAmelCase_ : Tuple = Trie() UpperCAmelCase_ : Optional[Any] = trie.cut_text("""ABC""" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(lowerCamelCase_ ,["""AB""", """C"""] )
345
0
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = 9, 14 # noqa: F841 SCREAMING_SNAKE_CASE : List[str] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] SCREAMING_SNAKE_CASE : Any = defaultdict(_a) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost]) adjancency[nodea].append([nodea, cost]) SCREAMING_SNAKE_CASE : List[Any] = mst(_a) SCREAMING_SNAKE_CASE : List[str] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: SCREAMING_SNAKE_CASE : Any = tuple(answer[:2]) SCREAMING_SNAKE_CASE : Optional[int] = tuple(edge[::-1]) assert edge in result or reverse in result
76
from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: int ,**lowerCamelCase_: List[str] ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: List[str] ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: int ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Any = ["flax"] def __init__( self: int ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[str] ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Dict = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[Any] ) -> Any: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: List[Any] ) -> str: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[str] = ["flax"] def __init__( self: str ,*lowerCamelCase_: List[str] ,**lowerCamelCase_: Optional[int] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : int = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[Any] ) -> str: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: str ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[int] ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Optional[Any] ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[Any] = ["flax"] def __init__( self: Union[str, Any] ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: int ) -> List[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Dict: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: Any ,**lowerCamelCase_: int ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: Union[str, Any] ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Dict ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : str = ["flax"] def __init__( self: Optional[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: int ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: int ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Union[str, Any] = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Optional[int] ) -> List[str]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Dict ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: List[str] ) -> int: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[Any] = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Optional[int] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Dict ) -> int: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Optional[Any]: requires_backends(cls ,["""flax"""] )
345
0
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCamelCase : Any = logging.getLogger(__name__) _UpperCamelCase : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _UpperCamelCase : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : lowerCamelCase__ : Optional[str] = field( default=_a , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(_a)} , ) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "Pretrained config name or path if not the same as model_name"}) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "The input training data file (a text file)."}) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) lowerCamelCase__ : bool = field( default=_a , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) lowerCamelCase__ : bool = field( default=_a , metadata={"help": "Train with masked-language modeling loss instead of language modeling."}) lowerCamelCase__ : bool = field(default=_a , metadata={"help": "Whether ot not to use whole word mask."}) lowerCamelCase__ : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}) lowerCamelCase__ : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) lowerCamelCase__ : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}) lowerCamelCase__ : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) lowerCamelCase__ : bool = field( default=_a , metadata={"help": "Overwrite the cached training and evaluation sets"}) def a_ ( _lowerCAmelCase : DataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[str] = None , ): '''simple docstring''' def _dataset(_lowerCAmelCase : Any , _lowerCAmelCase : Any=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask' ) return LineByLineWithRefDataset( tokenizer=_lowerCAmelCase , file_path=_lowerCAmelCase , block_size=args.block_size , ref_path=_lowerCAmelCase , ) return LineByLineTextDataset(tokenizer=_lowerCAmelCase , file_path=_lowerCAmelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=_lowerCAmelCase , file_path=_lowerCAmelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_lowerCAmelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_lowerCAmelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def a_ ( ): '''simple docstring''' lowercase__ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase__ , lowercase__ , lowercase__ : List[Any] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( 'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ' 'or remove the --do_eval argument.' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: lowercase__ : List[Any] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowercase__ : Any = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: lowercase__ : Union[str, Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.tokenizer_name: lowercase__ : Dict = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowercase__ : int = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another' ' script, save it,and load it from here, using --tokenizer_name' ) if model_args.model_name_or_path: lowercase__ : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) else: logger.info('Training new model from scratch' ) lowercase__ : int = AutoModelWithLMHead.from_config(_lowerCAmelCase ) model.resize_token_embeddings(len(_lowerCAmelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( 'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the' '--mlm flag (masked language modeling).' ) if data_args.block_size <= 0: lowercase__ : List[str] = tokenizer.max_len # Our input block size will be the max possible for the model else: lowercase__ : int = min(data_args.block_size , tokenizer.max_len ) # Get datasets lowercase__ : Tuple = ( get_dataset(_lowerCAmelCase , tokenizer=_lowerCAmelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) lowercase__ : Optional[Any] = ( get_dataset(_lowerCAmelCase , tokenizer=_lowerCAmelCase , evaluate=_lowerCAmelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": lowercase__ : List[Any] = DataCollatorForPermutationLanguageModeling( tokenizer=_lowerCAmelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: lowercase__ : List[str] = DataCollatorForWholeWordMask( tokenizer=_lowerCAmelCase , mlm_probability=data_args.mlm_probability ) else: lowercase__ : str = DataCollatorForLanguageModeling( tokenizer=_lowerCAmelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowercase__ : Optional[int] = Trainer( model=_lowerCAmelCase , args=_lowerCAmelCase , data_collator=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , prediction_loss_only=_lowerCAmelCase , ) # Training if training_args.do_train: lowercase__ : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_lowerCAmelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : List[Any] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowercase__ : Dict = trainer.evaluate() lowercase__ : List[Any] = math.exp(eval_output['eval_loss'] ) lowercase__ : int = {'perplexity': perplexity} lowercase__ : int = os.path.join(training_args.output_dir , 'eval_results_lm.txt' ) if trainer.is_world_master(): with open(_lowerCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , _lowerCAmelCase , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) results.update(_lowerCAmelCase ) return results def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
77
import random from typing import Any def lowerCamelCase_ ( _a : list ): '''simple docstring''' for _ in range(len(_a ) ): UpperCAmelCase_ : Tuple = random.randint(0 , len(_a ) - 1 ) UpperCAmelCase_ : List[Any] = random.randint(0 , len(_a ) - 1 ) UpperCAmelCase_ , UpperCAmelCase_ : int = data[b], data[a] return data if __name__ == "__main__": UpperCamelCase_ = [0, 1, 2, 3, 4, 5, 6, 7] UpperCamelCase_ = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
345
0
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder snake_case_ = """base_with_context""" def _lowerCAmelCase ( lowercase_ , lowercase_ ): UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=lowercase_ ) for lyr_num, lyr in enumerate(model.encoders ): UpperCAmelCase = weights[F"""layers_{lyr_num}"""] UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) UpperCAmelCase = ly_weight['attention'] UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def _lowerCAmelCase ( lowercase_ , lowercase_ ): UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=lowercase_ ) for lyr_num, lyr in enumerate(model.encoders ): UpperCAmelCase = weights[F"""layers_{lyr_num}"""] UpperCAmelCase = ly_weight['attention'] UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def _lowerCAmelCase ( lowercase_ , lowercase_ ): UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=lowercase_ ) UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): UpperCAmelCase = weights[F"""layers_{lyr_num}"""] UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) UpperCAmelCase = ly_weight['self_attention'] UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) UpperCAmelCase = ly_weight['MultiHeadDotProductAttention_0'] UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = checkpoints.load_tax_checkpoint(args.checkpoint_path ) UpperCAmelCase = jnp.tree_util.tree_map(onp.array , lowercase_ ) UpperCAmelCase = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] UpperCAmelCase = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) UpperCAmelCase = inference.parse_training_gin_file(lowercase_ , lowercase_ ) UpperCAmelCase = inference.InferenceModel(args.checkpoint_path , lowercase_ ) UpperCAmelCase = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) UpperCAmelCase = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) UpperCAmelCase = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) UpperCAmelCase = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) UpperCAmelCase = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , lowercase_ ) UpperCAmelCase = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , lowercase_ ) UpperCAmelCase = load_decoder(ta_checkpoint['target']['decoder'] , lowercase_ ) UpperCAmelCase = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) UpperCAmelCase = SpectrogramDiffusionPipeline( notes_encoder=lowercase_ , continuous_encoder=lowercase_ , decoder=lowercase_ , scheduler=lowercase_ , melgan=lowercase_ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=f'''{MODEL}/checkpoint_500000''', type=str, required=False, help="""Path to the original jax model checkpoint.""", ) snake_case_ = parser.parse_args() main(args)
78
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[int] = [] for i in range(self.num_layers ): UpperCAmelCase_ : List[Any] = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : List[Any] = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : int = resnets UpperCAmelCase_ : Tuple = attentions if self.add_downsample: UpperCAmelCase_ : List[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: int=True ) -> int: UpperCAmelCase_ : List[Any] = () for resnet, attn in zip(self.resnets ,self.attentions ): UpperCAmelCase_ : str = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[Any] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> int: UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : Dict = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnets if self.add_downsample: UpperCAmelCase_ : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any]=True ) -> Any: UpperCAmelCase_ : Union[str, Any] = () for resnet in self.resnets: UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[str] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: str ) -> Any: UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : int = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Optional[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : int = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = resnets UpperCAmelCase_ : Dict = attentions if self.add_upsample: UpperCAmelCase_ : Optional[Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[int] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: Any ,lowerCamelCase_: str ,lowerCamelCase_: List[str]=True ) -> List[str]: for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states UpperCAmelCase_ : List[str] = res_hidden_states_tuple[-1] UpperCAmelCase_ : Union[str, Any] = res_hidden_states_tuple[:-1] UpperCAmelCase_ : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Dict = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> Dict: UpperCAmelCase_ : Any = [] for i in range(self.num_layers ): UpperCAmelCase_ : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : str = resnets if self.add_upsample: UpperCAmelCase_ : Union[str, Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Dict ,lowerCamelCase_: Dict ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any=True ) -> List[str]: for resnet in self.resnets: # pop res hidden states UpperCAmelCase_ : Dict = res_hidden_states_tuple[-1] UpperCAmelCase_ : str = res_hidden_states_tuple[:-1] UpperCAmelCase_ : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : List[str] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Optional[Any] = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: # there is always at least one resnet UpperCAmelCase_ : List[Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] UpperCAmelCase_ : Any = [] for _ in range(self.num_layers ): UpperCAmelCase_ : Optional[Any] = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Dict = resnets UpperCAmelCase_ : Any = attentions def __call__( self: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any]=True ) -> List[Any]: UpperCAmelCase_ : List[Any] = self.resnets[0](lowerCamelCase_ ,lowerCamelCase_ ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): UpperCAmelCase_ : Optional[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) return hidden_states
345
0
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
79
import pickle import numpy as np from matplotlib import pyplot as plt class _snake_case : '''simple docstring''' def __init__( self: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Tuple=0.2 ,lowerCamelCase_: Union[str, Any]=0.2 ) -> List[str]: UpperCAmelCase_ : List[Any] = bp_numa UpperCAmelCase_ : str = bp_numa UpperCAmelCase_ : List[Any] = bp_numa UpperCAmelCase_ : Optional[int] = conva_get[:2] UpperCAmelCase_ : List[Any] = conva_get[2] UpperCAmelCase_ : str = size_pa UpperCAmelCase_ : Optional[int] = rate_w UpperCAmelCase_ : Dict = rate_t UpperCAmelCase_ : List[Any] = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] UpperCAmelCase_ : int = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) UpperCAmelCase_ : int = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) UpperCAmelCase_ : Dict = -2 * np.random.rand(self.conva[1] ) + 1 UpperCAmelCase_ : str = -2 * np.random.rand(self.num_bpa ) + 1 UpperCAmelCase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def A__ ( self: str ,lowerCamelCase_: Optional[Any] ) -> Tuple: # save model dict with pickle UpperCAmelCase_ : Dict = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(lowerCamelCase_ ,"""wb""" ) as f: pickle.dump(lowerCamelCase_ ,lowerCamelCase_ ) print(F'''Model saved: {save_path}''' ) @classmethod def A__ ( cls: List[str] ,lowerCamelCase_: str ) -> List[str]: # read saved model with open(lowerCamelCase_ ,"""rb""" ) as f: UpperCAmelCase_ : Any = pickle.load(lowerCamelCase_ ) # noqa: S301 UpperCAmelCase_ : Union[str, Any] = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) UpperCAmelCase_ : List[str] = model_dic.get("""size_pooling1""" ) UpperCAmelCase_ : Tuple = model_dic.get("""num_bp1""" ) UpperCAmelCase_ : Optional[Any] = model_dic.get("""num_bp2""" ) UpperCAmelCase_ : List[str] = model_dic.get("""num_bp3""" ) UpperCAmelCase_ : List[Any] = model_dic.get("""rate_weight""" ) UpperCAmelCase_ : Dict = model_dic.get("""rate_thre""" ) # create model instance UpperCAmelCase_ : List[Any] = CNN(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # modify model parameter UpperCAmelCase_ : Any = model_dic.get("""w_conv1""" ) UpperCAmelCase_ : int = model_dic.get("""wkj""" ) UpperCAmelCase_ : int = model_dic.get("""vji""" ) UpperCAmelCase_ : Optional[int] = model_dic.get("""thre_conv1""" ) UpperCAmelCase_ : List[str] = model_dic.get("""thre_bp2""" ) UpperCAmelCase_ : Dict = model_dic.get("""thre_bp3""" ) return conv_ins def A__ ( self: List[Any] ,lowerCamelCase_: Union[str, Any] ) -> Tuple: return 1 / (1 + np.exp(-1 * x )) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Union[str, Any] ) -> Optional[Any]: return round(lowerCamelCase_ ,3 ) def A__ ( self: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any] ) -> Any: # convolution process UpperCAmelCase_ : Optional[Any] = convs[0] UpperCAmelCase_ : int = convs[1] UpperCAmelCase_ : int = np.shape(lowerCamelCase_ )[0] # get the data slice of original image data, data_focus UpperCAmelCase_ : Dict = [] for i_focus in range(0 ,size_data - size_conv + 1 ,lowerCamelCase_ ): for j_focus in range(0 ,size_data - size_conv + 1 ,lowerCamelCase_ ): UpperCAmelCase_ : Union[str, Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowerCamelCase_ ) # calculate the feature map of every single kernel, and saved as list of matrix UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowerCamelCase_ ): UpperCAmelCase_ : Optional[int] = [] for i_focus in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : int = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowerCamelCase_ ) ) UpperCAmelCase_ : Union[str, Any] = np.asmatrix(lowerCamelCase_ ).reshape( lowerCamelCase_ ,lowerCamelCase_ ) data_featuremap.append(lowerCamelCase_ ) # expanding the data slice to One dimenssion UpperCAmelCase_ : Optional[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[int] = np.asarray(lowerCamelCase_ ) return focus_list, data_featuremap def A__ ( self: Tuple ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any]="average_pool" ) -> List[Any]: # pooling process UpperCAmelCase_ : Optional[Any] = len(featuremaps[0] ) UpperCAmelCase_ : Any = int(size_map / size_pooling ) UpperCAmelCase_ : Optional[int] = [] for i_map in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : Any = featuremaps[i_map] UpperCAmelCase_ : Tuple = [] for i_focus in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): for j_focus in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : str = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowerCamelCase_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowerCamelCase_ ) ) UpperCAmelCase_ : int = np.asmatrix(lowerCamelCase_ ).reshape(lowerCamelCase_ ,lowerCamelCase_ ) featuremap_pooled.append(lowerCamelCase_ ) return featuremap_pooled def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tuple ) -> Optional[int]: # expanding three dimension data to one dimension list UpperCAmelCase_ : List[Any] = [] for i in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : Tuple = np.shape(data[i] ) UpperCAmelCase_ : Optional[int] = data[i].reshape(1 ,shapes[0] * shapes[1] ) UpperCAmelCase_ : Optional[int] = data_listed.getA().tolist()[0] data_expanded.extend(lowerCamelCase_ ) UpperCAmelCase_ : int = np.asarray(lowerCamelCase_ ) return data_expanded def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[int] ) -> Union[str, Any]: # expanding matrix to one dimension list UpperCAmelCase_ : List[Any] = np.asarray(lowerCamelCase_ ) UpperCAmelCase_ : str = np.shape(lowerCamelCase_ ) UpperCAmelCase_ : Dict = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def A__ ( self: str ,lowerCamelCase_: Dict ,lowerCamelCase_: int ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Any ) -> Union[str, Any]: UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = 0 for i_map in range(lowerCamelCase_ ): UpperCAmelCase_ : Optional[Any] = np.ones((size_map, size_map) ) for i in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): for j in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : Any = pd_pool[ i_pool ] UpperCAmelCase_ : List[str] = i_pool + 1 UpperCAmelCase_ : Optional[Any] = np.multiply( lowerCamelCase_ ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(lowerCamelCase_ ) return pd_all def A__ ( self: str ,lowerCamelCase_: int ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any=bool ) -> Optional[int]: # model traning print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(lowerCamelCase_ )) ) print((""" - - Shape: Teach_Data """, np.shape(lowerCamelCase_ )) ) UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : Any = 10000 while rp < n_repeat and mse >= error_accuracy: UpperCAmelCase_ : List[str] = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(lowerCamelCase_ ) ): # print('------------Learning Image: %d--------------'%p) UpperCAmelCase_ : str = np.asmatrix(datas_train[p] ) UpperCAmelCase_ : Optional[Any] = np.asarray(datas_teach[p] ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : List[Any] = self.pooling(lowerCamelCase_ ,self.size_poolinga ) UpperCAmelCase_ : int = np.shape(lowerCamelCase_ ) UpperCAmelCase_ : Dict = self._expand(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = data_bp_input UpperCAmelCase_ : Optional[Any] = np.dot(lowerCamelCase_ ,self.vji.T ) - self.thre_bpa UpperCAmelCase_ : int = self.sig(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = np.dot(lowerCamelCase_ ,self.wkj.T ) - self.thre_bpa UpperCAmelCase_ : Optional[Any] = self.sig(lowerCamelCase_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- UpperCAmelCase_ : List[str] = np.multiply( (data_teach - bp_outa) ,np.multiply(lowerCamelCase_ ,(1 - bp_outa) ) ) UpperCAmelCase_ : List[Any] = np.multiply( np.dot(lowerCamelCase_ ,self.wkj ) ,np.multiply(lowerCamelCase_ ,(1 - bp_outa) ) ) UpperCAmelCase_ : Any = np.dot(lowerCamelCase_ ,self.vji ) UpperCAmelCase_ : Tuple = pd_i_all / (self.size_poolinga * self.size_poolinga) UpperCAmelCase_ : List[str] = pd_conva_pooled.T.getA().tolist() UpperCAmelCase_ : str = self._calculate_gradient_from_pool( lowerCamelCase_ ,lowerCamelCase_ ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): UpperCAmelCase_ : List[str] = self._expand_mat(pd_conva_all[k_conv] ) UpperCAmelCase_ : Optional[Any] = self.rate_weight * np.dot(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : int = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) UpperCAmelCase_ : str = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer UpperCAmelCase_ : int = self.wkj + pd_k_all.T * bp_outa * self.rate_weight UpperCAmelCase_ : Tuple = self.vji + pd_j_all.T * bp_outa * self.rate_weight UpperCAmelCase_ : int = self.thre_bpa - pd_k_all * self.rate_thre UpperCAmelCase_ : str = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image UpperCAmelCase_ : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) UpperCAmelCase_ : int = rp + 1 UpperCAmelCase_ : Any = error_count / patterns all_mse.append(lowerCamelCase_ ) def draw_error(): UpperCAmelCase_ : Any = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowerCamelCase_ ,"""+-""" ) plt.plot(lowerCamelCase_ ,"""r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(lowerCamelCase_ ,alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def A__ ( self: Optional[int] ,lowerCamelCase_: Any ) -> Tuple: # model predict UpperCAmelCase_ : Union[str, Any] = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(lowerCamelCase_ )) ) for p in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : int = np.asmatrix(datas_test[p] ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : Optional[Any] = self.pooling(lowerCamelCase_ ,self.size_poolinga ) UpperCAmelCase_ : str = self._expand(lowerCamelCase_ ) UpperCAmelCase_ : str = data_bp_input UpperCAmelCase_ : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa UpperCAmelCase_ : Optional[int] = self.sig(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = bp_outa * self.wkj.T - self.thre_bpa UpperCAmelCase_ : List[Any] = self.sig(lowerCamelCase_ ) produce_out.extend(bp_outa.getA().tolist() ) UpperCAmelCase_ : int = [list(map(self.do_round ,lowerCamelCase_ ) ) for each in produce_out] return np.asarray(lowerCamelCase_ ) def A__ ( self: Optional[Any] ,lowerCamelCase_: Dict ) -> Tuple: # return the data of image after convoluting process so we can check it out UpperCAmelCase_ : Optional[int] = np.asmatrix(lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : Dict = self.pooling(lowerCamelCase_ ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
345
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a__ : Any = False class lowercase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): def __a ( self ): UpperCamelCase__ = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion" ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) UpperCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pipe( image=a , generator=a , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images UpperCamelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
80
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Optional[Any] = CTRLTokenizer A__ : Optional[Any] = False A__ : str = False def A__ ( self: Optional[int] ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ : Dict = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] UpperCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) UpperCAmelCase_ : List[Any] = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] UpperCAmelCase_ : Optional[Any] = {"""unk_token""": """<unk>"""} UpperCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase_ ) ) def A__ ( self: Optional[int] ,**lowerCamelCase_: Any ) -> str: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase_ ) def A__ ( self: int ,lowerCamelCase_: int ) -> str: UpperCAmelCase_ : List[str] = """adapt react readapt apt""" UpperCAmelCase_ : List[Any] = """adapt react readapt apt""" return input_text, output_text def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = CTRLTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) UpperCAmelCase_ : List[Any] = """adapt react readapt apt""" UpperCAmelCase_ : Optional[int] = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() UpperCAmelCase_ : Tuple = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokens + [tokenizer.unk_token] UpperCAmelCase_ : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,lowerCamelCase_ )
345
0