code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from math import sqrt def __a ( A ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __a ( A = 10_001 ) -> int: '''simple docstring''' A__ = 0 A__ = 1 while count != nth and number < 3: number += 1 if is_prime(_UpperCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(_UpperCAmelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
337
'''simple docstring''' from math import factorial def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 100 ) -> int: return sum(map(_UpperCAmelCase ,str(factorial(_UpperCAmelCase ) ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
694
0
'''simple docstring''' import random def a__ ( lowercase : int, lowercase : float, lowercase : bool = False ) -> dict: """simple docstring""" _UpperCamelCase = {i: [] for i in range(_UpperCAmelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_UpperCAmelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_UpperCAmelCase ): for j in range(i + 1, _UpperCAmelCase ): if random.random() < probability: graph[i].append(_UpperCAmelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_UpperCAmelCase ) return graph def a__ ( lowercase : int ) -> dict: """simple docstring""" return { i: [j for j in range(_UpperCAmelCase ) if i != j] for i in range(_UpperCAmelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
98
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ) -> list: _a : Tuple =len(_UpperCAmelCase ) _a : str =[] for i in range(len(_UpperCAmelCase ) - pat_len + 1 ): _a : int =True for j in range(_UpperCAmelCase ): if s[i + j] != pattern[j]: _a : int =False break if match_found: position.append(_UpperCAmelCase ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
694
0
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowercase__ = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = PegasusConfig lowerCamelCase__ = {} lowerCamelCase__ = "gelu" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , ): _lowerCamelCase : List[str] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : str = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Any = use_labels _lowerCamelCase : Optional[Any] = vocab_size _lowerCamelCase : int = hidden_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : str = intermediate_size _lowerCamelCase : Optional[int] = hidden_dropout_prob _lowerCamelCase : Optional[int] = attention_probs_dropout_prob _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : Any = eos_token_id _lowerCamelCase : Optional[int] = pad_token_id _lowerCamelCase : List[Any] = bos_token_id def A_ ( self ): _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) _lowerCamelCase : str = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : Optional[int] = np.concatenate([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _lowerCamelCase : Optional[Any] = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Union[str, Any] = 20 _lowerCamelCase : Optional[int] = model_class_name(lowercase ) _lowerCamelCase : int = model.encode(inputs_dict['input_ids'] ) _lowerCamelCase : str = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _lowerCamelCase : List[Any] = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase ) _lowerCamelCase : Tuple = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) _lowerCamelCase : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowerCamelCase : Any = model.decode( decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , ) _lowerCamelCase : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowerCamelCase : str = model.decode( decoder_input_ids[:, -1:] , lowercase , decoder_attention_mask=lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase , ) _lowerCamelCase : str = model.decode(lowercase , lowercase ) _lowerCamelCase : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Any = 20 _lowerCamelCase : List[Any] = model_class_name(lowercase ) _lowerCamelCase : List[Any] = model.encode(inputs_dict['input_ids'] ) _lowerCamelCase : Optional[int] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _lowerCamelCase : Optional[int] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _lowerCamelCase : Tuple = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase ) _lowerCamelCase : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowerCamelCase : Optional[int] = model.decode( decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , ) _lowerCamelCase : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowerCamelCase : Tuple = model.decode( decoder_input_ids[:, -1:] , lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase , decoder_position_ids=lowercase , ) _lowerCamelCase : str = model.decode(lowercase , lowercase , decoder_attention_mask=lowercase ) _lowerCamelCase : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , ): if attention_mask is None: _lowerCamelCase : Tuple = np.not_equal(_UpperCAmelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _lowerCamelCase : List[Any] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCAmelCase__ ( UpperCAmelCase__, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowerCamelCase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def A_ ( self ): _lowerCamelCase : List[str] = FlaxPegasusModelTester(self ) _lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=lowercase ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase , lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase , lowercase , lowercase ) def A_ ( self ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase : Dict = self._prepare_for_class(lowercase , lowercase ) _lowerCamelCase : Dict = model_class(lowercase ) @jax.jit def encode_jitted(lowercase , lowercase=None , **lowercase ): return model.encode(input_ids=lowercase , attention_mask=lowercase ) with self.subTest('JIT Enabled' ): _lowerCamelCase : int = encode_jitted(**lowercase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowerCamelCase : Dict = encode_jitted(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) ) for jitted_output, output in zip(lowercase , lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def A_ ( self ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase : int = model_class(lowercase ) _lowerCamelCase : Any = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) _lowerCamelCase : Union[str, Any] = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowercase , lowercase , lowercase ): return model.decode( decoder_input_ids=lowercase , decoder_attention_mask=lowercase , encoder_outputs=lowercase , ) with self.subTest('JIT Enabled' ): _lowerCamelCase : Any = decode_jitted(**lowercase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowerCamelCase : int = decode_jitted(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) ) for jitted_output, output in zip(lowercase , lowercase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def A_ ( self ): for model_class_name in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained('google/pegasus-large' , from_pt=lowercase ) _lowerCamelCase : str = np.ones((1, 1) ) _lowerCamelCase : Optional[Any] = model(lowercase ) self.assertIsNotNone(lowercase ) @slow def A_ ( self ): _lowerCamelCase : Optional[Any] = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' ) _lowerCamelCase : Dict = PegasusTokenizer.from_pretrained('google/pegasus-xsum' ) _lowerCamelCase : List[Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] _lowerCamelCase : List[Any] = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] _lowerCamelCase : Union[str, Any] = tokenizer(lowercase , return_tensors='np' , truncation=lowercase , max_length=512 , padding=lowercase ) _lowerCamelCase : List[Any] = model.generate(**lowercase , num_beams=2 ).sequences _lowerCamelCase : Optional[Any] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) assert tgt_text == decoded
630
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class A__ ( unittest.TestCase ): def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any]=7 , SCREAMING_SNAKE_CASE :Optional[Any]=3 , SCREAMING_SNAKE_CASE :Tuple=1_8 , SCREAMING_SNAKE_CASE :Any=3_0 , SCREAMING_SNAKE_CASE :List[str]=4_0_0 , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :List[str]=True , ) -> Tuple: '''simple docstring''' _a : int =size if size is not None else {"""height""": 1_8, """width""": 1_8} _a : int =parent _a : Optional[int] =batch_size _a : List[str] =num_channels _a : Optional[Any] =image_size _a : int =min_resolution _a : str =max_resolution _a : str =do_resize _a : Tuple =size _a : Tuple =do_normalize def __UpperCAmelCase ( self :Any ) -> int: '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804], [-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class A__ ( UpperCAmelCase__ , unittest.TestCase ): __UpperCamelCase : int = ImageGPTImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self :List[Any] ) -> List[Any]: '''simple docstring''' _a : Any =ImageGPTImageProcessingTester(self ) @property def __UpperCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self :Dict ) -> Any: '''simple docstring''' _a : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """clusters""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """size""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_normalize""" ) ) def __UpperCAmelCase ( self :Optional[int] ) -> Optional[int]: '''simple docstring''' _a : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} ) _a : Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} ) def __UpperCAmelCase ( self :List[Any] ) -> Optional[int]: '''simple docstring''' _a : List[str] =self.image_processing_class(**self.image_processor_dict ) _a : Dict =json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , obj[key] ) ) else: self.assertEqual(obj[key] , SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[int] ) -> Dict: '''simple docstring''' _a : List[Any] =self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Any =os.path.join(SCREAMING_SNAKE_CASE , """image_processor.json""" ) image_processor_first.to_json_file(SCREAMING_SNAKE_CASE ) _a : str =self.image_processing_class.from_json_file(SCREAMING_SNAKE_CASE ).to_dict() _a : Tuple =image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[int] ) -> str: '''simple docstring''' _a : List[str] =self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(SCREAMING_SNAKE_CASE ) _a : str =self.image_processing_class.from_pretrained(SCREAMING_SNAKE_CASE ).to_dict() _a : Union[str, Any] =image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def __UpperCAmelCase ( self :Union[str, Any] ) -> int: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: _a : Any =load_dataset("""hf-internal-testing/fixtures_image_utils""" ,split="""test""" ) _a : Dict =Image.open(dataset[4]["""file"""] ) _a : Optional[int] =Image.open(dataset[5]["""file"""] ) _a : Optional[Any] =[imagea, imagea] return images @require_vision @require_torch class A__ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' _a : Optional[Any] =ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) _a : int =prepare_images() # test non-batched _a : Dict =image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) ) _a : Optional[int] =[3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , SCREAMING_SNAKE_CASE ) # test batched _a : Dict =image_processing(SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) ) _a : Any =[3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , SCREAMING_SNAKE_CASE )
694
0
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : int = 4000000 ) -> int: _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Union[str, Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_UpperCAmelCase ) _UpperCAmelCase : Optional[Any] = b, a + b return sum(_UpperCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
238
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ) -> bool: _a : Optional[int] =len(_UpperCAmelCase ) _a : Tuple =[[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _a : Any =True # sum is not zero and set is empty then false for i in range(1 ,required_sum + 1 ): _a : int =False for i in range(1 ,arr_len + 1 ): for j in range(1 ,required_sum + 1 ): if arr[i - 1] > j: _a : Optional[Any] =subset[i - 1][j] if arr[i - 1] <= j: _a : Union[str, Any] =subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
694
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowercase : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''') __lowercase : List[str] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __lowercase : Optional[int] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def lowercase ( __A : str ) -> List[str]: '''simple docstring''' with open(_UpperCAmelCase , """rb""" ) as f: snake_case : Optional[int] = Image.open(_UpperCAmelCase ) return im.convert("""RGB""" ) @dataclass class _A : '''simple docstring''' __lowerCamelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={ '''help''': '''Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).''' } , ) __lowerCamelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __lowerCamelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={'''help''': '''A folder containing the training data.'''} ) __lowerCamelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={'''help''': '''A folder containing the validation data.'''} ) __lowerCamelCase : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) __lowerCamelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __lowerCamelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def snake_case_ ( self ): '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( """You must specify either a dataset name from the hub or a train and/or validation directory.""" ) @dataclass class _A : '''simple docstring''' __lowerCamelCase : str = field( default='''google/vit-base-patch16-224-in21k''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) __lowerCamelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(UpperCAmelCase__ )} , ) __lowerCamelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __lowerCamelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) __lowerCamelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __lowerCamelCase : str = field(default=UpperCAmelCase__ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) __lowerCamelCase : bool = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __lowerCamelCase : bool = field( default=UpperCAmelCase__ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def lowercase ( __A : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case : Tuple = torch.stack([example["""pixel_values"""] for example in examples] ) snake_case : Tuple = torch.tensor([example["""labels"""] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def lowercase ( ) -> List[Any]: '''simple docstring''' snake_case : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_image_classification""" , _UpperCAmelCase , _UpperCAmelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case : str = training_args.get_process_log_level() logger.setLevel(_UpperCAmelCase ) transformers.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: snake_case : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="""image-classification""" , use_auth_token=True if model_args.use_auth_token else None , ) else: snake_case : Optional[Any] = {} if data_args.train_dir is not None: snake_case : Tuple = os.path.join(data_args.train_dir , """**""" ) if data_args.validation_dir is not None: snake_case : Optional[int] = os.path.join(data_args.validation_dir , """**""" ) snake_case : Dict = load_dataset( """imagefolder""" , data_files=_UpperCAmelCase , cache_dir=model_args.cache_dir , task="""image-classification""" , ) # If we don't have a validation split, split off a percentage of train as validation. snake_case : Optional[int] = None if """validation""" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _UpperCAmelCase ) and data_args.train_val_split > 0.0: snake_case : int = dataset["""train"""].train_test_split(data_args.train_val_split ) snake_case : Dict = split["""train"""] snake_case : int = split["""test"""] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. snake_case : Tuple = dataset["""train"""].features["""labels"""].names snake_case : Tuple = {}, {} for i, label in enumerate(_UpperCAmelCase ): snake_case : int = str(_UpperCAmelCase ) snake_case : Optional[int] = label # Load the accuracy metric from the datasets package snake_case : Optional[int] = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__A : Dict ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) snake_case : Any = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_UpperCAmelCase ) , labelaid=_UpperCAmelCase , idalabel=_UpperCAmelCase , finetuning_task="""image-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case : int = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) snake_case : Optional[int] = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: snake_case : Optional[int] = image_processor.size["""shortest_edge"""] else: snake_case : str = (image_processor.size["""height"""], image_processor.size["""width"""]) snake_case : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) snake_case : Tuple = Compose( [ RandomResizedCrop(_UpperCAmelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) snake_case : Tuple = Compose( [ Resize(_UpperCAmelCase ), CenterCrop(_UpperCAmelCase ), ToTensor(), normalize, ] ) def train_transforms(__A : Any ): snake_case : Optional[int] = [ _train_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""] ] return example_batch def val_transforms(__A : Tuple ): snake_case : Tuple = [_val_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: snake_case : List[str] = ( dataset["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_UpperCAmelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: snake_case : int = ( dataset["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_UpperCAmelCase ) # Initalize our trainer snake_case : Optional[Any] = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=dataset["""train"""] if training_args.do_train else None , eval_dataset=dataset["""validation"""] if training_args.do_eval else None , compute_metrics=_UpperCAmelCase , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: snake_case : Optional[Any] = None if training_args.resume_from_checkpoint is not None: snake_case : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case : List[str] = last_checkpoint snake_case : int = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: snake_case : Dict = trainer.evaluate() trainer.log_metrics("""eval""" , _UpperCAmelCase ) trainer.save_metrics("""eval""" , _UpperCAmelCase ) # Write model card and (optionally) push to hub snake_case : List[Any] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """image-classification""", """dataset""": data_args.dataset_name, """tags""": ["""image-classification""", """vision"""], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCAmelCase ) else: trainer.create_model_card(**_UpperCAmelCase ) if __name__ == "__main__": main()
36
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 4000000 ) -> int: _a : Optional[Any] =[] _a , _a : Union[str, Any] =0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_UpperCAmelCase ) _a , _a : Optional[Any] =b, a + b return sum(_UpperCAmelCase ) if __name__ == "__main__": print(F"{solution() = }")
694
0
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
458
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: if n == 1 or not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): return 0 elif n == 2: return 1 else: _a : Dict =[0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: _a : Union[str, Any] =0 _a : Optional[Any] =2 while digits < n: index += 1 _a : Optional[int] =len(str(fibonacci(_UpperCAmelCase ) ) ) return index def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 1000 ) -> int: return fibonacci_digits_index(_UpperCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
694
0
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() A_ = logging.get_logger(__name__) A_ = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def _UpperCamelCase ( A , A ): UpperCamelCase_ ={ """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1_024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1_024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } UpperCamelCase_ =bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py UpperCamelCase_ =BERTEncoder( attention_cell=predefined_args["attention_cell"] , num_layers=predefined_args["num_layers"] , units=predefined_args["units"] , hidden_size=predefined_args["hidden_size"] , max_length=predefined_args["max_length"] , num_heads=predefined_args["num_heads"] , scaled=predefined_args["scaled"] , dropout=predefined_args["dropout"] , output_attention=_UpperCAmelCase , output_all_encodings=_UpperCAmelCase , use_residual=predefined_args["use_residual"] , activation=predefined_args.get("activation" , "gelu" ) , layer_norm_eps=predefined_args.get("layer_norm_eps" , _UpperCAmelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later UpperCamelCase_ ="""openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab UpperCamelCase_ =os.path.join(get_home_dir() , "models" ) UpperCamelCase_ =_load_vocab(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , cls=_UpperCAmelCase ) UpperCamelCase_ =nlp.model.BERTModel( _UpperCAmelCase , len(_UpperCAmelCase ) , units=predefined_args["units"] , embed_size=predefined_args["embed_size"] , embed_dropout=predefined_args["embed_dropout"] , word_embed=predefined_args["word_embed"] , use_pooler=_UpperCAmelCase , use_token_type_embed=_UpperCAmelCase , token_type_vocab_size=predefined_args["token_type_vocab_size"] , use_classifier=_UpperCAmelCase , use_decoder=_UpperCAmelCase , ) original_bort.load_parameters(_UpperCAmelCase , cast_dtype=_UpperCAmelCase , ignore_extra=_UpperCAmelCase ) UpperCamelCase_ =original_bort._collect_params_with_prefix() # Build our config 🤗 UpperCamelCase_ ={ """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(_UpperCAmelCase ), } UpperCamelCase_ =BertConfig.from_dict(_UpperCAmelCase ) UpperCamelCase_ =BertForMaskedLM(_UpperCAmelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(A ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(A , A ): UpperCamelCase_ =hf_param.shape UpperCamelCase_ =to_torch(params[gluon_param] ) UpperCamelCase_ =gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param UpperCamelCase_ =check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , "word_embed.0.weight" ) UpperCamelCase_ =check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , "encoder.position_weight" ) UpperCamelCase_ =check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , "encoder.layer_norm.beta" ) UpperCamelCase_ =check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , "encoder.layer_norm.gamma" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) UpperCamelCase_ =torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): UpperCamelCase_ =hf_bort_model.bert.encoder.layer[i] # self attention UpperCamelCase_ =layer.attention.self UpperCamelCase_ =check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) UpperCamelCase_ =check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) UpperCamelCase_ =check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) UpperCamelCase_ =check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) UpperCamelCase_ =check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) UpperCamelCase_ =check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output UpperCamelCase_ =layer.attention.output UpperCamelCase_ =check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) UpperCamelCase_ =check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) UpperCamelCase_ =check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) UpperCamelCase_ =check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate UpperCamelCase_ =layer.intermediate UpperCamelCase_ =check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) UpperCamelCase_ =check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output UpperCamelCase_ =layer.output UpperCamelCase_ =check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) UpperCamelCase_ =check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) UpperCamelCase_ =check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) UpperCamelCase_ =check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models UpperCamelCase_ =RobertaTokenizer.from_pretrained("roberta-base" ) UpperCamelCase_ =tokenizer.encode_plus(_UpperCAmelCase )["""input_ids"""] # Get gluon output UpperCamelCase_ =mx.nd.array([input_ids] ) UpperCamelCase_ =original_bort(inputs=_UpperCAmelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(_UpperCAmelCase ) UpperCamelCase_ =BertModel.from_pretrained(_UpperCAmelCase ) hf_bort_model.eval() UpperCamelCase_ =tokenizer.encode_plus(_UpperCAmelCase , return_tensors="pt" ) UpperCamelCase_ =hf_bort_model(**_UpperCAmelCase )[0] UpperCamelCase_ =output_gluon[0].asnumpy() UpperCamelCase_ =output_hf[0].detach().numpy() UpperCamelCase_ =np.max(np.abs(hf_layer - gluon_layer ) ).item() UpperCamelCase_ =np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) if success: print("✔️ Both model do output the same tensors" ) else: print("❌ Both model do **NOT** output the same tensors" ) print("Absolute difference is:" , _UpperCAmelCase ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
391
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : int ) -> str: # Initialise PyTorch model _a : List[str] =RemBertConfig.from_json_file(_UpperCAmelCase ) print("""Building PyTorch model from configuration: {}""".format(str(_UpperCAmelCase ) ) ) _a : Dict =RemBertModel(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(_UpperCAmelCase ) ) torch.save(model.state_dict() ,_UpperCAmelCase ) if __name__ == "__main__": A__: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--rembert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained RemBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A__: Tuple = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
694
0
"""simple docstring""" def A ( snake_case__ , snake_case__ ): '''simple docstring''' assert x is not None assert y is not None SCREAMING_SNAKE_CASE__ = len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = len(_UpperCAmelCase ) # declaring the array for storing the dp values SCREAMING_SNAKE_CASE__ = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): SCREAMING_SNAKE_CASE__ = 1 if x[i - 1] == y[j - 1] else 0 SCREAMING_SNAKE_CASE__ = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) SCREAMING_SNAKE_CASE__ = """""" SCREAMING_SNAKE_CASE__ = m, n while i > 0 and j > 0: SCREAMING_SNAKE_CASE__ = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: SCREAMING_SNAKE_CASE__ = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": A_ : List[str] = '''AGGTAB''' A_ : Optional[int] = '''GXTXAYB''' A_ : List[str] = 4 A_ : List[str] = '''GTAB''' A_ : Optional[Any] = longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
196
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A__: Optional[int] = logging.get_logger(__name__) A__: Union[str, Any] = '''▁''' A__: Any = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} A__: Optional[int] = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } A__: Union[str, Any] = {'''vinai/bartpho-syllable''': 1024} class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Tuple = VOCAB_FILES_NAMES __UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self :Dict , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Any="<s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE :int="</s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE :Tuple="<unk>" , SCREAMING_SNAKE_CASE :Optional[Any]="<pad>" , SCREAMING_SNAKE_CASE :List[str]="<mask>" , SCREAMING_SNAKE_CASE :Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE :List[Any] , ) -> None: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it _a : str =AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token _a : int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) _a : Dict =vocab_file _a : int =monolingual_vocab_file _a : Dict =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _a : List[Any] ={} _a : List[str] =0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids: _a : Optional[Any] =cnt cnt += 1 with open(SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): _a : int =line.strip().split()[0] _a : str =len(self.fairseq_tokens_to_ids ) if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids: _a : Optional[int] =len(self.fairseq_tokens_to_ids ) _a : str ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self :int ) -> List[Any]: '''simple docstring''' _a : Optional[int] =self.__dict__.copy() _a : Optional[Any] =None _a : str =self.sp_model.serialized_model_proto() return state def __setstate__( self :Dict , SCREAMING_SNAKE_CASE :Any ) -> str: '''simple docstring''' _a : List[str] =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _a : Tuple ={} _a : Any =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : Optional[int] =[self.cls_token_id] _a : int =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None , SCREAMING_SNAKE_CASE :bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _a : List[str] =[self.sep_token_id] _a : int =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __UpperCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def __UpperCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' _a : str ={self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Dict ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :Any ) -> Dict: '''simple docstring''' return self.fairseq_ids_to_tokens[index] def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Optional[Any]: '''simple docstring''' _a : str ="""""".join(SCREAMING_SNAKE_CASE ).replace(SCREAMING_SNAKE_CASE , """ """ ).strip() return out_string def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _a : int =os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _a : Any =os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE , """wb""" ) as fi: _a : Optional[Any] =self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( SCREAMING_SNAKE_CASE ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"{str(SCREAMING_SNAKE_CASE )} \n" ) return out_vocab_file, out_monolingual_vocab_file
694
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class lowercase ( unittest.TestCase ): def lowercase__ ( self : Union[str, Any] , _lowercase : List[Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(_lowercase ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : int = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_lowercase , multi_process=_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = TensorFlowBenchmark(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : List[Any] = """sgugger/tiny-distilbert-classification""" SCREAMING_SNAKE_CASE__ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = TensorFlowBenchmark(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : List[str] = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = TensorFlowBenchmark(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoConfig.from_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_lowercase , multi_process=_lowercase , ) SCREAMING_SNAKE_CASE__ : List[Any] = TensorFlowBenchmark(_lowercase , [config] ) SCREAMING_SNAKE_CASE__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ : List[str] = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoConfig.from_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[int] = TensorFlowBenchmark(_lowercase , [config] ) SCREAMING_SNAKE_CASE__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ : int = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) SCREAMING_SNAKE_CASE__ : List[str] = TensorFlowBenchmark(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : List[str] = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ : Tuple = AutoConfig.from_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) SCREAMING_SNAKE_CASE__ : Dict = TensorFlowBenchmark(_lowercase , [config] ) SCREAMING_SNAKE_CASE__ : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : str = """patrickvonplaten/t5-tiny-random""" SCREAMING_SNAKE_CASE__ : List[Any] = AutoConfig.from_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) SCREAMING_SNAKE_CASE__ : List[Any] = TensorFlowBenchmark(_lowercase , configs=[config] ) SCREAMING_SNAKE_CASE__ : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_lowercase , multi_process=_lowercase , ) SCREAMING_SNAKE_CASE__ : int = TensorFlowBenchmark(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ : Dict = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(_lowercase , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(_lowercase , '''env.csv''' ) , multi_process=_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = TensorFlowBenchmark(_lowercase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowercase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''env.csv''' ) ).exists() ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Dict = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(_lowercase : List[str] ): self.assertTrue(hasattr(_lowercase , '''sequential''' ) ) self.assertTrue(hasattr(_lowercase , '''cumulative''' ) ) self.assertTrue(hasattr(_lowercase , '''current''' ) ) self.assertTrue(hasattr(_lowercase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , '''log.txt''' ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , eager_mode=_lowercase , multi_process=_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[int] = TensorFlowBenchmark(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_lowercase , '''log.txt''' ) ).exists() )
35
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
694
0
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __lowerCAmelCase ( UpperCAmelCase__ : int ) -> bool: lowerCamelCase_ = int(number**0.5 ) return number == sq * sq def __lowerCAmelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> tuple[int, int]: lowerCamelCase_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowerCamelCase_ = x_den * y_den * z_den lowerCamelCase_ = gcd(_UpperCAmelCase , _UpperCAmelCase ) top //= hcf bottom //= hcf return top, bottom def __lowerCAmelCase ( UpperCAmelCase__ : int = 3_5 ) -> int: lowerCamelCase_ = set() lowerCamelCase_ = 42 lowerCamelCase_ = Fraction(0 ) lowerCamelCase_ = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 lowerCamelCase_ = x_num * y_den + x_den * y_num lowerCamelCase_ = x_den * y_den lowerCamelCase_ = gcd(_UpperCAmelCase , _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCamelCase_ = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) # n=2 lowerCamelCase_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowerCamelCase_ = x_den * x_den * y_den * y_den if is_sq(_UpperCAmelCase ) and is_sq(_UpperCAmelCase ): lowerCamelCase_ = int(sqrt(_UpperCAmelCase ) ) lowerCamelCase_ = int(sqrt(_UpperCAmelCase ) ) lowerCamelCase_ = gcd(_UpperCAmelCase , _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCamelCase_ = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) # n=-1 lowerCamelCase_ = x_num * y_num lowerCamelCase_ = x_den * y_num + x_num * y_den lowerCamelCase_ = gcd(_UpperCAmelCase , _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCamelCase_ = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) # n=2 lowerCamelCase_ = x_num * x_num * y_num * y_num lowerCamelCase_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_UpperCAmelCase ) and is_sq(_UpperCAmelCase ): lowerCamelCase_ = int(sqrt(_UpperCAmelCase ) ) lowerCamelCase_ = int(sqrt(_UpperCAmelCase ) ) lowerCamelCase_ = gcd(_UpperCAmelCase , _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCamelCase_ = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) for num, den in unique_s: total += Fraction(_UpperCAmelCase , _UpperCAmelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
272
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list] ) -> list[list]: _a : Dict =current_set.copy() for row_index, row in enumerate(_UpperCAmelCase ): _a : Any =row[0] for column_index, column in enumerate(_UpperCAmelCase ): if magnitude == 0: _a : Any =column continue _a : Union[str, Any] =column / magnitude # Subtract to cancel term _a : Optional[Any] =current_set[0] _a : List[Any] =[first_row] _a : Tuple =current_set[1::] for row in current_set: _a : Any =[] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(_UpperCAmelCase ) continue for column_index in range(len(_UpperCAmelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(_UpperCAmelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: _a : List[str] =final_set[0] _a : Tuple =[] _a : Tuple =[] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _a : str =simplify(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): resultant[i].insert(0 ,current_first_column[i] ) resultant.insert(0 ,_UpperCAmelCase ) _a : List[Any] =resultant return final_set def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list] ) -> list: if len(_UpperCAmelCase ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) _a : str =len(_UpperCAmelCase ) + 1 if any(len(_UpperCAmelCase ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(_UpperCAmelCase ,(int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(_UpperCAmelCase ) == 1: return [equations[0][-1] / equations[0][0]] _a : str =equations.copy() if any(0 in row for row in data_set ): _a : Optional[int] =data_set.copy() _a : str =[] for row_index, row in enumerate(_UpperCAmelCase ): if 0 not in row: _a : List[Any] =data_set.pop(_UpperCAmelCase ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 ,_UpperCAmelCase ) _a : Dict =data_set.copy() _a : Any =simplify(_UpperCAmelCase ) _a : Any =simplified[::-1] _a : list =[] for row in simplified: _a : Optional[Any] =row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _a : Any =row.copy()[: len(_UpperCAmelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(_UpperCAmelCase ) == 0: solutions.append(0 ) continue _a : List[str] =temp_row[1::] _a : int =temp_row[::-1] for column_index, column in enumerate(_UpperCAmelCase ): current_solution -= column * solutions[column_index] solutions.append(_UpperCAmelCase ) _a : Tuple =[] for item in solutions: final.append(float(round(_UpperCAmelCase ,5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() A__: int = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
694
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __A = [ '''openmmlab/upernet-convnext-tiny''', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __A = '''UperNetConfig''' class UpperCAmelCase (nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 0 , _UpperCAmelCase = False , _UpperCAmelCase = 1 , ): super().__init__() lowercase__: int = nn.Convad( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , kernel_size=_UpperCAmelCase , padding=_UpperCAmelCase , bias=_UpperCAmelCase , dilation=_UpperCAmelCase , ) lowercase__: str = nn.BatchNormad(_UpperCAmelCase ) lowercase__: Union[str, Any] = nn.ReLU() def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = self.conv(_UpperCAmelCase ) lowercase__: int = self.batch_norm(_UpperCAmelCase ) lowercase__: Optional[int] = self.activation(_UpperCAmelCase ) return output class UpperCAmelCase (nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): super().__init__() lowercase__: str = [ nn.AdaptiveAvgPoolad(_UpperCAmelCase ), UperNetConvModule(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: str = input for layer in self.layers: lowercase__: List[str] = layer(_UpperCAmelCase ) return hidden_state class UpperCAmelCase (nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): super().__init__() lowercase__: Tuple = pool_scales lowercase__: Any = align_corners lowercase__: Any = in_channels lowercase__: List[Any] = channels lowercase__: List[Any] = [] for i, pool_scale in enumerate(_UpperCAmelCase ): lowercase__: str = UperNetPyramidPoolingBlock(pool_scale=_UpperCAmelCase , in_channels=_UpperCAmelCase , channels=_UpperCAmelCase ) self.blocks.append(_UpperCAmelCase ) self.add_module(str(_UpperCAmelCase ) , _UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[int] = [] for ppm in self.blocks: lowercase__: Optional[Any] = ppm(_UpperCAmelCase ) lowercase__: Dict = nn.functional.interpolate( _UpperCAmelCase , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(_UpperCAmelCase ) return ppm_outs class UpperCAmelCase (nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__() lowercase__: int = config lowercase__: int = config.pool_scales # e.g. (1, 2, 3, 6) lowercase__: Tuple = in_channels lowercase__: List[str] = config.hidden_size lowercase__: Dict = False lowercase__: Optional[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module lowercase__: Dict = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) lowercase__: Union[str, Any] = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module lowercase__: int = nn.ModuleList() lowercase__: Optional[Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowercase__: str = UperNetConvModule(_UpperCAmelCase , self.channels , kernel_size=1 ) lowercase__: str = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(_UpperCAmelCase ) self.fpn_convs.append(_UpperCAmelCase ) lowercase__: Tuple = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _snake_case ( self ): self.apply(self._init_weights ) def _snake_case ( self , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[int] = inputs[-1] lowercase__: Tuple = [x] psp_outs.extend(self.psp_modules(_UpperCAmelCase ) ) lowercase__: List[str] = torch.cat(_UpperCAmelCase , dim=1 ) lowercase__: Any = self.bottleneck(_UpperCAmelCase ) return output def _snake_case ( self , _UpperCAmelCase ): lowercase__: Optional[int] = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_UpperCAmelCase ) ) # build top-down path lowercase__: str = len(_UpperCAmelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowercase__: Any = laterals[i - 1].shape[2:] lowercase__: Dict = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=_UpperCAmelCase , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs lowercase__: List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowercase__: str = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) lowercase__: str = torch.cat(_UpperCAmelCase , dim=1 ) lowercase__: List[Any] = self.fpn_bottleneck(_UpperCAmelCase ) lowercase__: int = self.classifier(_UpperCAmelCase ) return output class UpperCAmelCase (nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = 2 , _UpperCAmelCase = 3 , _UpperCAmelCase = 1 ): super().__init__() lowercase__: Tuple = config lowercase__: Optional[Any] = config.auxiliary_in_channels lowercase__: int = config.auxiliary_channels lowercase__: Optional[int] = config.auxiliary_num_convs lowercase__: Union[str, Any] = config.auxiliary_concat_input lowercase__: List[Any] = in_index lowercase__: Tuple = (kernel_size // 2) * dilation lowercase__: List[Any] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=_UpperCAmelCase , padding=_UpperCAmelCase , dilation=_UpperCAmelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=_UpperCAmelCase , padding=_UpperCAmelCase , dilation=_UpperCAmelCase ) ) if self.num_convs == 0: lowercase__: Optional[Any] = nn.Identity() else: lowercase__: Any = nn.Sequential(*_UpperCAmelCase ) if self.concat_input: lowercase__: List[str] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=_UpperCAmelCase , padding=kernel_size // 2 ) lowercase__: Optional[int] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _snake_case ( self ): self.apply(self._init_weights ) def _snake_case ( self , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _snake_case ( self , _UpperCAmelCase ): lowercase__: str = encoder_hidden_states[self.in_index] lowercase__: Tuple = self.convs(_UpperCAmelCase ) if self.concat_input: lowercase__: Dict = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) lowercase__: Optional[Any] = self.classifier(_UpperCAmelCase ) return output class UpperCAmelCase (UpperCAmelCase__ ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = UperNetConfig _UpperCAmelCase :int = "pixel_values" _UpperCAmelCase :List[str] = True def _snake_case ( self , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _snake_case ( self ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=False ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = value __A = R''' Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __A = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." ,UpperCAmelCase__ ,) class UpperCAmelCase (UpperCAmelCase__ ): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) lowercase__: int = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowercase__: Tuple = UperNetHead(_UpperCAmelCase , in_channels=self.backbone.channels ) lowercase__: Tuple = UperNetFCNHead(_UpperCAmelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC ) def _snake_case ( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): lowercase__: Any = return_dict if return_dict is not None else self.config.use_return_dict lowercase__: Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__: int = output_attentions if output_attentions is not None else self.config.output_attentions lowercase__: List[str] = self.backbone.forward_with_filtered_kwargs( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , output_attentions=_UpperCAmelCase ) lowercase__: int = outputs.feature_maps lowercase__: Tuple = self.decode_head(_UpperCAmelCase ) lowercase__: Union[str, Any] = nn.functional.interpolate(_UpperCAmelCase , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=_UpperCAmelCase ) lowercase__: Dict = None if self.auxiliary_head is not None: lowercase__: Optional[Any] = self.auxiliary_head(_UpperCAmelCase ) lowercase__: Dict = nn.functional.interpolate( _UpperCAmelCase , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=_UpperCAmelCase ) lowercase__: Union[str, Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss lowercase__: str = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowercase__: Optional[Any] = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Tuple = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowercase__: Any = (logits,) + outputs[1:] else: lowercase__: str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
586
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__: Dict = logging.get_logger(__name__) A__: Optional[int] = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Tuple = "markuplm" def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :List[Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE :Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :int=3_0_7_2 , SCREAMING_SNAKE_CASE :Optional[int]="gelu" , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=5_1_2 , SCREAMING_SNAKE_CASE :Optional[Any]=2 , SCREAMING_SNAKE_CASE :Optional[int]=0.02 , SCREAMING_SNAKE_CASE :Any=1e-12 , SCREAMING_SNAKE_CASE :Any=0 , SCREAMING_SNAKE_CASE :List[Any]=0 , SCREAMING_SNAKE_CASE :Tuple=2 , SCREAMING_SNAKE_CASE :Optional[Any]=2_5_6 , SCREAMING_SNAKE_CASE :Optional[int]=1_0_2_4 , SCREAMING_SNAKE_CASE :Tuple=2_1_6 , SCREAMING_SNAKE_CASE :Dict=1_0_0_1 , SCREAMING_SNAKE_CASE :List[str]=3_2 , SCREAMING_SNAKE_CASE :List[str]=5_0 , SCREAMING_SNAKE_CASE :Dict="absolute" , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :Any=None , **SCREAMING_SNAKE_CASE :Tuple , ) -> Any: '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) _a : Any =vocab_size _a : List[str] =hidden_size _a : List[str] =num_hidden_layers _a : Tuple =num_attention_heads _a : Union[str, Any] =hidden_act _a : Tuple =intermediate_size _a : Optional[Any] =hidden_dropout_prob _a : int =attention_probs_dropout_prob _a : Any =max_position_embeddings _a : List[Any] =type_vocab_size _a : List[Any] =initializer_range _a : List[Any] =layer_norm_eps _a : Optional[int] =position_embedding_type _a : List[Any] =use_cache _a : List[str] =classifier_dropout # additional properties _a : int =max_depth _a : Union[str, Any] =max_xpath_tag_unit_embeddings _a : str =max_xpath_subs_unit_embeddings _a : int =tag_pad_id _a : List[Any] =subs_pad_id _a : str =xpath_unit_hidden_size
694
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowercase__ : Optional[Any] = "xmod" def __init__( self , UpperCamelCase__=3_05_22 , UpperCamelCase__=7_68 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=30_72 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=5_12 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=2 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=("en_XX",) , UpperCamelCase__=None , **UpperCamelCase__ , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = classifier_dropout A__ = pre_norm A__ = adapter_reduction_factor A__ = adapter_layer_norm A__ = adapter_reuse_layer_norm A__ = ln_before_adapter A__ = list(UpperCamelCase__ ) A__ = default_language class lowerCAmelCase__ ( UpperCAmelCase__ ): @property def lowercase_ ( self ): '''simple docstring''' if self.task == "multiple-choice": A__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
337
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() A__: Union[str, Any] = logging.get_logger('''transformers.models.speecht5''') def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Any ) -> Dict: hf_model.apply_weight_norm() _a : Any =checkpoint["""input_conv.weight_g"""] _a : Union[str, Any] =checkpoint["""input_conv.weight_v"""] _a : Optional[int] =checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): _a : Optional[int] =checkpoint[F"upsamples.{i}.1.weight_g"] _a : Optional[Any] =checkpoint[F"upsamples.{i}.1.weight_v"] _a : List[Any] =checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): _a : Optional[int] =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] _a : Tuple =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] _a : Union[str, Any] =checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] _a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] _a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] _a : Tuple =checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] _a : Dict =checkpoint["""output_conv.1.weight_g"""] _a : str =checkpoint["""output_conv.1.weight_v"""] _a : Union[str, Any] =checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : int=None ,_UpperCAmelCase : Tuple=None ,) -> List[Any]: if config_path is not None: _a : str =SpeechTaHifiGanConfig.from_pretrained(_UpperCAmelCase ) else: _a : str =SpeechTaHifiGanConfig() _a : Tuple =SpeechTaHifiGan(_UpperCAmelCase ) _a : int =torch.load(_UpperCAmelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] ,_UpperCAmelCase ,_UpperCAmelCase ) _a : Dict =np.load(_UpperCAmelCase ) _a : Union[str, Any] =stats[0].reshape(-1 ) _a : Any =stats[1].reshape(-1 ) _a : Tuple =torch.from_numpy(_UpperCAmelCase ).float() _a : List[str] =torch.from_numpy(_UpperCAmelCase ).float() model.save_pretrained(_UpperCAmelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": A__: Optional[int] = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) A__: Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
694
0
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def a__ ( lowercase : Tuple ) -> Union[str, Any]: """simple docstring""" if hor == 128: _UpperCamelCase = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") _UpperCamelCase = (32, 128, 256) _UpperCamelCase = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: _UpperCamelCase = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") _UpperCamelCase = (32, 64, 128, 256) _UpperCamelCase = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") _UpperCamelCase = torch.load(F"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) _UpperCamelCase = model.state_dict() _UpperCamelCase = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 65536, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } _UpperCamelCase = UNetaDModel(**_UpperCAmelCase ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) _UpperCamelCase = dict(zip(model.state_dict().keys(), hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _UpperCamelCase = state_dict.pop(_UpperCAmelCase ) hf_value_function.load_state_dict(_UpperCAmelCase ) torch.save(hf_value_function.state_dict(), F"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(F"""hub/hopper-medium-v2/unet/hor{hor}/config.json""", '''w''' ) as f: json.dump(_UpperCAmelCase, _UpperCAmelCase ) def a__ ( ) -> str: """simple docstring""" _UpperCamelCase = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 128, 256), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 65536, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } _UpperCamelCase = torch.load('''/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch''' ) _UpperCamelCase = model _UpperCamelCase = UNetaDModel(**_UpperCAmelCase ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) _UpperCamelCase = dict(zip(state_dict.keys(), hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _UpperCamelCase = state_dict.pop(_UpperCAmelCase ) hf_value_function.load_state_dict(_UpperCAmelCase ) torch.save(hf_value_function.state_dict(), '''hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin''' ) with open('''hub/hopper-medium-v2/value_function/config.json''', '''w''' ) as f: json.dump(_UpperCAmelCase, _UpperCAmelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
98
'''simple docstring''' class A__ : def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :List[str] ) -> List[str]: '''simple docstring''' _a : List[str] =None _a : Optional[Any] =None _a : str =graph self._normalize_graph(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Optional[int] =len(SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =None def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[str] ) -> Any: '''simple docstring''' if sources is int: _a : Tuple =[sources] if sinks is int: _a : Optional[int] =[sinks] if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) == 0: return _a : Union[str, Any] =sources[0] _a : Tuple =sinks[0] # make fake vertex if there are more # than one source or sink if len(SCREAMING_SNAKE_CASE ) > 1 or len(SCREAMING_SNAKE_CASE ) > 1: _a : Tuple =0 for i in sources: max_input_flow += sum(self.graph[i] ) _a : List[Any] =len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _a : Any =max_input_flow _a : List[str] =0 _a : List[str] =len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _a : str =max_input_flow _a : Optional[Any] =size - 1 def __UpperCAmelCase ( self :Optional[int] ) -> Tuple: '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Dict ) -> int: '''simple docstring''' _a : Tuple =algorithm(self ) class A__ : def __init__( self :Tuple , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Dict: '''simple docstring''' _a : List[str] =flow_network _a : List[Any] =flow_network.verticesCount _a : str =flow_network.sourceIndex _a : str =flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _a : List[Any] =flow_network.graph _a : Optional[int] =False def __UpperCAmelCase ( self :List[Any] ) -> List[str]: '''simple docstring''' if not self.executed: self._algorithm() _a : Any =True def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[int]: '''simple docstring''' pass class A__ ( UpperCAmelCase__ ): def __init__( self :int , SCREAMING_SNAKE_CASE :str ) -> int: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE ) # use this to save your result _a : List[Any] =-1 def __UpperCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class A__ ( UpperCAmelCase__ ): def __init__( self :str , SCREAMING_SNAKE_CASE :Tuple ) -> str: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE ) _a : int =[[0] * self.verticies_count for i in range(self.verticies_count )] _a : Union[str, Any] =[0] * self.verticies_count _a : Optional[Any] =[0] * self.verticies_count def __UpperCAmelCase ( self :Optional[int] ) -> Optional[Any]: '''simple docstring''' _a : int =self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _a : Tuple =[ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _a : List[Any] =0 while i < len(SCREAMING_SNAKE_CASE ): _a : Any =vertices_list[i] _a : str =self.heights[vertex_index] self.process_vertex(SCREAMING_SNAKE_CASE ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE ) ) _a : List[str] =0 else: i += 1 _a : Optional[int] =sum(self.preflow[self.source_index] ) def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> List[str]: '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.relabel(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :str ) -> List[str]: '''simple docstring''' _a : List[str] =min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Any ) -> List[Any]: '''simple docstring''' _a : int =None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _a : Optional[Any] =self.heights[to_index] if min_height is not None: _a : Any =min_height + 1 if __name__ == "__main__": A__: str = [0] A__: Optional[Any] = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] A__: Tuple = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network A__: Union[str, Any] = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate A__: List[str] = flow_network.find_maximum_flow() print(F"maximum flow is {maximum_flow}")
694
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' lowerCamelCase__ = (UniPCMultistepScheduler,) lowerCamelCase__ = (("num_inference_steps", 25),) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { """num_train_timesteps""": 1000, """beta_start""": 0.00_01, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, """solver_type""": """bh2""", } config.update(**lowercase ) return config def A_ ( self , lowercase=0 , **lowercase ): _lowerCamelCase : int = dict(self.forward_default_kwargs ) _lowerCamelCase : Tuple = kwargs.pop('num_inference_steps' , lowercase ) _lowerCamelCase : str = self.dummy_sample _lowerCamelCase : Dict = 0.1 * sample _lowerCamelCase : Any = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCamelCase : str = self.get_scheduler_config(**lowercase ) _lowerCamelCase : List[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals _lowerCamelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) _lowerCamelCase : List[str] = scheduler_class.from_pretrained(lowercase ) new_scheduler.set_timesteps(lowercase ) # copy over dummy past residuals _lowerCamelCase : List[str] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCamelCase : Tuple = sample, sample for t in range(lowercase , time_step + scheduler.config.solver_order + 1 ): _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample _lowerCamelCase : str = new_scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A_ ( self , lowercase=0 , **lowercase ): _lowerCamelCase : str = dict(self.forward_default_kwargs ) _lowerCamelCase : List[Any] = kwargs.pop('num_inference_steps' , lowercase ) _lowerCamelCase : Optional[int] = self.dummy_sample _lowerCamelCase : Union[str, Any] = 0.1 * sample _lowerCamelCase : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCamelCase : Tuple = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals (must be after setting timesteps) _lowerCamelCase : int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) _lowerCamelCase : Optional[int] = scheduler_class.from_pretrained(lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase ) # copy over dummy past residual (must be after setting timesteps) _lowerCamelCase : List[str] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCamelCase : str = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample _lowerCamelCase : List[Any] = new_scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A_ ( self , lowercase=None , **lowercase ): if scheduler is None: _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : Tuple = self.get_scheduler_config(**lowercase ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : List[str] = self.get_scheduler_config(**lowercase ) _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Optional[Any] = 10 _lowerCamelCase : Dict = self.dummy_model() _lowerCamelCase : Dict = self.dummy_sample_deter scheduler.set_timesteps(lowercase ) for i, t in enumerate(scheduler.timesteps ): _lowerCamelCase : Any = model(lowercase , lowercase ) _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase ).prev_sample return sample def A_ ( self ): _lowerCamelCase : Union[str, Any] = dict(self.forward_default_kwargs ) _lowerCamelCase : List[Any] = kwargs.pop('num_inference_steps' , lowercase ) for scheduler_class in self.scheduler_classes: _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : int = self.dummy_sample _lowerCamelCase : Any = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase , 'set_timesteps' ): scheduler.set_timesteps(lowercase ) elif num_inference_steps is not None and not hasattr(lowercase , 'set_timesteps' ): _lowerCamelCase : List[str] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCamelCase : str = [residual + 0.2, residual + 0.15, residual + 0.10] _lowerCamelCase : Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCamelCase : Any = scheduler.timesteps[5] _lowerCamelCase : Any = scheduler.timesteps[6] _lowerCamelCase : Dict = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample _lowerCamelCase : Union[str, Any] = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A_ ( self ): _lowerCamelCase : Optional[Any] = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCamelCase : List[str] = self.full_loop(scheduler=lowercase ) _lowerCamelCase : Any = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 _lowerCamelCase : Union[str, Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCamelCase : Dict = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCamelCase : List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCamelCase : Optional[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCamelCase : Optional[int] = self.full_loop(scheduler=lowercase ) _lowerCamelCase : str = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 def A_ ( self ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): self.check_over_configs(thresholding=lowercase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase , prediction_type=lowercase , sample_max_value=lowercase , solver_order=lowercase , solver_type=lowercase , ) def A_ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase , solver_type=lowercase , prediction_type=lowercase , ) _lowerCamelCase : Optional[int] = self.full_loop( solver_order=lowercase , solver_type=lowercase , prediction_type=lowercase , ) assert not torch.isnan(lowercase ).any(), "Samples have nan numbers" def A_ ( self ): self.check_over_configs(lower_order_final=lowercase ) self.check_over_configs(lower_order_final=lowercase ) def A_ ( self ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=lowercase , time_step=0 ) def A_ ( self ): _lowerCamelCase : List[str] = self.full_loop() _lowerCamelCase : str = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 def A_ ( self ): _lowerCamelCase : int = self.full_loop(prediction_type='v_prediction' ) _lowerCamelCase : Tuple = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.10_14 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Optional[int] = self.scheduler_classes[0] _lowerCamelCase : Union[str, Any] = self.get_scheduler_config(thresholding=lowercase , dynamic_thresholding_ratio=0 ) _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : str = 10 _lowerCamelCase : str = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase ) for i, t in enumerate(scheduler.timesteps ): _lowerCamelCase : List[Any] = model(lowercase , lowercase ) _lowerCamelCase : Optional[Any] = scheduler.step(lowercase , lowercase , lowercase ).prev_sample assert sample.dtype == torch.floataa def A_ ( self , **lowercase ): for scheduler_class in self.scheduler_classes: _lowerCamelCase : Optional[Any] = self.get_scheduler_config(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
630
'''simple docstring''' A__: Optional[int] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' A__: List[Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] A__: int = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
694
0
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def UpperCamelCase ( _lowerCAmelCase : int = 1000000, _lowerCAmelCase : int = 10 ) -> int: _UpperCAmelCase : defaultdict = defaultdict(_UpperCAmelCase ) for outer_width in range(3, (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _UpperCAmelCase : Union[str, Any] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ), 1 ) else: _UpperCAmelCase : List[str] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_UpperCAmelCase, outer_width - 1, 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F'''{solution() = }''')
238
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : float ,_UpperCAmelCase : float ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(F"{price_plus_tax(100, 0.25) = }") print(F"{price_plus_tax(125.50, 0.05) = }")
694
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _A ( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case_ ( self ): '''simple docstring''' snake_case : int = 1 snake_case : Dict = 3 snake_case : List[Any] = (32, 32) snake_case : Dict = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) return image @property def snake_case_ ( self ): '''simple docstring''' torch.manual_seed(0 ) snake_case : int = UNetaDConditionModel( block_out_channels=(32, 32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=7 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,attention_head_dim=8 ,use_linear_projection=SCREAMING_SNAKE_CASE_ ,only_cross_attention=(True, True, False) ,num_class_embeds=100 ,) return model @property def snake_case_ ( self ): '''simple docstring''' torch.manual_seed(0 ) snake_case : str = AutoencoderKL( block_out_channels=[32, 32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def snake_case_ ( self ): '''simple docstring''' torch.manual_seed(0 ) snake_case : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act="""gelu""" ,projection_dim=512 ,) return CLIPTextModel(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' snake_case : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : Any = self.dummy_cond_unet_upscale snake_case : Optional[Any] = DDPMScheduler() snake_case : Optional[Any] = DDIMScheduler(prediction_type="""v_prediction""" ) snake_case : Any = self.dummy_vae snake_case : Any = self.dummy_text_encoder snake_case : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case : Any = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] snake_case : int = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk snake_case : Tuple = StableDiffusionUpscalePipeline( unet=SCREAMING_SNAKE_CASE_ ,low_res_scheduler=SCREAMING_SNAKE_CASE_ ,scheduler=SCREAMING_SNAKE_CASE_ ,vae=SCREAMING_SNAKE_CASE_ ,text_encoder=SCREAMING_SNAKE_CASE_ ,tokenizer=SCREAMING_SNAKE_CASE_ ,max_noise_level=350 ,) snake_case : str = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = """A painting of a squirrel eating a burger""" snake_case : Optional[int] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) snake_case : Any = sd_pipe( [prompt] ,image=SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type="""np""" ,) snake_case : Optional[int] = output.images snake_case : Dict = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) snake_case : List[Any] = sd_pipe( [prompt] ,image=SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=SCREAMING_SNAKE_CASE_ ,)[0] snake_case : str = image[0, -3:, -3:, -1] snake_case : List[str] = image_from_tuple[0, -3:, -3:, -1] snake_case : Optional[Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) snake_case : int = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self ): '''simple docstring''' snake_case : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : Any = self.dummy_cond_unet_upscale snake_case : List[str] = DDPMScheduler() snake_case : Optional[int] = DDIMScheduler(prediction_type="""v_prediction""" ) snake_case : str = self.dummy_vae snake_case : List[str] = self.dummy_text_encoder snake_case : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case : Optional[int] = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] snake_case : Tuple = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk snake_case : str = StableDiffusionUpscalePipeline( unet=SCREAMING_SNAKE_CASE_ ,low_res_scheduler=SCREAMING_SNAKE_CASE_ ,scheduler=SCREAMING_SNAKE_CASE_ ,vae=SCREAMING_SNAKE_CASE_ ,text_encoder=SCREAMING_SNAKE_CASE_ ,tokenizer=SCREAMING_SNAKE_CASE_ ,max_noise_level=350 ,) snake_case : str = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) snake_case : Tuple = """A painting of a squirrel eating a burger""" snake_case : List[Any] = sd_pipe( 2 * [prompt] ,image=2 * [low_res_image] ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type="""np""" ,) snake_case : Any = output.images assert image.shape[0] == 2 snake_case : Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) snake_case : Dict = sd_pipe( [prompt] ,image=SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ,num_images_per_prompt=2 ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type="""np""" ,) snake_case : Tuple = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def snake_case_ ( self ): '''simple docstring''' snake_case : int = self.dummy_cond_unet_upscale snake_case : Dict = DDPMScheduler() snake_case : Any = DDIMScheduler(prediction_type="""v_prediction""" ) snake_case : str = self.dummy_vae snake_case : Dict = self.dummy_text_encoder snake_case : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case : List[str] = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] snake_case : Optional[int] = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 snake_case : Any = unet.half() snake_case : Tuple = text_encoder.half() # make sure here that pndm scheduler skips prk snake_case : str = StableDiffusionUpscalePipeline( unet=SCREAMING_SNAKE_CASE_ ,low_res_scheduler=SCREAMING_SNAKE_CASE_ ,scheduler=SCREAMING_SNAKE_CASE_ ,vae=SCREAMING_SNAKE_CASE_ ,text_encoder=SCREAMING_SNAKE_CASE_ ,tokenizer=SCREAMING_SNAKE_CASE_ ,max_noise_level=350 ,) snake_case : Optional[int] = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) snake_case : Any = """A painting of a squirrel eating a burger""" snake_case : Optional[Any] = torch.manual_seed(0 ) snake_case : int = sd_pipe( [prompt] ,image=SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ,num_inference_steps=2 ,output_type="""np""" ,).images snake_case : Optional[Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ): '''simple docstring''' snake_case : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) snake_case : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) snake_case : str = """stabilityai/stable-diffusion-x4-upscaler""" snake_case : Union[str, Any] = StableDiffusionUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() snake_case : str = """a cat sitting on a park bench""" snake_case : Optional[Any] = torch.manual_seed(0 ) snake_case : Union[str, Any] = pipe( prompt=SCREAMING_SNAKE_CASE_ ,image=SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ,output_type="""np""" ,) snake_case : str = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def snake_case_ ( self ): '''simple docstring''' snake_case : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) snake_case : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) snake_case : str = """stabilityai/stable-diffusion-x4-upscaler""" snake_case : int = StableDiffusionUpscalePipeline.from_pretrained( SCREAMING_SNAKE_CASE_ ,torch_dtype=torch.floataa ,) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() snake_case : List[str] = """a cat sitting on a park bench""" snake_case : Tuple = torch.manual_seed(0 ) snake_case : List[Any] = pipe( prompt=SCREAMING_SNAKE_CASE_ ,image=SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ,output_type="""np""" ,) snake_case : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def snake_case_ ( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) snake_case : str = """stabilityai/stable-diffusion-x4-upscaler""" snake_case : Union[str, Any] = StableDiffusionUpscalePipeline.from_pretrained( SCREAMING_SNAKE_CASE_ ,torch_dtype=torch.floataa ,) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case : Any = """a cat sitting on a park bench""" snake_case : Union[str, Any] = torch.manual_seed(0 ) snake_case : List[Any] = pipe( prompt=SCREAMING_SNAKE_CASE_ ,image=SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ,num_inference_steps=5 ,output_type="""np""" ,) snake_case : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
36
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class A__ ( unittest.TestCase ): def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Any=1_3 , SCREAMING_SNAKE_CASE :Any=7 , SCREAMING_SNAKE_CASE :Any=True , SCREAMING_SNAKE_CASE :int=True , SCREAMING_SNAKE_CASE :Optional[int]=True , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :Optional[Any]=9_9 , SCREAMING_SNAKE_CASE :Tuple=3_2 , SCREAMING_SNAKE_CASE :Union[str, Any]=5 , SCREAMING_SNAKE_CASE :List[str]=4 , SCREAMING_SNAKE_CASE :int=3_7 , SCREAMING_SNAKE_CASE :Optional[Any]="gelu" , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=0.1 , SCREAMING_SNAKE_CASE :Dict=5_1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_6 , SCREAMING_SNAKE_CASE :Union[str, Any]=2 , SCREAMING_SNAKE_CASE :List[Any]=0.02 , SCREAMING_SNAKE_CASE :int=4 , ) -> Tuple: '''simple docstring''' _a : Optional[Any] =parent _a : List[str] =batch_size _a : List[str] =seq_length _a : List[Any] =is_training _a : Optional[int] =use_attention_mask _a : List[Any] =use_token_type_ids _a : List[Any] =use_labels _a : Optional[Any] =vocab_size _a : str =hidden_size _a : List[Any] =num_hidden_layers _a : List[Any] =num_attention_heads _a : Union[str, Any] =intermediate_size _a : int =hidden_act _a : List[str] =hidden_dropout_prob _a : Optional[int] =attention_probs_dropout_prob _a : Dict =max_position_embeddings _a : Any =type_vocab_size _a : str =type_sequence_label_size _a : str =initializer_range _a : List[str] =num_choices def __UpperCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' _a : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : Dict =None if self.use_attention_mask: _a : Any =random_attention_mask([self.batch_size, self.seq_length] ) _a : Optional[int] =None if self.use_token_type_ids: _a : Any =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a : Union[str, Any] =RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self :Optional[Any] ) -> int: '''simple docstring''' _a : Tuple =self.prepare_config_and_inputs() _a , _a , _a , _a : List[Any] =config_and_inputs _a : Optional[int] ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def __UpperCAmelCase ( self :int ) -> str: '''simple docstring''' _a : List[Any] =self.prepare_config_and_inputs() _a , _a , _a , _a : Optional[int] =config_and_inputs _a : Tuple =True _a : Optional[Any] =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _a : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class A__ ( UpperCAmelCase__ , unittest.TestCase ): __UpperCamelCase : Union[str, Any] = True __UpperCamelCase : Dict = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self :List[str] ) -> Optional[int]: '''simple docstring''' _a : Union[str, Any] =FlaxRobertaPreLayerNormModelTester(self ) @slow def __UpperCAmelCase ( self :str ) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _a : Optional[int] =model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE ) _a : Dict =model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_flax class A__ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self :Any ) -> str: '''simple docstring''' _a : str =FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE ) _a : List[Any] =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) _a : Dict =model(SCREAMING_SNAKE_CASE )[0] _a : List[Any] =[1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. _a : Any =np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow def __UpperCAmelCase ( self :int ) -> int: '''simple docstring''' _a : Union[str, Any] =FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE ) _a : Any =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) _a : Optional[int] =model(SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. _a : str =np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
694
0
def __magic_name__ ( lowercase , lowercase ) -> int: """simple docstring""" while b: lowercase_ : Any = b, a % b return a def __magic_name__ ( lowercase , lowercase ) -> int: """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(_UpperCAmelCase , a % b ) def __magic_name__ ( ) -> List[str]: """simple docstring""" print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
458
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging A__: Tuple = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any]=None ,_UpperCAmelCase : str=None ) -> Union[str, Any]: return field(default_factory=lambda: default ,metadata=_UpperCAmelCase ) @dataclass class A__ : __UpperCamelCase : List[str] = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) __UpperCamelCase : List[int] = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) __UpperCamelCase : List[int] = list_field( default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Use FP16 to accelerate inference."} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Benchmark training of model"} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Verbose memory tracing"} ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Trace memory line by line"} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Save result to a CSV file"} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Save all print statements in a log file"} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Whether to print environment information"} ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) __UpperCamelCase : str = field( default=f'''inference_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , ) __UpperCamelCase : str = field( default=f'''inference_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , ) __UpperCamelCase : str = field( default=f'''train_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) __UpperCamelCase : str = field( default=f'''train_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) __UpperCamelCase : str = field( default=f'''env_info_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , ) __UpperCamelCase : str = field( default=f'''log_{round(time() )}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , ) __UpperCamelCase : int = field(default=3 , metadata={"help": "Times an experiment will be run."} ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def __UpperCAmelCase ( self :Union[str, Any] ) -> int: '''simple docstring''' warnings.warn( f"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , SCREAMING_SNAKE_CASE , ) def __UpperCAmelCase ( self :Optional[int] ) -> Dict: '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def __UpperCAmelCase ( self :Optional[int] ) -> List[str]: '''simple docstring''' if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def __UpperCAmelCase ( self :Optional[Any] ) -> int: '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
694
0
"""simple docstring""" from collections.abc import Iterable from typing import Any class __lowerCAmelCase : '''simple docstring''' def __init__( self: Union[str, Any] , UpperCamelCase_: int | None = None ): UpperCamelCase_ =value UpperCamelCase_ =None # Added in order to delete a node easier UpperCamelCase_ =None UpperCamelCase_ =None def __repr__( self: Dict ): from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 ) class __lowerCAmelCase : '''simple docstring''' def __init__( self: Union[str, Any] , UpperCamelCase_: Node | None = None ): UpperCamelCase_ =root def __str__( self: Optional[Any] ): return str(self.root ) def UpperCamelCase__ ( self: Dict , UpperCamelCase_: Node , UpperCamelCase_: Node | None ): if new_children is not None: # reset its kids UpperCamelCase_ =node.parent if node.parent is not None: # reset its parent if self.is_right(UpperCamelCase_ ): # If it is the right children UpperCamelCase_ =new_children else: UpperCamelCase_ =new_children else: UpperCamelCase_ =new_children def UpperCamelCase__ ( self: Optional[int] , UpperCamelCase_: Node ): if node.parent and node.parent.right: return node == node.parent.right return False def UpperCamelCase__ ( self: Any ): return self.root is None def UpperCamelCase__ ( self: Optional[int] , UpperCamelCase_: Optional[Any] ): UpperCamelCase_ =Node(UpperCamelCase_ ) # create a new Node if self.empty(): # if Tree is empty UpperCamelCase_ =new_node # set its root else: # Tree is not empty UpperCamelCase_ =self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCamelCase_ =new_node # We insert the new node in a leaf break else: UpperCamelCase_ =parent_node.left else: if parent_node.right is None: UpperCamelCase_ =new_node break else: UpperCamelCase_ =parent_node.right UpperCamelCase_ =parent_node def UpperCamelCase__ ( self: Optional[Any] , *UpperCamelCase_: int ): for value in values: self.__insert(UpperCamelCase_ ) def UpperCamelCase__ ( self: Union[str, Any] , UpperCamelCase_: Any ): if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: UpperCamelCase_ =self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCamelCase_ =node.left if value < node.value else node.right return node def UpperCamelCase__ ( self: str , UpperCamelCase_: Node | None = None ): if node is None: if self.root is None: return None UpperCamelCase_ =self.root if not self.empty(): while node.right is not None: UpperCamelCase_ =node.right return node def UpperCamelCase__ ( self: Tuple , UpperCamelCase_: Node | None = None ): if node is None: UpperCamelCase_ =self.root if self.root is None: return None if not self.empty(): UpperCamelCase_ =self.root while node.left is not None: UpperCamelCase_ =node.left return node def UpperCamelCase__ ( self: List[str] , UpperCamelCase_: int ): UpperCamelCase_ =self.search(UpperCamelCase_ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(UpperCamelCase_ , UpperCamelCase_ ) elif node.left is None: # Has only right children self.__reassign_nodes(UpperCamelCase_ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(UpperCamelCase_ , node.left ) else: UpperCamelCase_ =self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCamelCase_ =( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCamelCase__ ( self: List[str] , UpperCamelCase_: Node | None ): if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCamelCase__ ( self: Union[str, Any] , UpperCamelCase_: Union[str, Any]=None ): if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCamelCase__ ( self: Union[str, Any] , UpperCamelCase_: list , UpperCamelCase_: Node | None ): if node: self.inorder(UpperCamelCase_ , node.left ) arr.append(node.value ) self.inorder(UpperCamelCase_ , node.right ) def UpperCamelCase__ ( self: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: Node ): UpperCamelCase_ =[] self.inorder(UpperCamelCase_ , UpperCamelCase_ ) # append all values to list using inorder traversal return arr[k - 1] def _UpperCamelCase ( A ): UpperCamelCase_ =[] if curr_node is not None: UpperCamelCase_ =postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _UpperCamelCase ( ): UpperCamelCase_ =(8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCamelCase_ =BinarySearchTree() for i in testlist: t.insert(_UpperCAmelCase ) # Prints all the elements of the list in order traversal print(_UpperCAmelCase ) if t.search(6 ) is not None: print("The value 6 exists" ) else: print("The value 6 doesn't exist" ) if t.search(-1 ) is not None: print("The value -1 exists" ) else: print("The value -1 doesn't exist" ) if not t.empty(): print("Max Value: " , t.get_max().value ) # type: ignore print("Min Value: " , t.get_min().value ) # type: ignore for i in testlist: t.remove(_UpperCAmelCase ) print(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
391
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class A__ ( UpperCAmelCase__ ): def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Distribution , SCREAMING_SNAKE_CASE :int=None , SCREAMING_SNAKE_CASE :Tuple=None , SCREAMING_SNAKE_CASE :List[Any]=0 ) -> List[str]: '''simple docstring''' _a : int =1.0 if scale is None else scale _a : Optional[Any] =0.0 if loc is None else loc super().__init__(SCREAMING_SNAKE_CASE , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=SCREAMING_SNAKE_CASE )] ) @property def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def __UpperCAmelCase ( self :Optional[int] ) -> Dict: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def __UpperCAmelCase ( self :Any ) -> List[str]: '''simple docstring''' return self.variance.sqrt() class A__ ( nn.Module ): def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Dict[str, int] , SCREAMING_SNAKE_CASE :Callable[..., Tuple[torch.Tensor]] , **SCREAMING_SNAKE_CASE :Dict ) -> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) _a : Tuple =args_dim _a : Tuple =nn.ModuleList([nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for dim in args_dim.values()] ) _a : Dict =domain_map def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Tuple[torch.Tensor]: '''simple docstring''' _a : Tuple =[proj(SCREAMING_SNAKE_CASE ) for proj in self.proj] return self.domain_map(*SCREAMING_SNAKE_CASE ) class A__ ( nn.Module ): def __init__( self :Dict , SCREAMING_SNAKE_CASE :Tuple ) -> int: '''simple docstring''' super().__init__() _a : List[Any] =function def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Optional[int] , *SCREAMING_SNAKE_CASE :int ) -> List[Any]: '''simple docstring''' return self.function(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) class A__ : __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__( self :Any , SCREAMING_SNAKE_CASE :int = 1 ) -> None: '''simple docstring''' _a : Any =dim _a : List[Any] ={k: dim * self.args_dim[k] for k in self.args_dim} def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[int] ) -> Union[str, Any]: '''simple docstring''' if self.dim == 1: return self.distribution_class(*SCREAMING_SNAKE_CASE ) else: return Independent(self.distribution_class(*SCREAMING_SNAKE_CASE ) , 1 ) def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , ) -> Distribution: '''simple docstring''' _a : str =self._base_distribution(SCREAMING_SNAKE_CASE ) if loc is None and scale is None: return distr else: return AffineTransformed(SCREAMING_SNAKE_CASE , loc=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , event_dim=self.event_dim ) @property def __UpperCAmelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def __UpperCAmelCase ( self :Any ) -> int: '''simple docstring''' return len(self.event_shape ) @property def __UpperCAmelCase ( self :Any ) -> float: '''simple docstring''' return 0.0 def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :int ) -> nn.Module: '''simple docstring''' return ParameterProjection( in_features=SCREAMING_SNAKE_CASE , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def __UpperCAmelCase ( self :int , *SCREAMING_SNAKE_CASE :torch.Tensor ) -> Any: '''simple docstring''' raise NotImplementedError() @staticmethod def __UpperCAmelCase ( SCREAMING_SNAKE_CASE :torch.Tensor ) -> torch.Tensor: '''simple docstring''' return (x + torch.sqrt(torch.square(SCREAMING_SNAKE_CASE ) + 4.0 )) / 2.0 class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def __UpperCAmelCase ( cls :int , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Union[str, Any]: '''simple docstring''' _a : Tuple =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps ) _a : Optional[Any] =2.0 + cls.squareplus(SCREAMING_SNAKE_CASE ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Dict: '''simple docstring''' _a : List[str] =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Optional[int]: '''simple docstring''' _a : int =cls.squareplus(SCREAMING_SNAKE_CASE ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Distribution: '''simple docstring''' _a , _a : Any =distr_args if self.dim == 1: return self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE ) else: return Independent(self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE ) , 1 ) def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None ) -> Distribution: '''simple docstring''' _a , _a : Optional[int] =distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
694
0
"""simple docstring""" from sklearn.metrics import fa_score import datasets A_ : List[str] = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' A_ : Tuple = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' A_ : Optional[int] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCamelCase (datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : str="binary" , __UpperCAmelCase : Optional[Any]=None ) -> List[Any]: SCREAMING_SNAKE_CASE__ = fa_score( __UpperCAmelCase , __UpperCAmelCase , labels=__UpperCAmelCase , pos_label=__UpperCAmelCase , average=__UpperCAmelCase , sample_weight=__UpperCAmelCase ) return {"f1": float(__UpperCAmelCase ) if score.size == 1 else score}
196
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return number | (1 << position) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return number & ~(1 << position) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return number ^ (1 << position) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> bool: return ((number >> position) & 1) == 1 def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
694
0
def a ( A__ , A__ ) -> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) SCREAMING_SNAKE_CASE__ : List[str] = str(bin(_UpperCAmelCase ) ) binary_number += "0" * shift_amount return binary_number def a ( A__ , A__ ) -> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) SCREAMING_SNAKE_CASE__ : int = str(bin(_UpperCAmelCase ) )[2:] if shift_amount >= len(_UpperCAmelCase ): return "0b0" SCREAMING_SNAKE_CASE__ : Union[str, Any] = binary_number[: len(_UpperCAmelCase ) - shift_amount] return "0b" + shifted_binary_number def a ( A__ , A__ ) -> str: '''simple docstring''' if number >= 0: # Get binary representation of positive number SCREAMING_SNAKE_CASE__ : List[Any] = """0""" + str(bin(_UpperCAmelCase ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number SCREAMING_SNAKE_CASE__ : Any = len(bin(_UpperCAmelCase )[3:] ) # Find 2's complement of number SCREAMING_SNAKE_CASE__ : int = bin(abs(_UpperCAmelCase ) - (1 << binary_number_length) )[3:] SCREAMING_SNAKE_CASE__ : Any = ( """1""" + """0""" * (binary_number_length - len(_UpperCAmelCase )) + binary_number ) if shift_amount >= len(_UpperCAmelCase ): return "0b" + binary_number[0] * len(_UpperCAmelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(_UpperCAmelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
35
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : list ) -> float: _validate_point(_UpperCAmelCase ) _validate_point(_UpperCAmelCase ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[float] ) -> None: if point: if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): for item in point: if not isinstance(_UpperCAmelCase ,(int, float) ): _a : str =( """Expected a list of numbers as input, found """ F"{type(_UpperCAmelCase ).__name__}" ) raise TypeError(_UpperCAmelCase ) else: _a : List[Any] =F"Expected a list of numbers as input, found {type(_UpperCAmelCase ).__name__}" raise TypeError(_UpperCAmelCase ) else: raise ValueError("""Missing an input""" ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : list ) -> float: _validate_point(_UpperCAmelCase ) _validate_point(_UpperCAmelCase ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
694
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
272
'''simple docstring''' from __future__ import annotations class A__ : def __init__( self :str , SCREAMING_SNAKE_CASE :int ) -> None: '''simple docstring''' _a : int =order # a_{0} ... a_{k} _a : Optional[Any] =[1.0] + [0.0] * order # b_{0} ... b_{k} _a : Tuple =[1.0] + [0.0] * order # x[n-1] ... x[n-k] _a : List[Any] =[0.0] * self.order # y[n-1] ... y[n-k] _a : Tuple =[0.0] * self.order def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :list[float] , SCREAMING_SNAKE_CASE :list[float] ) -> None: '''simple docstring''' if len(SCREAMING_SNAKE_CASE ) < self.order: _a : int =[1.0, *a_coeffs] if len(SCREAMING_SNAKE_CASE ) != self.order + 1: _a : int =( f"Expected a_coeffs to have {self.order + 1} elements " f"for {self.order}-order filter, got {len(SCREAMING_SNAKE_CASE )}" ) raise ValueError(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) != self.order + 1: _a : Optional[Any] =( f"Expected b_coeffs to have {self.order + 1} elements " f"for {self.order}-order filter, got {len(SCREAMING_SNAKE_CASE )}" ) raise ValueError(SCREAMING_SNAKE_CASE ) _a : List[str] =a_coeffs _a : Union[str, Any] =b_coeffs def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :float ) -> float: '''simple docstring''' _a : str =0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _a : Any =(result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _a : str =self.input_history[:-1] _a : Optional[Any] =self.output_history[:-1] _a : Optional[int] =sample _a : Tuple =result return result
694
0
"""simple docstring""" from __future__ import annotations __A = [] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> bool: for i in range(len(_UpperCAmelCase ) ): if board[row][i] == 1: return False for i in range(len(_UpperCAmelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(_UpperCAmelCase , -1 , -1 ) , range(_UpperCAmelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(_UpperCAmelCase , -1 , -1 ) , range(_UpperCAmelCase , len(_UpperCAmelCase ) ) ): if board[i][j] == 1: return False return True def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> bool: if row >= len(_UpperCAmelCase ): solution.append(_UpperCAmelCase ) printboard(_UpperCAmelCase ) print() return True for i in range(len(_UpperCAmelCase ) ): if is_safe(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Union[str, Any] = 1 solve(_UpperCAmelCase , row + 1 ) lowercase__: int = 0 return False def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> None: for i in range(len(_UpperCAmelCase ) ): for j in range(len(_UpperCAmelCase ) ): if board[i][j] == 1: print('''Q''' , end=''' ''' ) else: print('''.''' , end=''' ''' ) print() # n=int(input("The no. of queens")) __A = 8 __A = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
586
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : dict ,_UpperCAmelCase : str ,_UpperCAmelCase : set ,_UpperCAmelCase : set ,_UpperCAmelCase : dict ,_UpperCAmelCase : dict ,_UpperCAmelCase : PriorityQueue ,_UpperCAmelCase : dict ,_UpperCAmelCase : float | int ,) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue _a : Dict =cst_fwd.get(_UpperCAmelCase ,np.inf ) _a : int =cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _a : Tuple =new_cost_f _a : Optional[Any] =v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _a : str =cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ,_UpperCAmelCase : dict ,_UpperCAmelCase : dict ) -> int: _a : Optional[Any] =-1 _a : List[str] =set() _a : Optional[int] =set() _a : Optional[int] ={source: 0} _a : List[str] ={destination: 0} _a : Union[str, Any] ={source: None} _a : Dict ={destination: None} _a : PriorityQueue[Any] =PriorityQueue() _a : PriorityQueue[Any] =PriorityQueue() _a : Optional[int] =np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _a , _a : str =queue_forward.get() visited_forward.add(_UpperCAmelCase ) _a , _a : List[Any] =queue_backward.get() visited_backward.add(_UpperCAmelCase ) _a : int =pass_and_relaxation( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,) _a : Any =pass_and_relaxation( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _a : Any =shortest_distance return shortest_path_distance A__: Union[str, Any] = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } A__: str = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
694
0
"""simple docstring""" def __a ( A , A ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(100, 0.25) = }''') print(F'''{price_plus_tax(125.50, 0.05) = }''')
337
'''simple docstring''' from math import factorial def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 100 ) -> int: return sum(map(_UpperCAmelCase ,str(factorial(_UpperCAmelCase ) ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
694
0
'''simple docstring''' import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def a__ ( lowercase : Any, lowercase : Dict, lowercase : str ) -> Dict: """simple docstring""" _UpperCamelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) _UpperCamelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase__ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
98
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ) -> list: _a : Tuple =len(_UpperCAmelCase ) _a : str =[] for i in range(len(_UpperCAmelCase ) - pat_len + 1 ): _a : int =True for j in range(_UpperCAmelCase ): if s[i + j] != pattern[j]: _a : int =False break if match_found: position.append(_UpperCAmelCase ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
694
0
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase__ = { # 1536-bit 5: { '''prime''': int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF""", base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AACAA68FFFFFFFFFFFFFFFF""", base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF""", base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199""" + """FFFFFFFFFFFFFFFF""", base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08""" + """8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B""" + """302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9""" + """A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6""" + """49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8""" + """FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C""" + """180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718""" + """3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D""" + """04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D""" + """B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226""" + """1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC""" + """E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26""" + """99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB""" + """04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2""" + """233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127""" + """D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406""" + """AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918""" + """DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151""" + """2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03""" + """F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F""" + """BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B""" + """B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632""" + """387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E""" + """6DCC4024FFFFFFFFFFFFFFFF""", base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD""" + """F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831""" + """179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B""" + """DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF""" + """5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6""" + """D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3""" + """23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328""" + """06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C""" + """DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE""" + """12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4""" + """38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300""" + """741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568""" + """3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9""" + """22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B""" + """4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A""" + """062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36""" + """4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1""" + """B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92""" + """4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47""" + """9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71""" + """60C980DD98EDD3DFFFFFFFFFFFFFFFFF""", base=16, ), '''generator''': 2, }, } class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase = 14 ): if group not in primes: raise ValueError('Unsupported Group' ) _lowerCamelCase : Any = primes[group]["""prime"""] _lowerCamelCase : Optional[int] = primes[group]["""generator"""] _lowerCamelCase : Any = int(hexlify(urandom(32 ) ) , base=16 ) def A_ ( self ): return hex(self.__private_key )[2:] def A_ ( self ): _lowerCamelCase : Any = pow(self.generator , self.__private_key , self.prime ) return hex(lowercase )[2:] def A_ ( self , lowercase ): return ( 2 <= key <= self.prime - 2 and pow(lowercase , (self.prime - 1) // 2 , self.prime ) == 1 ) def A_ ( self , lowercase ): _lowerCamelCase : Dict = int(lowercase , base=16 ) if not self.is_valid_public_key(lowercase ): raise ValueError('Invalid public key' ) _lowerCamelCase : List[str] = pow(lowercase , self.__private_key , self.prime ) return shaaaa(str(lowercase ).encode() ).hexdigest() @staticmethod def A_ ( lowercase , lowercase ): return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowercase , (prime - 1) // 2 , lowercase ) == 1 ) @staticmethod def A_ ( lowercase , lowercase , lowercase = 14 ): _lowerCamelCase : List[str] = int(lowercase , base=16 ) _lowerCamelCase : Dict = int(lowercase , base=16 ) _lowerCamelCase : Dict = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(lowercase , lowercase ): raise ValueError('Invalid public key' ) _lowerCamelCase : Dict = pow(lowercase , lowercase , lowercase ) return shaaaa(str(lowercase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
630
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class A__ ( unittest.TestCase ): def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any]=7 , SCREAMING_SNAKE_CASE :Optional[Any]=3 , SCREAMING_SNAKE_CASE :Tuple=1_8 , SCREAMING_SNAKE_CASE :Any=3_0 , SCREAMING_SNAKE_CASE :List[str]=4_0_0 , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :List[str]=True , ) -> Tuple: '''simple docstring''' _a : int =size if size is not None else {"""height""": 1_8, """width""": 1_8} _a : int =parent _a : Optional[int] =batch_size _a : List[str] =num_channels _a : Optional[Any] =image_size _a : int =min_resolution _a : str =max_resolution _a : str =do_resize _a : Tuple =size _a : Tuple =do_normalize def __UpperCAmelCase ( self :Any ) -> int: '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804], [-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class A__ ( UpperCAmelCase__ , unittest.TestCase ): __UpperCamelCase : int = ImageGPTImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self :List[Any] ) -> List[Any]: '''simple docstring''' _a : Any =ImageGPTImageProcessingTester(self ) @property def __UpperCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self :Dict ) -> Any: '''simple docstring''' _a : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """clusters""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """size""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_normalize""" ) ) def __UpperCAmelCase ( self :Optional[int] ) -> Optional[int]: '''simple docstring''' _a : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} ) _a : Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} ) def __UpperCAmelCase ( self :List[Any] ) -> Optional[int]: '''simple docstring''' _a : List[str] =self.image_processing_class(**self.image_processor_dict ) _a : Dict =json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , obj[key] ) ) else: self.assertEqual(obj[key] , SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[int] ) -> Dict: '''simple docstring''' _a : List[Any] =self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Any =os.path.join(SCREAMING_SNAKE_CASE , """image_processor.json""" ) image_processor_first.to_json_file(SCREAMING_SNAKE_CASE ) _a : str =self.image_processing_class.from_json_file(SCREAMING_SNAKE_CASE ).to_dict() _a : Tuple =image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[int] ) -> str: '''simple docstring''' _a : List[str] =self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(SCREAMING_SNAKE_CASE ) _a : str =self.image_processing_class.from_pretrained(SCREAMING_SNAKE_CASE ).to_dict() _a : Union[str, Any] =image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def __UpperCAmelCase ( self :Union[str, Any] ) -> int: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: _a : Any =load_dataset("""hf-internal-testing/fixtures_image_utils""" ,split="""test""" ) _a : Dict =Image.open(dataset[4]["""file"""] ) _a : Optional[int] =Image.open(dataset[5]["""file"""] ) _a : Optional[Any] =[imagea, imagea] return images @require_vision @require_torch class A__ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' _a : Optional[Any] =ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) _a : int =prepare_images() # test non-batched _a : Dict =image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) ) _a : Optional[int] =[3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , SCREAMING_SNAKE_CASE ) # test batched _a : Dict =image_processing(SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) ) _a : Any =[3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , SCREAMING_SNAKE_CASE )
694
0
"""simple docstring""" import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( UpperCAmelCase__): __a : List[str] = (EulerDiscreteScheduler,) __a : Optional[int] = 1_0 def __snake_case ( self , **_A ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = { """num_train_timesteps""": 11_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_A ) return config def __snake_case ( self ) -> Optional[Any]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_A ) def __snake_case ( self ) -> int: '''simple docstring''' for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def __snake_case ( self ) -> Optional[Any]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_A ) def __snake_case ( self ) -> Any: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __snake_case ( self ) -> Any: '''simple docstring''' _UpperCAmelCase : Dict = self.scheduler_classes[0] _UpperCAmelCase : List[str] = self.get_scheduler_config() _UpperCAmelCase : List[str] = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : List[str] = torch.manual_seed(0 ) _UpperCAmelCase : Dict = self.dummy_model() _UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : Dict = sample.to(_A ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(_A , _A ) _UpperCAmelCase : Optional[int] = model(_A , _A ) _UpperCAmelCase : Dict = scheduler.step(_A , _A , _A , generator=_A ) _UpperCAmelCase : Any = output.prev_sample _UpperCAmelCase : Dict = torch.sum(torch.abs(_A ) ) _UpperCAmelCase : Optional[int] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def __snake_case ( self ) -> Dict: '''simple docstring''' _UpperCAmelCase : Tuple = self.scheduler_classes[0] _UpperCAmelCase : Union[str, Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _UpperCAmelCase : Tuple = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : Dict = self.dummy_model() _UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : List[Any] = sample.to(_A ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Dict = scheduler.scale_model_input(_A , _A ) _UpperCAmelCase : Optional[Any] = model(_A , _A ) _UpperCAmelCase : Tuple = scheduler.step(_A , _A , _A , generator=_A ) _UpperCAmelCase : Dict = output.prev_sample _UpperCAmelCase : Tuple = torch.sum(torch.abs(_A ) ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def __snake_case ( self ) -> Dict: '''simple docstring''' _UpperCAmelCase : int = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : List[str] = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps , device=_A ) _UpperCAmelCase : Any = torch.manual_seed(0 ) _UpperCAmelCase : str = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : List[str] = sample.to(_A ) for t in scheduler.timesteps: _UpperCAmelCase : List[str] = scheduler.scale_model_input(_A , _A ) _UpperCAmelCase : Any = model(_A , _A ) _UpperCAmelCase : Union[str, Any] = scheduler.step(_A , _A , _A , generator=_A ) _UpperCAmelCase : List[Any] = output.prev_sample _UpperCAmelCase : int = torch.sum(torch.abs(_A ) ) _UpperCAmelCase : List[Any] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def __snake_case ( self ) -> str: '''simple docstring''' _UpperCAmelCase : int = self.scheduler_classes[0] _UpperCAmelCase : Union[str, Any] = self.get_scheduler_config() _UpperCAmelCase : Union[str, Any] = scheduler_class(**_A , use_karras_sigmas=_A ) scheduler.set_timesteps(self.num_inference_steps , device=_A ) _UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = self.dummy_model() _UpperCAmelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : Dict = sample.to(_A ) for t in scheduler.timesteps: _UpperCAmelCase : List[Any] = scheduler.scale_model_input(_A , _A ) _UpperCAmelCase : Tuple = model(_A , _A ) _UpperCAmelCase : List[str] = scheduler.step(_A , _A , _A , generator=_A ) _UpperCAmelCase : Optional[Any] = output.prev_sample _UpperCAmelCase : List[str] = torch.sum(torch.abs(_A ) ) _UpperCAmelCase : Optional[int] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
238
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ) -> bool: _a : Optional[int] =len(_UpperCAmelCase ) _a : Tuple =[[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _a : Any =True # sum is not zero and set is empty then false for i in range(1 ,required_sum + 1 ): _a : int =False for i in range(1 ,arr_len + 1 ): for j in range(1 ,required_sum + 1 ): if arr[i - 1] > j: _a : Optional[Any] =subset[i - 1][j] if arr[i - 1] <= j: _a : Union[str, Any] =subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
694
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : str = logging.get_logger(__name__) class _A ( UpperCAmelCase__ ): '''simple docstring''' __lowerCamelCase : Tuple = "encoder-decoder" __lowerCamelCase : Union[str, Any] = True def __init__( self ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" snake_case : str = kwargs.pop("""encoder""" ) snake_case : Optional[Any] = encoder_config.pop("""model_type""" ) snake_case : Optional[Any] = kwargs.pop("""decoder""" ) snake_case : Dict = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case : List[str] = AutoConfig.for_model(SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = AutoConfig.for_model(SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) snake_case : str = True @classmethod def snake_case_ ( cls ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) snake_case : Union[str, Any] = True snake_case : Optional[Any] = True return cls(encoder=encoder_config.to_dict() ,decoder=decoder_config.to_dict() ,**SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' snake_case : Optional[int] = copy.deepcopy(self.__dict__ ) snake_case : Tuple = self.encoder.to_dict() snake_case : Dict = self.decoder.to_dict() snake_case : Optional[Any] = self.__class__.model_type return output
36
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 4000000 ) -> int: _a : Optional[Any] =[] _a , _a : Union[str, Any] =0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_UpperCAmelCase ) _a , _a : Optional[Any] =b, a + b return sum(_UpperCAmelCase ) if __name__ == "__main__": print(F"{solution() = }")
694
0
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin UpperCAmelCase_ = ''' Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] ''' class UpperCamelCase__ ( unittest.TestCase , UpperCAmelCase__ ): '''simple docstring''' def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" lowercase_ : Tuple = load_tool("""text-question-answering""" ) self.tool.setup() lowercase_ : Any = load_tool("""text-question-answering""", remote=snake_case__ ) def snake_case__ ( self ) -> Tuple: """simple docstring""" lowercase_ : Union[str, Any] = self.tool(snake_case__, """What did Hugging Face do in April 2021?""" ) self.assertEqual(snake_case__, """launched the BigScience Research Workshop""" ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" lowercase_ : Union[str, Any] = self.remote_tool(snake_case__, """What did Hugging Face do in April 2021?""" ) self.assertEqual(snake_case__, """launched the BigScience Research Workshop""" ) def snake_case__ ( self ) -> Tuple: """simple docstring""" lowercase_ : List[str] = self.tool(text=snake_case__, question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(snake_case__, """launched the BigScience Research Workshop""" ) def snake_case__ ( self ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = self.remote_tool(text=snake_case__, question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(snake_case__, """launched the BigScience Research Workshop""" )
458
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: if n == 1 or not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): return 0 elif n == 2: return 1 else: _a : Dict =[0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: _a : Union[str, Any] =0 _a : Optional[Any] =2 while digits < n: index += 1 _a : Optional[int] =len(str(fibonacci(_UpperCAmelCase ) ) ) return index def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 1000 ) -> int: return fibonacci_digits_index(_UpperCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
694
0
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple=3 , UpperCamelCase_: Union[str, Any]=32 , UpperCamelCase_: int=3 , UpperCamelCase_: Optional[Any]=10 , UpperCamelCase_: List[Any]=[10, 20, 30, 40] , UpperCamelCase_: Optional[int]=[1, 1, 2, 1] , UpperCamelCase_: Dict=True , UpperCamelCase_: Dict=True , UpperCamelCase_: Optional[int]="relu" , UpperCamelCase_: Optional[Any]=3 , UpperCamelCase_: List[str]=None , ): UpperCamelCase_ =parent UpperCamelCase_ =batch_size UpperCamelCase_ =image_size UpperCamelCase_ =num_channels UpperCamelCase_ =embeddings_size UpperCamelCase_ =hidden_sizes UpperCamelCase_ =depths UpperCamelCase_ =is_training UpperCamelCase_ =use_labels UpperCamelCase_ =hidden_act UpperCamelCase_ =num_labels UpperCamelCase_ =scope UpperCamelCase_ =len(UpperCamelCase_ ) def UpperCamelCase__ ( self: Optional[int] ): UpperCamelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ =self.get_config() return config, pixel_values def UpperCamelCase__ ( self: Dict ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase__ ( self: Dict , UpperCamelCase_: List[str] , UpperCamelCase_: int ): UpperCamelCase_ =FlaxRegNetModel(config=UpperCamelCase_ ) UpperCamelCase_ =model(UpperCamelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase__ ( self: int , UpperCamelCase_: List[str] , UpperCamelCase_: List[str] ): UpperCamelCase_ =self.num_labels UpperCamelCase_ =FlaxRegNetForImageClassification(config=UpperCamelCase_ ) UpperCamelCase_ =model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self: List[str] ): UpperCamelCase_ =self.prepare_config_and_inputs() UpperCamelCase_ =config_and_inputs UpperCamelCase_ ={"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __lowerCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[str] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __lowerCamelCase : int = False __lowerCamelCase : Any = False __lowerCamelCase : Optional[int] = False def UpperCamelCase__ ( self: Optional[Any] ): UpperCamelCase_ =FlaxRegNetModelTester(self ) UpperCamelCase_ =ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ ) def UpperCamelCase__ ( self: Any ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self: Optional[int] ): return def UpperCamelCase__ ( self: Optional[int] ): UpperCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def UpperCamelCase__ ( self: Union[str, Any] ): UpperCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) @unittest.skip(reason="RegNet does not use inputs_embeds" ) def UpperCamelCase__ ( self: str ): pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def UpperCamelCase__ ( self: Union[str, Any] ): pass def UpperCamelCase__ ( self: Dict ): UpperCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ =model_class(UpperCamelCase_ ) UpperCamelCase_ =inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ =[*signature.parameters.keys()] UpperCamelCase_ =["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def UpperCamelCase__ ( self: int ): def check_hidden_states_output(UpperCamelCase_: Dict , UpperCamelCase_: Optional[Any] , UpperCamelCase_: str ): UpperCamelCase_ =model_class(UpperCamelCase_ ) UpperCamelCase_ =model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase_ =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase_ =self.model_tester.num_stages self.assertEqual(len(UpperCamelCase_ ) , expected_num_stages + 1 ) UpperCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ =True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_ =True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def UpperCamelCase__ ( self: Union[str, Any] ): UpperCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_ =self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ =model_class(UpperCamelCase_ ) @jax.jit def model_jitted(UpperCamelCase_: Dict , **UpperCamelCase_: str ): return model(pixel_values=UpperCamelCase_ , **UpperCamelCase_ ) with self.subTest("JIT Enabled" ): UpperCamelCase_ =model_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCamelCase_ =model_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def _UpperCamelCase ( ): UpperCamelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self: Tuple ): return AutoImageProcessor.from_pretrained("facebook/regnet-y-040" ) if is_vision_available() else None @slow def UpperCamelCase__ ( self: List[str] ): UpperCamelCase_ =FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040" ) UpperCamelCase_ =self.default_image_processor UpperCamelCase_ =prepare_img() UpperCamelCase_ =image_processor(images=UpperCamelCase_ , return_tensors="np" ) UpperCamelCase_ =model(**UpperCamelCase_ ) # verify the logits UpperCamelCase_ =(1, 1000) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) UpperCamelCase_ =jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1e-4 ) )
391
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : int ) -> str: # Initialise PyTorch model _a : List[str] =RemBertConfig.from_json_file(_UpperCAmelCase ) print("""Building PyTorch model from configuration: {}""".format(str(_UpperCAmelCase ) ) ) _a : Dict =RemBertModel(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(_UpperCAmelCase ) ) torch.save(model.state_dict() ,_UpperCAmelCase ) if __name__ == "__main__": A__: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--rembert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained RemBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A__: Tuple = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
694
0
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE__ = 0 @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__UpperCAmelCase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__UpperCAmelCase ) , 0 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) # Check that tokenizer_type ≠ model_type SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(__UpperCAmelCase , """vocab.txt""" ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCAmelCase , tokenizer_type="""bert""" , use_fast=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(__UpperCAmelCase , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(__UpperCAmelCase , """merges.txt""" ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCAmelCase , tokenizer_type="""gpt2""" , use_fast=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(__UpperCAmelCase , """vocab.txt""" ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCAmelCase , tokenizer_type="""bert""" ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(__UpperCAmelCase , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(__UpperCAmelCase , """merges.txt""" ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCAmelCase , tokenizer_type="""gpt2""" ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: with pytest.raises(__UpperCAmelCase ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(__UpperCAmelCase , (BertTokenizer, BertTokenizerFast) ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __UpperCAmelCase ) else: self.assertEqual(tokenizer.do_lower_case , __UpperCAmelCase ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : str ) -> int: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __UpperCAmelCase , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = TOKENIZER_MAPPING.values() SCREAMING_SNAKE_CASE__ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__UpperCAmelCase ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=__UpperCAmelCase ) , __UpperCAmelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , __UpperCAmelCase ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = """Hello, world. How are you?""" SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertEqual("""[UNK]""" , tokens[0] ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = get_tokenizer_config("""bert-base-cased""" ) SCREAMING_SNAKE_CASE__ = config.pop("""_commit_hash""" , __UpperCAmelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__UpperCAmelCase , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. SCREAMING_SNAKE_CASE__ = get_tokenizer_config(__UpperCAmelCase ) self.assertDictEqual(__UpperCAmelCase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = get_tokenizer_config(__UpperCAmelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: try: AutoConfig.register("""custom""" , __UpperCAmelCase ) AutoTokenizer.register(__UpperCAmelCase , slow_tokenizer_class=__UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCAmelCase ): AutoTokenizer.register(__UpperCAmelCase , slow_tokenizer_class=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = CustomTokenizer.from_pretrained(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: try: AutoConfig.register("""custom""" , __UpperCAmelCase ) # Can register in two steps AutoTokenizer.register(__UpperCAmelCase , slow_tokenizer_class=__UpperCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__UpperCAmelCase , fast_tokenizer_class=__UpperCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __UpperCAmelCase , slow_tokenizer_class=__UpperCAmelCase , fast_tokenizer_class=__UpperCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCAmelCase ): AutoTokenizer.register(__UpperCAmelCase , fast_tokenizer_class=__UpperCAmelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = BertTokenizerFast.from_pretrained(__UpperCAmelCase ) bert_tokenizer.save_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = CustomTokenizerFast.from_pretrained(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCAmelCase , use_fast=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__UpperCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCAmelCase , trust_remote_code=__UpperCAmelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__UpperCAmelCase , use_fast=__UpperCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCAmelCase , trust_remote_code=__UpperCAmelCase , use_fast=__UpperCAmelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: class lowerCamelCase (UpperCAmelCase__ ): lowerCamelCase__ : int = False class lowerCamelCase (UpperCAmelCase__ ): lowerCamelCase__ : List[Any] = NewTokenizer lowerCamelCase__ : Union[str, Any] = False try: AutoConfig.register("""custom""" , __UpperCAmelCase ) AutoTokenizer.register(__UpperCAmelCase , slow_tokenizer_class=__UpperCAmelCase ) AutoTokenizer.register(__UpperCAmelCase , fast_tokenizer_class=__UpperCAmelCase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=__UpperCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__UpperCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__UpperCAmelCase , use_fast=__UpperCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__UpperCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__UpperCAmelCase , use_fast=__UpperCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=__UpperCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=__UpperCAmelCase , use_fast=__UpperCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: with self.assertRaisesRegex( __UpperCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""bert-base""" ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: with self.assertRaisesRegex( __UpperCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCAmelCase , revision="""aaaaaa""" ) def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
196
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A__: Optional[int] = logging.get_logger(__name__) A__: Union[str, Any] = '''▁''' A__: Any = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} A__: Optional[int] = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } A__: Union[str, Any] = {'''vinai/bartpho-syllable''': 1024} class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Tuple = VOCAB_FILES_NAMES __UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self :Dict , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Any="<s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE :int="</s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE :Tuple="<unk>" , SCREAMING_SNAKE_CASE :Optional[Any]="<pad>" , SCREAMING_SNAKE_CASE :List[str]="<mask>" , SCREAMING_SNAKE_CASE :Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE :List[Any] , ) -> None: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it _a : str =AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token _a : int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) _a : Dict =vocab_file _a : int =monolingual_vocab_file _a : Dict =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _a : List[Any] ={} _a : List[str] =0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids: _a : Optional[Any] =cnt cnt += 1 with open(SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): _a : int =line.strip().split()[0] _a : str =len(self.fairseq_tokens_to_ids ) if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids: _a : Optional[int] =len(self.fairseq_tokens_to_ids ) _a : str ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self :int ) -> List[Any]: '''simple docstring''' _a : Optional[int] =self.__dict__.copy() _a : Optional[Any] =None _a : str =self.sp_model.serialized_model_proto() return state def __setstate__( self :Dict , SCREAMING_SNAKE_CASE :Any ) -> str: '''simple docstring''' _a : List[str] =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _a : Tuple ={} _a : Any =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : Optional[int] =[self.cls_token_id] _a : int =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None , SCREAMING_SNAKE_CASE :bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _a : List[str] =[self.sep_token_id] _a : int =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __UpperCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def __UpperCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' _a : str ={self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Dict ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :Any ) -> Dict: '''simple docstring''' return self.fairseq_ids_to_tokens[index] def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Optional[Any]: '''simple docstring''' _a : str ="""""".join(SCREAMING_SNAKE_CASE ).replace(SCREAMING_SNAKE_CASE , """ """ ).strip() return out_string def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _a : int =os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _a : Any =os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE , """wb""" ) as fi: _a : Optional[Any] =self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( SCREAMING_SNAKE_CASE ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"{str(SCREAMING_SNAKE_CASE )} \n" ) return out_vocab_file, out_monolingual_vocab_file
694
0
def a ( A__ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = len(matrix[0] ) SCREAMING_SNAKE_CASE__ : Dict = min(_UpperCAmelCase , _UpperCAmelCase ) for row in range(_UpperCAmelCase ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , _UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : List[Any] = matrix[col][row] / matrix[row][row] for i in range(_UpperCAmelCase , _UpperCAmelCase ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows SCREAMING_SNAKE_CASE__ : Tuple = True for i in range(row + 1 , _UpperCAmelCase ): if matrix[i][row] != 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = matrix[i], matrix[row] SCREAMING_SNAKE_CASE__ : List[str] = False break if reduce: rank -= 1 for i in range(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : str = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
35
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
694
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = '''▁''' lowercase = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowercase = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } lowercase = { '''facebook/xglm-564M''': 2_0_4_8, } class __A( UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any="<s>" , __UpperCamelCase : int="</s>" , __UpperCamelCase : Optional[int]="</s>" , __UpperCamelCase : Optional[Any]="<s>" , __UpperCamelCase : Dict="<unk>" , __UpperCamelCase : Union[str, Any]="<pad>" , __UpperCamelCase : Optional[Dict[str, Any]] = None , **__UpperCamelCase : Dict , ): lowerCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowerCamelCase_ = 7 lowerCamelCase_ = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )] lowerCamelCase_ = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) lowerCamelCase_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCamelCase_ = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowerCamelCase_ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} lowerCamelCase_ = len(self.sp_model ) lowerCamelCase_ = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__UpperCamelCase ) lowerCamelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Optional[Any] ): lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = None lowerCamelCase_ = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[str] , __UpperCamelCase : Optional[Any] ): lowerCamelCase_ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCamelCase_ = {} lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowerCamelCase_ = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def lowercase__ ( self : Dict , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) def lowercase__ ( self : Tuple , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): lowerCamelCase_ = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def lowercase__ ( self : List[str] ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def lowercase__ ( self : List[Any] ): lowerCamelCase_ = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self : int , __UpperCamelCase : str ): return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def lowercase__ ( self : int , __UpperCamelCase : Optional[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase_ = self.sp_model.PieceToId(__UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : List[str] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase__ ( self : Any , __UpperCamelCase : int ): lowerCamelCase_ = """""".join(__UpperCamelCase ).replace(__UpperCamelCase , """ """ ).strip() return out_string def lowercase__ ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): if not os.path.isdir(__UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , """wb""" ) as fi: lowerCamelCase_ = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
272
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list] ) -> list[list]: _a : Dict =current_set.copy() for row_index, row in enumerate(_UpperCAmelCase ): _a : Any =row[0] for column_index, column in enumerate(_UpperCAmelCase ): if magnitude == 0: _a : Any =column continue _a : Union[str, Any] =column / magnitude # Subtract to cancel term _a : Optional[Any] =current_set[0] _a : List[Any] =[first_row] _a : Tuple =current_set[1::] for row in current_set: _a : Any =[] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(_UpperCAmelCase ) continue for column_index in range(len(_UpperCAmelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(_UpperCAmelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: _a : List[str] =final_set[0] _a : Tuple =[] _a : Tuple =[] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _a : str =simplify(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): resultant[i].insert(0 ,current_first_column[i] ) resultant.insert(0 ,_UpperCAmelCase ) _a : List[Any] =resultant return final_set def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list] ) -> list: if len(_UpperCAmelCase ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) _a : str =len(_UpperCAmelCase ) + 1 if any(len(_UpperCAmelCase ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(_UpperCAmelCase ,(int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(_UpperCAmelCase ) == 1: return [equations[0][-1] / equations[0][0]] _a : str =equations.copy() if any(0 in row for row in data_set ): _a : Optional[int] =data_set.copy() _a : str =[] for row_index, row in enumerate(_UpperCAmelCase ): if 0 not in row: _a : List[Any] =data_set.pop(_UpperCAmelCase ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 ,_UpperCAmelCase ) _a : Dict =data_set.copy() _a : Any =simplify(_UpperCAmelCase ) _a : Any =simplified[::-1] _a : list =[] for row in simplified: _a : Optional[Any] =row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _a : Any =row.copy()[: len(_UpperCAmelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(_UpperCAmelCase ) == 0: solutions.append(0 ) continue _a : List[str] =temp_row[1::] _a : int =temp_row[::-1] for column_index, column in enumerate(_UpperCAmelCase ): current_solution -= column * solutions[column_index] solutions.append(_UpperCAmelCase ) _a : Tuple =[] for item in solutions: final.append(float(round(_UpperCAmelCase ,5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() A__: int = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
694
0
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports __A = ''' import os ''' __A = ''' def foo(): import os return False ''' __A = ''' def foo(): def bar(): if True: import os return False return bar() ''' __A = ''' import os try: import bar except ImportError: raise ValueError() ''' __A = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' __A = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' __A = ''' import os try: import bar except ImportError as e: raise ValueError() ''' __A = ''' import os try: import bar except: raise ValueError() ''' __A = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' __A = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' __A = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: lowercase__: Optional[Any] = os.path.join(_UpperCAmelCase , '''test_file.py''' ) with open(_UpperCAmelCase , '''w''' ) as _tmp_file: _tmp_file.write(_UpperCAmelCase ) lowercase__: Dict = get_imports(_UpperCAmelCase ) assert parsed_imports == ["os"]
586
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__: Dict = logging.get_logger(__name__) A__: Optional[int] = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Tuple = "markuplm" def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :List[Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE :Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :int=3_0_7_2 , SCREAMING_SNAKE_CASE :Optional[int]="gelu" , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=5_1_2 , SCREAMING_SNAKE_CASE :Optional[Any]=2 , SCREAMING_SNAKE_CASE :Optional[int]=0.02 , SCREAMING_SNAKE_CASE :Any=1e-12 , SCREAMING_SNAKE_CASE :Any=0 , SCREAMING_SNAKE_CASE :List[Any]=0 , SCREAMING_SNAKE_CASE :Tuple=2 , SCREAMING_SNAKE_CASE :Optional[Any]=2_5_6 , SCREAMING_SNAKE_CASE :Optional[int]=1_0_2_4 , SCREAMING_SNAKE_CASE :Tuple=2_1_6 , SCREAMING_SNAKE_CASE :Dict=1_0_0_1 , SCREAMING_SNAKE_CASE :List[str]=3_2 , SCREAMING_SNAKE_CASE :List[str]=5_0 , SCREAMING_SNAKE_CASE :Dict="absolute" , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :Any=None , **SCREAMING_SNAKE_CASE :Tuple , ) -> Any: '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) _a : Any =vocab_size _a : List[str] =hidden_size _a : List[str] =num_hidden_layers _a : Tuple =num_attention_heads _a : Union[str, Any] =hidden_act _a : Tuple =intermediate_size _a : Optional[Any] =hidden_dropout_prob _a : int =attention_probs_dropout_prob _a : Any =max_position_embeddings _a : List[Any] =type_vocab_size _a : List[Any] =initializer_range _a : List[Any] =layer_norm_eps _a : Optional[int] =position_embedding_type _a : List[Any] =use_cache _a : List[str] =classifier_dropout # additional properties _a : int =max_depth _a : Union[str, Any] =max_xpath_tag_unit_embeddings _a : str =max_xpath_subs_unit_embeddings _a : int =tag_pad_id _a : List[Any] =subs_pad_id _a : str =xpath_unit_hidden_size
694
0
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): @register_to_config def __init__( self , UpperCamelCase__ = 1_28 , UpperCamelCase__ = 2_56 , UpperCamelCase__ = 20_00.0 , UpperCamelCase__ = 7_68 , UpperCamelCase__ = 12 , UpperCamelCase__ = 12 , UpperCamelCase__ = 64 , UpperCamelCase__ = 20_48 , UpperCamelCase__ = 0.1 , ): '''simple docstring''' super().__init__() A__ = nn.Sequential( nn.Linear(UpperCamelCase__ , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , ) A__ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) A__ = False A__ = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A__ = nn.Dropout(p=UpperCamelCase__ ) A__ = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): # FiLM conditional T5 decoder A__ = DecoderLayer(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) self.decoders.append(UpperCamelCase__ ) A__ = TaLayerNorm(UpperCamelCase__ ) A__ = nn.Dropout(p=UpperCamelCase__ ) A__ = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. A__ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) A__ = self.conditioning_emb(UpperCamelCase__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) A__ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. A__ = torch.broadcast_to( torch.arange(UpperCamelCase__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) A__ = self.position_encoding(UpperCamelCase__ ) A__ = self.continuous_inputs_projection(UpperCamelCase__ ) inputs += position_encodings A__ = self.dropout(UpperCamelCase__ ) # decoder: No padding present. A__ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. A__ = [(x, self.encoder_decoder_mask(UpperCamelCase__ , UpperCamelCase__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings A__ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) A__ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: A__ = lyr( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , )[0] A__ = self.decoder_norm(UpperCamelCase__ ) A__ = self.post_dropout(UpperCamelCase__ ) A__ = self.spec_out(UpperCamelCase__ ) return spec_out class lowerCAmelCase__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1e-6 ): '''simple docstring''' super().__init__() A__ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ ) ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , ): '''simple docstring''' A__ = self.layer[0]( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) if encoder_hidden_states is not None: A__ = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) A__ = self.layer[1]( UpperCamelCase__ , key_value_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) # Apply Film Conditional Feed Forward layer A__ = self.layer[-1](UpperCamelCase__ , UpperCamelCase__ ) return (hidden_states,) class lowerCAmelCase__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' super().__init__() A__ = TaLayerNorm(UpperCamelCase__ ) A__ = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) A__ = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) A__ = nn.Dropout(UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , ): '''simple docstring''' A__ = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: A__ = self.FiLMLayer(UpperCamelCase__ , UpperCamelCase__ ) # Self-attention block A__ = self.attention(UpperCamelCase__ ) A__ = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class lowerCAmelCase__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' super().__init__() A__ = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) A__ = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) A__ = nn.Dropout(UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , ): '''simple docstring''' A__ = self.layer_norm(UpperCamelCase__ ) A__ = self.attention( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=attention_mask.squeeze(1 ) , ) A__ = hidden_states + self.dropout(UpperCamelCase__ ) return layer_output class lowerCAmelCase__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' super().__init__() A__ = TaDenseGatedActDense(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) A__ = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) A__ = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) A__ = nn.Dropout(UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__=None ): '''simple docstring''' A__ = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: A__ = self.film(UpperCamelCase__ , UpperCamelCase__ ) A__ = self.DenseReluDense(UpperCamelCase__ ) A__ = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class lowerCAmelCase__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' super().__init__() A__ = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A__ = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A__ = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A__ = nn.Dropout(UpperCamelCase__ ) A__ = NewGELUActivation() def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' A__ = self.act(self.wi_a(UpperCamelCase__ ) ) A__ = self.wi_a(UpperCamelCase__ ) A__ = hidden_gelu * hidden_linear A__ = self.dropout(UpperCamelCase__ ) A__ = self.wo(UpperCamelCase__ ) return hidden_states class lowerCAmelCase__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=1e-6 ): '''simple docstring''' super().__init__() A__ = nn.Parameter(torch.ones(UpperCamelCase__ ) ) A__ = eps def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' A__ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCamelCase__ ) A__ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: A__ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowerCAmelCase__ ( nn.Module ): def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(UpperCamelCase__ , 3.0 )) )) class lowerCAmelCase__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' super().__init__() A__ = nn.Linear(UpperCamelCase__ , out_features * 2 , bias=UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = self.scale_bias(UpperCamelCase__ ) A__ = torch.chunk(UpperCamelCase__ , 2 , -1 ) A__ = x * (1 + scale) + shift return x
337
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() A__: Union[str, Any] = logging.get_logger('''transformers.models.speecht5''') def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Any ) -> Dict: hf_model.apply_weight_norm() _a : Any =checkpoint["""input_conv.weight_g"""] _a : Union[str, Any] =checkpoint["""input_conv.weight_v"""] _a : Optional[int] =checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): _a : Optional[int] =checkpoint[F"upsamples.{i}.1.weight_g"] _a : Optional[Any] =checkpoint[F"upsamples.{i}.1.weight_v"] _a : List[Any] =checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): _a : Optional[int] =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] _a : Tuple =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] _a : Union[str, Any] =checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] _a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] _a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] _a : Tuple =checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] _a : Dict =checkpoint["""output_conv.1.weight_g"""] _a : str =checkpoint["""output_conv.1.weight_v"""] _a : Union[str, Any] =checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : int=None ,_UpperCAmelCase : Tuple=None ,) -> List[Any]: if config_path is not None: _a : str =SpeechTaHifiGanConfig.from_pretrained(_UpperCAmelCase ) else: _a : str =SpeechTaHifiGanConfig() _a : Tuple =SpeechTaHifiGan(_UpperCAmelCase ) _a : int =torch.load(_UpperCAmelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] ,_UpperCAmelCase ,_UpperCAmelCase ) _a : Dict =np.load(_UpperCAmelCase ) _a : Union[str, Any] =stats[0].reshape(-1 ) _a : Any =stats[1].reshape(-1 ) _a : Tuple =torch.from_numpy(_UpperCAmelCase ).float() _a : List[str] =torch.from_numpy(_UpperCAmelCase ).float() model.save_pretrained(_UpperCAmelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": A__: Optional[int] = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) A__: Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
694
0
'''simple docstring''' from __future__ import annotations from typing import Any class __lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : int ) -> None: '''simple docstring''' _UpperCamelCase = num_of_nodes _UpperCamelCase = [] _UpperCamelCase = {} def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def snake_case__ ( self : Dict , lowerCAmelCase__ : int ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : int ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: _UpperCamelCase = self.find_component(lowerCAmelCase__ ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: _UpperCamelCase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCAmelCase__ ) elif component_size[u_node] >= component_size[v_node]: _UpperCamelCase = self.find_component(lowerCAmelCase__ ) component_size[u_node] += component_size[v_node] self.set_component(lowerCAmelCase__ ) def snake_case__ ( self : int ) -> None: '''simple docstring''' _UpperCamelCase = [] _UpperCamelCase = 0 _UpperCamelCase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _UpperCamelCase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _UpperCamelCase = edge _UpperCamelCase = self.m_component[u] _UpperCamelCase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _UpperCamelCase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = edge _UpperCamelCase = self.m_component[u] _UpperCamelCase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 _UpperCamelCase = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def a__ ( ) -> None: """simple docstring""" pass if __name__ == "__main__": import doctest doctest.testmod()
98
'''simple docstring''' class A__ : def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :List[str] ) -> List[str]: '''simple docstring''' _a : List[str] =None _a : Optional[Any] =None _a : str =graph self._normalize_graph(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Optional[int] =len(SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =None def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[str] ) -> Any: '''simple docstring''' if sources is int: _a : Tuple =[sources] if sinks is int: _a : Optional[int] =[sinks] if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) == 0: return _a : Union[str, Any] =sources[0] _a : Tuple =sinks[0] # make fake vertex if there are more # than one source or sink if len(SCREAMING_SNAKE_CASE ) > 1 or len(SCREAMING_SNAKE_CASE ) > 1: _a : Tuple =0 for i in sources: max_input_flow += sum(self.graph[i] ) _a : List[Any] =len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _a : Any =max_input_flow _a : List[str] =0 _a : List[str] =len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _a : str =max_input_flow _a : Optional[Any] =size - 1 def __UpperCAmelCase ( self :Optional[int] ) -> Tuple: '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Dict ) -> int: '''simple docstring''' _a : Tuple =algorithm(self ) class A__ : def __init__( self :Tuple , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Dict: '''simple docstring''' _a : List[str] =flow_network _a : List[Any] =flow_network.verticesCount _a : str =flow_network.sourceIndex _a : str =flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _a : List[Any] =flow_network.graph _a : Optional[int] =False def __UpperCAmelCase ( self :List[Any] ) -> List[str]: '''simple docstring''' if not self.executed: self._algorithm() _a : Any =True def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[int]: '''simple docstring''' pass class A__ ( UpperCAmelCase__ ): def __init__( self :int , SCREAMING_SNAKE_CASE :str ) -> int: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE ) # use this to save your result _a : List[Any] =-1 def __UpperCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class A__ ( UpperCAmelCase__ ): def __init__( self :str , SCREAMING_SNAKE_CASE :Tuple ) -> str: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE ) _a : int =[[0] * self.verticies_count for i in range(self.verticies_count )] _a : Union[str, Any] =[0] * self.verticies_count _a : Optional[Any] =[0] * self.verticies_count def __UpperCAmelCase ( self :Optional[int] ) -> Optional[Any]: '''simple docstring''' _a : int =self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _a : Tuple =[ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _a : List[Any] =0 while i < len(SCREAMING_SNAKE_CASE ): _a : Any =vertices_list[i] _a : str =self.heights[vertex_index] self.process_vertex(SCREAMING_SNAKE_CASE ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE ) ) _a : List[str] =0 else: i += 1 _a : Optional[int] =sum(self.preflow[self.source_index] ) def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> List[str]: '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.relabel(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :str ) -> List[str]: '''simple docstring''' _a : List[str] =min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Any ) -> List[Any]: '''simple docstring''' _a : int =None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _a : Optional[Any] =self.heights[to_index] if min_height is not None: _a : Any =min_height + 1 if __name__ == "__main__": A__: str = [0] A__: Optional[Any] = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] A__: Tuple = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network A__: Union[str, Any] = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate A__: List[str] = flow_network.find_maximum_flow() print(F"maximum flow is {maximum_flow}")
694
0
"""simple docstring""" def _snake_case ( lowercase__ = 1 , lowercase__ = 1000 ): _lowerCamelCase : Dict = 1 _lowerCamelCase : Union[str, Any] = 0 for divide_by_number in range(_UpperCAmelCase , digit + 1 ): _lowerCamelCase : list[int] = [] _lowerCamelCase : int = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(_UpperCAmelCase ): _lowerCamelCase : Optional[int] = len(_UpperCAmelCase ) _lowerCamelCase : int = divide_by_number else: has_been_divided.append(_UpperCAmelCase ) _lowerCamelCase : Optional[int] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
630
'''simple docstring''' A__: Optional[int] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' A__: List[Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] A__: int = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
694
0
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : Optional[Any] = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _UpperCAmelCase ( UpperCAmelCase__): __a : List[Any] = "time_series_transformer" __a : str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , _A = None , _A = None , _A = "student_t" , _A = "nll" , _A = 1 , _A = [1, 2, 3, 4, 5, 6, 7] , _A = "mean" , _A = 0 , _A = 0 , _A = 0 , _A = 0 , _A = None , _A = None , _A = 32 , _A = 32 , _A = 2 , _A = 2 , _A = 2 , _A = 2 , _A = True , _A = "gelu" , _A = 64 , _A = 0.1 , _A = 0.1 , _A = 0.1 , _A = 0.1 , _A = 0.1 , _A = 1_00 , _A = 0.02 , _A=True , **_A , ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : str = prediction_length _UpperCAmelCase : Union[str, Any] = context_length or prediction_length _UpperCAmelCase : List[str] = distribution_output _UpperCAmelCase : Tuple = loss _UpperCAmelCase : List[Any] = input_size _UpperCAmelCase : Optional[Any] = num_time_features _UpperCAmelCase : Union[str, Any] = lags_sequence _UpperCAmelCase : Optional[int] = scaling _UpperCAmelCase : List[Any] = num_dynamic_real_features _UpperCAmelCase : List[str] = num_static_real_features _UpperCAmelCase : str = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_A ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) _UpperCAmelCase : Any = cardinality else: _UpperCAmelCase : List[str] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(_A ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) _UpperCAmelCase : Union[str, Any] = embedding_dimension else: _UpperCAmelCase : Optional[int] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : List[str] = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Any = input_size * len(_A ) + self._number_of_features _UpperCAmelCase : Union[str, Any] = d_model _UpperCAmelCase : Union[str, Any] = encoder_attention_heads _UpperCAmelCase : Dict = decoder_attention_heads _UpperCAmelCase : Dict = encoder_ffn_dim _UpperCAmelCase : Optional[Any] = decoder_ffn_dim _UpperCAmelCase : List[str] = encoder_layers _UpperCAmelCase : Union[str, Any] = decoder_layers _UpperCAmelCase : Any = dropout _UpperCAmelCase : Optional[int] = attention_dropout _UpperCAmelCase : Optional[int] = activation_dropout _UpperCAmelCase : Union[str, Any] = encoder_layerdrop _UpperCAmelCase : Optional[int] = decoder_layerdrop _UpperCAmelCase : Tuple = activation_function _UpperCAmelCase : Optional[Any] = init_std _UpperCAmelCase : List[Any] = use_cache super().__init__(is_encoder_decoder=_A , **_A ) @property def __snake_case ( self ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
238
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : float ,_UpperCAmelCase : float ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(F"{price_plus_tax(100, 0.25) = }") print(F"{price_plus_tax(125.50, 0.05) = }")
694
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase : Union[str, Any] = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Union[str, Any] = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowercase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
36
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class A__ ( unittest.TestCase ): def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Any=1_3 , SCREAMING_SNAKE_CASE :Any=7 , SCREAMING_SNAKE_CASE :Any=True , SCREAMING_SNAKE_CASE :int=True , SCREAMING_SNAKE_CASE :Optional[int]=True , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :Optional[Any]=9_9 , SCREAMING_SNAKE_CASE :Tuple=3_2 , SCREAMING_SNAKE_CASE :Union[str, Any]=5 , SCREAMING_SNAKE_CASE :List[str]=4 , SCREAMING_SNAKE_CASE :int=3_7 , SCREAMING_SNAKE_CASE :Optional[Any]="gelu" , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=0.1 , SCREAMING_SNAKE_CASE :Dict=5_1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_6 , SCREAMING_SNAKE_CASE :Union[str, Any]=2 , SCREAMING_SNAKE_CASE :List[Any]=0.02 , SCREAMING_SNAKE_CASE :int=4 , ) -> Tuple: '''simple docstring''' _a : Optional[Any] =parent _a : List[str] =batch_size _a : List[str] =seq_length _a : List[Any] =is_training _a : Optional[int] =use_attention_mask _a : List[Any] =use_token_type_ids _a : List[Any] =use_labels _a : Optional[Any] =vocab_size _a : str =hidden_size _a : List[Any] =num_hidden_layers _a : List[Any] =num_attention_heads _a : Union[str, Any] =intermediate_size _a : int =hidden_act _a : List[str] =hidden_dropout_prob _a : Optional[int] =attention_probs_dropout_prob _a : Dict =max_position_embeddings _a : Any =type_vocab_size _a : str =type_sequence_label_size _a : str =initializer_range _a : List[str] =num_choices def __UpperCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' _a : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : Dict =None if self.use_attention_mask: _a : Any =random_attention_mask([self.batch_size, self.seq_length] ) _a : Optional[int] =None if self.use_token_type_ids: _a : Any =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a : Union[str, Any] =RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self :Optional[Any] ) -> int: '''simple docstring''' _a : Tuple =self.prepare_config_and_inputs() _a , _a , _a , _a : List[Any] =config_and_inputs _a : Optional[int] ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def __UpperCAmelCase ( self :int ) -> str: '''simple docstring''' _a : List[Any] =self.prepare_config_and_inputs() _a , _a , _a , _a : Optional[int] =config_and_inputs _a : Tuple =True _a : Optional[Any] =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _a : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class A__ ( UpperCAmelCase__ , unittest.TestCase ): __UpperCamelCase : Union[str, Any] = True __UpperCamelCase : Dict = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self :List[str] ) -> Optional[int]: '''simple docstring''' _a : Union[str, Any] =FlaxRobertaPreLayerNormModelTester(self ) @slow def __UpperCAmelCase ( self :str ) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _a : Optional[int] =model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE ) _a : Dict =model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_flax class A__ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self :Any ) -> str: '''simple docstring''' _a : str =FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE ) _a : List[Any] =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) _a : Dict =model(SCREAMING_SNAKE_CASE )[0] _a : List[Any] =[1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. _a : Any =np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow def __UpperCAmelCase ( self :int ) -> int: '''simple docstring''' _a : Union[str, Any] =FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE ) _a : Any =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) _a : Optional[int] =model(SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. _a : str =np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
694
0
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __magic_name__ ( lowercase ) -> Optional[int]: # picklable for multiprocessing """simple docstring""" return x.sum() def __magic_name__ ( lowercase ) -> str: # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class UpperCamelCase__ : '''simple docstring''' __a : int __a : str class UpperCamelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def snake_case__ ( self ) -> List[str]: """simple docstring""" lowercase_ : List[str] = {} lowercase_ : Dict = [] lowercase_ : Any = 1 lowercase_ : Any = [1, 2] lowercase_ : Dict = {"""a""": 1, """b""": 2} lowercase_ : str = {"""a""": [1, 2], """b""": [3, 4]} lowercase_ : Optional[int] = {"""a""": {"""1""": 1}, """b""": 2} lowercase_ : Optional[int] = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} lowercase_ : Any = {} lowercase_ : Tuple = [] lowercase_ : Any = 2 lowercase_ : Optional[Any] = [2, 3] lowercase_ : Union[str, Any] = {"""a""": 2, """b""": 3} lowercase_ : Dict = {"""a""": [2, 3], """b""": [4, 5]} lowercase_ : List[str] = {"""a""": {"""1""": 2}, """b""": 3} lowercase_ : Optional[int] = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} self.assertEqual(map_nested(snake_case__, snake_case__ ), snake_case__ ) self.assertEqual(map_nested(snake_case__, snake_case__ ), snake_case__ ) self.assertEqual(map_nested(snake_case__, snake_case__ ), snake_case__ ) self.assertEqual(map_nested(snake_case__, snake_case__ ), snake_case__ ) self.assertEqual(map_nested(snake_case__, snake_case__ ), snake_case__ ) self.assertEqual(map_nested(snake_case__, snake_case__ ), snake_case__ ) self.assertEqual(map_nested(snake_case__, snake_case__ ), snake_case__ ) self.assertEqual(map_nested(snake_case__, snake_case__ ), snake_case__ ) lowercase_ : Any = 2 self.assertEqual(map_nested(snake_case__, snake_case__, num_proc=snake_case__ ), snake_case__ ) self.assertEqual(map_nested(snake_case__, snake_case__, num_proc=snake_case__ ), snake_case__ ) self.assertEqual(map_nested(snake_case__, snake_case__, num_proc=snake_case__ ), snake_case__ ) self.assertEqual(map_nested(snake_case__, snake_case__, num_proc=snake_case__ ), snake_case__ ) self.assertEqual(map_nested(snake_case__, snake_case__, num_proc=snake_case__ ), snake_case__ ) self.assertEqual(map_nested(snake_case__, snake_case__, num_proc=snake_case__ ), snake_case__ ) self.assertEqual(map_nested(snake_case__, snake_case__, num_proc=snake_case__ ), snake_case__ ) self.assertEqual(map_nested(snake_case__, snake_case__, num_proc=snake_case__ ), snake_case__ ) lowercase_ : List[str] = {"""a""": np.eye(2 ), """b""": np.zeros(3 ), """c""": np.ones(2 )} lowercase_ : Optional[Any] = {"""a""": 2, """b""": 0, """c""": 2} lowercase_ : Tuple = { """a""": np.eye(2 ).astype(snake_case__ ), """b""": np.zeros(3 ).astype(snake_case__ ), """c""": np.ones(2 ).astype(snake_case__ ), } self.assertEqual(map_nested(snake_case__, snake_case__, map_numpy=snake_case__ ), snake_case__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case__, snake_case__, map_numpy=snake_case__ ).items()}, {k: v.tolist() for k, v in expected_map_nested_sna_int.items()}, ) self.assertEqual(map_nested(snake_case__, snake_case__, map_numpy=snake_case__, num_proc=snake_case__ ), snake_case__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(snake_case__, snake_case__, map_numpy=snake_case__, num_proc=snake_case__ ).items()}, {k: v.tolist() for k, v in expected_map_nested_sna_int.items()}, ) with self.assertRaises(snake_case__ ): # can't pickle a local lambda map_nested(lambda snake_case__ : x + 1, snake_case__, num_proc=snake_case__ ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" lowercase_ : List[Any] = {"""a""": 1, """b""": 2} lowercase_ : Dict = {"""a""": 3, """b""": 4} lowercase_ : Dict = {"""a""": 5, """b""": 6} lowercase_ : str = sorted([("""a""", (1, 3, 5)), ("""b""", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(snake_case__, snake_case__, snake_case__ ) ), snake_case__ ) def snake_case__ ( self ) -> Tuple: """simple docstring""" class UpperCamelCase__ : '''simple docstring''' __a : Optional[Any] = "bar" lowercase_ : str = Foo() self.assertEqual(foo.my_attr, """bar""" ) with temporary_assignment(snake_case__, """my_attr""", """BAR""" ): self.assertEqual(foo.my_attr, """BAR""" ) self.assertEqual(foo.my_attr, """bar""" ) @pytest.mark.parametrize( """iterable_length, num_proc, expected_num_proc""" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def __magic_name__ ( lowercase , lowercase , lowercase ) -> Dict: """simple docstring""" with patch("""datasets.utils.py_utils._single_map_nested""" ) as mock_single_map_nested, patch( """datasets.parallel.parallel.Pool""" ) as mock_multiprocessing_pool: lowercase_ : Any = {f"""{i}""": i for i in range(_UpperCAmelCase )} lowercase_ : Optional[Any] = map_nested(lambda lowercase : x + 10 , _UpperCAmelCase , num_proc=_UpperCAmelCase , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class UpperCamelCase__ ( UpperCAmelCase__ ): '''simple docstring''' @require_tf def snake_case__ ( self ) -> List[Any]: """simple docstring""" import tensorflow as tf from tensorflow.keras import layers lowercase_ : List[Any] = layers.Dense(2 ) def gen_random_output(): lowercase_ : Union[str, Any] = tf.random.uniform((1, 3) ) return model(snake_case__ ).numpy() with temp_seed(42, set_tensorflow=snake_case__ ): lowercase_ : Optional[int] = gen_random_output() with temp_seed(42, set_tensorflow=snake_case__ ): lowercase_ : Tuple = gen_random_output() lowercase_ : List[str] = gen_random_output() np.testing.assert_equal(snake_case__, snake_case__ ) self.assertGreater(np.abs(outa - outa ).sum(), 0 ) @require_torch def snake_case__ ( self ) -> Dict: """simple docstring""" import torch def gen_random_output(): lowercase_ : Dict = torch.nn.Linear(3, 2 ) lowercase_ : Dict = torch.rand(1, 3 ) return model(snake_case__ ).detach().numpy() with temp_seed(42, set_pytorch=snake_case__ ): lowercase_ : str = gen_random_output() with temp_seed(42, set_pytorch=snake_case__ ): lowercase_ : Any = gen_random_output() lowercase_ : Optional[Any] = gen_random_output() np.testing.assert_equal(snake_case__, snake_case__ ) self.assertGreater(np.abs(outa - outa ).sum(), 0 ) def snake_case__ ( self ) -> Dict: """simple docstring""" def gen_random_output(): return np.random.rand(1, 3 ) with temp_seed(42 ): lowercase_ : Tuple = gen_random_output() with temp_seed(42 ): lowercase_ : Optional[Any] = gen_random_output() lowercase_ : Dict = gen_random_output() np.testing.assert_equal(snake_case__, snake_case__ ) self.assertGreater(np.abs(outa - outa ).sum(), 0 ) @pytest.mark.parametrize("""input_data""" , [{}] ) def __magic_name__ ( lowercase ) -> Tuple: """simple docstring""" lowercase_ : Optional[int] = NestedDataStructure(_UpperCAmelCase ).data assert output_data == input_data @pytest.mark.parametrize( """data, expected_output""" , [ ({}, []), ([], []), ("""foo""", ["""foo"""]), (["""foo""", """bar"""], ["""foo""", """bar"""]), ([["""foo""", """bar"""]], ["""foo""", """bar"""]), ([[["""foo"""], ["""bar"""]]], ["""foo""", """bar"""]), ([[["""foo"""], """bar"""]], ["""foo""", """bar"""]), ({"""a""": 1, """b""": 2}, [1, 2]), ({"""a""": [1, 2], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[[3], [4]]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, [4]]}, [1, 2, 3, 4]), ({"""a""": {"""1""": 1}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": [2]}, [1, 2]), ] , ) def __magic_name__ ( lowercase , lowercase ) -> int: """simple docstring""" lowercase_ : List[str] = NestedDataStructure(_UpperCAmelCase ).flatten() assert output == expected_output def __magic_name__ ( ) -> Union[str, Any]: """simple docstring""" lowercase_ : List[str] = A(x=1 , y="""foobar""" ) lowercase_ : int = {"""x""": 1, """y""": """foobar"""} assert asdict(_UpperCAmelCase ) == expected_output lowercase_ : Union[str, Any] = {"""a""": {"""b""": A(x=10 , y="""foo""" )}, """c""": [A(x=20 , y="""bar""" )]} lowercase_ : Any = {"""a""": {"""b""": {"""x""": 10, """y""": """foo"""}}, """c""": [{"""x""": 20, """y""": """bar"""}]} assert asdict(_UpperCAmelCase ) == expected_output with pytest.raises(_UpperCAmelCase ): asdict([1, A(x=10 , y="""foo""" )] ) def __magic_name__ ( lowercase ) -> Tuple: """simple docstring""" return text.split() def __magic_name__ ( lowercase ) -> List[Any]: """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __magic_name__ ( ) -> List[str]: """simple docstring""" with Pool(2 ) as pool: lowercase_ : Any = list(iflatmap_unordered(_UpperCAmelCase , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(_UpperCAmelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: lowercase_ : int = list(iflatmap_unordered(_UpperCAmelCase , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(_UpperCAmelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: lowercase_ : Optional[int] = [] for yield_time, content in iflatmap_unordered( _UpperCAmelCase , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"""content""": """a"""}, {"""content""": """b"""}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(_UpperCAmelCase ) assert out.count("""a""" ) == 2 assert out.count("""b""" ) == 2 assert len(_UpperCAmelCase ) == 4
458
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging A__: Tuple = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any]=None ,_UpperCAmelCase : str=None ) -> Union[str, Any]: return field(default_factory=lambda: default ,metadata=_UpperCAmelCase ) @dataclass class A__ : __UpperCamelCase : List[str] = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) __UpperCamelCase : List[int] = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) __UpperCamelCase : List[int] = list_field( default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Use FP16 to accelerate inference."} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Benchmark training of model"} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Verbose memory tracing"} ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Trace memory line by line"} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Save result to a CSV file"} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Save all print statements in a log file"} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Whether to print environment information"} ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) __UpperCamelCase : str = field( default=f'''inference_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , ) __UpperCamelCase : str = field( default=f'''inference_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , ) __UpperCamelCase : str = field( default=f'''train_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) __UpperCamelCase : str = field( default=f'''train_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) __UpperCamelCase : str = field( default=f'''env_info_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , ) __UpperCamelCase : str = field( default=f'''log_{round(time() )}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , ) __UpperCamelCase : int = field(default=3 , metadata={"help": "Times an experiment will be run."} ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def __UpperCAmelCase ( self :Union[str, Any] ) -> int: '''simple docstring''' warnings.warn( f"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , SCREAMING_SNAKE_CASE , ) def __UpperCAmelCase ( self :Optional[int] ) -> Dict: '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def __UpperCAmelCase ( self :Optional[int] ) -> List[str]: '''simple docstring''' if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def __UpperCAmelCase ( self :Optional[Any] ) -> int: '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
694
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor A_ = random.Random() def _UpperCamelCase ( A , A=1.0 , A=None , A=None ): if rng is None: UpperCamelCase_ =global_rng UpperCamelCase_ =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self: Union[str, Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[int]=7 , UpperCamelCase_: Any=400 , UpperCamelCase_: Union[str, Any]=2000 , UpperCamelCase_: List[Any]=24 , UpperCamelCase_: str=24 , UpperCamelCase_: str=0.0 , UpperCamelCase_: str=1_6000 , UpperCamelCase_: Tuple=True , UpperCamelCase_: Dict=True , ): UpperCamelCase_ =parent UpperCamelCase_ =batch_size UpperCamelCase_ =min_seq_length UpperCamelCase_ =max_seq_length UpperCamelCase_ =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase_ =feature_size UpperCamelCase_ =num_mel_bins UpperCamelCase_ =padding_value UpperCamelCase_ =sampling_rate UpperCamelCase_ =return_attention_mask UpperCamelCase_ =do_normalize def UpperCamelCase__ ( self: List[str] ): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase__ ( self: Dict , UpperCamelCase_: Optional[Any]=False , UpperCamelCase_: Union[str, Any]=False ): def _flatten(UpperCamelCase_: Union[str, Any] ): return list(itertools.chain(*UpperCamelCase_ ) ) if equal_length: UpperCamelCase_ =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase_ =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase_ =[np.asarray(UpperCamelCase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = SpeechaTextFeatureExtractor if is_speech_available() else None def UpperCamelCase__ ( self: Dict ): UpperCamelCase_ =SpeechaTextFeatureExtractionTester(self ) def UpperCamelCase__ ( self: Union[str, Any] , UpperCamelCase_: str ): self.assertTrue(np.all(np.mean(UpperCamelCase_ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase_ , axis=0 ) - 1 ) < 1e-3 ) ) def UpperCamelCase__ ( self: Optional[int] ): UpperCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase_ =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_ =[np.asarray(UpperCamelCase_ ) for speech_input in speech_inputs] # Test feature size UpperCamelCase_ =feature_extractor(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase_ =feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features UpperCamelCase_ =feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-3 ) ) # Test batched UpperCamelCase_ =feature_extractor(UpperCamelCase_ , return_tensors="np" ).input_features UpperCamelCase_ =feature_extractor(UpperCamelCase_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase_ =[floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase_ =np.asarray(UpperCamelCase_ ) UpperCamelCase_ =feature_extractor(UpperCamelCase_ , return_tensors="np" ).input_features UpperCamelCase_ =feature_extractor(UpperCamelCase_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-3 ) ) def UpperCamelCase__ ( self: int ): UpperCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_ =["""longest""", """max_length""", """do_not_pad"""] UpperCamelCase_ =[None, 16, None] for max_length, padding in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ =feature_extractor( UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ ) UpperCamelCase_ =inputs.input_features UpperCamelCase_ =inputs.attention_mask UpperCamelCase_ =[np.sum(UpperCamelCase_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def UpperCamelCase__ ( self: Optional[Any] ): UpperCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_ =["""longest""", """max_length""", """do_not_pad"""] UpperCamelCase_ =[None, 16, None] for max_length, padding in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ =feature_extractor( UpperCamelCase_ , max_length=UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors="np" , return_attention_mask=UpperCamelCase_ ) UpperCamelCase_ =inputs.input_features UpperCamelCase_ =inputs.attention_mask UpperCamelCase_ =[np.sum(UpperCamelCase_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def UpperCamelCase__ ( self: Optional[int] ): UpperCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_ =feature_extractor( UpperCamelCase_ , padding="max_length" , max_length=4 , truncation=UpperCamelCase_ , return_tensors="np" , return_attention_mask=UpperCamelCase_ , ) UpperCamelCase_ =inputs.input_features UpperCamelCase_ =inputs.attention_mask UpperCamelCase_ =np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def UpperCamelCase__ ( self: int ): UpperCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_ =feature_extractor( UpperCamelCase_ , padding="longest" , max_length=4 , truncation=UpperCamelCase_ , return_tensors="np" , return_attention_mask=UpperCamelCase_ , ) UpperCamelCase_ =inputs.input_features UpperCamelCase_ =inputs.attention_mask UpperCamelCase_ =np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) UpperCamelCase_ =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_ =feature_extractor( UpperCamelCase_ , padding="longest" , max_length=16 , truncation=UpperCamelCase_ , return_tensors="np" , return_attention_mask=UpperCamelCase_ , ) UpperCamelCase_ =inputs.input_features UpperCamelCase_ =inputs.attention_mask UpperCamelCase_ =np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def UpperCamelCase__ ( self: int ): import torch UpperCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ =np.random.rand(100 , 32 ).astype(np.floataa ) UpperCamelCase_ =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase_ =feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase_ =feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCamelCase__ ( self: int , UpperCamelCase_: Optional[int] ): from datasets import load_dataset UpperCamelCase_ =load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech UpperCamelCase_ =ds.sort("id" ).select(range(UpperCamelCase_ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def UpperCamelCase__ ( self: Tuple ): UpperCamelCase_ =np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on UpperCamelCase_ =self._load_datasamples(1 ) UpperCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ =feature_extractor(UpperCamelCase_ , return_tensors="pt" ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , UpperCamelCase_ , atol=1e-4 ) )
391
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class A__ ( UpperCAmelCase__ ): def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Distribution , SCREAMING_SNAKE_CASE :int=None , SCREAMING_SNAKE_CASE :Tuple=None , SCREAMING_SNAKE_CASE :List[Any]=0 ) -> List[str]: '''simple docstring''' _a : int =1.0 if scale is None else scale _a : Optional[Any] =0.0 if loc is None else loc super().__init__(SCREAMING_SNAKE_CASE , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=SCREAMING_SNAKE_CASE )] ) @property def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def __UpperCAmelCase ( self :Optional[int] ) -> Dict: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def __UpperCAmelCase ( self :Any ) -> List[str]: '''simple docstring''' return self.variance.sqrt() class A__ ( nn.Module ): def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Dict[str, int] , SCREAMING_SNAKE_CASE :Callable[..., Tuple[torch.Tensor]] , **SCREAMING_SNAKE_CASE :Dict ) -> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) _a : Tuple =args_dim _a : Tuple =nn.ModuleList([nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for dim in args_dim.values()] ) _a : Dict =domain_map def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Tuple[torch.Tensor]: '''simple docstring''' _a : Tuple =[proj(SCREAMING_SNAKE_CASE ) for proj in self.proj] return self.domain_map(*SCREAMING_SNAKE_CASE ) class A__ ( nn.Module ): def __init__( self :Dict , SCREAMING_SNAKE_CASE :Tuple ) -> int: '''simple docstring''' super().__init__() _a : List[Any] =function def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Optional[int] , *SCREAMING_SNAKE_CASE :int ) -> List[Any]: '''simple docstring''' return self.function(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) class A__ : __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__( self :Any , SCREAMING_SNAKE_CASE :int = 1 ) -> None: '''simple docstring''' _a : Any =dim _a : List[Any] ={k: dim * self.args_dim[k] for k in self.args_dim} def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[int] ) -> Union[str, Any]: '''simple docstring''' if self.dim == 1: return self.distribution_class(*SCREAMING_SNAKE_CASE ) else: return Independent(self.distribution_class(*SCREAMING_SNAKE_CASE ) , 1 ) def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , ) -> Distribution: '''simple docstring''' _a : str =self._base_distribution(SCREAMING_SNAKE_CASE ) if loc is None and scale is None: return distr else: return AffineTransformed(SCREAMING_SNAKE_CASE , loc=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , event_dim=self.event_dim ) @property def __UpperCAmelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def __UpperCAmelCase ( self :Any ) -> int: '''simple docstring''' return len(self.event_shape ) @property def __UpperCAmelCase ( self :Any ) -> float: '''simple docstring''' return 0.0 def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :int ) -> nn.Module: '''simple docstring''' return ParameterProjection( in_features=SCREAMING_SNAKE_CASE , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def __UpperCAmelCase ( self :int , *SCREAMING_SNAKE_CASE :torch.Tensor ) -> Any: '''simple docstring''' raise NotImplementedError() @staticmethod def __UpperCAmelCase ( SCREAMING_SNAKE_CASE :torch.Tensor ) -> torch.Tensor: '''simple docstring''' return (x + torch.sqrt(torch.square(SCREAMING_SNAKE_CASE ) + 4.0 )) / 2.0 class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def __UpperCAmelCase ( cls :int , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Union[str, Any]: '''simple docstring''' _a : Tuple =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps ) _a : Optional[Any] =2.0 + cls.squareplus(SCREAMING_SNAKE_CASE ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Dict: '''simple docstring''' _a : List[str] =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Optional[int]: '''simple docstring''' _a : int =cls.squareplus(SCREAMING_SNAKE_CASE ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Distribution: '''simple docstring''' _a , _a : Any =distr_args if self.dim == 1: return self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE ) else: return Independent(self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE ) , 1 ) def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None ) -> Distribution: '''simple docstring''' _a , _a : Optional[int] =distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
694
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Optional[int] = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
196
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return number | (1 << position) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return number & ~(1 << position) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return number ^ (1 << position) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> bool: return ((number >> position) & 1) == 1 def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
694
0
a_ :Optional[int] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' a_ :List[Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] a_ :int = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
35
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : list ) -> float: _validate_point(_UpperCAmelCase ) _validate_point(_UpperCAmelCase ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[float] ) -> None: if point: if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): for item in point: if not isinstance(_UpperCAmelCase ,(int, float) ): _a : str =( """Expected a list of numbers as input, found """ F"{type(_UpperCAmelCase ).__name__}" ) raise TypeError(_UpperCAmelCase ) else: _a : List[Any] =F"Expected a list of numbers as input, found {type(_UpperCAmelCase ).__name__}" raise TypeError(_UpperCAmelCase ) else: raise ValueError("""Missing an input""" ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : list ) -> float: _validate_point(_UpperCAmelCase ) _validate_point(_UpperCAmelCase ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
694
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowercase = random.Random() def __lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any]=1.0 , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=None ) -> Tuple: if rng is None: lowerCamelCase_ = global_rng lowerCamelCase_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __A( unittest.TestCase ): def __init__( self : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any]=7 , __UpperCamelCase : str=4_0_0 , __UpperCamelCase : int=2_0_0_0 , __UpperCamelCase : Optional[Any]=1_0 , __UpperCamelCase : Optional[Any]=1_6_0 , __UpperCamelCase : Dict=8 , __UpperCamelCase : Tuple=0.0 , __UpperCamelCase : List[str]=4_0_0_0 , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : List[Any]=True , ): lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = min_seq_length lowerCamelCase_ = max_seq_length lowerCamelCase_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase_ = padding_value lowerCamelCase_ = sampling_rate lowerCamelCase_ = return_attention_mask lowerCamelCase_ = do_normalize lowerCamelCase_ = feature_size lowerCamelCase_ = chunk_length lowerCamelCase_ = hop_length def lowercase__ ( self : List[str] ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase__ ( self : int , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Any=False ): def _flatten(__UpperCamelCase : str ): return list(itertools.chain(*__UpperCamelCase ) ) if equal_length: lowerCamelCase_ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase_ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase_ = [np.asarray(__UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __A( UpperCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE = WhisperFeatureExtractor if is_speech_available() else None def lowercase__ ( self : List[Any] ): lowerCamelCase_ = WhisperFeatureExtractionTester(self ) def lowercase__ ( self : int ): lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = feat_extract_first.save_pretrained(__UpperCamelCase )[0] check_json_file_has_correct_format(__UpperCamelCase ) lowerCamelCase_ = self.feature_extraction_class.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = feat_extract_first.to_dict() lowerCamelCase_ = feat_extract_second.to_dict() lowerCamelCase_ = feat_extract_first.mel_filters lowerCamelCase_ = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Any ): lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = os.path.join(__UpperCamelCase , """feat_extract.json""" ) feat_extract_first.to_json_file(__UpperCamelCase ) lowerCamelCase_ = self.feature_extraction_class.from_json_file(__UpperCamelCase ) lowerCamelCase_ = feat_extract_first.to_dict() lowerCamelCase_ = feat_extract_second.to_dict() lowerCamelCase_ = feat_extract_first.mel_filters lowerCamelCase_ = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Any ): lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCamelCase_ = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] # Test feature size lowerCamelCase_ = feature_extractor(__UpperCamelCase , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input lowerCamelCase_ = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features lowerCamelCase_ = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) ) # Test batched lowerCamelCase_ = feature_extractor(__UpperCamelCase , return_tensors="""np""" ).input_features lowerCamelCase_ = feature_extractor(__UpperCamelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCamelCase_ = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCamelCase_ = np.asarray(__UpperCamelCase ) lowerCamelCase_ = feature_extractor(__UpperCamelCase , return_tensors="""np""" ).input_features lowerCamelCase_ = feature_extractor(__UpperCamelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) ) # Test truncation required lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(2_0_0 , (feature_extractor.n_samples + 5_0_0) , 2_0_0 )] lowerCamelCase_ = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] lowerCamelCase_ = [x[: feature_extractor.n_samples] for x in speech_inputs] lowerCamelCase_ = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs_truncated] lowerCamelCase_ = feature_extractor(__UpperCamelCase , return_tensors="""np""" ).input_features lowerCamelCase_ = feature_extractor(__UpperCamelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) ) def lowercase__ ( self : int ): import torch lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) lowerCamelCase_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase_ = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCamelCase_ = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : Union[str, Any] ): lowerCamelCase_ = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech lowerCamelCase_ = ds.sort("""id""" ).select(range(__UpperCamelCase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowercase__ ( self : Tuple ): lowerCamelCase_ = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on lowerCamelCase_ = self._load_datasamples(1 ) lowerCamelCase_ = WhisperFeatureExtractor() lowerCamelCase_ = feature_extractor(__UpperCamelCase , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 8_0, 3_0_0_0) ) self.assertTrue(torch.allclose(input_features[0, 0, :3_0] , __UpperCamelCase , atol=1E-4 ) ) def lowercase__ ( self : List[str] ): lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ = self._load_datasamples(1 )[0] lowerCamelCase_ = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5_5_3_5 # Rescale to [0, 65535] to show issue lowerCamelCase_ = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__UpperCamelCase )[0] self.assertTrue(np.all(np.mean(__UpperCamelCase ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCamelCase ) - 1 ) < 1E-3 ) )
272
'''simple docstring''' from __future__ import annotations class A__ : def __init__( self :str , SCREAMING_SNAKE_CASE :int ) -> None: '''simple docstring''' _a : int =order # a_{0} ... a_{k} _a : Optional[Any] =[1.0] + [0.0] * order # b_{0} ... b_{k} _a : Tuple =[1.0] + [0.0] * order # x[n-1] ... x[n-k] _a : List[Any] =[0.0] * self.order # y[n-1] ... y[n-k] _a : Tuple =[0.0] * self.order def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :list[float] , SCREAMING_SNAKE_CASE :list[float] ) -> None: '''simple docstring''' if len(SCREAMING_SNAKE_CASE ) < self.order: _a : int =[1.0, *a_coeffs] if len(SCREAMING_SNAKE_CASE ) != self.order + 1: _a : int =( f"Expected a_coeffs to have {self.order + 1} elements " f"for {self.order}-order filter, got {len(SCREAMING_SNAKE_CASE )}" ) raise ValueError(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) != self.order + 1: _a : Optional[Any] =( f"Expected b_coeffs to have {self.order + 1} elements " f"for {self.order}-order filter, got {len(SCREAMING_SNAKE_CASE )}" ) raise ValueError(SCREAMING_SNAKE_CASE ) _a : List[str] =a_coeffs _a : Union[str, Any] =b_coeffs def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :float ) -> float: '''simple docstring''' _a : str =0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _a : Any =(result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _a : str =self.input_history[:-1] _a : Optional[Any] =self.output_history[:-1] _a : Optional[int] =sample _a : Tuple =result return result
694
0
"""simple docstring""" import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __A = logging.getLogger(__name__) class UpperCAmelCase (UpperCAmelCase__ ): """simple docstring""" def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): lowercase__: Union[str, Any] = self.layer[current_layer](_UpperCAmelCase , _UpperCAmelCase , head_mask[current_layer] ) lowercase__: int = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." ,UpperCAmelCase__ ,) class UpperCAmelCase (UpperCAmelCase__ ): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) lowercase__: Tuple = BertEncoderWithPabee(_UpperCAmelCase ) self.init_weights() lowercase__: List[Any] = 0 lowercase__: List[Any] = 0 lowercase__: Any = 0 lowercase__: Optional[Any] = 0 def _snake_case ( self , _UpperCAmelCase ): lowercase__: Any = threshold def _snake_case ( self , _UpperCAmelCase ): lowercase__: Dict = patience def _snake_case ( self ): lowercase__: int = 0 lowercase__: Any = 0 def _snake_case ( self ): lowercase__: Tuple = self.inference_layers_num / self.inference_instances_num lowercase__: Dict = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_UpperCAmelCase ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: lowercase__: int = input_ids.size() elif inputs_embeds is not None: lowercase__: str = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) lowercase__: Tuple = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase__: str = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if token_type_ids is None: lowercase__: List[str] = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase__: torch.Tensor = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowercase__: List[Any] = encoder_hidden_states.size() lowercase__: Any = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowercase__: str = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) lowercase__: Optional[Any] = self.invert_attention_mask(_UpperCAmelCase ) else: lowercase__: Optional[int] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase__: Union[str, Any] = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers ) lowercase__: Any = self.embeddings( input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase ) lowercase__: Tuple = embedding_output if self.training: lowercase__: Tuple = [] for i in range(self.config.num_hidden_layers ): lowercase__: Any = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) lowercase__: Optional[int] = self.pooler(_UpperCAmelCase ) lowercase__: Optional[int] = output_layers[i](output_dropout(_UpperCAmelCase ) ) res.append(_UpperCAmelCase ) elif self.patience == 0: # Use all layers for inference lowercase__: List[Any] = self.encoder( _UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) lowercase__: Dict = self.pooler(encoder_outputs[0] ) lowercase__: List[Any] = [output_layers[self.config.num_hidden_layers - 1](_UpperCAmelCase )] else: lowercase__: Any = 0 lowercase__: List[str] = None lowercase__: Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowercase__: Optional[int] = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) lowercase__: Optional[Any] = self.pooler(_UpperCAmelCase ) lowercase__: Union[str, Any] = output_layers[i](_UpperCAmelCase ) if regression: lowercase__: Union[str, Any] = logits.detach() if patient_result is not None: lowercase__: List[str] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowercase__: Optional[Any] = 0 else: lowercase__: List[Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: lowercase__: Union[str, Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_UpperCAmelCase ) ): patient_counter += 1 else: lowercase__: Optional[int] = 0 lowercase__: Optional[Any] = logits if patient_counter == self.patience: break lowercase__: Optional[Any] = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " ,UpperCAmelCase__ ,) class UpperCAmelCase (UpperCAmelCase__ ): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) lowercase__: str = config.num_labels lowercase__: Any = BertModelWithPabee(_UpperCAmelCase ) lowercase__: List[Any] = nn.Dropout(config.hidden_dropout_prob ) lowercase__: Any = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): lowercase__: Any = self.bert( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowercase__: Optional[Any] = (logits[-1],) if labels is not None: lowercase__: Any = None lowercase__: Union[str, Any] = 0 for ix, logits_item in enumerate(_UpperCAmelCase ): if self.num_labels == 1: # We are doing regression lowercase__: Union[str, Any] = MSELoss() lowercase__: Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowercase__: int = CrossEntropyLoss() lowercase__: str = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowercase__: Optional[int] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowercase__: str = (total_loss / total_weights,) + outputs return outputs
586
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : dict ,_UpperCAmelCase : str ,_UpperCAmelCase : set ,_UpperCAmelCase : set ,_UpperCAmelCase : dict ,_UpperCAmelCase : dict ,_UpperCAmelCase : PriorityQueue ,_UpperCAmelCase : dict ,_UpperCAmelCase : float | int ,) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue _a : Dict =cst_fwd.get(_UpperCAmelCase ,np.inf ) _a : int =cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _a : Tuple =new_cost_f _a : Optional[Any] =v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _a : str =cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ,_UpperCAmelCase : dict ,_UpperCAmelCase : dict ) -> int: _a : Optional[Any] =-1 _a : List[str] =set() _a : Optional[int] =set() _a : Optional[int] ={source: 0} _a : List[str] ={destination: 0} _a : Union[str, Any] ={source: None} _a : Dict ={destination: None} _a : PriorityQueue[Any] =PriorityQueue() _a : PriorityQueue[Any] =PriorityQueue() _a : Optional[int] =np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _a , _a : str =queue_forward.get() visited_forward.add(_UpperCAmelCase ) _a , _a : List[Any] =queue_backward.get() visited_backward.add(_UpperCAmelCase ) _a : int =pass_and_relaxation( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,) _a : Any =pass_and_relaxation( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _a : Any =shortest_distance return shortest_path_distance A__: Union[str, Any] = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } A__: str = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
694
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={'''vocab_file''': '''spiece.model'''} __UpperCAmelCase ={ '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<sep>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<cls>" , UpperCamelCase__="<mask>" , UpperCamelCase__=["<eop>", "<eod>"] , UpperCamelCase__ = None , **UpperCamelCase__ , ): '''simple docstring''' A__ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) A__ = 3 A__ = do_lower_case A__ = remove_space A__ = keep_accents A__ = vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) A__ = jieba A__ = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def lowercase_ ( self ): '''simple docstring''' return len(self.sp_model ) def lowercase_ ( self ): '''simple docstring''' A__ = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' A__ = self.__dict__.copy() A__ = None return state def __setstate__( self , UpperCamelCase__ ): '''simple docstring''' A__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' if self.remove_space: A__ = """ """.join(inputs.strip().split() ) else: A__ = inputs A__ = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: A__ = unicodedata.normalize("NFKD" , UpperCamelCase__ ) A__ = """""".join([c for c in outputs if not unicodedata.combining(UpperCamelCase__ )] ) if self.do_lower_case: A__ = outputs.lower() return outputs def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' A__ = self.preprocess_text(UpperCamelCase__ ) A__ = self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) A__ = [] for piece in pieces: if len(UpperCamelCase__ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): A__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCamelCase__ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A__ = cur_pieces[1:] else: A__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCamelCase__ ) else: new_pieces.append(UpperCamelCase__ ) return new_pieces def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' return self.sp_model.PieceToId(UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' return self.sp_model.IdToPiece(UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' A__ = """""".join(UpperCamelCase__ ).replace(UpperCamelCase__ , " " ).strip() return out_string def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ): '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is not None: return ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] return ([0] * len(UpperCamelCase__ )) + [1, 1] def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ): '''simple docstring''' A__ = [self.sep_token_id] A__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , "wb" ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,) def lowercase_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' A__ = super()._decode(*UpperCamelCase__ , **UpperCamelCase__ ) A__ = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
337
'''simple docstring''' from math import factorial def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 100 ) -> int: return sum(map(_UpperCAmelCase ,str(factorial(_UpperCAmelCase ) ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
694
0
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Optional[Any]=99 , lowerCAmelCase__ : Tuple=32 , lowerCAmelCase__ : Union[str, Any]=5 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : int=37 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=512 , lowerCAmelCase__ : List[Any]=16 , lowerCAmelCase__ : Union[str, Any]=2 , lowerCAmelCase__ : List[Any]=0.02 , lowerCAmelCase__ : int=4 , ) -> Tuple: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_attention_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_choices def snake_case__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_attention_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self : Optional[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase = config_and_inputs _UpperCamelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def snake_case__ ( self : int ) -> str: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase = config_and_inputs _UpperCamelCase = True _UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __lowerCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" _snake_case : Union[str, Any] = True _snake_case : Dict = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def snake_case__ ( self : str ) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=lowerCAmelCase__ ) _UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=lowerCAmelCase__ ) _UpperCamelCase = np.array([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] , dtype=jnp.intaa ) _UpperCamelCase = model(lowerCAmelCase__ )[0] _UpperCamelCase = [1, 11, 50265] self.assertEqual(list(output.shape ) , lowerCAmelCase__ ) # compare the actual values for a slice. _UpperCamelCase = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def snake_case__ ( self : int ) -> int: '''simple docstring''' _UpperCamelCase = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=lowerCAmelCase__ ) _UpperCamelCase = np.array([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] , dtype=jnp.intaa ) _UpperCamelCase = model(lowerCAmelCase__ )[0] # compare the actual values for a slice. _UpperCamelCase = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) )
98
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ) -> list: _a : Tuple =len(_UpperCAmelCase ) _a : str =[] for i in range(len(_UpperCAmelCase ) - pat_len + 1 ): _a : int =True for j in range(_UpperCAmelCase ): if s[i + j] != pattern[j]: _a : int =False break if match_found: position.append(_UpperCAmelCase ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
694
0
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowercase__ = version.parse(importlib_metadata.version("""nltk""")) if NLTK_VERSION >= version.Version("""3.6.4"""): from nltk import word_tokenize lowercase__ = '''\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } ''' lowercase__ = '''\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. ''' lowercase__ = ''' Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: \'meteor\': meteor score. Examples: >>> meteor = datasets.load_metric(\'meteor\') >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"] >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results["meteor"], 4)) 0.6944 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): '''simple docstring''' def A_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def A_ ( self , lowercase ): import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def A_ ( self , lowercase , lowercase , lowercase=0.9 , lowercase=3 , lowercase=0.5 ): if NLTK_VERSION >= version.Version('3.6.5' ): _lowerCamelCase : List[Any] = [ meteor_score.single_meteor_score( word_tokenize(lowercase ) , word_tokenize(lowercase ) , alpha=lowercase , beta=lowercase , gamma=lowercase ) for ref, pred in zip(lowercase , lowercase ) ] else: _lowerCamelCase : str = [ meteor_score.single_meteor_score(lowercase , lowercase , alpha=lowercase , beta=lowercase , gamma=lowercase ) for ref, pred in zip(lowercase , lowercase ) ] return {"meteor": np.mean(lowercase )}
630
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class A__ ( unittest.TestCase ): def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any]=7 , SCREAMING_SNAKE_CASE :Optional[Any]=3 , SCREAMING_SNAKE_CASE :Tuple=1_8 , SCREAMING_SNAKE_CASE :Any=3_0 , SCREAMING_SNAKE_CASE :List[str]=4_0_0 , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :List[str]=True , ) -> Tuple: '''simple docstring''' _a : int =size if size is not None else {"""height""": 1_8, """width""": 1_8} _a : int =parent _a : Optional[int] =batch_size _a : List[str] =num_channels _a : Optional[Any] =image_size _a : int =min_resolution _a : str =max_resolution _a : str =do_resize _a : Tuple =size _a : Tuple =do_normalize def __UpperCAmelCase ( self :Any ) -> int: '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804], [-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class A__ ( UpperCAmelCase__ , unittest.TestCase ): __UpperCamelCase : int = ImageGPTImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self :List[Any] ) -> List[Any]: '''simple docstring''' _a : Any =ImageGPTImageProcessingTester(self ) @property def __UpperCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self :Dict ) -> Any: '''simple docstring''' _a : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """clusters""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """size""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_normalize""" ) ) def __UpperCAmelCase ( self :Optional[int] ) -> Optional[int]: '''simple docstring''' _a : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} ) _a : Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} ) def __UpperCAmelCase ( self :List[Any] ) -> Optional[int]: '''simple docstring''' _a : List[str] =self.image_processing_class(**self.image_processor_dict ) _a : Dict =json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , obj[key] ) ) else: self.assertEqual(obj[key] , SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[int] ) -> Dict: '''simple docstring''' _a : List[Any] =self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Any =os.path.join(SCREAMING_SNAKE_CASE , """image_processor.json""" ) image_processor_first.to_json_file(SCREAMING_SNAKE_CASE ) _a : str =self.image_processing_class.from_json_file(SCREAMING_SNAKE_CASE ).to_dict() _a : Tuple =image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[int] ) -> str: '''simple docstring''' _a : List[str] =self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(SCREAMING_SNAKE_CASE ) _a : str =self.image_processing_class.from_pretrained(SCREAMING_SNAKE_CASE ).to_dict() _a : Union[str, Any] =image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def __UpperCAmelCase ( self :Union[str, Any] ) -> int: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: _a : Any =load_dataset("""hf-internal-testing/fixtures_image_utils""" ,split="""test""" ) _a : Dict =Image.open(dataset[4]["""file"""] ) _a : Optional[int] =Image.open(dataset[5]["""file"""] ) _a : Optional[Any] =[imagea, imagea] return images @require_vision @require_torch class A__ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' _a : Optional[Any] =ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) _a : int =prepare_images() # test non-batched _a : Dict =image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) ) _a : Optional[int] =[3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , SCREAMING_SNAKE_CASE ) # test batched _a : Dict =image_processing(SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) ) _a : Any =[3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , SCREAMING_SNAKE_CASE )
694
0
"""simple docstring""" from __future__ import annotations import math lowerCamelCase__ : Optional[Any] = '''2020.9.26''' lowerCamelCase__ : Optional[Any] = '''xcodz-dot, cclaus, dhruvmanila''' def UpperCamelCase ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float ) -> tuple[float, float]: if not all(isinstance(_UpperCAmelCase, (float, int) ) for val in locals().values() ): _UpperCAmelCase : Any = f'''Input values must either be float or int: {list(locals().values() )}''' raise TypeError(_UpperCAmelCase ) _UpperCAmelCase : str = ((x * distance) / (z + distance)) * scale _UpperCAmelCase : str = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def UpperCamelCase ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : str, _lowerCAmelCase : float ) -> tuple[float, float, float]: if not isinstance(_UpperCAmelCase, _UpperCAmelCase ): raise TypeError("""Axis must be a str""" ) _UpperCAmelCase : Any = locals() del input_variables["axis"] if not all(isinstance(_UpperCAmelCase, (float, int) ) for val in input_variables.values() ): _UpperCAmelCase : Union[str, Any] = ( """Input values except axis must either be float or int: """ f'''{list(input_variables.values() )}''' ) raise TypeError(_UpperCAmelCase ) _UpperCAmelCase : Any = (angle % 360) / 450 * 180 / math.pi if axis == "z": _UpperCAmelCase : Dict = x * math.cos(_UpperCAmelCase ) - y * math.sin(_UpperCAmelCase ) _UpperCAmelCase : int = y * math.cos(_UpperCAmelCase ) + x * math.sin(_UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = z elif axis == "x": _UpperCAmelCase : Optional[Any] = y * math.cos(_UpperCAmelCase ) - z * math.sin(_UpperCAmelCase ) _UpperCAmelCase : Any = z * math.cos(_UpperCAmelCase ) + y * math.sin(_UpperCAmelCase ) _UpperCAmelCase : Dict = x elif axis == "y": _UpperCAmelCase : List[Any] = x * math.cos(_UpperCAmelCase ) - z * math.sin(_UpperCAmelCase ) _UpperCAmelCase : List[Any] = z * math.cos(_UpperCAmelCase ) + x * math.sin(_UpperCAmelCase ) _UpperCAmelCase : Any = y else: raise ValueError("""not a valid axis, choose one of 'x', 'y', 'z'""" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'''{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }''') print(F'''{rotate(1.0, 2.0, 3.0, "y", 90.0) = }''')
238
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ) -> bool: _a : Optional[int] =len(_UpperCAmelCase ) _a : Tuple =[[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _a : Any =True # sum is not zero and set is empty then false for i in range(1 ,required_sum + 1 ): _a : int =False for i in range(1 ,arr_len + 1 ): for j in range(1 ,required_sum + 1 ): if arr[i - 1] > j: _a : Optional[Any] =subset[i - 1][j] if arr[i - 1] <= j: _a : Union[str, Any] =subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
694
0
def lowercase ( ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] snake_case : str = 6 snake_case : Any = 1 snake_case : List[str] = 1901 snake_case : Dict = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 snake_case : Union[str, Any] = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 snake_case : List[str] = day - 29 else: if day > days_per_month[month - 1]: month += 1 snake_case : int = day - days_per_month[month - 2] if month > 12: year += 1 snake_case : Union[str, Any] = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
36
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 4000000 ) -> int: _a : Optional[Any] =[] _a , _a : Union[str, Any] =0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_UpperCAmelCase ) _a , _a : Optional[Any] =b, a + b return sum(_UpperCAmelCase ) if __name__ == "__main__": print(F"{solution() = }")
694
0
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, snake_case__, snake_case__=7, snake_case__=3, snake_case__=18, snake_case__=30, snake_case__=4_00, snake_case__=True, snake_case__=None, snake_case__=True, snake_case__=[0.5, 0.5, 0.5], snake_case__=[0.5, 0.5, 0.5], ) -> str: """simple docstring""" lowercase_ : Tuple = size if size is not None else {"""height""": 18, """width""": 18} lowercase_ : Optional[Any] = parent lowercase_ : List[str] = batch_size lowercase_ : int = num_channels lowercase_ : Union[str, Any] = image_size lowercase_ : List[Any] = min_resolution lowercase_ : Optional[Any] = max_resolution lowercase_ : Dict = do_resize lowercase_ : Optional[int] = size lowercase_ : Union[str, Any] = do_normalize lowercase_ : List[str] = image_mean lowercase_ : Optional[int] = image_std def snake_case__ ( self ) -> List[str]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCamelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __a : List[Any] = DPTImageProcessor if is_vision_available() else None def snake_case__ ( self ) -> int: """simple docstring""" lowercase_ : Tuple = DPTImageProcessingTester(self ) @property def snake_case__ ( self ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" lowercase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__, """image_mean""" ) ) self.assertTrue(hasattr(snake_case__, """image_std""" ) ) self.assertTrue(hasattr(snake_case__, """do_normalize""" ) ) self.assertTrue(hasattr(snake_case__, """do_resize""" ) ) self.assertTrue(hasattr(snake_case__, """size""" ) ) def snake_case__ ( self ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"""height""": 18, """width""": 18} ) lowercase_ : str = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {"""height""": 42, """width""": 42} ) def snake_case__ ( self ) -> List[Any]: """simple docstring""" lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__, Image.Image ) # Test not batched input lowercase_ : Union[str, Any] = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ), ) # Test batched lowercase_ : Optional[Any] = image_processing(snake_case__, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ), ) def snake_case__ ( self ) -> Dict: """simple docstring""" lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ : str = prepare_image_inputs(self.image_processor_tester, equal_resolution=snake_case__, numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__, np.ndarray ) # Test not batched input lowercase_ : List[str] = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ), ) # Test batched lowercase_ : str = image_processing(snake_case__, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ), ) def snake_case__ ( self ) -> Tuple: """simple docstring""" lowercase_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ : Any = prepare_image_inputs(self.image_processor_tester, equal_resolution=snake_case__, torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__, torch.Tensor ) # Test not batched input lowercase_ : Optional[int] = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ), ) # Test batched lowercase_ : Optional[Any] = image_processing(snake_case__, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ), )
458
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: if n == 1 or not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): return 0 elif n == 2: return 1 else: _a : Dict =[0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: _a : Union[str, Any] =0 _a : Optional[Any] =2 while digits < n: index += 1 _a : Optional[int] =len(str(fibonacci(_UpperCAmelCase ) ) ) return index def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 1000 ) -> int: return fibonacci_digits_index(_UpperCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
694
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) A_ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def _UpperCamelCase ( A , A , A ): UpperCamelCase_ =state_dict.pop(_UpperCAmelCase ) UpperCamelCase_ =val def _UpperCamelCase ( A ): UpperCamelCase_ =OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCamelCase_ =key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) UpperCamelCase_ =value else: UpperCamelCase_ =value return new_state_dict def _UpperCamelCase ( A , A=False ): UpperCamelCase_ ="""""" if is_panoptic: UpperCamelCase_ ="""conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase_ =state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCamelCase_ =state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase_ =in_proj_weight[:256, :] UpperCamelCase_ =in_proj_bias[:256] UpperCamelCase_ =in_proj_weight[256:512, :] UpperCamelCase_ =in_proj_bias[256:512] UpperCamelCase_ =in_proj_weight[-256:, :] UpperCamelCase_ =in_proj_bias[-256:] def _UpperCamelCase ( ): UpperCamelCase_ ="""http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase_ =Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def _UpperCamelCase ( A , A ): UpperCamelCase_ =ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCamelCase_ ="""resnet101""" if "dc5" in model_name: UpperCamelCase_ =True UpperCamelCase_ ="""panoptic""" in model_name if is_panoptic: UpperCamelCase_ =250 else: UpperCamelCase_ =91 UpperCamelCase_ ="""huggingface/label-files""" UpperCamelCase_ ="""coco-detection-id2label.json""" UpperCamelCase_ =json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) ) UpperCamelCase_ ={int(_UpperCAmelCase ): v for k, v in idalabel.items()} UpperCamelCase_ =idalabel UpperCamelCase_ ={v: k for k, v in idalabel.items()} # load image processor UpperCamelCase_ ="""coco_panoptic""" if is_panoptic else """coco_detection""" UpperCamelCase_ =ConditionalDetrImageProcessor(format=_UpperCAmelCase ) # prepare image UpperCamelCase_ =prepare_img() UpperCamelCase_ =image_processor(images=_UpperCAmelCase , return_tensors="pt" ) UpperCamelCase_ =encoding["""pixel_values"""] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub UpperCamelCase_ =torch.hub.load("DeppMeng/ConditionalDETR" , _UpperCAmelCase , pretrained=_UpperCAmelCase ).eval() UpperCamelCase_ =conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCamelCase_ ="""conditional_detr.""" + src rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ =rename_backbone_keys(_UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_UpperCAmelCase , is_panoptic=_UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase_ ="""conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): UpperCamelCase_ =state_dict.pop(_UpperCAmelCase ) UpperCamelCase_ =val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCamelCase_ =state_dict.pop(_UpperCAmelCase ) UpperCamelCase_ =val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: UpperCamelCase_ =state_dict.pop(_UpperCAmelCase ) UpperCamelCase_ =val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCamelCase_ =state_dict.pop(_UpperCAmelCase ) UpperCamelCase_ =val # finally, create HuggingFace model and load state dict UpperCamelCase_ =ConditionalDetrForSegmentation(_UpperCAmelCase ) if is_panoptic else ConditionalDetrForObjectDetection(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() model.push_to_hub(repo_id=_UpperCAmelCase , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion UpperCamelCase_ =conditional_detr(_UpperCAmelCase ) UpperCamelCase_ =model(_UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1e-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) A_ = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
391
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : int ) -> str: # Initialise PyTorch model _a : List[str] =RemBertConfig.from_json_file(_UpperCAmelCase ) print("""Building PyTorch model from configuration: {}""".format(str(_UpperCAmelCase ) ) ) _a : Dict =RemBertModel(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(_UpperCAmelCase ) ) torch.save(model.state_dict() ,_UpperCAmelCase ) if __name__ == "__main__": A__: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--rembert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained RemBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A__: Tuple = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
694
0
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A ( snake_case__ , snake_case__ ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__ = JsonDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase ).read() _check_json_dataset(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(_UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = JsonDatasetReader(_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() _check_json_dataset(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} SCREAMING_SNAKE_CASE__ = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(_UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = JsonDatasetReader(_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def A ( snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} SCREAMING_SNAKE_CASE__ = features.copy() SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(_UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = JsonDatasetReader(_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ = JsonDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase , split=_UpperCAmelCase ).read() _check_json_dataset(_UpperCAmelCase , _UpperCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if issubclass(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = jsonl_path elif issubclass(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = [jsonl_path] SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ = JsonDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() _check_json_dataset(_UpperCAmelCase , _UpperCAmelCase ) def A ( snake_case__ , snake_case__ , snake_case__=("train",) ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) for split in splits: SCREAMING_SNAKE_CASE__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__ = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase ).read() _check_json_datasetdict(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(_UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = JsonDatasetReader({"""train""": jsonl_path} , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() _check_json_datasetdict(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if split: SCREAMING_SNAKE_CASE__ = {split: jsonl_path} else: SCREAMING_SNAKE_CASE__ = """train""" SCREAMING_SNAKE_CASE__ = {"""train""": jsonl_path, """test""": jsonl_path} SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE__ = JsonDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() _check_json_datasetdict(_UpperCAmelCase , _UpperCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A ( snake_case__ ): '''simple docstring''' return json.load(_UpperCAmelCase ) def A ( snake_case__ ): '''simple docstring''' return [json.loads(_UpperCAmelCase ) for line in buffer] class lowerCamelCase : @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] ) -> Tuple: with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCAmelCase , __UpperCAmelCase , lines=__UpperCAmelCase ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__ = load_json_function(__UpperCAmelCase ) assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert isinstance(exported_content[0] , __UpperCAmelCase ) assert len(__UpperCAmelCase ) == 1_0 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCAmelCase , __UpperCAmelCase , lines=__UpperCAmelCase , orient=__UpperCAmelCase ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__ = load_json(__UpperCAmelCase ) assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__UpperCAmelCase , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 1_0 else: assert len(__UpperCAmelCase ) == 1_0 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] ) -> Tuple: with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCAmelCase , __UpperCAmelCase , lines=__UpperCAmelCase , num_proc=2 ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__ = load_json_function(__UpperCAmelCase ) assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert isinstance(exported_content[0] , __UpperCAmelCase ) assert len(__UpperCAmelCase ) == 1_0 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def SCREAMING_SNAKE_CASE ( self : List[str] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple ) -> List[str]: with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCAmelCase , __UpperCAmelCase , lines=__UpperCAmelCase , orient=__UpperCAmelCase , num_proc=2 ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__ = load_json(__UpperCAmelCase ) assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__UpperCAmelCase , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 1_0 else: assert len(__UpperCAmelCase ) == 1_0 def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : Optional[int] ) -> List[str]: with pytest.raises(__UpperCAmelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCAmelCase , __UpperCAmelCase , num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = tmp_path_factory.mktemp("""data""" ) / F"""test.json.{extension}""" SCREAMING_SNAKE_CASE__ = str(shared_datadir / F"""test_file.json.{extension}""" ) JsonDatasetWriter(__UpperCAmelCase , __UpperCAmelCase , compression=__UpperCAmelCase ).write() with fsspec.open(__UpperCAmelCase , """rb""" , compression="""infer""" ) as f: SCREAMING_SNAKE_CASE__ = f.read() with fsspec.open(__UpperCAmelCase , """rb""" , compression="""infer""" ) as f: SCREAMING_SNAKE_CASE__ = f.read() assert exported_content == original_content
196
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A__: Optional[int] = logging.get_logger(__name__) A__: Union[str, Any] = '''▁''' A__: Any = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} A__: Optional[int] = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } A__: Union[str, Any] = {'''vinai/bartpho-syllable''': 1024} class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Tuple = VOCAB_FILES_NAMES __UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self :Dict , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Any="<s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE :int="</s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE :Tuple="<unk>" , SCREAMING_SNAKE_CASE :Optional[Any]="<pad>" , SCREAMING_SNAKE_CASE :List[str]="<mask>" , SCREAMING_SNAKE_CASE :Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE :List[Any] , ) -> None: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it _a : str =AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token _a : int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) _a : Dict =vocab_file _a : int =monolingual_vocab_file _a : Dict =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _a : List[Any] ={} _a : List[str] =0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids: _a : Optional[Any] =cnt cnt += 1 with open(SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): _a : int =line.strip().split()[0] _a : str =len(self.fairseq_tokens_to_ids ) if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids: _a : Optional[int] =len(self.fairseq_tokens_to_ids ) _a : str ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self :int ) -> List[Any]: '''simple docstring''' _a : Optional[int] =self.__dict__.copy() _a : Optional[Any] =None _a : str =self.sp_model.serialized_model_proto() return state def __setstate__( self :Dict , SCREAMING_SNAKE_CASE :Any ) -> str: '''simple docstring''' _a : List[str] =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _a : Tuple ={} _a : Any =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : Optional[int] =[self.cls_token_id] _a : int =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None , SCREAMING_SNAKE_CASE :bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _a : List[str] =[self.sep_token_id] _a : int =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __UpperCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def __UpperCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' _a : str ={self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Dict ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :Any ) -> Dict: '''simple docstring''' return self.fairseq_ids_to_tokens[index] def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Optional[Any]: '''simple docstring''' _a : str ="""""".join(SCREAMING_SNAKE_CASE ).replace(SCREAMING_SNAKE_CASE , """ """ ).strip() return out_string def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _a : int =os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _a : Any =os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE , """wb""" ) as fi: _a : Optional[Any] =self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( SCREAMING_SNAKE_CASE ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"{str(SCREAMING_SNAKE_CASE )} \n" ) return out_vocab_file, out_monolingual_vocab_file
694
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: a_ :int = None a_ :List[Any] = logging.get_logger(__name__) a_ :Tuple = '''▁''' a_ :Tuple = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ :List[str] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''}, '''tokenizer_file''': { '''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json''' }, } a_ :Tuple = { '''google/pegasus-xsum''': 5_12, } class lowercase ( UpperCAmelCase__ ): lowerCamelCase : List[str] = VOCAB_FILES_NAMES lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[Any] = PegasusTokenizer lowerCamelCase : Optional[int] = ["input_ids", "attention_mask"] def __init__( self : int , _lowercase : Optional[int]=None , _lowercase : List[str]=None , _lowercase : Union[str, Any]="<pad>" , _lowercase : List[Any]="</s>" , _lowercase : List[Any]="<unk>" , _lowercase : Dict="<mask_2>" , _lowercase : Any="<mask_1>" , _lowercase : Optional[int]=None , _lowercase : Union[str, Any]=1_03 , **_lowercase : Dict , ): SCREAMING_SNAKE_CASE__ : List[str] = offset if additional_special_tokens is not None: if not isinstance(_lowercase , _lowercase ): raise TypeError( f"""additional_special_tokens should be of type {type(_lowercase )}, but is""" f""" {type(_lowercase )}""" ) SCREAMING_SNAKE_CASE__ : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(_lowercase ) , self.offset - 1 ) ] if len(set(_lowercase ) ) != len(_lowercase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE__ : int = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( _lowercase , tokenizer_file=_lowercase , pad_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , mask_token=_lowercase , mask_token_sent=_lowercase , offset=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : Dict = vocab_file SCREAMING_SNAKE_CASE__ : Optional[Any] = False if not self.vocab_file else True def lowercase__ ( self : Tuple , _lowercase : List[str] ): SCREAMING_SNAKE_CASE__ : List[str] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase__ ( self : str , _lowercase : List , _lowercase : Optional[List] = None , _lowercase : bool = False ): if already_has_special_tokens: return self._special_token_mask(_lowercase ) elif token_ids_a is None: return self._special_token_mask(_lowercase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase__ ( self : int , _lowercase : int , _lowercase : Optional[Any]=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self : int , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowercase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE__ : str = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
35
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
694
0
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging lowercase = logging.get_logger(__name__) def __lowerCAmelCase ( UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : str=None ) -> Union[str, Any]: return field(default_factory=lambda: default , metadata=_UpperCAmelCase ) @dataclass class __A: SCREAMING_SNAKE_CASE = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) SCREAMING_SNAKE_CASE = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) SCREAMING_SNAKE_CASE = list_field( default=[8, 3_2, 1_2_8, 5_1_2] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) SCREAMING_SNAKE_CASE = field(default=UpperCAmelCase__ , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) SCREAMING_SNAKE_CASE = field(default=UpperCAmelCase__ , metadata={'''help''': '''Benchmark training of model'''} ) SCREAMING_SNAKE_CASE = field(default=UpperCAmelCase__ , metadata={'''help''': '''Verbose memory tracing'''} ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase__ , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) SCREAMING_SNAKE_CASE = field(default=UpperCAmelCase__ , metadata={'''help''': '''Trace memory line by line'''} ) SCREAMING_SNAKE_CASE = field(default=UpperCAmelCase__ , metadata={'''help''': '''Save result to a CSV file'''} ) SCREAMING_SNAKE_CASE = field(default=UpperCAmelCase__ , metadata={'''help''': '''Save all print statements in a log file'''} ) SCREAMING_SNAKE_CASE = field(default=UpperCAmelCase__ , metadata={'''help''': '''Whether to print environment information'''} ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) SCREAMING_SNAKE_CASE = field( default=F'''inference_time_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) SCREAMING_SNAKE_CASE = field( default=F'''inference_memory_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) SCREAMING_SNAKE_CASE = field( default=F'''train_time_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) SCREAMING_SNAKE_CASE = field( default=F'''train_memory_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) SCREAMING_SNAKE_CASE = field( default=F'''env_info_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) SCREAMING_SNAKE_CASE = field( default=F'''log_{round(time() )}.csv''' , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) SCREAMING_SNAKE_CASE = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) SCREAMING_SNAKE_CASE = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def lowercase__ ( self : Union[str, Any] ): warnings.warn( F'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , __UpperCamelCase , ) def lowercase__ ( self : Optional[int] ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def lowercase__ ( self : Optional[int] ): if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def lowercase__ ( self : Optional[Any] ): if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
272
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list] ) -> list[list]: _a : Dict =current_set.copy() for row_index, row in enumerate(_UpperCAmelCase ): _a : Any =row[0] for column_index, column in enumerate(_UpperCAmelCase ): if magnitude == 0: _a : Any =column continue _a : Union[str, Any] =column / magnitude # Subtract to cancel term _a : Optional[Any] =current_set[0] _a : List[Any] =[first_row] _a : Tuple =current_set[1::] for row in current_set: _a : Any =[] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(_UpperCAmelCase ) continue for column_index in range(len(_UpperCAmelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(_UpperCAmelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: _a : List[str] =final_set[0] _a : Tuple =[] _a : Tuple =[] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _a : str =simplify(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): resultant[i].insert(0 ,current_first_column[i] ) resultant.insert(0 ,_UpperCAmelCase ) _a : List[Any] =resultant return final_set def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list] ) -> list: if len(_UpperCAmelCase ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) _a : str =len(_UpperCAmelCase ) + 1 if any(len(_UpperCAmelCase ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(_UpperCAmelCase ,(int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(_UpperCAmelCase ) == 1: return [equations[0][-1] / equations[0][0]] _a : str =equations.copy() if any(0 in row for row in data_set ): _a : Optional[int] =data_set.copy() _a : str =[] for row_index, row in enumerate(_UpperCAmelCase ): if 0 not in row: _a : List[Any] =data_set.pop(_UpperCAmelCase ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 ,_UpperCAmelCase ) _a : Dict =data_set.copy() _a : Any =simplify(_UpperCAmelCase ) _a : Any =simplified[::-1] _a : list =[] for row in simplified: _a : Optional[Any] =row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _a : Any =row.copy()[: len(_UpperCAmelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(_UpperCAmelCase ) == 0: solutions.append(0 ) continue _a : List[str] =temp_row[1::] _a : int =temp_row[::-1] for column_index, column in enumerate(_UpperCAmelCase ): current_solution -= column * solutions[column_index] solutions.append(_UpperCAmelCase ) _a : Tuple =[] for item in solutions: final.append(float(round(_UpperCAmelCase ,5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() A__: int = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
694
0
"""simple docstring""" __A = 2_5_6 # Modulus to hash a string __A = 1_0_0_0_0_0_3 def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> bool: lowercase__: List[str] = len(_UpperCAmelCase ) lowercase__: int = len(_UpperCAmelCase ) if p_len > t_len: return False lowercase__: Any = 0 lowercase__: Any = 0 lowercase__: str = 1 # Calculating the hash of pattern and substring of text for i in range(_UpperCAmelCase ): lowercase__: int = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus lowercase__: Tuple = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue lowercase__: Optional[Any] = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash lowercase__: Union[str, Any] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE__ ( ) -> None: lowercase__: str = """abc1abc12""" lowercase__: Optional[Any] = """alskfjaldsabc1abc1abc12k23adsfabcabc""" lowercase__: Optional[int] = """alskfjaldsk23adsfabcabc""" assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) and not rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) # Test 2) lowercase__: Any = """ABABX""" lowercase__: int = """ABABZABABYABABX""" assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) # Test 3) lowercase__: Optional[int] = """AAAB""" lowercase__: int = """ABAAAAAB""" assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) # Test 4) lowercase__: int = """abcdabcy""" lowercase__: Union[str, Any] = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) # Test 5) lowercase__: List[str] = """Lü""" lowercase__: List[str] = """Lüsai""" assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = """Lue""" assert not rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
586
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__: Dict = logging.get_logger(__name__) A__: Optional[int] = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Tuple = "markuplm" def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :List[Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE :Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :int=3_0_7_2 , SCREAMING_SNAKE_CASE :Optional[int]="gelu" , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=5_1_2 , SCREAMING_SNAKE_CASE :Optional[Any]=2 , SCREAMING_SNAKE_CASE :Optional[int]=0.02 , SCREAMING_SNAKE_CASE :Any=1e-12 , SCREAMING_SNAKE_CASE :Any=0 , SCREAMING_SNAKE_CASE :List[Any]=0 , SCREAMING_SNAKE_CASE :Tuple=2 , SCREAMING_SNAKE_CASE :Optional[Any]=2_5_6 , SCREAMING_SNAKE_CASE :Optional[int]=1_0_2_4 , SCREAMING_SNAKE_CASE :Tuple=2_1_6 , SCREAMING_SNAKE_CASE :Dict=1_0_0_1 , SCREAMING_SNAKE_CASE :List[str]=3_2 , SCREAMING_SNAKE_CASE :List[str]=5_0 , SCREAMING_SNAKE_CASE :Dict="absolute" , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :Any=None , **SCREAMING_SNAKE_CASE :Tuple , ) -> Any: '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) _a : Any =vocab_size _a : List[str] =hidden_size _a : List[str] =num_hidden_layers _a : Tuple =num_attention_heads _a : Union[str, Any] =hidden_act _a : Tuple =intermediate_size _a : Optional[Any] =hidden_dropout_prob _a : int =attention_probs_dropout_prob _a : Any =max_position_embeddings _a : List[Any] =type_vocab_size _a : List[Any] =initializer_range _a : List[Any] =layer_norm_eps _a : Optional[int] =position_embedding_type _a : List[Any] =use_cache _a : List[str] =classifier_dropout # additional properties _a : int =max_depth _a : Union[str, Any] =max_xpath_tag_unit_embeddings _a : str =max_xpath_subs_unit_embeddings _a : int =tag_pad_id _a : List[Any] =subs_pad_id _a : str =xpath_unit_hidden_size
694
0
"""simple docstring""" __UpperCAmelCase ='''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def __a ( ) -> None: '''simple docstring''' A__ = input("Enter message: " ) A__ = input("Enter key [alphanumeric]: " ) A__ = input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): A__ = """encrypt""" A__ = encrypt_message(_UpperCAmelCase , _UpperCAmelCase ) elif mode.lower().startswith("d" ): A__ = """decrypt""" A__ = decrypt_message(_UpperCAmelCase , _UpperCAmelCase ) print(f"""\n{mode.title()}ed message:""" ) print(_UpperCAmelCase ) def __a ( A , A ) -> str: '''simple docstring''' return translate_message(_UpperCAmelCase , _UpperCAmelCase , "encrypt" ) def __a ( A , A ) -> str: '''simple docstring''' return translate_message(_UpperCAmelCase , _UpperCAmelCase , "decrypt" ) def __a ( A , A , A ) -> str: '''simple docstring''' A__ = [] A__ = 0 A__ = key.upper() for symbol in message: A__ = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_UpperCAmelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_UpperCAmelCase ): A__ = 0 else: translated.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) if __name__ == "__main__": main()
337
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() A__: Union[str, Any] = logging.get_logger('''transformers.models.speecht5''') def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Any ) -> Dict: hf_model.apply_weight_norm() _a : Any =checkpoint["""input_conv.weight_g"""] _a : Union[str, Any] =checkpoint["""input_conv.weight_v"""] _a : Optional[int] =checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): _a : Optional[int] =checkpoint[F"upsamples.{i}.1.weight_g"] _a : Optional[Any] =checkpoint[F"upsamples.{i}.1.weight_v"] _a : List[Any] =checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): _a : Optional[int] =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] _a : Tuple =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] _a : Union[str, Any] =checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] _a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] _a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] _a : Tuple =checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] _a : Dict =checkpoint["""output_conv.1.weight_g"""] _a : str =checkpoint["""output_conv.1.weight_v"""] _a : Union[str, Any] =checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : int=None ,_UpperCAmelCase : Tuple=None ,) -> List[Any]: if config_path is not None: _a : str =SpeechTaHifiGanConfig.from_pretrained(_UpperCAmelCase ) else: _a : str =SpeechTaHifiGanConfig() _a : Tuple =SpeechTaHifiGan(_UpperCAmelCase ) _a : int =torch.load(_UpperCAmelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] ,_UpperCAmelCase ,_UpperCAmelCase ) _a : Dict =np.load(_UpperCAmelCase ) _a : Union[str, Any] =stats[0].reshape(-1 ) _a : Any =stats[1].reshape(-1 ) _a : Tuple =torch.from_numpy(_UpperCAmelCase ).float() _a : List[str] =torch.from_numpy(_UpperCAmelCase ).float() model.save_pretrained(_UpperCAmelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": A__: Optional[int] = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) A__: Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
694
0
'''simple docstring''' from math import factorial def a__ ( lowercase : int = 20 ) -> int: """simple docstring""" _UpperCamelCase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... _UpperCamelCase = n // 2 return int(factorial(_UpperCAmelCase ) / (factorial(_UpperCAmelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: lowercase__ : Optional[int] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
98
'''simple docstring''' class A__ : def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :List[str] ) -> List[str]: '''simple docstring''' _a : List[str] =None _a : Optional[Any] =None _a : str =graph self._normalize_graph(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Optional[int] =len(SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =None def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[str] ) -> Any: '''simple docstring''' if sources is int: _a : Tuple =[sources] if sinks is int: _a : Optional[int] =[sinks] if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) == 0: return _a : Union[str, Any] =sources[0] _a : Tuple =sinks[0] # make fake vertex if there are more # than one source or sink if len(SCREAMING_SNAKE_CASE ) > 1 or len(SCREAMING_SNAKE_CASE ) > 1: _a : Tuple =0 for i in sources: max_input_flow += sum(self.graph[i] ) _a : List[Any] =len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _a : Any =max_input_flow _a : List[str] =0 _a : List[str] =len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _a : str =max_input_flow _a : Optional[Any] =size - 1 def __UpperCAmelCase ( self :Optional[int] ) -> Tuple: '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Dict ) -> int: '''simple docstring''' _a : Tuple =algorithm(self ) class A__ : def __init__( self :Tuple , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Dict: '''simple docstring''' _a : List[str] =flow_network _a : List[Any] =flow_network.verticesCount _a : str =flow_network.sourceIndex _a : str =flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _a : List[Any] =flow_network.graph _a : Optional[int] =False def __UpperCAmelCase ( self :List[Any] ) -> List[str]: '''simple docstring''' if not self.executed: self._algorithm() _a : Any =True def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[int]: '''simple docstring''' pass class A__ ( UpperCAmelCase__ ): def __init__( self :int , SCREAMING_SNAKE_CASE :str ) -> int: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE ) # use this to save your result _a : List[Any] =-1 def __UpperCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class A__ ( UpperCAmelCase__ ): def __init__( self :str , SCREAMING_SNAKE_CASE :Tuple ) -> str: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE ) _a : int =[[0] * self.verticies_count for i in range(self.verticies_count )] _a : Union[str, Any] =[0] * self.verticies_count _a : Optional[Any] =[0] * self.verticies_count def __UpperCAmelCase ( self :Optional[int] ) -> Optional[Any]: '''simple docstring''' _a : int =self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _a : Tuple =[ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _a : List[Any] =0 while i < len(SCREAMING_SNAKE_CASE ): _a : Any =vertices_list[i] _a : str =self.heights[vertex_index] self.process_vertex(SCREAMING_SNAKE_CASE ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE ) ) _a : List[str] =0 else: i += 1 _a : Optional[int] =sum(self.preflow[self.source_index] ) def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> List[str]: '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.relabel(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :str ) -> List[str]: '''simple docstring''' _a : List[str] =min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Any ) -> List[Any]: '''simple docstring''' _a : int =None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _a : Optional[Any] =self.heights[to_index] if min_height is not None: _a : Any =min_height + 1 if __name__ == "__main__": A__: str = [0] A__: Optional[Any] = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] A__: Tuple = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network A__: Union[str, Any] = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate A__: List[str] = flow_network.find_maximum_flow() print(F"maximum flow is {maximum_flow}")
694
0
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # Initialise PyTorch model _lowerCamelCase : List[str] = RemBertConfig.from_json_file(_UpperCAmelCase ) print('Building PyTorch model from configuration: {}'.format(str(_UpperCAmelCase ) ) ) _lowerCamelCase : Dict = RemBertModel(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print('Save PyTorch model to {}'.format(_UpperCAmelCase ) ) torch.save(model.state_dict() , _UpperCAmelCase ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowercase__ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
630
'''simple docstring''' A__: Optional[int] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' A__: List[Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] A__: int = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
694
0
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCamelCase__ : Tuple = '''\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } ''' lowerCamelCase__ : Optional[int] = '''\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve ''' lowerCamelCase__ : int = ''' Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: "c" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric(\'mauve\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _UpperCAmelCase ( datasets.Metric): def __snake_case ( self ) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ] , ) def __snake_case ( self , _A , _A , _A=None , _A=None , _A=None , _A=None , _A="auto" , _A=-1 , _A=0.9 , _A=5 , _A=5_00 , _A="gpt2-large" , _A=-1 , _A=10_24 , _A=25 , _A=5 , _A=True , _A=25 , ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = compute_mauve( p_text=_A , q_text=_A , p_features=_A , q_features=_A , p_tokens=_A , q_tokens=_A , num_buckets=_A , pca_max_data=_A , kmeans_explained_var=_A , kmeans_num_redo=_A , kmeans_max_iter=_A , featurize_model_name=_A , device_id=_A , max_text_length=_A , divergence_curve_discretization_size=_A , mauve_scaling_factor=_A , verbose=_A , seed=_A , ) return out
238
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : float ,_UpperCAmelCase : float ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(F"{price_plus_tax(100, 0.25) = }") print(F"{price_plus_tax(125.50, 0.05) = }")
694
0
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _A ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = False ,SCREAMING_SNAKE_CASE_ = False ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' super().__init__( features=SCREAMING_SNAKE_CASE_ ,cache_dir=SCREAMING_SNAKE_CASE_ ,keep_in_memory=SCREAMING_SNAKE_CASE_ ,streaming=SCREAMING_SNAKE_CASE_ ,num_proc=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ,) snake_case : int = Generator( cache_dir=SCREAMING_SNAKE_CASE_ ,features=SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ,gen_kwargs=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ,) def snake_case_ ( self ): '''simple docstring''' # Build iterable dataset if self.streaming: snake_case : Optional[Any] = self.builder.as_streaming_dataset(split="""train""" ) # Build regular (map-style) dataset else: snake_case : Tuple = None snake_case : Tuple = None snake_case : Any = None snake_case : Tuple = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE_ ,download_mode=SCREAMING_SNAKE_CASE_ ,verification_mode=SCREAMING_SNAKE_CASE_ ,base_path=SCREAMING_SNAKE_CASE_ ,num_proc=self.num_proc ,) snake_case : Any = self.builder.as_dataset( split="""train""" ,verification_mode=SCREAMING_SNAKE_CASE_ ,in_memory=self.keep_in_memory ) return dataset
36
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class A__ ( unittest.TestCase ): def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Any=1_3 , SCREAMING_SNAKE_CASE :Any=7 , SCREAMING_SNAKE_CASE :Any=True , SCREAMING_SNAKE_CASE :int=True , SCREAMING_SNAKE_CASE :Optional[int]=True , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :Optional[Any]=9_9 , SCREAMING_SNAKE_CASE :Tuple=3_2 , SCREAMING_SNAKE_CASE :Union[str, Any]=5 , SCREAMING_SNAKE_CASE :List[str]=4 , SCREAMING_SNAKE_CASE :int=3_7 , SCREAMING_SNAKE_CASE :Optional[Any]="gelu" , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=0.1 , SCREAMING_SNAKE_CASE :Dict=5_1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_6 , SCREAMING_SNAKE_CASE :Union[str, Any]=2 , SCREAMING_SNAKE_CASE :List[Any]=0.02 , SCREAMING_SNAKE_CASE :int=4 , ) -> Tuple: '''simple docstring''' _a : Optional[Any] =parent _a : List[str] =batch_size _a : List[str] =seq_length _a : List[Any] =is_training _a : Optional[int] =use_attention_mask _a : List[Any] =use_token_type_ids _a : List[Any] =use_labels _a : Optional[Any] =vocab_size _a : str =hidden_size _a : List[Any] =num_hidden_layers _a : List[Any] =num_attention_heads _a : Union[str, Any] =intermediate_size _a : int =hidden_act _a : List[str] =hidden_dropout_prob _a : Optional[int] =attention_probs_dropout_prob _a : Dict =max_position_embeddings _a : Any =type_vocab_size _a : str =type_sequence_label_size _a : str =initializer_range _a : List[str] =num_choices def __UpperCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' _a : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : Dict =None if self.use_attention_mask: _a : Any =random_attention_mask([self.batch_size, self.seq_length] ) _a : Optional[int] =None if self.use_token_type_ids: _a : Any =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a : Union[str, Any] =RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self :Optional[Any] ) -> int: '''simple docstring''' _a : Tuple =self.prepare_config_and_inputs() _a , _a , _a , _a : List[Any] =config_and_inputs _a : Optional[int] ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def __UpperCAmelCase ( self :int ) -> str: '''simple docstring''' _a : List[Any] =self.prepare_config_and_inputs() _a , _a , _a , _a : Optional[int] =config_and_inputs _a : Tuple =True _a : Optional[Any] =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _a : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class A__ ( UpperCAmelCase__ , unittest.TestCase ): __UpperCamelCase : Union[str, Any] = True __UpperCamelCase : Dict = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self :List[str] ) -> Optional[int]: '''simple docstring''' _a : Union[str, Any] =FlaxRobertaPreLayerNormModelTester(self ) @slow def __UpperCAmelCase ( self :str ) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _a : Optional[int] =model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE ) _a : Dict =model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_flax class A__ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self :Any ) -> str: '''simple docstring''' _a : str =FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE ) _a : List[Any] =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) _a : Dict =model(SCREAMING_SNAKE_CASE )[0] _a : List[Any] =[1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. _a : Any =np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow def __UpperCAmelCase ( self :int ) -> int: '''simple docstring''' _a : Union[str, Any] =FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE ) _a : Any =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) _a : Optional[int] =model(SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. _a : str =np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
694
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase__ : '''simple docstring''' __a : Dict = MBartConfig __a : Dict = {} __a : Dict = "gelu" def __init__( self, snake_case__, snake_case__=13, snake_case__=7, snake_case__=True, snake_case__=False, snake_case__=99, snake_case__=32, snake_case__=2, snake_case__=4, snake_case__=37, snake_case__=0.1, snake_case__=0.1, snake_case__=20, snake_case__=2, snake_case__=1, snake_case__=0, ) -> List[Any]: """simple docstring""" lowercase_ : int = parent lowercase_ : List[Any] = batch_size lowercase_ : Tuple = seq_length lowercase_ : List[Any] = is_training lowercase_ : Dict = use_labels lowercase_ : List[Any] = vocab_size lowercase_ : Optional[int] = hidden_size lowercase_ : Tuple = num_hidden_layers lowercase_ : Union[str, Any] = num_attention_heads lowercase_ : Optional[Any] = intermediate_size lowercase_ : List[str] = hidden_dropout_prob lowercase_ : List[Any] = attention_probs_dropout_prob lowercase_ : Any = max_position_embeddings lowercase_ : Tuple = eos_token_id lowercase_ : Union[str, Any] = pad_token_id lowercase_ : Union[str, Any] = bos_token_id def snake_case__ ( self ) -> Any: """simple docstring""" lowercase_ : List[str] = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) lowercase_ : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) lowercase_ : Tuple = tf.concat([input_ids, eos_tensor], axis=1 ) lowercase_ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase_ : Dict = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) lowercase_ : Union[str, Any] = prepare_mbart_inputs_dict(snake_case__, snake_case__, snake_case__ ) return config, inputs_dict def snake_case__ ( self, snake_case__, snake_case__ ) -> Any: """simple docstring""" lowercase_ : List[str] = TFMBartModel(config=snake_case__ ).get_decoder() lowercase_ : int = inputs_dict["""input_ids"""] lowercase_ : Dict = input_ids[:1, :] lowercase_ : Dict = inputs_dict["""attention_mask"""][:1, :] lowercase_ : Tuple = inputs_dict["""head_mask"""] lowercase_ : Optional[int] = 1 # first forward pass lowercase_ : List[Any] = model(snake_case__, attention_mask=snake_case__, head_mask=snake_case__, use_cache=snake_case__ ) lowercase_ : Optional[int] = outputs.to_tuple() lowercase_ : Optional[int] = past_key_values[1] def __magic_name__ ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=None , ) -> Tuple: """simple docstring""" if attention_mask is None: lowercase_ : int = tf.cast(tf.math.not_equal(_UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowercase_ : Optional[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowercase_ : str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase_ : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase_ : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __a : Dict = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __a : Union[str, Any] = (TFMBartForConditionalGeneration,) if is_tf_available() else () __a : Dict = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __a : List[Any] = True __a : Union[str, Any] = False __a : Dict = False def snake_case__ ( self, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> List[Any]: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def snake_case__ ( self ) -> List[str]: """simple docstring""" lowercase_ : str = TFMBartModelTester(self ) lowercase_ : Optional[int] = ConfigTester(self, config_class=snake_case__ ) def snake_case__ ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def snake_case__ ( self ) -> Tuple: """simple docstring""" lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' __a : List[Any] = [ " UN Chief Says There Is No Military Solution in Syria", ] __a : Tuple = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] __a : Any = "facebook/mbart-large-en-ro" @cached_property def snake_case__ ( self ) -> Any: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def snake_case__ ( self ) -> List[str]: """simple docstring""" lowercase_ : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def snake_case__ ( self, **snake_case__ ) -> List[str]: """simple docstring""" lowercase_ : Optional[Any] = self.translate_src_text(**snake_case__ ) self.assertListEqual(self.expected_text, snake_case__ ) def snake_case__ ( self, **snake_case__ ) -> Dict: """simple docstring""" lowercase_ : Optional[int] = self.tokenizer(self.src_text, **snake_case__, return_tensors="""tf""" ) lowercase_ : List[Any] = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2 ) lowercase_ : Union[str, Any] = self.tokenizer.batch_decode(snake_case__, skip_special_tokens=snake_case__ ) return generated_words @slow def snake_case__ ( self ) -> Dict: """simple docstring""" self._assert_generated_batch_equal_expected()
458
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging A__: Tuple = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any]=None ,_UpperCAmelCase : str=None ) -> Union[str, Any]: return field(default_factory=lambda: default ,metadata=_UpperCAmelCase ) @dataclass class A__ : __UpperCamelCase : List[str] = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) __UpperCamelCase : List[int] = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) __UpperCamelCase : List[int] = list_field( default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Use FP16 to accelerate inference."} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Benchmark training of model"} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Verbose memory tracing"} ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Trace memory line by line"} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Save result to a CSV file"} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Save all print statements in a log file"} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Whether to print environment information"} ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) __UpperCamelCase : str = field( default=f'''inference_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , ) __UpperCamelCase : str = field( default=f'''inference_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , ) __UpperCamelCase : str = field( default=f'''train_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) __UpperCamelCase : str = field( default=f'''train_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) __UpperCamelCase : str = field( default=f'''env_info_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , ) __UpperCamelCase : str = field( default=f'''log_{round(time() )}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , ) __UpperCamelCase : int = field(default=3 , metadata={"help": "Times an experiment will be run."} ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def __UpperCAmelCase ( self :Union[str, Any] ) -> int: '''simple docstring''' warnings.warn( f"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , SCREAMING_SNAKE_CASE , ) def __UpperCAmelCase ( self :Optional[int] ) -> Dict: '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def __UpperCAmelCase ( self :Optional[int] ) -> List[str]: '''simple docstring''' if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def __UpperCAmelCase ( self :Optional[Any] ) -> int: '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
694
0
"""simple docstring""" import math def _UpperCamelCase ( A , A = 0 , A = 0 ): UpperCamelCase_ =end or len(_UpperCAmelCase ) for i in range(_UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase_ =i UpperCamelCase_ =array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: UpperCamelCase_ =array[temp_index - 1] temp_index -= 1 UpperCamelCase_ =temp_index_value return array def _UpperCamelCase ( A , A , A ): # Max Heap UpperCamelCase_ =index UpperCamelCase_ =2 * index + 1 # Left Node UpperCamelCase_ =2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: UpperCamelCase_ =left_index if right_index < heap_size and array[largest] < array[right_index]: UpperCamelCase_ =right_index if largest != index: UpperCamelCase_ =array[largest], array[index] heapify(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _UpperCamelCase ( A ): UpperCamelCase_ =len(_UpperCAmelCase ) for i in range(n // 2 , -1 , -1 ): heapify(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for i in range(n - 1 , 0 , -1 ): UpperCamelCase_ =array[0], array[i] heapify(_UpperCAmelCase , 0 , _UpperCAmelCase ) return array def _UpperCamelCase ( A , A , A , A ): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def _UpperCamelCase ( A , A , A , A ): UpperCamelCase_ =low UpperCamelCase_ =high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i UpperCamelCase_ =array[j], array[i] i += 1 def _UpperCamelCase ( A ): if len(_UpperCAmelCase ) == 0: return array UpperCamelCase_ =2 * math.ceil(math.loga(len(_UpperCAmelCase ) ) ) UpperCamelCase_ =16 return intro_sort(_UpperCAmelCase , 0 , len(_UpperCAmelCase ) , _UpperCAmelCase , _UpperCAmelCase ) def _UpperCamelCase ( A , A , A , A , A ): while end - start > size_threshold: if max_depth == 0: return heap_sort(_UpperCAmelCase ) max_depth -= 1 UpperCamelCase_ =median_of_a(_UpperCAmelCase , _UpperCAmelCase , start + ((end - start) // 2) + 1 , end - 1 ) UpperCamelCase_ =partition(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) intro_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ =p return insertion_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() A_ = input("Enter numbers separated by a comma : ").strip() A_ = [float(item) for item in user_input.split(",")] print(sort(unsorted))
391
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class A__ ( UpperCAmelCase__ ): def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Distribution , SCREAMING_SNAKE_CASE :int=None , SCREAMING_SNAKE_CASE :Tuple=None , SCREAMING_SNAKE_CASE :List[Any]=0 ) -> List[str]: '''simple docstring''' _a : int =1.0 if scale is None else scale _a : Optional[Any] =0.0 if loc is None else loc super().__init__(SCREAMING_SNAKE_CASE , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=SCREAMING_SNAKE_CASE )] ) @property def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def __UpperCAmelCase ( self :Optional[int] ) -> Dict: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def __UpperCAmelCase ( self :Any ) -> List[str]: '''simple docstring''' return self.variance.sqrt() class A__ ( nn.Module ): def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Dict[str, int] , SCREAMING_SNAKE_CASE :Callable[..., Tuple[torch.Tensor]] , **SCREAMING_SNAKE_CASE :Dict ) -> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) _a : Tuple =args_dim _a : Tuple =nn.ModuleList([nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for dim in args_dim.values()] ) _a : Dict =domain_map def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Tuple[torch.Tensor]: '''simple docstring''' _a : Tuple =[proj(SCREAMING_SNAKE_CASE ) for proj in self.proj] return self.domain_map(*SCREAMING_SNAKE_CASE ) class A__ ( nn.Module ): def __init__( self :Dict , SCREAMING_SNAKE_CASE :Tuple ) -> int: '''simple docstring''' super().__init__() _a : List[Any] =function def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Optional[int] , *SCREAMING_SNAKE_CASE :int ) -> List[Any]: '''simple docstring''' return self.function(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) class A__ : __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__( self :Any , SCREAMING_SNAKE_CASE :int = 1 ) -> None: '''simple docstring''' _a : Any =dim _a : List[Any] ={k: dim * self.args_dim[k] for k in self.args_dim} def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[int] ) -> Union[str, Any]: '''simple docstring''' if self.dim == 1: return self.distribution_class(*SCREAMING_SNAKE_CASE ) else: return Independent(self.distribution_class(*SCREAMING_SNAKE_CASE ) , 1 ) def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , ) -> Distribution: '''simple docstring''' _a : str =self._base_distribution(SCREAMING_SNAKE_CASE ) if loc is None and scale is None: return distr else: return AffineTransformed(SCREAMING_SNAKE_CASE , loc=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , event_dim=self.event_dim ) @property def __UpperCAmelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def __UpperCAmelCase ( self :Any ) -> int: '''simple docstring''' return len(self.event_shape ) @property def __UpperCAmelCase ( self :Any ) -> float: '''simple docstring''' return 0.0 def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :int ) -> nn.Module: '''simple docstring''' return ParameterProjection( in_features=SCREAMING_SNAKE_CASE , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def __UpperCAmelCase ( self :int , *SCREAMING_SNAKE_CASE :torch.Tensor ) -> Any: '''simple docstring''' raise NotImplementedError() @staticmethod def __UpperCAmelCase ( SCREAMING_SNAKE_CASE :torch.Tensor ) -> torch.Tensor: '''simple docstring''' return (x + torch.sqrt(torch.square(SCREAMING_SNAKE_CASE ) + 4.0 )) / 2.0 class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def __UpperCAmelCase ( cls :int , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Union[str, Any]: '''simple docstring''' _a : Tuple =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps ) _a : Optional[Any] =2.0 + cls.squareplus(SCREAMING_SNAKE_CASE ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Dict: '''simple docstring''' _a : List[str] =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Optional[int]: '''simple docstring''' _a : int =cls.squareplus(SCREAMING_SNAKE_CASE ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Distribution: '''simple docstring''' _a , _a : Any =distr_args if self.dim == 1: return self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE ) else: return Independent(self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE ) , 1 ) def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None ) -> Distribution: '''simple docstring''' _a , _a : Optional[int] =distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
694
0
"""simple docstring""" import numpy class lowerCamelCase : def __init__( self : Optional[Any] , __UpperCAmelCase : numpy.ndarray , __UpperCAmelCase : numpy.ndarray ) -> None: SCREAMING_SNAKE_CASE__ = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. SCREAMING_SNAKE_CASE__ = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. SCREAMING_SNAKE_CASE__ = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. SCREAMING_SNAKE_CASE__ = numpy.random.rand(3 , 1 ) # Real output values provided. SCREAMING_SNAKE_CASE__ = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. SCREAMING_SNAKE_CASE__ = numpy.zeros(output_array.shape ) def SCREAMING_SNAKE_CASE ( self : int ) -> numpy.ndarray: SCREAMING_SNAKE_CASE__ = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. SCREAMING_SNAKE_CASE__ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. SCREAMING_SNAKE_CASE__ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def SCREAMING_SNAKE_CASE ( self : Any ) -> None: SCREAMING_SNAKE_CASE__ = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) SCREAMING_SNAKE_CASE__ = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) SCREAMING_SNAKE_CASE__ = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : numpy.ndarray , __UpperCAmelCase : int , __UpperCAmelCase : bool ) -> None: for iteration in range(1 , iterations + 1 ): SCREAMING_SNAKE_CASE__ = self.feedforward() self.back_propagation() if give_loss: SCREAMING_SNAKE_CASE__ = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def SCREAMING_SNAKE_CASE ( self : str , __UpperCAmelCase : numpy.ndarray ) -> int: SCREAMING_SNAKE_CASE__ = input_arr SCREAMING_SNAKE_CASE__ = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) SCREAMING_SNAKE_CASE__ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) SCREAMING_SNAKE_CASE__ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def A ( snake_case__ ): '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def A ( snake_case__ ): '''simple docstring''' return (value) * (1 - (value)) def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. SCREAMING_SNAKE_CASE__ = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. SCREAMING_SNAKE_CASE__ = TwoHiddenLayerNeuralNetwork( input_array=_UpperCAmelCase , output_array=_UpperCAmelCase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_UpperCAmelCase , iterations=10 , give_loss=_UpperCAmelCase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
196
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return number | (1 << position) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return number & ~(1 << position) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return number ^ (1 << position) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> bool: return ((number >> position) & 1) == 1 def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
694
0
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a ( ) -> List[Any]: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(_UpperCAmelCase ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def a ( ) -> int: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def a ( ) -> List[str]: '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(_UpperCAmelCase ): http_head('''https://huggingface.co''' )
35
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : list ) -> float: _validate_point(_UpperCAmelCase ) _validate_point(_UpperCAmelCase ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[float] ) -> None: if point: if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): for item in point: if not isinstance(_UpperCAmelCase ,(int, float) ): _a : str =( """Expected a list of numbers as input, found """ F"{type(_UpperCAmelCase ).__name__}" ) raise TypeError(_UpperCAmelCase ) else: _a : List[Any] =F"Expected a list of numbers as input, found {type(_UpperCAmelCase ).__name__}" raise TypeError(_UpperCAmelCase ) else: raise ValueError("""Missing an input""" ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : list ) -> float: _validate_point(_UpperCAmelCase ) _validate_point(_UpperCAmelCase ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
694
0
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __A: def __init__( self : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any]=9_9 , __UpperCamelCase : Optional[int]=1_3 , __UpperCamelCase : Union[str, Any]=7 , __UpperCamelCase : str=9 , __UpperCamelCase : Dict=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[Any]=5 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : str=3_7 , __UpperCamelCase : Optional[int]=8 , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : Union[str, Any]=0.002 , __UpperCamelCase : List[Any]=1 , __UpperCamelCase : str=0 , __UpperCamelCase : Union[str, Any]=0 , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , ): lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = encoder_seq_length lowerCamelCase_ = decoder_seq_length # For common tests lowerCamelCase_ = self.decoder_seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_attention_mask lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = d_ff lowerCamelCase_ = relative_attention_num_buckets lowerCamelCase_ = dropout_rate lowerCamelCase_ = initializer_factor lowerCamelCase_ = eos_token_id lowerCamelCase_ = pad_token_id lowerCamelCase_ = decoder_start_token_id lowerCamelCase_ = None lowerCamelCase_ = decoder_layers def lowercase__ ( self : List[Any] ): return TaConfig.from_pretrained("""google/umt5-base""" ) def lowercase__ ( self : Dict , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : Tuple=None , __UpperCamelCase : Dict=None , __UpperCamelCase : int=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : List[Any]=None , ): if attention_mask is None: lowerCamelCase_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCamelCase_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCamelCase_ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCamelCase ) if decoder_head_mask is None: lowerCamelCase_ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase ) if cross_attn_head_mask is None: lowerCamelCase_ = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def lowercase__ ( self : List[str] ): lowerCamelCase_ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCamelCase_ = input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase_ = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase_ = self.get_config() lowerCamelCase_ = config.num_attention_heads lowerCamelCase_ = self.prepare_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, input_dict def lowercase__ ( self : Any ): lowerCamelCase_ = self.prepare_config_and_inputs() return config, inputs_dict def lowercase__ ( self : str ): return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowercase__ ( self : Union[str, Any] ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowercase__ ( self : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , ): lowerCamelCase_ = UMTaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowerCamelCase_ = model( input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , ) lowerCamelCase_ = model(input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase ) lowerCamelCase_ = result.last_hidden_state lowerCamelCase_ = result.past_key_values lowerCamelCase_ = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__UpperCamelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def lowercase__ ( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] , ): lowerCamelCase_ = UMTaModel(config=__UpperCamelCase ).get_decoder().to(__UpperCamelCase ).eval() # first forward pass lowerCamelCase_ = model(__UpperCamelCase , use_cache=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , use_cache=__UpperCamelCase ) self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) ) self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) + 1 ) lowerCamelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase_ = model(__UpperCamelCase )["""last_hidden_state"""] lowerCamelCase_ = model(__UpperCamelCase , past_key_values=__UpperCamelCase )["""last_hidden_state"""] # select random slice lowerCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase_ = output_from_no_past[:, -1, random_slice_idx].detach() lowerCamelCase_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , ): lowerCamelCase_ = UMTaModel(config=__UpperCamelCase ).to(__UpperCamelCase ).half().eval() lowerCamelCase_ = model(**__UpperCamelCase )["""last_hidden_state"""] self.parent.assertFalse(torch.isnan(__UpperCamelCase ).any().item() ) @require_torch class __A( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = (UMTaForConditionalGeneration,) if is_torch_available() else () SCREAMING_SNAKE_CASE = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True # The small UMT5 model needs higher percentages for CPU/MP tests SCREAMING_SNAKE_CASE = [0.8, 0.9] def lowercase__ ( self : Any ): lowerCamelCase_ = UMTaModelTester(self ) @unittest.skip("""Test has a segmentation fault on torch 1.8.0""" ) def lowercase__ ( self : Optional[int] ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() lowerCamelCase_ = UMTaModel(config_and_inputs[0] ).to(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __UpperCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'''{tmpdirname}/t5_test.onnx''' , export_params=__UpperCamelCase , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def lowercase__ ( self : Tuple ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__UpperCamelCase ) def lowercase__ ( self : Any ): lowerCamelCase_ = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""] lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() lowerCamelCase_ = config_and_inputs[0] lowerCamelCase_ = UMTaForConditionalGeneration(__UpperCamelCase ).eval() model.to(__UpperCamelCase ) lowerCamelCase_ = { """head_mask""": torch.zeros(config.num_layers , config.num_heads , device=__UpperCamelCase ), """decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ), """cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ), } for attn_name, (name, mask) in zip(__UpperCamelCase , head_masking.items() ): lowerCamelCase_ = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCamelCase_ = torch.ones( config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ) lowerCamelCase_ = model.generate( config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=__UpperCamelCase , return_dict_in_generate=__UpperCamelCase , **__UpperCamelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCamelCase_ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" ) def lowercase__ ( self : Optional[int] ): pass @require_torch @require_sentencepiece @require_tokenizers class __A( unittest.TestCase ): @slow @unittest.skip( """Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" ) def lowercase__ ( self : Optional[int] ): lowerCamelCase_ = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=__UpperCamelCase ).to(__UpperCamelCase ) lowerCamelCase_ = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=__UpperCamelCase , legacy=__UpperCamelCase ) lowerCamelCase_ = [ """Bonjour monsieur <extra_id_0> bien <extra_id_1>.""", """No se como puedo <extra_id_0>.""", """This is the reason why we <extra_id_0> them.""", """The <extra_id_0> walks in <extra_id_1>, seats""", """A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""", ] lowerCamelCase_ = tokenizer(__UpperCamelCase , return_tensors="""pt""" , padding=__UpperCamelCase ).input_ids # fmt: off lowerCamelCase_ = torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ] ) # fmt: on torch.testing.assert_allclose(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = model.generate(input_ids.to(__UpperCamelCase ) ) lowerCamelCase_ = [ """<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""", """<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", ] lowerCamelCase_ = tokenizer.batch_decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase )
272
'''simple docstring''' from __future__ import annotations class A__ : def __init__( self :str , SCREAMING_SNAKE_CASE :int ) -> None: '''simple docstring''' _a : int =order # a_{0} ... a_{k} _a : Optional[Any] =[1.0] + [0.0] * order # b_{0} ... b_{k} _a : Tuple =[1.0] + [0.0] * order # x[n-1] ... x[n-k] _a : List[Any] =[0.0] * self.order # y[n-1] ... y[n-k] _a : Tuple =[0.0] * self.order def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :list[float] , SCREAMING_SNAKE_CASE :list[float] ) -> None: '''simple docstring''' if len(SCREAMING_SNAKE_CASE ) < self.order: _a : int =[1.0, *a_coeffs] if len(SCREAMING_SNAKE_CASE ) != self.order + 1: _a : int =( f"Expected a_coeffs to have {self.order + 1} elements " f"for {self.order}-order filter, got {len(SCREAMING_SNAKE_CASE )}" ) raise ValueError(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) != self.order + 1: _a : Optional[Any] =( f"Expected b_coeffs to have {self.order + 1} elements " f"for {self.order}-order filter, got {len(SCREAMING_SNAKE_CASE )}" ) raise ValueError(SCREAMING_SNAKE_CASE ) _a : List[str] =a_coeffs _a : Union[str, Any] =b_coeffs def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :float ) -> float: '''simple docstring''' _a : str =0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _a : Any =(result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _a : str =self.input_history[:-1] _a : Optional[Any] =self.output_history[:-1] _a : Optional[int] =sample _a : Tuple =result return result
694
0
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) __A = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: lowercase__: List[str] = git.Repo(search_parent_directories=_UpperCAmelCase ) lowercase__: Any = { """repo_id""": str(_UpperCAmelCase ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(_UpperCAmelCase , '''git_log.json''' ) , '''w''' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=4 ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Optional[int]: if params.n_gpu <= 0: lowercase__: Optional[int] = 0 lowercase__: List[Any] = -1 lowercase__: Optional[Any] = True lowercase__: Union[str, Any] = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase__: List[str] = int(os.environ['''WORLD_SIZE'''] ) lowercase__: List[Any] = int(os.environ['''N_GPU_NODE'''] ) lowercase__: List[str] = int(os.environ['''RANK'''] ) # number of nodes / node ID lowercase__: Union[str, Any] = params.world_size // params.n_gpu_per_node lowercase__: List[str] = params.global_rank // params.n_gpu_per_node lowercase__: Optional[int] = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase__: List[str] = 1 lowercase__: Optional[int] = 0 lowercase__: Any = 0 lowercase__: List[Any] = 0 lowercase__: str = 1 lowercase__: List[str] = 1 lowercase__: int = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase__: int = params.node_id == 0 and params.local_rank == 0 lowercase__: Tuple = params.n_nodes > 1 # summary lowercase__: str = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Optional[Any]: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
586
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : dict ,_UpperCAmelCase : str ,_UpperCAmelCase : set ,_UpperCAmelCase : set ,_UpperCAmelCase : dict ,_UpperCAmelCase : dict ,_UpperCAmelCase : PriorityQueue ,_UpperCAmelCase : dict ,_UpperCAmelCase : float | int ,) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue _a : Dict =cst_fwd.get(_UpperCAmelCase ,np.inf ) _a : int =cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _a : Tuple =new_cost_f _a : Optional[Any] =v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _a : str =cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ,_UpperCAmelCase : dict ,_UpperCAmelCase : dict ) -> int: _a : Optional[Any] =-1 _a : List[str] =set() _a : Optional[int] =set() _a : Optional[int] ={source: 0} _a : List[str] ={destination: 0} _a : Union[str, Any] ={source: None} _a : Dict ={destination: None} _a : PriorityQueue[Any] =PriorityQueue() _a : PriorityQueue[Any] =PriorityQueue() _a : Optional[int] =np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _a , _a : str =queue_forward.get() visited_forward.add(_UpperCAmelCase ) _a , _a : List[Any] =queue_backward.get() visited_backward.add(_UpperCAmelCase ) _a : int =pass_and_relaxation( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,) _a : Any =pass_and_relaxation( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _a : Any =shortest_distance return shortest_path_distance A__: Union[str, Any] = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } A__: str = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
694
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCAmelCase =[ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] __UpperCAmelCase ={ '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } __UpperCAmelCase ={F'''funnel-transformer/{name}''': 512 for name in _model_names} __UpperCAmelCase ={F'''funnel-transformer/{name}''': {'''do_lower_case''': True} for name in _model_names} class lowerCAmelCase__ ( UpperCAmelCase__ ): lowercase__ : int = VOCAB_FILES_NAMES lowercase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = PRETRAINED_INIT_CONFIGURATION lowercase__ : Union[str, Any] = FunnelTokenizer lowercase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : int = 2 def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__="<unk>" , UpperCamelCase__="<sep>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<cls>" , UpperCamelCase__="<mask>" , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__="##" , **UpperCamelCase__ , ): '''simple docstring''' super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , clean_text=UpperCamelCase__ , tokenize_chinese_chars=UpperCamelCase__ , strip_accents=UpperCamelCase__ , wordpieces_prefix=UpperCamelCase__ , **UpperCamelCase__ , ) A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCamelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCamelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCamelCase__ ) != tokenize_chinese_chars ): A__ = getattr(UpperCamelCase__ , normalizer_state.pop("type" ) ) A__ = do_lower_case A__ = strip_accents A__ = tokenize_chinese_chars A__ = normalizer_class(**UpperCamelCase__ ) A__ = do_lower_case def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__=None ): '''simple docstring''' A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ): '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ): '''simple docstring''' A__ = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ )
337
'''simple docstring''' from math import factorial def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 100 ) -> int: return sum(map(_UpperCAmelCase ,str(factorial(_UpperCAmelCase ) ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
694
0
'''simple docstring''' from __future__ import annotations from collections import namedtuple def a__ ( lowercase : float, lowercase : float, lowercase : float ) -> tuple: """simple docstring""" _UpperCamelCase = namedtuple('''result''', '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''', power / current ) elif current == 0: return result('''current''', power / voltage ) elif power == 0: return result('''power''', float(round(abs(voltage * current ), 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
98
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ) -> list: _a : Tuple =len(_UpperCAmelCase ) _a : str =[] for i in range(len(_UpperCAmelCase ) - pat_len + 1 ): _a : int =True for j in range(_UpperCAmelCase ): if s[i + j] != pattern[j]: _a : int =False break if match_found: position.append(_UpperCAmelCase ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
694
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available lowercase__ = { '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
630
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class A__ ( unittest.TestCase ): def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any]=7 , SCREAMING_SNAKE_CASE :Optional[Any]=3 , SCREAMING_SNAKE_CASE :Tuple=1_8 , SCREAMING_SNAKE_CASE :Any=3_0 , SCREAMING_SNAKE_CASE :List[str]=4_0_0 , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :List[str]=True , ) -> Tuple: '''simple docstring''' _a : int =size if size is not None else {"""height""": 1_8, """width""": 1_8} _a : int =parent _a : Optional[int] =batch_size _a : List[str] =num_channels _a : Optional[Any] =image_size _a : int =min_resolution _a : str =max_resolution _a : str =do_resize _a : Tuple =size _a : Tuple =do_normalize def __UpperCAmelCase ( self :Any ) -> int: '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804], [-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class A__ ( UpperCAmelCase__ , unittest.TestCase ): __UpperCamelCase : int = ImageGPTImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self :List[Any] ) -> List[Any]: '''simple docstring''' _a : Any =ImageGPTImageProcessingTester(self ) @property def __UpperCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self :Dict ) -> Any: '''simple docstring''' _a : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """clusters""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """size""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_normalize""" ) ) def __UpperCAmelCase ( self :Optional[int] ) -> Optional[int]: '''simple docstring''' _a : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} ) _a : Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} ) def __UpperCAmelCase ( self :List[Any] ) -> Optional[int]: '''simple docstring''' _a : List[str] =self.image_processing_class(**self.image_processor_dict ) _a : Dict =json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , obj[key] ) ) else: self.assertEqual(obj[key] , SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[int] ) -> Dict: '''simple docstring''' _a : List[Any] =self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Any =os.path.join(SCREAMING_SNAKE_CASE , """image_processor.json""" ) image_processor_first.to_json_file(SCREAMING_SNAKE_CASE ) _a : str =self.image_processing_class.from_json_file(SCREAMING_SNAKE_CASE ).to_dict() _a : Tuple =image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[int] ) -> str: '''simple docstring''' _a : List[str] =self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(SCREAMING_SNAKE_CASE ) _a : str =self.image_processing_class.from_pretrained(SCREAMING_SNAKE_CASE ).to_dict() _a : Union[str, Any] =image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def __UpperCAmelCase ( self :Union[str, Any] ) -> int: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: _a : Any =load_dataset("""hf-internal-testing/fixtures_image_utils""" ,split="""test""" ) _a : Dict =Image.open(dataset[4]["""file"""] ) _a : Optional[int] =Image.open(dataset[5]["""file"""] ) _a : Optional[Any] =[imagea, imagea] return images @require_vision @require_torch class A__ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' _a : Optional[Any] =ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) _a : int =prepare_images() # test non-batched _a : Dict =image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) ) _a : Optional[int] =[3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , SCREAMING_SNAKE_CASE ) # test batched _a : Dict =image_processing(SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) ) _a : Any =[3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , SCREAMING_SNAKE_CASE )
694
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class _UpperCAmelCase ( UpperCAmelCase__): def __init__( self , *_A , **_A ) -> None: '''simple docstring''' warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , _A , ) super().__init__(*_A , **_A )
238
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ) -> bool: _a : Optional[int] =len(_UpperCAmelCase ) _a : Tuple =[[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _a : Any =True # sum is not zero and set is empty then false for i in range(1 ,required_sum + 1 ): _a : int =False for i in range(1 ,arr_len + 1 ): for j in range(1 ,required_sum + 1 ): if arr[i - 1] > j: _a : Optional[Any] =subset[i - 1][j] if arr[i - 1] <= j: _a : Union[str, Any] =subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
694
0
def lowercase ( __A : int ) -> bool: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) snake_case : Optional[Any] = str(_UpperCAmelCase ) snake_case : int = """""".join(sorted(_UpperCAmelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def lowercase ( __A : float = 99 ) -> int: '''simple docstring''' if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) snake_case : str = 0 snake_case : Optional[Any] = 1 while True: if check_bouncy(_UpperCAmelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
36
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 4000000 ) -> int: _a : Optional[Any] =[] _a , _a : Union[str, Any] =0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_UpperCAmelCase ) _a , _a : Optional[Any] =b, a + b return sum(_UpperCAmelCase ) if __name__ == "__main__": print(F"{solution() = }")
694
0
from cva import destroyAllWindows, imread, imshow, waitKey def __magic_name__ ( lowercase ) -> Dict: """simple docstring""" lowercase_ : Dict = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): lowercase_ : Any = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image UpperCAmelCase_ = imread("""image_data/lena.jpg""", 1) # convert to its negative UpperCAmelCase_ = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
458
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: if n == 1 or not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): return 0 elif n == 2: return 1 else: _a : Dict =[0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: _a : Union[str, Any] =0 _a : Optional[Any] =2 while digits < n: index += 1 _a : Optional[int] =len(str(fibonacci(_UpperCAmelCase ) ) ) return index def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 1000 ) -> int: return fibonacci_digits_index(_UpperCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
694
0
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self: List[str] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[Any]=7 , UpperCamelCase_: Optional[Any]=3 , UpperCamelCase_: Tuple=18 , UpperCamelCase_: Any=30 , UpperCamelCase_: List[str]=400 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Dict=None , UpperCamelCase_: List[str]=True , ): UpperCamelCase_ =size if size is not None else {"""height""": 18, """width""": 18} UpperCamelCase_ =parent UpperCamelCase_ =batch_size UpperCamelCase_ =num_channels UpperCamelCase_ =image_size UpperCamelCase_ =min_resolution UpperCamelCase_ =max_resolution UpperCamelCase_ =do_resize UpperCamelCase_ =size UpperCamelCase_ =do_normalize def UpperCamelCase__ ( self: Any ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866_4436_3403_3203, 0.6618_8293_6954_4983, 0.3891_7464_0178_6804], [-0.6042_5591_4688_1104, -0.0_2295_0088_6052_8469, 0.5423_7973_6900_3296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __lowerCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : int = ImageGPTImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self: List[Any] ): UpperCamelCase_ =ImageGPTImageProcessingTester(self ) @property def UpperCamelCase__ ( self: Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self: Dict ): UpperCamelCase_ =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , "clusters" ) ) self.assertTrue(hasattr(UpperCamelCase_ , "do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase_ , "size" ) ) self.assertTrue(hasattr(UpperCamelCase_ , "do_normalize" ) ) def UpperCamelCase__ ( self: Optional[int] ): UpperCamelCase_ =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) UpperCamelCase_ =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def UpperCamelCase__ ( self: List[Any] ): UpperCamelCase_ =self.image_processing_class(**self.image_processor_dict ) UpperCamelCase_ =json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCamelCase_ , obj[key] ) ) else: self.assertEqual(obj[key] , UpperCamelCase_ ) def UpperCamelCase__ ( self: Optional[int] ): UpperCamelCase_ =self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_ =os.path.join(UpperCamelCase_ , "image_processor.json" ) image_processor_first.to_json_file(UpperCamelCase_ ) UpperCamelCase_ =self.image_processing_class.from_json_file(UpperCamelCase_ ).to_dict() UpperCamelCase_ =image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCamelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , UpperCamelCase_ ) def UpperCamelCase__ ( self: Optional[int] ): UpperCamelCase_ =self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(UpperCamelCase_ ) UpperCamelCase_ =self.image_processing_class.from_pretrained(UpperCamelCase_ ).to_dict() UpperCamelCase_ =image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCamelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , UpperCamelCase_ ) @unittest.skip("ImageGPT requires clusters at initialization" ) def UpperCamelCase__ ( self: Union[str, Any] ): pass def _UpperCamelCase ( ): UpperCamelCase_ =load_dataset("hf-internal-testing/fixtures_image_utils" , split="test" ) UpperCamelCase_ =Image.open(dataset[4]["file"] ) UpperCamelCase_ =Image.open(dataset[5]["file"] ) UpperCamelCase_ =[imagea, imagea] return images @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self: Optional[Any] ): UpperCamelCase_ =ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) UpperCamelCase_ =prepare_images() # test non-batched UpperCamelCase_ =image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) UpperCamelCase_ =[306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCamelCase_ ) # test batched UpperCamelCase_ =image_processing(UpperCamelCase_ , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) UpperCamelCase_ =[303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCamelCase_ )
391
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : int ) -> str: # Initialise PyTorch model _a : List[str] =RemBertConfig.from_json_file(_UpperCAmelCase ) print("""Building PyTorch model from configuration: {}""".format(str(_UpperCAmelCase ) ) ) _a : Dict =RemBertModel(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(_UpperCAmelCase ) ) torch.save(model.state_dict() ,_UpperCAmelCase ) if __name__ == "__main__": A__: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--rembert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained RemBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A__: Tuple = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
694
0
"""simple docstring""" def A ( snake_case__ , snake_case__ = " " ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 for index, char in enumerate(_UpperCAmelCase ): if char == separator: split_words.append(string[last_index:index] ) SCREAMING_SNAKE_CASE__ = index + 1 elif index + 1 == len(_UpperCAmelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
196
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A__: Optional[int] = logging.get_logger(__name__) A__: Union[str, Any] = '''▁''' A__: Any = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} A__: Optional[int] = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } A__: Union[str, Any] = {'''vinai/bartpho-syllable''': 1024} class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Tuple = VOCAB_FILES_NAMES __UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self :Dict , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Any="<s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE :int="</s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE :Tuple="<unk>" , SCREAMING_SNAKE_CASE :Optional[Any]="<pad>" , SCREAMING_SNAKE_CASE :List[str]="<mask>" , SCREAMING_SNAKE_CASE :Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE :List[Any] , ) -> None: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it _a : str =AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token _a : int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) _a : Dict =vocab_file _a : int =monolingual_vocab_file _a : Dict =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _a : List[Any] ={} _a : List[str] =0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids: _a : Optional[Any] =cnt cnt += 1 with open(SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): _a : int =line.strip().split()[0] _a : str =len(self.fairseq_tokens_to_ids ) if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids: _a : Optional[int] =len(self.fairseq_tokens_to_ids ) _a : str ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self :int ) -> List[Any]: '''simple docstring''' _a : Optional[int] =self.__dict__.copy() _a : Optional[Any] =None _a : str =self.sp_model.serialized_model_proto() return state def __setstate__( self :Dict , SCREAMING_SNAKE_CASE :Any ) -> str: '''simple docstring''' _a : List[str] =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _a : Tuple ={} _a : Any =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : Optional[int] =[self.cls_token_id] _a : int =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None , SCREAMING_SNAKE_CASE :bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _a : List[str] =[self.sep_token_id] _a : int =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __UpperCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def __UpperCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' _a : str ={self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Dict ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :Any ) -> Dict: '''simple docstring''' return self.fairseq_ids_to_tokens[index] def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Optional[Any]: '''simple docstring''' _a : str ="""""".join(SCREAMING_SNAKE_CASE ).replace(SCREAMING_SNAKE_CASE , """ """ ).strip() return out_string def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _a : int =os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _a : Any =os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE , """wb""" ) as fi: _a : Optional[Any] =self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( SCREAMING_SNAKE_CASE ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"{str(SCREAMING_SNAKE_CASE )} \n" ) return out_vocab_file, out_monolingual_vocab_file
694
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging a_ :str = logging.get_logger(__name__) a_ :Optional[int] = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class lowercase ( UpperCAmelCase__ ): lowerCamelCase : Dict = "marian" lowerCamelCase : Dict = ["past_key_values"] lowerCamelCase : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Any , _lowercase : Union[str, Any]=5_81_01 , _lowercase : Optional[Any]=None , _lowercase : Union[str, Any]=10_24 , _lowercase : Tuple=12 , _lowercase : Optional[Any]=40_96 , _lowercase : Tuple=16 , _lowercase : str=12 , _lowercase : Any=40_96 , _lowercase : Dict=16 , _lowercase : List[str]=0.0 , _lowercase : int=0.0 , _lowercase : str=True , _lowercase : Union[str, Any]=True , _lowercase : List[Any]="gelu" , _lowercase : int=10_24 , _lowercase : Any=0.1 , _lowercase : Optional[int]=0.0 , _lowercase : List[str]=0.0 , _lowercase : str=0.02 , _lowercase : str=5_81_00 , _lowercase : Optional[Any]=False , _lowercase : str=5_81_00 , _lowercase : Any=0 , _lowercase : Tuple=0 , _lowercase : List[Any]=True , **_lowercase : Dict , ): SCREAMING_SNAKE_CASE__ : str = vocab_size SCREAMING_SNAKE_CASE__ : List[str] = decoder_vocab_size or vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Dict = d_model SCREAMING_SNAKE_CASE__ : List[str] = encoder_ffn_dim SCREAMING_SNAKE_CASE__ : Any = encoder_layers SCREAMING_SNAKE_CASE__ : str = encoder_attention_heads SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_layers SCREAMING_SNAKE_CASE__ : Dict = decoder_attention_heads SCREAMING_SNAKE_CASE__ : str = dropout SCREAMING_SNAKE_CASE__ : str = attention_dropout SCREAMING_SNAKE_CASE__ : str = activation_dropout SCREAMING_SNAKE_CASE__ : Tuple = activation_function SCREAMING_SNAKE_CASE__ : List[str] = init_std SCREAMING_SNAKE_CASE__ : List[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE__ : Dict = decoder_layerdrop SCREAMING_SNAKE_CASE__ : Tuple = use_cache SCREAMING_SNAKE_CASE__ : List[Any] = encoder_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE__ : Any = share_encoder_decoder_embeddings super().__init__( pad_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) class lowercase ( UpperCAmelCase__ ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowercase__ ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE__ : Any = {0: """batch"""} SCREAMING_SNAKE_CASE__ : Tuple = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: SCREAMING_SNAKE_CASE__ : str = {0: """batch""", 1: """decoder_sequence"""} SCREAMING_SNAKE_CASE__ : Any = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE__ : str = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE__ : Dict = self.num_layers for i in range(_lowercase ): SCREAMING_SNAKE_CASE__ : Optional[int] = {0: """batch""", 2: """past_sequence + sequence"""} SCREAMING_SNAKE_CASE__ : List[Any] = {0: """batch""", 2: """past_sequence + sequence"""} else: SCREAMING_SNAKE_CASE__ : str = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowercase__ ( self : int ): if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Optional[int] = super().outputs else: SCREAMING_SNAKE_CASE__ : Optional[int] = super(_lowercase , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE__ : Optional[int] = self.num_layers for i in range(_lowercase ): SCREAMING_SNAKE_CASE__ : Tuple = {0: """batch""", 2: """past_sequence + sequence"""} SCREAMING_SNAKE_CASE__ : List[str] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def lowercase__ ( self : str , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Generate decoder inputs SCREAMING_SNAKE_CASE__ : List[Any] = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE__ : Union[str, Any] = dict(**_lowercase , **_lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE__ : Any = common_inputs["""input_ids"""].shape SCREAMING_SNAKE_CASE__ : Any = common_inputs["""decoder_input_ids"""].shape[1] SCREAMING_SNAKE_CASE__ : List[str] = self.num_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = decoder_seq_length + 3 SCREAMING_SNAKE_CASE__ : List[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_lowercase , _lowercase )] , dim=1 ) SCREAMING_SNAKE_CASE__ : List[str] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE__ : List[Any] = self.num_layers SCREAMING_SNAKE_CASE__ : Any = min(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = max(_lowercase , _lowercase ) - min_num_layers SCREAMING_SNAKE_CASE__ : List[str] = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(_lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE__ : Dict = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(_lowercase , _lowercase ): common_inputs["past_key_values"].append((torch.zeros(_lowercase ), torch.zeros(_lowercase )) ) return common_inputs def lowercase__ ( self : Optional[int] , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE__ : Union[str, Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE__ : Union[str, Any] = seqlen + 2 SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.num_layers SCREAMING_SNAKE_CASE__ : Tuple = self.num_attention_heads SCREAMING_SNAKE_CASE__ : Any = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE__ : List[str] = common_inputs["""attention_mask"""].dtype SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) SCREAMING_SNAKE_CASE__ : List[Any] = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(_lowercase ) ] return common_inputs def lowercase__ ( self : List[str] , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE__ : Optional[Any] = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.num_special_tokens_to_add(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowercase ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE__ : Optional[Any] = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE__ : int = dict(tokenizer(_lowercase , return_tensors=_lowercase ) ) return common_inputs def lowercase__ ( self : Optional[int] , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) else: SCREAMING_SNAKE_CASE__ : Any = self._generate_dummy_inputs_for_causal_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) return common_inputs def lowercase__ ( self : str , _lowercase : List[str] , _lowercase : Tuple , _lowercase : int , _lowercase : Tuple ): if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Any = super()._flatten_past_key_values_(_lowercase , _lowercase , _lowercase , _lowercase ) else: SCREAMING_SNAKE_CASE__ : Dict = super(_lowercase , self )._flatten_past_key_values_( _lowercase , _lowercase , _lowercase , _lowercase ) @property def lowercase__ ( self : Optional[int] ): return 1E-4
35
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
694
0
import itertools import os import re lowercase = re.compile(r'''([A-Z]+)([A-Z][a-z])''') lowercase = re.compile(r'''([a-z\d])([A-Z])''') lowercase = re.compile(r'''(?<!_)_(?!_)''') lowercase = re.compile(r'''(_{2,})''') lowercase = R'''^\w+(\.\w+)*$''' lowercase = R'''<>:/\|?*''' def __lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) -> Any: lowerCamelCase_ = _uppercase_uppercase_re.sub(R"""\1_\2""" , _UpperCAmelCase ) lowerCamelCase_ = _lowercase_uppercase_re.sub(R"""\1_\2""" , _UpperCAmelCase ) return name.lower() def __lowerCAmelCase ( UpperCAmelCase__ : Dict ) -> str: lowerCamelCase_ = _single_underscore_re.split(_UpperCAmelCase ) lowerCamelCase_ = [_multiple_underscores_re.split(_UpperCAmelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_UpperCAmelCase ) if n != """""" ) def __lowerCAmelCase ( UpperCAmelCase__ : Optional[int] ) -> Any: if os.path.basename(_UpperCAmelCase ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(_UpperCAmelCase ) def __lowerCAmelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any ) -> List[str]: if os.path.basename(_UpperCAmelCase ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , _UpperCAmelCase ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(_UpperCAmelCase )}-{split}''' def __lowerCAmelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any]=None ) -> Union[str, Any]: lowerCamelCase_ = filename_prefix_for_split(_UpperCAmelCase , _UpperCAmelCase ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' lowerCamelCase_ = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) return F'''{filepath}*''' def __lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : str=None ) -> Optional[int]: lowerCamelCase_ = filename_prefix_for_split(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase_ = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if shard_lengths: lowerCamelCase_ = len(_UpperCAmelCase ) lowerCamelCase_ = [F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(_UpperCAmelCase )] if filetype_suffix: lowerCamelCase_ = [filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: lowerCamelCase_ = prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
272
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list] ) -> list[list]: _a : Dict =current_set.copy() for row_index, row in enumerate(_UpperCAmelCase ): _a : Any =row[0] for column_index, column in enumerate(_UpperCAmelCase ): if magnitude == 0: _a : Any =column continue _a : Union[str, Any] =column / magnitude # Subtract to cancel term _a : Optional[Any] =current_set[0] _a : List[Any] =[first_row] _a : Tuple =current_set[1::] for row in current_set: _a : Any =[] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(_UpperCAmelCase ) continue for column_index in range(len(_UpperCAmelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(_UpperCAmelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: _a : List[str] =final_set[0] _a : Tuple =[] _a : Tuple =[] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _a : str =simplify(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): resultant[i].insert(0 ,current_first_column[i] ) resultant.insert(0 ,_UpperCAmelCase ) _a : List[Any] =resultant return final_set def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list] ) -> list: if len(_UpperCAmelCase ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) _a : str =len(_UpperCAmelCase ) + 1 if any(len(_UpperCAmelCase ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(_UpperCAmelCase ,(int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(_UpperCAmelCase ) == 1: return [equations[0][-1] / equations[0][0]] _a : str =equations.copy() if any(0 in row for row in data_set ): _a : Optional[int] =data_set.copy() _a : str =[] for row_index, row in enumerate(_UpperCAmelCase ): if 0 not in row: _a : List[Any] =data_set.pop(_UpperCAmelCase ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 ,_UpperCAmelCase ) _a : Dict =data_set.copy() _a : Any =simplify(_UpperCAmelCase ) _a : Any =simplified[::-1] _a : list =[] for row in simplified: _a : Optional[Any] =row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _a : Any =row.copy()[: len(_UpperCAmelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(_UpperCAmelCase ) == 0: solutions.append(0 ) continue _a : List[str] =temp_row[1::] _a : int =temp_row[::-1] for column_index, column in enumerate(_UpperCAmelCase ): current_solution -= column * solutions[column_index] solutions.append(_UpperCAmelCase ) _a : Tuple =[] for item in solutions: final.append(float(round(_UpperCAmelCase ,5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() A__: int = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
694
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __A = logging.get_logger(__name__) __A = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class UpperCAmelCase (UpperCAmelCase__ ): """simple docstring""" _UpperCAmelCase :int = "instructblip_vision_model" def __init__( self , _UpperCAmelCase=1408 , _UpperCAmelCase=6144 , _UpperCAmelCase=39 , _UpperCAmelCase=16 , _UpperCAmelCase=224 , _UpperCAmelCase=14 , _UpperCAmelCase="gelu" , _UpperCAmelCase=1e-6 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1e-1_0 , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: int = hidden_size lowercase__: List[Any] = intermediate_size lowercase__: List[str] = num_hidden_layers lowercase__: List[str] = num_attention_heads lowercase__: Union[str, Any] = patch_size lowercase__: int = image_size lowercase__: Optional[Any] = initializer_range lowercase__: List[str] = attention_dropout lowercase__: List[str] = layer_norm_eps lowercase__: Optional[Any] = hidden_act lowercase__: Union[str, Any] = qkv_bias @classmethod def _snake_case ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) lowercase__: List[Any] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": lowercase__: Dict = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (UpperCAmelCase__ ): """simple docstring""" _UpperCAmelCase :Dict = "instructblip_qformer" def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=2 , _UpperCAmelCase=1408 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Optional[int] = vocab_size lowercase__: Union[str, Any] = hidden_size lowercase__: int = num_hidden_layers lowercase__: Optional[int] = num_attention_heads lowercase__: Any = hidden_act lowercase__: List[str] = intermediate_size lowercase__: int = hidden_dropout_prob lowercase__: List[Any] = attention_probs_dropout_prob lowercase__: List[str] = max_position_embeddings lowercase__: Union[str, Any] = initializer_range lowercase__: Any = layer_norm_eps lowercase__: Any = position_embedding_type lowercase__: List[Any] = cross_attention_frequency lowercase__: Any = encoder_hidden_size @classmethod def _snake_case ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) lowercase__: Dict = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": lowercase__: List[Any] = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (UpperCAmelCase__ ): """simple docstring""" _UpperCAmelCase :Dict = "instructblip" _UpperCAmelCase :Tuple = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=32 , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) if vision_config is None: lowercase__: Dict = {} logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''' ) if qformer_config is None: lowercase__: Tuple = {} logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''' ) if text_config is None: lowercase__: List[str] = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) lowercase__: Any = InstructBlipVisionConfig(**_UpperCAmelCase ) lowercase__: List[str] = InstructBlipQFormerConfig(**_UpperCAmelCase ) lowercase__: Tuple = text_config["""model_type"""] if """model_type""" in text_config else """opt""" lowercase__: int = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase ) lowercase__: Any = self.text_config.tie_word_embeddings lowercase__: Dict = self.text_config.is_encoder_decoder lowercase__: int = num_query_tokens lowercase__: Any = self.vision_config.hidden_size lowercase__: Optional[int] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowercase__: Tuple = 1.0 lowercase__: Optional[int] = 0.02 @classmethod def _snake_case ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , ) def _snake_case ( self ): lowercase__: Any = copy.deepcopy(self.__dict__ ) lowercase__: List[Any] = self.vision_config.to_dict() lowercase__: Dict = self.qformer_config.to_dict() lowercase__: List[Any] = self.text_config.to_dict() lowercase__: int = self.__class__.model_type return output
586
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__: Dict = logging.get_logger(__name__) A__: Optional[int] = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Tuple = "markuplm" def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :List[Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE :Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :int=3_0_7_2 , SCREAMING_SNAKE_CASE :Optional[int]="gelu" , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=5_1_2 , SCREAMING_SNAKE_CASE :Optional[Any]=2 , SCREAMING_SNAKE_CASE :Optional[int]=0.02 , SCREAMING_SNAKE_CASE :Any=1e-12 , SCREAMING_SNAKE_CASE :Any=0 , SCREAMING_SNAKE_CASE :List[Any]=0 , SCREAMING_SNAKE_CASE :Tuple=2 , SCREAMING_SNAKE_CASE :Optional[Any]=2_5_6 , SCREAMING_SNAKE_CASE :Optional[int]=1_0_2_4 , SCREAMING_SNAKE_CASE :Tuple=2_1_6 , SCREAMING_SNAKE_CASE :Dict=1_0_0_1 , SCREAMING_SNAKE_CASE :List[str]=3_2 , SCREAMING_SNAKE_CASE :List[str]=5_0 , SCREAMING_SNAKE_CASE :Dict="absolute" , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :Any=None , **SCREAMING_SNAKE_CASE :Tuple , ) -> Any: '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) _a : Any =vocab_size _a : List[str] =hidden_size _a : List[str] =num_hidden_layers _a : Tuple =num_attention_heads _a : Union[str, Any] =hidden_act _a : Tuple =intermediate_size _a : Optional[Any] =hidden_dropout_prob _a : int =attention_probs_dropout_prob _a : Any =max_position_embeddings _a : List[Any] =type_vocab_size _a : List[Any] =initializer_range _a : List[Any] =layer_norm_eps _a : Optional[int] =position_embedding_type _a : List[Any] =use_cache _a : List[str] =classifier_dropout # additional properties _a : int =max_depth _a : Union[str, Any] =max_xpath_tag_unit_embeddings _a : str =max_xpath_subs_unit_embeddings _a : int =tag_pad_id _a : List[Any] =subs_pad_id _a : str =xpath_unit_hidden_size
694
0
"""simple docstring""" import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=64 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=5_12 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , UpperCamelCase__=2 , UpperCamelCase__=2 , UpperCamelCase__=2 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=1 , ): '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope A__ = q_groups A__ = k_groups A__ = v_groups A__ = post_attention_groups A__ = intermediate_groups A__ = output_groups def lowercase_ ( self ): '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self ): '''simple docstring''' return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = SqueezeBertModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ = model(UpperCamelCase__ , UpperCamelCase__ ) A__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = SqueezeBertForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = SqueezeBertForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = self.num_labels A__ = SqueezeBertForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = self.num_labels A__ = SqueezeBertForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = self.num_choices A__ = SqueezeBertForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self ): '''simple docstring''' A__ = self.prepare_config_and_inputs() (A__) = config_and_inputs A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowercase__ : int = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowercase__ : int = ( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowercase__ : Optional[int] = False lowercase__ : Optional[int] = True lowercase__ : str = False def lowercase_ ( self ): '''simple docstring''' A__ = SqueezeBertModelTester(self ) A__ = ConfigTester(self , config_class=UpperCamelCase__ , dim=37 ) def lowercase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ): '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*UpperCamelCase__ ) @slow def lowercase_ ( self ): '''simple docstring''' for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = SqueezeBertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_sentencepiece @require_tokenizers @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowercase_ ( self ): '''simple docstring''' A__ = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" ) A__ = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] ) A__ = model(UpperCamelCase__ )[0] A__ = torch.Size((1, 3) ) self.assertEqual(output.shape , UpperCamelCase__ ) A__ = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-4 ) )
337
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() A__: Union[str, Any] = logging.get_logger('''transformers.models.speecht5''') def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Any ) -> Dict: hf_model.apply_weight_norm() _a : Any =checkpoint["""input_conv.weight_g"""] _a : Union[str, Any] =checkpoint["""input_conv.weight_v"""] _a : Optional[int] =checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): _a : Optional[int] =checkpoint[F"upsamples.{i}.1.weight_g"] _a : Optional[Any] =checkpoint[F"upsamples.{i}.1.weight_v"] _a : List[Any] =checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): _a : Optional[int] =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] _a : Tuple =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] _a : Union[str, Any] =checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] _a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] _a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] _a : Tuple =checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] _a : Dict =checkpoint["""output_conv.1.weight_g"""] _a : str =checkpoint["""output_conv.1.weight_v"""] _a : Union[str, Any] =checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : int=None ,_UpperCAmelCase : Tuple=None ,) -> List[Any]: if config_path is not None: _a : str =SpeechTaHifiGanConfig.from_pretrained(_UpperCAmelCase ) else: _a : str =SpeechTaHifiGanConfig() _a : Tuple =SpeechTaHifiGan(_UpperCAmelCase ) _a : int =torch.load(_UpperCAmelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] ,_UpperCAmelCase ,_UpperCAmelCase ) _a : Dict =np.load(_UpperCAmelCase ) _a : Union[str, Any] =stats[0].reshape(-1 ) _a : Any =stats[1].reshape(-1 ) _a : Tuple =torch.from_numpy(_UpperCAmelCase ).float() _a : List[str] =torch.from_numpy(_UpperCAmelCase ).float() model.save_pretrained(_UpperCAmelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": A__: Optional[int] = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) A__: Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
694
0
'''simple docstring''' from math import factorial def a__ ( lowercase : int = 100 ) -> int: """simple docstring""" return sum(map(_UpperCAmelCase, str(factorial(_UpperCAmelCase ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
98
'''simple docstring''' class A__ : def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :List[str] ) -> List[str]: '''simple docstring''' _a : List[str] =None _a : Optional[Any] =None _a : str =graph self._normalize_graph(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Optional[int] =len(SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =None def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[str] ) -> Any: '''simple docstring''' if sources is int: _a : Tuple =[sources] if sinks is int: _a : Optional[int] =[sinks] if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) == 0: return _a : Union[str, Any] =sources[0] _a : Tuple =sinks[0] # make fake vertex if there are more # than one source or sink if len(SCREAMING_SNAKE_CASE ) > 1 or len(SCREAMING_SNAKE_CASE ) > 1: _a : Tuple =0 for i in sources: max_input_flow += sum(self.graph[i] ) _a : List[Any] =len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _a : Any =max_input_flow _a : List[str] =0 _a : List[str] =len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _a : str =max_input_flow _a : Optional[Any] =size - 1 def __UpperCAmelCase ( self :Optional[int] ) -> Tuple: '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Dict ) -> int: '''simple docstring''' _a : Tuple =algorithm(self ) class A__ : def __init__( self :Tuple , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Dict: '''simple docstring''' _a : List[str] =flow_network _a : List[Any] =flow_network.verticesCount _a : str =flow_network.sourceIndex _a : str =flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _a : List[Any] =flow_network.graph _a : Optional[int] =False def __UpperCAmelCase ( self :List[Any] ) -> List[str]: '''simple docstring''' if not self.executed: self._algorithm() _a : Any =True def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[int]: '''simple docstring''' pass class A__ ( UpperCAmelCase__ ): def __init__( self :int , SCREAMING_SNAKE_CASE :str ) -> int: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE ) # use this to save your result _a : List[Any] =-1 def __UpperCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class A__ ( UpperCAmelCase__ ): def __init__( self :str , SCREAMING_SNAKE_CASE :Tuple ) -> str: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE ) _a : int =[[0] * self.verticies_count for i in range(self.verticies_count )] _a : Union[str, Any] =[0] * self.verticies_count _a : Optional[Any] =[0] * self.verticies_count def __UpperCAmelCase ( self :Optional[int] ) -> Optional[Any]: '''simple docstring''' _a : int =self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _a : Tuple =[ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _a : List[Any] =0 while i < len(SCREAMING_SNAKE_CASE ): _a : Any =vertices_list[i] _a : str =self.heights[vertex_index] self.process_vertex(SCREAMING_SNAKE_CASE ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE ) ) _a : List[str] =0 else: i += 1 _a : Optional[int] =sum(self.preflow[self.source_index] ) def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> List[str]: '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.relabel(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :str ) -> List[str]: '''simple docstring''' _a : List[str] =min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Any ) -> List[Any]: '''simple docstring''' _a : int =None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _a : Optional[Any] =self.heights[to_index] if min_height is not None: _a : Any =min_height + 1 if __name__ == "__main__": A__: str = [0] A__: Optional[Any] = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] A__: Tuple = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network A__: Union[str, Any] = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate A__: List[str] = flow_network.find_maximum_flow() print(F"maximum flow is {maximum_flow}")
694
0
"""simple docstring""" def _snake_case ( lowercase__ = 10 , lowercase__ = 22 ): _lowerCamelCase : List[Any] = range(1 , _UpperCAmelCase ) _lowerCamelCase : Any = range(1 , _UpperCAmelCase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"{solution(10, 22) = }")
630
'''simple docstring''' A__: Optional[int] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' A__: List[Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] A__: int = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
694
0
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : str, _lowerCAmelCase : str ) -> list: _UpperCAmelCase : Tuple = len(_UpperCAmelCase ) _UpperCAmelCase : str = [] for i in range(len(_UpperCAmelCase ) - pat_len + 1 ): _UpperCAmelCase : int = True for j in range(_UpperCAmelCase ): if s[i + j] != pattern[j]: _UpperCAmelCase : int = False break if match_found: position.append(_UpperCAmelCase ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
238
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : float ,_UpperCAmelCase : float ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(F"{price_plus_tax(100, 0.25) = }") print(F"{price_plus_tax(125.50, 0.05) = }")
694
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase : str = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __lowercase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
36
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class A__ ( unittest.TestCase ): def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Any=1_3 , SCREAMING_SNAKE_CASE :Any=7 , SCREAMING_SNAKE_CASE :Any=True , SCREAMING_SNAKE_CASE :int=True , SCREAMING_SNAKE_CASE :Optional[int]=True , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :Optional[Any]=9_9 , SCREAMING_SNAKE_CASE :Tuple=3_2 , SCREAMING_SNAKE_CASE :Union[str, Any]=5 , SCREAMING_SNAKE_CASE :List[str]=4 , SCREAMING_SNAKE_CASE :int=3_7 , SCREAMING_SNAKE_CASE :Optional[Any]="gelu" , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=0.1 , SCREAMING_SNAKE_CASE :Dict=5_1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_6 , SCREAMING_SNAKE_CASE :Union[str, Any]=2 , SCREAMING_SNAKE_CASE :List[Any]=0.02 , SCREAMING_SNAKE_CASE :int=4 , ) -> Tuple: '''simple docstring''' _a : Optional[Any] =parent _a : List[str] =batch_size _a : List[str] =seq_length _a : List[Any] =is_training _a : Optional[int] =use_attention_mask _a : List[Any] =use_token_type_ids _a : List[Any] =use_labels _a : Optional[Any] =vocab_size _a : str =hidden_size _a : List[Any] =num_hidden_layers _a : List[Any] =num_attention_heads _a : Union[str, Any] =intermediate_size _a : int =hidden_act _a : List[str] =hidden_dropout_prob _a : Optional[int] =attention_probs_dropout_prob _a : Dict =max_position_embeddings _a : Any =type_vocab_size _a : str =type_sequence_label_size _a : str =initializer_range _a : List[str] =num_choices def __UpperCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' _a : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : Dict =None if self.use_attention_mask: _a : Any =random_attention_mask([self.batch_size, self.seq_length] ) _a : Optional[int] =None if self.use_token_type_ids: _a : Any =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a : Union[str, Any] =RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self :Optional[Any] ) -> int: '''simple docstring''' _a : Tuple =self.prepare_config_and_inputs() _a , _a , _a , _a : List[Any] =config_and_inputs _a : Optional[int] ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def __UpperCAmelCase ( self :int ) -> str: '''simple docstring''' _a : List[Any] =self.prepare_config_and_inputs() _a , _a , _a , _a : Optional[int] =config_and_inputs _a : Tuple =True _a : Optional[Any] =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _a : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class A__ ( UpperCAmelCase__ , unittest.TestCase ): __UpperCamelCase : Union[str, Any] = True __UpperCamelCase : Dict = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self :List[str] ) -> Optional[int]: '''simple docstring''' _a : Union[str, Any] =FlaxRobertaPreLayerNormModelTester(self ) @slow def __UpperCAmelCase ( self :str ) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _a : Optional[int] =model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE ) _a : Dict =model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_flax class A__ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self :Any ) -> str: '''simple docstring''' _a : str =FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE ) _a : List[Any] =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) _a : Dict =model(SCREAMING_SNAKE_CASE )[0] _a : List[Any] =[1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. _a : Any =np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow def __UpperCAmelCase ( self :int ) -> int: '''simple docstring''' _a : Union[str, Any] =FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE ) _a : Any =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) _a : Optional[int] =model(SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. _a : str =np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
694
0
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin UpperCAmelCase_ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class UpperCamelCase__ : '''simple docstring''' def __init__( self, snake_case__, snake_case__=16, snake_case__=13, snake_case__=7, snake_case__=14, snake_case__=10, snake_case__=19, snake_case__=5, snake_case__=4, snake_case__=True, snake_case__=16, snake_case__=2, snake_case__=4, snake_case__=4, snake_case__="gelu", snake_case__=0.1, snake_case__=0.1, snake_case__=[1, 2, 3, 4, 5], snake_case__=25, snake_case__=5, ) -> Tuple: """simple docstring""" lowercase_ : List[str] = d_model lowercase_ : Optional[int] = parent lowercase_ : Optional[int] = batch_size lowercase_ : Tuple = prediction_length lowercase_ : str = context_length lowercase_ : int = cardinality lowercase_ : List[Any] = num_time_features lowercase_ : Optional[Any] = lags_sequence lowercase_ : str = embedding_dimension lowercase_ : Optional[Any] = is_training lowercase_ : Tuple = hidden_size lowercase_ : List[str] = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Dict = intermediate_size lowercase_ : Tuple = hidden_act lowercase_ : List[str] = hidden_dropout_prob lowercase_ : int = attention_probs_dropout_prob lowercase_ : List[Any] = context_length lowercase_ : str = prediction_length + label_length lowercase_ : Union[str, Any] = label_length lowercase_ : str = moving_average lowercase_ : Optional[int] = autocorrelation_factor def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" return AutoformerConfig( d_model=self.d_model, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, prediction_length=self.prediction_length, context_length=self.context_length, label_length=self.label_length, lags_sequence=self.lags_sequence, num_time_features=self.num_time_features, num_static_categorical_features=1, cardinality=[self.cardinality], embedding_dimension=[self.embedding_dimension], moving_average=self.moving_average, ) def snake_case__ ( self, snake_case__ ) -> Optional[int]: """simple docstring""" lowercase_ : Optional[int] = config.context_length + max(config.lags_sequence ) lowercase_ : Optional[Any] = ids_tensor([self.batch_size, 1], config.cardinality[0] ) lowercase_ : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowercase_ : List[str] = floats_tensor([self.batch_size, _past_length] ) lowercase_ : List[Any] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowercase_ : List[str] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowercase_ : int = floats_tensor([self.batch_size, config.prediction_length] ) lowercase_ : List[Any] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def snake_case__ ( self ) -> Optional[int]: """simple docstring""" lowercase_ : str = self.get_config() lowercase_ : Dict = self.prepare_autoformer_inputs_dict(snake_case__ ) return config, inputs_dict def snake_case__ ( self ) -> List[Any]: """simple docstring""" lowercase_ : Tuple = self.prepare_config_and_inputs() return config, inputs_dict def snake_case__ ( self, snake_case__, snake_case__ ) -> Union[str, Any]: """simple docstring""" lowercase_ : Any = AutoformerModel(config=snake_case__ ).to(snake_case__ ).eval() lowercase_ : Optional[Any] = model(**snake_case__ ) lowercase_ : int = outputs.encoder_last_hidden_state lowercase_ : List[Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Any = model.get_encoder() encoder.save_pretrained(snake_case__ ) lowercase_ : Union[str, Any] = AutoformerEncoder.from_pretrained(snake_case__ ).to(snake_case__ ) lowercase_ : Optional[int] = model.create_network_inputs(**snake_case__ ) lowercase_ : str = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowercase_ : Optional[int] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]), dim=-1, ) lowercase_ : Optional[Any] = encoder(inputs_embeds=snake_case__ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) lowercase_ : Union[str, Any] = ( torch.mean(transformer_inputs[:, : config.context_length, ...], dim=1 ) .unsqueeze(1 ) .repeat(1, config.prediction_length, 1 ) ) lowercase_ : int = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]], device=enc_input.device, ) lowercase_ : Union[str, Any] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros), dim=1 ), feature[:, config.context_length - config.label_length :, ...], ), dim=-1, ) lowercase_ : List[str] = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean), dim=1 ), feature[:, config.context_length - config.label_length :, ...], ), dim=-1, ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Tuple = model.get_decoder() decoder.save_pretrained(snake_case__ ) lowercase_ : List[Any] = AutoformerDecoder.from_pretrained(snake_case__ ).to(snake_case__ ) lowercase_ : Dict = decoder( trend=snake_case__, inputs_embeds=snake_case__, encoder_hidden_states=snake_case__, )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class UpperCamelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __a : Optional[Any] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __a : Union[str, Any] = (AutoformerForPrediction,) if is_torch_available() else () __a : Optional[int] = {"feature-extraction": AutoformerModel} if is_torch_available() else {} __a : Optional[int] = False __a : Dict = False __a : Optional[int] = False __a : str = False __a : Union[str, Any] = False __a : int = False def snake_case__ ( self ) -> str: """simple docstring""" lowercase_ : Dict = AutoformerModelTester(self ) lowercase_ : Dict = ConfigTester(self, config_class=snake_case__, has_text_modality=snake_case__ ) def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def snake_case__ ( self ) -> Dict: """simple docstring""" lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowercase_ : Dict = model_class(snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case__ ) lowercase_ : Optional[Any] = model_class.from_pretrained(snake_case__, output_loading_info=snake_case__ ) self.assertEqual(info["""missing_keys"""], [] ) def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case__ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" pass def snake_case__ ( self ) -> List[Any]: """simple docstring""" lowercase_ : Tuple = inspect.signature(getattr(snake_case__, """forward""" ) ) # The main input is the name of the argument after `self` lowercase_ : List[Any] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name, snake_case__ ) def snake_case__ ( self ) -> Any: """simple docstring""" lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : int = model_class(snake_case__ ) lowercase_ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : int = [*signature.parameters.keys()] lowercase_ : Optional[Any] = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(snake_case__ )], snake_case__ ) def snake_case__ ( self ) -> str: """simple docstring""" lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Union[str, Any] = True lowercase_ : Optional[Any] = getattr(self.model_tester, """seq_length""", snake_case__ ) lowercase_ : Tuple = getattr(self.model_tester, """decoder_seq_length""", snake_case__ ) lowercase_ : Optional[Any] = getattr(self.model_tester, """encoder_seq_length""", snake_case__ ) lowercase_ : Union[str, Any] = getattr(self.model_tester, """d_model""", snake_case__ ) lowercase_ : Tuple = getattr(self.model_tester, """num_attention_heads""", snake_case__ ) lowercase_ : List[Any] = d_model // num_attention_heads for model_class in self.all_model_classes: lowercase_ : int = True lowercase_ : Optional[Any] = False lowercase_ : Any = True lowercase_ : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowercase_ : Tuple = model(**self._prepare_for_class(snake_case__, snake_case__ ) ) lowercase_ : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case__ ), self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase_ : Tuple = True lowercase_ : Tuple = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowercase_ : Optional[Any] = model(**self._prepare_for_class(snake_case__, snake_case__ ) ) lowercase_ : Dict = outputs.encoder_attentions self.assertEqual(len(snake_case__ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, encoder_seq_length, dim], ) lowercase_ : Tuple = len(snake_case__ ) lowercase_ : Optional[Any] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case__, snake_case__ ) # decoder attentions lowercase_ : Optional[int] = outputs.decoder_attentions self.assertIsInstance(snake_case__, (list, tuple) ) self.assertEqual(len(snake_case__ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, decoder_seq_length, dim], ) # cross attentions lowercase_ : Any = outputs.cross_attentions self.assertIsInstance(snake_case__, (list, tuple) ) self.assertEqual(len(snake_case__ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, decoder_seq_length, dim], ) # Check attention is always last and order is fine lowercase_ : int = True lowercase_ : Tuple = True lowercase_ : Tuple = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowercase_ : List[str] = model(**self._prepare_for_class(snake_case__, snake_case__ ) ) self.assertEqual(out_len + 2, len(snake_case__ ) ) lowercase_ : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case__ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, encoder_seq_length, dim], ) @is_flaky() def snake_case__ ( self ) -> Tuple: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def __magic_name__ ( lowercase="train-batch.pt" ) -> Optional[Any]: """simple docstring""" lowercase_ : Union[str, Any] = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_UpperCAmelCase , repo_type="""dataset""" ) lowercase_ : Dict = torch.load(_UpperCAmelCase , map_location=_UpperCAmelCase ) return batch @require_torch @slow class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ) -> Optional[int]: """simple docstring""" lowercase_ : Optional[Any] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case__ ) lowercase_ : int = prepare_batch() with torch.no_grad(): lowercase_ : Any = model( past_values=batch["""past_values"""], past_time_features=batch["""past_time_features"""], past_observed_mask=batch["""past_observed_mask"""], static_categorical_features=batch["""static_categorical_features"""], future_values=batch["""future_values"""], future_time_features=batch["""future_time_features"""], )[0] lowercase_ : List[Any] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape, snake_case__ ) lowercase_ : Tuple = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]], device=snake_case__ ) self.assertTrue(torch.allclose(output[0, :3, :3], snake_case__, atol=snake_case__ ) ) def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" lowercase_ : List[str] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case__ ) lowercase_ : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): lowercase_ : Tuple = model( past_values=batch["""past_values"""], past_time_features=batch["""past_time_features"""], past_observed_mask=batch["""past_observed_mask"""], static_categorical_features=batch["""static_categorical_features"""], ).encoder_last_hidden_state lowercase_ : str = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape, snake_case__ ) lowercase_ : List[str] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]], device=snake_case__ ) self.assertTrue(torch.allclose(output[0, :3, :3], snake_case__, atol=snake_case__ ) ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" lowercase_ : List[str] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case__ ) lowercase_ : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): lowercase_ : int = model.generate( static_categorical_features=batch["""static_categorical_features"""], past_time_features=batch["""past_time_features"""], past_values=batch["""past_values"""], future_time_features=batch["""future_time_features"""], past_observed_mask=batch["""past_observed_mask"""], ) lowercase_ : Union[str, Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape, snake_case__ ) lowercase_ : List[Any] = torch.tensor([31_30.67_63, 40_56.52_93, 70_53.07_86], device=snake_case__ ) lowercase_ : Optional[int] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:], snake_case__, rtol=1E-1 ) )
458
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging A__: Tuple = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any]=None ,_UpperCAmelCase : str=None ) -> Union[str, Any]: return field(default_factory=lambda: default ,metadata=_UpperCAmelCase ) @dataclass class A__ : __UpperCamelCase : List[str] = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) __UpperCamelCase : List[int] = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) __UpperCamelCase : List[int] = list_field( default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Use FP16 to accelerate inference."} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Benchmark training of model"} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Verbose memory tracing"} ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Trace memory line by line"} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Save result to a CSV file"} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Save all print statements in a log file"} ) __UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Whether to print environment information"} ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) __UpperCamelCase : str = field( default=f'''inference_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , ) __UpperCamelCase : str = field( default=f'''inference_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , ) __UpperCamelCase : str = field( default=f'''train_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) __UpperCamelCase : str = field( default=f'''train_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) __UpperCamelCase : str = field( default=f'''env_info_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , ) __UpperCamelCase : str = field( default=f'''log_{round(time() )}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , ) __UpperCamelCase : int = field(default=3 , metadata={"help": "Times an experiment will be run."} ) __UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def __UpperCAmelCase ( self :Union[str, Any] ) -> int: '''simple docstring''' warnings.warn( f"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , SCREAMING_SNAKE_CASE , ) def __UpperCAmelCase ( self :Optional[int] ) -> Dict: '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def __UpperCAmelCase ( self :Optional[int] ) -> List[str]: '''simple docstring''' if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def __UpperCAmelCase ( self :Optional[Any] ) -> int: '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
694
0
"""simple docstring""" from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class __lowerCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' __lowerCamelCase : List[str] = "philschmid/bart-large-cnn-samsum" __lowerCamelCase : int = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) __lowerCamelCase : Union[str, Any] = "summarizer" __lowerCamelCase : List[str] = AutoTokenizer __lowerCamelCase : Dict = AutoModelForSeqaSeqLM __lowerCamelCase : List[str] = ["text"] __lowerCamelCase : Tuple = ["text"] def UpperCamelCase__ ( self: List[str] , UpperCamelCase_: str ): return self.pre_processor(UpperCamelCase_ , return_tensors="pt" , truncation=UpperCamelCase_ ) def UpperCamelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] ): return self.model.generate(**UpperCamelCase_ )[0] def UpperCamelCase__ ( self: List[Any] , UpperCamelCase_: Dict ): return self.pre_processor.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ )
391
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class A__ ( UpperCAmelCase__ ): def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Distribution , SCREAMING_SNAKE_CASE :int=None , SCREAMING_SNAKE_CASE :Tuple=None , SCREAMING_SNAKE_CASE :List[Any]=0 ) -> List[str]: '''simple docstring''' _a : int =1.0 if scale is None else scale _a : Optional[Any] =0.0 if loc is None else loc super().__init__(SCREAMING_SNAKE_CASE , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=SCREAMING_SNAKE_CASE )] ) @property def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def __UpperCAmelCase ( self :Optional[int] ) -> Dict: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def __UpperCAmelCase ( self :Any ) -> List[str]: '''simple docstring''' return self.variance.sqrt() class A__ ( nn.Module ): def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Dict[str, int] , SCREAMING_SNAKE_CASE :Callable[..., Tuple[torch.Tensor]] , **SCREAMING_SNAKE_CASE :Dict ) -> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) _a : Tuple =args_dim _a : Tuple =nn.ModuleList([nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for dim in args_dim.values()] ) _a : Dict =domain_map def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Tuple[torch.Tensor]: '''simple docstring''' _a : Tuple =[proj(SCREAMING_SNAKE_CASE ) for proj in self.proj] return self.domain_map(*SCREAMING_SNAKE_CASE ) class A__ ( nn.Module ): def __init__( self :Dict , SCREAMING_SNAKE_CASE :Tuple ) -> int: '''simple docstring''' super().__init__() _a : List[Any] =function def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Optional[int] , *SCREAMING_SNAKE_CASE :int ) -> List[Any]: '''simple docstring''' return self.function(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) class A__ : __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__( self :Any , SCREAMING_SNAKE_CASE :int = 1 ) -> None: '''simple docstring''' _a : Any =dim _a : List[Any] ={k: dim * self.args_dim[k] for k in self.args_dim} def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[int] ) -> Union[str, Any]: '''simple docstring''' if self.dim == 1: return self.distribution_class(*SCREAMING_SNAKE_CASE ) else: return Independent(self.distribution_class(*SCREAMING_SNAKE_CASE ) , 1 ) def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , ) -> Distribution: '''simple docstring''' _a : str =self._base_distribution(SCREAMING_SNAKE_CASE ) if loc is None and scale is None: return distr else: return AffineTransformed(SCREAMING_SNAKE_CASE , loc=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , event_dim=self.event_dim ) @property def __UpperCAmelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def __UpperCAmelCase ( self :Any ) -> int: '''simple docstring''' return len(self.event_shape ) @property def __UpperCAmelCase ( self :Any ) -> float: '''simple docstring''' return 0.0 def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :int ) -> nn.Module: '''simple docstring''' return ParameterProjection( in_features=SCREAMING_SNAKE_CASE , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def __UpperCAmelCase ( self :int , *SCREAMING_SNAKE_CASE :torch.Tensor ) -> Any: '''simple docstring''' raise NotImplementedError() @staticmethod def __UpperCAmelCase ( SCREAMING_SNAKE_CASE :torch.Tensor ) -> torch.Tensor: '''simple docstring''' return (x + torch.sqrt(torch.square(SCREAMING_SNAKE_CASE ) + 4.0 )) / 2.0 class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def __UpperCAmelCase ( cls :int , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Union[str, Any]: '''simple docstring''' _a : Tuple =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps ) _a : Optional[Any] =2.0 + cls.squareplus(SCREAMING_SNAKE_CASE ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Dict: '''simple docstring''' _a : List[str] =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Optional[int]: '''simple docstring''' _a : int =cls.squareplus(SCREAMING_SNAKE_CASE ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Distribution: '''simple docstring''' _a , _a : Any =distr_args if self.dim == 1: return self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE ) else: return Independent(self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE ) , 1 ) def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None ) -> Distribution: '''simple docstring''' _a , _a : Optional[int] =distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
694
0
"""simple docstring""" def A ( snake_case__ = 50 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'{solution() = }')
196
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return number | (1 << position) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return number & ~(1 << position) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return number ^ (1 << position) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> bool: return ((number >> position) & 1) == 1 def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
694
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ :Optional[int] = { '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :Optional[Any] = ['''MobileNetV2FeatureExtractor'''] a_ :Dict = ['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[str] = [ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys a_ :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : list ) -> float: _validate_point(_UpperCAmelCase ) _validate_point(_UpperCAmelCase ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[float] ) -> None: if point: if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): for item in point: if not isinstance(_UpperCAmelCase ,(int, float) ): _a : str =( """Expected a list of numbers as input, found """ F"{type(_UpperCAmelCase ).__name__}" ) raise TypeError(_UpperCAmelCase ) else: _a : List[Any] =F"Expected a list of numbers as input, found {type(_UpperCAmelCase ).__name__}" raise TypeError(_UpperCAmelCase ) else: raise ValueError("""Missing an input""" ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : list ) -> float: _validate_point(_UpperCAmelCase ) _validate_point(_UpperCAmelCase ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
694
0
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __lowerCAmelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] ) -> Optional[int]: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase_ = np.full((len(_UpperCAmelCase ), sequence_length, 2) , _UpperCAmelCase ) else: lowerCamelCase_ = np.full((len(_UpperCAmelCase ), sequence_length) , _UpperCAmelCase ) for i, tensor in enumerate(_UpperCAmelCase ): if padding_side == "right": if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase_ = tensor[:sequence_length] else: lowerCamelCase_ = tensor[:sequence_length] else: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase_ = tensor[:sequence_length] else: lowerCamelCase_ = tensor[:sequence_length] return out_tensor.tolist() def __lowerCAmelCase ( UpperCAmelCase__ : Any ) -> Optional[int]: lowerCamelCase_ = ord(_UpperCAmelCase ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True lowerCamelCase_ = unicodedata.category(_UpperCAmelCase ) if cat.startswith("""P""" ): return True return False @dataclass class __A( UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = -1_0_0 SCREAMING_SNAKE_CASE = "pt" def lowercase__ ( self : List[str] , __UpperCamelCase : int ): import torch lowerCamelCase_ = """label""" if """label""" in features[0].keys() else """labels""" lowerCamelCase_ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowerCamelCase_ = self.tokenizer.pad( __UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch lowerCamelCase_ = torch.tensor(batch["""entity_ids"""] ).shape[1] lowerCamelCase_ = self.tokenizer.padding_side if padding_side == "right": lowerCamelCase_ = [ list(__UpperCamelCase ) + [self.label_pad_token_id] * (sequence_length - len(__UpperCamelCase )) for label in labels ] else: lowerCamelCase_ = [ [self.label_pad_token_id] * (sequence_length - len(__UpperCamelCase )) + list(__UpperCamelCase ) for label in labels ] lowerCamelCase_ = [feature["""ner_tags"""] for feature in features] lowerCamelCase_ = padding_tensor(__UpperCamelCase , -1 , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = [feature["""original_entity_spans"""] for feature in features] lowerCamelCase_ = padding_tensor(__UpperCamelCase , (-1, -1) , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = {k: torch.tensor(__UpperCamelCase , dtype=torch.intaa ) for k, v in batch.items()} return batch
272
'''simple docstring''' from __future__ import annotations class A__ : def __init__( self :str , SCREAMING_SNAKE_CASE :int ) -> None: '''simple docstring''' _a : int =order # a_{0} ... a_{k} _a : Optional[Any] =[1.0] + [0.0] * order # b_{0} ... b_{k} _a : Tuple =[1.0] + [0.0] * order # x[n-1] ... x[n-k] _a : List[Any] =[0.0] * self.order # y[n-1] ... y[n-k] _a : Tuple =[0.0] * self.order def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :list[float] , SCREAMING_SNAKE_CASE :list[float] ) -> None: '''simple docstring''' if len(SCREAMING_SNAKE_CASE ) < self.order: _a : int =[1.0, *a_coeffs] if len(SCREAMING_SNAKE_CASE ) != self.order + 1: _a : int =( f"Expected a_coeffs to have {self.order + 1} elements " f"for {self.order}-order filter, got {len(SCREAMING_SNAKE_CASE )}" ) raise ValueError(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) != self.order + 1: _a : Optional[Any] =( f"Expected b_coeffs to have {self.order + 1} elements " f"for {self.order}-order filter, got {len(SCREAMING_SNAKE_CASE )}" ) raise ValueError(SCREAMING_SNAKE_CASE ) _a : List[str] =a_coeffs _a : Union[str, Any] =b_coeffs def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :float ) -> float: '''simple docstring''' _a : str =0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _a : Any =(result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _a : str =self.input_history[:-1] _a : Optional[Any] =self.output_history[:-1] _a : Optional[int] =sample _a : Tuple =result return result
694
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig __A = logging.get_logger(__name__) __A = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class UpperCAmelCase (UpperCAmelCase__ ): """simple docstring""" _UpperCAmelCase :Any = "dpt" def __init__( self , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=384 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=[2, 5, 8, 11] , _UpperCAmelCase="project" , _UpperCAmelCase=[4, 2, 1, 0.5] , _UpperCAmelCase=[96, 192, 384, 768] , _UpperCAmelCase=256 , _UpperCAmelCase=-1 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.4 , _UpperCAmelCase=255 , _UpperCAmelCase=0.1 , _UpperCAmelCase=[1, 1024, 24, 24] , _UpperCAmelCase=[0, 1] , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Union[str, Any] = hidden_size lowercase__: Optional[int] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) lowercase__: Dict = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } lowercase__: Dict = BitConfig(**_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) lowercase__: Tuple = BitConfig(**_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = backbone_config else: raise ValueError( F"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) lowercase__: str = backbone_featmap_shape lowercase__: Tuple = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: lowercase__: int = None lowercase__: str = None lowercase__: Optional[Any] = [] lowercase__: Dict = num_hidden_layers lowercase__: Any = num_attention_heads lowercase__: Dict = intermediate_size lowercase__: List[Any] = hidden_act lowercase__: Dict = hidden_dropout_prob lowercase__: List[Any] = attention_probs_dropout_prob lowercase__: Union[str, Any] = initializer_range lowercase__: Any = layer_norm_eps lowercase__: Tuple = image_size lowercase__: List[str] = patch_size lowercase__: Dict = num_channels lowercase__: str = qkv_bias lowercase__: List[Any] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) lowercase__: List[Any] = readout_type lowercase__: str = reassemble_factors lowercase__: Optional[Any] = neck_hidden_sizes lowercase__: int = fusion_hidden_size lowercase__: Dict = head_in_index lowercase__: int = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowercase__: Any = use_auxiliary_head lowercase__: int = auxiliary_loss_weight lowercase__: List[Any] = semantic_loss_ignore_index lowercase__: Any = semantic_classifier_dropout def _snake_case ( self ): lowercase__: Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowercase__: Union[str, Any] = self.backbone_config.to_dict() lowercase__: Optional[int] = self.__class__.model_type return output
586
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : dict ,_UpperCAmelCase : str ,_UpperCAmelCase : set ,_UpperCAmelCase : set ,_UpperCAmelCase : dict ,_UpperCAmelCase : dict ,_UpperCAmelCase : PriorityQueue ,_UpperCAmelCase : dict ,_UpperCAmelCase : float | int ,) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue _a : Dict =cst_fwd.get(_UpperCAmelCase ,np.inf ) _a : int =cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _a : Tuple =new_cost_f _a : Optional[Any] =v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _a : str =cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ,_UpperCAmelCase : dict ,_UpperCAmelCase : dict ) -> int: _a : Optional[Any] =-1 _a : List[str] =set() _a : Optional[int] =set() _a : Optional[int] ={source: 0} _a : List[str] ={destination: 0} _a : Union[str, Any] ={source: None} _a : Dict ={destination: None} _a : PriorityQueue[Any] =PriorityQueue() _a : PriorityQueue[Any] =PriorityQueue() _a : Optional[int] =np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _a , _a : str =queue_forward.get() visited_forward.add(_UpperCAmelCase ) _a , _a : List[Any] =queue_backward.get() visited_backward.add(_UpperCAmelCase ) _a : int =pass_and_relaxation( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,) _a : Any =pass_and_relaxation( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _a : Any =shortest_distance return shortest_path_distance A__: Union[str, Any] = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } A__: str = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
694
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase ={'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
337
'''simple docstring''' from math import factorial def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 100 ) -> int: return sum(map(_UpperCAmelCase ,str(factorial(_UpperCAmelCase ) ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
694
0
'''simple docstring''' def a__ ( lowercase : list[int], lowercase : str ) -> list[int]: """simple docstring""" _UpperCamelCase = int(_UpperCAmelCase ) # Initialize Result _UpperCamelCase = [] # Traverse through all denomination for denomination in reversed(_UpperCAmelCase ): # Find denominations while int(_UpperCAmelCase ) >= int(_UpperCAmelCase ): total_value -= int(_UpperCAmelCase ) answer.append(_UpperCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": lowercase__ : Optional[Any] = [] lowercase__ : Union[str, Any] = '''0''' if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): lowercase__ : Any = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) lowercase__ : Tuple = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter lowercase__ : int = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] lowercase__ : List[Any] = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(F"""Following is minimal change for {value}: """) lowercase__ : Union[str, Any] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
98
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ) -> list: _a : Tuple =len(_UpperCAmelCase ) _a : str =[] for i in range(len(_UpperCAmelCase ) - pat_len + 1 ): _a : int =True for j in range(_UpperCAmelCase ): if s[i + j] != pattern[j]: _a : int =False break if match_found: position.append(_UpperCAmelCase ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
694
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' lowerCamelCase__ = "poolformer" def __init__( self , lowercase=3 , lowercase=16 , lowercase=16 , lowercase=3 , lowercase=4.0 , lowercase=[2, 2, 6, 2] , lowercase=[64, 128, 320, 512] , lowercase=[7, 3, 3, 3] , lowercase=[4, 2, 2, 2] , lowercase=[2, 1, 1, 1] , lowercase=4 , lowercase=0.0 , lowercase="gelu" , lowercase=True , lowercase=1E-5 , lowercase=0.02 , **lowercase , ): _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : Optional[int] = patch_size _lowerCamelCase : List[str] = stride _lowerCamelCase : Dict = padding _lowerCamelCase : Tuple = pool_size _lowerCamelCase : Dict = hidden_sizes _lowerCamelCase : Optional[Any] = mlp_ratio _lowerCamelCase : Optional[int] = depths _lowerCamelCase : Optional[int] = patch_sizes _lowerCamelCase : Union[str, Any] = strides _lowerCamelCase : Optional[int] = num_encoder_blocks _lowerCamelCase : str = drop_path_rate _lowerCamelCase : str = hidden_act _lowerCamelCase : Tuple = use_layer_scale _lowerCamelCase : str = layer_scale_init_value _lowerCamelCase : int = initializer_range super().__init__(**lowercase ) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' lowerCamelCase__ = version.parse("""1.11""" ) @property def A_ ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A_ ( self ): return 2E-3
630
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class A__ ( unittest.TestCase ): def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any]=7 , SCREAMING_SNAKE_CASE :Optional[Any]=3 , SCREAMING_SNAKE_CASE :Tuple=1_8 , SCREAMING_SNAKE_CASE :Any=3_0 , SCREAMING_SNAKE_CASE :List[str]=4_0_0 , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :List[str]=True , ) -> Tuple: '''simple docstring''' _a : int =size if size is not None else {"""height""": 1_8, """width""": 1_8} _a : int =parent _a : Optional[int] =batch_size _a : List[str] =num_channels _a : Optional[Any] =image_size _a : int =min_resolution _a : str =max_resolution _a : str =do_resize _a : Tuple =size _a : Tuple =do_normalize def __UpperCAmelCase ( self :Any ) -> int: '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804], [-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class A__ ( UpperCAmelCase__ , unittest.TestCase ): __UpperCamelCase : int = ImageGPTImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self :List[Any] ) -> List[Any]: '''simple docstring''' _a : Any =ImageGPTImageProcessingTester(self ) @property def __UpperCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self :Dict ) -> Any: '''simple docstring''' _a : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """clusters""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """size""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_normalize""" ) ) def __UpperCAmelCase ( self :Optional[int] ) -> Optional[int]: '''simple docstring''' _a : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} ) _a : Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} ) def __UpperCAmelCase ( self :List[Any] ) -> Optional[int]: '''simple docstring''' _a : List[str] =self.image_processing_class(**self.image_processor_dict ) _a : Dict =json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , obj[key] ) ) else: self.assertEqual(obj[key] , SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[int] ) -> Dict: '''simple docstring''' _a : List[Any] =self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Any =os.path.join(SCREAMING_SNAKE_CASE , """image_processor.json""" ) image_processor_first.to_json_file(SCREAMING_SNAKE_CASE ) _a : str =self.image_processing_class.from_json_file(SCREAMING_SNAKE_CASE ).to_dict() _a : Tuple =image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[int] ) -> str: '''simple docstring''' _a : List[str] =self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(SCREAMING_SNAKE_CASE ) _a : str =self.image_processing_class.from_pretrained(SCREAMING_SNAKE_CASE ).to_dict() _a : Union[str, Any] =image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def __UpperCAmelCase ( self :Union[str, Any] ) -> int: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: _a : Any =load_dataset("""hf-internal-testing/fixtures_image_utils""" ,split="""test""" ) _a : Dict =Image.open(dataset[4]["""file"""] ) _a : Optional[int] =Image.open(dataset[5]["""file"""] ) _a : Optional[Any] =[imagea, imagea] return images @require_vision @require_torch class A__ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' _a : Optional[Any] =ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) _a : int =prepare_images() # test non-batched _a : Dict =image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) ) _a : Optional[int] =[3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , SCREAMING_SNAKE_CASE ) # test batched _a : Dict =image_processing(SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) ) _a : Any =[3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , SCREAMING_SNAKE_CASE )
694
0
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _UpperCAmelCase ( unittest.TestCase): __a : Any = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING __a : List[Any] = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __snake_case ( self , _A , _A , _A ) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[str] = AudioClassificationPipeline(model=_A , feature_extractor=_A ) # test with a raw waveform _UpperCAmelCase : str = np.zeros((3_40_00,) ) _UpperCAmelCase : Any = np.zeros((1_40_00,) ) return audio_classifier, [audioa, audio] def __snake_case ( self , _A , _A ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = examples _UpperCAmelCase : Union[str, Any] = audio_classifier(_A ) # by default a model is initialized with num_labels=2 self.assertEqual( _A , [ {"""score""": ANY(_A ), """label""": ANY(_A )}, {"""score""": ANY(_A ), """label""": ANY(_A )}, ] , ) _UpperCAmelCase : int = audio_classifier(_A , top_k=1 ) self.assertEqual( _A , [ {"""score""": ANY(_A ), """label""": ANY(_A )}, ] , ) self.run_torchaudio(_A ) @require_torchaudio def __snake_case ( self , _A ) -> Any: '''simple docstring''' import datasets # test with a local file _UpperCAmelCase : Optional[int] = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _UpperCAmelCase : Tuple = dataset[0]["""audio"""]["""array"""] _UpperCAmelCase : int = audio_classifier(_A ) self.assertEqual( _A , [ {"""score""": ANY(_A ), """label""": ANY(_A )}, {"""score""": ANY(_A ), """label""": ANY(_A )}, ] , ) @require_torch def __snake_case ( self ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = """anton-l/wav2vec2-random-tiny-classifier""" _UpperCAmelCase : List[Any] = pipeline("""audio-classification""" , model=_A ) _UpperCAmelCase : Any = np.ones((80_00,) ) _UpperCAmelCase : List[Any] = audio_classifier(_A , top_k=4 ) _UpperCAmelCase : List[Any] = [ {"""score""": 0.0842, """label""": """no"""}, {"""score""": 0.0838, """label""": """up"""}, {"""score""": 0.0837, """label""": """go"""}, {"""score""": 0.0834, """label""": """right"""}, ] _UpperCAmelCase : Dict = [ {"""score""": 0.0845, """label""": """stop"""}, {"""score""": 0.0844, """label""": """on"""}, {"""score""": 0.0841, """label""": """right"""}, {"""score""": 0.0834, """label""": """left"""}, ] self.assertIn(nested_simplify(_A , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _UpperCAmelCase : List[str] = {"""array""": np.ones((80_00,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _UpperCAmelCase : Tuple = audio_classifier(_A , top_k=4 ) self.assertIn(nested_simplify(_A , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __snake_case ( self ) -> str: '''simple docstring''' import datasets _UpperCAmelCase : int = """superb/wav2vec2-base-superb-ks""" _UpperCAmelCase : Optional[Any] = pipeline("""audio-classification""" , model=_A ) _UpperCAmelCase : List[Any] = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _UpperCAmelCase : Any = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _UpperCAmelCase : int = audio_classifier(_A , top_k=4 ) self.assertEqual( nested_simplify(_A , decimals=3 ) , [ {"""score""": 0.981, """label""": """go"""}, {"""score""": 0.007, """label""": """up"""}, {"""score""": 0.006, """label""": """_unknown_"""}, {"""score""": 0.001, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __snake_case ( self ) -> Tuple: '''simple docstring''' pass
238
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ) -> bool: _a : Optional[int] =len(_UpperCAmelCase ) _a : Tuple =[[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _a : Any =True # sum is not zero and set is empty then false for i in range(1 ,required_sum + 1 ): _a : int =False for i in range(1 ,arr_len + 1 ): for j in range(1 ,required_sum + 1 ): if arr[i - 1] > j: _a : Optional[Any] =subset[i - 1][j] if arr[i - 1] <= j: _a : Union[str, Any] =subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
694
0
from random import randint, random def lowercase ( __A : int , __A : int , __A : int , __A : bool = False , __A : bool = False , __A : int = 5 , ) -> list: '''simple docstring''' snake_case : Tuple = [[-1] * number_of_cells] # Create a highway without any car snake_case : List[Any] = 0 snake_case : Optional[int] = max(_UpperCAmelCase , 0 ) while i < number_of_cells: snake_case : Dict = ( randint(0 , _UpperCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowercase ( __A : list , __A : int ) -> int: '''simple docstring''' snake_case : Optional[Any] = 0 snake_case : List[Any] = highway_now[car_index + 1 :] for cell in range(len(_UpperCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(_UpperCAmelCase , -1 ) def lowercase ( __A : list , __A : float , __A : int ) -> list: '''simple docstring''' snake_case : str = len(_UpperCAmelCase ) # Beforce calculations, the highway is empty snake_case : Optional[Any] = [-1] * number_of_cells for car_index in range(_UpperCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed snake_case : str = min(highway_now[car_index] + 1 , _UpperCAmelCase ) # Number of empty cell before the next car snake_case : Union[str, Any] = get_distance(_UpperCAmelCase , _UpperCAmelCase ) - 1 # We can't have the car causing an accident snake_case : int = min(next_highway[car_index] , _UpperCAmelCase ) if random() < probability: # Randomly, a driver will slow down snake_case : List[str] = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowercase ( __A : list , __A : int , __A : float , __A : int ) -> list: '''simple docstring''' snake_case : List[str] = len(highway[0] ) for i in range(_UpperCAmelCase ): snake_case : Union[str, Any] = update(highway[i] , _UpperCAmelCase , _UpperCAmelCase ) snake_case : List[str] = [-1] * number_of_cells for car_index in range(_UpperCAmelCase ): snake_case : Optional[Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) snake_case : Tuple = (car_index + speed) % number_of_cells # Commit the change of position snake_case : Dict = speed highway.append(_UpperCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
36
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 4000000 ) -> int: _a : Optional[Any] =[] _a , _a : Union[str, Any] =0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_UpperCAmelCase ) _a , _a : Optional[Any] =b, a + b return sum(_UpperCAmelCase ) if __name__ == "__main__": print(F"{solution() = }")
694
0
import argparse from collections import defaultdict import yaml UpperCAmelCase_ = '''docs/source/en/_toctree.yml''' def __magic_name__ ( lowercase ) -> Optional[Any]: """simple docstring""" lowercase_ : Tuple = defaultdict(_UpperCAmelCase ) lowercase_ : Any = [] lowercase_ : List[str] = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(_UpperCAmelCase ) lowercase_ : Union[str, Any] = new_doc_list lowercase_ : str = [key for key, value in counts.items() if value > 1] lowercase_ : Any = [] for duplicate_key in duplicates: lowercase_ : Optional[Any] = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(_UpperCAmelCase ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) lowercase_ : Any = sorted(_UpperCAmelCase , key=lambda lowercase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(_UpperCAmelCase ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(_UpperCAmelCase ) # Sort return overview_doc def __magic_name__ ( lowercase=False ) -> Tuple: """simple docstring""" with open(_UpperCAmelCase , encoding="""utf-8""" ) as f: lowercase_ : Tuple = yaml.safe_load(f.read() ) # Get to the API doc lowercase_ : Any = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase_ : Union[str, Any] = content[api_idx]["""sections"""] # Then to the model doc lowercase_ : str = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 lowercase_ : Any = api_doc[scheduler_idx]["""sections"""] lowercase_ : int = clean_doc_toc(_UpperCAmelCase ) lowercase_ : Union[str, Any] = False if new_scheduler_doc != scheduler_doc: lowercase_ : int = True if overwrite: lowercase_ : List[Any] = new_scheduler_doc if diff: if overwrite: lowercase_ : List[Any] = api_doc with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(_UpperCAmelCase , allow_unicode=_UpperCAmelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def __magic_name__ ( lowercase=False ) -> Optional[Any]: """simple docstring""" with open(_UpperCAmelCase , encoding="""utf-8""" ) as f: lowercase_ : Tuple = yaml.safe_load(f.read() ) # Get to the API doc lowercase_ : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase_ : Optional[Any] = content[api_idx]["""sections"""] # Then to the model doc lowercase_ : str = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 lowercase_ : str = False lowercase_ : Any = api_doc[pipeline_idx]["""sections"""] lowercase_ : Union[str, Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: lowercase_ : List[Any] = pipeline_doc["""section"""] lowercase_ : List[Any] = clean_doc_toc(_UpperCAmelCase ) if overwrite: lowercase_ : List[str] = new_sub_pipeline_doc new_pipeline_docs.append(_UpperCAmelCase ) # sort overall pipeline doc lowercase_ : Optional[Any] = clean_doc_toc(_UpperCAmelCase ) if new_pipeline_docs != pipeline_docs: lowercase_ : List[Any] = True if overwrite: lowercase_ : str = new_pipeline_docs if diff: if overwrite: lowercase_ : Optional[Any] = api_doc with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(_UpperCAmelCase , allow_unicode=_UpperCAmelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCAmelCase_ = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
458
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: if n == 1 or not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): return 0 elif n == 2: return 1 else: _a : Dict =[0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: _a : Union[str, Any] =0 _a : Optional[Any] =2 while digits < n: index += 1 _a : Optional[int] =len(str(fibonacci(_UpperCAmelCase ) ) ) return index def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 1000 ) -> int: return fibonacci_digits_index(_UpperCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
694
0
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path A_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) A_ = [ord(letter) for letter in string.ascii_lowercase] A_ = {ord(char) for char in VALID_CHARS} A_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def _UpperCamelCase ( A , A ): UpperCamelCase_ ="" UpperCamelCase_ =42 UpperCamelCase_ =42 UpperCamelCase_ =42 for keychar, cipherchar in zip(cycle(_UpperCAmelCase ) , _UpperCAmelCase ): UpperCamelCase_ =cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(_UpperCAmelCase ) return decoded def _UpperCamelCase ( A ): UpperCamelCase_ =[] for key in product(_UpperCAmelCase , repeat=3 ): UpperCamelCase_ =try_key(_UpperCAmelCase , _UpperCAmelCase ) if encoded is not None: possibles.append(_UpperCAmelCase ) return possibles def _UpperCamelCase ( A , A ): return [possible for possible in possibles if common_word in possible.lower()] def _UpperCamelCase ( A = "p059_cipher.txt" ): UpperCamelCase_ =42 UpperCamelCase_ =42 UpperCamelCase_ =42 UpperCamelCase_ =42 UpperCamelCase_ =Path(_UpperCAmelCase ).parent.joinpath(_UpperCAmelCase ).read_text(encoding="utf-8" ) UpperCamelCase_ =[int(_UpperCAmelCase ) for number in data.strip().split("," )] UpperCamelCase_ =filter_valid_chars(_UpperCAmelCase ) for common_word in COMMON_WORDS: UpperCamelCase_ =filter_common_word(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) == 1: break UpperCamelCase_ =possibles[0] return sum(ord(_UpperCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
391
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : int ) -> str: # Initialise PyTorch model _a : List[str] =RemBertConfig.from_json_file(_UpperCAmelCase ) print("""Building PyTorch model from configuration: {}""".format(str(_UpperCAmelCase ) ) ) _a : Dict =RemBertModel(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(_UpperCAmelCase ) ) torch.save(model.state_dict() ,_UpperCAmelCase ) if __name__ == "__main__": A__: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--rembert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained RemBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A__: Tuple = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
694
0
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
196
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A__: Optional[int] = logging.get_logger(__name__) A__: Union[str, Any] = '''▁''' A__: Any = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} A__: Optional[int] = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } A__: Union[str, Any] = {'''vinai/bartpho-syllable''': 1024} class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Tuple = VOCAB_FILES_NAMES __UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self :Dict , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Any="<s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE :int="</s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE :Tuple="<unk>" , SCREAMING_SNAKE_CASE :Optional[Any]="<pad>" , SCREAMING_SNAKE_CASE :List[str]="<mask>" , SCREAMING_SNAKE_CASE :Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE :List[Any] , ) -> None: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it _a : str =AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token _a : int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) _a : Dict =vocab_file _a : int =monolingual_vocab_file _a : Dict =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _a : List[Any] ={} _a : List[str] =0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids: _a : Optional[Any] =cnt cnt += 1 with open(SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): _a : int =line.strip().split()[0] _a : str =len(self.fairseq_tokens_to_ids ) if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids: _a : Optional[int] =len(self.fairseq_tokens_to_ids ) _a : str ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self :int ) -> List[Any]: '''simple docstring''' _a : Optional[int] =self.__dict__.copy() _a : Optional[Any] =None _a : str =self.sp_model.serialized_model_proto() return state def __setstate__( self :Dict , SCREAMING_SNAKE_CASE :Any ) -> str: '''simple docstring''' _a : List[str] =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _a : Tuple ={} _a : Any =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : Optional[int] =[self.cls_token_id] _a : int =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None , SCREAMING_SNAKE_CASE :bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _a : List[str] =[self.sep_token_id] _a : int =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __UpperCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def __UpperCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' _a : str ={self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Dict ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :Any ) -> Dict: '''simple docstring''' return self.fairseq_ids_to_tokens[index] def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Optional[Any]: '''simple docstring''' _a : str ="""""".join(SCREAMING_SNAKE_CASE ).replace(SCREAMING_SNAKE_CASE , """ """ ).strip() return out_string def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _a : int =os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _a : Any =os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE , """wb""" ) as fi: _a : Optional[Any] =self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( SCREAMING_SNAKE_CASE ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"{str(SCREAMING_SNAKE_CASE )} \n" ) return out_vocab_file, out_monolingual_vocab_file
694
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowercase ( UpperCAmelCase__ ): lowerCamelCase : torch.FloatTensor class lowercase ( UpperCAmelCase__ , UpperCAmelCase__ ): @register_to_config def __init__( self : str , _lowercase : int = 6_55_36 , _lowercase : Optional[int] = None , _lowercase : int = 2 , _lowercase : int = 2 , _lowercase : int = 0 , _lowercase : str = "fourier" , _lowercase : bool = True , _lowercase : bool = False , _lowercase : float = 0.0 , _lowercase : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _lowercase : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _lowercase : Tuple[str] = "UNetMidBlock1D" , _lowercase : str = None , _lowercase : Tuple[int] = (32, 32, 64) , _lowercase : str = None , _lowercase : int = 8 , _lowercase : int = 1 , _lowercase : bool = False , ): super().__init__() SCREAMING_SNAKE_CASE__ : Union[str, Any] = sample_size # time if time_embedding_type == "fourier": SCREAMING_SNAKE_CASE__ : Any = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_lowercase , log=_lowercase , flip_sin_to_cos=_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = 2 * block_out_channels[0] elif time_embedding_type == "positional": SCREAMING_SNAKE_CASE__ : str = Timesteps( block_out_channels[0] , flip_sin_to_cos=_lowercase , downscale_freq_shift=_lowercase ) SCREAMING_SNAKE_CASE__ : int = block_out_channels[0] if use_timestep_embedding: SCREAMING_SNAKE_CASE__ : Optional[Any] = block_out_channels[0] * 4 SCREAMING_SNAKE_CASE__ : Union[str, Any] = TimestepEmbedding( in_channels=_lowercase , time_embed_dim=_lowercase , act_fn=_lowercase , out_dim=block_out_channels[0] , ) SCREAMING_SNAKE_CASE__ : Dict = nn.ModuleList([] ) SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : int = nn.ModuleList([] ) SCREAMING_SNAKE_CASE__ : Any = None # down SCREAMING_SNAKE_CASE__ : str = in_channels for i, down_block_type in enumerate(_lowercase ): SCREAMING_SNAKE_CASE__ : Tuple = output_channel SCREAMING_SNAKE_CASE__ : Dict = block_out_channels[i] if i == 0: input_channel += extra_in_channels SCREAMING_SNAKE_CASE__ : int = i == len(_lowercase ) - 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = get_down_block( _lowercase , num_layers=_lowercase , in_channels=_lowercase , out_channels=_lowercase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_lowercase ) # mid SCREAMING_SNAKE_CASE__ : List[Any] = get_mid_block( _lowercase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_lowercase , add_downsample=_lowercase , ) # up SCREAMING_SNAKE_CASE__ : str = list(reversed(_lowercase ) ) SCREAMING_SNAKE_CASE__ : List[Any] = reversed_block_out_channels[0] if out_block_type is None: SCREAMING_SNAKE_CASE__ : List[str] = out_channels else: SCREAMING_SNAKE_CASE__ : List[str] = block_out_channels[0] for i, up_block_type in enumerate(_lowercase ): SCREAMING_SNAKE_CASE__ : Dict = output_channel SCREAMING_SNAKE_CASE__ : Optional[int] = ( reversed_block_out_channels[i + 1] if i < len(_lowercase ) - 1 else final_upsample_channels ) SCREAMING_SNAKE_CASE__ : Dict = i == len(_lowercase ) - 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_up_block( _lowercase , num_layers=_lowercase , in_channels=_lowercase , out_channels=_lowercase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = output_channel # out SCREAMING_SNAKE_CASE__ : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_out_block( out_block_type=_lowercase , num_groups_out=_lowercase , embed_dim=block_out_channels[0] , out_channels=_lowercase , act_fn=_lowercase , fc_dim=block_out_channels[-1] // 4 , ) def lowercase__ ( self : str , _lowercase : torch.FloatTensor , _lowercase : Union[torch.Tensor, float, int] , _lowercase : bool = True , ): SCREAMING_SNAKE_CASE__ : Any = timestep if not torch.is_tensor(_lowercase ): SCREAMING_SNAKE_CASE__ : str = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(_lowercase ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE__ : Any = timesteps[None].to(sample.device ) SCREAMING_SNAKE_CASE__ : Any = self.time_proj(_lowercase ) if self.config.use_timestep_embedding: SCREAMING_SNAKE_CASE__ : Dict = self.time_mlp(_lowercase ) else: SCREAMING_SNAKE_CASE__ : Any = timestep_embed[..., None] SCREAMING_SNAKE_CASE__ : Dict = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) SCREAMING_SNAKE_CASE__ : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down SCREAMING_SNAKE_CASE__ : Tuple = () for downsample_block in self.down_blocks: SCREAMING_SNAKE_CASE__ : Optional[Any] = downsample_block(hidden_states=_lowercase , temb=_lowercase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.mid_block(_lowercase , _lowercase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): SCREAMING_SNAKE_CASE__ : List[str] = down_block_res_samples[-1:] SCREAMING_SNAKE_CASE__ : Optional[int] = down_block_res_samples[:-1] SCREAMING_SNAKE_CASE__ : Optional[int] = upsample_block(_lowercase , res_hidden_states_tuple=_lowercase , temb=_lowercase ) # 5. post-process if self.out_block: SCREAMING_SNAKE_CASE__ : List[Any] = self.out_block(_lowercase , _lowercase ) if not return_dict: return (sample,) return UNetaDOutput(sample=_lowercase )
35
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
694
0
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowercase = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def __lowerCAmelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : str ) -> Union[str, Any]: warnings.warn(_UpperCAmelCase , _UpperCAmelCase ) requires_backends(_UpperCAmelCase , """sklearn""" ) return (preds == labels).mean() def __lowerCAmelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] ) -> Union[str, Any]: warnings.warn(_UpperCAmelCase , _UpperCAmelCase ) requires_backends(_UpperCAmelCase , """sklearn""" ) lowerCamelCase_ = simple_accuracy(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase_ = fa_score(y_true=_UpperCAmelCase , y_pred=_UpperCAmelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple ) -> Union[str, Any]: warnings.warn(_UpperCAmelCase , _UpperCAmelCase ) requires_backends(_UpperCAmelCase , """sklearn""" ) lowerCamelCase_ = pearsonr(_UpperCAmelCase , _UpperCAmelCase )[0] lowerCamelCase_ = spearmanr(_UpperCAmelCase , _UpperCAmelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __lowerCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] ) -> List[str]: warnings.warn(_UpperCAmelCase , _UpperCAmelCase ) requires_backends(_UpperCAmelCase , """sklearn""" ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ), F'''Predictions and labels have mismatched lengths {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}''' if task_name == "cola": return {"mcc": matthews_corrcoef(_UpperCAmelCase , _UpperCAmelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(_UpperCAmelCase , _UpperCAmelCase )} elif task_name == "mrpc": return acc_and_fa(_UpperCAmelCase , _UpperCAmelCase ) elif task_name == "sts-b": return pearson_and_spearman(_UpperCAmelCase , _UpperCAmelCase ) elif task_name == "qqp": return acc_and_fa(_UpperCAmelCase , _UpperCAmelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(_UpperCAmelCase , _UpperCAmelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(_UpperCAmelCase , _UpperCAmelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(_UpperCAmelCase , _UpperCAmelCase )} elif task_name == "rte": return {"acc": simple_accuracy(_UpperCAmelCase , _UpperCAmelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(_UpperCAmelCase , _UpperCAmelCase )} elif task_name == "hans": return {"acc": simple_accuracy(_UpperCAmelCase , _UpperCAmelCase )} else: raise KeyError(_UpperCAmelCase ) def __lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int ) -> int: warnings.warn(_UpperCAmelCase , _UpperCAmelCase ) requires_backends(_UpperCAmelCase , """sklearn""" ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError(F'''Predictions and labels have mismatched lengths {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}''' ) if task_name == "xnli": return {"acc": simple_accuracy(_UpperCAmelCase , _UpperCAmelCase )} else: raise KeyError(_UpperCAmelCase )
272
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list] ) -> list[list]: _a : Dict =current_set.copy() for row_index, row in enumerate(_UpperCAmelCase ): _a : Any =row[0] for column_index, column in enumerate(_UpperCAmelCase ): if magnitude == 0: _a : Any =column continue _a : Union[str, Any] =column / magnitude # Subtract to cancel term _a : Optional[Any] =current_set[0] _a : List[Any] =[first_row] _a : Tuple =current_set[1::] for row in current_set: _a : Any =[] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(_UpperCAmelCase ) continue for column_index in range(len(_UpperCAmelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(_UpperCAmelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: _a : List[str] =final_set[0] _a : Tuple =[] _a : Tuple =[] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _a : str =simplify(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): resultant[i].insert(0 ,current_first_column[i] ) resultant.insert(0 ,_UpperCAmelCase ) _a : List[Any] =resultant return final_set def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list] ) -> list: if len(_UpperCAmelCase ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) _a : str =len(_UpperCAmelCase ) + 1 if any(len(_UpperCAmelCase ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(_UpperCAmelCase ,(int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(_UpperCAmelCase ) == 1: return [equations[0][-1] / equations[0][0]] _a : str =equations.copy() if any(0 in row for row in data_set ): _a : Optional[int] =data_set.copy() _a : str =[] for row_index, row in enumerate(_UpperCAmelCase ): if 0 not in row: _a : List[Any] =data_set.pop(_UpperCAmelCase ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 ,_UpperCAmelCase ) _a : Dict =data_set.copy() _a : Any =simplify(_UpperCAmelCase ) _a : Any =simplified[::-1] _a : list =[] for row in simplified: _a : Optional[Any] =row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _a : Any =row.copy()[: len(_UpperCAmelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(_UpperCAmelCase ) == 0: solutions.append(0 ) continue _a : List[str] =temp_row[1::] _a : int =temp_row[::-1] for column_index, column in enumerate(_UpperCAmelCase ): current_solution -= column * solutions[column_index] solutions.append(_UpperCAmelCase ) _a : Tuple =[] for item in solutions: final.append(float(round(_UpperCAmelCase ,5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() A__: int = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
694
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Optional[Any]: lowercase__: List[Any] = [] lowercase__: Optional[Any] = set({'''(''', '''[''', '''{'''} ) lowercase__: Tuple = set({''')''', ''']''', '''}'''} ) lowercase__: Optional[Any] = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(_UpperCAmelCase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_UpperCAmelCase ) == 0 or (len(_UpperCAmelCase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_UpperCAmelCase ) == 0 def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: lowercase__: int = input('''Enter sequence of brackets: ''' ) if is_balanced(_UpperCAmelCase ): print(_UpperCAmelCase , '''is balanced''' ) else: print(_UpperCAmelCase , '''is not balanced''' ) if __name__ == "__main__": main()
586
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__: Dict = logging.get_logger(__name__) A__: Optional[int] = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Tuple = "markuplm" def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :List[Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE :Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :int=3_0_7_2 , SCREAMING_SNAKE_CASE :Optional[int]="gelu" , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=5_1_2 , SCREAMING_SNAKE_CASE :Optional[Any]=2 , SCREAMING_SNAKE_CASE :Optional[int]=0.02 , SCREAMING_SNAKE_CASE :Any=1e-12 , SCREAMING_SNAKE_CASE :Any=0 , SCREAMING_SNAKE_CASE :List[Any]=0 , SCREAMING_SNAKE_CASE :Tuple=2 , SCREAMING_SNAKE_CASE :Optional[Any]=2_5_6 , SCREAMING_SNAKE_CASE :Optional[int]=1_0_2_4 , SCREAMING_SNAKE_CASE :Tuple=2_1_6 , SCREAMING_SNAKE_CASE :Dict=1_0_0_1 , SCREAMING_SNAKE_CASE :List[str]=3_2 , SCREAMING_SNAKE_CASE :List[str]=5_0 , SCREAMING_SNAKE_CASE :Dict="absolute" , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :Any=None , **SCREAMING_SNAKE_CASE :Tuple , ) -> Any: '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) _a : Any =vocab_size _a : List[str] =hidden_size _a : List[str] =num_hidden_layers _a : Tuple =num_attention_heads _a : Union[str, Any] =hidden_act _a : Tuple =intermediate_size _a : Optional[Any] =hidden_dropout_prob _a : int =attention_probs_dropout_prob _a : Any =max_position_embeddings _a : List[Any] =type_vocab_size _a : List[Any] =initializer_range _a : List[Any] =layer_norm_eps _a : Optional[int] =position_embedding_type _a : List[Any] =use_cache _a : List[str] =classifier_dropout # additional properties _a : int =max_depth _a : Union[str, Any] =max_xpath_tag_unit_embeddings _a : str =max_xpath_subs_unit_embeddings _a : int =tag_pad_id _a : List[Any] =subs_pad_id _a : str =xpath_unit_hidden_size
694
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=7 , UpperCamelCase__=3 , UpperCamelCase__=30 , UpperCamelCase__=4_00 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=[0.5, 0.5, 0.5] , UpperCamelCase__=[0.5, 0.5, 0.5] , UpperCamelCase__=True , UpperCamelCase__=1 / 2_55 , UpperCamelCase__=True , ): '''simple docstring''' A__ = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_rescale A__ = rescale_factor A__ = do_pad def lowercase_ ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' if not batched: A__ = image_inputs[0] if isinstance(UpperCamelCase__ , Image.Image ): A__ = image.size else: A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size["shortest_edge"] * h / w ) A__ = self.size["""shortest_edge"""] elif w > h: A__ = self.size["""shortest_edge"""] A__ = int(self.size["shortest_edge"] * w / h ) else: A__ = self.size["""shortest_edge"""] A__ = self.size["""shortest_edge"""] else: A__ = [] for image in image_inputs: A__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A__ = max(UpperCamelCase__ , key=lambda UpperCamelCase__ : item[0] )[0] A__ = max(UpperCamelCase__ , key=lambda UpperCamelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowercase__ : Any = YolosImageProcessor if is_vision_available() else None def lowercase_ ( self ): '''simple docstring''' A__ = YolosImageProcessingTester(self ) @property def lowercase_ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self ): '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , "image_mean" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "image_std" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "size" ) ) def lowercase_ ( self ): '''simple docstring''' A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , UpperCamelCase__ ) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase__ ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' pass def lowercase_ ( self ): '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values A__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) A__ = image_processing(UpperCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self ): '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values A__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCamelCase__ , return_tensors="pt" ).pixel_values A__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self ): '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values A__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCamelCase__ , return_tensors="pt" ).pixel_values A__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self ): '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) A__ = self.image_processing_class(do_resize=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_rescale=UpperCamelCase__ ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors A__ = image_processing_a.pad(UpperCamelCase__ , return_tensors="pt" ) A__ = image_processing_a(UpperCamelCase__ , return_tensors="pt" ) self.assertTrue( torch.allclose(encoded_images_with_method["pixel_values"] , encoded_images["pixel_values"] , atol=1e-4 ) ) @slow def lowercase_ ( self ): '''simple docstring''' A__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: A__ = json.loads(f.read() ) A__ = {"""image_id""": 3_97_69, """annotations""": target} # encode them A__ = YolosImageProcessor.from_pretrained("hustvl/yolos-small" ) A__ = image_processing(images=UpperCamelCase__ , annotations=UpperCamelCase__ , return_tensors="pt" ) # verify pixel values A__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , UpperCamelCase__ ) A__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify area A__ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCamelCase__ ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCamelCase__ ) A__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCamelCase__ , atol=1e-3 ) ) # verify image_id A__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCamelCase__ ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCamelCase__ ) ) # verify class_labels A__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCamelCase__ ) ) # verify orig_size A__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCamelCase__ ) ) # verify size A__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCamelCase__ ) ) @slow def lowercase_ ( self ): '''simple docstring''' A__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: A__ = json.loads(f.read() ) A__ = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} A__ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them A__ = YolosImageProcessor(format="coco_panoptic" ) A__ = image_processing(images=UpperCamelCase__ , annotations=UpperCamelCase__ , masks_path=UpperCamelCase__ , return_tensors="pt" ) # verify pixel values A__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , UpperCamelCase__ ) A__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify area A__ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCamelCase__ ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCamelCase__ ) A__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCamelCase__ , atol=1e-3 ) ) # verify image_id A__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCamelCase__ ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCamelCase__ ) ) # verify class_labels A__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCamelCase__ ) ) # verify masks A__ = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , UpperCamelCase__ ) # verify orig_size A__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCamelCase__ ) ) # verify size A__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCamelCase__ ) )
337
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() A__: Union[str, Any] = logging.get_logger('''transformers.models.speecht5''') def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Any ) -> Dict: hf_model.apply_weight_norm() _a : Any =checkpoint["""input_conv.weight_g"""] _a : Union[str, Any] =checkpoint["""input_conv.weight_v"""] _a : Optional[int] =checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): _a : Optional[int] =checkpoint[F"upsamples.{i}.1.weight_g"] _a : Optional[Any] =checkpoint[F"upsamples.{i}.1.weight_v"] _a : List[Any] =checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): _a : Optional[int] =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] _a : Tuple =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] _a : Union[str, Any] =checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] _a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] _a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] _a : Tuple =checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] _a : Dict =checkpoint["""output_conv.1.weight_g"""] _a : str =checkpoint["""output_conv.1.weight_v"""] _a : Union[str, Any] =checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : int=None ,_UpperCAmelCase : Tuple=None ,) -> List[Any]: if config_path is not None: _a : str =SpeechTaHifiGanConfig.from_pretrained(_UpperCAmelCase ) else: _a : str =SpeechTaHifiGanConfig() _a : Tuple =SpeechTaHifiGan(_UpperCAmelCase ) _a : int =torch.load(_UpperCAmelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] ,_UpperCAmelCase ,_UpperCAmelCase ) _a : Dict =np.load(_UpperCAmelCase ) _a : Union[str, Any] =stats[0].reshape(-1 ) _a : Any =stats[1].reshape(-1 ) _a : Tuple =torch.from_numpy(_UpperCAmelCase ).float() _a : List[str] =torch.from_numpy(_UpperCAmelCase ).float() model.save_pretrained(_UpperCAmelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": A__: Optional[int] = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) A__: Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
694
0