code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig
from transformers.utils import logging
logging.set_verbosity_info()
A__: int = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Dict ) -> int:
# initialize config
if "resnet-50" in model_name:
_a : List[Any] =ResNetConfig.from_pretrained("""microsoft/resnet-50""" )
elif "resnet-101" in model_name:
_a : Any =ResNetConfig.from_pretrained("""microsoft/resnet-101""" )
else:
raise ValueError("""Model name should include either resnet50 or resnet101""" )
_a : Dict =DetrConfig(use_timm_backbone=_UpperCAmelCase ,backbone_config=_UpperCAmelCase )
# set label attributes
_a : Dict ="""panoptic""" in model_name
if is_panoptic:
_a : str =250
else:
_a : Optional[int] =91
_a : Union[str, Any] ="""huggingface/label-files"""
_a : List[Any] ="""coco-detection-id2label.json"""
_a : Tuple =json.load(open(hf_hub_download(_UpperCAmelCase ,_UpperCAmelCase ,repo_type="""dataset""" ) ,"""r""" ) )
_a : List[str] ={int(_UpperCAmelCase ): v for k, v in idalabel.items()}
_a : Any =idalabel
_a : Optional[Any] ={v: k for k, v in idalabel.items()}
return config, is_panoptic
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int:
# here we list all keys to be renamed (original name on the left, our name on the right)
_a : str =[]
# stem
# fmt: off
rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") )
rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") )
rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") )
rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") )
rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") )
# stages
for stage_idx in range(len(config.backbone_config.depths ) ):
for layer_idx in range(config.backbone_config.depths[stage_idx] ):
# shortcut
if layer_idx == 0:
rename_keys.append(
(
F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight",
F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight",
) )
rename_keys.append(
(
F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight",
F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight",
) )
rename_keys.append(
(
F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias",
F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias",
) )
rename_keys.append(
(
F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean",
F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean",
) )
rename_keys.append(
(
F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var",
F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var",
) )
# 3 convs
for i in range(3 ):
rename_keys.append(
(
F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight",
F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight",
) )
rename_keys.append(
(
F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight",
F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight",
) )
rename_keys.append(
(
F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias",
F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias",
) )
rename_keys.append(
(
F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean",
F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean",
) )
rename_keys.append(
(
F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var",
F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var",
) )
# fmt: on
for i in range(config.encoder_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(
F"transformer.encoder.layers.{i}.self_attn.out_proj.weight",
F"encoder.layers.{i}.self_attn.out_proj.weight",
) )
rename_keys.append(
(F"transformer.encoder.layers.{i}.self_attn.out_proj.bias", F"encoder.layers.{i}.self_attn.out_proj.bias") )
rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"encoder.layers.{i}.fc1.weight") )
rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"encoder.layers.{i}.fc1.bias") )
rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"encoder.layers.{i}.fc2.weight") )
rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"encoder.layers.{i}.fc2.bias") )
rename_keys.append(
(F"transformer.encoder.layers.{i}.norm1.weight", F"encoder.layers.{i}.self_attn_layer_norm.weight") )
rename_keys.append(
(F"transformer.encoder.layers.{i}.norm1.bias", F"encoder.layers.{i}.self_attn_layer_norm.bias") )
rename_keys.append(
(F"transformer.encoder.layers.{i}.norm2.weight", F"encoder.layers.{i}.final_layer_norm.weight") )
rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"encoder.layers.{i}.final_layer_norm.bias") )
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(
F"transformer.decoder.layers.{i}.self_attn.out_proj.weight",
F"decoder.layers.{i}.self_attn.out_proj.weight",
) )
rename_keys.append(
(F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"decoder.layers.{i}.self_attn.out_proj.bias") )
rename_keys.append(
(
F"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight",
F"decoder.layers.{i}.encoder_attn.out_proj.weight",
) )
rename_keys.append(
(
F"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias",
F"decoder.layers.{i}.encoder_attn.out_proj.bias",
) )
rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"decoder.layers.{i}.fc1.weight") )
rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"decoder.layers.{i}.fc1.bias") )
rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"decoder.layers.{i}.fc2.weight") )
rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"decoder.layers.{i}.fc2.bias") )
rename_keys.append(
(F"transformer.decoder.layers.{i}.norm1.weight", F"decoder.layers.{i}.self_attn_layer_norm.weight") )
rename_keys.append(
(F"transformer.decoder.layers.{i}.norm1.bias", F"decoder.layers.{i}.self_attn_layer_norm.bias") )
rename_keys.append(
(F"transformer.decoder.layers.{i}.norm2.weight", F"decoder.layers.{i}.encoder_attn_layer_norm.weight") )
rename_keys.append(
(F"transformer.decoder.layers.{i}.norm2.bias", F"decoder.layers.{i}.encoder_attn_layer_norm.bias") )
rename_keys.append(
(F"transformer.decoder.layers.{i}.norm3.weight", F"decoder.layers.{i}.final_layer_norm.weight") )
rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"decoder.layers.{i}.final_layer_norm.bias") )
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
rename_keys.extend(
[
("""input_proj.weight""", """input_projection.weight"""),
("""input_proj.bias""", """input_projection.bias"""),
("""query_embed.weight""", """query_position_embeddings.weight"""),
("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""),
("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""),
("""class_embed.weight""", """class_labels_classifier.weight"""),
("""class_embed.bias""", """class_labels_classifier.bias"""),
("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""),
("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""),
("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""),
("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""),
("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""),
("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""),
] )
return rename_keys
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : int ,_UpperCAmelCase : Dict ) -> str:
_a : Optional[int] =state_dict.pop(_UpperCAmelCase )
_a : List[str] =val
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Dict ,_UpperCAmelCase : Any=False ) -> Optional[Any]:
_a : Optional[Any] =""""""
if is_panoptic:
_a : Union[str, Any] ="""detr."""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
_a : List[Any] =state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" )
_a : Tuple =state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" )
# next, add query, keys and values (in that order) to the state dict
_a : int =in_proj_weight[:256, :]
_a : Tuple =in_proj_bias[:256]
_a : Union[str, Any] =in_proj_weight[256:512, :]
_a : List[Any] =in_proj_bias[256:512]
_a : Dict =in_proj_weight[-256:, :]
_a : Optional[int] =in_proj_bias[-256:]
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
for i in range(6 ):
# read in weights + bias of input projection layer of self-attention
_a : Optional[int] =state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" )
_a : List[str] =state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" )
# next, add query, keys and values (in that order) to the state dict
_a : str =in_proj_weight[:256, :]
_a : List[str] =in_proj_bias[:256]
_a : List[Any] =in_proj_weight[256:512, :]
_a : Optional[Any] =in_proj_bias[256:512]
_a : Union[str, Any] =in_proj_weight[-256:, :]
_a : Optional[Any] =in_proj_bias[-256:]
# read in weights + bias of input projection layer of cross-attention
_a : Optional[Any] =state_dict.pop(
F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" )
_a : Union[str, Any] =state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" )
# next, add query, keys and values (in that order) of cross-attention to the state dict
_a : List[Any] =in_proj_weight_cross_attn[:256, :]
_a : int =in_proj_bias_cross_attn[:256]
_a : Optional[Any] =in_proj_weight_cross_attn[256:512, :]
_a : List[str] =in_proj_bias_cross_attn[256:512]
_a : List[str] =in_proj_weight_cross_attn[-256:, :]
_a : Optional[int] =in_proj_bias_cross_attn[-256:]
def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]:
_a : Optional[Any] ="""http://images.cocodataset.org/val2017/000000039769.jpg"""
_a : str =Image.open(requests.get(_UpperCAmelCase ,stream=_UpperCAmelCase ).raw )
return im
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[str] ,_UpperCAmelCase : Tuple=None ,_UpperCAmelCase : Union[str, Any]=False ) -> Optional[Any]:
_a , _a : Optional[int] =get_detr_config(_UpperCAmelCase )
# load original model from torch hub
_a : List[str] ={
"""detr-resnet-50""": """detr_resnet50""",
"""detr-resnet-101""": """detr_resnet101""",
}
logger.info(F"Converting model {model_name}..." )
_a : Tuple =torch.hub.load("""facebookresearch/detr""" ,model_name_to_original_name[model_name] ,pretrained=_UpperCAmelCase ).eval()
_a : List[Any] =detr.state_dict()
# rename keys
for src, dest in create_rename_keys(_UpperCAmelCase ):
if is_panoptic:
_a : Tuple ="""detr.""" + src
rename_key(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
# query, key and value matrices need special treatment
read_in_q_k_v(_UpperCAmelCase ,is_panoptic=_UpperCAmelCase )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
_a : List[str] ="""detr.model.""" if is_panoptic else """model."""
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("""detr""" )
and not key.startswith("""class_labels_classifier""" )
and not key.startswith("""bbox_predictor""" )
):
_a : List[str] =state_dict.pop(_UpperCAmelCase )
_a : int =val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
_a : Dict =state_dict.pop(_UpperCAmelCase )
_a : int =val
elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ):
continue
else:
_a : Tuple =state_dict.pop(_UpperCAmelCase )
_a : Optional[Any] =val
else:
if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ):
_a : Any =state_dict.pop(_UpperCAmelCase )
_a : Optional[Any] =val
# finally, create HuggingFace model and load state dict
_a : List[str] =DetrForSegmentation(_UpperCAmelCase ) if is_panoptic else DetrForObjectDetection(_UpperCAmelCase )
model.load_state_dict(_UpperCAmelCase )
model.eval()
# verify our conversion on an image
_a : Tuple ="""coco_panoptic""" if is_panoptic else """coco_detection"""
_a : Optional[Any] =DetrImageProcessor(format=_UpperCAmelCase )
_a : Any =processor(images=prepare_img() ,return_tensors="""pt""" )
_a : int =encoding["""pixel_values"""]
_a : Union[str, Any] =detr(_UpperCAmelCase )
_a : Dict =model(_UpperCAmelCase )
assert torch.allclose(outputs.logits ,original_outputs["""pred_logits"""] ,atol=1e-3 )
assert torch.allclose(outputs.pred_boxes ,original_outputs["""pred_boxes"""] ,atol=1e-3 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks ,original_outputs["""pred_masks"""] ,atol=1e-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
# Save model and image processor
logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." )
Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase )
model.save_pretrained(_UpperCAmelCase )
processor.save_pretrained(_UpperCAmelCase )
if push_to_hub:
# Upload model and image processor to the hub
logger.info("""Uploading PyTorch model and image processor to the hub...""" )
model.push_to_hub(F"nielsr/{model_name}" )
processor.push_to_hub(F"nielsr/{model_name}" )
if __name__ == "__main__":
A__: int = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''detr-resnet-50''',
type=str,
choices=['''detr-resnet-50''', '''detr-resnet-101'''],
help='''Name of the DETR model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''')
A__: Tuple = parser.parse_args()
convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 694 |
'''simple docstring'''
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 694 | 1 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import evaluate
import numpy as np
import torch
from datasets import load_dataset
from PIL import Image
from torchvision.transforms import (
CenterCrop,
Compose,
Normalize,
RandomHorizontalFlip,
RandomResizedCrop,
Resize,
ToTensor,
)
import transformers
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
AutoConfig,
AutoImageProcessor,
AutoModelForImageClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
A__: str = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''')
A__: List[str] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys())
A__: Optional[int] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> List[str]:
with open(_UpperCAmelCase ,"""rb""" ) as f:
_a : Optional[int] =Image.open(_UpperCAmelCase )
return im.convert("""RGB""" )
@dataclass
class A__ :
__UpperCamelCase : Optional[str] = field(
default=UpperCAmelCase__ , metadata={
"help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)."
} , )
__UpperCamelCase : Optional[str] = field(
default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
__UpperCamelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} )
__UpperCamelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} )
__UpperCamelCase : Optional[float] = field(
default=0.15 , metadata={"help": "Percent to split off of train for validation."} )
__UpperCamelCase : Optional[int] = field(
default=UpperCAmelCase__ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
__UpperCamelCase : Optional[int] = field(
default=UpperCAmelCase__ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def __UpperCAmelCase ( self :List[Any] ) -> Optional[int]:
'''simple docstring'''
if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None):
raise ValueError(
"""You must specify either a dataset name from the hub or a train and/or validation directory.""" )
@dataclass
class A__ :
__UpperCamelCase : str = field(
default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , )
__UpperCamelCase : Optional[str] = field(
default=UpperCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase__ )} , )
__UpperCamelCase : Optional[str] = field(
default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
__UpperCamelCase : Optional[str] = field(
default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} )
__UpperCamelCase : str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
__UpperCamelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[str] ) -> Union[str, Any]:
_a : Tuple =torch.stack([example["""pixel_values"""] for example in examples] )
_a : Tuple =torch.tensor([example["""labels"""] for example in examples] )
return {"pixel_values": pixel_values, "labels": labels}
def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_a : str =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_a , _a , _a : Optional[int] =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_a , _a , _a : str =parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_image_classification""" ,_UpperCAmelCase ,_UpperCAmelCase )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_a : str =training_args.get_process_log_level()
logger.setLevel(_UpperCAmelCase )
transformers.utils.logging.set_verbosity(_UpperCAmelCase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(F"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
_a : int =None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_a : List[str] =get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. "
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Initialize our dataset and prepare it for the 'image-classification' task.
if data_args.dataset_name is not None:
_a : Tuple =load_dataset(
data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ,task="""image-classification""" ,use_auth_token=True if model_args.use_auth_token else None ,)
else:
_a : Optional[Any] ={}
if data_args.train_dir is not None:
_a : Tuple =os.path.join(data_args.train_dir ,"""**""" )
if data_args.validation_dir is not None:
_a : Optional[int] =os.path.join(data_args.validation_dir ,"""**""" )
_a : Dict =load_dataset(
"""imagefolder""" ,data_files=_UpperCAmelCase ,cache_dir=model_args.cache_dir ,task="""image-classification""" ,)
# If we don't have a validation split, split off a percentage of train as validation.
_a : Optional[int] =None if """validation""" in dataset.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split ,_UpperCAmelCase ) and data_args.train_val_split > 0.0:
_a : int =dataset["""train"""].train_test_split(data_args.train_val_split )
_a : Dict =split["""train"""]
_a : int =split["""test"""]
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
_a : Tuple =dataset["""train"""].features["""labels"""].names
_a , _a : Tuple ={}, {}
for i, label in enumerate(_UpperCAmelCase ):
_a : int =str(_UpperCAmelCase )
_a : Optional[int] =label
# Load the accuracy metric from the datasets package
_a : Optional[int] =evaluate.load("""accuracy""" )
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(_UpperCAmelCase : Dict ):
return metric.compute(predictions=np.argmax(p.predictions ,axis=1 ) ,references=p.label_ids )
_a : Any =AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path ,num_labels=len(_UpperCAmelCase ) ,labelaid=_UpperCAmelCase ,idalabel=_UpperCAmelCase ,finetuning_task="""image-classification""" ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
_a : int =AutoModelForImageClassification.from_pretrained(
model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=_UpperCAmelCase ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,)
_a : Optional[int] =AutoImageProcessor.from_pretrained(
model_args.image_processor_name or model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
# Define torchvision transforms to be applied to each image.
if "shortest_edge" in image_processor.size:
_a : Optional[int] =image_processor.size["""shortest_edge"""]
else:
_a : str =(image_processor.size["""height"""], image_processor.size["""width"""])
_a : str =Normalize(mean=image_processor.image_mean ,std=image_processor.image_std )
_a : Tuple =Compose(
[
RandomResizedCrop(_UpperCAmelCase ),
RandomHorizontalFlip(),
ToTensor(),
normalize,
] )
_a : Tuple =Compose(
[
Resize(_UpperCAmelCase ),
CenterCrop(_UpperCAmelCase ),
ToTensor(),
normalize,
] )
def train_transforms(_UpperCAmelCase : Any ):
_a : Optional[int] =[
_train_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""]
]
return example_batch
def val_transforms(_UpperCAmelCase : Tuple ):
_a : Tuple =[_val_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""]]
return example_batch
if training_args.do_train:
if "train" not in dataset:
raise ValueError("""--do_train requires a train dataset""" )
if data_args.max_train_samples is not None:
_a : List[str] =(
dataset["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
)
# Set the training transforms
dataset["train"].set_transform(_UpperCAmelCase )
if training_args.do_eval:
if "validation" not in dataset:
raise ValueError("""--do_eval requires a validation dataset""" )
if data_args.max_eval_samples is not None:
_a : int =(
dataset["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
dataset["validation"].set_transform(_UpperCAmelCase )
# Initalize our trainer
_a : Optional[Any] =Trainer(
model=_UpperCAmelCase ,args=_UpperCAmelCase ,train_dataset=dataset["""train"""] if training_args.do_train else None ,eval_dataset=dataset["""validation"""] if training_args.do_eval else None ,compute_metrics=_UpperCAmelCase ,tokenizer=_UpperCAmelCase ,data_collator=_UpperCAmelCase ,)
# Training
if training_args.do_train:
_a : Optional[Any] =None
if training_args.resume_from_checkpoint is not None:
_a : str =training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_a : List[str] =last_checkpoint
_a : int =trainer.train(resume_from_checkpoint=_UpperCAmelCase )
trainer.save_model()
trainer.log_metrics("""train""" ,train_result.metrics )
trainer.save_metrics("""train""" ,train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
_a : Dict =trainer.evaluate()
trainer.log_metrics("""eval""" ,_UpperCAmelCase )
trainer.save_metrics("""eval""" ,_UpperCAmelCase )
# Write model card and (optionally) push to hub
_a : List[Any] ={
"""finetuned_from""": model_args.model_name_or_path,
"""tasks""": """image-classification""",
"""dataset""": data_args.dataset_name,
"""tags""": ["""image-classification""", """vision"""],
}
if training_args.push_to_hub:
trainer.push_to_hub(**_UpperCAmelCase )
else:
trainer.create_model_card(**_UpperCAmelCase )
if __name__ == "__main__":
main()
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list] ) -> list[list]:
_a : Dict =current_set.copy()
for row_index, row in enumerate(_UpperCAmelCase ):
_a : Any =row[0]
for column_index, column in enumerate(_UpperCAmelCase ):
if magnitude == 0:
_a : Any =column
continue
_a : Union[str, Any] =column / magnitude
# Subtract to cancel term
_a : Optional[Any] =current_set[0]
_a : List[Any] =[first_row]
_a : Tuple =current_set[1::]
for row in current_set:
_a : Any =[]
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(_UpperCAmelCase )
continue
for column_index in range(len(_UpperCAmelCase ) ):
temp_row.append(first_row[column_index] - row[column_index] )
final_set.append(_UpperCAmelCase )
# Create next recursion iteration set
if len(final_set[0] ) != 3:
_a : List[str] =final_set[0]
_a : Tuple =[]
_a : Tuple =[]
for row in final_set[1::]:
current_first_column.append(row[0] )
next_iteration.append(row[1::] )
_a : str =simplify(_UpperCAmelCase )
for i in range(len(_UpperCAmelCase ) ):
resultant[i].insert(0 ,current_first_column[i] )
resultant.insert(0 ,_UpperCAmelCase )
_a : List[Any] =resultant
return final_set
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list] ) -> list:
if len(_UpperCAmelCase ) == 0:
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
_a : str =len(_UpperCAmelCase ) + 1
if any(len(_UpperCAmelCase ) != _length for item in equations ):
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
for row in equations:
if any(not isinstance(_UpperCAmelCase ,(int, float) ) for column in row ):
raise ValueError("""solve_simultaneous() requires lists of integers""" )
if len(_UpperCAmelCase ) == 1:
return [equations[0][-1] / equations[0][0]]
_a : str =equations.copy()
if any(0 in row for row in data_set ):
_a : Optional[int] =data_set.copy()
_a : str =[]
for row_index, row in enumerate(_UpperCAmelCase ):
if 0 not in row:
_a : List[Any] =data_set.pop(_UpperCAmelCase )
break
if not full_row:
raise ValueError("""solve_simultaneous() requires at least 1 full equation""" )
data_set.insert(0 ,_UpperCAmelCase )
_a : Dict =data_set.copy()
_a : Any =simplify(_UpperCAmelCase )
_a : Any =simplified[::-1]
_a : list =[]
for row in simplified:
_a : Optional[Any] =row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0 )
continue
solutions.append(current_solution / row[-2] )
continue
_a : Any =row.copy()[: len(_UpperCAmelCase ) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0 )
if len(_UpperCAmelCase ) == 0:
solutions.append(0 )
continue
_a : List[str] =temp_row[1::]
_a : int =temp_row[::-1]
for column_index, column in enumerate(_UpperCAmelCase ):
current_solution -= column * solutions[column_index]
solutions.append(_UpperCAmelCase )
_a : Tuple =[]
for item in solutions:
final.append(float(round(_UpperCAmelCase ,5 ) ) )
return final[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
A__: int = [
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))
print(solve_simultaneous([[4, 2]]))
| 694 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ) -> bool:
_a : Optional[int] =len(_UpperCAmelCase )
_a : Tuple =[[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
_a : Any =True
# sum is not zero and set is empty then false
for i in range(1 ,required_sum + 1 ):
_a : int =False
for i in range(1 ,arr_len + 1 ):
for j in range(1 ,required_sum + 1 ):
if arr[i - 1] > j:
_a : Optional[Any] =subset[i - 1][j]
if arr[i - 1] <= j:
_a : Union[str, Any] =subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__: Dict = logging.get_logger(__name__)
A__: Optional[int] = {
'''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''',
'''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''',
}
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Tuple = "markuplm"
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :List[Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE :Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :int=3_0_7_2 , SCREAMING_SNAKE_CASE :Optional[int]="gelu" , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=5_1_2 , SCREAMING_SNAKE_CASE :Optional[Any]=2 , SCREAMING_SNAKE_CASE :Optional[int]=0.02 , SCREAMING_SNAKE_CASE :Any=1e-12 , SCREAMING_SNAKE_CASE :Any=0 , SCREAMING_SNAKE_CASE :List[Any]=0 , SCREAMING_SNAKE_CASE :Tuple=2 , SCREAMING_SNAKE_CASE :Optional[Any]=2_5_6 , SCREAMING_SNAKE_CASE :Optional[int]=1_0_2_4 , SCREAMING_SNAKE_CASE :Tuple=2_1_6 , SCREAMING_SNAKE_CASE :Dict=1_0_0_1 , SCREAMING_SNAKE_CASE :List[str]=3_2 , SCREAMING_SNAKE_CASE :List[str]=5_0 , SCREAMING_SNAKE_CASE :Dict="absolute" , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :Any=None , **SCREAMING_SNAKE_CASE :Tuple , ) -> Any:
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
_a : Any =vocab_size
_a : List[str] =hidden_size
_a : List[str] =num_hidden_layers
_a : Tuple =num_attention_heads
_a : Union[str, Any] =hidden_act
_a : Tuple =intermediate_size
_a : Optional[Any] =hidden_dropout_prob
_a : int =attention_probs_dropout_prob
_a : Any =max_position_embeddings
_a : List[Any] =type_vocab_size
_a : List[Any] =initializer_range
_a : List[Any] =layer_norm_eps
_a : Optional[int] =position_embedding_type
_a : List[Any] =use_cache
_a : List[str] =classifier_dropout
# additional properties
_a : int =max_depth
_a : Union[str, Any] =max_xpath_tag_unit_embeddings
_a : str =max_xpath_subs_unit_embeddings
_a : int =tag_pad_id
_a : List[Any] =subs_pad_id
_a : str =xpath_unit_hidden_size
| 694 | 1 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXModel,
)
class A__ :
def __init__( self :Any , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :List[Any]=1_3 , SCREAMING_SNAKE_CASE :Any=7 , SCREAMING_SNAKE_CASE :Union[str, Any]=True , SCREAMING_SNAKE_CASE :int=True , SCREAMING_SNAKE_CASE :List[Any]=True , SCREAMING_SNAKE_CASE :str=True , SCREAMING_SNAKE_CASE :Tuple=9_9 , SCREAMING_SNAKE_CASE :Tuple=6_4 , SCREAMING_SNAKE_CASE :Dict=5 , SCREAMING_SNAKE_CASE :str=4 , SCREAMING_SNAKE_CASE :int=3_7 , SCREAMING_SNAKE_CASE :Dict="gelu" , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :Optional[Any]=0.1 , SCREAMING_SNAKE_CASE :Union[str, Any]=5_1_2 , SCREAMING_SNAKE_CASE :List[str]=1_6 , SCREAMING_SNAKE_CASE :List[str]=2 , SCREAMING_SNAKE_CASE :int=0.02 , SCREAMING_SNAKE_CASE :Optional[Any]=3 , SCREAMING_SNAKE_CASE :str=4 , SCREAMING_SNAKE_CASE :Any=None , ) -> int:
'''simple docstring'''
_a : str =parent
_a : str =batch_size
_a : str =seq_length
_a : List[str] =is_training
_a : List[Any] =use_input_mask
_a : int =use_token_type_ids
_a : List[str] =use_labels
_a : Any =vocab_size
_a : List[Any] =hidden_size
_a : List[Any] =num_hidden_layers
_a : Optional[Any] =num_attention_heads
_a : Optional[int] =intermediate_size
_a : Tuple =hidden_act
_a : List[Any] =hidden_dropout_prob
_a : str =attention_probs_dropout_prob
_a : Tuple =max_position_embeddings
_a : str =type_vocab_size
_a : Dict =type_sequence_label_size
_a : Any =initializer_range
_a : Dict =num_labels
_a : List[str] =num_choices
_a : Union[str, Any] =scope
_a : Any =vocab_size - 1
def __UpperCAmelCase ( self :Tuple ) -> Union[str, Any]:
'''simple docstring'''
_a : Any =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a : int =None
if self.use_input_mask:
_a : Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] )
_a : int =None
if self.use_labels:
_a : Any =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_a : List[str] =self.get_config()
return config, input_ids, input_mask, token_labels
def __UpperCAmelCase ( self :Union[str, Any] ) -> int:
'''simple docstring'''
return GPTNeoXConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , )
def __UpperCAmelCase ( self :Optional[int] ) -> Tuple:
'''simple docstring'''
_a , _a , _a , _a : Optional[Any] =self.prepare_config_and_inputs()
_a : List[Any] =True
return config, input_ids, input_mask, token_labels
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :List[Any] ) -> Any:
'''simple docstring'''
_a : Any =GPTNeoXModel(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
_a : str =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Any ) -> Optional[Any]:
'''simple docstring'''
_a : int =True
_a : Tuple =GPTNeoXModel(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
_a : List[str] =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :int ) -> int:
'''simple docstring'''
_a : Union[str, Any] =GPTNeoXForCausalLM(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
_a : str =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Any ) -> str:
'''simple docstring'''
_a : Union[str, Any] =self.num_labels
_a : Optional[Any] =GPTNeoXForQuestionAnswering(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
_a : Dict =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Any ) -> Union[str, Any]:
'''simple docstring'''
_a : Tuple =self.num_labels
_a : Union[str, Any] =GPTNeoXForSequenceClassification(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
_a : Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a : Optional[Any] =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Dict ) -> Optional[Any]:
'''simple docstring'''
_a : Union[str, Any] =self.num_labels
_a : List[Any] =GPTNeoXForTokenClassification(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
_a : Optional[int] =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :int ) -> List[Any]:
'''simple docstring'''
_a : List[str] =True
_a : List[str] =GPTNeoXForCausalLM(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
# first forward pass
_a : Optional[Any] =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE )
_a : str =outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
_a : Dict =ids_tensor((self.batch_size, 3) , config.vocab_size )
_a : str =ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
_a : str =torch.cat([input_ids, next_tokens] , dim=-1 )
_a : Any =torch.cat([input_mask, next_mask] , dim=-1 )
_a : List[str] =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE )
_a : Tuple =output_from_no_past["""hidden_states"""][0]
_a : Optional[Any] =model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )["""hidden_states"""][0]
# select random slice
_a : Optional[Any] =ids_tensor((1,) , output_from_past.shape[-1] ).item()
_a : Any =output_from_no_past[:, -3:, random_slice_idx].detach()
_a : int =output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) )
def __UpperCAmelCase ( self :Optional[Any] ) -> List[Any]:
'''simple docstring'''
_a : List[Any] =self.prepare_config_and_inputs()
_a , _a , _a , _a : List[Any] =config_and_inputs
_a : Optional[int] ={"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class A__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : Tuple = (
(
GPTNeoXModel,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
)
if is_torch_available()
else ()
)
__UpperCamelCase : List[str] = (GPTNeoXForCausalLM,) if is_torch_available() else ()
__UpperCamelCase : Optional[Any] = (
{
"feature-extraction": GPTNeoXModel,
"question-answering": GPTNeoXForQuestionAnswering,
"text-classification": GPTNeoXForSequenceClassification,
"text-generation": GPTNeoXForCausalLM,
"token-classification": GPTNeoXForTokenClassification,
"zero-shot": GPTNeoXForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCamelCase : Dict = False
__UpperCamelCase : int = False
__UpperCamelCase : str = False
__UpperCamelCase : Union[str, Any] = False
def __UpperCAmelCase ( self :List[Any] ) -> List[Any]:
'''simple docstring'''
_a : List[Any] =GPTNeoXModelTester(self )
_a : Any =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=6_4 , num_attention_heads=8 )
def __UpperCAmelCase ( self :Any ) -> Any:
'''simple docstring'''
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self :Any ) -> str:
'''simple docstring'''
_a , _a , _a , _a : Tuple =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Union[str, Any] ) -> Tuple:
'''simple docstring'''
_a , _a , _a , _a : str =self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Union[str, Any] ) -> Any:
'''simple docstring'''
# This regression test was failing with PyTorch < 1.3
_a , _a , _a , _a : List[str] =self.model_tester.prepare_config_and_inputs_for_decoder()
_a : str =None
self.model_tester.create_and_check_model_as_decoder(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Tuple ) -> int:
'''simple docstring'''
_a , _a , _a , _a : Tuple =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[int] ) -> Optional[int]:
'''simple docstring'''
_a : List[str] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Tuple ) -> Union[str, Any]:
'''simple docstring'''
_a : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[Any] ) -> str:
'''simple docstring'''
_a : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[Any] ) -> Dict:
'''simple docstring'''
_a : int =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE )
@unittest.skip(reason="""Feed forward chunking is not implemented""" )
def __UpperCAmelCase ( self :Tuple ) -> str:
'''simple docstring'''
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[int] ) -> Dict:
'''simple docstring'''
_a , _a : Any =self.model_tester.prepare_config_and_inputs_for_common()
_a : Optional[Any] =ids_tensor([1, 1_0] , config.vocab_size )
_a : Dict =ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
_a : Any =GPTNeoXModel(SCREAMING_SNAKE_CASE )
original_model.to(SCREAMING_SNAKE_CASE )
original_model.eval()
_a : str =original_model(SCREAMING_SNAKE_CASE ).last_hidden_state
_a : List[Any] =original_model(SCREAMING_SNAKE_CASE ).last_hidden_state
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
_a : Union[str, Any] ={"""type""": scaling_type, """factor""": 10.0}
_a : Dict =GPTNeoXModel(SCREAMING_SNAKE_CASE )
scaled_model.to(SCREAMING_SNAKE_CASE )
scaled_model.eval()
_a : List[Any] =scaled_model(SCREAMING_SNAKE_CASE ).last_hidden_state
_a : Tuple =scaled_model(SCREAMING_SNAKE_CASE ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-5 ) )
@require_torch
class A__ ( unittest.TestCase ):
@slow
def __UpperCAmelCase ( self :List[str] ) -> List[Any]:
'''simple docstring'''
_a : Tuple =AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" )
for checkpointing in [True, False]:
_a : int =GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" )
if checkpointing:
model.gradient_checkpointing_enable()
else:
model.gradient_checkpointing_disable()
model.to(SCREAMING_SNAKE_CASE )
_a : List[str] =tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE )
# The hub repo. is updated on 2023-04-04, resulting in poor outputs.
# See: https://github.com/huggingface/transformers/pull/24193
_a : Optional[int] ="""My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure"""
_a : int =model.generate(**SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , max_new_tokens=2_0 )
_a : int =tokenizer.batch_decode(SCREAMING_SNAKE_CASE )[0]
self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
| 694 |
'''simple docstring'''
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
A__: Union[str, Any] = logging.get_logger('''transformers.models.speecht5''')
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Any ) -> Dict:
hf_model.apply_weight_norm()
_a : Any =checkpoint["""input_conv.weight_g"""]
_a : Union[str, Any] =checkpoint["""input_conv.weight_v"""]
_a : Optional[int] =checkpoint["""input_conv.bias"""]
for i in range(len(config.upsample_rates ) ):
_a : Optional[int] =checkpoint[F"upsamples.{i}.1.weight_g"]
_a : Optional[Any] =checkpoint[F"upsamples.{i}.1.weight_v"]
_a : List[Any] =checkpoint[F"upsamples.{i}.1.bias"]
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
_a : Optional[int] =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"]
_a : Tuple =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"]
_a : Union[str, Any] =checkpoint[F"blocks.{i}.convs1.{j}.1.bias"]
_a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"]
_a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"]
_a : Tuple =checkpoint[F"blocks.{i}.convs2.{j}.1.bias"]
_a : Dict =checkpoint["""output_conv.1.weight_g"""]
_a : str =checkpoint["""output_conv.1.weight_v"""]
_a : Union[str, Any] =checkpoint["""output_conv.1.bias"""]
hf_model.remove_weight_norm()
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : int=None ,_UpperCAmelCase : Tuple=None ,) -> List[Any]:
if config_path is not None:
_a : str =SpeechTaHifiGanConfig.from_pretrained(_UpperCAmelCase )
else:
_a : str =SpeechTaHifiGanConfig()
_a : Tuple =SpeechTaHifiGan(_UpperCAmelCase )
_a : int =torch.load(_UpperCAmelCase )
load_weights(orig_checkpoint["""model"""]["""generator"""] ,_UpperCAmelCase ,_UpperCAmelCase )
_a : Dict =np.load(_UpperCAmelCase )
_a : Union[str, Any] =stats[0].reshape(-1 )
_a : Any =stats[1].reshape(-1 )
_a : Tuple =torch.from_numpy(_UpperCAmelCase ).float()
_a : List[str] =torch.from_numpy(_UpperCAmelCase ).float()
model.save_pretrained(_UpperCAmelCase )
if repo_id:
print("""Pushing to the hub...""" )
model.push_to_hub(_UpperCAmelCase )
if __name__ == "__main__":
A__: Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''')
parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
A__: Tuple = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 694 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[int] ) -> Optional[Any]:
_a : List[Any] =[]
_a : Optional[Any] =set({"""(""", """[""", """{"""} )
_a : Tuple =set({""")""", """]""", """}"""} )
_a : Optional[Any] ={"""{""": """}""", """[""": """]""", """(""": """)"""}
for i in range(len(_UpperCAmelCase ) ):
if s[i] in open_brackets:
stack.append(s[i] )
elif s[i] in closed_brackets and (
len(_UpperCAmelCase ) == 0 or (len(_UpperCAmelCase ) > 0 and open_to_closed[stack.pop()] != s[i])
):
return False
return len(_UpperCAmelCase ) == 0
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]:
_a : int =input("""Enter sequence of brackets: """ )
if is_balanced(_UpperCAmelCase ):
print(_UpperCAmelCase ,"""is balanced""" )
else:
print(_UpperCAmelCase ,"""is not balanced""" )
if __name__ == "__main__":
main()
| 694 |
'''simple docstring'''
class A__ :
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :List[str] ) -> List[str]:
'''simple docstring'''
_a : List[str] =None
_a : Optional[Any] =None
_a : str =graph
self._normalize_graph(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Optional[int] =len(SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =None
def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[str] ) -> Any:
'''simple docstring'''
if sources is int:
_a : Tuple =[sources]
if sinks is int:
_a : Optional[int] =[sinks]
if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) == 0:
return
_a : Union[str, Any] =sources[0]
_a : Tuple =sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(SCREAMING_SNAKE_CASE ) > 1 or len(SCREAMING_SNAKE_CASE ) > 1:
_a : Tuple =0
for i in sources:
max_input_flow += sum(self.graph[i] )
_a : List[Any] =len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
_a : Any =max_input_flow
_a : List[str] =0
_a : List[str] =len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
_a : str =max_input_flow
_a : Optional[Any] =size - 1
def __UpperCAmelCase ( self :Optional[int] ) -> Tuple:
'''simple docstring'''
if self.maximum_flow_algorithm is None:
raise Exception("""You need to set maximum flow algorithm before.""" )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Dict ) -> int:
'''simple docstring'''
_a : Tuple =algorithm(self )
class A__ :
def __init__( self :Tuple , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Dict:
'''simple docstring'''
_a : List[str] =flow_network
_a : List[Any] =flow_network.verticesCount
_a : str =flow_network.sourceIndex
_a : str =flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
_a : List[Any] =flow_network.graph
_a : Optional[int] =False
def __UpperCAmelCase ( self :List[Any] ) -> List[str]:
'''simple docstring'''
if not self.executed:
self._algorithm()
_a : Any =True
def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
pass
class A__ ( UpperCAmelCase__ ):
def __init__( self :int , SCREAMING_SNAKE_CASE :str ) -> int:
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE )
# use this to save your result
_a : List[Any] =-1
def __UpperCAmelCase ( self :Dict ) -> Tuple:
'''simple docstring'''
if not self.executed:
raise Exception("""You should execute algorithm before using its result!""" )
return self.maximum_flow
class A__ ( UpperCAmelCase__ ):
def __init__( self :str , SCREAMING_SNAKE_CASE :Tuple ) -> str:
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE )
_a : int =[[0] * self.verticies_count for i in range(self.verticies_count )]
_a : Union[str, Any] =[0] * self.verticies_count
_a : Optional[Any] =[0] * self.verticies_count
def __UpperCAmelCase ( self :Optional[int] ) -> Optional[Any]:
'''simple docstring'''
_a : int =self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
_a : Tuple =[
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
_a : List[Any] =0
while i < len(SCREAMING_SNAKE_CASE ):
_a : Any =vertices_list[i]
_a : str =self.heights[vertex_index]
self.process_vertex(SCREAMING_SNAKE_CASE )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE ) )
_a : List[str] =0
else:
i += 1
_a : Optional[int] =sum(self.preflow[self.source_index] )
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> List[str]:
'''simple docstring'''
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
self.relabel(SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :str ) -> List[str]:
'''simple docstring'''
_a : List[str] =min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Any ) -> List[Any]:
'''simple docstring'''
_a : int =None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
_a : Optional[Any] =self.heights[to_index]
if min_height is not None:
_a : Any =min_height + 1
if __name__ == "__main__":
A__: str = [0]
A__: Optional[Any] = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
A__: Tuple = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
A__: Union[str, Any] = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
A__: List[str] = flow_network.find_maximum_flow()
print(F"maximum flow is {maximum_flow}")
| 694 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
A__: Union[str, Any] = {'''tokenization_byt5''': ['''ByT5Tokenizer''']}
if TYPE_CHECKING:
from .tokenization_byta import ByTaTokenizer
else:
import sys
A__: Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 694 |
'''simple docstring'''
A__: Optional[int] = '''
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
A__: List[Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
A__: int = {
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 694 | 1 |
'''simple docstring'''
import socket
def SCREAMING_SNAKE_CASE_ ( ) -> List[str]:
_a : List[str] =socket.socket(socket.AF_INET ,socket.SOCK_STREAM )
_a : str =socket.gethostname()
_a : Optional[Any] =12312
sock.connect((host, port) )
sock.send(B"""Hello server!""" )
with open("""Received_file""" ,"""wb""" ) as out_file:
print("""File opened""" )
print("""Receiving data...""" )
while True:
_a : Optional[Any] =sock.recv(1024 )
if not data:
break
out_file.write(_UpperCAmelCase )
print("""Successfully received the file""" )
sock.close()
print("""Connection closed""" )
if __name__ == "__main__":
main()
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : float ,_UpperCAmelCase : float ) -> float:
return price * (1 + tax_rate)
if __name__ == "__main__":
print(F"{price_plus_tax(100, 0.25) = }")
print(F"{price_plus_tax(125.50, 0.05) = }")
| 694 | 1 |
'''simple docstring'''
from sklearn.metrics import fa_score
import datasets
A__: List[str] = '''
The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:
F1 = 2 * (precision * recall) / (precision + recall)
'''
A__: Tuple = '''
Args:
predictions (`list` of `int`): Predicted labels.
references (`list` of `int`): Ground truth labels.
labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.
pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.
average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.
- \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.
- \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.
- \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
- \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.
- \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).
sample_weight (`list` of `float`): Sample weights Defaults to None.
Returns:
f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.
Examples:
Example 1-A simple binary example
>>> f1_metric = datasets.load_metric("f1")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])
>>> print(results)
{\'f1\': 0.5}
Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.
>>> f1_metric = datasets.load_metric("f1")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)
>>> print(round(results[\'f1\'], 2))
0.67
Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.
>>> f1_metric = datasets.load_metric("f1")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])
>>> print(round(results[\'f1\'], 2))
0.35
Example 4-A multiclass example, with different values for the `average` input.
>>> predictions = [0, 2, 1, 0, 0, 1]
>>> references = [0, 1, 2, 0, 1, 2]
>>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")
>>> print(round(results[\'f1\'], 2))
0.27
>>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")
>>> print(round(results[\'f1\'], 2))
0.33
>>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")
>>> print(round(results[\'f1\'], 2))
0.27
>>> results = f1_metric.compute(predictions=predictions, references=references, average=None)
>>> print(results)
{\'f1\': array([0.8, 0. , 0. ])}
'''
A__: Optional[int] = '''
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A__ ( datasets.Metric ):
def __UpperCAmelCase ( self :Dict ) -> Optional[int]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""int32""" ) ),
"""references""": datasets.Sequence(datasets.Value("""int32""" ) ),
}
if self.config_name == """multilabel"""
else {
"""predictions""": datasets.Value("""int32""" ),
"""references""": datasets.Value("""int32""" ),
} ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , )
def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Optional[int]=None , SCREAMING_SNAKE_CASE :Optional[int]=1 , SCREAMING_SNAKE_CASE :str="binary" , SCREAMING_SNAKE_CASE :Optional[Any]=None ) -> List[Any]:
'''simple docstring'''
_a : Dict =fa_score(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , pos_label=SCREAMING_SNAKE_CASE , average=SCREAMING_SNAKE_CASE , sample_weight=SCREAMING_SNAKE_CASE )
return {"f1": float(SCREAMING_SNAKE_CASE ) if score.size == 1 else score}
| 694 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class A__ ( unittest.TestCase ):
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Any=1_3 , SCREAMING_SNAKE_CASE :Any=7 , SCREAMING_SNAKE_CASE :Any=True , SCREAMING_SNAKE_CASE :int=True , SCREAMING_SNAKE_CASE :Optional[int]=True , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :Optional[Any]=9_9 , SCREAMING_SNAKE_CASE :Tuple=3_2 , SCREAMING_SNAKE_CASE :Union[str, Any]=5 , SCREAMING_SNAKE_CASE :List[str]=4 , SCREAMING_SNAKE_CASE :int=3_7 , SCREAMING_SNAKE_CASE :Optional[Any]="gelu" , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=0.1 , SCREAMING_SNAKE_CASE :Dict=5_1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_6 , SCREAMING_SNAKE_CASE :Union[str, Any]=2 , SCREAMING_SNAKE_CASE :List[Any]=0.02 , SCREAMING_SNAKE_CASE :int=4 , ) -> Tuple:
'''simple docstring'''
_a : Optional[Any] =parent
_a : List[str] =batch_size
_a : List[str] =seq_length
_a : List[Any] =is_training
_a : Optional[int] =use_attention_mask
_a : List[Any] =use_token_type_ids
_a : List[Any] =use_labels
_a : Optional[Any] =vocab_size
_a : str =hidden_size
_a : List[Any] =num_hidden_layers
_a : List[Any] =num_attention_heads
_a : Union[str, Any] =intermediate_size
_a : int =hidden_act
_a : List[str] =hidden_dropout_prob
_a : Optional[int] =attention_probs_dropout_prob
_a : Dict =max_position_embeddings
_a : Any =type_vocab_size
_a : str =type_sequence_label_size
_a : str =initializer_range
_a : List[str] =num_choices
def __UpperCAmelCase ( self :Union[str, Any] ) -> Dict:
'''simple docstring'''
_a : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a : Dict =None
if self.use_attention_mask:
_a : Any =random_attention_mask([self.batch_size, self.seq_length] )
_a : Optional[int] =None
if self.use_token_type_ids:
_a : Any =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_a : Union[str, Any] =RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def __UpperCAmelCase ( self :Optional[Any] ) -> int:
'''simple docstring'''
_a : Tuple =self.prepare_config_and_inputs()
_a , _a , _a , _a : List[Any] =config_and_inputs
_a : Optional[int] ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def __UpperCAmelCase ( self :int ) -> str:
'''simple docstring'''
_a : List[Any] =self.prepare_config_and_inputs()
_a , _a , _a , _a : Optional[int] =config_and_inputs
_a : Tuple =True
_a : Optional[Any] =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_a : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class A__ ( UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : Union[str, Any] = True
__UpperCamelCase : Dict = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __UpperCAmelCase ( self :List[str] ) -> Optional[int]:
'''simple docstring'''
_a : Union[str, Any] =FlaxRobertaPreLayerNormModelTester(self )
@slow
def __UpperCAmelCase ( self :str ) -> int:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_a : Optional[int] =model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE )
_a : Dict =model(np.ones((1, 1) ) )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
@require_flax
class A__ ( unittest.TestCase ):
@slow
def __UpperCAmelCase ( self :Any ) -> str:
'''simple docstring'''
_a : str =FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE )
_a : List[Any] =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa )
_a : Dict =model(SCREAMING_SNAKE_CASE )[0]
_a : List[Any] =[1, 1_1, 5_0_2_6_5]
self.assertEqual(list(output.shape ) , SCREAMING_SNAKE_CASE )
# compare the actual values for a slice.
_a : Any =np.array(
[[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
@slow
def __UpperCAmelCase ( self :int ) -> int:
'''simple docstring'''
_a : Union[str, Any] =FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE )
_a : Any =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa )
_a : Optional[int] =model(SCREAMING_SNAKE_CASE )[0]
# compare the actual values for a slice.
_a : str =np.array(
[[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 694 | 1 |
'''simple docstring'''
import argparse
from collections import defaultdict
import yaml
A__: Dict = '''docs/source/en/_toctree.yml'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Dict ) -> Optional[Any]:
_a : Tuple =defaultdict(_UpperCAmelCase )
_a : Any =[]
_a : List[str] =[]
for doc in doc_list:
if "local" in doc:
counts[doc["local"]] += 1
if doc["title"].lower() == "overview":
overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} )
else:
new_doc_list.append(_UpperCAmelCase )
_a : Union[str, Any] =new_doc_list
_a : str =[key for key, value in counts.items() if value > 1]
_a : Any =[]
for duplicate_key in duplicates:
_a : Optional[Any] =list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} )
if len(_UpperCAmelCase ) > 1:
raise ValueError(
F"{duplicate_key} is present several times in the documentation table of content at "
"""`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """
"""others.""" )
# Only add this once
new_doc.append({"""local""": duplicate_key, """title""": titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] )
_a : Any =sorted(_UpperCAmelCase ,key=lambda _UpperCAmelCase : s["title"].lower() )
# "overview" gets special treatment and is always first
if len(_UpperCAmelCase ) > 1:
raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" )
overview_doc.extend(_UpperCAmelCase )
# Sort
return overview_doc
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Union[str, Any]=False ) -> Tuple:
with open(_UpperCAmelCase ,encoding="""utf-8""" ) as f:
_a : Tuple =yaml.safe_load(f.read() )
# Get to the API doc
_a : Any =0
while content[api_idx]["title"] != "API":
api_idx += 1
_a : Union[str, Any] =content[api_idx]["""sections"""]
# Then to the model doc
_a : str =0
while api_doc[scheduler_idx]["title"] != "Schedulers":
scheduler_idx += 1
_a : Any =api_doc[scheduler_idx]["""sections"""]
_a : int =clean_doc_toc(_UpperCAmelCase )
_a : Union[str, Any] =False
if new_scheduler_doc != scheduler_doc:
_a : int =True
if overwrite:
_a : List[Any] =new_scheduler_doc
if diff:
if overwrite:
_a : List[Any] =api_doc
with open(_UpperCAmelCase ,"""w""" ,encoding="""utf-8""" ) as f:
f.write(yaml.dump(_UpperCAmelCase ,allow_unicode=_UpperCAmelCase ) )
else:
raise ValueError(
"""The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int=False ) -> Optional[Any]:
with open(_UpperCAmelCase ,encoding="""utf-8""" ) as f:
_a : Tuple =yaml.safe_load(f.read() )
# Get to the API doc
_a : Union[str, Any] =0
while content[api_idx]["title"] != "API":
api_idx += 1
_a : Optional[Any] =content[api_idx]["""sections"""]
# Then to the model doc
_a : str =0
while api_doc[pipeline_idx]["title"] != "Pipelines":
pipeline_idx += 1
_a : str =False
_a : Any =api_doc[pipeline_idx]["""sections"""]
_a : Union[str, Any] =[]
# sort sub pipeline docs
for pipeline_doc in pipeline_docs:
if "section" in pipeline_doc:
_a : List[Any] =pipeline_doc["""section"""]
_a : List[Any] =clean_doc_toc(_UpperCAmelCase )
if overwrite:
_a : List[str] =new_sub_pipeline_doc
new_pipeline_docs.append(_UpperCAmelCase )
# sort overall pipeline doc
_a : Optional[Any] =clean_doc_toc(_UpperCAmelCase )
if new_pipeline_docs != pipeline_docs:
_a : List[Any] =True
if overwrite:
_a : str =new_pipeline_docs
if diff:
if overwrite:
_a : Optional[Any] =api_doc
with open(_UpperCAmelCase ,"""w""" ,encoding="""utf-8""" ) as f:
f.write(yaml.dump(_UpperCAmelCase ,allow_unicode=_UpperCAmelCase ) )
else:
raise ValueError(
"""The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" )
if __name__ == "__main__":
A__: Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
A__: Tuple = parser.parse_args()
check_scheduler_doc(args.fix_and_overwrite)
check_pipeline_doc(args.fix_and_overwrite)
| 694 |
'''simple docstring'''
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
A__: Tuple = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any]=None ,_UpperCAmelCase : str=None ) -> Union[str, Any]:
return field(default_factory=lambda: default ,metadata=_UpperCAmelCase )
@dataclass
class A__ :
__UpperCamelCase : List[str] = list_field(
default=[] , metadata={
"help": (
"Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version"
" of all available models"
)
} , )
__UpperCamelCase : List[int] = list_field(
default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} )
__UpperCamelCase : List[int] = list_field(
default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Use FP16 to accelerate inference."} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Benchmark training of model"} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Verbose memory tracing"} )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={
"help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"
} , )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Trace memory line by line"} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Save result to a CSV file"} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Save all print statements in a log file"} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Whether to print environment information"} )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={
"help": (
"Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use"
" multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled"
" for debugging / testing and on TPU."
)
} , )
__UpperCamelCase : str = field(
default=f'''inference_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , )
__UpperCamelCase : str = field(
default=f'''inference_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , )
__UpperCamelCase : str = field(
default=f'''train_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , )
__UpperCamelCase : str = field(
default=f'''train_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , )
__UpperCamelCase : str = field(
default=f'''env_info_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , )
__UpperCamelCase : str = field(
default=f'''log_{round(time() )}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , )
__UpperCamelCase : int = field(default=3 , metadata={"help": "Times an experiment will be run."} )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={
"help": (
"Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain"
" model weights."
)
} , )
def __UpperCAmelCase ( self :Union[str, Any] ) -> int:
'''simple docstring'''
warnings.warn(
f"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"
""" are deprecated in general and it is advised to use external Benchmarking libraries """
""" to benchmark Transformer models.""" , SCREAMING_SNAKE_CASE , )
def __UpperCAmelCase ( self :Optional[int] ) -> Dict:
'''simple docstring'''
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def __UpperCAmelCase ( self :Optional[int] ) -> List[str]:
'''simple docstring'''
if len(self.models ) <= 0:
raise ValueError(
"""Please make sure you provide at least one model name / model identifier, *e.g.* `--models"""
""" bert-base-cased` or `args.models = ['bert-base-cased'].""" )
return self.models
@property
def __UpperCAmelCase ( self :Optional[Any] ) -> int:
'''simple docstring'''
if not self.multi_process:
return False
elif self.is_tpu:
logger.info("""Multiprocessing is currently not possible on TPU.""" )
return False
else:
return True
| 694 | 1 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
from torchvision.transforms.functional import InterpolationMode
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
ViTImageProcessor,
ViTMAEConfig,
ViTMAEForPreTraining,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
A__: Dict = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''')
@dataclass
class A__ :
__UpperCamelCase : Optional[str] = field(
default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} )
__UpperCamelCase : Optional[str] = field(
default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
__UpperCamelCase : Optional[str] = field(
default=UpperCAmelCase__ , metadata={"help": "The column name of the images in the files."} )
__UpperCamelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} )
__UpperCamelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} )
__UpperCamelCase : Optional[float] = field(
default=0.15 , metadata={"help": "Percent to split off of train for validation."} )
__UpperCamelCase : Optional[int] = field(
default=UpperCAmelCase__ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
__UpperCamelCase : Optional[int] = field(
default=UpperCAmelCase__ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def __UpperCAmelCase ( self :Optional[int] ) -> Optional[Any]:
'''simple docstring'''
_a : List[str] ={}
if self.train_dir is not None:
_a : List[str] =self.train_dir
if self.validation_dir is not None:
_a : Dict =self.validation_dir
_a : int =data_files if data_files else None
@dataclass
class A__ :
__UpperCamelCase : str = field(
default=UpperCAmelCase__ , metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
} , )
__UpperCamelCase : Optional[str] = field(
default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} )
__UpperCamelCase : Optional[str] = field(
default=UpperCAmelCase__ , metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
} , )
__UpperCamelCase : Optional[str] = field(
default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} )
__UpperCamelCase : str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
__UpperCamelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
__UpperCamelCase : float = field(
default=0.75 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Whether or not to train with normalized pixel values as target."} )
@dataclass
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : float = field(
default=1e-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> Any:
_a : List[str] =torch.stack([example["""pixel_values"""] for example in examples] )
return {"pixel_values": pixel_values}
def SCREAMING_SNAKE_CASE_ ( ) -> Dict:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_a : Dict =HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_a , _a , _a : Optional[Any] =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_a , _a , _a : Union[str, Any] =parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_mae""" ,_UpperCAmelCase ,_UpperCAmelCase )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_a : int =training_args.get_process_log_level()
logger.setLevel(_UpperCAmelCase )
transformers.utils.logging.set_verbosity(_UpperCAmelCase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(F"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
_a : int =None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_a : Dict =get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. "
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Initialize our dataset.
_a : str =load_dataset(
data_args.dataset_name ,data_args.dataset_config_name ,data_files=data_args.data_files ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,)
# If we don't have a validation split, split off a percentage of train as validation.
_a : Union[str, Any] =None if """validation""" in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split ,_UpperCAmelCase ) and data_args.train_val_split > 0.0:
_a : Optional[Any] =ds["""train"""].train_test_split(data_args.train_val_split )
_a : Optional[int] =split["""train"""]
_a : Tuple =split["""test"""]
# Load pretrained model and image processor
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_a : Optional[int] ={
"""cache_dir""": model_args.cache_dir,
"""revision""": model_args.model_revision,
"""use_auth_token""": True if model_args.use_auth_token else None,
}
if model_args.config_name:
_a : Optional[Any] =ViTMAEConfig.from_pretrained(model_args.config_name ,**_UpperCAmelCase )
elif model_args.model_name_or_path:
_a : Any =ViTMAEConfig.from_pretrained(model_args.model_name_or_path ,**_UpperCAmelCase )
else:
_a : List[str] =ViTMAEConfig()
logger.warning("""You are instantiating a new config instance from scratch.""" )
if model_args.config_overrides is not None:
logger.info(F"Overriding config: {model_args.config_overrides}" )
config.update_from_string(model_args.config_overrides )
logger.info(F"New config: {config}" )
# adapt config
config.update(
{
"""mask_ratio""": model_args.mask_ratio,
"""norm_pix_loss""": model_args.norm_pix_loss,
} )
# create image processor
if model_args.image_processor_name:
_a : Optional[int] =ViTImageProcessor.from_pretrained(model_args.image_processor_name ,**_UpperCAmelCase )
elif model_args.model_name_or_path:
_a : Optional[Any] =ViTImageProcessor.from_pretrained(model_args.model_name_or_path ,**_UpperCAmelCase )
else:
_a : Optional[int] =ViTImageProcessor()
# create model
if model_args.model_name_or_path:
_a : Any =ViTMAEForPreTraining.from_pretrained(
model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=_UpperCAmelCase ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,)
else:
logger.info("""Training new model from scratch""" )
_a : str =ViTMAEForPreTraining(_UpperCAmelCase )
if training_args.do_train:
_a : Optional[int] =ds["""train"""].column_names
else:
_a : int =ds["""validation"""].column_names
if data_args.image_column_name is not None:
_a : Optional[Any] =data_args.image_column_name
elif "image" in column_names:
_a : Any ="""image"""
elif "img" in column_names:
_a : Any ="""img"""
else:
_a : str =column_names[0]
# transformations as done in original MAE paper
# source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py
if "shortest_edge" in image_processor.size:
_a : str =image_processor.size["""shortest_edge"""]
else:
_a : Optional[int] =(image_processor.size["""height"""], image_processor.size["""width"""])
_a : Tuple =Compose(
[
Lambda(lambda _UpperCAmelCase : img.convert("""RGB""" ) if img.mode != "RGB" else img ),
RandomResizedCrop(_UpperCAmelCase ,scale=(0.2, 1.0) ,interpolation=InterpolationMode.BICUBIC ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean ,std=image_processor.image_std ),
] )
def preprocess_images(_UpperCAmelCase : int ):
_a : Union[str, Any] =[transforms(_UpperCAmelCase ) for image in examples[image_column_name]]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError("""--do_train requires a train dataset""" )
if data_args.max_train_samples is not None:
_a : int =ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(_UpperCAmelCase )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError("""--do_eval requires a validation dataset""" )
if data_args.max_eval_samples is not None:
_a : int =(
ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(_UpperCAmelCase )
# Compute absolute learning rate
_a : Optional[Any] =(
training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
)
if training_args.base_learning_rate is not None:
_a : str =training_args.base_learning_rate * total_train_batch_size / 256
# Initialize our trainer
_a : Any =Trainer(
model=_UpperCAmelCase ,args=_UpperCAmelCase ,train_dataset=ds["""train"""] if training_args.do_train else None ,eval_dataset=ds["""validation"""] if training_args.do_eval else None ,tokenizer=_UpperCAmelCase ,data_collator=_UpperCAmelCase ,)
# Training
if training_args.do_train:
_a : List[Any] =None
if training_args.resume_from_checkpoint is not None:
_a : List[Any] =training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_a : str =last_checkpoint
_a : str =trainer.train(resume_from_checkpoint=_UpperCAmelCase )
trainer.save_model()
trainer.log_metrics("""train""" ,train_result.metrics )
trainer.save_metrics("""train""" ,train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
_a : int =trainer.evaluate()
trainer.log_metrics("""eval""" ,_UpperCAmelCase )
trainer.save_metrics("""eval""" ,_UpperCAmelCase )
# Write model card and (optionally) push to hub
_a : Tuple ={
"""tasks""": """masked-auto-encoding""",
"""dataset""": data_args.dataset_name,
"""tags""": ["""masked-auto-encoding"""],
}
if training_args.push_to_hub:
trainer.push_to_hub(**_UpperCAmelCase )
else:
trainer.create_model_card(**_UpperCAmelCase )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Dict ) -> Union[str, Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 694 |
'''simple docstring'''
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class A__ ( UpperCAmelCase__ ):
def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Distribution , SCREAMING_SNAKE_CASE :int=None , SCREAMING_SNAKE_CASE :Tuple=None , SCREAMING_SNAKE_CASE :List[Any]=0 ) -> List[str]:
'''simple docstring'''
_a : int =1.0 if scale is None else scale
_a : Optional[Any] =0.0 if loc is None else loc
super().__init__(SCREAMING_SNAKE_CASE , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=SCREAMING_SNAKE_CASE )] )
@property
def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return self.base_dist.mean * self.scale + self.loc
@property
def __UpperCAmelCase ( self :Optional[int] ) -> Dict:
'''simple docstring'''
return self.base_dist.variance * self.scale**2
@property
def __UpperCAmelCase ( self :Any ) -> List[str]:
'''simple docstring'''
return self.variance.sqrt()
class A__ ( nn.Module ):
def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Dict[str, int] , SCREAMING_SNAKE_CASE :Callable[..., Tuple[torch.Tensor]] , **SCREAMING_SNAKE_CASE :Dict ) -> None:
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE )
_a : Tuple =args_dim
_a : Tuple =nn.ModuleList([nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for dim in args_dim.values()] )
_a : Dict =domain_map
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Tuple[torch.Tensor]:
'''simple docstring'''
_a : Tuple =[proj(SCREAMING_SNAKE_CASE ) for proj in self.proj]
return self.domain_map(*SCREAMING_SNAKE_CASE )
class A__ ( nn.Module ):
def __init__( self :Dict , SCREAMING_SNAKE_CASE :Tuple ) -> int:
'''simple docstring'''
super().__init__()
_a : List[Any] =function
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Optional[int] , *SCREAMING_SNAKE_CASE :int ) -> List[Any]:
'''simple docstring'''
return self.function(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE )
class A__ :
__UpperCamelCase : type
__UpperCamelCase : int
__UpperCamelCase : Dict[str, int]
def __init__( self :Any , SCREAMING_SNAKE_CASE :int = 1 ) -> None:
'''simple docstring'''
_a : Any =dim
_a : List[Any] ={k: dim * self.args_dim[k] for k in self.args_dim}
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
if self.dim == 1:
return self.distribution_class(*SCREAMING_SNAKE_CASE )
else:
return Independent(self.distribution_class(*SCREAMING_SNAKE_CASE ) , 1 )
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , ) -> Distribution:
'''simple docstring'''
_a : str =self._base_distribution(SCREAMING_SNAKE_CASE )
if loc is None and scale is None:
return distr
else:
return AffineTransformed(SCREAMING_SNAKE_CASE , loc=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , event_dim=self.event_dim )
@property
def __UpperCAmelCase ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
return () if self.dim == 1 else (self.dim,)
@property
def __UpperCAmelCase ( self :Any ) -> int:
'''simple docstring'''
return len(self.event_shape )
@property
def __UpperCAmelCase ( self :Any ) -> float:
'''simple docstring'''
return 0.0
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :int ) -> nn.Module:
'''simple docstring'''
return ParameterProjection(
in_features=SCREAMING_SNAKE_CASE , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , )
def __UpperCAmelCase ( self :int , *SCREAMING_SNAKE_CASE :torch.Tensor ) -> Any:
'''simple docstring'''
raise NotImplementedError()
@staticmethod
def __UpperCAmelCase ( SCREAMING_SNAKE_CASE :torch.Tensor ) -> torch.Tensor:
'''simple docstring'''
return (x + torch.sqrt(torch.square(SCREAMING_SNAKE_CASE ) + 4.0 )) / 2.0
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1}
__UpperCamelCase : type = StudentT
@classmethod
def __UpperCAmelCase ( cls :int , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Union[str, Any]:
'''simple docstring'''
_a : Tuple =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps )
_a : Optional[Any] =2.0 + cls.squareplus(SCREAMING_SNAKE_CASE )
return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 )
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1}
__UpperCamelCase : type = Normal
@classmethod
def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Dict:
'''simple docstring'''
_a : List[str] =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps )
return loc.squeeze(-1 ), scale.squeeze(-1 )
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1}
__UpperCamelCase : type = NegativeBinomial
@classmethod
def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Optional[int]:
'''simple docstring'''
_a : int =cls.squareplus(SCREAMING_SNAKE_CASE )
return total_count.squeeze(-1 ), logits.squeeze(-1 )
def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Distribution:
'''simple docstring'''
_a , _a : Any =distr_args
if self.dim == 1:
return self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE )
else:
return Independent(self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE ) , 1 )
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None ) -> Distribution:
'''simple docstring'''
_a , _a : Optional[int] =distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits) )
| 694 | 1 |
'''simple docstring'''
import numpy as np
from nltk.translate import meteor_score
import datasets
from datasets.config import importlib_metadata, version
A__: Optional[Any] = version.parse(importlib_metadata.version('''nltk'''))
if NLTK_VERSION >= version.Version('''3.6.4'''):
from nltk import word_tokenize
A__: Tuple = '''\
@inproceedings{banarjee2005,
title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},
author = {Banerjee, Satanjeev and Lavie, Alon},
booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},
month = jun,
year = {2005},
address = {Ann Arbor, Michigan},
publisher = {Association for Computational Linguistics},
url = {https://www.aclweb.org/anthology/W05-0909},
pages = {65--72},
}
'''
A__: Optional[int] = '''\
METEOR, an automatic metric for machine translation evaluation
that is based on a generalized concept of unigram matching between the
machine-produced translation and human-produced reference translations.
Unigrams can be matched based on their surface forms, stemmed forms,
and meanings; furthermore, METEOR can be easily extended to include more
advanced matching strategies. Once all generalized unigram matches
between the two strings have been found, METEOR computes a score for
this matching using a combination of unigram-precision, unigram-recall, and
a measure of fragmentation that is designed to directly capture how
well-ordered the matched words in the machine translation are in relation
to the reference.
METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic
data and 0.331 on the Chinese data. This is shown to be an improvement on
using simply unigram-precision, unigram-recall and their harmonic F1
combination.
'''
A__: Dict = '''
Computes METEOR score of translated segments against one or more references.
Args:
predictions: list of predictions to score. Each prediction
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
alpha: Parameter for controlling relative weights of precision and recall. default: 0.9
beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3
gamma: Relative weight assigned to fragmentation penalty. default: 0.5
Returns:
\'meteor\': meteor score.
Examples:
>>> meteor = datasets.load_metric(\'meteor\')
>>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]
>>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]
>>> results = meteor.compute(predictions=predictions, references=references)
>>> print(round(results["meteor"], 4))
0.6944
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A__ ( datasets.Metric ):
def __UpperCAmelCase ( self :Dict ) -> Dict:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"""] , reference_urls=[
"""https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score""",
"""https://en.wikipedia.org/wiki/METEOR""",
] , )
def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :Any ) -> int:
'''simple docstring'''
import nltk
nltk.download("""wordnet""" )
if NLTK_VERSION >= version.Version("""3.6.5""" ):
nltk.download("""punkt""" )
if NLTK_VERSION >= version.Version("""3.6.6""" ):
nltk.download("""omw-1.4""" )
def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :List[Any]=0.9 , SCREAMING_SNAKE_CASE :Union[str, Any]=3 , SCREAMING_SNAKE_CASE :List[str]=0.5 ) -> Tuple:
'''simple docstring'''
if NLTK_VERSION >= version.Version("""3.6.5""" ):
_a : List[Any] =[
meteor_score.single_meteor_score(
word_tokenize(SCREAMING_SNAKE_CASE ) , word_tokenize(SCREAMING_SNAKE_CASE ) , alpha=SCREAMING_SNAKE_CASE , beta=SCREAMING_SNAKE_CASE , gamma=SCREAMING_SNAKE_CASE )
for ref, pred in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
]
else:
_a : str =[
meteor_score.single_meteor_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , alpha=SCREAMING_SNAKE_CASE , beta=SCREAMING_SNAKE_CASE , gamma=SCREAMING_SNAKE_CASE )
for ref, pred in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
]
return {"meteor": np.mean(SCREAMING_SNAKE_CASE )}
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int:
return number | (1 << position)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int:
return number & ~(1 << position)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int:
return number ^ (1 << position)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> bool:
return ((number >> position) & 1) == 1
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int:
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A__: Tuple = logging.get_logger(__name__)
A__: Any = {
'''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''',
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
}
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Union[str, Any] = "poolformer"
def __init__( self :Tuple , SCREAMING_SNAKE_CASE :Union[str, Any]=3 , SCREAMING_SNAKE_CASE :Union[str, Any]=1_6 , SCREAMING_SNAKE_CASE :Union[str, Any]=1_6 , SCREAMING_SNAKE_CASE :Any=3 , SCREAMING_SNAKE_CASE :str=4.0 , SCREAMING_SNAKE_CASE :Optional[Any]=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE :Any=[6_4, 1_2_8, 3_2_0, 5_1_2] , SCREAMING_SNAKE_CASE :Optional[int]=[7, 3, 3, 3] , SCREAMING_SNAKE_CASE :Union[str, Any]=[4, 2, 2, 2] , SCREAMING_SNAKE_CASE :Optional[int]=[2, 1, 1, 1] , SCREAMING_SNAKE_CASE :Optional[int]=4 , SCREAMING_SNAKE_CASE :List[str]=0.0 , SCREAMING_SNAKE_CASE :List[str]="gelu" , SCREAMING_SNAKE_CASE :List[Any]=True , SCREAMING_SNAKE_CASE :Union[str, Any]=1e-5 , SCREAMING_SNAKE_CASE :Tuple=0.02 , **SCREAMING_SNAKE_CASE :Any , ) -> List[str]:
'''simple docstring'''
_a : Union[str, Any] =num_channels
_a : Optional[int] =patch_size
_a : List[str] =stride
_a : Dict =padding
_a : Tuple =pool_size
_a : Dict =hidden_sizes
_a : Optional[Any] =mlp_ratio
_a : Optional[int] =depths
_a : Optional[int] =patch_sizes
_a : Union[str, Any] =strides
_a : Optional[int] =num_encoder_blocks
_a : str =drop_path_rate
_a : str =hidden_act
_a : Tuple =use_layer_scale
_a : str =layer_scale_init_value
_a : int =initializer_range
super().__init__(**SCREAMING_SNAKE_CASE )
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Optional[Any] = version.parse("1.11" )
@property
def __UpperCAmelCase ( self :str ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def __UpperCAmelCase ( self :Tuple ) -> float:
'''simple docstring'''
return 2e-3
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : list ) -> float:
_validate_point(_UpperCAmelCase )
_validate_point(_UpperCAmelCase )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError("""Both points must be in the same n-dimensional space""" )
return float(sum(abs(a - b ) for a, b in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[float] ) -> None:
if point:
if isinstance(_UpperCAmelCase ,_UpperCAmelCase ):
for item in point:
if not isinstance(_UpperCAmelCase ,(int, float) ):
_a : str =(
"""Expected a list of numbers as input, found """
F"{type(_UpperCAmelCase ).__name__}"
)
raise TypeError(_UpperCAmelCase )
else:
_a : List[Any] =F"Expected a list of numbers as input, found {type(_UpperCAmelCase ).__name__}"
raise TypeError(_UpperCAmelCase )
else:
raise ValueError("""Missing an input""" )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : list ) -> float:
_validate_point(_UpperCAmelCase )
_validate_point(_UpperCAmelCase )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError("""Both points must be in the same n-dimensional space""" )
return float(sum(abs(x - y ) for x, y in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 | 1 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
A__: Optional[Any] = '''examples/'''
A__: Tuple = {
'''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''),
'''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''),
'''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''),
'''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''),
}
A__: Union[str, Any] = {
'''init''': '''src/transformers/__init__.py''',
'''setup''': '''setup.py''',
}
A__: Union[str, Any] = '''README.md'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Any ,_UpperCAmelCase : int ,_UpperCAmelCase : str ) -> str:
with open(_UpperCAmelCase ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f:
_a : Optional[int] =f.read()
_a , _a : Union[str, Any] =REPLACE_PATTERNS[pattern]
_a : List[str] =replace.replace("""VERSION""" ,_UpperCAmelCase )
_a : Optional[Any] =re_pattern.sub(_UpperCAmelCase ,_UpperCAmelCase )
with open(_UpperCAmelCase ,"""w""" ,encoding="""utf-8""" ,newline="""\n""" ) as f:
f.write(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Any ) -> Optional[Any]:
for folder, directories, fnames in os.walk(_UpperCAmelCase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(_UpperCAmelCase ,_UpperCAmelCase ) ,_UpperCAmelCase ,pattern="""examples""" )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : Optional[int]=False ) -> Any:
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
if not patch:
update_version_in_examples(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]:
_a : Tuple ="""🤗 Transformers currently provides the following architectures"""
_a : Tuple ="""1. Want to contribute a new model?"""
with open(_UpperCAmelCase ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f:
_a : Dict =f.readlines()
# Find the start of the list.
_a : Dict =0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
_a : Union[str, Any] =start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
_a : Optional[int] =lines[index].replace(
"""https://huggingface.co/docs/transformers/main/model_doc""" ,"""https://huggingface.co/docs/transformers/model_doc""" ,)
index += 1
with open(_UpperCAmelCase ,"""w""" ,encoding="""utf-8""" ,newline="""\n""" ) as f:
f.writelines(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]:
with open(REPLACE_FILES["""init"""] ,"""r""" ) as f:
_a : Tuple =f.read()
_a : List[str] =REPLACE_PATTERNS["""init"""][0].search(_UpperCAmelCase ).groups()[0]
return packaging.version.parse(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any]=False ) -> List[str]:
_a : Optional[Any] =get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
_a : Dict =default_version.base_version
elif patch:
_a : List[str] =F"{default_version.major}.{default_version.minor}.{default_version.micro + 1}"
else:
_a : Dict =F"{default_version.major}.{default_version.minor + 1}.0"
# Now let's ask nicely if that's the right one.
_a : Any =input(F"Which version are you releasing? [{default_version}]" )
if len(_UpperCAmelCase ) == 0:
_a : Tuple =default_version
print(F"Updating version to {version}." )
global_version_update(_UpperCAmelCase ,patch=_UpperCAmelCase )
if not patch:
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]:
_a : List[str] =get_version()
_a : Union[str, Any] =F"{current_version.major}.{current_version.minor + 1}.0.dev0"
_a : Dict =current_version.base_version
# Check with the user we got that right.
_a : Union[str, Any] =input(F"Which version are we developing now? [{dev_version}]" )
if len(_UpperCAmelCase ) == 0:
_a : Dict =dev_version
print(F"Updating version to {version}." )
global_version_update(_UpperCAmelCase )
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
if __name__ == "__main__":
A__: Union[str, Any] = argparse.ArgumentParser()
parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''')
parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''')
A__: Union[str, Any] = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('''Nothing to do after a patch :-)''')
else:
post_release_work()
| 694 |
'''simple docstring'''
from __future__ import annotations
class A__ :
def __init__( self :str , SCREAMING_SNAKE_CASE :int ) -> None:
'''simple docstring'''
_a : int =order
# a_{0} ... a_{k}
_a : Optional[Any] =[1.0] + [0.0] * order
# b_{0} ... b_{k}
_a : Tuple =[1.0] + [0.0] * order
# x[n-1] ... x[n-k]
_a : List[Any] =[0.0] * self.order
# y[n-1] ... y[n-k]
_a : Tuple =[0.0] * self.order
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :list[float] , SCREAMING_SNAKE_CASE :list[float] ) -> None:
'''simple docstring'''
if len(SCREAMING_SNAKE_CASE ) < self.order:
_a : int =[1.0, *a_coeffs]
if len(SCREAMING_SNAKE_CASE ) != self.order + 1:
_a : int =(
f"Expected a_coeffs to have {self.order + 1} elements "
f"for {self.order}-order filter, got {len(SCREAMING_SNAKE_CASE )}"
)
raise ValueError(SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) != self.order + 1:
_a : Optional[Any] =(
f"Expected b_coeffs to have {self.order + 1} elements "
f"for {self.order}-order filter, got {len(SCREAMING_SNAKE_CASE )}"
)
raise ValueError(SCREAMING_SNAKE_CASE )
_a : List[str] =a_coeffs
_a : Union[str, Any] =b_coeffs
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :float ) -> float:
'''simple docstring'''
_a : str =0.0
# Start at index 1 and do index 0 at the end.
for i in range(1 , self.order + 1 ):
result += (
self.b_coeffs[i] * self.input_history[i - 1]
- self.a_coeffs[i] * self.output_history[i - 1]
)
_a : Any =(result + self.b_coeffs[0] * sample) / self.a_coeffs[0]
_a : str =self.input_history[:-1]
_a : Optional[Any] =self.output_history[:-1]
_a : Optional[int] =sample
_a : Tuple =result
return result
| 694 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A__: Optional[int] = {
'''configuration_nllb_moe''': [
'''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''NllbMoeConfig''',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__: List[str] = [
'''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''NllbMoeForConditionalGeneration''',
'''NllbMoeModel''',
'''NllbMoePreTrainedModel''',
'''NllbMoeTop2Router''',
'''NllbMoeSparseMLP''',
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
A__: str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 694 |
'''simple docstring'''
from queue import PriorityQueue
from typing import Any
import numpy as np
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : dict ,_UpperCAmelCase : str ,_UpperCAmelCase : set ,_UpperCAmelCase : set ,_UpperCAmelCase : dict ,_UpperCAmelCase : dict ,_UpperCAmelCase : PriorityQueue ,_UpperCAmelCase : dict ,_UpperCAmelCase : float | int ,) -> float | int:
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
_a : Dict =cst_fwd.get(_UpperCAmelCase ,np.inf )
_a : int =cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
_a : Tuple =new_cost_f
_a : Optional[Any] =v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
_a : str =cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ,_UpperCAmelCase : dict ,_UpperCAmelCase : dict ) -> int:
_a : Optional[Any] =-1
_a : List[str] =set()
_a : Optional[int] =set()
_a : Optional[int] ={source: 0}
_a : List[str] ={destination: 0}
_a : Union[str, Any] ={source: None}
_a : Dict ={destination: None}
_a : PriorityQueue[Any] =PriorityQueue()
_a : PriorityQueue[Any] =PriorityQueue()
_a : Optional[int] =np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
_a , _a : str =queue_forward.get()
visited_forward.add(_UpperCAmelCase )
_a , _a : List[Any] =queue_backward.get()
visited_backward.add(_UpperCAmelCase )
_a : int =pass_and_relaxation(
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,)
_a : Any =pass_and_relaxation(
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,)
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
_a : Any =shortest_distance
return shortest_path_distance
A__: Union[str, Any] = {
'''B''': [['''C''', 1]],
'''C''': [['''D''', 1]],
'''D''': [['''F''', 1]],
'''E''': [['''B''', 1], ['''G''', 2]],
'''F''': [],
'''G''': [['''F''', 1]],
}
A__: str = {
'''B''': [['''E''', 1]],
'''C''': [['''B''', 1]],
'''D''': [['''C''', 1]],
'''F''': [['''D''', 1], ['''G''', 1]],
'''E''': [[None, np.inf]],
'''G''': [['''E''', 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : str ) -> list[int]:
_a : List[Any] =int(_UpperCAmelCase )
# Initialize Result
_a : List[str] =[]
# Traverse through all denomination
for denomination in reversed(_UpperCAmelCase ):
# Find denominations
while int(_UpperCAmelCase ) >= int(_UpperCAmelCase ):
total_value -= int(_UpperCAmelCase )
answer.append(_UpperCAmelCase ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
A__: Optional[Any] = []
A__: Union[str, Any] = '''0'''
if (
input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower()
== "y"
):
A__: Any = int(input('''Enter the number of denominations you want to add: ''').strip())
for i in range(0, n):
denominations.append(int(input(F"Denomination {i}: ").strip()))
A__: Tuple = input('''Enter the change you want to make in Indian Currency: ''').strip()
else:
# All denominations of Indian Currency if user does not enter
A__: int = [1, 2, 5, 10, 20, 50, 100, 500, 2000]
A__: List[Any] = input('''Enter the change you want to make: ''').strip()
if int(value) == 0 or int(value) < 0:
print('''The total value cannot be zero or negative.''')
else:
print(F"Following is minimal change for {value}: ")
A__: Union[str, Any] = find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=''' ''')
| 694 |
'''simple docstring'''
from math import factorial
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 100 ) -> int:
return sum(map(_UpperCAmelCase ,str(factorial(_UpperCAmelCase ) ) ) )
if __name__ == "__main__":
print(solution(int(input('''Enter the Number: ''').strip())))
| 694 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DebertaVaConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
TFDebertaVaModel,
)
class A__ :
def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :int=1_3 , SCREAMING_SNAKE_CASE :str=7 , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :int=True , SCREAMING_SNAKE_CASE :Any=True , SCREAMING_SNAKE_CASE :int=True , SCREAMING_SNAKE_CASE :Tuple=9_9 , SCREAMING_SNAKE_CASE :str=3_2 , SCREAMING_SNAKE_CASE :Optional[int]=2 , SCREAMING_SNAKE_CASE :Tuple=4 , SCREAMING_SNAKE_CASE :int=3_7 , SCREAMING_SNAKE_CASE :Optional[int]="gelu" , SCREAMING_SNAKE_CASE :List[Any]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=5_1_2 , SCREAMING_SNAKE_CASE :str=1_6 , SCREAMING_SNAKE_CASE :Dict=2 , SCREAMING_SNAKE_CASE :Optional[int]=0.02 , SCREAMING_SNAKE_CASE :str=False , SCREAMING_SNAKE_CASE :List[Any]=True , SCREAMING_SNAKE_CASE :Tuple="None" , SCREAMING_SNAKE_CASE :Optional[Any]=3 , SCREAMING_SNAKE_CASE :Optional[Any]=4 , SCREAMING_SNAKE_CASE :Tuple=None , ) -> Any:
'''simple docstring'''
_a : int =parent
_a : str =batch_size
_a : List[str] =seq_length
_a : Any =is_training
_a : int =use_input_mask
_a : Any =use_token_type_ids
_a : List[str] =use_labels
_a : Optional[Any] =vocab_size
_a : Tuple =hidden_size
_a : List[str] =num_hidden_layers
_a : Tuple =num_attention_heads
_a : Optional[Any] =intermediate_size
_a : Union[str, Any] =hidden_act
_a : List[str] =hidden_dropout_prob
_a : List[str] =attention_probs_dropout_prob
_a : int =max_position_embeddings
_a : List[str] =type_vocab_size
_a : Optional[Any] =type_sequence_label_size
_a : Optional[int] =initializer_range
_a : Tuple =num_labels
_a : Dict =num_choices
_a : Union[str, Any] =relative_attention
_a : Tuple =position_biased_input
_a : List[str] =pos_att_type
_a : Tuple =scope
def __UpperCAmelCase ( self :Optional[int] ) -> Dict:
'''simple docstring'''
_a : Any =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a : str =None
if self.use_input_mask:
_a : Dict =random_attention_mask([self.batch_size, self.seq_length] )
_a : Dict =None
if self.use_token_type_ids:
_a : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_a : Union[str, Any] =None
_a : Any =None
_a : Union[str, Any] =None
if self.use_labels:
_a : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a : Dict =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_a : Optional[Any] =DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=SCREAMING_SNAKE_CASE , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :List[str] ) -> str:
'''simple docstring'''
_a : int =TFDebertaVaModel(config=SCREAMING_SNAKE_CASE )
_a : List[Any] ={"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
_a : Optional[int] =[input_ids, input_mask]
_a : Union[str, Any] =model(SCREAMING_SNAKE_CASE )
_a : Dict =model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Any ) -> str:
'''simple docstring'''
_a : int =TFDebertaVaForMaskedLM(config=SCREAMING_SNAKE_CASE )
_a : str ={
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
_a : int =model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :List[str] ) -> Union[str, Any]:
'''simple docstring'''
_a : Tuple =self.num_labels
_a : Union[str, Any] =TFDebertaVaForSequenceClassification(config=SCREAMING_SNAKE_CASE )
_a : Union[str, Any] ={
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
_a : Union[str, Any] =model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :List[Any] ) -> Optional[int]:
'''simple docstring'''
_a : Optional[Any] =self.num_labels
_a : Union[str, Any] =TFDebertaVaForTokenClassification(config=SCREAMING_SNAKE_CASE )
_a : List[Any] ={
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
_a : List[str] =model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :List[str] ) -> List[str]:
'''simple docstring'''
_a : str =TFDebertaVaForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
_a : List[Any] ={
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
_a : Tuple =model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __UpperCAmelCase ( self :Tuple ) -> int:
'''simple docstring'''
_a : List[Any] =self.prepare_config_and_inputs()
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) : Optional[int] =config_and_inputs
_a : Optional[int] ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class A__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : List[Any] = (
(
TFDebertaVaModel,
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
)
if is_tf_available()
else ()
)
__UpperCamelCase : str = (
{
"feature-extraction": TFDebertaVaModel,
"fill-mask": TFDebertaVaForMaskedLM,
"question-answering": TFDebertaVaForQuestionAnswering,
"text-classification": TFDebertaVaForSequenceClassification,
"token-classification": TFDebertaVaForTokenClassification,
"zero-shot": TFDebertaVaForSequenceClassification,
}
if is_tf_available()
else {}
)
__UpperCamelCase : Dict = False
__UpperCamelCase : List[str] = False
def __UpperCAmelCase ( self :str ) -> Dict:
'''simple docstring'''
_a : Optional[Any] =TFDebertaVaModelTester(self )
_a : Optional[int] =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=3_7 )
def __UpperCAmelCase ( self :Optional[int] ) -> Tuple:
'''simple docstring'''
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self :str ) -> int:
'''simple docstring'''
_a : Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Tuple ) -> Dict:
'''simple docstring'''
_a : Optional[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Tuple ) -> Optional[Any]:
'''simple docstring'''
_a : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :List[Any] ) -> List[str]:
'''simple docstring'''
_a : List[str] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :int ) -> str:
'''simple docstring'''
_a : List[str] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE )
@slow
def __UpperCAmelCase ( self :List[Any] ) -> Optional[int]:
'''simple docstring'''
_a : List[Any] =TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
@require_tf
class A__ ( unittest.TestCase ):
@unittest.skip(reason="""Model not available yet""" )
def __UpperCAmelCase ( self :str ) -> List[str]:
'''simple docstring'''
pass
@slow
def __UpperCAmelCase ( self :str ) -> int:
'''simple docstring'''
_a : Dict =TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" )
_a : Any =tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] )
_a : Optional[Any] =tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
_a : Optional[int] =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE )[0]
_a : List[Any] =tf.constant(
[[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] )
tf.debugging.assert_near(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE , atol=1e-4 )
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ) -> list:
_a : Tuple =len(_UpperCAmelCase )
_a : str =[]
for i in range(len(_UpperCAmelCase ) - pat_len + 1 ):
_a : int =True
for j in range(_UpperCAmelCase ):
if s[i + j] != pattern[j]:
_a : int =False
break
if match_found:
position.append(_UpperCAmelCase )
return position
if __name__ == "__main__":
assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3]
print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
| 694 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class A__ :
__UpperCamelCase : Dict = MBartConfig
__UpperCamelCase : Dict = {}
__UpperCamelCase : Dict = "gelu"
def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :List[str]=1_3 , SCREAMING_SNAKE_CASE :Dict=7 , SCREAMING_SNAKE_CASE :str=True , SCREAMING_SNAKE_CASE :Dict=False , SCREAMING_SNAKE_CASE :Tuple=9_9 , SCREAMING_SNAKE_CASE :Tuple=3_2 , SCREAMING_SNAKE_CASE :List[Any]=2 , SCREAMING_SNAKE_CASE :int=4 , SCREAMING_SNAKE_CASE :str=3_7 , SCREAMING_SNAKE_CASE :int=0.1 , SCREAMING_SNAKE_CASE :Any=0.1 , SCREAMING_SNAKE_CASE :Tuple=2_0 , SCREAMING_SNAKE_CASE :Optional[Any]=2 , SCREAMING_SNAKE_CASE :Optional[Any]=1 , SCREAMING_SNAKE_CASE :int=0 , ) -> List[Any]:
'''simple docstring'''
_a : int =parent
_a : List[Any] =batch_size
_a : Tuple =seq_length
_a : List[Any] =is_training
_a : Dict =use_labels
_a : List[Any] =vocab_size
_a : Optional[int] =hidden_size
_a : Tuple =num_hidden_layers
_a : Union[str, Any] =num_attention_heads
_a : Optional[Any] =intermediate_size
_a : List[str] =hidden_dropout_prob
_a : List[Any] =attention_probs_dropout_prob
_a : Any =max_position_embeddings
_a : Tuple =eos_token_id
_a : Union[str, Any] =pad_token_id
_a : Union[str, Any] =bos_token_id
def __UpperCAmelCase ( self :Union[str, Any] ) -> Any:
'''simple docstring'''
_a : List[str] =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_a : Optional[int] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_a : Tuple =tf.concat([input_ids, eos_tensor] , axis=1 )
_a : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a : Dict =self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_a : Union[str, Any] =prepare_mbart_inputs_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return config, inputs_dict
def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :str ) -> Any:
'''simple docstring'''
_a : List[str] =TFMBartModel(config=SCREAMING_SNAKE_CASE ).get_decoder()
_a : int =inputs_dict["""input_ids"""]
_a : Dict =input_ids[:1, :]
_a : Dict =inputs_dict["""attention_mask"""][:1, :]
_a : Tuple =inputs_dict["""head_mask"""]
_a : Optional[int] =1
# first forward pass
_a : List[Any] =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , head_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE )
_a , _a : Optional[int] =outputs.to_tuple()
_a : Optional[int] =past_key_values[1]
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Any ,_UpperCAmelCase : int ,_UpperCAmelCase : str ,_UpperCAmelCase : Union[str, Any]=None ,_UpperCAmelCase : List[str]=None ,_UpperCAmelCase : Optional[int]=None ,_UpperCAmelCase : List[Any]=None ,_UpperCAmelCase : str=None ,) -> Tuple:
if attention_mask is None:
_a : int =tf.cast(tf.math.not_equal(_UpperCAmelCase ,config.pad_token_id ) ,tf.inta )
if decoder_attention_mask is None:
_a : Optional[Any] =tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ),
] ,axis=-1 ,)
if head_mask is None:
_a : str =tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_a : Optional[Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_a : Optional[Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class A__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : Dict = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
__UpperCamelCase : Union[str, Any] = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
__UpperCamelCase : Dict = (
{
"conversational": TFMBartForConditionalGeneration,
"feature-extraction": TFMBartModel,
"summarization": TFMBartForConditionalGeneration,
"text2text-generation": TFMBartForConditionalGeneration,
"translation": TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
__UpperCamelCase : List[Any] = True
__UpperCamelCase : Union[str, Any] = False
__UpperCamelCase : Dict = False
def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :List[str] ) -> List[Any]:
'''simple docstring'''
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def __UpperCAmelCase ( self :Optional[int] ) -> List[str]:
'''simple docstring'''
_a : str =TFMBartModelTester(self )
_a : Optional[int] =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Dict ) -> Any:
'''simple docstring'''
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self :Union[str, Any] ) -> Tuple:
'''simple docstring'''
_a : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE )
@require_sentencepiece
@require_tokenizers
@require_tf
class A__ ( unittest.TestCase ):
__UpperCamelCase : List[Any] = [
" UN Chief Says There Is No Military Solution in Syria",
]
__UpperCamelCase : Tuple = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
]
__UpperCamelCase : Any = "facebook/mbart-large-en-ro"
@cached_property
def __UpperCAmelCase ( self :Optional[Any] ) -> Any:
'''simple docstring'''
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def __UpperCAmelCase ( self :int ) -> List[str]:
'''simple docstring'''
_a : Union[str, Any] =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def __UpperCAmelCase ( self :Dict , **SCREAMING_SNAKE_CASE :Any ) -> List[str]:
'''simple docstring'''
_a : Optional[Any] =self.translate_src_text(**SCREAMING_SNAKE_CASE )
self.assertListEqual(self.expected_text , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[Any] , **SCREAMING_SNAKE_CASE :List[str] ) -> Dict:
'''simple docstring'''
_a : Optional[int] =self.tokenizer(self.src_text , **SCREAMING_SNAKE_CASE , return_tensors="""tf""" )
_a : List[Any] =self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
_a : Union[str, Any] =self.tokenizer.batch_decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE )
return generated_words
@slow
def __UpperCAmelCase ( self :List[Any] ) -> Dict:
'''simple docstring'''
self._assert_generated_batch_equal_expected()
| 694 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class A__ ( unittest.TestCase ):
def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any]=7 , SCREAMING_SNAKE_CASE :Optional[Any]=3 , SCREAMING_SNAKE_CASE :Tuple=1_8 , SCREAMING_SNAKE_CASE :Any=3_0 , SCREAMING_SNAKE_CASE :List[str]=4_0_0 , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :List[str]=True , ) -> Tuple:
'''simple docstring'''
_a : int =size if size is not None else {"""height""": 1_8, """width""": 1_8}
_a : int =parent
_a : Optional[int] =batch_size
_a : List[str] =num_channels
_a : Optional[Any] =image_size
_a : int =min_resolution
_a : str =max_resolution
_a : str =do_resize
_a : Tuple =size
_a : Tuple =do_normalize
def __UpperCAmelCase ( self :Any ) -> int:
'''simple docstring'''
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class A__ ( UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : int = ImageGPTImageProcessor if is_vision_available() else None
def __UpperCAmelCase ( self :List[Any] ) -> List[Any]:
'''simple docstring'''
_a : Any =ImageGPTImageProcessingTester(self )
@property
def __UpperCAmelCase ( self :Optional[int] ) -> List[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCAmelCase ( self :Dict ) -> Any:
'''simple docstring'''
_a : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """clusters""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_resize""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """size""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_normalize""" ) )
def __UpperCAmelCase ( self :Optional[int] ) -> Optional[int]:
'''simple docstring'''
_a : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} )
_a : Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 )
self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} )
def __UpperCAmelCase ( self :List[Any] ) -> Optional[int]:
'''simple docstring'''
_a : List[str] =self.image_processing_class(**self.image_processor_dict )
_a : Dict =json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , obj[key] ) )
else:
self.assertEqual(obj[key] , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[int] ) -> Dict:
'''simple docstring'''
_a : List[Any] =self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_a : Any =os.path.join(SCREAMING_SNAKE_CASE , """image_processor.json""" )
image_processor_first.to_json_file(SCREAMING_SNAKE_CASE )
_a : str =self.image_processing_class.from_json_file(SCREAMING_SNAKE_CASE ).to_dict()
_a : Tuple =image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[int] ) -> str:
'''simple docstring'''
_a : List[str] =self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(SCREAMING_SNAKE_CASE )
_a : str =self.image_processing_class.from_pretrained(SCREAMING_SNAKE_CASE ).to_dict()
_a : Union[str, Any] =image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def __UpperCAmelCase ( self :Union[str, Any] ) -> int:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]:
_a : Any =load_dataset("""hf-internal-testing/fixtures_image_utils""" ,split="""test""" )
_a : Dict =Image.open(dataset[4]["""file"""] )
_a : Optional[int] =Image.open(dataset[5]["""file"""] )
_a : Optional[Any] =[imagea, imagea]
return images
@require_vision
@require_torch
class A__ ( unittest.TestCase ):
@slow
def __UpperCAmelCase ( self :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_a : Optional[Any] =ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
_a : int =prepare_images()
# test non-batched
_a : Dict =image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) )
_a : Optional[int] =[3_0_6, 1_9_1, 1_9_1]
self.assertEqual(encoding.input_ids[0, :3].tolist() , SCREAMING_SNAKE_CASE )
# test batched
_a : Dict =image_processing(SCREAMING_SNAKE_CASE , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) )
_a : Any =[3_0_3, 1_3, 1_3]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , SCREAMING_SNAKE_CASE )
| 694 | 1 |
'''simple docstring'''
from cva import destroyAllWindows, imread, imshow, waitKey
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ) -> Dict:
# getting number of pixels in the image
_a , _a : Dict =img.shape[0], img.shape[1]
# converting each pixel's color to its negative
for i in range(_UpperCAmelCase ):
for j in range(_UpperCAmelCase ):
_a : Any =[255, 255, 255] - img[i][j]
return img
if __name__ == "__main__":
# read original image
A__: Dict = imread('''image_data/lena.jpg''', 1)
# convert to its negative
A__: Union[str, Any] = convert_to_negative(img)
# show result image
imshow('''negative of original image''', img)
waitKey(0)
destroyAllWindows()
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ) -> bool:
_a : Optional[int] =len(_UpperCAmelCase )
_a : Tuple =[[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
_a : Any =True
# sum is not zero and set is empty then false
for i in range(1 ,required_sum + 1 ):
_a : int =False
for i in range(1 ,arr_len + 1 ):
for j in range(1 ,required_sum + 1 ):
if arr[i - 1] > j:
_a : Optional[Any] =subset[i - 1][j]
if arr[i - 1] <= j:
_a : Union[str, Any] =subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 | 1 |
'''simple docstring'''
from argparse import ArgumentParser
from .add_new_model import AddNewModelCommand
from .add_new_model_like import AddNewModelLikeCommand
from .convert import ConvertCommand
from .download import DownloadCommand
from .env import EnvironmentCommand
from .lfs import LfsCommands
from .pt_to_tf import PTtoTFCommand
from .run import RunCommand
from .serving import ServeCommand
from .user import UserCommands
def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]:
_a : Optional[Any] =ArgumentParser("""Transformers CLI tool""" ,usage="""transformers-cli <command> [<args>]""" )
_a : Any =parser.add_subparsers(help="""transformers-cli command helpers""" )
# Register commands
ConvertCommand.register_subcommand(_UpperCAmelCase )
DownloadCommand.register_subcommand(_UpperCAmelCase )
EnvironmentCommand.register_subcommand(_UpperCAmelCase )
RunCommand.register_subcommand(_UpperCAmelCase )
ServeCommand.register_subcommand(_UpperCAmelCase )
UserCommands.register_subcommand(_UpperCAmelCase )
AddNewModelCommand.register_subcommand(_UpperCAmelCase )
AddNewModelLikeCommand.register_subcommand(_UpperCAmelCase )
LfsCommands.register_subcommand(_UpperCAmelCase )
PTtoTFCommand.register_subcommand(_UpperCAmelCase )
# Let's go
_a : str =parser.parse_args()
if not hasattr(_UpperCAmelCase ,"""func""" ):
parser.print_help()
exit(1 )
# Run
_a : Dict =args.func(_UpperCAmelCase )
service.run()
if __name__ == "__main__":
main()
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 4000000 ) -> int:
_a : Optional[Any] =[]
_a , _a : Union[str, Any] =0, 1
while b <= n:
if b % 2 == 0:
even_fibs.append(_UpperCAmelCase )
_a , _a : Optional[Any] =b, a + b
return sum(_UpperCAmelCase )
if __name__ == "__main__":
print(F"{solution() = }")
| 694 | 1 |
'''simple docstring'''
import json
import os
import re
import unittest
from transformers import CodeGenTokenizer, CodeGenTokenizerFast
from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A__ ( UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : List[Any] = CodeGenTokenizer
__UpperCamelCase : Union[str, Any] = CodeGenTokenizerFast
__UpperCamelCase : Optional[int] = True
__UpperCamelCase : List[Any] = {"add_prefix_space": True}
__UpperCamelCase : int = False
def __UpperCAmelCase ( self :List[Any] ) -> List[str]:
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_a : Union[str, Any] =[
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
"""<|endoftext|>""",
]
_a : List[str] =dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) )
_a : Dict =["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
_a : Any ={"""unk_token""": """<unk>"""}
_a : Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
_a : Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(SCREAMING_SNAKE_CASE ) )
def __UpperCAmelCase ( self :Optional[int] , **SCREAMING_SNAKE_CASE :Any ) -> List[str]:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return CodeGenTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Union[str, Any] , **SCREAMING_SNAKE_CASE :Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :List[Any] ) -> Dict:
'''simple docstring'''
_a : str ="""lower newer"""
_a : Optional[Any] ="""lower newer"""
return input_text, output_text
def __UpperCAmelCase ( self :Any ) -> Optional[Any]:
'''simple docstring'''
_a : List[Any] =CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
_a : Any ="""lower newer"""
_a : Any =["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
_a : Optional[int] =tokenizer.tokenize(SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Optional[Any] =tokens + [tokenizer.unk_token]
_a : Any =[1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9]
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
_a : Tuple =self.get_tokenizer()
_a : Tuple =self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE )
_a : int ="""lower newer"""
# Testing tokenization
_a : List[str] =tokenizer.tokenize(SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE )
_a : Optional[int] =rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Testing conversion to ids without special tokens
_a : Dict =tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Testing conversion to ids with special tokens
_a : str =self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE )
_a : Dict =tokenizer.encode(SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE )
_a : Optional[int] =rust_tokenizer.encode(SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Testing the unknown token
_a : Optional[Any] =tokens + [rust_tokenizer.unk_token]
_a : Any =[1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Union[str, Any] , *SCREAMING_SNAKE_CASE :List[str] , **SCREAMING_SNAKE_CASE :int ) -> Optional[int]:
'''simple docstring'''
# It's very difficult to mix/test pretokenization with byte-level
# And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string)
pass
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :int=1_5 ) -> Union[str, Any]:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
_a : Union[str, Any] =self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# Simple input
_a : Union[str, Any] ="""This is a simple input"""
_a : Optional[int] =["""This is a simple input 1""", """This is a simple input 2"""]
_a : Tuple =("""This is a simple input""", """This is a pair""")
_a : Dict =[
("""This is a simple input 1""", """This is a simple input 2"""),
("""This is a simple pair 1""", """This is a simple pair 2"""),
]
# Simple input tests
self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="""max_length""" )
# Simple input
self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="""max_length""" )
# Simple input
self.assertRaises(
SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="""max_length""" , )
# Pair input
self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="""max_length""" )
# Pair input
self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="""max_length""" )
# Pair input
self.assertRaises(
SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="""max_length""" , )
def __UpperCAmelCase ( self :Union[str, Any] ) -> Tuple:
'''simple docstring'''
_a : Union[str, Any] =CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" )
# Simple input
_a : int ="""This is a simple input"""
_a : List[Any] =["""This is a simple input looooooooong""", """This is a simple input"""]
_a : Optional[int] =("""This is a simple input""", """This is a pair""")
_a : Optional[int] =[
("""This is a simple input loooooong""", """This is a simple input"""),
("""This is a simple pair loooooong""", """This is a simple pair"""),
]
_a : Dict =tokenizer.pad_token_id
_a : Optional[Any] =tokenizer(SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=3_0 , return_tensors="""np""" )
_a : int =tokenizer(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncate=SCREAMING_SNAKE_CASE , return_tensors="""np""" )
_a : str =tokenizer(*SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=6_0 , return_tensors="""np""" )
_a : Dict =tokenizer(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncate=SCREAMING_SNAKE_CASE , return_tensors="""np""" )
# s
# test single string max_length padding
self.assertEqual(out_s["""input_ids"""].shape[-1] , 3_0 )
self.assertTrue(pad_token_id in out_s["""input_ids"""] )
self.assertTrue(0 in out_s["""attention_mask"""] )
# s2
# test automatic padding
self.assertEqual(out_sa["""input_ids"""].shape[-1] , 3_3 )
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] )
self.assertFalse(0 in out_sa["""attention_mask"""][0] )
# short slice does have padding
self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] )
self.assertTrue(0 in out_sa["""attention_mask"""][1] )
# p
# test single pair max_length padding
self.assertEqual(out_p["""input_ids"""].shape[-1] , 6_0 )
self.assertTrue(pad_token_id in out_p["""input_ids"""] )
self.assertTrue(0 in out_p["""attention_mask"""] )
# p2
# test automatic padding pair
self.assertEqual(out_pa["""input_ids"""].shape[-1] , 5_2 )
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] )
self.assertFalse(0 in out_pa["""attention_mask"""][0] )
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] )
self.assertTrue(0 in out_pa["""attention_mask"""][1] )
def __UpperCAmelCase ( self :List[str] ) -> Union[str, Any]:
'''simple docstring'''
_a : List[Any] ="""$$$"""
_a : Optional[int] =CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=SCREAMING_SNAKE_CASE , add_bos_token=SCREAMING_SNAKE_CASE )
_a : Tuple ="""This is a simple input"""
_a : List[Any] =["""This is a simple input 1""", """This is a simple input 2"""]
_a : Dict =tokenizer.bos_token_id
_a : Any =tokenizer(SCREAMING_SNAKE_CASE )
_a : Tuple =tokenizer(SCREAMING_SNAKE_CASE )
self.assertEqual(out_s.input_ids[0] , SCREAMING_SNAKE_CASE )
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) )
_a : Tuple =tokenizer.decode(out_s.input_ids )
_a : int =tokenizer.batch_decode(out_sa.input_ids )
self.assertEqual(decode_s.split()[0] , SCREAMING_SNAKE_CASE )
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) )
@slow
def __UpperCAmelCase ( self :str ) -> int:
'''simple docstring'''
_a : int =CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" )
_a : Tuple ="""\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#"""
_a : List[str] ="""\nif len_a > len_b: result = a\nelse: result = b"""
_a : int =tokenizer.encode(SCREAMING_SNAKE_CASE )
_a : str =["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""]
_a : str =tokenizer.decode(SCREAMING_SNAKE_CASE , truncate_before_pattern=SCREAMING_SNAKE_CASE )
self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :List[Any] ) -> Any:
'''simple docstring'''
pass
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int:
if n == 1 or not isinstance(_UpperCAmelCase ,_UpperCAmelCase ):
return 0
elif n == 2:
return 1
else:
_a : Dict =[0, 1]
for i in range(2 ,n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int:
_a : Union[str, Any] =0
_a : Optional[Any] =2
while digits < n:
index += 1
_a : Optional[int] =len(str(fibonacci(_UpperCAmelCase ) ) )
return index
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 1000 ) -> int:
return fibonacci_digits_index(_UpperCAmelCase )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 694 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__: List[str] = logging.get_logger(__name__)
A__: Optional[Any] = {
'''huggingface/time-series-transformer-tourism-monthly''': (
'''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'''
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : List[Any] = "time_series_transformer"
__UpperCamelCase : str = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Optional[int] = None , SCREAMING_SNAKE_CASE :Optional[int] = None , SCREAMING_SNAKE_CASE :str = "student_t" , SCREAMING_SNAKE_CASE :str = "nll" , SCREAMING_SNAKE_CASE :int = 1 , SCREAMING_SNAKE_CASE :List[int] = [1, 2, 3, 4, 5, 6, 7] , SCREAMING_SNAKE_CASE :Optional[Union[str, bool]] = "mean" , SCREAMING_SNAKE_CASE :int = 0 , SCREAMING_SNAKE_CASE :int = 0 , SCREAMING_SNAKE_CASE :int = 0 , SCREAMING_SNAKE_CASE :int = 0 , SCREAMING_SNAKE_CASE :Optional[List[int]] = None , SCREAMING_SNAKE_CASE :Optional[List[int]] = None , SCREAMING_SNAKE_CASE :int = 3_2 , SCREAMING_SNAKE_CASE :int = 3_2 , SCREAMING_SNAKE_CASE :int = 2 , SCREAMING_SNAKE_CASE :int = 2 , SCREAMING_SNAKE_CASE :int = 2 , SCREAMING_SNAKE_CASE :int = 2 , SCREAMING_SNAKE_CASE :bool = True , SCREAMING_SNAKE_CASE :str = "gelu" , SCREAMING_SNAKE_CASE :int = 6_4 , SCREAMING_SNAKE_CASE :float = 0.1 , SCREAMING_SNAKE_CASE :float = 0.1 , SCREAMING_SNAKE_CASE :float = 0.1 , SCREAMING_SNAKE_CASE :float = 0.1 , SCREAMING_SNAKE_CASE :float = 0.1 , SCREAMING_SNAKE_CASE :int = 1_0_0 , SCREAMING_SNAKE_CASE :float = 0.02 , SCREAMING_SNAKE_CASE :List[Any]=True , **SCREAMING_SNAKE_CASE :List[Any] , ) -> Optional[int]:
'''simple docstring'''
# time series specific configuration
_a : str =prediction_length
_a : Union[str, Any] =context_length or prediction_length
_a : List[str] =distribution_output
_a : Tuple =loss
_a : List[Any] =input_size
_a : Optional[Any] =num_time_features
_a : Union[str, Any] =lags_sequence
_a : Optional[int] =scaling
_a : List[Any] =num_dynamic_real_features
_a : List[str] =num_static_real_features
_a : str =num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(SCREAMING_SNAKE_CASE ) != num_static_categorical_features:
raise ValueError(
"""The cardinality should be a list of the same length as `num_static_categorical_features`""" )
_a : Any =cardinality
else:
_a : List[str] =[0]
if embedding_dimension and num_static_categorical_features > 0:
if len(SCREAMING_SNAKE_CASE ) != num_static_categorical_features:
raise ValueError(
"""The embedding dimension should be a list of the same length as `num_static_categorical_features`""" )
_a : Union[str, Any] =embedding_dimension
else:
_a : Optional[int] =[min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
_a : List[str] =num_parallel_samples
# Transformer architecture configuration
_a : Any =input_size * len(SCREAMING_SNAKE_CASE ) + self._number_of_features
_a : Union[str, Any] =d_model
_a : Union[str, Any] =encoder_attention_heads
_a : Dict =decoder_attention_heads
_a : Dict =encoder_ffn_dim
_a : Optional[Any] =decoder_ffn_dim
_a : List[str] =encoder_layers
_a : Union[str, Any] =decoder_layers
_a : Any =dropout
_a : Optional[int] =attention_dropout
_a : Optional[int] =activation_dropout
_a : Union[str, Any] =encoder_layerdrop
_a : Optional[int] =decoder_layerdrop
_a : Tuple =activation_function
_a : Optional[Any] =init_std
_a : List[Any] =use_cache
super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
@property
def __UpperCAmelCase ( self :List[str] ) -> int:
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 694 |
'''simple docstring'''
import argparse
import torch
from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert
from transformers.utils import logging
logging.set_verbosity_info()
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : int ) -> str:
# Initialise PyTorch model
_a : List[str] =RemBertConfig.from_json_file(_UpperCAmelCase )
print("""Building PyTorch model from configuration: {}""".format(str(_UpperCAmelCase ) ) )
_a : Dict =RemBertModel(_UpperCAmelCase )
# Load weights from tf checkpoint
load_tf_weights_in_rembert(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
# Save pytorch-model
print("""Save PyTorch model to {}""".format(_UpperCAmelCase ) )
torch.save(model.state_dict() ,_UpperCAmelCase )
if __name__ == "__main__":
A__: Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--rembert_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained RemBERT model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
A__: Tuple = parser.parse_args()
convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
| 694 | 1 |
'''simple docstring'''
A__: List[str] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ'''
def SCREAMING_SNAKE_CASE_ ( ) -> None:
_a : Optional[int] =input("""Enter message: """ )
_a : Union[str, Any] =input("""Enter key [alphanumeric]: """ )
_a : Union[str, Any] =input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
_a : Optional[Any] ="""encrypt"""
_a : Optional[int] =encrypt_message(_UpperCAmelCase ,_UpperCAmelCase )
elif mode.lower().startswith("""d""" ):
_a : str ="""decrypt"""
_a : Dict =decrypt_message(_UpperCAmelCase ,_UpperCAmelCase )
print(F"\n{mode.title()}ed message:" )
print(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ) -> str:
return translate_message(_UpperCAmelCase ,_UpperCAmelCase ,"""encrypt""" )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ) -> str:
return translate_message(_UpperCAmelCase ,_UpperCAmelCase ,"""decrypt""" )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ,_UpperCAmelCase : str ) -> str:
_a : List[Any] =[]
_a : int =0
_a : Tuple =key.upper()
for symbol in message:
_a : str =LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_UpperCAmelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_UpperCAmelCase ):
_a : Any =0
else:
translated.append(_UpperCAmelCase )
return "".join(_UpperCAmelCase )
if __name__ == "__main__":
main()
| 694 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
A__: Optional[int] = logging.get_logger(__name__)
A__: Union[str, Any] = '''▁'''
A__: Any = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''}
A__: Optional[int] = {
'''vocab_file''': {
'''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''',
},
'''monolingual_vocab_file''': {
'''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''',
},
}
A__: Union[str, Any] = {'''vinai/bartpho-syllable''': 1024}
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Tuple = VOCAB_FILES_NAMES
__UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"]
def __init__( self :Dict , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Any="<s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE :int="</s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE :Tuple="<unk>" , SCREAMING_SNAKE_CASE :Optional[Any]="<pad>" , SCREAMING_SNAKE_CASE :List[str]="<mask>" , SCREAMING_SNAKE_CASE :Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE :List[Any] , ) -> None:
'''simple docstring'''
# Mask token behave like a normal word, i.e. include the space before it
_a : str =AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token
_a : int ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , )
_a : Dict =vocab_file
_a : int =monolingual_vocab_file
_a : Dict =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(SCREAMING_SNAKE_CASE ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
_a : List[Any] ={}
_a : List[str] =0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids:
_a : Optional[Any] =cnt
cnt += 1
with open(SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f:
for line in f.readlines():
_a : int =line.strip().split()[0]
_a : str =len(self.fairseq_tokens_to_ids )
if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids:
_a : Optional[int] =len(self.fairseq_tokens_to_ids )
_a : str ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self :int ) -> List[Any]:
'''simple docstring'''
_a : Optional[int] =self.__dict__.copy()
_a : Optional[Any] =None
_a : str =self.sp_model.serialized_model_proto()
return state
def __setstate__( self :Dict , SCREAMING_SNAKE_CASE :Any ) -> str:
'''simple docstring'''
_a : List[str] =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_a : Tuple ={}
_a : Any =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_a : Optional[int] =[self.cls_token_id]
_a : int =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None , SCREAMING_SNAKE_CASE :bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_a : List[str] =[self.sep_token_id]
_a : int =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def __UpperCAmelCase ( self :Optional[int] ) -> int:
'''simple docstring'''
return len(self.fairseq_ids_to_tokens )
def __UpperCAmelCase ( self :int ) -> Union[str, Any]:
'''simple docstring'''
_a : str ={self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :str ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Dict ) -> Any:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :Any ) -> Dict:
'''simple docstring'''
return self.fairseq_ids_to_tokens[index]
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_a : str ="""""".join(SCREAMING_SNAKE_CASE ).replace(SCREAMING_SNAKE_CASE , """ """ ).strip()
return out_string
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
_a : int =os.path.join(
SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_a : Any =os.path.join(
SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE , """wb""" ) as fi:
_a : Optional[Any] =self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
SCREAMING_SNAKE_CASE ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f"{str(SCREAMING_SNAKE_CASE )} \n" )
return out_vocab_file, out_monolingual_vocab_file
| 694 | 1 |
'''simple docstring'''
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
A__: int = 4
A__: Dict = 3
class A__ ( UpperCAmelCase__ ):
pass
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[str] ) -> Optional[Any]:
for shard in shards:
for i in range(_UpperCAmelCase ):
yield {"i": i, "shard": shard}
def SCREAMING_SNAKE_CASE_ ( ) -> Tuple:
_a : Optional[int] =int(os.environ["""RANK"""] )
_a : Union[str, Any] =int(os.environ["""WORLD_SIZE"""] )
_a : Optional[int] =ArgumentParser()
parser.add_argument("""--streaming""" ,type=_UpperCAmelCase )
parser.add_argument("""--local_rank""" ,type=_UpperCAmelCase )
parser.add_argument("""--num_workers""" ,type=_UpperCAmelCase ,default=0 )
_a : Any =parser.parse_args()
_a : str =args.streaming
_a : Optional[Any] =args.num_workers
_a : Optional[int] ={"""shards""": [F"shard_{shard_idx}" for shard_idx in range(_UpperCAmelCase )]}
_a : int =IterableDataset.from_generator(_UpperCAmelCase ,gen_kwargs=_UpperCAmelCase )
if not streaming:
_a : List[Any] =Dataset.from_list(list(_UpperCAmelCase ) )
_a : Optional[int] =split_dataset_by_node(_UpperCAmelCase ,rank=_UpperCAmelCase ,world_size=_UpperCAmelCase )
_a : List[Any] =torch.utils.data.DataLoader(_UpperCAmelCase ,num_workers=_UpperCAmelCase )
_a : Union[str, Any] =NUM_SHARDS * NUM_ITEMS_PER_SHARD
_a : Any =full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
_a : Optional[int] =sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(F"local_size {local_size} != expected_local_size {expected_local_size}" )
if __name__ == "__main__":
main()
| 694 |
'''simple docstring'''
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 694 | 1 |
'''simple docstring'''
import inspect
import tempfile
import unittest
from huggingface_hub import hf_hub_download
from transformers import is_torch_available
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
A__: Any = 1E-4
if is_torch_available():
import torch
from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel
from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder
@require_torch
class A__ :
def __init__( self :int , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :List[str]=1_6 , SCREAMING_SNAKE_CASE :Optional[Any]=1_3 , SCREAMING_SNAKE_CASE :int=7 , SCREAMING_SNAKE_CASE :List[str]=1_4 , SCREAMING_SNAKE_CASE :Optional[Any]=1_0 , SCREAMING_SNAKE_CASE :Optional[int]=1_9 , SCREAMING_SNAKE_CASE :Union[str, Any]=5 , SCREAMING_SNAKE_CASE :Dict=4 , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :Union[str, Any]=1_6 , SCREAMING_SNAKE_CASE :Any=2 , SCREAMING_SNAKE_CASE :Tuple=4 , SCREAMING_SNAKE_CASE :int=4 , SCREAMING_SNAKE_CASE :Optional[int]="gelu" , SCREAMING_SNAKE_CASE :Optional[Any]=0.1 , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :Dict=[1, 2, 3, 4, 5] , SCREAMING_SNAKE_CASE :Tuple=2_5 , SCREAMING_SNAKE_CASE :str=5 , ) -> Tuple:
'''simple docstring'''
_a : List[str] =d_model
_a : Optional[int] =parent
_a : Optional[int] =batch_size
_a : Tuple =prediction_length
_a : str =context_length
_a : int =cardinality
_a : List[Any] =num_time_features
_a : Optional[Any] =lags_sequence
_a : str =embedding_dimension
_a : Optional[Any] =is_training
_a : Tuple =hidden_size
_a : List[str] =num_hidden_layers
_a : Dict =num_attention_heads
_a : Dict =intermediate_size
_a : Tuple =hidden_act
_a : List[str] =hidden_dropout_prob
_a : int =attention_probs_dropout_prob
_a : List[Any] =context_length
_a : str =prediction_length + label_length
_a : Union[str, Any] =label_length
_a : str =moving_average
_a : Optional[int] =autocorrelation_factor
def __UpperCAmelCase ( self :List[str] ) -> Optional[Any]:
'''simple docstring'''
return AutoformerConfig(
d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , )
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :Any ) -> Optional[int]:
'''simple docstring'''
_a : Optional[int] =config.context_length + max(config.lags_sequence )
_a : Optional[Any] =ids_tensor([self.batch_size, 1] , config.cardinality[0] )
_a : Optional[int] =floats_tensor([self.batch_size, _past_length, config.num_time_features] )
_a : List[str] =floats_tensor([self.batch_size, _past_length] )
_a : List[Any] =floats_tensor([self.batch_size, _past_length] ) > 0.5
# decoder inputs
_a : List[str] =floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] )
_a : int =floats_tensor([self.batch_size, config.prediction_length] )
_a : List[Any] ={
"""past_values""": past_values,
"""static_categorical_features""": static_categorical_features,
"""past_time_features""": past_time_features,
"""past_observed_mask""": past_observed_mask,
"""future_time_features""": future_time_features,
"""future_values""": future_values,
}
return inputs_dict
def __UpperCAmelCase ( self :List[str] ) -> Optional[int]:
'''simple docstring'''
_a : str =self.get_config()
_a : Dict =self.prepare_autoformer_inputs_dict(SCREAMING_SNAKE_CASE )
return config, inputs_dict
def __UpperCAmelCase ( self :Optional[Any] ) -> List[Any]:
'''simple docstring'''
_a , _a : Tuple =self.prepare_config_and_inputs()
return config, inputs_dict
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Any ) -> Union[str, Any]:
'''simple docstring'''
_a : Any =AutoformerModel(config=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ).eval()
_a : Optional[Any] =model(**SCREAMING_SNAKE_CASE )
_a : int =outputs.encoder_last_hidden_state
_a : List[Any] =outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
_a : Any =model.get_encoder()
encoder.save_pretrained(SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =AutoformerEncoder.from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE )
_a , _a , _a , _a , _a : Optional[int] =model.create_network_inputs(**SCREAMING_SNAKE_CASE )
_a , _a : str =model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] )
_a : Optional[int] =torch.cat(
(transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , )
_a : Optional[Any] =encoder(inputs_embeds=SCREAMING_SNAKE_CASE )[0]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
_a : Union[str, Any] =(
torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 )
.unsqueeze(1 )
.repeat(1 , config.prediction_length , 1 )
)
_a : int =torch.zeros(
[transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , )
_a : Union[str, Any] =torch.cat(
(
torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
_a : List[str] =torch.cat(
(
torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
with tempfile.TemporaryDirectory() as tmpdirname:
_a : Tuple =model.get_decoder()
decoder.save_pretrained(SCREAMING_SNAKE_CASE )
_a : List[Any] =AutoformerDecoder.from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE )
_a : Dict =decoder(
trend=SCREAMING_SNAKE_CASE , inputs_embeds=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class A__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : Optional[Any] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
__UpperCamelCase : Union[str, Any] = (AutoformerForPrediction,) if is_torch_available() else ()
__UpperCamelCase : Optional[int] = {"feature-extraction": AutoformerModel} if is_torch_available() else {}
__UpperCamelCase : Optional[int] = False
__UpperCamelCase : Dict = False
__UpperCamelCase : Optional[int] = False
__UpperCamelCase : str = False
__UpperCamelCase : Union[str, Any] = False
__UpperCamelCase : int = False
def __UpperCAmelCase ( self :int ) -> str:
'''simple docstring'''
_a : Dict =AutoformerModelTester(self )
_a : Dict =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :List[str] ) -> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self :Any ) -> Dict:
'''simple docstring'''
_a , _a : Optional[int] =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
_a : Dict =model_class(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(SCREAMING_SNAKE_CASE )
_a , _a : Optional[Any] =model_class.from_pretrained(SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE )
self.assertEqual(info["""missing_keys"""] , [] )
def __UpperCAmelCase ( self :Any ) -> Union[str, Any]:
'''simple docstring'''
_a : Dict =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*SCREAMING_SNAKE_CASE )
@unittest.skip(reason="""Model has no tokens embeddings""" )
def __UpperCAmelCase ( self :List[str] ) -> Optional[int]:
'''simple docstring'''
pass
def __UpperCAmelCase ( self :Dict ) -> List[Any]:
'''simple docstring'''
_a : Tuple =inspect.signature(getattr(SCREAMING_SNAKE_CASE , """forward""" ) )
# The main input is the name of the argument after `self`
_a : List[Any] =list(model_signature.parameters.keys() )[1]
self.assertEqual(AutoformerModel.main_input_name , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :int ) -> Any:
'''simple docstring'''
_a , _a : Dict =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a : int =model_class(SCREAMING_SNAKE_CASE )
_a : Optional[int] =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_a : int =[*signature.parameters.keys()]
_a : Optional[Any] =[
"""past_values""",
"""past_time_features""",
"""past_observed_mask""",
"""static_categorical_features""",
"""static_real_features""",
"""future_values""",
"""future_time_features""",
]
if model.__class__.__name__ in ["AutoformerForPrediction"]:
expected_arg_names.append("""future_observed_mask""" )
expected_arg_names.extend(
[
"""decoder_attention_mask""",
"""head_mask""",
"""decoder_head_mask""",
"""cross_attn_head_mask""",
"""encoder_outputs""",
"""past_key_values""",
"""output_hidden_states""",
"""output_attentions""",
"""use_cache""",
"""return_dict""",
] )
self.assertListEqual(arg_names[: len(SCREAMING_SNAKE_CASE )] , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Any ) -> str:
'''simple docstring'''
_a , _a : Tuple =self.model_tester.prepare_config_and_inputs_for_common()
_a : Union[str, Any] =True
_a : Optional[Any] =getattr(self.model_tester , """seq_length""" , SCREAMING_SNAKE_CASE )
_a : Tuple =getattr(self.model_tester , """decoder_seq_length""" , SCREAMING_SNAKE_CASE )
_a : Optional[Any] =getattr(self.model_tester , """encoder_seq_length""" , SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =getattr(self.model_tester , """d_model""" , SCREAMING_SNAKE_CASE )
_a : Tuple =getattr(self.model_tester , """num_attention_heads""" , SCREAMING_SNAKE_CASE )
_a : List[Any] =d_model // num_attention_heads
for model_class in self.all_model_classes:
_a : int =True
_a : Optional[Any] =False
_a : Any =True
_a : Union[str, Any] =model_class(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
_a : Tuple =model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
_a : List[str] =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
_a : Tuple =True
_a : Tuple =model_class(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
_a : Optional[Any] =model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
_a : Dict =outputs.encoder_attentions
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
_a : Tuple =len(SCREAMING_SNAKE_CASE )
_a : Optional[Any] =7
if "last_hidden_state" in outputs:
correct_outlen += 1
if "trend" in outputs:
correct_outlen += 1
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
if "loss" in outputs:
correct_outlen += 1
if "params" in outputs:
correct_outlen += 1
self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# decoder attentions
_a : Optional[int] =outputs.decoder_attentions
self.assertIsInstance(SCREAMING_SNAKE_CASE , (list, tuple) )
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# cross attentions
_a : Any =outputs.cross_attentions
self.assertIsInstance(SCREAMING_SNAKE_CASE , (list, tuple) )
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# Check attention is always last and order is fine
_a : int =True
_a : Tuple =True
_a : Tuple =model_class(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
_a : List[str] =model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
self.assertEqual(out_len + 2 , len(SCREAMING_SNAKE_CASE ) )
_a : Any =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
@is_flaky()
def __UpperCAmelCase ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
super().test_retain_grad_hidden_states_attentions()
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Dict="train-batch.pt" ) -> Optional[Any]:
_a : Union[str, Any] =hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" ,filename=_UpperCAmelCase ,repo_type="""dataset""" )
_a : Dict =torch.load(_UpperCAmelCase ,map_location=_UpperCAmelCase )
return batch
@require_torch
@slow
class A__ ( unittest.TestCase ):
def __UpperCAmelCase ( self :Any ) -> Optional[int]:
'''simple docstring'''
_a : Optional[Any] =AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(SCREAMING_SNAKE_CASE )
_a : int =prepare_batch()
with torch.no_grad():
_a : Any =model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0]
_a : List[Any] =torch.Size(
(6_4, model.config.prediction_length + model.config.label_length, model.config.feature_size) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
_a : Tuple =torch.tensor(
[[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(output[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE ) )
def __UpperCAmelCase ( self :str ) -> Union[str, Any]:
'''simple docstring'''
_a : List[str] =AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(SCREAMING_SNAKE_CASE )
_a : List[str] =prepare_batch("""val-batch.pt""" )
with torch.no_grad():
_a : Tuple =model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state
_a : str =torch.Size((6_4, model.config.context_length, model.config.d_model) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
_a : List[str] =torch.tensor(
[[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(output[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE ) )
def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
_a : List[str] =AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(SCREAMING_SNAKE_CASE )
_a : List[str] =prepare_batch("""val-batch.pt""" )
with torch.no_grad():
_a : int =model.generate(
static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , )
_a : Union[str, Any] =torch.Size((6_4, model.config.num_parallel_samples, model.config.prediction_length) )
self.assertEqual(outputs.sequences.shape , SCREAMING_SNAKE_CASE )
_a : List[Any] =torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=SCREAMING_SNAKE_CASE )
_a : Optional[int] =outputs.sequences.mean(dim=1 )
self.assertTrue(torch.allclose(mean_prediction[0, -3:] , SCREAMING_SNAKE_CASE , rtol=1e-1 ) )
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list] ) -> list[list]:
_a : Dict =current_set.copy()
for row_index, row in enumerate(_UpperCAmelCase ):
_a : Any =row[0]
for column_index, column in enumerate(_UpperCAmelCase ):
if magnitude == 0:
_a : Any =column
continue
_a : Union[str, Any] =column / magnitude
# Subtract to cancel term
_a : Optional[Any] =current_set[0]
_a : List[Any] =[first_row]
_a : Tuple =current_set[1::]
for row in current_set:
_a : Any =[]
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(_UpperCAmelCase )
continue
for column_index in range(len(_UpperCAmelCase ) ):
temp_row.append(first_row[column_index] - row[column_index] )
final_set.append(_UpperCAmelCase )
# Create next recursion iteration set
if len(final_set[0] ) != 3:
_a : List[str] =final_set[0]
_a : Tuple =[]
_a : Tuple =[]
for row in final_set[1::]:
current_first_column.append(row[0] )
next_iteration.append(row[1::] )
_a : str =simplify(_UpperCAmelCase )
for i in range(len(_UpperCAmelCase ) ):
resultant[i].insert(0 ,current_first_column[i] )
resultant.insert(0 ,_UpperCAmelCase )
_a : List[Any] =resultant
return final_set
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list] ) -> list:
if len(_UpperCAmelCase ) == 0:
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
_a : str =len(_UpperCAmelCase ) + 1
if any(len(_UpperCAmelCase ) != _length for item in equations ):
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
for row in equations:
if any(not isinstance(_UpperCAmelCase ,(int, float) ) for column in row ):
raise ValueError("""solve_simultaneous() requires lists of integers""" )
if len(_UpperCAmelCase ) == 1:
return [equations[0][-1] / equations[0][0]]
_a : str =equations.copy()
if any(0 in row for row in data_set ):
_a : Optional[int] =data_set.copy()
_a : str =[]
for row_index, row in enumerate(_UpperCAmelCase ):
if 0 not in row:
_a : List[Any] =data_set.pop(_UpperCAmelCase )
break
if not full_row:
raise ValueError("""solve_simultaneous() requires at least 1 full equation""" )
data_set.insert(0 ,_UpperCAmelCase )
_a : Dict =data_set.copy()
_a : Any =simplify(_UpperCAmelCase )
_a : Any =simplified[::-1]
_a : list =[]
for row in simplified:
_a : Optional[Any] =row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0 )
continue
solutions.append(current_solution / row[-2] )
continue
_a : Any =row.copy()[: len(_UpperCAmelCase ) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0 )
if len(_UpperCAmelCase ) == 0:
solutions.append(0 )
continue
_a : List[str] =temp_row[1::]
_a : int =temp_row[::-1]
for column_index, column in enumerate(_UpperCAmelCase ):
current_solution -= column * solutions[column_index]
solutions.append(_UpperCAmelCase )
_a : Tuple =[]
for item in solutions:
final.append(float(round(_UpperCAmelCase ,5 ) ) )
return final[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
A__: int = [
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))
print(solve_simultaneous([[4, 2]]))
| 694 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A__: str = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__: Optional[Any] = [
'''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FocalNetForImageClassification''',
'''FocalNetForMaskedImageModeling''',
'''FocalNetBackbone''',
'''FocalNetModel''',
'''FocalNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
A__: Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 694 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__: Dict = logging.get_logger(__name__)
A__: Optional[int] = {
'''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''',
'''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''',
}
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Tuple = "markuplm"
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :List[Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE :Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :int=3_0_7_2 , SCREAMING_SNAKE_CASE :Optional[int]="gelu" , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=5_1_2 , SCREAMING_SNAKE_CASE :Optional[Any]=2 , SCREAMING_SNAKE_CASE :Optional[int]=0.02 , SCREAMING_SNAKE_CASE :Any=1e-12 , SCREAMING_SNAKE_CASE :Any=0 , SCREAMING_SNAKE_CASE :List[Any]=0 , SCREAMING_SNAKE_CASE :Tuple=2 , SCREAMING_SNAKE_CASE :Optional[Any]=2_5_6 , SCREAMING_SNAKE_CASE :Optional[int]=1_0_2_4 , SCREAMING_SNAKE_CASE :Tuple=2_1_6 , SCREAMING_SNAKE_CASE :Dict=1_0_0_1 , SCREAMING_SNAKE_CASE :List[str]=3_2 , SCREAMING_SNAKE_CASE :List[str]=5_0 , SCREAMING_SNAKE_CASE :Dict="absolute" , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :Any=None , **SCREAMING_SNAKE_CASE :Tuple , ) -> Any:
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
_a : Any =vocab_size
_a : List[str] =hidden_size
_a : List[str] =num_hidden_layers
_a : Tuple =num_attention_heads
_a : Union[str, Any] =hidden_act
_a : Tuple =intermediate_size
_a : Optional[Any] =hidden_dropout_prob
_a : int =attention_probs_dropout_prob
_a : Any =max_position_embeddings
_a : List[Any] =type_vocab_size
_a : List[Any] =initializer_range
_a : List[Any] =layer_norm_eps
_a : Optional[int] =position_embedding_type
_a : List[Any] =use_cache
_a : List[str] =classifier_dropout
# additional properties
_a : int =max_depth
_a : Union[str, Any] =max_xpath_tag_unit_embeddings
_a : str =max_xpath_subs_unit_embeddings
_a : int =tag_pad_id
_a : List[Any] =subs_pad_id
_a : str =xpath_unit_hidden_size
| 694 | 1 |
'''simple docstring'''
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[str] ) -> int:
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class A__ ( nn.Module ):
def __init__( self :Dict , SCREAMING_SNAKE_CASE :nn.Module , SCREAMING_SNAKE_CASE :int ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_a : Dict =module
_a : Any =nn.Sequential(
nn.Linear(module.in_features , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) , nn.Linear(SCREAMING_SNAKE_CASE , module.out_features , bias=SCREAMING_SNAKE_CASE ) , )
_a : List[Any] =(2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=SCREAMING_SNAKE_CASE )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Dict , *SCREAMING_SNAKE_CASE :Tuple , **SCREAMING_SNAKE_CASE :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
return self.module(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) + self.adapter(SCREAMING_SNAKE_CASE )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
__UpperCamelCase : Optional[int] = "bigscience/bloom-1b7"
# Constant values
__UpperCamelCase : Any = 2.109_659_552_692_574
__UpperCamelCase : str = "Hello my name is"
__UpperCamelCase : List[str] = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
__UpperCamelCase : Dict = 10
def __UpperCAmelCase ( self :Any ) -> List[Any]:
'''simple docstring'''
# Models and tokenizer
_a : str =AutoTokenizer.from_pretrained(self.model_name )
class A__ ( UpperCAmelCase__ ):
def __UpperCAmelCase ( self :Optional[int] ) -> Tuple:
'''simple docstring'''
super().setUp()
# Models and tokenizer
_a : List[str] =AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map="""auto""" )
_a : List[Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map="""auto""" )
def __UpperCAmelCase ( self :Tuple ) -> Dict:
'''simple docstring'''
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self :List[Any] ) -> List[Any]:
'''simple docstring'''
_a : List[Any] =self.model_abit.config
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """quantization_config""" ) )
_a : Dict =config.to_dict()
_a : Union[str, Any] =config.to_diff_dict()
_a : str =config.to_json_string()
def __UpperCAmelCase ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
from bitsandbytes.nn import Paramsabit
_a : Dict =self.model_fpaa.get_memory_footprint()
_a : Dict =self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
_a : int =get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(SCREAMING_SNAKE_CASE , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def __UpperCAmelCase ( self :str ) -> Tuple:
'''simple docstring'''
_a : Tuple =self.tokenizer(self.input_text , return_tensors="""pt""" )
_a : List[str] =self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS )
def __UpperCAmelCase ( self :Tuple ) -> str:
'''simple docstring'''
_a : Union[str, Any] =BitsAndBytesConfig()
_a : Union[str, Any] =True
_a : List[Any] =AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=SCREAMING_SNAKE_CASE , device_map="""auto""" )
_a : Any =self.tokenizer(self.input_text , return_tensors="""pt""" )
_a : List[Any] =model_abit_from_config.generate(
input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS )
def __UpperCAmelCase ( self :Optional[Any] ) -> List[str]:
'''simple docstring'''
with self.assertRaises(SCREAMING_SNAKE_CASE ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :List[Any] ) -> Optional[Any]:
'''simple docstring'''
_a : Dict =BitsAndBytesConfig()
with self.assertRaises(SCREAMING_SNAKE_CASE ):
_a : Union[str, Any] =AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=SCREAMING_SNAKE_CASE , load_in_abit=SCREAMING_SNAKE_CASE , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , )
def __UpperCAmelCase ( self :Dict ) -> List[str]:
'''simple docstring'''
with self.assertRaises(SCREAMING_SNAKE_CASE ):
# Tries with `str`
self.model_abit.to("""cpu""" )
with self.assertRaises(SCREAMING_SNAKE_CASE ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(SCREAMING_SNAKE_CASE ):
# Tries with a `device`
self.model_abit.to(torch.device("""cuda:0""" ) )
with self.assertRaises(SCREAMING_SNAKE_CASE ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(SCREAMING_SNAKE_CASE ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
_a : List[Any] =self.tokenizer(self.input_text , return_tensors="""pt""" )
_a : List[str] =self.model_fpaa.to(torch.floataa )
_a : int =self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=1_0 )
# Check this does not throw an error
_a : Dict =self.model_fpaa.to("""cpu""" )
# Check this does not throw an error
_a : List[Any] =self.model_fpaa.half()
# Check this does not throw an error
_a : Union[str, Any] =self.model_fpaa.float()
def __UpperCAmelCase ( self :Any ) -> List[str]:
'''simple docstring'''
_a : Any =AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=SCREAMING_SNAKE_CASE , device_map="""auto""" )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
@classmethod
def __UpperCAmelCase ( cls :List[Any] ) -> Any:
'''simple docstring'''
_a : Any ="""t5-small"""
_a : Optional[int] ="""google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense
_a : Union[str, Any] =AutoTokenizer.from_pretrained(cls.model_name )
_a : Union[str, Any] ="""Translate in German: Hello, my dog is cute"""
def __UpperCAmelCase ( self :Optional[Any] ) -> List[str]:
'''simple docstring'''
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self :Tuple ) -> Tuple:
'''simple docstring'''
from transformers import TaForConditionalGeneration
_a : Tuple =TaForConditionalGeneration._keep_in_fpaa_modules
_a : Optional[Any] =None
# test with `t5-small`
_a : List[Any] =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map="""auto""" )
_a : Any =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
_a : Union[str, Any] =model.generate(**SCREAMING_SNAKE_CASE )
# test with `flan-t5-small`
_a : Optional[Any] =TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map="""auto""" )
_a : str =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
_a : List[str] =model.generate(**SCREAMING_SNAKE_CASE )
_a : int =modules
def __UpperCAmelCase ( self :Union[str, Any] ) -> str:
'''simple docstring'''
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
_a : Union[str, Any] =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map="""auto""" )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
_a : List[Any] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
_a : List[Any] =model.generate(**SCREAMING_SNAKE_CASE )
# test with `flan-t5-small`
_a : Union[str, Any] =TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map="""auto""" )
_a : List[str] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
_a : int =model.generate(**SCREAMING_SNAKE_CASE )
class A__ ( UpperCAmelCase__ ):
def __UpperCAmelCase ( self :List[Any] ) -> Tuple:
'''simple docstring'''
super().setUp()
# model_name
_a : str ="""bigscience/bloom-560m"""
_a : List[Any] ="""t5-small"""
# Different types of model
_a : Optional[int] =AutoModel.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map="""auto""" )
# Sequence classification model
_a : Dict =AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map="""auto""" )
# CausalLM model
_a : List[str] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map="""auto""" )
# Seq2seq model
_a : List[str] =AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map="""auto""" )
def __UpperCAmelCase ( self :Any ) -> Any:
'''simple docstring'''
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self :Union[str, Any] ) -> str:
'''simple docstring'''
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class A__ ( UpperCAmelCase__ ):
def __UpperCAmelCase ( self :Optional[int] ) -> Optional[int]:
'''simple docstring'''
super().setUp()
def __UpperCAmelCase ( self :Any ) -> Any:
'''simple docstring'''
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self :Any ) -> List[str]:
'''simple docstring'''
_a : str =pipeline(
"""text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
_a : str =self.pipe(self.input_text )
self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class A__ ( UpperCAmelCase__ ):
def __UpperCAmelCase ( self :List[str] ) -> int:
'''simple docstring'''
super().setUp()
def __UpperCAmelCase ( self :Any ) -> int:
'''simple docstring'''
_a : int =AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map="""balanced""" )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
_a : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" )
# Second real batch
_a : List[Any] =model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS )
class A__ ( UpperCAmelCase__ ):
def __UpperCAmelCase ( self :Dict ) -> Optional[Any]:
'''simple docstring'''
_a : Optional[int] ="""facebook/opt-350m"""
super().setUp()
def __UpperCAmelCase ( self :Union[str, Any] ) -> List[str]:
'''simple docstring'''
if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ):
return
# Step 1: freeze all parameters
_a : List[Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
_a : Optional[int] =False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
_a : Any =param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(SCREAMING_SNAKE_CASE ) ):
_a : Dict =LoRALayer(module.q_proj , rank=1_6 )
_a : Optional[int] =LoRALayer(module.k_proj , rank=1_6 )
_a : List[Any] =LoRALayer(module.v_proj , rank=1_6 )
# Step 3: dummy batch
_a : Dict =self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
_a : str =model.forward(**SCREAMING_SNAKE_CASE )
out.logits.norm().backward()
for module in model.modules():
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(SCREAMING_SNAKE_CASE , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : List[str] = "gpt2-xl"
__UpperCamelCase : Tuple = 3.3_191_854_854_152_187
| 694 |
'''simple docstring'''
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
A__: Union[str, Any] = logging.get_logger('''transformers.models.speecht5''')
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Any ) -> Dict:
hf_model.apply_weight_norm()
_a : Any =checkpoint["""input_conv.weight_g"""]
_a : Union[str, Any] =checkpoint["""input_conv.weight_v"""]
_a : Optional[int] =checkpoint["""input_conv.bias"""]
for i in range(len(config.upsample_rates ) ):
_a : Optional[int] =checkpoint[F"upsamples.{i}.1.weight_g"]
_a : Optional[Any] =checkpoint[F"upsamples.{i}.1.weight_v"]
_a : List[Any] =checkpoint[F"upsamples.{i}.1.bias"]
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
_a : Optional[int] =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"]
_a : Tuple =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"]
_a : Union[str, Any] =checkpoint[F"blocks.{i}.convs1.{j}.1.bias"]
_a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"]
_a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"]
_a : Tuple =checkpoint[F"blocks.{i}.convs2.{j}.1.bias"]
_a : Dict =checkpoint["""output_conv.1.weight_g"""]
_a : str =checkpoint["""output_conv.1.weight_v"""]
_a : Union[str, Any] =checkpoint["""output_conv.1.bias"""]
hf_model.remove_weight_norm()
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : int=None ,_UpperCAmelCase : Tuple=None ,) -> List[Any]:
if config_path is not None:
_a : str =SpeechTaHifiGanConfig.from_pretrained(_UpperCAmelCase )
else:
_a : str =SpeechTaHifiGanConfig()
_a : Tuple =SpeechTaHifiGan(_UpperCAmelCase )
_a : int =torch.load(_UpperCAmelCase )
load_weights(orig_checkpoint["""model"""]["""generator"""] ,_UpperCAmelCase ,_UpperCAmelCase )
_a : Dict =np.load(_UpperCAmelCase )
_a : Union[str, Any] =stats[0].reshape(-1 )
_a : Any =stats[1].reshape(-1 )
_a : Tuple =torch.from_numpy(_UpperCAmelCase ).float()
_a : List[str] =torch.from_numpy(_UpperCAmelCase ).float()
model.save_pretrained(_UpperCAmelCase )
if repo_id:
print("""Pushing to the hub...""" )
model.push_to_hub(_UpperCAmelCase )
if __name__ == "__main__":
A__: Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''')
parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
A__: Tuple = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 694 | 1 |
'''simple docstring'''
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : List[str] = (EulerDiscreteScheduler,)
__UpperCamelCase : Optional[int] = 10
def __UpperCAmelCase ( self :Any , **SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_a : Union[str, Any] ={
"""num_train_timesteps""": 1_1_0_0,
"""beta_start""": 0.0_001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
}
config.update(**SCREAMING_SNAKE_CASE )
return config
def __UpperCAmelCase ( self :List[Any] ) -> Optional[Any]:
'''simple docstring'''
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[int] ) -> int:
'''simple docstring'''
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE , beta_end=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Tuple ) -> Optional[Any]:
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[Any] ) -> Any:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :List[str] ) -> Any:
'''simple docstring'''
_a : Dict =self.scheduler_classes[0]
_a : List[str] =self.get_scheduler_config()
_a : List[str] =scheduler_class(**SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(self.num_inference_steps )
_a : List[str] =torch.manual_seed(0 )
_a : Dict =self.dummy_model()
_a : Any =self.dummy_sample_deter * scheduler.init_noise_sigma
_a : Dict =sample.to(SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
_a : Union[str, Any] =scheduler.scale_model_input(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Optional[int] =model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Dict =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE )
_a : Any =output.prev_sample
_a : Dict =torch.sum(torch.abs(SCREAMING_SNAKE_CASE ) )
_a : Optional[int] =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 10.0_807 ) < 1e-2
assert abs(result_mean.item() - 0.0_131 ) < 1e-3
def __UpperCAmelCase ( self :Tuple ) -> Dict:
'''simple docstring'''
_a : Tuple =self.scheduler_classes[0]
_a : Union[str, Any] =self.get_scheduler_config(prediction_type="""v_prediction""" )
_a : Tuple =scheduler_class(**SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(self.num_inference_steps )
_a : Optional[int] =torch.manual_seed(0 )
_a : Dict =self.dummy_model()
_a : Union[str, Any] =self.dummy_sample_deter * scheduler.init_noise_sigma
_a : List[Any] =sample.to(SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
_a : Dict =scheduler.scale_model_input(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Optional[Any] =model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Tuple =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE )
_a : Dict =output.prev_sample
_a : Tuple =torch.sum(torch.abs(SCREAMING_SNAKE_CASE ) )
_a : Optional[Any] =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 0.0_002 ) < 1e-2
assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3
def __UpperCAmelCase ( self :List[Any] ) -> Dict:
'''simple docstring'''
_a : int =self.scheduler_classes[0]
_a : int =self.get_scheduler_config()
_a : List[str] =scheduler_class(**SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE )
_a : Any =torch.manual_seed(0 )
_a : str =self.dummy_model()
_a : str =self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_a : List[str] =sample.to(SCREAMING_SNAKE_CASE )
for t in scheduler.timesteps:
_a : List[str] =scheduler.scale_model_input(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Any =model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE )
_a : List[Any] =output.prev_sample
_a : int =torch.sum(torch.abs(SCREAMING_SNAKE_CASE ) )
_a : List[Any] =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 10.0_807 ) < 1e-2
assert abs(result_mean.item() - 0.0_131 ) < 1e-3
def __UpperCAmelCase ( self :str ) -> str:
'''simple docstring'''
_a : int =self.scheduler_classes[0]
_a : Union[str, Any] =self.get_scheduler_config()
_a : Union[str, Any] =scheduler_class(**SCREAMING_SNAKE_CASE , use_karras_sigmas=SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =torch.manual_seed(0 )
_a : Union[str, Any] =self.dummy_model()
_a : List[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_a : Dict =sample.to(SCREAMING_SNAKE_CASE )
for t in scheduler.timesteps:
_a : List[Any] =scheduler.scale_model_input(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Tuple =model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : List[str] =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE )
_a : Optional[Any] =output.prev_sample
_a : List[str] =torch.sum(torch.abs(SCREAMING_SNAKE_CASE ) )
_a : Optional[int] =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2
assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
| 694 |
'''simple docstring'''
class A__ :
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :List[str] ) -> List[str]:
'''simple docstring'''
_a : List[str] =None
_a : Optional[Any] =None
_a : str =graph
self._normalize_graph(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Optional[int] =len(SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =None
def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[str] ) -> Any:
'''simple docstring'''
if sources is int:
_a : Tuple =[sources]
if sinks is int:
_a : Optional[int] =[sinks]
if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) == 0:
return
_a : Union[str, Any] =sources[0]
_a : Tuple =sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(SCREAMING_SNAKE_CASE ) > 1 or len(SCREAMING_SNAKE_CASE ) > 1:
_a : Tuple =0
for i in sources:
max_input_flow += sum(self.graph[i] )
_a : List[Any] =len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
_a : Any =max_input_flow
_a : List[str] =0
_a : List[str] =len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
_a : str =max_input_flow
_a : Optional[Any] =size - 1
def __UpperCAmelCase ( self :Optional[int] ) -> Tuple:
'''simple docstring'''
if self.maximum_flow_algorithm is None:
raise Exception("""You need to set maximum flow algorithm before.""" )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Dict ) -> int:
'''simple docstring'''
_a : Tuple =algorithm(self )
class A__ :
def __init__( self :Tuple , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Dict:
'''simple docstring'''
_a : List[str] =flow_network
_a : List[Any] =flow_network.verticesCount
_a : str =flow_network.sourceIndex
_a : str =flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
_a : List[Any] =flow_network.graph
_a : Optional[int] =False
def __UpperCAmelCase ( self :List[Any] ) -> List[str]:
'''simple docstring'''
if not self.executed:
self._algorithm()
_a : Any =True
def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
pass
class A__ ( UpperCAmelCase__ ):
def __init__( self :int , SCREAMING_SNAKE_CASE :str ) -> int:
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE )
# use this to save your result
_a : List[Any] =-1
def __UpperCAmelCase ( self :Dict ) -> Tuple:
'''simple docstring'''
if not self.executed:
raise Exception("""You should execute algorithm before using its result!""" )
return self.maximum_flow
class A__ ( UpperCAmelCase__ ):
def __init__( self :str , SCREAMING_SNAKE_CASE :Tuple ) -> str:
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE )
_a : int =[[0] * self.verticies_count for i in range(self.verticies_count )]
_a : Union[str, Any] =[0] * self.verticies_count
_a : Optional[Any] =[0] * self.verticies_count
def __UpperCAmelCase ( self :Optional[int] ) -> Optional[Any]:
'''simple docstring'''
_a : int =self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
_a : Tuple =[
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
_a : List[Any] =0
while i < len(SCREAMING_SNAKE_CASE ):
_a : Any =vertices_list[i]
_a : str =self.heights[vertex_index]
self.process_vertex(SCREAMING_SNAKE_CASE )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE ) )
_a : List[str] =0
else:
i += 1
_a : Optional[int] =sum(self.preflow[self.source_index] )
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> List[str]:
'''simple docstring'''
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
self.relabel(SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :str ) -> List[str]:
'''simple docstring'''
_a : List[str] =min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Any ) -> List[Any]:
'''simple docstring'''
_a : int =None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
_a : Optional[Any] =self.heights[to_index]
if min_height is not None:
_a : Any =min_height + 1
if __name__ == "__main__":
A__: str = [0]
A__: Optional[Any] = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
A__: Tuple = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
A__: Union[str, Any] = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
A__: List[str] = flow_network.find_maximum_flow()
print(F"maximum flow is {maximum_flow}")
| 694 | 1 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__: str = logging.get_logger(__name__)
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Tuple = "encoder-decoder"
__UpperCamelCase : Union[str, Any] = True
def __init__( self :int , **SCREAMING_SNAKE_CASE :List[str] ) -> Dict:
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE )
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
_a : str =kwargs.pop("""encoder""" )
_a : Optional[Any] =encoder_config.pop("""model_type""" )
_a : Optional[Any] =kwargs.pop("""decoder""" )
_a : Dict =decoder_config.pop("""model_type""" )
from ..auto.configuration_auto import AutoConfig
_a : List[str] =AutoConfig.for_model(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
_a : Optional[Any] =AutoConfig.for_model(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
_a : str =True
@classmethod
def __UpperCAmelCase ( cls :Any , SCREAMING_SNAKE_CASE :PretrainedConfig , SCREAMING_SNAKE_CASE :PretrainedConfig , **SCREAMING_SNAKE_CASE :List[Any] ) -> PretrainedConfig:
'''simple docstring'''
logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" )
_a : Union[str, Any] =True
_a : Optional[Any] =True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Dict ) -> str:
'''simple docstring'''
_a : Optional[int] =copy.deepcopy(self.__dict__ )
_a : Tuple =self.encoder.to_dict()
_a : Dict =self.decoder.to_dict()
_a : Optional[Any] =self.__class__.model_type
return output
| 694 |
'''simple docstring'''
A__: Optional[int] = '''
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
A__: List[Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
A__: int = {
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 694 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : float ,_UpperCAmelCase : list[float] ) -> float:
if discount_rate < 0:
raise ValueError("""Discount rate cannot be negative""" )
if not cash_flows:
raise ValueError("""Cash flows list cannot be empty""" )
_a : Dict =sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_UpperCAmelCase ) )
return round(_UpperCAmelCase ,ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : float ,_UpperCAmelCase : float ) -> float:
return price * (1 + tax_rate)
if __name__ == "__main__":
print(F"{price_plus_tax(100, 0.25) = }")
print(F"{price_plus_tax(125.50, 0.05) = }")
| 694 | 1 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class A__ ( unittest.TestCase ):
def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any]=7 , SCREAMING_SNAKE_CASE :Optional[Any]=3 , SCREAMING_SNAKE_CASE :Tuple=1_8 , SCREAMING_SNAKE_CASE :Any=3_0 , SCREAMING_SNAKE_CASE :List[str]=4_0_0 , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :List[str]=True , ) -> Tuple:
'''simple docstring'''
_a : int =size if size is not None else {"""height""": 1_8, """width""": 1_8}
_a : int =parent
_a : Optional[int] =batch_size
_a : List[str] =num_channels
_a : Optional[Any] =image_size
_a : int =min_resolution
_a : str =max_resolution
_a : str =do_resize
_a : Tuple =size
_a : Tuple =do_normalize
def __UpperCAmelCase ( self :Any ) -> int:
'''simple docstring'''
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class A__ ( UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : int = ImageGPTImageProcessor if is_vision_available() else None
def __UpperCAmelCase ( self :List[Any] ) -> List[Any]:
'''simple docstring'''
_a : Any =ImageGPTImageProcessingTester(self )
@property
def __UpperCAmelCase ( self :Optional[int] ) -> List[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCAmelCase ( self :Dict ) -> Any:
'''simple docstring'''
_a : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """clusters""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_resize""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """size""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_normalize""" ) )
def __UpperCAmelCase ( self :Optional[int] ) -> Optional[int]:
'''simple docstring'''
_a : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} )
_a : Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 )
self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} )
def __UpperCAmelCase ( self :List[Any] ) -> Optional[int]:
'''simple docstring'''
_a : List[str] =self.image_processing_class(**self.image_processor_dict )
_a : Dict =json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , obj[key] ) )
else:
self.assertEqual(obj[key] , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[int] ) -> Dict:
'''simple docstring'''
_a : List[Any] =self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_a : Any =os.path.join(SCREAMING_SNAKE_CASE , """image_processor.json""" )
image_processor_first.to_json_file(SCREAMING_SNAKE_CASE )
_a : str =self.image_processing_class.from_json_file(SCREAMING_SNAKE_CASE ).to_dict()
_a : Tuple =image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[int] ) -> str:
'''simple docstring'''
_a : List[str] =self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(SCREAMING_SNAKE_CASE )
_a : str =self.image_processing_class.from_pretrained(SCREAMING_SNAKE_CASE ).to_dict()
_a : Union[str, Any] =image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def __UpperCAmelCase ( self :Union[str, Any] ) -> int:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]:
_a : Any =load_dataset("""hf-internal-testing/fixtures_image_utils""" ,split="""test""" )
_a : Dict =Image.open(dataset[4]["""file"""] )
_a : Optional[int] =Image.open(dataset[5]["""file"""] )
_a : Optional[Any] =[imagea, imagea]
return images
@require_vision
@require_torch
class A__ ( unittest.TestCase ):
@slow
def __UpperCAmelCase ( self :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_a : Optional[Any] =ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
_a : int =prepare_images()
# test non-batched
_a : Dict =image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) )
_a : Optional[int] =[3_0_6, 1_9_1, 1_9_1]
self.assertEqual(encoding.input_ids[0, :3].tolist() , SCREAMING_SNAKE_CASE )
# test batched
_a : Dict =image_processing(SCREAMING_SNAKE_CASE , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) )
_a : Any =[3_0_3, 1_3, 1_3]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , SCREAMING_SNAKE_CASE )
| 694 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class A__ ( unittest.TestCase ):
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Any=1_3 , SCREAMING_SNAKE_CASE :Any=7 , SCREAMING_SNAKE_CASE :Any=True , SCREAMING_SNAKE_CASE :int=True , SCREAMING_SNAKE_CASE :Optional[int]=True , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :Optional[Any]=9_9 , SCREAMING_SNAKE_CASE :Tuple=3_2 , SCREAMING_SNAKE_CASE :Union[str, Any]=5 , SCREAMING_SNAKE_CASE :List[str]=4 , SCREAMING_SNAKE_CASE :int=3_7 , SCREAMING_SNAKE_CASE :Optional[Any]="gelu" , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=0.1 , SCREAMING_SNAKE_CASE :Dict=5_1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_6 , SCREAMING_SNAKE_CASE :Union[str, Any]=2 , SCREAMING_SNAKE_CASE :List[Any]=0.02 , SCREAMING_SNAKE_CASE :int=4 , ) -> Tuple:
'''simple docstring'''
_a : Optional[Any] =parent
_a : List[str] =batch_size
_a : List[str] =seq_length
_a : List[Any] =is_training
_a : Optional[int] =use_attention_mask
_a : List[Any] =use_token_type_ids
_a : List[Any] =use_labels
_a : Optional[Any] =vocab_size
_a : str =hidden_size
_a : List[Any] =num_hidden_layers
_a : List[Any] =num_attention_heads
_a : Union[str, Any] =intermediate_size
_a : int =hidden_act
_a : List[str] =hidden_dropout_prob
_a : Optional[int] =attention_probs_dropout_prob
_a : Dict =max_position_embeddings
_a : Any =type_vocab_size
_a : str =type_sequence_label_size
_a : str =initializer_range
_a : List[str] =num_choices
def __UpperCAmelCase ( self :Union[str, Any] ) -> Dict:
'''simple docstring'''
_a : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a : Dict =None
if self.use_attention_mask:
_a : Any =random_attention_mask([self.batch_size, self.seq_length] )
_a : Optional[int] =None
if self.use_token_type_ids:
_a : Any =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_a : Union[str, Any] =RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def __UpperCAmelCase ( self :Optional[Any] ) -> int:
'''simple docstring'''
_a : Tuple =self.prepare_config_and_inputs()
_a , _a , _a , _a : List[Any] =config_and_inputs
_a : Optional[int] ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def __UpperCAmelCase ( self :int ) -> str:
'''simple docstring'''
_a : List[Any] =self.prepare_config_and_inputs()
_a , _a , _a , _a : Optional[int] =config_and_inputs
_a : Tuple =True
_a : Optional[Any] =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_a : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class A__ ( UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : Union[str, Any] = True
__UpperCamelCase : Dict = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __UpperCAmelCase ( self :List[str] ) -> Optional[int]:
'''simple docstring'''
_a : Union[str, Any] =FlaxRobertaPreLayerNormModelTester(self )
@slow
def __UpperCAmelCase ( self :str ) -> int:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_a : Optional[int] =model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE )
_a : Dict =model(np.ones((1, 1) ) )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
@require_flax
class A__ ( unittest.TestCase ):
@slow
def __UpperCAmelCase ( self :Any ) -> str:
'''simple docstring'''
_a : str =FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE )
_a : List[Any] =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa )
_a : Dict =model(SCREAMING_SNAKE_CASE )[0]
_a : List[Any] =[1, 1_1, 5_0_2_6_5]
self.assertEqual(list(output.shape ) , SCREAMING_SNAKE_CASE )
# compare the actual values for a slice.
_a : Any =np.array(
[[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
@slow
def __UpperCAmelCase ( self :int ) -> int:
'''simple docstring'''
_a : Union[str, Any] =FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE )
_a : Any =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa )
_a : Optional[int] =model(SCREAMING_SNAKE_CASE )[0]
# compare the actual values for a slice.
_a : str =np.array(
[[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 694 | 1 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class A__ :
def __init__( self :str , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Optional[int]=2 , SCREAMING_SNAKE_CASE :Any=True , SCREAMING_SNAKE_CASE :Dict=False , SCREAMING_SNAKE_CASE :Tuple=1_0 , SCREAMING_SNAKE_CASE :Dict=3 , SCREAMING_SNAKE_CASE :Any=3_2 * 4 , SCREAMING_SNAKE_CASE :Union[str, Any]=3_2 * 6 , SCREAMING_SNAKE_CASE :Optional[int]=4 , SCREAMING_SNAKE_CASE :int=3_2 , ) -> str:
'''simple docstring'''
_a : Any =parent
_a : Any =batch_size
_a : Dict =is_training
_a : Optional[int] =use_auxiliary_loss
_a : str =num_queries
_a : Tuple =num_channels
_a : int =min_size
_a : Any =max_size
_a : List[str] =num_labels
_a : int =mask_feature_size
def __UpperCAmelCase ( self :int ) -> Any:
'''simple docstring'''
_a : Dict =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
SCREAMING_SNAKE_CASE )
_a : Optional[int] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=SCREAMING_SNAKE_CASE )
_a : List[str] =(
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=SCREAMING_SNAKE_CASE ) > 0.5
).float()
_a : Optional[Any] =(torch.rand((self.batch_size, self.num_labels) , device=SCREAMING_SNAKE_CASE ) > 0.5).long()
_a : List[Any] =self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def __UpperCAmelCase ( self :int ) -> Union[str, Any]:
'''simple docstring'''
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig(
decoder_ffn_dim=1_2_8 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , )
def __UpperCAmelCase ( self :Optional[Any] ) -> List[Any]:
'''simple docstring'''
_a , _a , _a , _a , _a : List[Any] =self.prepare_config_and_inputs()
_a : List[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Tuple ) -> List[Any]:
'''simple docstring'''
_a : List[str] =output.encoder_hidden_states
_a : List[str] =output.pixel_decoder_hidden_states
_a : Tuple =output.transformer_decoder_hidden_states
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE ) , config.decoder_config.decoder_layers )
def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Optional[int]=False ) -> int:
'''simple docstring'''
with torch.no_grad():
_a : int =MaskFormerModel(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
_a : List[str] =model(pixel_values=SCREAMING_SNAKE_CASE , pixel_mask=SCREAMING_SNAKE_CASE )
_a : Optional[int] =model(SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE )
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
_a : List[Any] =MaskFormerForInstanceSegmentation(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
def comm_check_on_output(SCREAMING_SNAKE_CASE :Tuple ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
_a : Union[str, Any] =model(pixel_values=SCREAMING_SNAKE_CASE , pixel_mask=SCREAMING_SNAKE_CASE )
_a : str =model(SCREAMING_SNAKE_CASE )
comm_check_on_output(SCREAMING_SNAKE_CASE )
_a : Dict =model(
pixel_values=SCREAMING_SNAKE_CASE , pixel_mask=SCREAMING_SNAKE_CASE , mask_labels=SCREAMING_SNAKE_CASE , class_labels=SCREAMING_SNAKE_CASE )
comm_check_on_output(SCREAMING_SNAKE_CASE )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class A__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : List[str] = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
__UpperCamelCase : Optional[int] = (
{"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
__UpperCamelCase : Optional[int] = False
__UpperCamelCase : int = False
__UpperCamelCase : Dict = False
__UpperCamelCase : Union[str, Any] = False
def __UpperCAmelCase ( self :str ) -> Optional[int]:
'''simple docstring'''
_a : Optional[int] =MaskFormerModelTester(self )
_a : Dict =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :str ) -> Dict:
'''simple docstring'''
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self :Dict ) -> Any:
'''simple docstring'''
_a , _a : Any =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :str ) -> Optional[int]:
'''simple docstring'''
_a : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*SCREAMING_SNAKE_CASE )
@unittest.skip(reason="""MaskFormer does not use inputs_embeds""" )
def __UpperCAmelCase ( self :str ) -> Any:
'''simple docstring'''
pass
@unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" )
def __UpperCAmelCase ( self :Optional[int] ) -> List[str]:
'''simple docstring'''
pass
@unittest.skip(reason="""MaskFormer is not a generative model""" )
def __UpperCAmelCase ( self :List[Any] ) -> int:
'''simple docstring'''
pass
@unittest.skip(reason="""MaskFormer does not use token embeddings""" )
def __UpperCAmelCase ( self :Any ) -> Dict:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def __UpperCAmelCase ( self :Any ) -> Optional[int]:
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def __UpperCAmelCase ( self :int ) -> List[str]:
'''simple docstring'''
pass
def __UpperCAmelCase ( self :Tuple ) -> List[Any]:
'''simple docstring'''
_a , _a : List[Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a : Dict =model_class(SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_a : int =[*signature.parameters.keys()]
_a : str =["""pixel_values"""]
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE )
@slow
def __UpperCAmelCase ( self :Union[str, Any] ) -> Tuple:
'''simple docstring'''
for model_name in ["facebook/maskformer-swin-small-coco"]:
_a : Any =MaskFormerModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :List[Any] ) -> Tuple:
'''simple docstring'''
_a : Tuple =(self.model_tester.min_size,) * 2
_a : int ={
"""pixel_values""": torch.randn((2, 3, *size) , device=SCREAMING_SNAKE_CASE ),
"""mask_labels""": torch.randn((2, 1_0, *size) , device=SCREAMING_SNAKE_CASE ),
"""class_labels""": torch.zeros(2 , 1_0 , device=SCREAMING_SNAKE_CASE ).long(),
}
_a : Optional[Any] =MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(SCREAMING_SNAKE_CASE )
_a : List[Any] =model(**SCREAMING_SNAKE_CASE )
self.assertTrue(outputs.loss is not None )
def __UpperCAmelCase ( self :Tuple ) -> Dict:
'''simple docstring'''
_a , _a : str =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :List[str] ) -> Any:
'''simple docstring'''
_a , _a : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a : str =model_class(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE )
_a : List[Any] =model(**SCREAMING_SNAKE_CASE , output_attentions=SCREAMING_SNAKE_CASE )
self.assertTrue(outputs.attentions is not None )
def __UpperCAmelCase ( self :str ) -> str:
'''simple docstring'''
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
_a : Tuple =self.all_model_classes[1]
_a , _a , _a , _a , _a : Dict =self.model_tester.prepare_config_and_inputs()
_a : List[Any] =model_class(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.train()
_a : str =model(SCREAMING_SNAKE_CASE , mask_labels=SCREAMING_SNAKE_CASE , class_labels=SCREAMING_SNAKE_CASE ).loss
loss.backward()
def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
# only MaskFormerForInstanceSegmentation has the loss
_a : str =self.all_model_classes[1]
_a , _a , _a , _a , _a : Optional[int] =self.model_tester.prepare_config_and_inputs()
_a : int =True
_a : Union[str, Any] =True
_a : Union[str, Any] =model_class(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.train()
_a : Any =model(SCREAMING_SNAKE_CASE , mask_labels=SCREAMING_SNAKE_CASE , class_labels=SCREAMING_SNAKE_CASE )
_a : str =outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
_a : List[Any] =outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
_a : List[str] =outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
_a : Optional[Any] =outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=SCREAMING_SNAKE_CASE )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
A__: Dict = 1E-4
def SCREAMING_SNAKE_CASE_ ( ) -> Dict:
_a : Optional[int] =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class A__ ( unittest.TestCase ):
@cached_property
def __UpperCAmelCase ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
return (
MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" )
if is_vision_available()
else None
)
def __UpperCAmelCase ( self :Optional[Any] ) -> int:
'''simple docstring'''
_a : Dict =MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(SCREAMING_SNAKE_CASE )
_a : Tuple =self.default_image_processor
_a : Dict =prepare_img()
_a : Union[str, Any] =image_processor(SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE )
_a : Optional[Any] =inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 )
# check size
self.assertEqual(SCREAMING_SNAKE_CASE , (1, 3, 8_0_0, 1_0_8_8) )
with torch.no_grad():
_a : Any =model(**SCREAMING_SNAKE_CASE )
_a : List[str] =torch.tensor(
[[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(SCREAMING_SNAKE_CASE )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE ) )
_a : List[str] =torch.tensor(
[[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(SCREAMING_SNAKE_CASE )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE ) )
_a : Optional[Any] =torch.tensor(
[[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(SCREAMING_SNAKE_CASE )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE ) )
def __UpperCAmelCase ( self :Optional[Any] ) -> int:
'''simple docstring'''
_a : Tuple =(
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(SCREAMING_SNAKE_CASE )
.eval()
)
_a : List[str] =self.default_image_processor
_a : Dict =prepare_img()
_a : int =image_processor(SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE )
_a : Any =inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 )
# check size
self.assertEqual(SCREAMING_SNAKE_CASE , (1, 3, 8_0_0, 1_0_8_8) )
with torch.no_grad():
_a : List[str] =model(**SCREAMING_SNAKE_CASE )
# masks_queries_logits
_a : int =outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_a : str =[
[-1.3_737_124, -1.7_724_937, -1.9_364_233],
[-1.5_977_281, -1.9_867_939, -2.1_523_695],
[-1.5_795_398, -1.9_269_832, -2.093_942],
]
_a : Optional[Any] =torch.tensor(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE ) )
# class_queries_logits
_a : Union[str, Any] =outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_a : Dict =torch.tensor(
[
[1.6512e00, -5.2572e00, -3.3519e00],
[3.6169e-02, -5.9025e00, -2.9313e00],
[1.0766e-04, -7.7630e00, -5.1263e00],
] ).to(SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE ) )
def __UpperCAmelCase ( self :Optional[Any] ) -> Any:
'''simple docstring'''
_a : List[Any] =(
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" )
.to(SCREAMING_SNAKE_CASE )
.eval()
)
_a : int =self.default_image_processor
_a : str =prepare_img()
_a : int =image_processor(SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE )
_a : str =inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 )
# check size
self.assertEqual(SCREAMING_SNAKE_CASE , (1, 3, 8_0_0, 1_0_8_8) )
with torch.no_grad():
_a : Dict =model(**SCREAMING_SNAKE_CASE )
# masks_queries_logits
_a : Optional[Any] =outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_a : List[str] =[[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]]
_a : List[str] =torch.tensor(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE ) )
# class_queries_logits
_a : List[str] =outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_a : Any =torch.tensor(
[[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE ) )
def __UpperCAmelCase ( self :str ) -> int:
'''simple docstring'''
_a : Union[str, Any] =(
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(SCREAMING_SNAKE_CASE )
.eval()
)
_a : Any =self.default_image_processor
_a : Dict =image_processor(
[np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors="""pt""" , )
_a : str =inputs["""pixel_values"""].to(SCREAMING_SNAKE_CASE )
_a : int =[el.to(SCREAMING_SNAKE_CASE ) for el in inputs["""mask_labels"""]]
_a : Optional[Any] =[el.to(SCREAMING_SNAKE_CASE ) for el in inputs["""class_labels"""]]
with torch.no_grad():
_a : Dict =model(**SCREAMING_SNAKE_CASE )
self.assertTrue(outputs.loss is not None )
| 694 |
'''simple docstring'''
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
A__: Tuple = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any]=None ,_UpperCAmelCase : str=None ) -> Union[str, Any]:
return field(default_factory=lambda: default ,metadata=_UpperCAmelCase )
@dataclass
class A__ :
__UpperCamelCase : List[str] = list_field(
default=[] , metadata={
"help": (
"Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version"
" of all available models"
)
} , )
__UpperCamelCase : List[int] = list_field(
default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} )
__UpperCamelCase : List[int] = list_field(
default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Use FP16 to accelerate inference."} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Benchmark training of model"} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Verbose memory tracing"} )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={
"help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"
} , )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Trace memory line by line"} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Save result to a CSV file"} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Save all print statements in a log file"} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Whether to print environment information"} )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={
"help": (
"Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use"
" multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled"
" for debugging / testing and on TPU."
)
} , )
__UpperCamelCase : str = field(
default=f'''inference_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , )
__UpperCamelCase : str = field(
default=f'''inference_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , )
__UpperCamelCase : str = field(
default=f'''train_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , )
__UpperCamelCase : str = field(
default=f'''train_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , )
__UpperCamelCase : str = field(
default=f'''env_info_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , )
__UpperCamelCase : str = field(
default=f'''log_{round(time() )}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , )
__UpperCamelCase : int = field(default=3 , metadata={"help": "Times an experiment will be run."} )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={
"help": (
"Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain"
" model weights."
)
} , )
def __UpperCAmelCase ( self :Union[str, Any] ) -> int:
'''simple docstring'''
warnings.warn(
f"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"
""" are deprecated in general and it is advised to use external Benchmarking libraries """
""" to benchmark Transformer models.""" , SCREAMING_SNAKE_CASE , )
def __UpperCAmelCase ( self :Optional[int] ) -> Dict:
'''simple docstring'''
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def __UpperCAmelCase ( self :Optional[int] ) -> List[str]:
'''simple docstring'''
if len(self.models ) <= 0:
raise ValueError(
"""Please make sure you provide at least one model name / model identifier, *e.g.* `--models"""
""" bert-base-cased` or `args.models = ['bert-base-cased'].""" )
return self.models
@property
def __UpperCAmelCase ( self :Optional[Any] ) -> int:
'''simple docstring'''
if not self.multi_process:
return False
elif self.is_tpu:
logger.info("""Multiprocessing is currently not possible on TPU.""" )
return False
else:
return True
| 694 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__: Dict = logging.get_logger(__name__)
A__: Optional[int] = {
'''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''',
'''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''',
}
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Tuple = "markuplm"
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :List[Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE :Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :int=3_0_7_2 , SCREAMING_SNAKE_CASE :Optional[int]="gelu" , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=5_1_2 , SCREAMING_SNAKE_CASE :Optional[Any]=2 , SCREAMING_SNAKE_CASE :Optional[int]=0.02 , SCREAMING_SNAKE_CASE :Any=1e-12 , SCREAMING_SNAKE_CASE :Any=0 , SCREAMING_SNAKE_CASE :List[Any]=0 , SCREAMING_SNAKE_CASE :Tuple=2 , SCREAMING_SNAKE_CASE :Optional[Any]=2_5_6 , SCREAMING_SNAKE_CASE :Optional[int]=1_0_2_4 , SCREAMING_SNAKE_CASE :Tuple=2_1_6 , SCREAMING_SNAKE_CASE :Dict=1_0_0_1 , SCREAMING_SNAKE_CASE :List[str]=3_2 , SCREAMING_SNAKE_CASE :List[str]=5_0 , SCREAMING_SNAKE_CASE :Dict="absolute" , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :Any=None , **SCREAMING_SNAKE_CASE :Tuple , ) -> Any:
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
_a : Any =vocab_size
_a : List[str] =hidden_size
_a : List[str] =num_hidden_layers
_a : Tuple =num_attention_heads
_a : Union[str, Any] =hidden_act
_a : Tuple =intermediate_size
_a : Optional[Any] =hidden_dropout_prob
_a : int =attention_probs_dropout_prob
_a : Any =max_position_embeddings
_a : List[Any] =type_vocab_size
_a : List[Any] =initializer_range
_a : List[Any] =layer_norm_eps
_a : Optional[int] =position_embedding_type
_a : List[Any] =use_cache
_a : List[str] =classifier_dropout
# additional properties
_a : int =max_depth
_a : Union[str, Any] =max_xpath_tag_unit_embeddings
_a : str =max_xpath_subs_unit_embeddings
_a : int =tag_pad_id
_a : List[Any] =subs_pad_id
_a : str =xpath_unit_hidden_size
| 694 |
'''simple docstring'''
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class A__ ( UpperCAmelCase__ ):
def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Distribution , SCREAMING_SNAKE_CASE :int=None , SCREAMING_SNAKE_CASE :Tuple=None , SCREAMING_SNAKE_CASE :List[Any]=0 ) -> List[str]:
'''simple docstring'''
_a : int =1.0 if scale is None else scale
_a : Optional[Any] =0.0 if loc is None else loc
super().__init__(SCREAMING_SNAKE_CASE , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=SCREAMING_SNAKE_CASE )] )
@property
def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return self.base_dist.mean * self.scale + self.loc
@property
def __UpperCAmelCase ( self :Optional[int] ) -> Dict:
'''simple docstring'''
return self.base_dist.variance * self.scale**2
@property
def __UpperCAmelCase ( self :Any ) -> List[str]:
'''simple docstring'''
return self.variance.sqrt()
class A__ ( nn.Module ):
def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Dict[str, int] , SCREAMING_SNAKE_CASE :Callable[..., Tuple[torch.Tensor]] , **SCREAMING_SNAKE_CASE :Dict ) -> None:
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE )
_a : Tuple =args_dim
_a : Tuple =nn.ModuleList([nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for dim in args_dim.values()] )
_a : Dict =domain_map
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Tuple[torch.Tensor]:
'''simple docstring'''
_a : Tuple =[proj(SCREAMING_SNAKE_CASE ) for proj in self.proj]
return self.domain_map(*SCREAMING_SNAKE_CASE )
class A__ ( nn.Module ):
def __init__( self :Dict , SCREAMING_SNAKE_CASE :Tuple ) -> int:
'''simple docstring'''
super().__init__()
_a : List[Any] =function
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Optional[int] , *SCREAMING_SNAKE_CASE :int ) -> List[Any]:
'''simple docstring'''
return self.function(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE )
class A__ :
__UpperCamelCase : type
__UpperCamelCase : int
__UpperCamelCase : Dict[str, int]
def __init__( self :Any , SCREAMING_SNAKE_CASE :int = 1 ) -> None:
'''simple docstring'''
_a : Any =dim
_a : List[Any] ={k: dim * self.args_dim[k] for k in self.args_dim}
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
if self.dim == 1:
return self.distribution_class(*SCREAMING_SNAKE_CASE )
else:
return Independent(self.distribution_class(*SCREAMING_SNAKE_CASE ) , 1 )
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , ) -> Distribution:
'''simple docstring'''
_a : str =self._base_distribution(SCREAMING_SNAKE_CASE )
if loc is None and scale is None:
return distr
else:
return AffineTransformed(SCREAMING_SNAKE_CASE , loc=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , event_dim=self.event_dim )
@property
def __UpperCAmelCase ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
return () if self.dim == 1 else (self.dim,)
@property
def __UpperCAmelCase ( self :Any ) -> int:
'''simple docstring'''
return len(self.event_shape )
@property
def __UpperCAmelCase ( self :Any ) -> float:
'''simple docstring'''
return 0.0
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :int ) -> nn.Module:
'''simple docstring'''
return ParameterProjection(
in_features=SCREAMING_SNAKE_CASE , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , )
def __UpperCAmelCase ( self :int , *SCREAMING_SNAKE_CASE :torch.Tensor ) -> Any:
'''simple docstring'''
raise NotImplementedError()
@staticmethod
def __UpperCAmelCase ( SCREAMING_SNAKE_CASE :torch.Tensor ) -> torch.Tensor:
'''simple docstring'''
return (x + torch.sqrt(torch.square(SCREAMING_SNAKE_CASE ) + 4.0 )) / 2.0
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1}
__UpperCamelCase : type = StudentT
@classmethod
def __UpperCAmelCase ( cls :int , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Union[str, Any]:
'''simple docstring'''
_a : Tuple =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps )
_a : Optional[Any] =2.0 + cls.squareplus(SCREAMING_SNAKE_CASE )
return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 )
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1}
__UpperCamelCase : type = Normal
@classmethod
def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Dict:
'''simple docstring'''
_a : List[str] =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps )
return loc.squeeze(-1 ), scale.squeeze(-1 )
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1}
__UpperCamelCase : type = NegativeBinomial
@classmethod
def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Optional[int]:
'''simple docstring'''
_a : int =cls.squareplus(SCREAMING_SNAKE_CASE )
return total_count.squeeze(-1 ), logits.squeeze(-1 )
def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Distribution:
'''simple docstring'''
_a , _a : Any =distr_args
if self.dim == 1:
return self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE )
else:
return Independent(self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE ) , 1 )
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None ) -> Distribution:
'''simple docstring'''
_a , _a : Optional[int] =distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits) )
| 694 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ) -> list:
_a : Tuple =len(_UpperCAmelCase )
_a : str =[]
for i in range(len(_UpperCAmelCase ) - pat_len + 1 ):
_a : int =True
for j in range(_UpperCAmelCase ):
if s[i + j] != pattern[j]:
_a : int =False
break
if match_found:
position.append(_UpperCAmelCase )
return position
if __name__ == "__main__":
assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3]
print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int:
return number | (1 << position)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int:
return number & ~(1 << position)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int:
return number ^ (1 << position)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> bool:
return ((number >> position) & 1) == 1
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int:
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A__: Any = {
'''configuration_lxmert''': ['''LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LxmertConfig'''],
'''tokenization_lxmert''': ['''LxmertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__: List[Any] = ['''LxmertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__: Tuple = [
'''LxmertEncoder''',
'''LxmertForPreTraining''',
'''LxmertForQuestionAnswering''',
'''LxmertModel''',
'''LxmertPreTrainedModel''',
'''LxmertVisualFeatureEncoder''',
'''LxmertXLayer''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__: Tuple = [
'''TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFLxmertForPreTraining''',
'''TFLxmertMainLayer''',
'''TFLxmertModel''',
'''TFLxmertPreTrainedModel''',
'''TFLxmertVisualFeatureEncoder''',
]
if TYPE_CHECKING:
from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
from .tokenization_lxmert import LxmertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_lxmert_fast import LxmertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lxmert import (
LxmertEncoder,
LxmertForPreTraining,
LxmertForQuestionAnswering,
LxmertModel,
LxmertPreTrainedModel,
LxmertVisualFeatureEncoder,
LxmertXLayer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_lxmert import (
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLxmertForPreTraining,
TFLxmertMainLayer,
TFLxmertModel,
TFLxmertPreTrainedModel,
TFLxmertVisualFeatureEncoder,
)
else:
import sys
A__: Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : list ) -> float:
_validate_point(_UpperCAmelCase )
_validate_point(_UpperCAmelCase )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError("""Both points must be in the same n-dimensional space""" )
return float(sum(abs(a - b ) for a, b in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[float] ) -> None:
if point:
if isinstance(_UpperCAmelCase ,_UpperCAmelCase ):
for item in point:
if not isinstance(_UpperCAmelCase ,(int, float) ):
_a : str =(
"""Expected a list of numbers as input, found """
F"{type(_UpperCAmelCase ).__name__}"
)
raise TypeError(_UpperCAmelCase )
else:
_a : List[Any] =F"Expected a list of numbers as input, found {type(_UpperCAmelCase ).__name__}"
raise TypeError(_UpperCAmelCase )
else:
raise ValueError("""Missing an input""" )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : list ) -> float:
_validate_point(_UpperCAmelCase )
_validate_point(_UpperCAmelCase )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError("""Both points must be in the same n-dimensional space""" )
return float(sum(abs(x - y ) for x, y in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 | 1 |
'''simple docstring'''
from binascii import hexlify
from hashlib import shaaaa
from os import urandom
# RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for
# Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526
A__: Any = {
# 1536-bit
5: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
# 2048-bit
14: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'''
+ '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'''
+ '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510'''
+ '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
# 3072-bit
15: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'''
+ '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'''
+ '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510'''
+ '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'''
+ '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'''
+ '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'''
+ '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'''
+ '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'''
+ '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
# 4096-bit
16: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'''
+ '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'''
+ '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510'''
+ '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'''
+ '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'''
+ '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'''
+ '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'''
+ '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'''
+ '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7'''
+ '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA'''
+ '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6'''
+ '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED'''
+ '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9'''
+ '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199'''
+ '''FFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
# 6144-bit
17: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08'''
+ '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B'''
+ '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9'''
+ '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6'''
+ '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8'''
+ '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C'''
+ '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718'''
+ '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D'''
+ '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D'''
+ '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226'''
+ '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C'''
+ '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC'''
+ '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26'''
+ '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB'''
+ '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2'''
+ '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127'''
+ '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492'''
+ '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406'''
+ '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918'''
+ '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151'''
+ '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03'''
+ '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F'''
+ '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA'''
+ '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B'''
+ '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632'''
+ '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E'''
+ '''6DCC4024FFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
# 8192-bit
18: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'''
+ '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'''
+ '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510'''
+ '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'''
+ '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'''
+ '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'''
+ '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'''
+ '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'''
+ '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7'''
+ '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA'''
+ '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6'''
+ '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED'''
+ '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9'''
+ '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492'''
+ '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD'''
+ '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831'''
+ '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B'''
+ '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF'''
+ '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6'''
+ '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3'''
+ '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA'''
+ '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328'''
+ '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C'''
+ '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE'''
+ '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4'''
+ '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300'''
+ '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568'''
+ '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9'''
+ '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B'''
+ '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A'''
+ '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36'''
+ '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1'''
+ '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92'''
+ '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47'''
+ '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71'''
+ '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
}
class A__ :
def __init__( self :int , SCREAMING_SNAKE_CASE :int = 1_4 ) -> None:
'''simple docstring'''
if group not in primes:
raise ValueError("""Unsupported Group""" )
_a : Any =primes[group]["""prime"""]
_a : Optional[int] =primes[group]["""generator"""]
_a : Any =int(hexlify(urandom(3_2 ) ) , base=1_6 )
def __UpperCAmelCase ( self :str ) -> str:
'''simple docstring'''
return hex(self.__private_key )[2:]
def __UpperCAmelCase ( self :Tuple ) -> str:
'''simple docstring'''
_a : Any =pow(self.generator , self.__private_key , self.prime )
return hex(SCREAMING_SNAKE_CASE )[2:]
def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :int ) -> bool:
'''simple docstring'''
# check if the other public key is valid based on NIST SP800-56
return (
2 <= key <= self.prime - 2
and pow(SCREAMING_SNAKE_CASE , (self.prime - 1) // 2 , self.prime ) == 1
)
def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :str ) -> str:
'''simple docstring'''
_a : Dict =int(SCREAMING_SNAKE_CASE , base=1_6 )
if not self.is_valid_public_key(SCREAMING_SNAKE_CASE ):
raise ValueError("""Invalid public key""" )
_a : List[str] =pow(SCREAMING_SNAKE_CASE , self.__private_key , self.prime )
return shaaaa(str(SCREAMING_SNAKE_CASE ).encode() ).hexdigest()
@staticmethod
def __UpperCAmelCase ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int ) -> bool:
'''simple docstring'''
# check if the other public key is valid based on NIST SP800-56
return (
2 <= remote_public_key_str <= prime - 2
and pow(SCREAMING_SNAKE_CASE , (prime - 1) // 2 , SCREAMING_SNAKE_CASE ) == 1
)
@staticmethod
def __UpperCAmelCase ( SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :int = 1_4 ) -> str:
'''simple docstring'''
_a : List[str] =int(SCREAMING_SNAKE_CASE , base=1_6 )
_a : Dict =int(SCREAMING_SNAKE_CASE , base=1_6 )
_a : Dict =primes[group]["""prime"""]
if not DiffieHellman.is_valid_public_key_static(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
raise ValueError("""Invalid public key""" )
_a : Dict =pow(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return shaaaa(str(SCREAMING_SNAKE_CASE ).encode() ).hexdigest()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 |
'''simple docstring'''
from __future__ import annotations
class A__ :
def __init__( self :str , SCREAMING_SNAKE_CASE :int ) -> None:
'''simple docstring'''
_a : int =order
# a_{0} ... a_{k}
_a : Optional[Any] =[1.0] + [0.0] * order
# b_{0} ... b_{k}
_a : Tuple =[1.0] + [0.0] * order
# x[n-1] ... x[n-k]
_a : List[Any] =[0.0] * self.order
# y[n-1] ... y[n-k]
_a : Tuple =[0.0] * self.order
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :list[float] , SCREAMING_SNAKE_CASE :list[float] ) -> None:
'''simple docstring'''
if len(SCREAMING_SNAKE_CASE ) < self.order:
_a : int =[1.0, *a_coeffs]
if len(SCREAMING_SNAKE_CASE ) != self.order + 1:
_a : int =(
f"Expected a_coeffs to have {self.order + 1} elements "
f"for {self.order}-order filter, got {len(SCREAMING_SNAKE_CASE )}"
)
raise ValueError(SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) != self.order + 1:
_a : Optional[Any] =(
f"Expected b_coeffs to have {self.order + 1} elements "
f"for {self.order}-order filter, got {len(SCREAMING_SNAKE_CASE )}"
)
raise ValueError(SCREAMING_SNAKE_CASE )
_a : List[str] =a_coeffs
_a : Union[str, Any] =b_coeffs
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :float ) -> float:
'''simple docstring'''
_a : str =0.0
# Start at index 1 and do index 0 at the end.
for i in range(1 , self.order + 1 ):
result += (
self.b_coeffs[i] * self.input_history[i - 1]
- self.a_coeffs[i] * self.output_history[i - 1]
)
_a : Any =(result + self.b_coeffs[0] * sample) / self.a_coeffs[0]
_a : str =self.input_history[:-1]
_a : Optional[Any] =self.output_history[:-1]
_a : Optional[int] =sample
_a : Tuple =result
return result
| 694 | 1 |
'''simple docstring'''
import math
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 ,int(math.sqrt(_UpperCAmelCase ) + 1 ) ,6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : float = 0.1 ) -> int:
_a : str =3
_a : Any =3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1 ,(j + 2) * (j + 2) ,j + 1 ):
primes += is_prime(_UpperCAmelCase )
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 |
'''simple docstring'''
from queue import PriorityQueue
from typing import Any
import numpy as np
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : dict ,_UpperCAmelCase : str ,_UpperCAmelCase : set ,_UpperCAmelCase : set ,_UpperCAmelCase : dict ,_UpperCAmelCase : dict ,_UpperCAmelCase : PriorityQueue ,_UpperCAmelCase : dict ,_UpperCAmelCase : float | int ,) -> float | int:
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
_a : Dict =cst_fwd.get(_UpperCAmelCase ,np.inf )
_a : int =cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
_a : Tuple =new_cost_f
_a : Optional[Any] =v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
_a : str =cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ,_UpperCAmelCase : dict ,_UpperCAmelCase : dict ) -> int:
_a : Optional[Any] =-1
_a : List[str] =set()
_a : Optional[int] =set()
_a : Optional[int] ={source: 0}
_a : List[str] ={destination: 0}
_a : Union[str, Any] ={source: None}
_a : Dict ={destination: None}
_a : PriorityQueue[Any] =PriorityQueue()
_a : PriorityQueue[Any] =PriorityQueue()
_a : Optional[int] =np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
_a , _a : str =queue_forward.get()
visited_forward.add(_UpperCAmelCase )
_a , _a : List[Any] =queue_backward.get()
visited_backward.add(_UpperCAmelCase )
_a : int =pass_and_relaxation(
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,)
_a : Any =pass_and_relaxation(
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,)
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
_a : Any =shortest_distance
return shortest_path_distance
A__: Union[str, Any] = {
'''B''': [['''C''', 1]],
'''C''': [['''D''', 1]],
'''D''': [['''F''', 1]],
'''E''': [['''B''', 1], ['''G''', 2]],
'''F''': [],
'''G''': [['''F''', 1]],
}
A__: str = {
'''B''': [['''E''', 1]],
'''C''': [['''B''', 1]],
'''D''': [['''C''', 1]],
'''F''': [['''D''', 1], ['''G''', 1]],
'''E''': [[None, np.inf]],
'''G''': [['''E''', 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
A__: Optional[int] = logging.get_logger(__name__)
A__: Union[str, Any] = '''▁'''
A__: Any = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''}
A__: Optional[int] = {
'''vocab_file''': {
'''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''',
},
'''monolingual_vocab_file''': {
'''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''',
},
}
A__: Union[str, Any] = {'''vinai/bartpho-syllable''': 1024}
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Tuple = VOCAB_FILES_NAMES
__UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"]
def __init__( self :Dict , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Any="<s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE :int="</s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE :Tuple="<unk>" , SCREAMING_SNAKE_CASE :Optional[Any]="<pad>" , SCREAMING_SNAKE_CASE :List[str]="<mask>" , SCREAMING_SNAKE_CASE :Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE :List[Any] , ) -> None:
'''simple docstring'''
# Mask token behave like a normal word, i.e. include the space before it
_a : str =AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token
_a : int ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , )
_a : Dict =vocab_file
_a : int =monolingual_vocab_file
_a : Dict =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(SCREAMING_SNAKE_CASE ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
_a : List[Any] ={}
_a : List[str] =0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids:
_a : Optional[Any] =cnt
cnt += 1
with open(SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f:
for line in f.readlines():
_a : int =line.strip().split()[0]
_a : str =len(self.fairseq_tokens_to_ids )
if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids:
_a : Optional[int] =len(self.fairseq_tokens_to_ids )
_a : str ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self :int ) -> List[Any]:
'''simple docstring'''
_a : Optional[int] =self.__dict__.copy()
_a : Optional[Any] =None
_a : str =self.sp_model.serialized_model_proto()
return state
def __setstate__( self :Dict , SCREAMING_SNAKE_CASE :Any ) -> str:
'''simple docstring'''
_a : List[str] =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_a : Tuple ={}
_a : Any =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_a : Optional[int] =[self.cls_token_id]
_a : int =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None , SCREAMING_SNAKE_CASE :bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_a : List[str] =[self.sep_token_id]
_a : int =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def __UpperCAmelCase ( self :Optional[int] ) -> int:
'''simple docstring'''
return len(self.fairseq_ids_to_tokens )
def __UpperCAmelCase ( self :int ) -> Union[str, Any]:
'''simple docstring'''
_a : str ={self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :str ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Dict ) -> Any:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :Any ) -> Dict:
'''simple docstring'''
return self.fairseq_ids_to_tokens[index]
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_a : str ="""""".join(SCREAMING_SNAKE_CASE ).replace(SCREAMING_SNAKE_CASE , """ """ ).strip()
return out_string
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
_a : int =os.path.join(
SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_a : Any =os.path.join(
SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE , """wb""" ) as fi:
_a : Optional[Any] =self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
SCREAMING_SNAKE_CASE ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f"{str(SCREAMING_SNAKE_CASE )} \n" )
return out_vocab_file, out_monolingual_vocab_file
| 694 |
'''simple docstring'''
from math import factorial
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 100 ) -> int:
return sum(map(_UpperCAmelCase ,str(factorial(_UpperCAmelCase ) ) ) )
if __name__ == "__main__":
print(solution(int(input('''Enter the Number: ''').strip())))
| 694 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str = " " ) -> list:
_a : Any =[]
_a : Optional[int] =0
for index, char in enumerate(_UpperCAmelCase ):
if char == separator:
split_words.append(string[last_index:index] )
_a : Any =index + 1
elif index + 1 == len(_UpperCAmelCase ):
split_words.append(string[last_index : index + 1] )
return split_words
if __name__ == "__main__":
from doctest import testmod
testmod()
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ) -> list:
_a : Tuple =len(_UpperCAmelCase )
_a : str =[]
for i in range(len(_UpperCAmelCase ) - pat_len + 1 ):
_a : int =True
for j in range(_UpperCAmelCase ):
if s[i + j] != pattern[j]:
_a : int =False
break
if match_found:
position.append(_UpperCAmelCase )
return position
if __name__ == "__main__":
assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3]
print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
| 694 | 1 |
'''simple docstring'''
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : List[Any] ) -> List[str]:
for param, grad_param in zip(model_a.parameters() ,model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad ,grad_param.grad ) is False
), F"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})"
else:
# Grads should be in sync
assert (
torch.allclose(param.grad ,grad_param.grad ) is True
), F"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})"
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Any=True ) -> List[str]:
model.train()
_a : Tuple =model(_UpperCAmelCase )
_a : Any =F.mse_loss(_UpperCAmelCase ,target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Dict ,_UpperCAmelCase : Union[str, Any]=False ) -> List[str]:
set_seed(42 )
_a : List[Any] =RegressionModel()
_a : List[Any] =deepcopy(_UpperCAmelCase )
_a : Union[str, Any] =RegressionDataset(length=80 )
_a : Tuple =DataLoader(_UpperCAmelCase ,batch_size=16 )
model.to(accelerator.device )
if sched:
_a : Optional[int] =AdamW(params=model.parameters() ,lr=1e-3 )
_a : List[Any] =AdamW(params=ddp_model.parameters() ,lr=1e-3 )
_a : Dict =LambdaLR(_UpperCAmelCase ,lr_lambda=lambda _UpperCAmelCase : epoch**0.6_5 )
_a : str =LambdaLR(_UpperCAmelCase ,lr_lambda=lambda _UpperCAmelCase : epoch**0.6_5 )
# Make a copy of `model`
if sched:
_a , _a , _a , _a : Dict =accelerator.prepare(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
else:
_a , _a : List[Any] =accelerator.prepare(_UpperCAmelCase ,_UpperCAmelCase )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[int] ) -> Tuple:
# Test when on a single CPU or GPU that the context manager does nothing
_a , _a , _a : List[Any] =get_training_setup(_UpperCAmelCase )
# Use a single batch
_a , _a : Union[str, Any] =next(iter(_UpperCAmelCase ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
_a , _a : Tuple =accelerator.gather((ddp_input, ddp_target) )
_a , _a : List[Any] =input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_UpperCAmelCase ):
step_model(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
else:
# Sync grads
step_model(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad ,ddp_param.grad ), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
_a : str =ddp_input[torch.randperm(len(_UpperCAmelCase ) )]
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ) -> Dict:
# Test on distributed setup that context manager behaves properly
_a , _a , _a : List[Any] =get_training_setup(_UpperCAmelCase )
# Use a single batch
_a , _a : str =next(iter(_UpperCAmelCase ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
_a , _a : Tuple =accelerator.gather((ddp_input, ddp_target) )
_a , _a : int =input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_UpperCAmelCase ):
step_model(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
else:
# Sync grads
step_model(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad ,ddp_param.grad ) is False
), F"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"
else:
# Grads should be in sync
assert (
torch.allclose(param.grad ,ddp_param.grad ) is True
), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
_a : Optional[int] =ddp_input[torch.randperm(len(_UpperCAmelCase ) )]
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any]=False ,_UpperCAmelCase : Dict=False ) -> Dict:
_a : Tuple =Accelerator(
split_batches=_UpperCAmelCase ,dispatch_batches=_UpperCAmelCase ,gradient_accumulation_steps=2 )
# Test that context manager behaves properly
_a , _a , _a : str =get_training_setup(_UpperCAmelCase )
for iteration, batch in enumerate(_UpperCAmelCase ):
_a , _a : Dict =batch.values()
# Gather the distributed inputs and targs for the base model
_a , _a : Dict =accelerator.gather((ddp_input, ddp_target) )
_a , _a : Tuple =input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(_UpperCAmelCase ):
step_model(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(_UpperCAmelCase ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad ,ddp_param.grad ) is True
), F"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad ,ddp_param.grad ) is False
), F"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
_a : Optional[int] =ddp_input[torch.randperm(len(_UpperCAmelCase ) )]
GradientState._reset_state()
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any]=False ,_UpperCAmelCase : int=False ) -> int:
_a : Optional[Any] =Accelerator(
split_batches=_UpperCAmelCase ,dispatch_batches=_UpperCAmelCase ,gradient_accumulation_steps=2 )
# Test that context manager behaves properly
_a , _a , _a , _a , _a , _a , _a : Optional[int] =get_training_setup(_UpperCAmelCase ,_UpperCAmelCase )
for iteration, batch in enumerate(_UpperCAmelCase ):
_a , _a : Tuple =batch.values()
# Gather the distributed inputs and targs for the base model
_a , _a : str =accelerator.gather((ddp_input, ddp_target) )
_a , _a : int =input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_UpperCAmelCase )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(_UpperCAmelCase ):
step_model(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), F"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n"
_a : Optional[int] =(((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_UpperCAmelCase ))
if accelerator.num_processes > 1:
check_model_parameters(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
GradientState._reset_state()
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]:
_a : Dict =Accelerator()
_a : Optional[Any] =RegressionDataset(length=80 )
_a : Any =DataLoader(_UpperCAmelCase ,batch_size=16 )
_a : int =RegressionDataset(length=96 )
_a : str =DataLoader(_UpperCAmelCase ,batch_size=16 )
_a , _a : List[str] =accelerator.prepare(_UpperCAmelCase ,_UpperCAmelCase )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(_UpperCAmelCase ):
assert id(accelerator.gradient_state.active_dataloader ) == id(_UpperCAmelCase )
if iteration < len(_UpperCAmelCase ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(_UpperCAmelCase ):
assert id(accelerator.gradient_state.active_dataloader ) == id(_UpperCAmelCase )
if batch_num < len(_UpperCAmelCase ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def SCREAMING_SNAKE_CASE_ ( ) -> Dict:
_a : Optional[Any] =Accelerator()
_a : Dict =accelerator.state
if state.local_process_index == 0:
print("""**Test `accumulate` gradient accumulation with dataloader break**""" )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("""**Test NOOP `no_sync` context manager**""" )
test_noop_sync(_UpperCAmelCase )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("""**Test Distributed `no_sync` context manager**""" )
test_distributed_sync(_UpperCAmelCase )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"""**Test `accumulate` gradient accumulation, """ ,F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" ,)
test_gradient_accumulation(_UpperCAmelCase ,_UpperCAmelCase )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("""<""" ,"""2.0""" ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"""**Test `accumulate` gradient accumulation with optimizer and scheduler, """ ,"""`split_batches=False`, `dispatch_batches=False`**""" ,)
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"""**Test `accumulate` gradient accumulation with optimizer and scheduler, """ ,F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" ,)
test_gradient_accumulation_with_opt_and_scheduler(_UpperCAmelCase ,_UpperCAmelCase )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> Optional[Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 694 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class A__ ( unittest.TestCase ):
def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any]=7 , SCREAMING_SNAKE_CASE :Optional[Any]=3 , SCREAMING_SNAKE_CASE :Tuple=1_8 , SCREAMING_SNAKE_CASE :Any=3_0 , SCREAMING_SNAKE_CASE :List[str]=4_0_0 , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :List[str]=True , ) -> Tuple:
'''simple docstring'''
_a : int =size if size is not None else {"""height""": 1_8, """width""": 1_8}
_a : int =parent
_a : Optional[int] =batch_size
_a : List[str] =num_channels
_a : Optional[Any] =image_size
_a : int =min_resolution
_a : str =max_resolution
_a : str =do_resize
_a : Tuple =size
_a : Tuple =do_normalize
def __UpperCAmelCase ( self :Any ) -> int:
'''simple docstring'''
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class A__ ( UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : int = ImageGPTImageProcessor if is_vision_available() else None
def __UpperCAmelCase ( self :List[Any] ) -> List[Any]:
'''simple docstring'''
_a : Any =ImageGPTImageProcessingTester(self )
@property
def __UpperCAmelCase ( self :Optional[int] ) -> List[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCAmelCase ( self :Dict ) -> Any:
'''simple docstring'''
_a : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """clusters""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_resize""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """size""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_normalize""" ) )
def __UpperCAmelCase ( self :Optional[int] ) -> Optional[int]:
'''simple docstring'''
_a : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} )
_a : Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 )
self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} )
def __UpperCAmelCase ( self :List[Any] ) -> Optional[int]:
'''simple docstring'''
_a : List[str] =self.image_processing_class(**self.image_processor_dict )
_a : Dict =json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , obj[key] ) )
else:
self.assertEqual(obj[key] , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[int] ) -> Dict:
'''simple docstring'''
_a : List[Any] =self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_a : Any =os.path.join(SCREAMING_SNAKE_CASE , """image_processor.json""" )
image_processor_first.to_json_file(SCREAMING_SNAKE_CASE )
_a : str =self.image_processing_class.from_json_file(SCREAMING_SNAKE_CASE ).to_dict()
_a : Tuple =image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[int] ) -> str:
'''simple docstring'''
_a : List[str] =self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(SCREAMING_SNAKE_CASE )
_a : str =self.image_processing_class.from_pretrained(SCREAMING_SNAKE_CASE ).to_dict()
_a : Union[str, Any] =image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def __UpperCAmelCase ( self :Union[str, Any] ) -> int:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]:
_a : Any =load_dataset("""hf-internal-testing/fixtures_image_utils""" ,split="""test""" )
_a : Dict =Image.open(dataset[4]["""file"""] )
_a : Optional[int] =Image.open(dataset[5]["""file"""] )
_a : Optional[Any] =[imagea, imagea]
return images
@require_vision
@require_torch
class A__ ( unittest.TestCase ):
@slow
def __UpperCAmelCase ( self :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_a : Optional[Any] =ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
_a : int =prepare_images()
# test non-batched
_a : Dict =image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) )
_a : Optional[int] =[3_0_6, 1_9_1, 1_9_1]
self.assertEqual(encoding.input_ids[0, :3].tolist() , SCREAMING_SNAKE_CASE )
# test batched
_a : Dict =image_processing(SCREAMING_SNAKE_CASE , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) )
_a : Any =[3_0_3, 1_3, 1_3]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , SCREAMING_SNAKE_CASE )
| 694 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
A__: Tuple = {'''configuration_fnet''': ['''FNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FNetConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__: List[str] = ['''FNetTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__: Tuple = ['''FNetTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__: Any = [
'''FNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FNetForMaskedLM''',
'''FNetForMultipleChoice''',
'''FNetForNextSentencePrediction''',
'''FNetForPreTraining''',
'''FNetForQuestionAnswering''',
'''FNetForSequenceClassification''',
'''FNetForTokenClassification''',
'''FNetLayer''',
'''FNetModel''',
'''FNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
A__: Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ) -> bool:
_a : Optional[int] =len(_UpperCAmelCase )
_a : Tuple =[[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
_a : Any =True
# sum is not zero and set is empty then false
for i in range(1 ,required_sum + 1 ):
_a : int =False
for i in range(1 ,arr_len + 1 ):
for j in range(1 ,required_sum + 1 ):
if arr[i - 1] > j:
_a : Optional[Any] =subset[i - 1][j]
if arr[i - 1] <= j:
_a : Union[str, Any] =subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 | 1 |
'''simple docstring'''
from random import randint
from tempfile import TemporaryFile
import numpy as np
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[Any] ) -> str:
_a : Union[str, Any] =0
if start < end:
_a : List[str] =randint(_UpperCAmelCase ,_UpperCAmelCase )
_a : str =a[end]
_a : int =a[pivot]
_a : Dict =temp
_a , _a : str =_in_place_partition(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
count += _in_place_quick_sort(_UpperCAmelCase ,_UpperCAmelCase ,p - 1 )
count += _in_place_quick_sort(_UpperCAmelCase ,p + 1 ,_UpperCAmelCase )
return count
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Dict ,_UpperCAmelCase : Any ,_UpperCAmelCase : Optional[Any] ) -> str:
_a : List[str] =0
_a : str =randint(_UpperCAmelCase ,_UpperCAmelCase )
_a : Any =a[end]
_a : List[str] =a[pivot]
_a : Optional[Any] =temp
_a : Optional[int] =start - 1
for index in range(_UpperCAmelCase ,_UpperCAmelCase ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
_a : Optional[int] =new_pivot_index + 1
_a : Tuple =a[new_pivot_index]
_a : Tuple =a[index]
_a : Optional[int] =temp
_a : Union[str, Any] =a[new_pivot_index + 1]
_a : str =a[end]
_a : Dict =temp
return new_pivot_index + 1, count
A__: List[Any] = TemporaryFile()
A__: List[Any] = 100 # 1000 elements are to be sorted
A__ , A__: str = 0, 1 # mean and standard deviation
A__: str = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print('''The array is''')
print(X)
outfile.seek(0) # using the same array
A__: Dict = np.load(outfile)
A__: Dict = len(M) - 1
A__: Union[str, Any] = _in_place_quick_sort(M, 0, r)
print(
'''No of Comparisons for 100 elements selected from a standard normal distribution'''
'''is :'''
)
print(z)
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 4000000 ) -> int:
_a : Optional[Any] =[]
_a , _a : Union[str, Any] =0, 1
while b <= n:
if b % 2 == 0:
even_fibs.append(_UpperCAmelCase )
_a , _a : Optional[Any] =b, a + b
return sum(_UpperCAmelCase )
if __name__ == "__main__":
print(F"{solution() = }")
| 694 | 1 |
'''simple docstring'''
A__: Optional[int] = 256
# Modulus to hash a string
A__: Optional[int] = 100_0003
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ) -> bool:
_a : List[str] =len(_UpperCAmelCase )
_a : int =len(_UpperCAmelCase )
if p_len > t_len:
return False
_a : Any =0
_a : Any =0
_a : str =1
# Calculating the hash of pattern and substring of text
for i in range(_UpperCAmelCase ):
_a : int =(ord(pattern[i] ) + p_hash * alphabet_size) % modulus
_a : Tuple =(ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
_a : Optional[Any] =(modulus_power * alphabet_size) % modulus
for i in range(0 ,t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
_a : Union[str, Any] =(
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def SCREAMING_SNAKE_CASE_ ( ) -> None:
_a : str ="""abc1abc12"""
_a : Optional[Any] ="""alskfjaldsabc1abc1abc12k23adsfabcabc"""
_a : Optional[int] ="""alskfjaldsk23adsfabcabc"""
assert rabin_karp(_UpperCAmelCase ,_UpperCAmelCase ) and not rabin_karp(_UpperCAmelCase ,_UpperCAmelCase )
# Test 2)
_a : Any ="""ABABX"""
_a : int ="""ABABZABABYABABX"""
assert rabin_karp(_UpperCAmelCase ,_UpperCAmelCase )
# Test 3)
_a : Optional[int] ="""AAAB"""
_a : int ="""ABAAAAAB"""
assert rabin_karp(_UpperCAmelCase ,_UpperCAmelCase )
# Test 4)
_a : int ="""abcdabcy"""
_a : Union[str, Any] ="""abcxabcdabxabcdabcdabcy"""
assert rabin_karp(_UpperCAmelCase ,_UpperCAmelCase )
# Test 5)
_a : List[str] ="""Lü"""
_a : List[str] ="""Lüsai"""
assert rabin_karp(_UpperCAmelCase ,_UpperCAmelCase )
_a : Union[str, Any] ="""Lue"""
assert not rabin_karp(_UpperCAmelCase ,_UpperCAmelCase )
print("""Success.""" )
if __name__ == "__main__":
test_rabin_karp()
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int:
if n == 1 or not isinstance(_UpperCAmelCase ,_UpperCAmelCase ):
return 0
elif n == 2:
return 1
else:
_a : Dict =[0, 1]
for i in range(2 ,n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int:
_a : Union[str, Any] =0
_a : Optional[Any] =2
while digits < n:
index += 1
_a : Optional[int] =len(str(fibonacci(_UpperCAmelCase ) ) )
return index
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 1000 ) -> int:
return fibonacci_digits_index(_UpperCAmelCase )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 694 | 1 |
'''simple docstring'''
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
A__: Tuple = '''\
@inproceedings{pillutla-etal:mauve:neurips2021,
title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},
author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},
booktitle = {NeurIPS},
year = {2021}
}
'''
A__: Optional[int] = '''\
MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.
MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.
For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).
This metrics is a wrapper around the official implementation of MAUVE:
https://github.com/krishnap25/mauve
'''
A__: int = '''
Calculates MAUVE scores between two lists of generated text and reference text.
Args:
predictions: list of generated text to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Optional Args:
num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer
pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1
kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9
kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5
kmeans_max_iter: maximum number of k-means iterations. Default 500
featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].
device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU
max_text_length: maximum number of tokens to consider. Default 1024
divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25
mauve_scaling_factor: "c" from the paper. Default 5.
verbose: If True (default), print running time updates
seed: random seed to initialize k-means cluster assignments.
Returns:
mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,
frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,
divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,
p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,
q_hist: same as above, but with q_text.
Examples:
>>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest
>>> import datasets
>>> mauve = datasets.load_metric(\'mauve\')
>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "general kenobi"]
>>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP
>>> print(out.mauve) # doctest: +SKIP
1.0
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A__ ( datasets.Metric ):
def __UpperCAmelCase ( self :Any ) -> Any:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[
"""https://arxiv.org/abs/2102.01454""",
"""https://github.com/krishnap25/mauve""",
] , )
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :int=None , SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :List[str]=None , SCREAMING_SNAKE_CASE :List[Any]="auto" , SCREAMING_SNAKE_CASE :int=-1 , SCREAMING_SNAKE_CASE :Optional[Any]=0.9 , SCREAMING_SNAKE_CASE :List[Any]=5 , SCREAMING_SNAKE_CASE :Optional[int]=5_0_0 , SCREAMING_SNAKE_CASE :Optional[int]="gpt2-large" , SCREAMING_SNAKE_CASE :int=-1 , SCREAMING_SNAKE_CASE :str=1_0_2_4 , SCREAMING_SNAKE_CASE :Any=2_5 , SCREAMING_SNAKE_CASE :Any=5 , SCREAMING_SNAKE_CASE :List[Any]=True , SCREAMING_SNAKE_CASE :List[Any]=2_5 , ) -> Optional[Any]:
'''simple docstring'''
_a : Dict =compute_mauve(
p_text=SCREAMING_SNAKE_CASE , q_text=SCREAMING_SNAKE_CASE , p_features=SCREAMING_SNAKE_CASE , q_features=SCREAMING_SNAKE_CASE , p_tokens=SCREAMING_SNAKE_CASE , q_tokens=SCREAMING_SNAKE_CASE , num_buckets=SCREAMING_SNAKE_CASE , pca_max_data=SCREAMING_SNAKE_CASE , kmeans_explained_var=SCREAMING_SNAKE_CASE , kmeans_num_redo=SCREAMING_SNAKE_CASE , kmeans_max_iter=SCREAMING_SNAKE_CASE , featurize_model_name=SCREAMING_SNAKE_CASE , device_id=SCREAMING_SNAKE_CASE , max_text_length=SCREAMING_SNAKE_CASE , divergence_curve_discretization_size=SCREAMING_SNAKE_CASE , mauve_scaling_factor=SCREAMING_SNAKE_CASE , verbose=SCREAMING_SNAKE_CASE , seed=SCREAMING_SNAKE_CASE , )
return out
| 694 |
'''simple docstring'''
import argparse
import torch
from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert
from transformers.utils import logging
logging.set_verbosity_info()
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : int ) -> str:
# Initialise PyTorch model
_a : List[str] =RemBertConfig.from_json_file(_UpperCAmelCase )
print("""Building PyTorch model from configuration: {}""".format(str(_UpperCAmelCase ) ) )
_a : Dict =RemBertModel(_UpperCAmelCase )
# Load weights from tf checkpoint
load_tf_weights_in_rembert(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
# Save pytorch-model
print("""Save PyTorch model to {}""".format(_UpperCAmelCase ) )
torch.save(model.state_dict() ,_UpperCAmelCase )
if __name__ == "__main__":
A__: Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--rembert_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained RemBERT model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
A__: Tuple = parser.parse_args()
convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
| 694 | 1 |
'''simple docstring'''
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
A__: str = '''\
@misc{chen2021evaluating,
title={Evaluating Large Language Models Trained on Code},
author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \
and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \
and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \
and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \
and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \
and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \
and Mohammad Bavarian and Clemens Winter and Philippe Tillet \
and Felipe Petroski Such and Dave Cummings and Matthias Plappert \
and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \
and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \
and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \
and William Saunders and Christopher Hesse and Andrew N. Carr \
and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \
and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \
and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \
and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},
year={2021},
eprint={2107.03374},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
'''
A__: Dict = '''\
This metric implements the evaluation harness for the HumanEval problem solving dataset
described in the paper "Evaluating Large Language Models Trained on Code"
(https://arxiv.org/abs/2107.03374).
'''
A__: Any = '''
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of candidates to evaluate. Each candidates should be a list
of strings with several code candidates to solve the problem.
references: a list with a test for each prediction. Each test should evaluate the
correctness of a code candidate.
k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])
num_workers: number of workers used to evaluate the canidate programs (Default: 4).
timeout:
Returns:
pass_at_k: dict with pass rates for each k
results: dict with granular results of each unittest
Examples:
>>> code_eval = datasets.load_metric("code_eval")
>>> test_cases = ["assert add(2,3)==5"]
>>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]
>>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])
>>> print(pass_at_k)
{\'pass@1\': 0.5, \'pass@2\': 1.0}
'''
A__: Optional[int] = '''
################################################################################
!!!WARNING!!!
################################################################################
The "code_eval" metric executes untrusted model-generated code in Python.
Although it is highly unlikely that model-generated code will do something
overtly malicious in response to this test suite, model-generated code may act
destructively due to a lack of model capability or alignment.
Users are strongly encouraged to sandbox this evaluation suite so that it
does not perform destructive actions on their host or network. For more
information on how OpenAI sandboxes its code, see the paper "Evaluating Large
Language Models Trained on Code" (https://arxiv.org/abs/2107.03374).
Once you have read this disclaimer and taken appropriate precautions,
set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this
with:
>>> import os
>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"
################################################################################\
'''
A__: Dict = '''The MIT License
Copyright (c) OpenAI (https://openai.com)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A__ ( datasets.Metric ):
def __UpperCAmelCase ( self :List[Any] ) -> Union[str, Any]:
'''simple docstring'''
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , )
def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Dict=[1, 1_0, 1_0_0] , SCREAMING_SNAKE_CASE :Tuple=4 , SCREAMING_SNAKE_CASE :int=3.0 ) -> List[Any]:
'''simple docstring'''
if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError("""This metric is currently not supported on Windows.""" )
with ThreadPoolExecutor(max_workers=SCREAMING_SNAKE_CASE ) as executor:
_a : Optional[Any] =[]
_a : List[Any] =Counter()
_a : Dict =0
_a : Optional[int] =defaultdict(SCREAMING_SNAKE_CASE )
for task_id, (candidates, test_case) in enumerate(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ):
for candidate in candidates:
_a : Optional[int] =candidate + """\n""" + test_case
_a : Optional[int] =(test_program, timeout, task_id, completion_id[task_id])
_a : Optional[Any] =executor.submit(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE )
futures.append(SCREAMING_SNAKE_CASE )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(SCREAMING_SNAKE_CASE ):
_a : Union[str, Any] =future.result()
results[result["task_id"]].append((result["""completion_id"""], result) )
_a , _a : Any =[], []
for result in results.values():
result.sort()
_a : str =[r[1]["""passed"""] for r in result]
total.append(len(SCREAMING_SNAKE_CASE ) )
correct.append(sum(SCREAMING_SNAKE_CASE ) )
_a : Union[str, Any] =np.array(SCREAMING_SNAKE_CASE )
_a : str =np.array(SCREAMING_SNAKE_CASE )
_a : Any =k
_a : List[str] ={f"pass@{k}": estimate_pass_at_k(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Any ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[int] ) -> List[str]:
def estimator(_UpperCAmelCase : int ,_UpperCAmelCase : int ,_UpperCAmelCase : int ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 ,n + 1 ) )
if isinstance(_UpperCAmelCase ,_UpperCAmelCase ):
_a : Dict =itertools.repeat(_UpperCAmelCase ,len(_UpperCAmelCase ) )
else:
assert len(_UpperCAmelCase ) == len(_UpperCAmelCase )
_a : str =iter(_UpperCAmelCase )
return np.array([estimator(int(_UpperCAmelCase ) ,int(_UpperCAmelCase ) ,_UpperCAmelCase ) for n, c in zip(_UpperCAmelCase ,_UpperCAmelCase )] )
| 694 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
A__: Optional[int] = logging.get_logger(__name__)
A__: Union[str, Any] = '''▁'''
A__: Any = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''}
A__: Optional[int] = {
'''vocab_file''': {
'''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''',
},
'''monolingual_vocab_file''': {
'''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''',
},
}
A__: Union[str, Any] = {'''vinai/bartpho-syllable''': 1024}
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Tuple = VOCAB_FILES_NAMES
__UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"]
def __init__( self :Dict , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Any="<s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE :int="</s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE :Tuple="<unk>" , SCREAMING_SNAKE_CASE :Optional[Any]="<pad>" , SCREAMING_SNAKE_CASE :List[str]="<mask>" , SCREAMING_SNAKE_CASE :Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE :List[Any] , ) -> None:
'''simple docstring'''
# Mask token behave like a normal word, i.e. include the space before it
_a : str =AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token
_a : int ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , )
_a : Dict =vocab_file
_a : int =monolingual_vocab_file
_a : Dict =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(SCREAMING_SNAKE_CASE ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
_a : List[Any] ={}
_a : List[str] =0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids:
_a : Optional[Any] =cnt
cnt += 1
with open(SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f:
for line in f.readlines():
_a : int =line.strip().split()[0]
_a : str =len(self.fairseq_tokens_to_ids )
if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids:
_a : Optional[int] =len(self.fairseq_tokens_to_ids )
_a : str ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self :int ) -> List[Any]:
'''simple docstring'''
_a : Optional[int] =self.__dict__.copy()
_a : Optional[Any] =None
_a : str =self.sp_model.serialized_model_proto()
return state
def __setstate__( self :Dict , SCREAMING_SNAKE_CASE :Any ) -> str:
'''simple docstring'''
_a : List[str] =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_a : Tuple ={}
_a : Any =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_a : Optional[int] =[self.cls_token_id]
_a : int =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None , SCREAMING_SNAKE_CASE :bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_a : List[str] =[self.sep_token_id]
_a : int =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def __UpperCAmelCase ( self :Optional[int] ) -> int:
'''simple docstring'''
return len(self.fairseq_ids_to_tokens )
def __UpperCAmelCase ( self :int ) -> Union[str, Any]:
'''simple docstring'''
_a : str ={self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :str ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Dict ) -> Any:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :Any ) -> Dict:
'''simple docstring'''
return self.fairseq_ids_to_tokens[index]
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_a : str ="""""".join(SCREAMING_SNAKE_CASE ).replace(SCREAMING_SNAKE_CASE , """ """ ).strip()
return out_string
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
_a : int =os.path.join(
SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_a : Any =os.path.join(
SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE , """wb""" ) as fi:
_a : Optional[Any] =self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
SCREAMING_SNAKE_CASE ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f"{str(SCREAMING_SNAKE_CASE )} \n" )
return out_vocab_file, out_monolingual_vocab_file
| 694 | 1 |
'''simple docstring'''
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
A__: Optional[int] = '''platform'''
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class A__ :
__UpperCamelCase : Optional[int] = PegasusConfig
__UpperCamelCase : List[Any] = {}
__UpperCamelCase : Union[str, Any] = "gelu"
def __init__( self :int , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :int=1_3 , SCREAMING_SNAKE_CASE :Optional[int]=7 , SCREAMING_SNAKE_CASE :Optional[int]=True , SCREAMING_SNAKE_CASE :str=False , SCREAMING_SNAKE_CASE :int=9_9 , SCREAMING_SNAKE_CASE :Optional[Any]=3_2 , SCREAMING_SNAKE_CASE :Dict=5 , SCREAMING_SNAKE_CASE :Optional[Any]=4 , SCREAMING_SNAKE_CASE :Union[str, Any]=3_7 , SCREAMING_SNAKE_CASE :Any=0.1 , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :Optional[int]=2_0 , SCREAMING_SNAKE_CASE :Optional[Any]=2 , SCREAMING_SNAKE_CASE :Tuple=1 , SCREAMING_SNAKE_CASE :Dict=0 , ) -> Tuple:
'''simple docstring'''
_a : List[str] =parent
_a : Optional[Any] =batch_size
_a : str =seq_length
_a : str =is_training
_a : Any =use_labels
_a : Optional[Any] =vocab_size
_a : int =hidden_size
_a : Any =num_hidden_layers
_a : str =num_attention_heads
_a : str =intermediate_size
_a : Optional[int] =hidden_dropout_prob
_a : Optional[int] =attention_probs_dropout_prob
_a : List[str] =max_position_embeddings
_a : Any =eos_token_id
_a : Optional[int] =pad_token_id
_a : List[Any] =bos_token_id
def __UpperCAmelCase ( self :Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
_a : Optional[Any] =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
_a : str =np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
_a : Optional[int] =np.concatenate([input_ids, eos_tensor] , axis=1 )
_a : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a : List[Any] =self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_a : Optional[Any] =prepare_pegasus_inputs_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return config, inputs_dict
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Optional[Any] ) -> List[str]:
'''simple docstring'''
_a : Union[str, Any] =2_0
_a : Optional[int] =model_class_name(SCREAMING_SNAKE_CASE )
_a : int =model.encode(inputs_dict["""input_ids"""] )
_a , _a : str =(
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_a : List[Any] =model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Tuple =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
_a : Optional[int] =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_a : Any =model.decode(
decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE , decoder_attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , decoder_position_ids=SCREAMING_SNAKE_CASE , )
_a : Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_a : str =model.decode(
decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE , decoder_attention_mask=SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , decoder_position_ids=SCREAMING_SNAKE_CASE , )
_a : str =model.decode(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : List[str] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"Max diff is {diff}" )
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Tuple ) -> Tuple:
'''simple docstring'''
_a : Any =2_0
_a : List[Any] =model_class_name(SCREAMING_SNAKE_CASE )
_a : List[Any] =model.encode(inputs_dict["""input_ids"""] )
_a , _a : Optional[int] =(
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_a : Optional[int] =jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_a : Tuple =model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Tuple =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_a : Optional[int] =model.decode(
decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE , decoder_attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , decoder_position_ids=SCREAMING_SNAKE_CASE , )
_a : List[str] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_a : Tuple =model.decode(
decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=SCREAMING_SNAKE_CASE , decoder_position_ids=SCREAMING_SNAKE_CASE , )
_a : str =model.decode(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , decoder_attention_mask=SCREAMING_SNAKE_CASE )
_a : Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"Max diff is {diff}" )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : List[Any]=None ,_UpperCAmelCase : Optional[int]=None ,) -> int:
if attention_mask is None:
_a : Tuple =np.not_equal(_UpperCAmelCase ,config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
_a : List[Any] =np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape ,dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ).astype(np.inta ),
] ,axis=-1 ,)
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class A__ ( UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : Union[str, Any] = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
__UpperCamelCase : Optional[int] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
__UpperCamelCase : Dict = True
__UpperCamelCase : Optional[Any] = False
__UpperCamelCase : List[str] = False
__UpperCamelCase : Optional[int] = False
def __UpperCAmelCase ( self :Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_a : List[str] =FlaxPegasusModelTester(self )
_a : Union[str, Any] =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Dict ) -> Optional[int]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self :Tuple ) -> List[str]:
'''simple docstring'''
_a , _a : Tuple =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :str ) -> Optional[Any]:
'''simple docstring'''
_a , _a : List[str] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :List[str] ) -> Any:
'''simple docstring'''
_a , _a : Dict =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_a : Dict =self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Dict =model_class(SCREAMING_SNAKE_CASE )
@jax.jit
def encode_jitted(SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :List[str]=None , **SCREAMING_SNAKE_CASE :Any ):
return model.encode(input_ids=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE )
with self.subTest("""JIT Enabled""" ):
_a : int =encode_jitted(**SCREAMING_SNAKE_CASE ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_a : Dict =encode_jitted(**SCREAMING_SNAKE_CASE ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) )
for jitted_output, output in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
self.assertEqual(jitted_output.shape , output.shape )
def __UpperCAmelCase ( self :Dict ) -> int:
'''simple docstring'''
_a , _a : Dict =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_a : int =model_class(SCREAMING_SNAKE_CASE )
_a : Any =model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
_a : Union[str, Any] ={
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :List[str] ):
return model.decode(
decoder_input_ids=SCREAMING_SNAKE_CASE , decoder_attention_mask=SCREAMING_SNAKE_CASE , encoder_outputs=SCREAMING_SNAKE_CASE , )
with self.subTest("""JIT Enabled""" ):
_a : Any =decode_jitted(**SCREAMING_SNAKE_CASE ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_a : int =decode_jitted(**SCREAMING_SNAKE_CASE ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) )
for jitted_output, output in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def __UpperCAmelCase ( self :int ) -> Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_a : Union[str, Any] =model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=SCREAMING_SNAKE_CASE )
_a : str =np.ones((1, 1) )
_a : Optional[Any] =model(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
@slow
def __UpperCAmelCase ( self :List[str] ) -> int:
'''simple docstring'''
_a : Optional[Any] =FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
_a : Dict =PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
_a : List[Any] =[
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
_a : List[Any] =[
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
_a : Union[str, Any] =tokenizer(SCREAMING_SNAKE_CASE , return_tensors="""np""" , truncation=SCREAMING_SNAKE_CASE , max_length=5_1_2 , padding=SCREAMING_SNAKE_CASE )
_a : List[Any] =model.generate(**SCREAMING_SNAKE_CASE , num_beams=2 ).sequences
_a : Optional[Any] =tokenizer.batch_decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE )
assert tgt_text == decoded
| 694 |
'''simple docstring'''
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 694 | 1 |
'''simple docstring'''
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
A__: Union[str, Any] = logging.get_logger('''transformers.models.speecht5''')
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Any ) -> Dict:
hf_model.apply_weight_norm()
_a : Any =checkpoint["""input_conv.weight_g"""]
_a : Union[str, Any] =checkpoint["""input_conv.weight_v"""]
_a : Optional[int] =checkpoint["""input_conv.bias"""]
for i in range(len(config.upsample_rates ) ):
_a : Optional[int] =checkpoint[F"upsamples.{i}.1.weight_g"]
_a : Optional[Any] =checkpoint[F"upsamples.{i}.1.weight_v"]
_a : List[Any] =checkpoint[F"upsamples.{i}.1.bias"]
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
_a : Optional[int] =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"]
_a : Tuple =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"]
_a : Union[str, Any] =checkpoint[F"blocks.{i}.convs1.{j}.1.bias"]
_a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"]
_a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"]
_a : Tuple =checkpoint[F"blocks.{i}.convs2.{j}.1.bias"]
_a : Dict =checkpoint["""output_conv.1.weight_g"""]
_a : str =checkpoint["""output_conv.1.weight_v"""]
_a : Union[str, Any] =checkpoint["""output_conv.1.bias"""]
hf_model.remove_weight_norm()
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : int=None ,_UpperCAmelCase : Tuple=None ,) -> List[Any]:
if config_path is not None:
_a : str =SpeechTaHifiGanConfig.from_pretrained(_UpperCAmelCase )
else:
_a : str =SpeechTaHifiGanConfig()
_a : Tuple =SpeechTaHifiGan(_UpperCAmelCase )
_a : int =torch.load(_UpperCAmelCase )
load_weights(orig_checkpoint["""model"""]["""generator"""] ,_UpperCAmelCase ,_UpperCAmelCase )
_a : Dict =np.load(_UpperCAmelCase )
_a : Union[str, Any] =stats[0].reshape(-1 )
_a : Any =stats[1].reshape(-1 )
_a : Tuple =torch.from_numpy(_UpperCAmelCase ).float()
_a : List[str] =torch.from_numpy(_UpperCAmelCase ).float()
model.save_pretrained(_UpperCAmelCase )
if repo_id:
print("""Pushing to the hub...""" )
model.push_to_hub(_UpperCAmelCase )
if __name__ == "__main__":
A__: Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''')
parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
A__: Tuple = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list] ) -> list[list]:
_a : Dict =current_set.copy()
for row_index, row in enumerate(_UpperCAmelCase ):
_a : Any =row[0]
for column_index, column in enumerate(_UpperCAmelCase ):
if magnitude == 0:
_a : Any =column
continue
_a : Union[str, Any] =column / magnitude
# Subtract to cancel term
_a : Optional[Any] =current_set[0]
_a : List[Any] =[first_row]
_a : Tuple =current_set[1::]
for row in current_set:
_a : Any =[]
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(_UpperCAmelCase )
continue
for column_index in range(len(_UpperCAmelCase ) ):
temp_row.append(first_row[column_index] - row[column_index] )
final_set.append(_UpperCAmelCase )
# Create next recursion iteration set
if len(final_set[0] ) != 3:
_a : List[str] =final_set[0]
_a : Tuple =[]
_a : Tuple =[]
for row in final_set[1::]:
current_first_column.append(row[0] )
next_iteration.append(row[1::] )
_a : str =simplify(_UpperCAmelCase )
for i in range(len(_UpperCAmelCase ) ):
resultant[i].insert(0 ,current_first_column[i] )
resultant.insert(0 ,_UpperCAmelCase )
_a : List[Any] =resultant
return final_set
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list] ) -> list:
if len(_UpperCAmelCase ) == 0:
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
_a : str =len(_UpperCAmelCase ) + 1
if any(len(_UpperCAmelCase ) != _length for item in equations ):
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
for row in equations:
if any(not isinstance(_UpperCAmelCase ,(int, float) ) for column in row ):
raise ValueError("""solve_simultaneous() requires lists of integers""" )
if len(_UpperCAmelCase ) == 1:
return [equations[0][-1] / equations[0][0]]
_a : str =equations.copy()
if any(0 in row for row in data_set ):
_a : Optional[int] =data_set.copy()
_a : str =[]
for row_index, row in enumerate(_UpperCAmelCase ):
if 0 not in row:
_a : List[Any] =data_set.pop(_UpperCAmelCase )
break
if not full_row:
raise ValueError("""solve_simultaneous() requires at least 1 full equation""" )
data_set.insert(0 ,_UpperCAmelCase )
_a : Dict =data_set.copy()
_a : Any =simplify(_UpperCAmelCase )
_a : Any =simplified[::-1]
_a : list =[]
for row in simplified:
_a : Optional[Any] =row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0 )
continue
solutions.append(current_solution / row[-2] )
continue
_a : Any =row.copy()[: len(_UpperCAmelCase ) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0 )
if len(_UpperCAmelCase ) == 0:
solutions.append(0 )
continue
_a : List[str] =temp_row[1::]
_a : int =temp_row[::-1]
for column_index, column in enumerate(_UpperCAmelCase ):
current_solution -= column * solutions[column_index]
solutions.append(_UpperCAmelCase )
_a : Tuple =[]
for item in solutions:
final.append(float(round(_UpperCAmelCase ,5 ) ) )
return final[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
A__: int = [
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))
print(solve_simultaneous([[4, 2]]))
| 694 | 1 |
'''simple docstring'''
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
A__: str = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'''text-classification''',
'''language-modeling''',
'''summarization''',
'''token-classification''',
'''question-answering''',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
A__: Dict = logging.getLogger()
def SCREAMING_SNAKE_CASE_ ( ) -> Tuple:
_a : Dict =argparse.ArgumentParser()
parser.add_argument("""-f""" )
_a : Union[str, Any] =parser.parse_args()
return args.f
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : Tuple="eval" ) -> Tuple:
_a : int =os.path.join(_UpperCAmelCase ,F"{split}_results.json" )
if os.path.exists(_UpperCAmelCase ):
with open(_UpperCAmelCase ,"""r""" ) as f:
return json.load(_UpperCAmelCase )
raise ValueError(F"can't find {path}" )
A__: Any = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class A__ ( UpperCAmelCase__ ):
def __UpperCAmelCase ( self :str ) -> List[Any]:
'''simple docstring'''
_a : Optional[int] =self.get_auto_remove_tmp_dir()
_a : List[Any] =f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split()
with patch.object(SCREAMING_SNAKE_CASE , """argv""" , SCREAMING_SNAKE_CASE ):
run_flax_glue.main()
_a : int =get_results(SCREAMING_SNAKE_CASE )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 )
@slow
def __UpperCAmelCase ( self :Tuple ) -> Dict:
'''simple docstring'''
_a : Optional[int] =self.get_auto_remove_tmp_dir()
_a : List[Any] =f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(SCREAMING_SNAKE_CASE , """argv""" , SCREAMING_SNAKE_CASE ):
run_clm_flax.main()
_a : List[Any] =get_results(SCREAMING_SNAKE_CASE )
self.assertLess(result["""eval_perplexity"""] , 1_0_0 )
@slow
def __UpperCAmelCase ( self :Tuple ) -> Optional[Any]:
'''simple docstring'''
_a : Any =self.get_auto_remove_tmp_dir()
_a : List[str] =f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split()
with patch.object(SCREAMING_SNAKE_CASE , """argv""" , SCREAMING_SNAKE_CASE ):
run_summarization_flax.main()
_a : Any =get_results(SCREAMING_SNAKE_CASE , split="""test""" )
self.assertGreaterEqual(result["""test_rouge1"""] , 1_0 )
self.assertGreaterEqual(result["""test_rouge2"""] , 2 )
self.assertGreaterEqual(result["""test_rougeL"""] , 7 )
self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 )
@slow
def __UpperCAmelCase ( self :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
_a : List[Any] =self.get_auto_remove_tmp_dir()
_a : Dict =f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split()
with patch.object(SCREAMING_SNAKE_CASE , """argv""" , SCREAMING_SNAKE_CASE ):
run_mlm_flax.main()
_a : List[Any] =get_results(SCREAMING_SNAKE_CASE )
self.assertLess(result["""eval_perplexity"""] , 4_2 )
@slow
def __UpperCAmelCase ( self :Any ) -> Union[str, Any]:
'''simple docstring'''
_a : int =self.get_auto_remove_tmp_dir()
_a : Optional[Any] =f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(SCREAMING_SNAKE_CASE , """argv""" , SCREAMING_SNAKE_CASE ):
run_ta_mlm_flax.main()
_a : Optional[int] =get_results(SCREAMING_SNAKE_CASE )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.42 )
@slow
def __UpperCAmelCase ( self :List[Any] ) -> List[str]:
'''simple docstring'''
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
_a : List[Any] =7 if get_gpu_count() > 1 else 2
_a : Optional[int] =self.get_auto_remove_tmp_dir()
_a : Dict =f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split()
with patch.object(SCREAMING_SNAKE_CASE , """argv""" , SCREAMING_SNAKE_CASE ):
run_flax_ner.main()
_a : int =get_results(SCREAMING_SNAKE_CASE )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 )
self.assertGreaterEqual(result["""eval_f1"""] , 0.3 )
@slow
def __UpperCAmelCase ( self :Dict ) -> str:
'''simple docstring'''
_a : str =self.get_auto_remove_tmp_dir()
_a : Optional[Any] =f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split()
with patch.object(SCREAMING_SNAKE_CASE , """argv""" , SCREAMING_SNAKE_CASE ):
run_qa.main()
_a : Optional[Any] =get_results(SCREAMING_SNAKE_CASE )
self.assertGreaterEqual(result["""eval_f1"""] , 3_0 )
self.assertGreaterEqual(result["""eval_exact"""] , 3_0 )
| 694 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__: Dict = logging.get_logger(__name__)
A__: Optional[int] = {
'''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''',
'''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''',
}
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Tuple = "markuplm"
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :List[Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE :Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :int=3_0_7_2 , SCREAMING_SNAKE_CASE :Optional[int]="gelu" , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=5_1_2 , SCREAMING_SNAKE_CASE :Optional[Any]=2 , SCREAMING_SNAKE_CASE :Optional[int]=0.02 , SCREAMING_SNAKE_CASE :Any=1e-12 , SCREAMING_SNAKE_CASE :Any=0 , SCREAMING_SNAKE_CASE :List[Any]=0 , SCREAMING_SNAKE_CASE :Tuple=2 , SCREAMING_SNAKE_CASE :Optional[Any]=2_5_6 , SCREAMING_SNAKE_CASE :Optional[int]=1_0_2_4 , SCREAMING_SNAKE_CASE :Tuple=2_1_6 , SCREAMING_SNAKE_CASE :Dict=1_0_0_1 , SCREAMING_SNAKE_CASE :List[str]=3_2 , SCREAMING_SNAKE_CASE :List[str]=5_0 , SCREAMING_SNAKE_CASE :Dict="absolute" , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :Any=None , **SCREAMING_SNAKE_CASE :Tuple , ) -> Any:
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
_a : Any =vocab_size
_a : List[str] =hidden_size
_a : List[str] =num_hidden_layers
_a : Tuple =num_attention_heads
_a : Union[str, Any] =hidden_act
_a : Tuple =intermediate_size
_a : Optional[Any] =hidden_dropout_prob
_a : int =attention_probs_dropout_prob
_a : Any =max_position_embeddings
_a : List[Any] =type_vocab_size
_a : List[Any] =initializer_range
_a : List[Any] =layer_norm_eps
_a : Optional[int] =position_embedding_type
_a : List[Any] =use_cache
_a : List[str] =classifier_dropout
# additional properties
_a : int =max_depth
_a : Union[str, Any] =max_xpath_tag_unit_embeddings
_a : str =max_xpath_subs_unit_embeddings
_a : int =tag_pad_id
_a : List[Any] =subs_pad_id
_a : str =xpath_unit_hidden_size
| 694 | 1 |
'''simple docstring'''
from __future__ import annotations
class A__ :
def __init__( self :str , SCREAMING_SNAKE_CASE :int ) -> None:
'''simple docstring'''
_a : int =order
# a_{0} ... a_{k}
_a : Optional[Any] =[1.0] + [0.0] * order
# b_{0} ... b_{k}
_a : Tuple =[1.0] + [0.0] * order
# x[n-1] ... x[n-k]
_a : List[Any] =[0.0] * self.order
# y[n-1] ... y[n-k]
_a : Tuple =[0.0] * self.order
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :list[float] , SCREAMING_SNAKE_CASE :list[float] ) -> None:
'''simple docstring'''
if len(SCREAMING_SNAKE_CASE ) < self.order:
_a : int =[1.0, *a_coeffs]
if len(SCREAMING_SNAKE_CASE ) != self.order + 1:
_a : int =(
f"Expected a_coeffs to have {self.order + 1} elements "
f"for {self.order}-order filter, got {len(SCREAMING_SNAKE_CASE )}"
)
raise ValueError(SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) != self.order + 1:
_a : Optional[Any] =(
f"Expected b_coeffs to have {self.order + 1} elements "
f"for {self.order}-order filter, got {len(SCREAMING_SNAKE_CASE )}"
)
raise ValueError(SCREAMING_SNAKE_CASE )
_a : List[str] =a_coeffs
_a : Union[str, Any] =b_coeffs
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :float ) -> float:
'''simple docstring'''
_a : str =0.0
# Start at index 1 and do index 0 at the end.
for i in range(1 , self.order + 1 ):
result += (
self.b_coeffs[i] * self.input_history[i - 1]
- self.a_coeffs[i] * self.output_history[i - 1]
)
_a : Any =(result + self.b_coeffs[0] * sample) / self.a_coeffs[0]
_a : str =self.input_history[:-1]
_a : Optional[Any] =self.output_history[:-1]
_a : Optional[int] =sample
_a : Tuple =result
return result
| 694 |
'''simple docstring'''
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
A__: Union[str, Any] = logging.get_logger('''transformers.models.speecht5''')
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Any ) -> Dict:
hf_model.apply_weight_norm()
_a : Any =checkpoint["""input_conv.weight_g"""]
_a : Union[str, Any] =checkpoint["""input_conv.weight_v"""]
_a : Optional[int] =checkpoint["""input_conv.bias"""]
for i in range(len(config.upsample_rates ) ):
_a : Optional[int] =checkpoint[F"upsamples.{i}.1.weight_g"]
_a : Optional[Any] =checkpoint[F"upsamples.{i}.1.weight_v"]
_a : List[Any] =checkpoint[F"upsamples.{i}.1.bias"]
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
_a : Optional[int] =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"]
_a : Tuple =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"]
_a : Union[str, Any] =checkpoint[F"blocks.{i}.convs1.{j}.1.bias"]
_a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"]
_a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"]
_a : Tuple =checkpoint[F"blocks.{i}.convs2.{j}.1.bias"]
_a : Dict =checkpoint["""output_conv.1.weight_g"""]
_a : str =checkpoint["""output_conv.1.weight_v"""]
_a : Union[str, Any] =checkpoint["""output_conv.1.bias"""]
hf_model.remove_weight_norm()
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : int=None ,_UpperCAmelCase : Tuple=None ,) -> List[Any]:
if config_path is not None:
_a : str =SpeechTaHifiGanConfig.from_pretrained(_UpperCAmelCase )
else:
_a : str =SpeechTaHifiGanConfig()
_a : Tuple =SpeechTaHifiGan(_UpperCAmelCase )
_a : int =torch.load(_UpperCAmelCase )
load_weights(orig_checkpoint["""model"""]["""generator"""] ,_UpperCAmelCase ,_UpperCAmelCase )
_a : Dict =np.load(_UpperCAmelCase )
_a : Union[str, Any] =stats[0].reshape(-1 )
_a : Any =stats[1].reshape(-1 )
_a : Tuple =torch.from_numpy(_UpperCAmelCase ).float()
_a : List[str] =torch.from_numpy(_UpperCAmelCase ).float()
model.save_pretrained(_UpperCAmelCase )
if repo_id:
print("""Pushing to the hub...""" )
model.push_to_hub(_UpperCAmelCase )
if __name__ == "__main__":
A__: Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''')
parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
A__: Tuple = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 694 | 1 |
'''simple docstring'''
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Optional[int] = (KDPMaDiscreteScheduler,)
__UpperCamelCase : int = 10
def __UpperCAmelCase ( self :Any , **SCREAMING_SNAKE_CASE :Any ) -> Dict:
'''simple docstring'''
_a : int ={
"""num_train_timesteps""": 1_1_0_0,
"""beta_start""": 0.0_001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
}
config.update(**SCREAMING_SNAKE_CASE )
return config
def __UpperCAmelCase ( self :Dict ) -> Union[str, Any]:
'''simple docstring'''
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :int ) -> int:
'''simple docstring'''
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE , beta_end=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :List[str] ) -> Any:
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[int] ) -> Tuple:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :str ) -> Union[str, Any]:
'''simple docstring'''
_a : Tuple =self.scheduler_classes[0]
_a : Any =self.get_scheduler_config(prediction_type="""v_prediction""" )
_a : Union[str, Any] =scheduler_class(**SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(self.num_inference_steps )
_a : int =self.dummy_model()
_a : Optional[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma
_a : Any =sample.to(SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
_a : Tuple =scheduler.scale_model_input(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : List[str] =model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Tuple =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Dict =output.prev_sample
_a : Any =torch.sum(torch.abs(SCREAMING_SNAKE_CASE ) )
_a : Tuple =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6934e-07 ) < 1e-2
assert abs(result_mean.item() - 6.1112e-10 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 4.693_4286_5017_0972e-07 ) < 1e-2
assert abs(result_mean.item() - 0.0_002 ) < 1e-3
def __UpperCAmelCase ( self :Optional[int] ) -> str:
'''simple docstring'''
if torch_device == "mps":
return
_a : Dict =self.scheduler_classes[0]
_a : Dict =self.get_scheduler_config()
_a : Optional[int] =scheduler_class(**SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(self.num_inference_steps )
_a : Tuple =self.dummy_model()
_a : Optional[int] =self.dummy_sample_deter * scheduler.init_noise_sigma
_a : Dict =sample.to(SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
_a : Any =scheduler.scale_model_input(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : int =model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : List[str] =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Any =output.prev_sample
_a : Optional[int] =torch.sum(torch.abs(SCREAMING_SNAKE_CASE ) )
_a : Optional[Any] =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4_125 ) < 1e-2
assert abs(result_mean.item() - 0.0_266 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.4_125 ) < 1e-2
assert abs(result_mean.item() - 0.0_266 ) < 1e-3
def __UpperCAmelCase ( self :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
if torch_device == "mps":
return
_a : Dict =self.scheduler_classes[0]
_a : List[Any] =self.get_scheduler_config()
_a : int =scheduler_class(**SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =self.dummy_model()
_a : List[str] =self.dummy_sample_deter.to(SCREAMING_SNAKE_CASE ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
_a : int =scheduler.scale_model_input(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : List[str] =model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : str =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Tuple =output.prev_sample
_a : str =torch.sum(torch.abs(SCREAMING_SNAKE_CASE ) )
_a : Optional[Any] =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
if str(SCREAMING_SNAKE_CASE ).startswith("""cpu""" ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4_125 ) < 1e-2
assert abs(result_mean.item() - 0.0_266 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.4_125 ) < 1e-2
assert abs(result_mean.item() - 0.0_266 ) < 1e-3
| 694 |
'''simple docstring'''
class A__ :
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :List[str] ) -> List[str]:
'''simple docstring'''
_a : List[str] =None
_a : Optional[Any] =None
_a : str =graph
self._normalize_graph(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Optional[int] =len(SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =None
def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[str] ) -> Any:
'''simple docstring'''
if sources is int:
_a : Tuple =[sources]
if sinks is int:
_a : Optional[int] =[sinks]
if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) == 0:
return
_a : Union[str, Any] =sources[0]
_a : Tuple =sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(SCREAMING_SNAKE_CASE ) > 1 or len(SCREAMING_SNAKE_CASE ) > 1:
_a : Tuple =0
for i in sources:
max_input_flow += sum(self.graph[i] )
_a : List[Any] =len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
_a : Any =max_input_flow
_a : List[str] =0
_a : List[str] =len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
_a : str =max_input_flow
_a : Optional[Any] =size - 1
def __UpperCAmelCase ( self :Optional[int] ) -> Tuple:
'''simple docstring'''
if self.maximum_flow_algorithm is None:
raise Exception("""You need to set maximum flow algorithm before.""" )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Dict ) -> int:
'''simple docstring'''
_a : Tuple =algorithm(self )
class A__ :
def __init__( self :Tuple , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Dict:
'''simple docstring'''
_a : List[str] =flow_network
_a : List[Any] =flow_network.verticesCount
_a : str =flow_network.sourceIndex
_a : str =flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
_a : List[Any] =flow_network.graph
_a : Optional[int] =False
def __UpperCAmelCase ( self :List[Any] ) -> List[str]:
'''simple docstring'''
if not self.executed:
self._algorithm()
_a : Any =True
def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
pass
class A__ ( UpperCAmelCase__ ):
def __init__( self :int , SCREAMING_SNAKE_CASE :str ) -> int:
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE )
# use this to save your result
_a : List[Any] =-1
def __UpperCAmelCase ( self :Dict ) -> Tuple:
'''simple docstring'''
if not self.executed:
raise Exception("""You should execute algorithm before using its result!""" )
return self.maximum_flow
class A__ ( UpperCAmelCase__ ):
def __init__( self :str , SCREAMING_SNAKE_CASE :Tuple ) -> str:
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE )
_a : int =[[0] * self.verticies_count for i in range(self.verticies_count )]
_a : Union[str, Any] =[0] * self.verticies_count
_a : Optional[Any] =[0] * self.verticies_count
def __UpperCAmelCase ( self :Optional[int] ) -> Optional[Any]:
'''simple docstring'''
_a : int =self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
_a : Tuple =[
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
_a : List[Any] =0
while i < len(SCREAMING_SNAKE_CASE ):
_a : Any =vertices_list[i]
_a : str =self.heights[vertex_index]
self.process_vertex(SCREAMING_SNAKE_CASE )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE ) )
_a : List[str] =0
else:
i += 1
_a : Optional[int] =sum(self.preflow[self.source_index] )
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> List[str]:
'''simple docstring'''
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
self.relabel(SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :str ) -> List[str]:
'''simple docstring'''
_a : List[str] =min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Any ) -> List[Any]:
'''simple docstring'''
_a : int =None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
_a : Optional[Any] =self.heights[to_index]
if min_height is not None:
_a : Any =min_height + 1
if __name__ == "__main__":
A__: str = [0]
A__: Optional[Any] = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
A__: Tuple = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
A__: Union[str, Any] = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
A__: List[str] = flow_network.find_maximum_flow()
print(F"maximum flow is {maximum_flow}")
| 694 | 1 |
'''simple docstring'''
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class A__ ( UpperCAmelCase__ ):
def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Any=1_3 , SCREAMING_SNAKE_CASE :Union[str, Any]=7 , SCREAMING_SNAKE_CASE :Optional[int]=True , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :Tuple=False , SCREAMING_SNAKE_CASE :Any=True , SCREAMING_SNAKE_CASE :Optional[Any]=9_9 , SCREAMING_SNAKE_CASE :Any=3_2 , SCREAMING_SNAKE_CASE :Optional[Any]=5 , SCREAMING_SNAKE_CASE :Union[str, Any]=4 , SCREAMING_SNAKE_CASE :List[str]=6_4 , SCREAMING_SNAKE_CASE :str="gelu" , SCREAMING_SNAKE_CASE :List[str]=0.1 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :Optional[int]=5_1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_6 , SCREAMING_SNAKE_CASE :Tuple=2 , SCREAMING_SNAKE_CASE :Dict=0.02 , SCREAMING_SNAKE_CASE :Tuple=3 , SCREAMING_SNAKE_CASE :Union[str, Any]=4 , SCREAMING_SNAKE_CASE :Optional[int]=None , SCREAMING_SNAKE_CASE :Optional[Any]=2 , SCREAMING_SNAKE_CASE :Union[str, Any]=2 , SCREAMING_SNAKE_CASE :str=2 , SCREAMING_SNAKE_CASE :Optional[int]=2 , SCREAMING_SNAKE_CASE :List[str]=4 , SCREAMING_SNAKE_CASE :List[Any]=1 , ) -> Dict:
'''simple docstring'''
_a : str =parent
_a : List[Any] =batch_size
_a : Tuple =seq_length
_a : List[str] =is_training
_a : Any =use_input_mask
_a : int =use_token_type_ids
_a : List[Any] =use_labels
_a : List[str] =vocab_size
_a : List[str] =hidden_size
_a : List[str] =num_hidden_layers
_a : List[Any] =num_attention_heads
_a : Dict =intermediate_size
_a : List[str] =hidden_act
_a : Union[str, Any] =hidden_dropout_prob
_a : Union[str, Any] =attention_probs_dropout_prob
_a : Optional[Any] =max_position_embeddings
_a : Dict =type_vocab_size
_a : int =type_sequence_label_size
_a : str =initializer_range
_a : Any =num_labels
_a : List[str] =num_choices
_a : Tuple =scope
_a : Dict =q_groups
_a : Tuple =k_groups
_a : Optional[Any] =v_groups
_a : Any =post_attention_groups
_a : List[str] =intermediate_groups
_a : Dict =output_groups
def __UpperCAmelCase ( self :Dict ) -> Any:
'''simple docstring'''
_a : Any =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a : Tuple =None
if self.use_input_mask:
_a : Tuple =random_attention_mask([self.batch_size, self.seq_length] )
_a : str =None
_a : Tuple =None
_a : Optional[int] =None
if self.use_labels:
_a : int =ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_a : Optional[int] =ids_tensor([self.batch_size] , self.num_choices )
_a : Dict =self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __UpperCAmelCase ( self :Optional[int] ) -> Any:
'''simple docstring'''
return SqueezeBertConfig(
embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , )
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Optional[Any] ) -> List[Any]:
'''simple docstring'''
_a : List[Any] =SqueezeBertModel(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
_a : Tuple =model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> List[Any]:
'''simple docstring'''
_a : Union[str, Any] =SqueezeBertForMaskedLM(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
_a : List[Any] =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :List[Any] ) -> List[str]:
'''simple docstring'''
_a : Optional[int] =SqueezeBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
_a : List[str] =model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , start_positions=SCREAMING_SNAKE_CASE , end_positions=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Optional[int] ) -> int:
'''simple docstring'''
_a : List[str] =self.num_labels
_a : str =SqueezeBertForSequenceClassification(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
_a : Optional[int] =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Optional[int] ) -> int:
'''simple docstring'''
_a : Tuple =self.num_labels
_a : Optional[int] =SqueezeBertForTokenClassification(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
_a : str =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Tuple ) -> Optional[Any]:
'''simple docstring'''
_a : Union[str, Any] =self.num_choices
_a : List[Any] =SqueezeBertForMultipleChoice(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
_a : Optional[Any] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_a : List[Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_a : List[Any] =model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __UpperCAmelCase ( self :Dict ) -> Tuple:
'''simple docstring'''
_a : Tuple =self.prepare_config_and_inputs()
((_a) , (_a) , (_a) , (_a) , (_a) , (_a)) : List[Any] =config_and_inputs
_a : Dict ={"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class A__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : int = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
__UpperCamelCase : int = (
{
"feature-extraction": SqueezeBertModel,
"fill-mask": SqueezeBertForMaskedLM,
"question-answering": SqueezeBertForQuestionAnswering,
"text-classification": SqueezeBertForSequenceClassification,
"token-classification": SqueezeBertForTokenClassification,
"zero-shot": SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCamelCase : Optional[int] = False
__UpperCamelCase : Optional[int] = True
__UpperCamelCase : str = False
def __UpperCAmelCase ( self :Dict ) -> Tuple:
'''simple docstring'''
_a : Optional[int] =SqueezeBertModelTester(self )
_a : Union[str, Any] =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , dim=3_7 )
def __UpperCAmelCase ( self :Any ) -> Optional[int]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self :Optional[int] ) -> Optional[Any]:
'''simple docstring'''
_a : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Any ) -> Union[str, Any]:
'''simple docstring'''
_a : Tuple =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :List[str] ) -> Dict:
'''simple docstring'''
_a : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Tuple ) -> Any:
'''simple docstring'''
_a : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :int ) -> Tuple:
'''simple docstring'''
_a : Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Any ) -> Optional[Any]:
'''simple docstring'''
_a : Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*SCREAMING_SNAKE_CASE )
@slow
def __UpperCAmelCase ( self :Tuple ) -> str:
'''simple docstring'''
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a : Tuple =SqueezeBertModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
@require_sentencepiece
@require_tokenizers
@require_torch
class A__ ( unittest.TestCase ):
@slow
def __UpperCAmelCase ( self :Dict ) -> Any:
'''simple docstring'''
_a : Dict =SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" )
_a : Union[str, Any] =torch.tensor([[1, 2_9_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 1_3, 1_5_8_8, 2]] )
_a : Any =model(SCREAMING_SNAKE_CASE )[0]
_a : Optional[Any] =torch.Size((1, 3) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
_a : List[Any] =torch.tensor([[0.6_401, -0.0_349, -0.6_041]] )
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 694 |
'''simple docstring'''
A__: Optional[int] = '''
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
A__: List[Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
A__: int = {
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 694 | 1 |
'''simple docstring'''
from __future__ import annotations
import time
import numpy as np
A__: Optional[Any] = [8, 5, 9, 7]
A__: int = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
A__: Any = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class A__ :
def __init__( self :int , SCREAMING_SNAKE_CASE :list[int] , SCREAMING_SNAKE_CASE :list[list[int]] , SCREAMING_SNAKE_CASE :list[list[int]] , ) -> None:
'''simple docstring'''
_a : str =claim_vector
_a : Optional[int] =allocated_resources_table
_a : Optional[int] =maximum_claim_table
def __UpperCAmelCase ( self :Any ) -> list[int]:
'''simple docstring'''
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def __UpperCAmelCase ( self :int ) -> list[int]:
'''simple docstring'''
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def __UpperCAmelCase ( self :List[str] ) -> list[list[int]]:
'''simple docstring'''
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(SCREAMING_SNAKE_CASE ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def __UpperCAmelCase ( self :Optional[Any] ) -> dict[int, list[int]]:
'''simple docstring'''
return {self.__need().index(SCREAMING_SNAKE_CASE ): i for i in self.__need()}
def __UpperCAmelCase ( self :Tuple , **SCREAMING_SNAKE_CASE :Tuple ) -> None:
'''simple docstring'''
_a : List[Any] =self.__need()
_a : List[str] =self.__allocated_resources_table
_a : Union[str, Any] =self.__available_resources()
_a : Optional[Any] =self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print("""_""" * 5_0 + """\n""" )
while need_list:
_a : Any =False
for each_need in need_list:
_a : Tuple =True
for index, need in enumerate(SCREAMING_SNAKE_CASE ):
if need > available_resources[index]:
_a : Tuple =False
break
if execution:
_a : List[str] =True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
_a : str =original_need_index
print(f"Process {process_number + 1} is executing." )
# remove the process run from stack
need_list.remove(SCREAMING_SNAKE_CASE )
# update available/freed resources stack
_a : Dict =np.array(SCREAMING_SNAKE_CASE ) + np.array(
alloc_resources_table[process_number] )
print(
"""Updated available resource stack for processes: """
+ """ """.join([str(SCREAMING_SNAKE_CASE ) for x in available_resources] ) )
break
if safe:
print("""The process is in a safe state.\n""" )
else:
print("""System in unsafe state. Aborting...\n""" )
break
def __UpperCAmelCase ( self :Dict ) -> Dict:
'''simple docstring'''
print(""" """ * 9 + """Allocated Resource Table""" )
for item in self.__allocated_resources_table:
print(
f"P{self.__allocated_resources_table.index(SCREAMING_SNAKE_CASE ) + 1}"
+ """ """.join(f"{it:>8}" for it in item )
+ """\n""" )
print(""" """ * 9 + """System Resource Table""" )
for item in self.__maximum_claim_table:
print(
f"P{self.__maximum_claim_table.index(SCREAMING_SNAKE_CASE ) + 1}"
+ """ """.join(f"{it:>8}" for it in item )
+ """\n""" )
print(
"""Current Usage by Active Processes: """
+ """ """.join(str(SCREAMING_SNAKE_CASE ) for x in self.__claim_vector ) )
print(
"""Initial Available Resources: """
+ """ """.join(str(SCREAMING_SNAKE_CASE ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : float ,_UpperCAmelCase : float ) -> float:
return price * (1 + tax_rate)
if __name__ == "__main__":
print(F"{price_plus_tax(100, 0.25) = }")
print(F"{price_plus_tax(125.50, 0.05) = }")
| 694 | 1 |
'''simple docstring'''
import numpy as np
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : np.ndarray ,_UpperCAmelCase : np.ndarray ,_UpperCAmelCase : float = 1e-12 ,_UpperCAmelCase : int = 100 ,) -> tuple[float, np.ndarray]:
assert np.shape(_UpperCAmelCase )[0] == np.shape(_UpperCAmelCase )[1]
# Ensure proper dimensionality.
assert np.shape(_UpperCAmelCase )[0] == np.shape(_UpperCAmelCase )[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(_UpperCAmelCase ) == np.iscomplexobj(_UpperCAmelCase )
_a : List[Any] =np.iscomplexobj(_UpperCAmelCase )
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(_UpperCAmelCase ,input_matrix.conj().T )
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
_a : Optional[Any] =False
_a : int =0
_a : Any =0
_a : int =1e12
while not convergence:
# Multiple matrix by the vector.
_a : Dict =np.dot(_UpperCAmelCase ,_UpperCAmelCase )
# Normalize the resulting output vector.
_a : str =w / np.linalg.norm(_UpperCAmelCase )
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
_a : Union[str, Any] =vector.conj().T if is_complex else vector.T
_a : int =np.dot(_UpperCAmelCase ,np.dot(_UpperCAmelCase ,_UpperCAmelCase ) )
# Check convergence.
_a : Optional[int] =np.abs(lambda_ - lambda_previous ) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
_a : Any =True
_a : Optional[Any] =lambda_
if is_complex:
_a : int =np.real(lambda_ )
return lambda_, vector
def SCREAMING_SNAKE_CASE_ ( ) -> None:
_a : Optional[int] =np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] )
_a : Dict =np.array([41, 4, 20] )
_a : Optional[Any] =real_input_matrix.astype(np.complexaaa )
_a : Optional[Any] =np.triu(1J * complex_input_matrix ,1 )
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
_a : Any =np.array([41, 4, 20] ).astype(np.complexaaa )
for problem_type in ["real", "complex"]:
if problem_type == "real":
_a : Tuple =real_input_matrix
_a : List[str] =real_vector
elif problem_type == "complex":
_a : List[Any] =complex_input_matrix
_a : List[Any] =complex_vector
# Our implementation.
_a , _a : Optional[int] =power_iteration(_UpperCAmelCase ,_UpperCAmelCase )
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
_a , _a : List[Any] =np.linalg.eigh(_UpperCAmelCase )
# Last eigenvalue is the maximum one.
_a : List[str] =eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
_a : List[Any] =eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max ) <= 1e-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(_UpperCAmelCase ) - np.abs(_UpperCAmelCase ) ) <= 1e-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 694 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class A__ ( unittest.TestCase ):
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Any=1_3 , SCREAMING_SNAKE_CASE :Any=7 , SCREAMING_SNAKE_CASE :Any=True , SCREAMING_SNAKE_CASE :int=True , SCREAMING_SNAKE_CASE :Optional[int]=True , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :Optional[Any]=9_9 , SCREAMING_SNAKE_CASE :Tuple=3_2 , SCREAMING_SNAKE_CASE :Union[str, Any]=5 , SCREAMING_SNAKE_CASE :List[str]=4 , SCREAMING_SNAKE_CASE :int=3_7 , SCREAMING_SNAKE_CASE :Optional[Any]="gelu" , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=0.1 , SCREAMING_SNAKE_CASE :Dict=5_1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_6 , SCREAMING_SNAKE_CASE :Union[str, Any]=2 , SCREAMING_SNAKE_CASE :List[Any]=0.02 , SCREAMING_SNAKE_CASE :int=4 , ) -> Tuple:
'''simple docstring'''
_a : Optional[Any] =parent
_a : List[str] =batch_size
_a : List[str] =seq_length
_a : List[Any] =is_training
_a : Optional[int] =use_attention_mask
_a : List[Any] =use_token_type_ids
_a : List[Any] =use_labels
_a : Optional[Any] =vocab_size
_a : str =hidden_size
_a : List[Any] =num_hidden_layers
_a : List[Any] =num_attention_heads
_a : Union[str, Any] =intermediate_size
_a : int =hidden_act
_a : List[str] =hidden_dropout_prob
_a : Optional[int] =attention_probs_dropout_prob
_a : Dict =max_position_embeddings
_a : Any =type_vocab_size
_a : str =type_sequence_label_size
_a : str =initializer_range
_a : List[str] =num_choices
def __UpperCAmelCase ( self :Union[str, Any] ) -> Dict:
'''simple docstring'''
_a : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a : Dict =None
if self.use_attention_mask:
_a : Any =random_attention_mask([self.batch_size, self.seq_length] )
_a : Optional[int] =None
if self.use_token_type_ids:
_a : Any =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_a : Union[str, Any] =RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def __UpperCAmelCase ( self :Optional[Any] ) -> int:
'''simple docstring'''
_a : Tuple =self.prepare_config_and_inputs()
_a , _a , _a , _a : List[Any] =config_and_inputs
_a : Optional[int] ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def __UpperCAmelCase ( self :int ) -> str:
'''simple docstring'''
_a : List[Any] =self.prepare_config_and_inputs()
_a , _a , _a , _a : Optional[int] =config_and_inputs
_a : Tuple =True
_a : Optional[Any] =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_a : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class A__ ( UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : Union[str, Any] = True
__UpperCamelCase : Dict = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __UpperCAmelCase ( self :List[str] ) -> Optional[int]:
'''simple docstring'''
_a : Union[str, Any] =FlaxRobertaPreLayerNormModelTester(self )
@slow
def __UpperCAmelCase ( self :str ) -> int:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_a : Optional[int] =model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE )
_a : Dict =model(np.ones((1, 1) ) )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
@require_flax
class A__ ( unittest.TestCase ):
@slow
def __UpperCAmelCase ( self :Any ) -> str:
'''simple docstring'''
_a : str =FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE )
_a : List[Any] =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa )
_a : Dict =model(SCREAMING_SNAKE_CASE )[0]
_a : List[Any] =[1, 1_1, 5_0_2_6_5]
self.assertEqual(list(output.shape ) , SCREAMING_SNAKE_CASE )
# compare the actual values for a slice.
_a : Any =np.array(
[[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
@slow
def __UpperCAmelCase ( self :int ) -> int:
'''simple docstring'''
_a : Union[str, Any] =FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE )
_a : Any =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa )
_a : Optional[int] =model(SCREAMING_SNAKE_CASE )[0]
# compare the actual values for a slice.
_a : str =np.array(
[[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 694 | 1 |
'''simple docstring'''
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
A__: Dict = logging.getLogger(__name__)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> List[Any]:
_a : List[str] =git.Repo(search_parent_directories=_UpperCAmelCase )
_a : Any ={
"""repo_id""": str(_UpperCAmelCase ),
"""repo_sha""": str(repo.head.object.hexsha ),
"""repo_branch""": str(repo.active_branch ),
}
with open(os.path.join(_UpperCAmelCase ,"""git_log.json""" ) ,"""w""" ) as f:
json.dump(_UpperCAmelCase ,_UpperCAmelCase ,indent=4 )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Any ) -> Optional[int]:
if params.n_gpu <= 0:
_a : Optional[int] =0
_a : List[Any] =-1
_a : Optional[Any] =True
_a : Union[str, Any] =False
return
assert torch.cuda.is_available()
logger.info("""Initializing GPUs""" )
if params.n_gpu > 1:
assert params.local_rank != -1
_a : List[str] =int(os.environ["""WORLD_SIZE"""] )
_a : List[Any] =int(os.environ["""N_GPU_NODE"""] )
_a : List[str] =int(os.environ["""RANK"""] )
# number of nodes / node ID
_a : Union[str, Any] =params.world_size // params.n_gpu_per_node
_a : List[str] =params.global_rank // params.n_gpu_per_node
_a : Optional[int] =True
assert params.n_nodes == int(os.environ["""N_NODES"""] )
assert params.node_id == int(os.environ["""NODE_RANK"""] )
# local job (single GPU)
else:
assert params.local_rank == -1
_a : List[str] =1
_a : Optional[int] =0
_a : Any =0
_a : List[Any] =0
_a : str =1
_a : List[str] =1
_a : int =False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
_a : int =params.node_id == 0 and params.local_rank == 0
_a : Tuple =params.n_nodes > 1
# summary
_a : str =F"--- Global rank: {params.global_rank} - "
logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes )
logger.info(PREFIX + """Node ID : %i""" % params.node_id )
logger.info(PREFIX + """Local rank : %i""" % params.local_rank )
logger.info(PREFIX + """World size : %i""" % params.world_size )
logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node )
logger.info(PREFIX + """Master : %s""" % str(params.is_master ) )
logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) )
logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) )
logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info("""Initializing PyTorch distributed""" )
torch.distributed.init_process_group(
init_method="""env://""" ,backend="""nccl""" ,)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> Optional[Any]:
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 694 |
'''simple docstring'''
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
A__: Tuple = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any]=None ,_UpperCAmelCase : str=None ) -> Union[str, Any]:
return field(default_factory=lambda: default ,metadata=_UpperCAmelCase )
@dataclass
class A__ :
__UpperCamelCase : List[str] = list_field(
default=[] , metadata={
"help": (
"Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version"
" of all available models"
)
} , )
__UpperCamelCase : List[int] = list_field(
default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} )
__UpperCamelCase : List[int] = list_field(
default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Use FP16 to accelerate inference."} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Benchmark training of model"} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Verbose memory tracing"} )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={
"help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"
} , )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Trace memory line by line"} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Save result to a CSV file"} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Save all print statements in a log file"} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Whether to print environment information"} )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={
"help": (
"Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use"
" multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled"
" for debugging / testing and on TPU."
)
} , )
__UpperCamelCase : str = field(
default=f'''inference_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , )
__UpperCamelCase : str = field(
default=f'''inference_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , )
__UpperCamelCase : str = field(
default=f'''train_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , )
__UpperCamelCase : str = field(
default=f'''train_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , )
__UpperCamelCase : str = field(
default=f'''env_info_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , )
__UpperCamelCase : str = field(
default=f'''log_{round(time() )}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , )
__UpperCamelCase : int = field(default=3 , metadata={"help": "Times an experiment will be run."} )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={
"help": (
"Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain"
" model weights."
)
} , )
def __UpperCAmelCase ( self :Union[str, Any] ) -> int:
'''simple docstring'''
warnings.warn(
f"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"
""" are deprecated in general and it is advised to use external Benchmarking libraries """
""" to benchmark Transformer models.""" , SCREAMING_SNAKE_CASE , )
def __UpperCAmelCase ( self :Optional[int] ) -> Dict:
'''simple docstring'''
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def __UpperCAmelCase ( self :Optional[int] ) -> List[str]:
'''simple docstring'''
if len(self.models ) <= 0:
raise ValueError(
"""Please make sure you provide at least one model name / model identifier, *e.g.* `--models"""
""" bert-base-cased` or `args.models = ['bert-base-cased'].""" )
return self.models
@property
def __UpperCAmelCase ( self :Optional[Any] ) -> int:
'''simple docstring'''
if not self.multi_process:
return False
elif self.is_tpu:
logger.info("""Multiprocessing is currently not possible on TPU.""" )
return False
else:
return True
| 694 | 1 |
'''simple docstring'''
from math import isqrt
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> bool:
return all(number % divisor != 0 for divisor in range(2 ,isqrt(_UpperCAmelCase ) + 1 ) )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 10**6 ) -> int:
_a : List[Any] =0
_a : List[str] =1
_a : str =7
while prime_candidate < max_prime:
primes_count += is_prime(_UpperCAmelCase )
cube_index += 1
prime_candidate += 6 * cube_index
return primes_count
if __name__ == "__main__":
print(F"{solution() = }")
| 694 |
'''simple docstring'''
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class A__ ( UpperCAmelCase__ ):
def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Distribution , SCREAMING_SNAKE_CASE :int=None , SCREAMING_SNAKE_CASE :Tuple=None , SCREAMING_SNAKE_CASE :List[Any]=0 ) -> List[str]:
'''simple docstring'''
_a : int =1.0 if scale is None else scale
_a : Optional[Any] =0.0 if loc is None else loc
super().__init__(SCREAMING_SNAKE_CASE , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=SCREAMING_SNAKE_CASE )] )
@property
def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return self.base_dist.mean * self.scale + self.loc
@property
def __UpperCAmelCase ( self :Optional[int] ) -> Dict:
'''simple docstring'''
return self.base_dist.variance * self.scale**2
@property
def __UpperCAmelCase ( self :Any ) -> List[str]:
'''simple docstring'''
return self.variance.sqrt()
class A__ ( nn.Module ):
def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Dict[str, int] , SCREAMING_SNAKE_CASE :Callable[..., Tuple[torch.Tensor]] , **SCREAMING_SNAKE_CASE :Dict ) -> None:
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE )
_a : Tuple =args_dim
_a : Tuple =nn.ModuleList([nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for dim in args_dim.values()] )
_a : Dict =domain_map
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Tuple[torch.Tensor]:
'''simple docstring'''
_a : Tuple =[proj(SCREAMING_SNAKE_CASE ) for proj in self.proj]
return self.domain_map(*SCREAMING_SNAKE_CASE )
class A__ ( nn.Module ):
def __init__( self :Dict , SCREAMING_SNAKE_CASE :Tuple ) -> int:
'''simple docstring'''
super().__init__()
_a : List[Any] =function
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Optional[int] , *SCREAMING_SNAKE_CASE :int ) -> List[Any]:
'''simple docstring'''
return self.function(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE )
class A__ :
__UpperCamelCase : type
__UpperCamelCase : int
__UpperCamelCase : Dict[str, int]
def __init__( self :Any , SCREAMING_SNAKE_CASE :int = 1 ) -> None:
'''simple docstring'''
_a : Any =dim
_a : List[Any] ={k: dim * self.args_dim[k] for k in self.args_dim}
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
if self.dim == 1:
return self.distribution_class(*SCREAMING_SNAKE_CASE )
else:
return Independent(self.distribution_class(*SCREAMING_SNAKE_CASE ) , 1 )
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , ) -> Distribution:
'''simple docstring'''
_a : str =self._base_distribution(SCREAMING_SNAKE_CASE )
if loc is None and scale is None:
return distr
else:
return AffineTransformed(SCREAMING_SNAKE_CASE , loc=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , event_dim=self.event_dim )
@property
def __UpperCAmelCase ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
return () if self.dim == 1 else (self.dim,)
@property
def __UpperCAmelCase ( self :Any ) -> int:
'''simple docstring'''
return len(self.event_shape )
@property
def __UpperCAmelCase ( self :Any ) -> float:
'''simple docstring'''
return 0.0
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :int ) -> nn.Module:
'''simple docstring'''
return ParameterProjection(
in_features=SCREAMING_SNAKE_CASE , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , )
def __UpperCAmelCase ( self :int , *SCREAMING_SNAKE_CASE :torch.Tensor ) -> Any:
'''simple docstring'''
raise NotImplementedError()
@staticmethod
def __UpperCAmelCase ( SCREAMING_SNAKE_CASE :torch.Tensor ) -> torch.Tensor:
'''simple docstring'''
return (x + torch.sqrt(torch.square(SCREAMING_SNAKE_CASE ) + 4.0 )) / 2.0
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1}
__UpperCamelCase : type = StudentT
@classmethod
def __UpperCAmelCase ( cls :int , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Union[str, Any]:
'''simple docstring'''
_a : Tuple =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps )
_a : Optional[Any] =2.0 + cls.squareplus(SCREAMING_SNAKE_CASE )
return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 )
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1}
__UpperCamelCase : type = Normal
@classmethod
def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Dict:
'''simple docstring'''
_a : List[str] =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps )
return loc.squeeze(-1 ), scale.squeeze(-1 )
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1}
__UpperCamelCase : type = NegativeBinomial
@classmethod
def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Optional[int]:
'''simple docstring'''
_a : int =cls.squareplus(SCREAMING_SNAKE_CASE )
return total_count.squeeze(-1 ), logits.squeeze(-1 )
def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Distribution:
'''simple docstring'''
_a , _a : Any =distr_args
if self.dim == 1:
return self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE )
else:
return Independent(self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE ) , 1 )
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None ) -> Distribution:
'''simple docstring'''
_a , _a : Optional[int] =distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits) )
| 694 | 1 |
'''simple docstring'''
import os
import shutil
import sys
import tempfile
import unittest
from pathlib import Path
import pytest
import transformers
from transformers import (
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoTokenizer,
BertConfig,
BertTokenizer,
BertTokenizerFast,
CTRLTokenizer,
GPTaTokenizer,
GPTaTokenizerFast,
PreTrainedTokenizerFast,
RobertaTokenizer,
RobertaTokenizerFast,
is_tokenizers_available,
)
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.auto.tokenization_auto import (
TOKENIZER_MAPPING,
get_tokenizer_config,
tokenizer_class_from_name,
)
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import (
DUMMY_DIFF_TOKENIZER_IDENTIFIER,
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tokenizers,
slow,
)
sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils'''))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class A__ ( unittest.TestCase ):
def __UpperCAmelCase ( self :Optional[int] ) -> Dict:
'''simple docstring'''
_a : Union[str, Any] =0
@slow
def __UpperCAmelCase ( self :Any ) -> Optional[int]:
'''simple docstring'''
for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x):
_a : str =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) )
self.assertGreater(len(SCREAMING_SNAKE_CASE ) , 0 )
for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys():
_a : str =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , (GPTaTokenizer, GPTaTokenizerFast) )
self.assertGreater(len(SCREAMING_SNAKE_CASE ) , 0 )
def __UpperCAmelCase ( self :Any ) -> Tuple:
'''simple docstring'''
_a : Dict =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 1_2 )
def __UpperCAmelCase ( self :int ) -> List[str]:
'''simple docstring'''
_a : Union[str, Any] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , (RobertaTokenizer, RobertaTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 2_0 )
def __UpperCAmelCase ( self :Optional[int] ) -> int:
'''simple docstring'''
_a : Dict =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Check that tokenizer_type ≠ model_type
_a : List[str] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 1_2 )
def __UpperCAmelCase ( self :Optional[int] ) -> Tuple:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(SCREAMING_SNAKE_CASE , """vocab.txt""" ) )
_a : Optional[int] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , tokenizer_type="""bert""" , use_fast=SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(SCREAMING_SNAKE_CASE , """vocab.json""" ) )
shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(SCREAMING_SNAKE_CASE , """merges.txt""" ) )
_a : int =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , tokenizer_type="""gpt2""" , use_fast=SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@require_tokenizers
def __UpperCAmelCase ( self :Tuple ) -> Dict:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(SCREAMING_SNAKE_CASE , """vocab.txt""" ) )
_a : int =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , tokenizer_type="""bert""" )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(SCREAMING_SNAKE_CASE , """vocab.json""" ) )
shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(SCREAMING_SNAKE_CASE , """merges.txt""" ) )
_a : Optional[Any] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , tokenizer_type="""gpt2""" )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Any ) -> Optional[Any]:
'''simple docstring'''
with pytest.raises(SCREAMING_SNAKE_CASE ):
AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" )
@require_tokenizers
def __UpperCAmelCase ( self :Tuple ) -> List[Any]:
'''simple docstring'''
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
_a : Union[str, Any] =tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" )
self.assertIsInstance(SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) )
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , SCREAMING_SNAKE_CASE )
else:
self.assertEqual(tokenizer.do_lower_case , SCREAMING_SNAKE_CASE )
self.assertEqual(tokenizer.model_max_length , 5_1_2 )
@require_tokenizers
def __UpperCAmelCase ( self :str ) -> int:
'''simple docstring'''
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ):
_a : Optional[Any] =tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" )
def __UpperCAmelCase ( self :Tuple ) -> Dict:
'''simple docstring'''
# tests: https://github.com/huggingface/transformers/pull/13251
# 1. models with `-`, e.g. xlm-roberta -> xlm_roberta
# 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai
_a : Any =TOKENIZER_MAPPING.values()
_a : Any =[]
for slow_tok, fast_tok in tokenizers:
if slow_tok is not None:
tokenizer_names.append(slow_tok.__name__ )
if fast_tok is not None:
tokenizer_names.append(fast_tok.__name__ )
for tokenizer_name in tokenizer_names:
# must find the right class
tokenizer_class_from_name(SCREAMING_SNAKE_CASE )
@require_tokenizers
def __UpperCAmelCase ( self :str ) -> Optional[int]:
'''simple docstring'''
self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , SCREAMING_SNAKE_CASE )
@require_tokenizers
def __UpperCAmelCase ( self :str ) -> Optional[Any]:
'''simple docstring'''
_a : Tuple =AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=SCREAMING_SNAKE_CASE )
_a : Optional[int] ="""Hello, world. How are you?"""
_a : Any =tokenizer.tokenize(SCREAMING_SNAKE_CASE )
self.assertEqual("""[UNK]""" , tokens[0] )
_a : Dict =AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=SCREAMING_SNAKE_CASE )
_a : List[Any] =tokenizer.tokenize(SCREAMING_SNAKE_CASE )
self.assertEqual("""[UNK]""" , tokens[0] )
@require_tokenizers
def __UpperCAmelCase ( self :List[Any] ) -> int:
'''simple docstring'''
_a : List[str] =AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" )
self.assertEqual(type(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(tokenizer.model_max_length , 5_1_2 )
self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 )
self.assertEqual(tokenizer.unk_token , """[UNK]""" )
self.assertEqual(tokenizer.padding_side , """right""" )
self.assertEqual(tokenizer.truncation_side , """right""" )
def __UpperCAmelCase ( self :Union[str, Any] ) -> List[str]:
'''simple docstring'''
_a : List[str] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
_a : Any =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , tokenizer.__class__ )
self.assertEqual(tokenizera.vocab_size , 1_2 )
def __UpperCAmelCase ( self :Any ) -> List[str]:
'''simple docstring'''
_a : List[str] =AutoTokenizer.from_pretrained("""ctrl""" )
# There is no fast CTRL so this always gives us a slow tokenizer.
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Union[str, Any] ) -> int:
'''simple docstring'''
# Check we can load the tokenizer config of an online model.
_a : Any =get_tokenizer_config("""bert-base-cased""" )
_a : Dict =config.pop("""_commit_hash""" , SCREAMING_SNAKE_CASE )
# If we ever update bert-base-cased tokenizer config, this dict here will need to be updated.
self.assertEqual(SCREAMING_SNAKE_CASE , {"""do_lower_case""": False} )
# This model does not have a tokenizer_config so we get back an empty dict.
_a : Optional[Any] =get_tokenizer_config(SCREAMING_SNAKE_CASE )
self.assertDictEqual(SCREAMING_SNAKE_CASE , {} )
# A tokenizer saved with `save_pretrained` always creates a tokenizer config.
_a : str =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
_a : Tuple =get_tokenizer_config(SCREAMING_SNAKE_CASE )
# Check the class of the tokenizer was properly saved (note that it always saves the slow class).
self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" )
def __UpperCAmelCase ( self :Any ) -> Tuple:
'''simple docstring'''
try:
AutoConfig.register("""custom""" , SCREAMING_SNAKE_CASE )
AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(SCREAMING_SNAKE_CASE ):
AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE )
_a : Optional[Any] =CustomTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
_a : List[Any] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
@require_tokenizers
def __UpperCAmelCase ( self :Union[str, Any] ) -> Any:
'''simple docstring'''
try:
AutoConfig.register("""custom""" , SCREAMING_SNAKE_CASE )
# Can register in two steps
AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) )
AutoTokenizer.register(SCREAMING_SNAKE_CASE , fast_tokenizer_class=SCREAMING_SNAKE_CASE )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
del TOKENIZER_MAPPING._extra_content[CustomConfig]
# Can register in one step
AutoTokenizer.register(
SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE , fast_tokenizer_class=SCREAMING_SNAKE_CASE )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(SCREAMING_SNAKE_CASE ):
AutoTokenizer.register(SCREAMING_SNAKE_CASE , fast_tokenizer_class=SCREAMING_SNAKE_CASE )
# We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer
# and that model does not have a tokenizer.json
with tempfile.TemporaryDirectory() as tmp_dir:
_a : str =BertTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE )
bert_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
_a : Any =CustomTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
_a : str =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Any =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def __UpperCAmelCase ( self :Union[str, Any] ) -> Any:
'''simple docstring'''
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(SCREAMING_SNAKE_CASE ):
_a : str =AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(SCREAMING_SNAKE_CASE ):
_a : str =AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=SCREAMING_SNAKE_CASE )
_a : str =AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertTrue(tokenizer.special_attribute_present )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
_a : Tuple =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" )
# Test we can also load the slow version
_a : int =AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
_a : List[str] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
else:
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" )
@require_tokenizers
def __UpperCAmelCase ( self :Optional[Any] ) -> List[Any]:
'''simple docstring'''
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : int = False
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : List[Any] = NewTokenizer
__UpperCamelCase : Union[str, Any] = False
try:
AutoConfig.register("""custom""" , SCREAMING_SNAKE_CASE )
AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE )
AutoTokenizer.register(SCREAMING_SNAKE_CASE , fast_tokenizer_class=SCREAMING_SNAKE_CASE )
# If remote code is not set, the default is to use local
_a : List[str] =AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
self.assertFalse(tokenizer.special_attribute_present )
_a : Union[str, Any] =AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=SCREAMING_SNAKE_CASE )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertFalse(tokenizer.special_attribute_present )
# If remote code is disabled, we load the local one.
_a : Optional[Any] =AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
self.assertFalse(tokenizer.special_attribute_present )
_a : int =AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertFalse(tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub
_a : Tuple =AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
self.assertTrue(tokenizer.special_attribute_present )
_a : Union[str, Any] =AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertTrue(tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def __UpperCAmelCase ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
_a : Tuple =AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
# Test we can also load the slow version
_a : Optional[Any] =AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
else:
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
def __UpperCAmelCase ( self :Union[str, Any] ) -> Tuple:
'''simple docstring'''
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE , """bert-base is not a local folder and is not a valid model identifier""" ):
_a : List[Any] =AutoTokenizer.from_pretrained("""bert-base""" )
def __UpperCAmelCase ( self :Optional[Any] ) -> Dict:
'''simple docstring'''
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
_a : Optional[Any] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , revision="""aaaaaa""" )
def __UpperCAmelCase ( self :str ) -> Dict:
'''simple docstring'''
# Make sure we have cached the tokenizer.
_a : Optional[int] =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
with RequestCounter() as counter:
_a : List[Any] =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int:
return number | (1 << position)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int:
return number & ~(1 << position)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int:
return number ^ (1 << position)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> bool:
return ((number >> position) & 1) == 1
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int:
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 | 1 |
'''simple docstring'''
from math import sqrt
import numpy as np
from sympy import symbols
# Coefficient
# Speed of light (m/s)
A__: Optional[int] = 2_9979_2458
# Symbols
A__ , A__ , A__ , A__: Optional[int] = symbols('''ct x y z''')
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : float ) -> float:
if velocity > c:
raise ValueError("""Speed must not exceed light speed 299,792,458 [m/s]!""" )
elif velocity < 1:
# Usually the speed should be much higher than 1 (c order of magnitude)
raise ValueError("""Speed must be greater than or equal to 1!""" )
return velocity / c
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : float ) -> float:
return 1 / sqrt(1 - beta(_UpperCAmelCase ) ** 2 )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : float ) -> np.ndarray:
return np.array(
[
[gamma(_UpperCAmelCase ), -gamma(_UpperCAmelCase ) * beta(_UpperCAmelCase ), 0, 0],
[-gamma(_UpperCAmelCase ) * beta(_UpperCAmelCase ), gamma(_UpperCAmelCase ), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
] )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : float ,_UpperCAmelCase : np.ndarray | None = None ) -> np.ndarray:
# Ensure event is not empty
if event is None:
_a : int =np.array([ct, x, y, z] ) # Symbolic four vector
else:
event[0] *= c # x0 is ct (speed of light * time)
return transformation_matrix(_UpperCAmelCase ) @ event
if __name__ == "__main__":
import doctest
doctest.testmod()
# Example of symbolic vector:
A__: int = transform(2997_9245)
print('''Example of four vector: ''')
print(F"ct' = {four_vector[0]}")
print(F"x' = {four_vector[1]}")
print(F"y' = {four_vector[2]}")
print(F"z' = {four_vector[3]}")
# Substitute symbols with numerical values
A__: Optional[Any] = {ct: c, x: 1, y: 1, z: 1}
A__: Any = [four_vector[i].subs(sub_dict) for i in range(4)]
print(F"\n{numerical_vector}")
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : list ) -> float:
_validate_point(_UpperCAmelCase )
_validate_point(_UpperCAmelCase )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError("""Both points must be in the same n-dimensional space""" )
return float(sum(abs(a - b ) for a, b in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[float] ) -> None:
if point:
if isinstance(_UpperCAmelCase ,_UpperCAmelCase ):
for item in point:
if not isinstance(_UpperCAmelCase ,(int, float) ):
_a : str =(
"""Expected a list of numbers as input, found """
F"{type(_UpperCAmelCase ).__name__}"
)
raise TypeError(_UpperCAmelCase )
else:
_a : List[Any] =F"Expected a list of numbers as input, found {type(_UpperCAmelCase ).__name__}"
raise TypeError(_UpperCAmelCase )
else:
raise ValueError("""Missing an input""" )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : list ) -> float:
_validate_point(_UpperCAmelCase )
_validate_point(_UpperCAmelCase )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError("""Both points must be in the same n-dimensional space""" )
return float(sum(abs(x - y ) for x, y in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 | 1 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class A__ :
@staticmethod
def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE :str , **SCREAMING_SNAKE_CASE :Optional[Any] ) -> List[Any]:
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class A__ ( unittest.TestCase ):
__UpperCamelCase : Tuple = MODEL_FOR_OBJECT_DETECTION_MAPPING
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Any ) -> Optional[Any]:
'''simple docstring'''
_a : Optional[int] =ObjectDetectionPipeline(model=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_a : int =object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 )
self.assertGreater(len(SCREAMING_SNAKE_CASE ) , 0 )
for detected_object in outputs:
self.assertEqual(
SCREAMING_SNAKE_CASE , {
"""score""": ANY(SCREAMING_SNAKE_CASE ),
"""label""": ANY(SCREAMING_SNAKE_CASE ),
"""box""": {"""xmin""": ANY(SCREAMING_SNAKE_CASE ), """ymin""": ANY(SCREAMING_SNAKE_CASE ), """xmax""": ANY(SCREAMING_SNAKE_CASE ), """ymax""": ANY(SCREAMING_SNAKE_CASE )},
} , )
import datasets
_a : List[str] =datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" )
_a : Union[str, Any] =[
Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ),
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
# RGBA
dataset[0]["""file"""],
# LA
dataset[1]["""file"""],
# L
dataset[2]["""file"""],
]
_a : int =object_detector(SCREAMING_SNAKE_CASE , threshold=0.0 )
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) )
for outputs in batch_outputs:
self.assertGreater(len(SCREAMING_SNAKE_CASE ) , 0 )
for detected_object in outputs:
self.assertEqual(
SCREAMING_SNAKE_CASE , {
"""score""": ANY(SCREAMING_SNAKE_CASE ),
"""label""": ANY(SCREAMING_SNAKE_CASE ),
"""box""": {"""xmin""": ANY(SCREAMING_SNAKE_CASE ), """ymin""": ANY(SCREAMING_SNAKE_CASE ), """xmax""": ANY(SCREAMING_SNAKE_CASE ), """ymax""": ANY(SCREAMING_SNAKE_CASE )},
} , )
@require_tf
@unittest.skip("""Object detection not implemented in TF""" )
def __UpperCAmelCase ( self :int ) -> int:
'''simple docstring'''
pass
@require_torch
def __UpperCAmelCase ( self :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
_a : Optional[int] ="""hf-internal-testing/tiny-detr-mobilenetsv3"""
_a : Any =AutoModelForObjectDetection.from_pretrained(SCREAMING_SNAKE_CASE )
_a : Any =AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE )
_a : List[Any] =ObjectDetectionPipeline(model=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE )
_a : Optional[int] =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [
{"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}},
{"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}},
] , )
_a : Optional[Any] =object_detector(
[
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
] , threshold=0.0 , )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [
[
{"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}},
{"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}},
],
[
{"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}},
{"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}},
],
] , )
@require_torch
@slow
def __UpperCAmelCase ( self :Dict ) -> Optional[Any]:
'''simple docstring'''
_a : Optional[int] ="""facebook/detr-resnet-50"""
_a : Dict =AutoModelForObjectDetection.from_pretrained(SCREAMING_SNAKE_CASE )
_a : int =AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE )
_a : Any =ObjectDetectionPipeline(model=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE )
_a : str =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [
{"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}},
{"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}},
{"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}},
{"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}},
{"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}},
] , )
_a : Dict =object_detector(
[
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
] )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [
[
{"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}},
{"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}},
{"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}},
{"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}},
{"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}},
],
[
{"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}},
{"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}},
{"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}},
{"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}},
{"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}},
],
] , )
@require_torch
@slow
def __UpperCAmelCase ( self :str ) -> List[str]:
'''simple docstring'''
_a : Any ="""facebook/detr-resnet-50"""
_a : Union[str, Any] =pipeline("""object-detection""" , model=SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [
{"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}},
{"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}},
{"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}},
{"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}},
{"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}},
] , )
_a : int =object_detector(
[
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
] )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [
[
{"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}},
{"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}},
{"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}},
{"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}},
{"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}},
],
[
{"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}},
{"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}},
{"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}},
{"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}},
{"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}},
],
] , )
@require_torch
@slow
def __UpperCAmelCase ( self :Any ) -> Union[str, Any]:
'''simple docstring'''
_a : List[str] =0.9_985
_a : int ="""facebook/detr-resnet-50"""
_a : str =pipeline("""object-detection""" , model=SCREAMING_SNAKE_CASE )
_a : Optional[int] =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=SCREAMING_SNAKE_CASE )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [
{"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}},
{"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}},
] , )
@require_torch
@require_pytesseract
@slow
def __UpperCAmelCase ( self :Union[str, Any] ) -> Dict:
'''simple docstring'''
_a : List[str] ="""Narsil/layoutlmv3-finetuned-funsd"""
_a : Tuple =0.9_993
_a : int =pipeline("""object-detection""" , model=SCREAMING_SNAKE_CASE , threshold=SCREAMING_SNAKE_CASE )
_a : List[str] =object_detector(
"""https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [
{"""score""": 0.9_993, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_9_4, """ymin""": 2_5_4, """xmax""": 3_4_3, """ymax""": 2_6_4}},
{"""score""": 0.9_993, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_9_4, """ymin""": 2_5_4, """xmax""": 3_4_3, """ymax""": 2_6_4}},
] , )
| 694 |
'''simple docstring'''
from __future__ import annotations
class A__ :
def __init__( self :str , SCREAMING_SNAKE_CASE :int ) -> None:
'''simple docstring'''
_a : int =order
# a_{0} ... a_{k}
_a : Optional[Any] =[1.0] + [0.0] * order
# b_{0} ... b_{k}
_a : Tuple =[1.0] + [0.0] * order
# x[n-1] ... x[n-k]
_a : List[Any] =[0.0] * self.order
# y[n-1] ... y[n-k]
_a : Tuple =[0.0] * self.order
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :list[float] , SCREAMING_SNAKE_CASE :list[float] ) -> None:
'''simple docstring'''
if len(SCREAMING_SNAKE_CASE ) < self.order:
_a : int =[1.0, *a_coeffs]
if len(SCREAMING_SNAKE_CASE ) != self.order + 1:
_a : int =(
f"Expected a_coeffs to have {self.order + 1} elements "
f"for {self.order}-order filter, got {len(SCREAMING_SNAKE_CASE )}"
)
raise ValueError(SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) != self.order + 1:
_a : Optional[Any] =(
f"Expected b_coeffs to have {self.order + 1} elements "
f"for {self.order}-order filter, got {len(SCREAMING_SNAKE_CASE )}"
)
raise ValueError(SCREAMING_SNAKE_CASE )
_a : List[str] =a_coeffs
_a : Union[str, Any] =b_coeffs
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :float ) -> float:
'''simple docstring'''
_a : str =0.0
# Start at index 1 and do index 0 at the end.
for i in range(1 , self.order + 1 ):
result += (
self.b_coeffs[i] * self.input_history[i - 1]
- self.a_coeffs[i] * self.output_history[i - 1]
)
_a : Any =(result + self.b_coeffs[0] * sample) / self.a_coeffs[0]
_a : str =self.input_history[:-1]
_a : Optional[Any] =self.output_history[:-1]
_a : Optional[int] =sample
_a : Tuple =result
return result
| 694 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : list ) -> float:
_validate_point(_UpperCAmelCase )
_validate_point(_UpperCAmelCase )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError("""Both points must be in the same n-dimensional space""" )
return float(sum(abs(a - b ) for a, b in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[float] ) -> None:
if point:
if isinstance(_UpperCAmelCase ,_UpperCAmelCase ):
for item in point:
if not isinstance(_UpperCAmelCase ,(int, float) ):
_a : str =(
"""Expected a list of numbers as input, found """
F"{type(_UpperCAmelCase ).__name__}"
)
raise TypeError(_UpperCAmelCase )
else:
_a : List[Any] =F"Expected a list of numbers as input, found {type(_UpperCAmelCase ).__name__}"
raise TypeError(_UpperCAmelCase )
else:
raise ValueError("""Missing an input""" )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : list ) -> float:
_validate_point(_UpperCAmelCase )
_validate_point(_UpperCAmelCase )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError("""Both points must be in the same n-dimensional space""" )
return float(sum(abs(x - y ) for x, y in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 |
'''simple docstring'''
from queue import PriorityQueue
from typing import Any
import numpy as np
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : dict ,_UpperCAmelCase : str ,_UpperCAmelCase : set ,_UpperCAmelCase : set ,_UpperCAmelCase : dict ,_UpperCAmelCase : dict ,_UpperCAmelCase : PriorityQueue ,_UpperCAmelCase : dict ,_UpperCAmelCase : float | int ,) -> float | int:
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
_a : Dict =cst_fwd.get(_UpperCAmelCase ,np.inf )
_a : int =cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
_a : Tuple =new_cost_f
_a : Optional[Any] =v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
_a : str =cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ,_UpperCAmelCase : dict ,_UpperCAmelCase : dict ) -> int:
_a : Optional[Any] =-1
_a : List[str] =set()
_a : Optional[int] =set()
_a : Optional[int] ={source: 0}
_a : List[str] ={destination: 0}
_a : Union[str, Any] ={source: None}
_a : Dict ={destination: None}
_a : PriorityQueue[Any] =PriorityQueue()
_a : PriorityQueue[Any] =PriorityQueue()
_a : Optional[int] =np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
_a , _a : str =queue_forward.get()
visited_forward.add(_UpperCAmelCase )
_a , _a : List[Any] =queue_backward.get()
visited_backward.add(_UpperCAmelCase )
_a : int =pass_and_relaxation(
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,)
_a : Any =pass_and_relaxation(
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,)
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
_a : Any =shortest_distance
return shortest_path_distance
A__: Union[str, Any] = {
'''B''': [['''C''', 1]],
'''C''': [['''D''', 1]],
'''D''': [['''F''', 1]],
'''E''': [['''B''', 1], ['''G''', 2]],
'''F''': [],
'''G''': [['''F''', 1]],
}
A__: str = {
'''B''': [['''E''', 1]],
'''C''': [['''B''', 1]],
'''D''': [['''C''', 1]],
'''F''': [['''D''', 1], ['''G''', 1]],
'''E''': [[None, np.inf]],
'''G''': [['''E''', 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 | 1 |
'''simple docstring'''
from __future__ import annotations
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list[int]] ) -> bool:
_a : Tuple =len(_UpperCAmelCase )
# We need to create solution object to save path.
_a : str =[[0 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )]
_a : List[Any] =run_maze(_UpperCAmelCase ,0 ,0 ,_UpperCAmelCase )
if solved:
print("""\n""".join(str(_UpperCAmelCase ) for row in solutions ) )
else:
print("""No solution exists!""" )
return solved
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list[int]] ,_UpperCAmelCase : int ,_UpperCAmelCase : int ,_UpperCAmelCase : list[list[int]] ) -> bool:
_a : int =len(_UpperCAmelCase )
# Final check point.
if i == j == (size - 1):
_a : Optional[Any] =1
return True
_a : Any =(not i < 0) and (not j < 0) # Check lower bounds
_a : List[str] =(i < size) and (j < size) # Check upper bounds
if lower_flag and upper_flag:
# check for already visited and block points.
_a : Union[str, Any] =(not solutions[i][j]) and (not maze[i][j])
if block_flag:
# check visited
_a : Tuple =1
# check for directions
if (
run_maze(_UpperCAmelCase ,i + 1 ,_UpperCAmelCase ,_UpperCAmelCase )
or run_maze(_UpperCAmelCase ,_UpperCAmelCase ,j + 1 ,_UpperCAmelCase )
or run_maze(_UpperCAmelCase ,i - 1 ,_UpperCAmelCase ,_UpperCAmelCase )
or run_maze(_UpperCAmelCase ,_UpperCAmelCase ,j - 1 ,_UpperCAmelCase )
):
return True
_a : Any =0
return False
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 |
'''simple docstring'''
from math import factorial
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 100 ) -> int:
return sum(map(_UpperCAmelCase ,str(factorial(_UpperCAmelCase ) ) ) )
if __name__ == "__main__":
print(solution(int(input('''Enter the Number: ''').strip())))
| 694 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]:
_a : Optional[Any] =[31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
_a : str =6
_a : Any =1
_a : List[str] =1901
_a : Dict =0
while year < 2001:
day += 7
if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0):
if day > days_per_month[month - 1] and month != 2:
month += 1
_a : Union[str, Any] =day - days_per_month[month - 2]
elif day > 29 and month == 2:
month += 1
_a : List[str] =day - 29
else:
if day > days_per_month[month - 1]:
month += 1
_a : int =day - days_per_month[month - 2]
if month > 12:
year += 1
_a : Union[str, Any] =1
if year < 2001 and day == 1:
sundays += 1
return sundays
if __name__ == "__main__":
print(solution())
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ) -> list:
_a : Tuple =len(_UpperCAmelCase )
_a : str =[]
for i in range(len(_UpperCAmelCase ) - pat_len + 1 ):
_a : int =True
for j in range(_UpperCAmelCase ):
if s[i + j] != pattern[j]:
_a : int =False
break
if match_found:
position.append(_UpperCAmelCase )
return position
if __name__ == "__main__":
assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3]
print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
| 694 | 1 |
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 694 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class A__ ( unittest.TestCase ):
def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any]=7 , SCREAMING_SNAKE_CASE :Optional[Any]=3 , SCREAMING_SNAKE_CASE :Tuple=1_8 , SCREAMING_SNAKE_CASE :Any=3_0 , SCREAMING_SNAKE_CASE :List[str]=4_0_0 , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :List[str]=True , ) -> Tuple:
'''simple docstring'''
_a : int =size if size is not None else {"""height""": 1_8, """width""": 1_8}
_a : int =parent
_a : Optional[int] =batch_size
_a : List[str] =num_channels
_a : Optional[Any] =image_size
_a : int =min_resolution
_a : str =max_resolution
_a : str =do_resize
_a : Tuple =size
_a : Tuple =do_normalize
def __UpperCAmelCase ( self :Any ) -> int:
'''simple docstring'''
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class A__ ( UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : int = ImageGPTImageProcessor if is_vision_available() else None
def __UpperCAmelCase ( self :List[Any] ) -> List[Any]:
'''simple docstring'''
_a : Any =ImageGPTImageProcessingTester(self )
@property
def __UpperCAmelCase ( self :Optional[int] ) -> List[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCAmelCase ( self :Dict ) -> Any:
'''simple docstring'''
_a : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """clusters""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_resize""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """size""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_normalize""" ) )
def __UpperCAmelCase ( self :Optional[int] ) -> Optional[int]:
'''simple docstring'''
_a : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} )
_a : Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 )
self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} )
def __UpperCAmelCase ( self :List[Any] ) -> Optional[int]:
'''simple docstring'''
_a : List[str] =self.image_processing_class(**self.image_processor_dict )
_a : Dict =json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , obj[key] ) )
else:
self.assertEqual(obj[key] , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[int] ) -> Dict:
'''simple docstring'''
_a : List[Any] =self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_a : Any =os.path.join(SCREAMING_SNAKE_CASE , """image_processor.json""" )
image_processor_first.to_json_file(SCREAMING_SNAKE_CASE )
_a : str =self.image_processing_class.from_json_file(SCREAMING_SNAKE_CASE ).to_dict()
_a : Tuple =image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[int] ) -> str:
'''simple docstring'''
_a : List[str] =self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(SCREAMING_SNAKE_CASE )
_a : str =self.image_processing_class.from_pretrained(SCREAMING_SNAKE_CASE ).to_dict()
_a : Union[str, Any] =image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def __UpperCAmelCase ( self :Union[str, Any] ) -> int:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]:
_a : Any =load_dataset("""hf-internal-testing/fixtures_image_utils""" ,split="""test""" )
_a : Dict =Image.open(dataset[4]["""file"""] )
_a : Optional[int] =Image.open(dataset[5]["""file"""] )
_a : Optional[Any] =[imagea, imagea]
return images
@require_vision
@require_torch
class A__ ( unittest.TestCase ):
@slow
def __UpperCAmelCase ( self :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_a : Optional[Any] =ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
_a : int =prepare_images()
# test non-batched
_a : Dict =image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) )
_a : Optional[int] =[3_0_6, 1_9_1, 1_9_1]
self.assertEqual(encoding.input_ids[0, :3].tolist() , SCREAMING_SNAKE_CASE )
# test batched
_a : Dict =image_processing(SCREAMING_SNAKE_CASE , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) )
_a : Any =[3_0_3, 1_3, 1_3]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , SCREAMING_SNAKE_CASE )
| 694 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A__: Any = {
'''configuration_xlm_roberta_xl''': [
'''XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''XLMRobertaXLConfig''',
'''XLMRobertaXLOnnxConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__: Optional[int] = [
'''XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XLMRobertaXLForCausalLM''',
'''XLMRobertaXLForMaskedLM''',
'''XLMRobertaXLForMultipleChoice''',
'''XLMRobertaXLForQuestionAnswering''',
'''XLMRobertaXLForSequenceClassification''',
'''XLMRobertaXLForTokenClassification''',
'''XLMRobertaXLModel''',
'''XLMRobertaXLPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xlm_roberta_xl import (
XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMRobertaXLConfig,
XLMRobertaXLOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm_roberta_xl import (
XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaXLForCausalLM,
XLMRobertaXLForMaskedLM,
XLMRobertaXLForMultipleChoice,
XLMRobertaXLForQuestionAnswering,
XLMRobertaXLForSequenceClassification,
XLMRobertaXLForTokenClassification,
XLMRobertaXLModel,
XLMRobertaXLPreTrainedModel,
)
else:
import sys
A__: List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ) -> bool:
_a : Optional[int] =len(_UpperCAmelCase )
_a : Tuple =[[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
_a : Any =True
# sum is not zero and set is empty then false
for i in range(1 ,required_sum + 1 ):
_a : int =False
for i in range(1 ,arr_len + 1 ):
for j in range(1 ,required_sum + 1 ):
if arr[i - 1] > j:
_a : Optional[Any] =subset[i - 1][j]
if arr[i - 1] <= j:
_a : Union[str, Any] =subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 | 1 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ... import AutoBackbone
from ...modeling_outputs import SemanticSegmenterOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...utils.backbone_utils import BackboneMixin
from .configuration_upernet import UperNetConfig
A__: Dict = [
'''openmmlab/upernet-convnext-tiny''',
# See all UperNet models at https://huggingface.co/models?filter=upernet
]
# General docstring
A__: Tuple = '''UperNetConfig'''
class A__ ( nn.Module ):
def __init__( self :Optional[Any] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Union[int, Tuple[int, int]] , SCREAMING_SNAKE_CASE :Union[int, Tuple[int, int], str] = 0 , SCREAMING_SNAKE_CASE :bool = False , SCREAMING_SNAKE_CASE :Union[int, Tuple[int, int]] = 1 , ) -> None:
'''simple docstring'''
super().__init__()
_a : int =nn.Convad(
in_channels=SCREAMING_SNAKE_CASE , out_channels=SCREAMING_SNAKE_CASE , kernel_size=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE , dilation=SCREAMING_SNAKE_CASE , )
_a : str =nn.BatchNormad(SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =nn.ReLU()
def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :torch.Tensor ) -> torch.Tensor:
'''simple docstring'''
_a : List[str] =self.conv(SCREAMING_SNAKE_CASE )
_a : int =self.batch_norm(SCREAMING_SNAKE_CASE )
_a : Optional[int] =self.activation(SCREAMING_SNAKE_CASE )
return output
class A__ ( nn.Module ):
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int ) -> None:
'''simple docstring'''
super().__init__()
_a : str =[
nn.AdaptiveAvgPoolad(SCREAMING_SNAKE_CASE ),
UperNetConvModule(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , kernel_size=1 ),
]
for i, layer in enumerate(self.layers ):
self.add_module(str(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :torch.Tensor ) -> torch.Tensor:
'''simple docstring'''
_a : str =input
for layer in self.layers:
_a : List[str] =layer(SCREAMING_SNAKE_CASE )
return hidden_state
class A__ ( nn.Module ):
def __init__( self :Union[str, Any] , SCREAMING_SNAKE_CASE :Tuple[int, ...] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :bool ) -> None:
'''simple docstring'''
super().__init__()
_a : Tuple =pool_scales
_a : Any =align_corners
_a : Any =in_channels
_a : List[Any] =channels
_a : List[Any] =[]
for i, pool_scale in enumerate(SCREAMING_SNAKE_CASE ):
_a : str =UperNetPyramidPoolingBlock(pool_scale=SCREAMING_SNAKE_CASE , in_channels=SCREAMING_SNAKE_CASE , channels=SCREAMING_SNAKE_CASE )
self.blocks.append(SCREAMING_SNAKE_CASE )
self.add_module(str(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :torch.Tensor ) -> List[torch.Tensor]:
'''simple docstring'''
_a : Optional[int] =[]
for ppm in self.blocks:
_a : Optional[Any] =ppm(SCREAMING_SNAKE_CASE )
_a : Dict =nn.functional.interpolate(
SCREAMING_SNAKE_CASE , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners )
ppm_outs.append(SCREAMING_SNAKE_CASE )
return ppm_outs
class A__ ( nn.Module ):
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Optional[Any] ) -> List[str]:
'''simple docstring'''
super().__init__()
_a : int =config
_a : int =config.pool_scales # e.g. (1, 2, 3, 6)
_a : Tuple =in_channels
_a : List[str] =config.hidden_size
_a : Dict =False
_a : Optional[Any] =nn.Convad(self.channels , config.num_labels , kernel_size=1 )
# PSP Module
_a : Dict =UperNetPyramidPoolingModule(
self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , )
_a : Union[str, Any] =UperNetConvModule(
self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , )
# FPN Module
_a : int =nn.ModuleList()
_a : Optional[Any] =nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the top layer
_a : str =UperNetConvModule(SCREAMING_SNAKE_CASE , self.channels , kernel_size=1 )
_a : str =UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 )
self.lateral_convs.append(SCREAMING_SNAKE_CASE )
self.fpn_convs.append(SCREAMING_SNAKE_CASE )
_a : Tuple =UperNetConvModule(
len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , )
def __UpperCAmelCase ( self :List[Any] ) -> List[Any]:
'''simple docstring'''
self.apply(self._init_weights )
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :List[Any] ) -> Dict:
'''simple docstring'''
if isinstance(SCREAMING_SNAKE_CASE , nn.Convad ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
_a : Optional[int] =inputs[-1]
_a : Tuple =[x]
psp_outs.extend(self.psp_modules(SCREAMING_SNAKE_CASE ) )
_a : List[str] =torch.cat(SCREAMING_SNAKE_CASE , dim=1 )
_a : Any =self.bottleneck(SCREAMING_SNAKE_CASE )
return output
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :torch.Tensor ) -> torch.Tensor:
'''simple docstring'''
# build laterals
_a : Optional[int] =[lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )]
laterals.append(self.psp_forward(SCREAMING_SNAKE_CASE ) )
# build top-down path
_a : str =len(SCREAMING_SNAKE_CASE )
for i in range(used_backbone_levels - 1 , 0 , -1 ):
_a : Any =laterals[i - 1].shape[2:]
_a : Dict =laterals[i - 1] + nn.functional.interpolate(
laterals[i] , size=SCREAMING_SNAKE_CASE , mode="""bilinear""" , align_corners=self.align_corners )
# build outputs
_a : List[str] =[self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )]
# append psp feature
fpn_outs.append(laterals[-1] )
for i in range(used_backbone_levels - 1 , 0 , -1 ):
_a : str =nn.functional.interpolate(
fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners )
_a : str =torch.cat(SCREAMING_SNAKE_CASE , dim=1 )
_a : List[Any] =self.fpn_bottleneck(SCREAMING_SNAKE_CASE )
_a : int =self.classifier(SCREAMING_SNAKE_CASE )
return output
class A__ ( nn.Module ):
def __init__( self :List[str] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int = 2 , SCREAMING_SNAKE_CASE :int = 3 , SCREAMING_SNAKE_CASE :Union[int, Tuple[int, int]] = 1 ) -> None:
'''simple docstring'''
super().__init__()
_a : Tuple =config
_a : Optional[Any] =config.auxiliary_in_channels
_a : int =config.auxiliary_channels
_a : Optional[int] =config.auxiliary_num_convs
_a : Union[str, Any] =config.auxiliary_concat_input
_a : List[Any] =in_index
_a : Tuple =(kernel_size // 2) * dilation
_a : List[Any] =[]
convs.append(
UperNetConvModule(
self.in_channels , self.channels , kernel_size=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , dilation=SCREAMING_SNAKE_CASE ) )
for i in range(self.num_convs - 1 ):
convs.append(
UperNetConvModule(
self.channels , self.channels , kernel_size=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , dilation=SCREAMING_SNAKE_CASE ) )
if self.num_convs == 0:
_a : Optional[Any] =nn.Identity()
else:
_a : Any =nn.Sequential(*SCREAMING_SNAKE_CASE )
if self.concat_input:
_a : List[str] =UperNetConvModule(
self.in_channels + self.channels , self.channels , kernel_size=SCREAMING_SNAKE_CASE , padding=kernel_size // 2 )
_a : Optional[int] =nn.Convad(self.channels , config.num_labels , kernel_size=1 )
def __UpperCAmelCase ( self :Optional[Any] ) -> Any:
'''simple docstring'''
self.apply(self._init_weights )
def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :List[Any] ) -> int:
'''simple docstring'''
if isinstance(SCREAMING_SNAKE_CASE , nn.Convad ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :torch.Tensor ) -> torch.Tensor:
'''simple docstring'''
# just take the relevant feature maps
_a : str =encoder_hidden_states[self.in_index]
_a : Tuple =self.convs(SCREAMING_SNAKE_CASE )
if self.concat_input:
_a : Dict =self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) )
_a : Optional[Any] =self.classifier(SCREAMING_SNAKE_CASE )
return output
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Union[str, Any] = UperNetConfig
__UpperCamelCase : int = "pixel_values"
__UpperCamelCase : List[str] = True
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :int ) -> Optional[Any]:
'''simple docstring'''
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
module.backbone.init_weights()
module.decode_head.init_weights()
module.auxiliary_head.init_weights()
def __UpperCAmelCase ( self :int ) -> Any:
'''simple docstring'''
self.backbone.init_weights()
self.decode_head.init_weights()
self.auxiliary_head.init_weights()
def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :int=False ) -> Optional[Any]:
'''simple docstring'''
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
_a : str =value
A__: str = R'''
Parameters:
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
'''
A__: Dict = R'''
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See
`attentions` under returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under
returned tensors for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
'''
@add_start_docstrings(
"UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , UpperCAmelCase__ , )
class A__ ( UpperCAmelCase__ ):
def __init__( self :str , SCREAMING_SNAKE_CASE :Dict ) -> str:
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE )
_a : int =AutoBackbone.from_config(config.backbone_config )
# Semantic segmentation head(s)
_a : Tuple =UperNetHead(SCREAMING_SNAKE_CASE , in_channels=self.backbone.channels )
_a : Tuple =UperNetFCNHead(SCREAMING_SNAKE_CASE ) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) )
@replace_return_docstrings(output_type=SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC )
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[bool] = None , SCREAMING_SNAKE_CASE :Optional[bool] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[bool] = None , ) -> Union[tuple, SemanticSegmenterOutput]:
'''simple docstring'''
_a : Any =return_dict if return_dict is not None else self.config.use_return_dict
_a : Union[str, Any] =(
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_a : int =output_attentions if output_attentions is not None else self.config.output_attentions
_a : List[str] =self.backbone.forward_with_filtered_kwargs(
SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , output_attentions=SCREAMING_SNAKE_CASE )
_a : int =outputs.feature_maps
_a : Tuple =self.decode_head(SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =nn.functional.interpolate(SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=SCREAMING_SNAKE_CASE )
_a : Dict =None
if self.auxiliary_head is not None:
_a : Optional[Any] =self.auxiliary_head(SCREAMING_SNAKE_CASE )
_a : Dict =nn.functional.interpolate(
SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError("""The number of labels should be greater than one""" )
else:
# compute weighted loss
_a : str =CrossEntropyLoss(ignore_index=self.config.loss_ignore_index )
_a : Optional[Any] =loss_fct(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Tuple =loss_fct(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Dict =main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
if not return_dict:
if output_hidden_states:
_a : Any =(logits,) + outputs[1:]
else:
_a : str =(logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 4000000 ) -> int:
_a : Optional[Any] =[]
_a , _a : Union[str, Any] =0, 1
while b <= n:
if b % 2 == 0:
even_fibs.append(_UpperCAmelCase )
_a , _a : Optional[Any] =b, a + b
return sum(_UpperCAmelCase )
if __name__ == "__main__":
print(F"{solution() = }")
| 694 | 1 |
'''simple docstring'''
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class A__ ( UpperCAmelCase__ ):
def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Distribution , SCREAMING_SNAKE_CASE :int=None , SCREAMING_SNAKE_CASE :Tuple=None , SCREAMING_SNAKE_CASE :List[Any]=0 ) -> List[str]:
'''simple docstring'''
_a : int =1.0 if scale is None else scale
_a : Optional[Any] =0.0 if loc is None else loc
super().__init__(SCREAMING_SNAKE_CASE , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=SCREAMING_SNAKE_CASE )] )
@property
def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return self.base_dist.mean * self.scale + self.loc
@property
def __UpperCAmelCase ( self :Optional[int] ) -> Dict:
'''simple docstring'''
return self.base_dist.variance * self.scale**2
@property
def __UpperCAmelCase ( self :Any ) -> List[str]:
'''simple docstring'''
return self.variance.sqrt()
class A__ ( nn.Module ):
def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Dict[str, int] , SCREAMING_SNAKE_CASE :Callable[..., Tuple[torch.Tensor]] , **SCREAMING_SNAKE_CASE :Dict ) -> None:
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE )
_a : Tuple =args_dim
_a : Tuple =nn.ModuleList([nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for dim in args_dim.values()] )
_a : Dict =domain_map
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Tuple[torch.Tensor]:
'''simple docstring'''
_a : Tuple =[proj(SCREAMING_SNAKE_CASE ) for proj in self.proj]
return self.domain_map(*SCREAMING_SNAKE_CASE )
class A__ ( nn.Module ):
def __init__( self :Dict , SCREAMING_SNAKE_CASE :Tuple ) -> int:
'''simple docstring'''
super().__init__()
_a : List[Any] =function
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Optional[int] , *SCREAMING_SNAKE_CASE :int ) -> List[Any]:
'''simple docstring'''
return self.function(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE )
class A__ :
__UpperCamelCase : type
__UpperCamelCase : int
__UpperCamelCase : Dict[str, int]
def __init__( self :Any , SCREAMING_SNAKE_CASE :int = 1 ) -> None:
'''simple docstring'''
_a : Any =dim
_a : List[Any] ={k: dim * self.args_dim[k] for k in self.args_dim}
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
if self.dim == 1:
return self.distribution_class(*SCREAMING_SNAKE_CASE )
else:
return Independent(self.distribution_class(*SCREAMING_SNAKE_CASE ) , 1 )
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , ) -> Distribution:
'''simple docstring'''
_a : str =self._base_distribution(SCREAMING_SNAKE_CASE )
if loc is None and scale is None:
return distr
else:
return AffineTransformed(SCREAMING_SNAKE_CASE , loc=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , event_dim=self.event_dim )
@property
def __UpperCAmelCase ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
return () if self.dim == 1 else (self.dim,)
@property
def __UpperCAmelCase ( self :Any ) -> int:
'''simple docstring'''
return len(self.event_shape )
@property
def __UpperCAmelCase ( self :Any ) -> float:
'''simple docstring'''
return 0.0
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :int ) -> nn.Module:
'''simple docstring'''
return ParameterProjection(
in_features=SCREAMING_SNAKE_CASE , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , )
def __UpperCAmelCase ( self :int , *SCREAMING_SNAKE_CASE :torch.Tensor ) -> Any:
'''simple docstring'''
raise NotImplementedError()
@staticmethod
def __UpperCAmelCase ( SCREAMING_SNAKE_CASE :torch.Tensor ) -> torch.Tensor:
'''simple docstring'''
return (x + torch.sqrt(torch.square(SCREAMING_SNAKE_CASE ) + 4.0 )) / 2.0
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1}
__UpperCamelCase : type = StudentT
@classmethod
def __UpperCAmelCase ( cls :int , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Union[str, Any]:
'''simple docstring'''
_a : Tuple =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps )
_a : Optional[Any] =2.0 + cls.squareplus(SCREAMING_SNAKE_CASE )
return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 )
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1}
__UpperCamelCase : type = Normal
@classmethod
def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Dict:
'''simple docstring'''
_a : List[str] =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps )
return loc.squeeze(-1 ), scale.squeeze(-1 )
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1}
__UpperCamelCase : type = NegativeBinomial
@classmethod
def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Optional[int]:
'''simple docstring'''
_a : int =cls.squareplus(SCREAMING_SNAKE_CASE )
return total_count.squeeze(-1 ), logits.squeeze(-1 )
def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Distribution:
'''simple docstring'''
_a , _a : Any =distr_args
if self.dim == 1:
return self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE )
else:
return Independent(self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE ) , 1 )
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None ) -> Distribution:
'''simple docstring'''
_a , _a : Optional[int] =distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits) )
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int:
if n == 1 or not isinstance(_UpperCAmelCase ,_UpperCAmelCase ):
return 0
elif n == 2:
return 1
else:
_a : Dict =[0, 1]
for i in range(2 ,n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int:
_a : Union[str, Any] =0
_a : Optional[Any] =2
while digits < n:
index += 1
_a : Optional[int] =len(str(fibonacci(_UpperCAmelCase ) ) )
return index
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 1000 ) -> int:
return fibonacci_digits_index(_UpperCAmelCase )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 694 | 1 |
'''simple docstring'''
import os
from glob import glob
import imageio
import torch
import torchvision
import wandb
from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan
from loaders import load_vqgan
from PIL import Image
from torch import nn
from transformers import CLIPModel, CLIPTokenizerFast
from utils import get_device, get_timestamp, show_pil
class A__ :
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :str = "cpu" , SCREAMING_SNAKE_CASE :str = "openai/clip-vit-large-patch14" ) -> None:
'''simple docstring'''
_a : Any =device
_a : Any =CLIPTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE )
_a : int =[0.48_145_466, 0.4_578_275, 0.40_821_073]
_a : Tuple =[0.26_862_954, 0.26_130_258, 0.27_577_711]
_a : Optional[int] =torchvision.transforms.Normalize(self.image_mean , self.image_std )
_a : Dict =torchvision.transforms.Resize(2_2_4 )
_a : Optional[Any] =torchvision.transforms.CenterCrop(2_2_4 )
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :Optional[int] ) -> List[str]:
'''simple docstring'''
_a : Dict =self.resize(SCREAMING_SNAKE_CASE )
_a : Dict =self.center_crop(SCREAMING_SNAKE_CASE )
_a : Optional[Any] =self.normalize(SCREAMING_SNAKE_CASE )
return images
def __call__( self :Dict , SCREAMING_SNAKE_CASE :Tuple=None , SCREAMING_SNAKE_CASE :Optional[Any]=None , **SCREAMING_SNAKE_CASE :Optional[int] ) -> List[str]:
'''simple docstring'''
_a : Union[str, Any] =self.tokenizer(text=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
_a : List[str] =self.preprocess_img(SCREAMING_SNAKE_CASE )
_a : List[Any] ={key: value.to(self.device ) for (key, value) in encoding.items()}
return encoding
class A__ ( nn.Module ):
def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :int=1_0 , SCREAMING_SNAKE_CASE :str=0.01 , SCREAMING_SNAKE_CASE :Union[str, Any]=None , SCREAMING_SNAKE_CASE :Optional[int]=None , SCREAMING_SNAKE_CASE :Optional[int]=None , SCREAMING_SNAKE_CASE :Any=None , SCREAMING_SNAKE_CASE :Optional[int]=None , SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :str=False , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :int="image" , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :Optional[Any]=False , SCREAMING_SNAKE_CASE :int=False , SCREAMING_SNAKE_CASE :List[Any]=False , ) -> None:
'''simple docstring'''
super().__init__()
_a : Any =None
_a : List[str] =device if device else get_device()
if vqgan:
_a : List[str] =vqgan
else:
_a : Dict =load_vqgan(self.device , conf_path=SCREAMING_SNAKE_CASE , ckpt_path=SCREAMING_SNAKE_CASE )
self.vqgan.eval()
if clip:
_a : int =clip
else:
_a : List[Any] =CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" )
self.clip.to(self.device )
_a : List[Any] =ProcessorGradientFlow(device=self.device )
_a : Optional[int] =iterations
_a : str =lr
_a : int =log
_a : List[Any] =make_grid
_a : int =return_val
_a : List[Any] =quantize
_a : Any =self.vqgan.decoder.z_shape
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :Optional[Any]=None , SCREAMING_SNAKE_CASE :str=None , SCREAMING_SNAKE_CASE :Optional[Any]=5 , SCREAMING_SNAKE_CASE :Union[str, Any]=True ) -> List[Any]:
'''simple docstring'''
_a : Dict =[]
if output_path is None:
_a : Tuple ="""./animation.gif"""
if input_path is None:
_a : int =self.save_path
_a : Tuple =sorted(glob(input_path + """/*""" ) )
if not len(SCREAMING_SNAKE_CASE ):
raise ValueError(
"""No images found in save path, aborting (did you pass save_intermediate=True to the generate"""
""" function?)""" )
if len(SCREAMING_SNAKE_CASE ) == 1:
print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" )
_a : Optional[int] =total_duration / len(SCREAMING_SNAKE_CASE )
_a : Optional[Any] =[frame_duration] * len(SCREAMING_SNAKE_CASE )
if extend_frames:
_a : Optional[Any] =1.5
_a : Any =3
for file_name in paths:
if file_name.endswith(""".png""" ):
images.append(imageio.imread(SCREAMING_SNAKE_CASE ) )
imageio.mimsave(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , duration=SCREAMING_SNAKE_CASE )
print(f"gif saved to {output_path}" )
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Any=None , SCREAMING_SNAKE_CASE :List[Any]=None ) -> List[str]:
'''simple docstring'''
if not (path or img):
raise ValueError("""Input either path or tensor""" )
if img is not None:
raise NotImplementedError
_a : Dict =preprocess(Image.open(SCREAMING_SNAKE_CASE ) , target_image_size=2_5_6 ).to(self.device )
_a : Tuple =preprocess_vqgan(SCREAMING_SNAKE_CASE )
_a , *_a : List[str] =self.vqgan.encode(SCREAMING_SNAKE_CASE )
return z
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :Any ) -> Dict:
'''simple docstring'''
_a : str =self.latent.detach().requires_grad_()
_a : Tuple =base_latent + transform_vector
if self.quantize:
_a , *_a : List[Any] =self.vqgan.quantize(SCREAMING_SNAKE_CASE )
else:
_a : Dict =trans_latent
return self.vqgan.decode(SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[int]=None ) -> Any:
'''simple docstring'''
_a : Optional[Any] =self.clip_preprocessor(text=SCREAMING_SNAKE_CASE , images=SCREAMING_SNAKE_CASE , return_tensors="""pt""" , padding=SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =self.clip(**SCREAMING_SNAKE_CASE )
_a : List[str] =clip_outputs.logits_per_image
if weights is not None:
_a : Tuple =similarity_logits * weights
return similarity_logits.sum()
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Optional[int] ) -> List[Any]:
'''simple docstring'''
_a : Optional[int] =self._get_clip_similarity(pos_prompts["""prompts"""] , SCREAMING_SNAKE_CASE , weights=(1 / pos_prompts["""weights"""]) )
if neg_prompts:
_a : Any =self._get_clip_similarity(neg_prompts["""prompts"""] , SCREAMING_SNAKE_CASE , weights=neg_prompts["""weights"""] )
else:
_a : Optional[int] =torch.tensor([1] , device=self.device )
_a : int =-torch.log(SCREAMING_SNAKE_CASE ) + torch.log(SCREAMING_SNAKE_CASE )
return loss
def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Dict ) -> Optional[int]:
'''simple docstring'''
_a : Dict =torch.randn_like(self.latent , requires_grad=SCREAMING_SNAKE_CASE , device=self.device )
_a : List[Any] =torch.optim.Adam([vector] , lr=self.lr )
for i in range(self.iterations ):
optim.zero_grad()
_a : Tuple =self._add_vector(SCREAMING_SNAKE_CASE )
_a : Dict =loop_post_process(SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =self._get_CLIP_loss(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
print("""CLIP loss""" , SCREAMING_SNAKE_CASE )
if self.log:
wandb.log({"""CLIP Loss""": clip_loss} )
clip_loss.backward(retain_graph=SCREAMING_SNAKE_CASE )
optim.step()
if self.return_val == "image":
yield custom_to_pil(transformed_img[0] )
else:
yield vector
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :int ) -> List[Any]:
'''simple docstring'''
wandb.init(reinit=SCREAMING_SNAKE_CASE , project="""face-editor""" )
wandb.config.update({"""Positive Prompts""": positive_prompts} )
wandb.config.update({"""Negative Prompts""": negative_prompts} )
wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} )
if image_path:
_a : List[Any] =Image.open(SCREAMING_SNAKE_CASE )
_a : str =image.resize((2_5_6, 2_5_6) )
wandb.log("""Original Image""" , wandb.Image(SCREAMING_SNAKE_CASE ) )
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
if not prompts:
return []
_a : List[str] =[]
_a : str =[]
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
_a : Dict =[prompt.strip() for prompt in prompts.split("""|""" )]
for prompt in prompts:
if isinstance(SCREAMING_SNAKE_CASE , (tuple, list) ):
_a : Tuple =prompt[0]
_a : Tuple =float(prompt[1] )
elif ":" in prompt:
_a , _a : Any =prompt.split(""":""" )
_a : Union[str, Any] =float(SCREAMING_SNAKE_CASE )
else:
_a : int =prompt
_a : List[Any] =1.0
processed_prompts.append(SCREAMING_SNAKE_CASE )
weights.append(SCREAMING_SNAKE_CASE )
return {
"prompts": processed_prompts,
"weights": torch.tensor(SCREAMING_SNAKE_CASE , device=self.device ),
}
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :List[Any]=None , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :Optional[Any]=False , SCREAMING_SNAKE_CASE :Any=True , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :Union[str, Any]=None , ) -> Dict:
'''simple docstring'''
if image_path:
_a : Tuple =self._get_latent(SCREAMING_SNAKE_CASE )
else:
_a : Dict =torch.randn(self.latent_dim , device=self.device )
if self.log:
self._init_logging(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
assert pos_prompts, "You must provide at least one positive prompt."
_a : List[str] =self.process_prompts(SCREAMING_SNAKE_CASE )
_a : Any =self.process_prompts(SCREAMING_SNAKE_CASE )
if save_final and save_path is None:
_a : Any =os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""] ) )
if not os.path.exists(SCREAMING_SNAKE_CASE ):
os.makedirs(SCREAMING_SNAKE_CASE )
else:
_a : Optional[int] =save_path + """_""" + get_timestamp()
os.makedirs(SCREAMING_SNAKE_CASE )
_a : Any =save_path
_a : List[str] =self.vqgan.decode(self.latent )[0]
if show_intermediate:
print("""Original Image""" )
show_pil(custom_to_pil(SCREAMING_SNAKE_CASE ) )
_a : Optional[int] =loop_post_process(SCREAMING_SNAKE_CASE )
for iter, transformed_img in enumerate(self._optimize_CLIP(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ):
if show_intermediate:
show_pil(SCREAMING_SNAKE_CASE )
if save_intermediate:
transformed_img.save(os.path.join(self.save_path , f"iter_{iter:03d}.png" ) )
if self.log:
wandb.log({"""Image""": wandb.Image(SCREAMING_SNAKE_CASE )} )
if show_final:
show_pil(SCREAMING_SNAKE_CASE )
if save_final:
transformed_img.save(os.path.join(self.save_path , f"iter_{iter:03d}_final.png" ) )
| 694 |
'''simple docstring'''
import argparse
import torch
from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert
from transformers.utils import logging
logging.set_verbosity_info()
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : int ) -> str:
# Initialise PyTorch model
_a : List[str] =RemBertConfig.from_json_file(_UpperCAmelCase )
print("""Building PyTorch model from configuration: {}""".format(str(_UpperCAmelCase ) ) )
_a : Dict =RemBertModel(_UpperCAmelCase )
# Load weights from tf checkpoint
load_tf_weights_in_rembert(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
# Save pytorch-model
print("""Save PyTorch model to {}""".format(_UpperCAmelCase ) )
torch.save(model.state_dict() ,_UpperCAmelCase )
if __name__ == "__main__":
A__: Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--rembert_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained RemBERT model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
A__: Tuple = parser.parse_args()
convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
| 694 | 1 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
A__: str = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase__ )
class A__ ( UpperCAmelCase__ ):
def __init__( self :Optional[int] , *SCREAMING_SNAKE_CASE :Dict , **SCREAMING_SNAKE_CASE :Optional[Any] ) -> List[str]:
'''simple docstring'''
super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :int=None , SCREAMING_SNAKE_CASE :int=None , SCREAMING_SNAKE_CASE :List[Any]=None ) -> Union[str, Any]:
'''simple docstring'''
_a : Tuple ={}
_a : Union[str, Any] ={}
if prompt is not None:
_a : int =prompt
if generate_kwargs is not None:
_a : Union[str, Any] =generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
_a : List[str] ={}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
_a : Tuple =max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self :Optional[int] , SCREAMING_SNAKE_CASE :Union[str, List[str], "Image.Image", List["Image.Image"]] , **SCREAMING_SNAKE_CASE :List[str] ) -> List[Any]:
'''simple docstring'''
return super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Optional[Any]=None ) -> Optional[Any]:
'''simple docstring'''
_a : Any =load_image(SCREAMING_SNAKE_CASE )
if prompt is not None:
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
raise ValueError(
f"Received an invalid text input, got - {type(SCREAMING_SNAKE_CASE )} - but expected a single string. "
"""Note also that one single text can be provided for conditional image to text generation.""" )
_a : Optional[Any] =self.model.config.model_type
if model_type == "git":
_a : Optional[Any] =self.image_processor(images=SCREAMING_SNAKE_CASE , return_tensors=self.framework )
_a : Optional[int] =self.tokenizer(text=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ).input_ids
_a : str =[self.tokenizer.cls_token_id] + input_ids
_a : str =torch.tensor(SCREAMING_SNAKE_CASE ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
_a : int =self.image_processor(images=SCREAMING_SNAKE_CASE , header_text=SCREAMING_SNAKE_CASE , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
_a : Union[str, Any] =self.image_processor(images=SCREAMING_SNAKE_CASE , return_tensors=self.framework )
_a : List[Any] =self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=self.framework )
model_inputs.update(SCREAMING_SNAKE_CASE )
else:
raise ValueError(f"Model type {model_type} does not support conditional text generation" )
else:
_a : Tuple =self.image_processor(images=SCREAMING_SNAKE_CASE , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
_a : int =None
return model_inputs
def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Tuple=None ) -> List[str]:
'''simple docstring'''
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , SCREAMING_SNAKE_CASE )
and all(x is None for x in model_inputs["""input_ids"""] )
):
_a : Any =None
if generate_kwargs is None:
_a : Optional[int] ={}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
_a : Any =model_inputs.pop(self.model.main_input_name )
_a : List[Any] =self.model.generate(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
return model_outputs
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
_a : Union[str, Any] =[]
for output_ids in model_outputs:
_a : List[str] ={
"""generated_text""": self.tokenizer.decode(
SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE , )
}
records.append(SCREAMING_SNAKE_CASE )
return records
| 694 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
A__: Optional[int] = logging.get_logger(__name__)
A__: Union[str, Any] = '''▁'''
A__: Any = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''}
A__: Optional[int] = {
'''vocab_file''': {
'''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''',
},
'''monolingual_vocab_file''': {
'''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''',
},
}
A__: Union[str, Any] = {'''vinai/bartpho-syllable''': 1024}
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Tuple = VOCAB_FILES_NAMES
__UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"]
def __init__( self :Dict , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Any="<s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE :int="</s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE :Tuple="<unk>" , SCREAMING_SNAKE_CASE :Optional[Any]="<pad>" , SCREAMING_SNAKE_CASE :List[str]="<mask>" , SCREAMING_SNAKE_CASE :Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE :List[Any] , ) -> None:
'''simple docstring'''
# Mask token behave like a normal word, i.e. include the space before it
_a : str =AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token
_a : int ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , )
_a : Dict =vocab_file
_a : int =monolingual_vocab_file
_a : Dict =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(SCREAMING_SNAKE_CASE ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
_a : List[Any] ={}
_a : List[str] =0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids:
_a : Optional[Any] =cnt
cnt += 1
with open(SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f:
for line in f.readlines():
_a : int =line.strip().split()[0]
_a : str =len(self.fairseq_tokens_to_ids )
if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids:
_a : Optional[int] =len(self.fairseq_tokens_to_ids )
_a : str ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self :int ) -> List[Any]:
'''simple docstring'''
_a : Optional[int] =self.__dict__.copy()
_a : Optional[Any] =None
_a : str =self.sp_model.serialized_model_proto()
return state
def __setstate__( self :Dict , SCREAMING_SNAKE_CASE :Any ) -> str:
'''simple docstring'''
_a : List[str] =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_a : Tuple ={}
_a : Any =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_a : Optional[int] =[self.cls_token_id]
_a : int =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None , SCREAMING_SNAKE_CASE :bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_a : List[str] =[self.sep_token_id]
_a : int =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def __UpperCAmelCase ( self :Optional[int] ) -> int:
'''simple docstring'''
return len(self.fairseq_ids_to_tokens )
def __UpperCAmelCase ( self :int ) -> Union[str, Any]:
'''simple docstring'''
_a : str ={self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :str ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Dict ) -> Any:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :Any ) -> Dict:
'''simple docstring'''
return self.fairseq_ids_to_tokens[index]
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_a : str ="""""".join(SCREAMING_SNAKE_CASE ).replace(SCREAMING_SNAKE_CASE , """ """ ).strip()
return out_string
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
_a : int =os.path.join(
SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_a : Any =os.path.join(
SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE , """wb""" ) as fi:
_a : Optional[Any] =self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
SCREAMING_SNAKE_CASE ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f"{str(SCREAMING_SNAKE_CASE )} \n" )
return out_vocab_file, out_monolingual_vocab_file
| 694 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> str:
return " ".join(
"""""".join(word[::-1] ) if len(_UpperCAmelCase ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words('''Hey wollef sroirraw'''))
| 694 |
'''simple docstring'''
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 694 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import namedtuple
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : float ,_UpperCAmelCase : float ,_UpperCAmelCase : float ) -> tuple:
_a : Dict =namedtuple("""result""" ,"""name value""" )
if (voltage, current, power).count(0 ) != 1:
raise ValueError("""Only one argument must be 0""" )
elif power < 0:
raise ValueError(
"""Power cannot be negative in any electrical/electronics system""" )
elif voltage == 0:
return result("""voltage""" ,power / current )
elif current == 0:
return result("""current""" ,power / voltage )
elif power == 0:
return result("""power""" ,float(round(abs(voltage * current ) ,2 ) ) )
else:
raise ValueError("""Exactly one argument must be 0""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list] ) -> list[list]:
_a : Dict =current_set.copy()
for row_index, row in enumerate(_UpperCAmelCase ):
_a : Any =row[0]
for column_index, column in enumerate(_UpperCAmelCase ):
if magnitude == 0:
_a : Any =column
continue
_a : Union[str, Any] =column / magnitude
# Subtract to cancel term
_a : Optional[Any] =current_set[0]
_a : List[Any] =[first_row]
_a : Tuple =current_set[1::]
for row in current_set:
_a : Any =[]
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(_UpperCAmelCase )
continue
for column_index in range(len(_UpperCAmelCase ) ):
temp_row.append(first_row[column_index] - row[column_index] )
final_set.append(_UpperCAmelCase )
# Create next recursion iteration set
if len(final_set[0] ) != 3:
_a : List[str] =final_set[0]
_a : Tuple =[]
_a : Tuple =[]
for row in final_set[1::]:
current_first_column.append(row[0] )
next_iteration.append(row[1::] )
_a : str =simplify(_UpperCAmelCase )
for i in range(len(_UpperCAmelCase ) ):
resultant[i].insert(0 ,current_first_column[i] )
resultant.insert(0 ,_UpperCAmelCase )
_a : List[Any] =resultant
return final_set
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list] ) -> list:
if len(_UpperCAmelCase ) == 0:
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
_a : str =len(_UpperCAmelCase ) + 1
if any(len(_UpperCAmelCase ) != _length for item in equations ):
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
for row in equations:
if any(not isinstance(_UpperCAmelCase ,(int, float) ) for column in row ):
raise ValueError("""solve_simultaneous() requires lists of integers""" )
if len(_UpperCAmelCase ) == 1:
return [equations[0][-1] / equations[0][0]]
_a : str =equations.copy()
if any(0 in row for row in data_set ):
_a : Optional[int] =data_set.copy()
_a : str =[]
for row_index, row in enumerate(_UpperCAmelCase ):
if 0 not in row:
_a : List[Any] =data_set.pop(_UpperCAmelCase )
break
if not full_row:
raise ValueError("""solve_simultaneous() requires at least 1 full equation""" )
data_set.insert(0 ,_UpperCAmelCase )
_a : Dict =data_set.copy()
_a : Any =simplify(_UpperCAmelCase )
_a : Any =simplified[::-1]
_a : list =[]
for row in simplified:
_a : Optional[Any] =row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0 )
continue
solutions.append(current_solution / row[-2] )
continue
_a : Any =row.copy()[: len(_UpperCAmelCase ) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0 )
if len(_UpperCAmelCase ) == 0:
solutions.append(0 )
continue
_a : List[str] =temp_row[1::]
_a : int =temp_row[::-1]
for column_index, column in enumerate(_UpperCAmelCase ):
current_solution -= column * solutions[column_index]
solutions.append(_UpperCAmelCase )
_a : Tuple =[]
for item in solutions:
final.append(float(round(_UpperCAmelCase ,5 ) ) )
return final[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
A__: int = [
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))
print(solve_simultaneous([[4, 2]]))
| 694 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
A__: int = logging.get_logger(__name__)
A__: Union[str, Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''}
A__: int = {
'''vocab_file''': {
'''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''',
'''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''',
'''moussaKam/barthez-orangesum-title''': (
'''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model'''
),
},
}
A__: Optional[int] = {
'''moussaKam/mbarthez''': 1024,
'''moussaKam/barthez''': 1024,
'''moussaKam/barthez-orangesum-title''': 1024,
}
A__: str = '''▁'''
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : List[str] = VOCAB_FILES_NAMES
__UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"]
def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :List[Any]="<s>" , SCREAMING_SNAKE_CASE :str="</s>" , SCREAMING_SNAKE_CASE :Dict="</s>" , SCREAMING_SNAKE_CASE :Dict="<s>" , SCREAMING_SNAKE_CASE :Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE :Any="<pad>" , SCREAMING_SNAKE_CASE :List[Any]="<mask>" , SCREAMING_SNAKE_CASE :Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE :List[str] , ) -> None:
'''simple docstring'''
# Mask token behave like a normal word, i.e. include the space before it
_a : str =AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token
_a : Dict ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , )
_a : Dict =vocab_file
_a : List[Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(SCREAMING_SNAKE_CASE ) )
_a : List[Any] ={"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3}
_a : str =len(self.sp_model ) - 1
_a : List[str] ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_a : Any =[self.cls_token_id]
_a : Optional[int] =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None , SCREAMING_SNAKE_CASE :bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_a : Tuple =[self.sep_token_id]
_a : Union[str, Any] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def __UpperCAmelCase ( self :List[Any] ) -> List[Any]:
'''simple docstring'''
return len(self.sp_model )
def __UpperCAmelCase ( self :List[Any] ) -> Tuple:
'''simple docstring'''
_a : str ={self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :str ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :int ) -> Optional[Any]:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
_a : List[str] =self.sp_model.PieceToId(SCREAMING_SNAKE_CASE )
return spm_id if spm_id else self.unk_token_id
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :List[Any] ) -> List[Any]:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :Tuple ) -> Union[str, Any]:
'''simple docstring'''
_a : Optional[int] =[]
_a : Union[str, Any] =""""""
_a : Optional[Any] =False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE ) + token
_a : Tuple =True
_a : Optional[int] =[]
else:
current_sub_tokens.append(SCREAMING_SNAKE_CASE )
_a : List[str] =False
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE )
return out_string.strip()
def __getstate__( self :Dict ) -> Optional[Any]:
'''simple docstring'''
_a : List[str] =self.__dict__.copy()
_a : Union[str, Any] =None
return state
def __setstate__( self :List[str] , SCREAMING_SNAKE_CASE :List[Any] ) -> Dict:
'''simple docstring'''
_a : Dict =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_a : Tuple ={}
_a : Dict =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
_a : Any =os.path.join(
SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE , """wb""" ) as fi:
_a : Tuple =self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
| 694 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__: Dict = logging.get_logger(__name__)
A__: Optional[int] = {
'''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''',
'''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''',
}
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Tuple = "markuplm"
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :List[Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE :Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :int=3_0_7_2 , SCREAMING_SNAKE_CASE :Optional[int]="gelu" , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=5_1_2 , SCREAMING_SNAKE_CASE :Optional[Any]=2 , SCREAMING_SNAKE_CASE :Optional[int]=0.02 , SCREAMING_SNAKE_CASE :Any=1e-12 , SCREAMING_SNAKE_CASE :Any=0 , SCREAMING_SNAKE_CASE :List[Any]=0 , SCREAMING_SNAKE_CASE :Tuple=2 , SCREAMING_SNAKE_CASE :Optional[Any]=2_5_6 , SCREAMING_SNAKE_CASE :Optional[int]=1_0_2_4 , SCREAMING_SNAKE_CASE :Tuple=2_1_6 , SCREAMING_SNAKE_CASE :Dict=1_0_0_1 , SCREAMING_SNAKE_CASE :List[str]=3_2 , SCREAMING_SNAKE_CASE :List[str]=5_0 , SCREAMING_SNAKE_CASE :Dict="absolute" , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :Any=None , **SCREAMING_SNAKE_CASE :Tuple , ) -> Any:
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
_a : Any =vocab_size
_a : List[str] =hidden_size
_a : List[str] =num_hidden_layers
_a : Tuple =num_attention_heads
_a : Union[str, Any] =hidden_act
_a : Tuple =intermediate_size
_a : Optional[Any] =hidden_dropout_prob
_a : int =attention_probs_dropout_prob
_a : Any =max_position_embeddings
_a : List[Any] =type_vocab_size
_a : List[Any] =initializer_range
_a : List[Any] =layer_norm_eps
_a : Optional[int] =position_embedding_type
_a : List[Any] =use_cache
_a : List[str] =classifier_dropout
# additional properties
_a : int =max_depth
_a : Union[str, Any] =max_xpath_tag_unit_embeddings
_a : str =max_xpath_subs_unit_embeddings
_a : int =tag_pad_id
_a : List[Any] =subs_pad_id
_a : str =xpath_unit_hidden_size
| 694 | 1 |
'''simple docstring'''
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
A__: Union[str, Any] = logging.getLogger(__name__)
A__: int = 50 # max width of layer names
A__: int = 70 # max width of quantizer names
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> str:
_a : List[str] =parser.add_argument_group("""quant_trainer arguments""" )
group.add_argument("""--wprec""" ,type=_UpperCAmelCase ,default=8 ,help="""weight precision""" )
group.add_argument("""--aprec""" ,type=_UpperCAmelCase ,default=8 ,help="""activation precision""" )
group.add_argument("""--quant-per-tensor""" ,action="""store_true""" ,help="""per tensor weight scaling""" )
group.add_argument("""--quant-disable""" ,action="""store_true""" ,help="""disable all quantizers""" )
group.add_argument("""--quant-disable-embeddings""" ,action="""store_true""" ,help="""disable all embeddings quantizers""" )
group.add_argument("""--quant-disable-keyword""" ,type=_UpperCAmelCase ,nargs="""+""" ,help="""disable quantizers by keyword""" )
group.add_argument("""--quant-disable-layer-module""" ,type=_UpperCAmelCase ,help="""disable quantizers by keyword under layer.""" )
group.add_argument("""--quant-enable-layer-module""" ,type=_UpperCAmelCase ,help="""enable quantizers by keyword under layer""" )
group.add_argument("""--calibrator""" ,default="""max""" ,help="""which quantization range calibrator to use""" )
group.add_argument("""--percentile""" ,default=_UpperCAmelCase ,type=_UpperCAmelCase ,help="""percentile for PercentileCalibrator""" )
group.add_argument("""--fuse-qkv""" ,action="""store_true""" ,help="""use the same scale factor for qkv""" )
group.add_argument("""--clip-gelu""" ,metavar="""N""" ,type=_UpperCAmelCase ,help="""clip gelu output maximum value to N""" )
group.add_argument(
"""--recalibrate-weights""" ,action="""store_true""" ,help=(
"""recalibrate weight amaxes by taking the max of the weights."""
""" amaxes will be computed with the current quantization granularity (axis)."""
) ,)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> List[str]:
if args.calibrator == "max":
_a : int ="""max"""
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError("""Specify --percentile when using percentile calibrator""" )
_a : Any ="""histogram"""
elif args.calibrator == "mse":
_a : Union[str, Any] ="""histogram"""
else:
raise ValueError(F"Invalid calibrator {args.calibrator}" )
_a : str =QuantDescriptor(num_bits=args.aprec ,calib_method=_UpperCAmelCase )
_a : int =QuantDescriptor(num_bits=args.wprec ,axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(_UpperCAmelCase )
quant_nn.QuantLinear.set_default_quant_desc_weight(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Any ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Union[str, Any]=False ,_UpperCAmelCase : Optional[Any]=False ) -> int:
logger.info("""Configuring Model for Quantization""" )
logger.info(F"using quantization package {pytorch_quantization.__file__}" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(_UpperCAmelCase ,["""embeddings"""] ,which="""weight""" ,_disabled=_UpperCAmelCase )
if args.quant_disable:
set_quantizer_by_name(_UpperCAmelCase ,[""""""] ,_disabled=_UpperCAmelCase )
if args.quant_disable_keyword:
set_quantizer_by_name(_UpperCAmelCase ,args.quant_disable_keyword ,_disabled=_UpperCAmelCase )
if args.quant_disable_layer_module:
set_quantizer_by_name(_UpperCAmelCase ,[R"""layer.\d+.""" + args.quant_disable_layer_module] ,_disabled=_UpperCAmelCase )
if args.quant_enable_layer_module:
set_quantizer_by_name(_UpperCAmelCase ,[R"""layer.\d+.""" + args.quant_enable_layer_module] ,_disabled=_UpperCAmelCase )
if args.recalibrate_weights:
recalibrate_weights(_UpperCAmelCase )
if args.fuse_qkv:
fuse_qkv(_UpperCAmelCase ,_UpperCAmelCase )
if args.clip_gelu:
clip_gelu(_UpperCAmelCase ,args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> Optional[Any]:
logger.info("""Enabling Calibration""" )
for name, module in model.named_modules():
if name.endswith("""_quantizer""" ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(F"{name:80}: {module}" )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : Tuple ) -> Union[str, Any]:
logger.info("""Loading calibrated amax""" )
for name, module in model.named_modules():
if name.endswith("""_quantizer""" ):
if module._calibrator is not None:
if isinstance(module._calibrator ,calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax("""percentile""" ,percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : int ) -> Optional[Any]:
def fusea(_UpperCAmelCase : Any ,_UpperCAmelCase : str ,_UpperCAmelCase : str ):
for mod in [qq, qk, qv]:
if not hasattr(_UpperCAmelCase ,"""_amax""" ):
print(""" WARNING: NO AMAX BUFFER""" )
return
_a : Optional[int] =qq._amax.detach().item()
_a : Optional[Any] =qk._amax.detach().item()
_a : List[str] =qv._amax.detach().item()
_a : Dict =max(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
qq._amax.fill_(_UpperCAmelCase )
qk._amax.fill_(_UpperCAmelCase )
qv._amax.fill_(_UpperCAmelCase )
logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" )
for name, mod in model.named_modules():
if name.endswith(""".attention.self""" ):
logger.info(F"FUSE_QKV: {name:{name_width}}" )
fusea(mod.matmul_q_input_quantizer ,mod.matmul_k_input_quantizer ,mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer ,mod.key._weight_quantizer ,mod.value._weight_quantizer )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ) -> Tuple:
for name, mod in model.named_modules():
if name.endswith(""".output.dense""" ) and not name.endswith("""attention.output.dense""" ):
_a : Any =mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=_UpperCAmelCase )
_a : Tuple =mod._input_quantizer._amax.data.detach().item()
logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[int] ) -> Optional[int]:
for name, mod in model.named_modules():
if hasattr(_UpperCAmelCase ,"""_weight_quantizer""" ) and mod._weight_quantizer.axis is not None:
_a : Tuple =mod.weight.shape[0]
_a : List[Any] =mod._weight_quantizer._amax.detach()
_a : Optional[int] =torch.ones(_UpperCAmelCase ,dtype=amax.dtype ,device=amax.device ) * amax
print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int:
for name, mod in model.named_modules():
if hasattr(_UpperCAmelCase ,"""_weight_quantizer""" ):
if not hasattr(mod.weight_quantizer ,"""_amax""" ):
print("""RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER""" )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
_a : Tuple =set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
_a : Union[str, Any] =set(range(len(mod.weight.size() ) ) ) - axis_set
_a : List[str] =pytorch_quantization.utils.reduce_amax(mod.weight ,axis=_UpperCAmelCase ,keepdims=_UpperCAmelCase ).detach()
logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" )
_a : str =amax
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[int]=25 ,_UpperCAmelCase : List[Any]=180 ,_UpperCAmelCase : Optional[Any]=None ) -> Dict:
if ignore is None:
_a : Any =[]
elif not isinstance(_UpperCAmelCase ,_UpperCAmelCase ):
_a : Union[str, Any] =[ignore]
_a : int =0
for name, mod in model.named_modules():
if not hasattr(_UpperCAmelCase ,"""weight""" ):
continue
_a : Any =max(_UpperCAmelCase ,len(_UpperCAmelCase ) )
for name, mod in model.named_modules():
_a : Tuple =getattr(_UpperCAmelCase ,"""_input_quantizer""" ,_UpperCAmelCase )
_a : Optional[int] =getattr(_UpperCAmelCase ,"""_weight_quantizer""" ,_UpperCAmelCase )
if not hasattr(_UpperCAmelCase ,"""weight""" ):
continue
if type(_UpperCAmelCase ) in ignore:
continue
if [True for s in ignore if type(_UpperCAmelCase ) is str and s in name]:
continue
_a : Dict =F"Act:{input_q.extra_repr()}"
_a : Tuple =F"Wgt:{weight_q.extra_repr()}"
_a : Dict =F"{name:{name_width}} {act_str} {wgt_str}"
if len(_UpperCAmelCase ) <= line_width:
logger.info(_UpperCAmelCase )
else:
logger.info(F"{name:{name_width}} {act_str}" )
logger.info(F"{' ':{name_width}} {wgt_str}" )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]:
_a : Optional[Any] =0
for name, mod in model.named_modules():
if isinstance(_UpperCAmelCase ,pytorch_quantization.nn.TensorQuantizer ):
print(F"{name:80} {mod}" )
count += 1
print(F"{count} TensorQuantizers found in model" )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : List[Any] ) -> Tuple:
_a : Union[str, Any] =getattr(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
if quantizer_mod is not None:
assert hasattr(_UpperCAmelCase ,_UpperCAmelCase )
setattr(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
else:
logger.warning(F"{name} has no {quantizer}" )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Dict ,_UpperCAmelCase : Dict ,_UpperCAmelCase : int="both" ,**_UpperCAmelCase : Tuple ) -> Dict:
_a : Optional[Any] =F"Warning: changing {which} quantizers of {name:{qname_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
if which in ["input", "both"]:
set_quantizer(_UpperCAmelCase ,_UpperCAmelCase ,"""_input_quantizer""" ,_UpperCAmelCase ,_UpperCAmelCase )
if which in ["weight", "both"]:
set_quantizer(_UpperCAmelCase ,_UpperCAmelCase ,"""_weight_quantizer""" ,_UpperCAmelCase ,_UpperCAmelCase )
logger.info(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Any ,**_UpperCAmelCase : Any ) -> Dict:
for name, mod in model.named_modules():
if hasattr(_UpperCAmelCase ,"""_input_quantizer""" ) or hasattr(_UpperCAmelCase ,"""_weight_quantizer""" ):
for n in names:
if re.search(_UpperCAmelCase ,_UpperCAmelCase ):
set_quantizers(_UpperCAmelCase ,_UpperCAmelCase ,**_UpperCAmelCase )
elif name.endswith("""_quantizer""" ):
for n in names:
if re.search(_UpperCAmelCase ,_UpperCAmelCase ):
_a : Optional[Any] =F"Warning: changing {name:{name_width}}"
for k, v in kwargs.items():
s += F" {k}={v}"
setattr(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
logger.info(_UpperCAmelCase )
| 694 |
'''simple docstring'''
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
A__: Union[str, Any] = logging.get_logger('''transformers.models.speecht5''')
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Any ) -> Dict:
hf_model.apply_weight_norm()
_a : Any =checkpoint["""input_conv.weight_g"""]
_a : Union[str, Any] =checkpoint["""input_conv.weight_v"""]
_a : Optional[int] =checkpoint["""input_conv.bias"""]
for i in range(len(config.upsample_rates ) ):
_a : Optional[int] =checkpoint[F"upsamples.{i}.1.weight_g"]
_a : Optional[Any] =checkpoint[F"upsamples.{i}.1.weight_v"]
_a : List[Any] =checkpoint[F"upsamples.{i}.1.bias"]
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
_a : Optional[int] =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"]
_a : Tuple =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"]
_a : Union[str, Any] =checkpoint[F"blocks.{i}.convs1.{j}.1.bias"]
_a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"]
_a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"]
_a : Tuple =checkpoint[F"blocks.{i}.convs2.{j}.1.bias"]
_a : Dict =checkpoint["""output_conv.1.weight_g"""]
_a : str =checkpoint["""output_conv.1.weight_v"""]
_a : Union[str, Any] =checkpoint["""output_conv.1.bias"""]
hf_model.remove_weight_norm()
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : int=None ,_UpperCAmelCase : Tuple=None ,) -> List[Any]:
if config_path is not None:
_a : str =SpeechTaHifiGanConfig.from_pretrained(_UpperCAmelCase )
else:
_a : str =SpeechTaHifiGanConfig()
_a : Tuple =SpeechTaHifiGan(_UpperCAmelCase )
_a : int =torch.load(_UpperCAmelCase )
load_weights(orig_checkpoint["""model"""]["""generator"""] ,_UpperCAmelCase ,_UpperCAmelCase )
_a : Dict =np.load(_UpperCAmelCase )
_a : Union[str, Any] =stats[0].reshape(-1 )
_a : Any =stats[1].reshape(-1 )
_a : Tuple =torch.from_numpy(_UpperCAmelCase ).float()
_a : List[str] =torch.from_numpy(_UpperCAmelCase ).float()
model.save_pretrained(_UpperCAmelCase )
if repo_id:
print("""Pushing to the hub...""" )
model.push_to_hub(_UpperCAmelCase )
if __name__ == "__main__":
A__: Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''')
parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
A__: Tuple = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 694 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class A__ ( unittest.TestCase ):
def __UpperCAmelCase ( self :Dict ) -> Tuple:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __UpperCAmelCase ( self :List[Any] ) -> Dict:
'''simple docstring'''
_a : int =1
_a : Dict =3
_a : List[Any] =(3_2, 3_2)
_a : Dict =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE )
return image
@property
def __UpperCAmelCase ( self :Any ) -> List[Any]:
'''simple docstring'''
torch.manual_seed(0 )
_a : int =UNetaDConditionModel(
block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=SCREAMING_SNAKE_CASE , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , )
return model
@property
def __UpperCAmelCase ( self :Optional[int] ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
_a : str =AutoencoderKL(
block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def __UpperCAmelCase ( self :str ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
_a : Dict =CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="""gelu""" , projection_dim=5_1_2 , )
return CLIPTextModel(SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Tuple ) -> List[str]:
'''simple docstring'''
_a : List[str] ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_a : Any =self.dummy_cond_unet_upscale
_a : Optional[Any] =DDPMScheduler()
_a : Optional[Any] =DDIMScheduler(prediction_type="""v_prediction""" )
_a : Any =self.dummy_vae
_a : Any =self.dummy_text_encoder
_a : str =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_a : Any =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_a : int =Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE ) ).convert("""RGB""" ).resize((6_4, 6_4) )
# make sure here that pndm scheduler skips prk
_a : Tuple =StableDiffusionUpscalePipeline(
unet=SCREAMING_SNAKE_CASE , low_res_scheduler=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , vae=SCREAMING_SNAKE_CASE , text_encoder=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , max_noise_level=3_5_0 , )
_a : str =sd_pipe.to(SCREAMING_SNAKE_CASE )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE )
_a : Optional[int] ="""A painting of a squirrel eating a burger"""
_a : Optional[int] =torch.Generator(device=SCREAMING_SNAKE_CASE ).manual_seed(0 )
_a : Any =sd_pipe(
[prompt] , image=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="""np""" , )
_a : Optional[int] =output.images
_a : Dict =torch.Generator(device=SCREAMING_SNAKE_CASE ).manual_seed(0 )
_a : List[Any] =sd_pipe(
[prompt] , image=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="""np""" , return_dict=SCREAMING_SNAKE_CASE , )[0]
_a : str =image[0, -3:, -3:, -1]
_a : List[str] =image_from_tuple[0, -3:, -3:, -1]
_a : Optional[Any] =low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
_a : int =np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def __UpperCAmelCase ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
_a : Optional[Any] ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_a : Any =self.dummy_cond_unet_upscale
_a : List[str] =DDPMScheduler()
_a : Optional[int] =DDIMScheduler(prediction_type="""v_prediction""" )
_a : str =self.dummy_vae
_a : List[str] =self.dummy_text_encoder
_a : Dict =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_a : Optional[int] =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_a : Tuple =Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE ) ).convert("""RGB""" ).resize((6_4, 6_4) )
# make sure here that pndm scheduler skips prk
_a : str =StableDiffusionUpscalePipeline(
unet=SCREAMING_SNAKE_CASE , low_res_scheduler=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , vae=SCREAMING_SNAKE_CASE , text_encoder=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , max_noise_level=3_5_0 , )
_a : str =sd_pipe.to(SCREAMING_SNAKE_CASE )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE )
_a : Tuple ="""A painting of a squirrel eating a burger"""
_a : List[Any] =sd_pipe(
2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="""np""" , )
_a : Any =output.images
assert image.shape[0] == 2
_a : Optional[Any] =torch.Generator(device=SCREAMING_SNAKE_CASE ).manual_seed(0 )
_a : Dict =sd_pipe(
[prompt] , image=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="""np""" , )
_a : Tuple =output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def __UpperCAmelCase ( self :Tuple ) -> Union[str, Any]:
'''simple docstring'''
_a : int =self.dummy_cond_unet_upscale
_a : Dict =DDPMScheduler()
_a : Any =DDIMScheduler(prediction_type="""v_prediction""" )
_a : str =self.dummy_vae
_a : Dict =self.dummy_text_encoder
_a : List[Any] =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_a : List[str] =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_a : Optional[int] =Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE ) ).convert("""RGB""" ).resize((6_4, 6_4) )
# put models in fp16, except vae as it overflows in fp16
_a : Any =unet.half()
_a : Tuple =text_encoder.half()
# make sure here that pndm scheduler skips prk
_a : str =StableDiffusionUpscalePipeline(
unet=SCREAMING_SNAKE_CASE , low_res_scheduler=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , vae=SCREAMING_SNAKE_CASE , text_encoder=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , max_noise_level=3_5_0 , )
_a : Optional[int] =sd_pipe.to(SCREAMING_SNAKE_CASE )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE )
_a : Any ="""A painting of a squirrel eating a burger"""
_a : Optional[Any] =torch.manual_seed(0 )
_a : int =sd_pipe(
[prompt] , image=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="""np""" , ).images
_a : Optional[Any] =low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class A__ ( unittest.TestCase ):
def __UpperCAmelCase ( self :int ) -> int:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self :List[str] ) -> Dict:
'''simple docstring'''
_a : Dict =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_a : List[str] =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat.npy""" )
_a : str ="""stabilityai/stable-diffusion-x4-upscaler"""
_a : Union[str, Any] =StableDiffusionUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE )
pipe.to(SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE )
pipe.enable_attention_slicing()
_a : str ="""a cat sitting on a park bench"""
_a : Optional[Any] =torch.manual_seed(0 )
_a : Union[str, Any] =pipe(
prompt=SCREAMING_SNAKE_CASE , image=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , output_type="""np""" , )
_a : str =output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 1e-3
def __UpperCAmelCase ( self :Any ) -> int:
'''simple docstring'''
_a : Optional[int] =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_a : List[Any] =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat_fp16.npy""" )
_a : str ="""stabilityai/stable-diffusion-x4-upscaler"""
_a : int =StableDiffusionUpscalePipeline.from_pretrained(
SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa , )
pipe.to(SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE )
pipe.enable_attention_slicing()
_a : List[str] ="""a cat sitting on a park bench"""
_a : Tuple =torch.manual_seed(0 )
_a : List[Any] =pipe(
prompt=SCREAMING_SNAKE_CASE , image=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , output_type="""np""" , )
_a : Optional[int] =output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def __UpperCAmelCase ( self :int ) -> Any:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_a : List[str] =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_a : str ="""stabilityai/stable-diffusion-x4-upscaler"""
_a : Union[str, Any] =StableDiffusionUpscalePipeline.from_pretrained(
SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa , )
pipe.to(SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_a : Any ="""a cat sitting on a park bench"""
_a : Union[str, Any] =torch.manual_seed(0 )
_a : List[Any] =pipe(
prompt=SCREAMING_SNAKE_CASE , image=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , num_inference_steps=5 , output_type="""np""" , )
_a : Any =torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 1_0**9
| 694 |
'''simple docstring'''
class A__ :
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :List[str] ) -> List[str]:
'''simple docstring'''
_a : List[str] =None
_a : Optional[Any] =None
_a : str =graph
self._normalize_graph(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Optional[int] =len(SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =None
def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[str] ) -> Any:
'''simple docstring'''
if sources is int:
_a : Tuple =[sources]
if sinks is int:
_a : Optional[int] =[sinks]
if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) == 0:
return
_a : Union[str, Any] =sources[0]
_a : Tuple =sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(SCREAMING_SNAKE_CASE ) > 1 or len(SCREAMING_SNAKE_CASE ) > 1:
_a : Tuple =0
for i in sources:
max_input_flow += sum(self.graph[i] )
_a : List[Any] =len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
_a : Any =max_input_flow
_a : List[str] =0
_a : List[str] =len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
_a : str =max_input_flow
_a : Optional[Any] =size - 1
def __UpperCAmelCase ( self :Optional[int] ) -> Tuple:
'''simple docstring'''
if self.maximum_flow_algorithm is None:
raise Exception("""You need to set maximum flow algorithm before.""" )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Dict ) -> int:
'''simple docstring'''
_a : Tuple =algorithm(self )
class A__ :
def __init__( self :Tuple , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Dict:
'''simple docstring'''
_a : List[str] =flow_network
_a : List[Any] =flow_network.verticesCount
_a : str =flow_network.sourceIndex
_a : str =flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
_a : List[Any] =flow_network.graph
_a : Optional[int] =False
def __UpperCAmelCase ( self :List[Any] ) -> List[str]:
'''simple docstring'''
if not self.executed:
self._algorithm()
_a : Any =True
def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
pass
class A__ ( UpperCAmelCase__ ):
def __init__( self :int , SCREAMING_SNAKE_CASE :str ) -> int:
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE )
# use this to save your result
_a : List[Any] =-1
def __UpperCAmelCase ( self :Dict ) -> Tuple:
'''simple docstring'''
if not self.executed:
raise Exception("""You should execute algorithm before using its result!""" )
return self.maximum_flow
class A__ ( UpperCAmelCase__ ):
def __init__( self :str , SCREAMING_SNAKE_CASE :Tuple ) -> str:
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE )
_a : int =[[0] * self.verticies_count for i in range(self.verticies_count )]
_a : Union[str, Any] =[0] * self.verticies_count
_a : Optional[Any] =[0] * self.verticies_count
def __UpperCAmelCase ( self :Optional[int] ) -> Optional[Any]:
'''simple docstring'''
_a : int =self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
_a : Tuple =[
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
_a : List[Any] =0
while i < len(SCREAMING_SNAKE_CASE ):
_a : Any =vertices_list[i]
_a : str =self.heights[vertex_index]
self.process_vertex(SCREAMING_SNAKE_CASE )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE ) )
_a : List[str] =0
else:
i += 1
_a : Optional[int] =sum(self.preflow[self.source_index] )
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> List[str]:
'''simple docstring'''
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
self.relabel(SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :str ) -> List[str]:
'''simple docstring'''
_a : List[str] =min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Any ) -> List[Any]:
'''simple docstring'''
_a : int =None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
_a : Optional[Any] =self.heights[to_index]
if min_height is not None:
_a : Any =min_height + 1
if __name__ == "__main__":
A__: str = [0]
A__: Optional[Any] = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
A__: Tuple = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
A__: Union[str, Any] = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
A__: List[str] = flow_network.find_maximum_flow()
print(F"maximum flow is {maximum_flow}")
| 694 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 4000000 ) -> int:
_a : Optional[Any] =[]
_a , _a : Union[str, Any] =0, 1
while b <= n:
if b % 2 == 0:
even_fibs.append(_UpperCAmelCase )
_a , _a : Optional[Any] =b, a + b
return sum(_UpperCAmelCase )
if __name__ == "__main__":
print(F"{solution() = }")
| 694 |
'''simple docstring'''
A__: Optional[int] = '''
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
A__: List[Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
A__: int = {
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 694 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
A__: Optional[int] = {
'''configuration_mobilenet_v2''': [
'''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''MobileNetV2Config''',
'''MobileNetV2OnnxConfig''',
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__: Optional[Any] = ['''MobileNetV2FeatureExtractor''']
A__: Dict = ['''MobileNetV2ImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__: List[str] = [
'''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MobileNetV2ForImageClassification''',
'''MobileNetV2ForSemanticSegmentation''',
'''MobileNetV2Model''',
'''MobileNetV2PreTrainedModel''',
'''load_tf_weights_in_mobilenet_v2''',
]
if TYPE_CHECKING:
from .configuration_mobilenet_va import (
MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileNetVaConfig,
MobileNetVaOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor
from .image_processing_mobilenet_va import MobileNetVaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilenet_va import (
MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileNetVaForImageClassification,
MobileNetVaForSemanticSegmentation,
MobileNetVaModel,
MobileNetVaPreTrainedModel,
load_tf_weights_in_mobilenet_va,
)
else:
import sys
A__: List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : float ,_UpperCAmelCase : float ) -> float:
return price * (1 + tax_rate)
if __name__ == "__main__":
print(F"{price_plus_tax(100, 0.25) = }")
print(F"{price_plus_tax(125.50, 0.05) = }")
| 694 | 1 |
'''simple docstring'''
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(UpperCAmelCase__ ) , "Tatoeba directory does not exist." )
class A__ ( unittest.TestCase ):
@cached_property
def __UpperCAmelCase ( self :Tuple ) -> int:
'''simple docstring'''
_a : List[Any] =tempfile.mkdtemp()
return TatoebaConverter(save_dir=SCREAMING_SNAKE_CASE )
@slow
def __UpperCAmelCase ( self :Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
self.resolver.convert_models(["""heb-eng"""] )
@slow
def __UpperCAmelCase ( self :Optional[Any] ) -> Dict:
'''simple docstring'''
_a , _a : List[str] =self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=SCREAMING_SNAKE_CASE )
assert mmeta["long_pair"] == "heb-eng"
| 694 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class A__ ( unittest.TestCase ):
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Any=1_3 , SCREAMING_SNAKE_CASE :Any=7 , SCREAMING_SNAKE_CASE :Any=True , SCREAMING_SNAKE_CASE :int=True , SCREAMING_SNAKE_CASE :Optional[int]=True , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :Optional[Any]=9_9 , SCREAMING_SNAKE_CASE :Tuple=3_2 , SCREAMING_SNAKE_CASE :Union[str, Any]=5 , SCREAMING_SNAKE_CASE :List[str]=4 , SCREAMING_SNAKE_CASE :int=3_7 , SCREAMING_SNAKE_CASE :Optional[Any]="gelu" , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=0.1 , SCREAMING_SNAKE_CASE :Dict=5_1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_6 , SCREAMING_SNAKE_CASE :Union[str, Any]=2 , SCREAMING_SNAKE_CASE :List[Any]=0.02 , SCREAMING_SNAKE_CASE :int=4 , ) -> Tuple:
'''simple docstring'''
_a : Optional[Any] =parent
_a : List[str] =batch_size
_a : List[str] =seq_length
_a : List[Any] =is_training
_a : Optional[int] =use_attention_mask
_a : List[Any] =use_token_type_ids
_a : List[Any] =use_labels
_a : Optional[Any] =vocab_size
_a : str =hidden_size
_a : List[Any] =num_hidden_layers
_a : List[Any] =num_attention_heads
_a : Union[str, Any] =intermediate_size
_a : int =hidden_act
_a : List[str] =hidden_dropout_prob
_a : Optional[int] =attention_probs_dropout_prob
_a : Dict =max_position_embeddings
_a : Any =type_vocab_size
_a : str =type_sequence_label_size
_a : str =initializer_range
_a : List[str] =num_choices
def __UpperCAmelCase ( self :Union[str, Any] ) -> Dict:
'''simple docstring'''
_a : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a : Dict =None
if self.use_attention_mask:
_a : Any =random_attention_mask([self.batch_size, self.seq_length] )
_a : Optional[int] =None
if self.use_token_type_ids:
_a : Any =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_a : Union[str, Any] =RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def __UpperCAmelCase ( self :Optional[Any] ) -> int:
'''simple docstring'''
_a : Tuple =self.prepare_config_and_inputs()
_a , _a , _a , _a : List[Any] =config_and_inputs
_a : Optional[int] ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def __UpperCAmelCase ( self :int ) -> str:
'''simple docstring'''
_a : List[Any] =self.prepare_config_and_inputs()
_a , _a , _a , _a : Optional[int] =config_and_inputs
_a : Tuple =True
_a : Optional[Any] =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_a : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class A__ ( UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : Union[str, Any] = True
__UpperCamelCase : Dict = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __UpperCAmelCase ( self :List[str] ) -> Optional[int]:
'''simple docstring'''
_a : Union[str, Any] =FlaxRobertaPreLayerNormModelTester(self )
@slow
def __UpperCAmelCase ( self :str ) -> int:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_a : Optional[int] =model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE )
_a : Dict =model(np.ones((1, 1) ) )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
@require_flax
class A__ ( unittest.TestCase ):
@slow
def __UpperCAmelCase ( self :Any ) -> str:
'''simple docstring'''
_a : str =FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE )
_a : List[Any] =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa )
_a : Dict =model(SCREAMING_SNAKE_CASE )[0]
_a : List[Any] =[1, 1_1, 5_0_2_6_5]
self.assertEqual(list(output.shape ) , SCREAMING_SNAKE_CASE )
# compare the actual values for a slice.
_a : Any =np.array(
[[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
@slow
def __UpperCAmelCase ( self :int ) -> int:
'''simple docstring'''
_a : Union[str, Any] =FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE )
_a : Any =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa )
_a : Optional[int] =model(SCREAMING_SNAKE_CASE )[0]
# compare the actual values for a slice.
_a : str =np.array(
[[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 694 | 1 |
'''simple docstring'''
from math import factorial
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 20 ) -> int:
_a : Optional[int] =2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
_a : Any =n // 2
return int(factorial(_UpperCAmelCase ) / (factorial(_UpperCAmelCase ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
A__: Optional[int] = int(sys.argv[1])
print(solution(n))
except ValueError:
print('''Invalid entry - please enter a number.''')
| 694 |
'''simple docstring'''
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
A__: Tuple = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any]=None ,_UpperCAmelCase : str=None ) -> Union[str, Any]:
return field(default_factory=lambda: default ,metadata=_UpperCAmelCase )
@dataclass
class A__ :
__UpperCamelCase : List[str] = list_field(
default=[] , metadata={
"help": (
"Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version"
" of all available models"
)
} , )
__UpperCamelCase : List[int] = list_field(
default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} )
__UpperCamelCase : List[int] = list_field(
default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Use FP16 to accelerate inference."} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Benchmark training of model"} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Verbose memory tracing"} )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={
"help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"
} , )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Trace memory line by line"} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Save result to a CSV file"} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Save all print statements in a log file"} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Whether to print environment information"} )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={
"help": (
"Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use"
" multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled"
" for debugging / testing and on TPU."
)
} , )
__UpperCamelCase : str = field(
default=f'''inference_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , )
__UpperCamelCase : str = field(
default=f'''inference_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , )
__UpperCamelCase : str = field(
default=f'''train_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , )
__UpperCamelCase : str = field(
default=f'''train_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , )
__UpperCamelCase : str = field(
default=f'''env_info_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , )
__UpperCamelCase : str = field(
default=f'''log_{round(time() )}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , )
__UpperCamelCase : int = field(default=3 , metadata={"help": "Times an experiment will be run."} )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={
"help": (
"Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain"
" model weights."
)
} , )
def __UpperCAmelCase ( self :Union[str, Any] ) -> int:
'''simple docstring'''
warnings.warn(
f"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"
""" are deprecated in general and it is advised to use external Benchmarking libraries """
""" to benchmark Transformer models.""" , SCREAMING_SNAKE_CASE , )
def __UpperCAmelCase ( self :Optional[int] ) -> Dict:
'''simple docstring'''
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def __UpperCAmelCase ( self :Optional[int] ) -> List[str]:
'''simple docstring'''
if len(self.models ) <= 0:
raise ValueError(
"""Please make sure you provide at least one model name / model identifier, *e.g.* `--models"""
""" bert-base-cased` or `args.models = ['bert-base-cased'].""" )
return self.models
@property
def __UpperCAmelCase ( self :Optional[Any] ) -> int:
'''simple docstring'''
if not self.multi_process:
return False
elif self.is_tpu:
logger.info("""Multiprocessing is currently not possible on TPU.""" )
return False
else:
return True
| 694 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> bool:
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 |
'''simple docstring'''
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class A__ ( UpperCAmelCase__ ):
def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Distribution , SCREAMING_SNAKE_CASE :int=None , SCREAMING_SNAKE_CASE :Tuple=None , SCREAMING_SNAKE_CASE :List[Any]=0 ) -> List[str]:
'''simple docstring'''
_a : int =1.0 if scale is None else scale
_a : Optional[Any] =0.0 if loc is None else loc
super().__init__(SCREAMING_SNAKE_CASE , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=SCREAMING_SNAKE_CASE )] )
@property
def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return self.base_dist.mean * self.scale + self.loc
@property
def __UpperCAmelCase ( self :Optional[int] ) -> Dict:
'''simple docstring'''
return self.base_dist.variance * self.scale**2
@property
def __UpperCAmelCase ( self :Any ) -> List[str]:
'''simple docstring'''
return self.variance.sqrt()
class A__ ( nn.Module ):
def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Dict[str, int] , SCREAMING_SNAKE_CASE :Callable[..., Tuple[torch.Tensor]] , **SCREAMING_SNAKE_CASE :Dict ) -> None:
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE )
_a : Tuple =args_dim
_a : Tuple =nn.ModuleList([nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for dim in args_dim.values()] )
_a : Dict =domain_map
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Tuple[torch.Tensor]:
'''simple docstring'''
_a : Tuple =[proj(SCREAMING_SNAKE_CASE ) for proj in self.proj]
return self.domain_map(*SCREAMING_SNAKE_CASE )
class A__ ( nn.Module ):
def __init__( self :Dict , SCREAMING_SNAKE_CASE :Tuple ) -> int:
'''simple docstring'''
super().__init__()
_a : List[Any] =function
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Optional[int] , *SCREAMING_SNAKE_CASE :int ) -> List[Any]:
'''simple docstring'''
return self.function(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE )
class A__ :
__UpperCamelCase : type
__UpperCamelCase : int
__UpperCamelCase : Dict[str, int]
def __init__( self :Any , SCREAMING_SNAKE_CASE :int = 1 ) -> None:
'''simple docstring'''
_a : Any =dim
_a : List[Any] ={k: dim * self.args_dim[k] for k in self.args_dim}
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
if self.dim == 1:
return self.distribution_class(*SCREAMING_SNAKE_CASE )
else:
return Independent(self.distribution_class(*SCREAMING_SNAKE_CASE ) , 1 )
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , ) -> Distribution:
'''simple docstring'''
_a : str =self._base_distribution(SCREAMING_SNAKE_CASE )
if loc is None and scale is None:
return distr
else:
return AffineTransformed(SCREAMING_SNAKE_CASE , loc=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , event_dim=self.event_dim )
@property
def __UpperCAmelCase ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
return () if self.dim == 1 else (self.dim,)
@property
def __UpperCAmelCase ( self :Any ) -> int:
'''simple docstring'''
return len(self.event_shape )
@property
def __UpperCAmelCase ( self :Any ) -> float:
'''simple docstring'''
return 0.0
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :int ) -> nn.Module:
'''simple docstring'''
return ParameterProjection(
in_features=SCREAMING_SNAKE_CASE , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , )
def __UpperCAmelCase ( self :int , *SCREAMING_SNAKE_CASE :torch.Tensor ) -> Any:
'''simple docstring'''
raise NotImplementedError()
@staticmethod
def __UpperCAmelCase ( SCREAMING_SNAKE_CASE :torch.Tensor ) -> torch.Tensor:
'''simple docstring'''
return (x + torch.sqrt(torch.square(SCREAMING_SNAKE_CASE ) + 4.0 )) / 2.0
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1}
__UpperCamelCase : type = StudentT
@classmethod
def __UpperCAmelCase ( cls :int , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Union[str, Any]:
'''simple docstring'''
_a : Tuple =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps )
_a : Optional[Any] =2.0 + cls.squareplus(SCREAMING_SNAKE_CASE )
return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 )
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1}
__UpperCamelCase : type = Normal
@classmethod
def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Dict:
'''simple docstring'''
_a : List[str] =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps )
return loc.squeeze(-1 ), scale.squeeze(-1 )
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1}
__UpperCamelCase : type = NegativeBinomial
@classmethod
def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Optional[int]:
'''simple docstring'''
_a : int =cls.squareplus(SCREAMING_SNAKE_CASE )
return total_count.squeeze(-1 ), logits.squeeze(-1 )
def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Distribution:
'''simple docstring'''
_a , _a : Any =distr_args
if self.dim == 1:
return self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE )
else:
return Independent(self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE ) , 1 )
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None ) -> Distribution:
'''simple docstring'''
_a , _a : Optional[int] =distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits) )
| 694 | 1 |
'''simple docstring'''
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]:
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(_UpperCAmelCase ):
requests.request("""GET""" ,"""https://huggingface.co""" )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 )
@pytest.mark.integration
def SCREAMING_SNAKE_CASE_ ( ) -> int:
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request("""GET""" ,"""https://huggingface.co""" )
def SCREAMING_SNAKE_CASE_ ( ) -> List[str]:
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(_UpperCAmelCase ):
http_head("""https://huggingface.co""" )
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int:
return number | (1 << position)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int:
return number & ~(1 << position)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int:
return number ^ (1 << position)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> bool:
return ((number >> position) & 1) == 1
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int:
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class A__ ( unittest.TestCase ):
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :List[Any]=7 , SCREAMING_SNAKE_CASE :Optional[Any]=3 , SCREAMING_SNAKE_CASE :List[Any]=1_8 , SCREAMING_SNAKE_CASE :Tuple=3_0 , SCREAMING_SNAKE_CASE :Optional[Any]=4_0_0 , SCREAMING_SNAKE_CASE :List[Any]=True , SCREAMING_SNAKE_CASE :Optional[Any]=None , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :int=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE :Optional[int]=[0.5, 0.5, 0.5] , ) -> str:
'''simple docstring'''
_a : Tuple =size if size is not None else {"""height""": 1_8, """width""": 1_8}
_a : Optional[Any] =parent
_a : List[str] =batch_size
_a : int =num_channels
_a : Union[str, Any] =image_size
_a : List[Any] =min_resolution
_a : Optional[Any] =max_resolution
_a : Dict =do_resize
_a : Optional[int] =size
_a : Union[str, Any] =do_normalize
_a : List[str] =image_mean
_a : Optional[int] =image_std
def __UpperCAmelCase ( self :Dict ) -> List[str]:
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class A__ ( UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : List[Any] = DPTImageProcessor if is_vision_available() else None
def __UpperCAmelCase ( self :List[Any] ) -> int:
'''simple docstring'''
_a : Tuple =DPTImageProcessingTester(self )
@property
def __UpperCAmelCase ( self :Union[str, Any] ) -> int:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCAmelCase ( self :List[Any] ) -> Union[str, Any]:
'''simple docstring'''
_a : Union[str, Any] =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """image_mean""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """image_std""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_normalize""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_resize""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """size""" ) )
def __UpperCAmelCase ( self :str ) -> Tuple:
'''simple docstring'''
_a : List[Any] =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} )
_a : str =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 )
self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} )
def __UpperCAmelCase ( self :int ) -> List[Any]:
'''simple docstring'''
# Initialize image_processing
_a : Tuple =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_a : int =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
_a : Union[str, Any] =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_a : Optional[Any] =image_processing(SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __UpperCAmelCase ( self :Optional[int] ) -> Dict:
'''simple docstring'''
# Initialize image_processing
_a : Tuple =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_a : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
_a : List[str] =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_a : str =image_processing(SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __UpperCAmelCase ( self :int ) -> Tuple:
'''simple docstring'''
# Initialize image_processing
_a : Dict =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_a : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
_a : Optional[int] =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_a : Optional[Any] =image_processing(SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : list ) -> float:
_validate_point(_UpperCAmelCase )
_validate_point(_UpperCAmelCase )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError("""Both points must be in the same n-dimensional space""" )
return float(sum(abs(a - b ) for a, b in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[float] ) -> None:
if point:
if isinstance(_UpperCAmelCase ,_UpperCAmelCase ):
for item in point:
if not isinstance(_UpperCAmelCase ,(int, float) ):
_a : str =(
"""Expected a list of numbers as input, found """
F"{type(_UpperCAmelCase ).__name__}"
)
raise TypeError(_UpperCAmelCase )
else:
_a : List[Any] =F"Expected a list of numbers as input, found {type(_UpperCAmelCase ).__name__}"
raise TypeError(_UpperCAmelCase )
else:
raise ValueError("""Missing an input""" )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : list ) -> float:
_validate_point(_UpperCAmelCase )
_validate_point(_UpperCAmelCase )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError("""Both points must be in the same n-dimensional space""" )
return float(sum(abs(x - y ) for x, y in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 | 1 |
'''simple docstring'''
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class A__ :
def __init__( self :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :List[Any]=9_9 , SCREAMING_SNAKE_CASE :Optional[int]=1_3 , SCREAMING_SNAKE_CASE :Union[str, Any]=7 , SCREAMING_SNAKE_CASE :str=9 , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :Optional[Any]=False , SCREAMING_SNAKE_CASE :Union[str, Any]=3_2 , SCREAMING_SNAKE_CASE :List[Any]=5 , SCREAMING_SNAKE_CASE :Tuple=4 , SCREAMING_SNAKE_CASE :str=3_7 , SCREAMING_SNAKE_CASE :Optional[int]=8 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.002 , SCREAMING_SNAKE_CASE :List[Any]=1 , SCREAMING_SNAKE_CASE :str=0 , SCREAMING_SNAKE_CASE :Union[str, Any]=0 , SCREAMING_SNAKE_CASE :List[Any]=None , SCREAMING_SNAKE_CASE :Tuple=None , ) -> int:
'''simple docstring'''
_a : Optional[Any] =parent
_a : Optional[int] =batch_size
_a : Union[str, Any] =encoder_seq_length
_a : int =decoder_seq_length
# For common tests
_a : Dict =self.decoder_seq_length
_a : Any =is_training
_a : List[str] =use_attention_mask
_a : Dict =use_labels
_a : Any =vocab_size
_a : Optional[int] =hidden_size
_a : List[str] =num_hidden_layers
_a : str =num_attention_heads
_a : Optional[Any] =d_ff
_a : Any =relative_attention_num_buckets
_a : Any =dropout_rate
_a : str =initializer_factor
_a : str =eos_token_id
_a : Any =pad_token_id
_a : Tuple =decoder_start_token_id
_a : Optional[Any] =None
_a : List[str] =decoder_layers
def __UpperCAmelCase ( self :List[Any] ) -> Optional[Any]:
'''simple docstring'''
return TaConfig.from_pretrained("""google/umt5-base""" )
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Tuple=None , SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :int=None , SCREAMING_SNAKE_CASE :Union[str, Any]=None , SCREAMING_SNAKE_CASE :List[Any]=None , ) -> int:
'''simple docstring'''
if attention_mask is None:
_a : Dict =input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
_a : List[Any] =decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
_a : Optional[int] =torch.ones(config.num_hidden_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE )
if decoder_head_mask is None:
_a : Any =torch.ones(config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE )
if cross_attn_head_mask is None:
_a : List[str] =torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def __UpperCAmelCase ( self :List[str] ) -> Union[str, Any]:
'''simple docstring'''
_a : Union[str, Any] =ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
_a : List[Any] =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
_a : int =input_ids.clamp(self.pad_token_id + 1 )
_a : Union[str, Any] =decoder_input_ids.clamp(self.pad_token_id + 1 )
_a : Any =self.get_config()
_a : Union[str, Any] =config.num_attention_heads
_a : Any =self.prepare_inputs_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return config, input_dict
def __UpperCAmelCase ( self :Any ) -> Any:
'''simple docstring'''
_a , _a : List[str] =self.prepare_config_and_inputs()
return config, inputs_dict
def __UpperCAmelCase ( self :str ) -> Any:
'''simple docstring'''
return TaConfig(
vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def __UpperCAmelCase ( self :Union[str, Any] ) -> List[Any]:
'''simple docstring'''
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Optional[int] , ) -> str:
'''simple docstring'''
_a : Optional[Any] =UMTaModel(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
_a : Union[str, Any] =model(
input_ids=SCREAMING_SNAKE_CASE , decoder_input_ids=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , decoder_attention_mask=SCREAMING_SNAKE_CASE , )
_a : Optional[Any] =model(input_ids=SCREAMING_SNAKE_CASE , decoder_input_ids=SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =result.last_hidden_state
_a : Optional[Any] =result.past_key_values
_a : List[str] =result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(SCREAMING_SNAKE_CASE ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :List[Any] , ) -> Optional[int]:
'''simple docstring'''
_a : Optional[int] =UMTaModel(config=SCREAMING_SNAKE_CASE ).get_decoder().to(SCREAMING_SNAKE_CASE ).eval()
# first forward pass
_a : Optional[Any] =model(SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE )
_a : Dict =model(SCREAMING_SNAKE_CASE )
_a : Tuple =model(SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE )
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) )
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) + 1 )
_a , _a : Union[str, Any] =outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_a : int =ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
_a : Optional[Any] =torch.cat([input_ids, next_tokens] , dim=-1 )
_a : Optional[int] =model(SCREAMING_SNAKE_CASE )["""last_hidden_state"""]
_a : str =model(SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE )["""last_hidden_state"""]
# select random slice
_a : Union[str, Any] =ids_tensor((1,) , output_from_past.shape[-1] ).item()
_a : str =output_from_no_past[:, -1, random_slice_idx].detach()
_a : str =output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) )
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any] , ) -> Union[str, Any]:
'''simple docstring'''
_a : List[str] =UMTaModel(config=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ).half().eval()
_a : Tuple =model(**SCREAMING_SNAKE_CASE )["""last_hidden_state"""]
self.parent.assertFalse(torch.isnan(SCREAMING_SNAKE_CASE ).any().item() )
@require_torch
class A__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : str = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
__UpperCamelCase : Union[str, Any] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
__UpperCamelCase : Optional[Any] = (
{
"conversational": UMTaForConditionalGeneration,
"feature-extraction": UMTaModel,
"summarization": UMTaForConditionalGeneration,
"text2text-generation": UMTaForConditionalGeneration,
"translation": UMTaForConditionalGeneration,
"question-answering": UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
__UpperCamelCase : str = True
__UpperCamelCase : List[Any] = False
__UpperCamelCase : Tuple = False
__UpperCamelCase : Union[str, Any] = True
__UpperCamelCase : Dict = True
# The small UMT5 model needs higher percentages for CPU/MP tests
__UpperCamelCase : Union[str, Any] = [0.8, 0.9]
def __UpperCAmelCase ( self :Any ) -> str:
'''simple docstring'''
_a : Dict =UMTaModelTester(self )
@unittest.skip("""Test has a segmentation fault on torch 1.8.0""" )
def __UpperCAmelCase ( self :Optional[int] ) -> int:
'''simple docstring'''
_a : Optional[Any] =self.model_tester.prepare_config_and_inputs()
_a : str =UMTaModel(config_and_inputs[0] ).to(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
SCREAMING_SNAKE_CASE , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"{tmpdirname}/t5_test.onnx" , export_params=SCREAMING_SNAKE_CASE , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def __UpperCAmelCase ( self :Tuple ) -> Any:
'''simple docstring'''
_a : Optional[int] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Any ) -> Any:
'''simple docstring'''
_a : Any =["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""]
_a : Dict =self.model_tester.prepare_config_and_inputs()
_a : Optional[int] =config_and_inputs[0]
_a : int =UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE ).eval()
model.to(SCREAMING_SNAKE_CASE )
_a : str ={
"""head_mask""": torch.zeros(config.num_layers , config.num_heads , device=SCREAMING_SNAKE_CASE ),
"""decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE ),
"""cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE ),
}
for attn_name, (name, mask) in zip(SCREAMING_SNAKE_CASE , head_masking.items() ):
_a : Optional[Any] ={name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
_a : Union[str, Any] =torch.ones(
config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE )
_a : List[Any] =model.generate(
config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=SCREAMING_SNAKE_CASE , return_dict_in_generate=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
# We check the state of decoder_attentions and cross_attentions just from the last step
_a : int =out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" )
def __UpperCAmelCase ( self :Optional[int] ) -> List[Any]:
'''simple docstring'''
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class A__ ( unittest.TestCase ):
@slow
@unittest.skip(
"""Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" )
def __UpperCAmelCase ( self :Optional[int] ) -> Optional[Any]:
'''simple docstring'''
_a : Any =UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE )
_a : Optional[Any] =AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=SCREAMING_SNAKE_CASE , legacy=SCREAMING_SNAKE_CASE )
_a : Tuple =[
"""Bonjour monsieur <extra_id_0> bien <extra_id_1>.""",
"""No se como puedo <extra_id_0>.""",
"""This is the reason why we <extra_id_0> them.""",
"""The <extra_id_0> walks in <extra_id_1>, seats""",
"""A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""",
]
_a : Union[str, Any] =tokenizer(SCREAMING_SNAKE_CASE , return_tensors="""pt""" , padding=SCREAMING_SNAKE_CASE ).input_ids
# fmt: off
_a : Dict =torch.tensor(
[
[ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1],
] )
# fmt: on
torch.testing.assert_allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Dict =model.generate(input_ids.to(SCREAMING_SNAKE_CASE ) )
_a : Optional[Any] =[
"""<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""",
"""<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
]
_a : Optional[int] =tokenizer.batch_decode(SCREAMING_SNAKE_CASE )
self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
| 694 |
'''simple docstring'''
from __future__ import annotations
class A__ :
def __init__( self :str , SCREAMING_SNAKE_CASE :int ) -> None:
'''simple docstring'''
_a : int =order
# a_{0} ... a_{k}
_a : Optional[Any] =[1.0] + [0.0] * order
# b_{0} ... b_{k}
_a : Tuple =[1.0] + [0.0] * order
# x[n-1] ... x[n-k]
_a : List[Any] =[0.0] * self.order
# y[n-1] ... y[n-k]
_a : Tuple =[0.0] * self.order
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :list[float] , SCREAMING_SNAKE_CASE :list[float] ) -> None:
'''simple docstring'''
if len(SCREAMING_SNAKE_CASE ) < self.order:
_a : int =[1.0, *a_coeffs]
if len(SCREAMING_SNAKE_CASE ) != self.order + 1:
_a : int =(
f"Expected a_coeffs to have {self.order + 1} elements "
f"for {self.order}-order filter, got {len(SCREAMING_SNAKE_CASE )}"
)
raise ValueError(SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) != self.order + 1:
_a : Optional[Any] =(
f"Expected b_coeffs to have {self.order + 1} elements "
f"for {self.order}-order filter, got {len(SCREAMING_SNAKE_CASE )}"
)
raise ValueError(SCREAMING_SNAKE_CASE )
_a : List[str] =a_coeffs
_a : Union[str, Any] =b_coeffs
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :float ) -> float:
'''simple docstring'''
_a : str =0.0
# Start at index 1 and do index 0 at the end.
for i in range(1 , self.order + 1 ):
result += (
self.b_coeffs[i] * self.input_history[i - 1]
- self.a_coeffs[i] * self.output_history[i - 1]
)
_a : Any =(result + self.b_coeffs[0] * sample) / self.a_coeffs[0]
_a : str =self.input_history[:-1]
_a : Optional[Any] =self.output_history[:-1]
_a : Optional[int] =sample
_a : Tuple =result
return result
| 694 | 1 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
A__: List[str] = logging.get_logger(__name__)
A__: Any = {
'''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''',
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Any = "dpt"
def __init__( self :Tuple , SCREAMING_SNAKE_CASE :int=7_6_8 , SCREAMING_SNAKE_CASE :Optional[int]=1_2 , SCREAMING_SNAKE_CASE :Dict=1_2 , SCREAMING_SNAKE_CASE :List[Any]=3_0_7_2 , SCREAMING_SNAKE_CASE :Any="gelu" , SCREAMING_SNAKE_CASE :int=0.0 , SCREAMING_SNAKE_CASE :str=0.0 , SCREAMING_SNAKE_CASE :List[str]=0.02 , SCREAMING_SNAKE_CASE :Union[str, Any]=1e-12 , SCREAMING_SNAKE_CASE :Any=3_8_4 , SCREAMING_SNAKE_CASE :Any=1_6 , SCREAMING_SNAKE_CASE :List[Any]=3 , SCREAMING_SNAKE_CASE :Dict=False , SCREAMING_SNAKE_CASE :List[Any]=True , SCREAMING_SNAKE_CASE :str=[2, 5, 8, 1_1] , SCREAMING_SNAKE_CASE :List[str]="project" , SCREAMING_SNAKE_CASE :str=[4, 2, 1, 0.5] , SCREAMING_SNAKE_CASE :Optional[Any]=[9_6, 1_9_2, 3_8_4, 7_6_8] , SCREAMING_SNAKE_CASE :Tuple=2_5_6 , SCREAMING_SNAKE_CASE :List[str]=-1 , SCREAMING_SNAKE_CASE :Optional[int]=False , SCREAMING_SNAKE_CASE :Optional[int]=True , SCREAMING_SNAKE_CASE :str=0.4 , SCREAMING_SNAKE_CASE :str=2_5_5 , SCREAMING_SNAKE_CASE :int=0.1 , SCREAMING_SNAKE_CASE :Optional[int]=[1, 1_0_2_4, 2_4, 2_4] , SCREAMING_SNAKE_CASE :Tuple=[0, 1] , SCREAMING_SNAKE_CASE :Any=None , **SCREAMING_SNAKE_CASE :List[str] , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =hidden_size
_a : Optional[int] =is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info("""Initializing the config with a `BiT` backbone.""" )
_a : Dict ={
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
}
_a : Dict =BitConfig(**SCREAMING_SNAKE_CASE )
elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
logger.info("""Initializing the config with a `BiT` backbone.""" )
_a : Tuple =BitConfig(**SCREAMING_SNAKE_CASE )
elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
_a : Dict =backbone_config
else:
raise ValueError(
f"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}." )
_a : str =backbone_featmap_shape
_a : Tuple =neck_ignore_stages
if readout_type != "project":
raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" )
else:
_a : int =None
_a : str =None
_a : Optional[Any] =[]
_a : Dict =num_hidden_layers
_a : Any =num_attention_heads
_a : Dict =intermediate_size
_a : List[Any] =hidden_act
_a : Dict =hidden_dropout_prob
_a : List[Any] =attention_probs_dropout_prob
_a : Union[str, Any] =initializer_range
_a : Any =layer_norm_eps
_a : Tuple =image_size
_a : List[str] =patch_size
_a : Dict =num_channels
_a : str =qkv_bias
_a : List[Any] =backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" )
_a : List[Any] =readout_type
_a : str =reassemble_factors
_a : Optional[Any] =neck_hidden_sizes
_a : int =fusion_hidden_size
_a : Dict =head_in_index
_a : int =use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
_a : Any =use_auxiliary_head
_a : int =auxiliary_loss_weight
_a : List[Any] =semantic_loss_ignore_index
_a : Any =semantic_classifier_dropout
def __UpperCAmelCase ( self :List[str] ) -> Dict:
'''simple docstring'''
_a : Any =copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
_a : Union[str, Any] =self.backbone_config.to_dict()
_a : Optional[int] =self.__class__.model_type
return output
| 694 |
'''simple docstring'''
from queue import PriorityQueue
from typing import Any
import numpy as np
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : dict ,_UpperCAmelCase : str ,_UpperCAmelCase : set ,_UpperCAmelCase : set ,_UpperCAmelCase : dict ,_UpperCAmelCase : dict ,_UpperCAmelCase : PriorityQueue ,_UpperCAmelCase : dict ,_UpperCAmelCase : float | int ,) -> float | int:
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
_a : Dict =cst_fwd.get(_UpperCAmelCase ,np.inf )
_a : int =cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
_a : Tuple =new_cost_f
_a : Optional[Any] =v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
_a : str =cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ,_UpperCAmelCase : dict ,_UpperCAmelCase : dict ) -> int:
_a : Optional[Any] =-1
_a : List[str] =set()
_a : Optional[int] =set()
_a : Optional[int] ={source: 0}
_a : List[str] ={destination: 0}
_a : Union[str, Any] ={source: None}
_a : Dict ={destination: None}
_a : PriorityQueue[Any] =PriorityQueue()
_a : PriorityQueue[Any] =PriorityQueue()
_a : Optional[int] =np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
_a , _a : str =queue_forward.get()
visited_forward.add(_UpperCAmelCase )
_a , _a : List[Any] =queue_backward.get()
visited_backward.add(_UpperCAmelCase )
_a : int =pass_and_relaxation(
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,)
_a : Any =pass_and_relaxation(
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,)
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
_a : Any =shortest_distance
return shortest_path_distance
A__: Union[str, Any] = {
'''B''': [['''C''', 1]],
'''C''': [['''D''', 1]],
'''D''': [['''F''', 1]],
'''E''': [['''B''', 1], ['''G''', 2]],
'''F''': [],
'''G''': [['''F''', 1]],
}
A__: str = {
'''B''': [['''E''', 1]],
'''C''': [['''B''', 1]],
'''D''': [['''C''', 1]],
'''F''': [['''D''', 1], ['''G''', 1]],
'''E''': [[None, np.inf]],
'''G''': [['''E''', 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 | 1 |
'''simple docstring'''
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 694 |
'''simple docstring'''
from math import factorial
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 100 ) -> int:
return sum(map(_UpperCAmelCase ,str(factorial(_UpperCAmelCase ) ) ) )
if __name__ == "__main__":
print(solution(int(input('''Enter the Number: ''').strip())))
| 694 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> bool:
if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ):
raise ValueError("""check_bouncy() accepts only integer arguments""" )
_a : Optional[Any] =str(_UpperCAmelCase )
_a : int ="""""".join(sorted(_UpperCAmelCase ) )
return sorted_str_n != str_n and sorted_str_n[::-1] != str_n
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : float = 99 ) -> int:
if not 0 < percent < 100:
raise ValueError("""solution() only accepts values from 0 to 100""" )
_a : str =0
_a : Optional[Any] =1
while True:
if check_bouncy(_UpperCAmelCase ):
bouncy_num += 1
if (bouncy_num / num) * 100 >= percent:
return num
num += 1
if __name__ == "__main__":
from doctest import testmod
testmod()
print(F"{solution(99)}")
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ) -> list:
_a : Tuple =len(_UpperCAmelCase )
_a : str =[]
for i in range(len(_UpperCAmelCase ) - pat_len + 1 ):
_a : int =True
for j in range(_UpperCAmelCase ):
if s[i + j] != pattern[j]:
_a : int =False
break
if match_found:
position.append(_UpperCAmelCase )
return position
if __name__ == "__main__":
assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3]
print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
| 694 | 1 |
'''simple docstring'''
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
A__: Any = TypeVar('''KEY''')
A__: int = TypeVar('''VAL''')
@dataclass(frozen=UpperCAmelCase__ , slots=UpperCAmelCase__ )
class A__ ( Generic[KEY, VAL] ):
__UpperCamelCase : KEY
__UpperCamelCase : VAL
class A__ ( _Item ):
def __init__( self :Dict ) -> None:
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __bool__( self :Optional[int] ) -> bool:
'''simple docstring'''
return False
A__: Optional[Any] = _DeletedItem()
class A__ ( MutableMapping[KEY, VAL] ):
def __init__( self :Tuple , SCREAMING_SNAKE_CASE :int = 8 , SCREAMING_SNAKE_CASE :float = 0.75 ) -> None:
'''simple docstring'''
_a : List[str] =initial_block_size
_a : list[_Item | None] =[None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
_a : str =capacity_factor
_a : Tuple =0
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :KEY ) -> int:
'''simple docstring'''
return hash(SCREAMING_SNAKE_CASE ) % len(self._buckets )
def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :int ) -> int:
'''simple docstring'''
return (ind + 1) % len(self._buckets )
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :KEY , SCREAMING_SNAKE_CASE :VAL ) -> bool:
'''simple docstring'''
_a : Optional[int] =self._buckets[ind]
if not stored:
_a : List[str] =_Item(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
self._len += 1
return True
elif stored.key == key:
_a : Optional[int] =_Item(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return True
else:
return False
def __UpperCAmelCase ( self :str ) -> bool:
'''simple docstring'''
_a : int =len(self._buckets ) * self._capacity_factor
return len(self ) >= int(SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Union[str, Any] ) -> bool:
'''simple docstring'''
if len(self._buckets ) <= self._initial_block_size:
return False
_a : List[Any] =len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :int ) -> None:
'''simple docstring'''
_a : Any =self._buckets
_a : int =[None] * new_size
_a : Union[str, Any] =0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def __UpperCAmelCase ( self :Tuple ) -> None:
'''simple docstring'''
self._resize(len(self._buckets ) * 2 )
def __UpperCAmelCase ( self :Tuple ) -> None:
'''simple docstring'''
self._resize(len(self._buckets ) // 2 )
def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :KEY ) -> Iterator[int]:
'''simple docstring'''
_a : Tuple =self._get_bucket_index(SCREAMING_SNAKE_CASE )
for _ in range(len(self._buckets ) ):
yield ind
_a : str =self._get_next_ind(SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :KEY , SCREAMING_SNAKE_CASE :VAL ) -> None:
'''simple docstring'''
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE ):
if self._try_set(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
break
def __setitem__( self :Optional[int] , SCREAMING_SNAKE_CASE :KEY , SCREAMING_SNAKE_CASE :VAL ) -> None:
'''simple docstring'''
if self._is_full():
self._size_up()
self._add_item(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __delitem__( self :List[str] , SCREAMING_SNAKE_CASE :KEY ) -> None:
'''simple docstring'''
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE ):
_a : str =self._buckets[ind]
if item is None:
raise KeyError(SCREAMING_SNAKE_CASE )
if item is _deleted:
continue
if item.key == key:
_a : Dict =_deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self :Optional[int] , SCREAMING_SNAKE_CASE :KEY ) -> VAL:
'''simple docstring'''
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE ):
_a : Optional[Any] =self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(SCREAMING_SNAKE_CASE )
def __len__( self :Optional[int] ) -> int:
'''simple docstring'''
return self._len
def __iter__( self :Union[str, Any] ) -> Iterator[KEY]:
'''simple docstring'''
yield from (item.key for item in self._buckets if item)
def __repr__( self :Tuple ) -> str:
'''simple docstring'''
_a : List[Any] =""" ,""".join(
f"{item.key}: {item.val}" for item in self._buckets if item )
return f"HashMap({val_string})"
| 694 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class A__ ( unittest.TestCase ):
def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any]=7 , SCREAMING_SNAKE_CASE :Optional[Any]=3 , SCREAMING_SNAKE_CASE :Tuple=1_8 , SCREAMING_SNAKE_CASE :Any=3_0 , SCREAMING_SNAKE_CASE :List[str]=4_0_0 , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :List[str]=True , ) -> Tuple:
'''simple docstring'''
_a : int =size if size is not None else {"""height""": 1_8, """width""": 1_8}
_a : int =parent
_a : Optional[int] =batch_size
_a : List[str] =num_channels
_a : Optional[Any] =image_size
_a : int =min_resolution
_a : str =max_resolution
_a : str =do_resize
_a : Tuple =size
_a : Tuple =do_normalize
def __UpperCAmelCase ( self :Any ) -> int:
'''simple docstring'''
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class A__ ( UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : int = ImageGPTImageProcessor if is_vision_available() else None
def __UpperCAmelCase ( self :List[Any] ) -> List[Any]:
'''simple docstring'''
_a : Any =ImageGPTImageProcessingTester(self )
@property
def __UpperCAmelCase ( self :Optional[int] ) -> List[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCAmelCase ( self :Dict ) -> Any:
'''simple docstring'''
_a : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """clusters""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_resize""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """size""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_normalize""" ) )
def __UpperCAmelCase ( self :Optional[int] ) -> Optional[int]:
'''simple docstring'''
_a : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} )
_a : Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 )
self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} )
def __UpperCAmelCase ( self :List[Any] ) -> Optional[int]:
'''simple docstring'''
_a : List[str] =self.image_processing_class(**self.image_processor_dict )
_a : Dict =json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , obj[key] ) )
else:
self.assertEqual(obj[key] , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[int] ) -> Dict:
'''simple docstring'''
_a : List[Any] =self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_a : Any =os.path.join(SCREAMING_SNAKE_CASE , """image_processor.json""" )
image_processor_first.to_json_file(SCREAMING_SNAKE_CASE )
_a : str =self.image_processing_class.from_json_file(SCREAMING_SNAKE_CASE ).to_dict()
_a : Tuple =image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[int] ) -> str:
'''simple docstring'''
_a : List[str] =self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(SCREAMING_SNAKE_CASE )
_a : str =self.image_processing_class.from_pretrained(SCREAMING_SNAKE_CASE ).to_dict()
_a : Union[str, Any] =image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def __UpperCAmelCase ( self :Union[str, Any] ) -> int:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]:
_a : Any =load_dataset("""hf-internal-testing/fixtures_image_utils""" ,split="""test""" )
_a : Dict =Image.open(dataset[4]["""file"""] )
_a : Optional[int] =Image.open(dataset[5]["""file"""] )
_a : Optional[Any] =[imagea, imagea]
return images
@require_vision
@require_torch
class A__ ( unittest.TestCase ):
@slow
def __UpperCAmelCase ( self :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_a : Optional[Any] =ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
_a : int =prepare_images()
# test non-batched
_a : Dict =image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) )
_a : Optional[int] =[3_0_6, 1_9_1, 1_9_1]
self.assertEqual(encoding.input_ids[0, :3].tolist() , SCREAMING_SNAKE_CASE )
# test batched
_a : Dict =image_processing(SCREAMING_SNAKE_CASE , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) )
_a : Any =[3_0_3, 1_3, 1_3]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , SCREAMING_SNAKE_CASE )
| 694 | 1 |
'''simple docstring'''
from __future__ import annotations
A__: List[str] = []
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list[int]] ,_UpperCAmelCase : int ,_UpperCAmelCase : int ) -> bool:
for i in range(len(_UpperCAmelCase ) ):
if board[row][i] == 1:
return False
for i in range(len(_UpperCAmelCase ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(_UpperCAmelCase ,-1 ,-1 ) ,range(_UpperCAmelCase ,-1 ,-1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(_UpperCAmelCase ,-1 ,-1 ) ,range(_UpperCAmelCase ,len(_UpperCAmelCase ) ) ):
if board[i][j] == 1:
return False
return True
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list[int]] ,_UpperCAmelCase : int ) -> bool:
if row >= len(_UpperCAmelCase ):
solution.append(_UpperCAmelCase )
printboard(_UpperCAmelCase )
print()
return True
for i in range(len(_UpperCAmelCase ) ):
if is_safe(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ):
_a : Union[str, Any] =1
solve(_UpperCAmelCase ,row + 1 )
_a : int =0
return False
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list[int]] ) -> None:
for i in range(len(_UpperCAmelCase ) ):
for j in range(len(_UpperCAmelCase ) ):
if board[i][j] == 1:
print("""Q""" ,end=""" """ )
else:
print(""".""" ,end=""" """ )
print()
# n=int(input("The no. of queens"))
A__: List[Any] = 8
A__: List[Any] = [[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print('''The total no. of solutions are :''', len(solution))
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ) -> bool:
_a : Optional[int] =len(_UpperCAmelCase )
_a : Tuple =[[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
_a : Any =True
# sum is not zero and set is empty then false
for i in range(1 ,required_sum + 1 ):
_a : int =False
for i in range(1 ,arr_len + 1 ):
for j in range(1 ,required_sum + 1 ):
if arr[i - 1] > j:
_a : Optional[Any] =subset[i - 1][j]
if arr[i - 1] <= j:
_a : Union[str, Any] =subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 1000 ) -> int:
_a , _a : Dict =1, 1
_a : Optional[int] =2
while True:
_a : List[Any] =0
_a : Tuple =fa + fa
_a , _a : Any =fa, f
index += 1
for _ in str(_UpperCAmelCase ):
i += 1
if i == n:
break
return index
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 4000000 ) -> int:
_a : Optional[Any] =[]
_a , _a : Union[str, Any] =0, 1
while b <= n:
if b % 2 == 0:
even_fibs.append(_UpperCAmelCase )
_a , _a : Optional[Any] =b, a + b
return sum(_UpperCAmelCase )
if __name__ == "__main__":
print(F"{solution() = }")
| 694 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__: List[Any] = logging.get_logger(__name__)
A__: List[str] = {
'''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''',
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Dict = "canine"
def __init__( self :Tuple , SCREAMING_SNAKE_CASE :Optional[Any]=7_6_8 , SCREAMING_SNAKE_CASE :Tuple=1_2 , SCREAMING_SNAKE_CASE :List[str]=1_2 , SCREAMING_SNAKE_CASE :Optional[Any]=3_0_7_2 , SCREAMING_SNAKE_CASE :Dict="gelu" , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :Any=0.1 , SCREAMING_SNAKE_CASE :List[Any]=1_6_3_8_4 , SCREAMING_SNAKE_CASE :Optional[int]=1_6 , SCREAMING_SNAKE_CASE :str=0.02 , SCREAMING_SNAKE_CASE :int=1e-12 , SCREAMING_SNAKE_CASE :Union[str, Any]=0 , SCREAMING_SNAKE_CASE :Union[str, Any]=0Xe0_00 , SCREAMING_SNAKE_CASE :Optional[int]=0Xe0_01 , SCREAMING_SNAKE_CASE :Union[str, Any]=4 , SCREAMING_SNAKE_CASE :Union[str, Any]=4 , SCREAMING_SNAKE_CASE :List[Any]=8 , SCREAMING_SNAKE_CASE :List[Any]=1_6_3_8_4 , SCREAMING_SNAKE_CASE :Any=1_2_8 , **SCREAMING_SNAKE_CASE :Optional[Any] , ) -> Dict:
'''simple docstring'''
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
_a : str =max_position_embeddings
_a : List[Any] =hidden_size
_a : Optional[int] =num_hidden_layers
_a : Any =num_attention_heads
_a : List[Any] =intermediate_size
_a : Tuple =hidden_act
_a : List[str] =hidden_dropout_prob
_a : Union[str, Any] =attention_probs_dropout_prob
_a : Optional[Any] =initializer_range
_a : Optional[int] =type_vocab_size
_a : Any =layer_norm_eps
# Character config:
_a : Dict =downsampling_rate
_a : Optional[Any] =upsampling_kernel_size
_a : str =num_hash_functions
_a : Optional[Any] =num_hash_buckets
_a : Any =local_transformer_stride
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int:
if n == 1 or not isinstance(_UpperCAmelCase ,_UpperCAmelCase ):
return 0
elif n == 2:
return 1
else:
_a : Dict =[0, 1]
for i in range(2 ,n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int:
_a : Union[str, Any] =0
_a : Optional[Any] =2
while digits < n:
index += 1
_a : Optional[int] =len(str(fibonacci(_UpperCAmelCase ) ) )
return index
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 1000 ) -> int:
return fibonacci_digits_index(_UpperCAmelCase )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 694 | 1 |
'''simple docstring'''
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[str] ,_UpperCAmelCase : str ,_UpperCAmelCase : List[str] ) -> Optional[Any]:
if isinstance(_UpperCAmelCase ,torch.Tensor ):
return image
elif isinstance(_UpperCAmelCase ,PIL.Image.Image ):
_a : Tuple =[image]
if isinstance(image[0] ,PIL.Image.Image ):
_a : int =[np.array(i.resize((w, h) ,resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image]
_a : Optional[Any] =np.concatenate(_UpperCAmelCase ,axis=0 )
_a : List[str] =np.array(_UpperCAmelCase ).astype(np.floataa ) / 2_5_5.0
_a : Union[str, Any] =image.transpose(0 ,3 ,1 ,2 )
_a : Any =2.0 * image - 1.0
_a : Union[str, Any] =torch.from_numpy(_UpperCAmelCase )
elif isinstance(image[0] ,torch.Tensor ):
_a : Dict =torch.cat(_UpperCAmelCase ,dim=0 )
return image
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Optional[Any]=0.9_9_9_5 ) -> Optional[int]:
if not isinstance(_UpperCAmelCase ,np.ndarray ):
_a : int =True
_a : Dict =va.device
_a : Dict =va.cpu().numpy()
_a : Optional[Any] =va.cpu().numpy()
_a : str =np.sum(va * va / (np.linalg.norm(_UpperCAmelCase ) * np.linalg.norm(_UpperCAmelCase )) )
if np.abs(_UpperCAmelCase ) > DOT_THRESHOLD:
_a : Optional[int] =(1 - t) * va + t * va
else:
_a : Tuple =np.arccos(_UpperCAmelCase )
_a : str =np.sin(_UpperCAmelCase )
_a : int =theta_a * t
_a : List[Any] =np.sin(_UpperCAmelCase )
_a : Tuple =np.sin(theta_a - theta_t ) / sin_theta_a
_a : List[Any] =sin_theta_t / sin_theta_a
_a : str =sa * va + sa * va
if inputs_are_torch:
_a : Optional[Any] =torch.from_numpy(_UpperCAmelCase ).to(_UpperCAmelCase )
return va
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Dict ,_UpperCAmelCase : int ) -> Any:
_a : List[str] =F.normalize(_UpperCAmelCase ,dim=-1 )
_a : Union[str, Any] =F.normalize(_UpperCAmelCase ,dim=-1 )
return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Union[str, Any] ) -> List[str]:
for param in model.parameters():
_a : List[str] =value
class A__ ( UpperCAmelCase__ ):
def __init__( self :Optional[Any] , SCREAMING_SNAKE_CASE :AutoencoderKL , SCREAMING_SNAKE_CASE :CLIPTextModel , SCREAMING_SNAKE_CASE :CLIPModel , SCREAMING_SNAKE_CASE :CLIPTokenizer , SCREAMING_SNAKE_CASE :UNetaDConditionModel , SCREAMING_SNAKE_CASE :Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , SCREAMING_SNAKE_CASE :CLIPFeatureExtractor , SCREAMING_SNAKE_CASE :Union[str, Any]=None , SCREAMING_SNAKE_CASE :Optional[Any]=None , SCREAMING_SNAKE_CASE :Any=None , ) -> int:
'''simple docstring'''
super().__init__()
self.register_modules(
vae=SCREAMING_SNAKE_CASE , text_encoder=SCREAMING_SNAKE_CASE , clip_model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE , coca_model=SCREAMING_SNAKE_CASE , coca_tokenizer=SCREAMING_SNAKE_CASE , coca_transform=SCREAMING_SNAKE_CASE , )
_a : str =(
feature_extractor.size
if isinstance(feature_extractor.size , SCREAMING_SNAKE_CASE )
else feature_extractor.size["""shortest_edge"""]
)
_a : Optional[int] =transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std )
set_requires_grad(self.text_encoder , SCREAMING_SNAKE_CASE )
set_requires_grad(self.clip_model , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :Optional[Union[str, int]] = "auto" ) -> Union[str, Any]:
'''simple docstring'''
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
_a : Tuple =self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Tuple ) -> Optional[int]:
'''simple docstring'''
self.enable_attention_slicing(SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :str ) -> List[Any]:
'''simple docstring'''
set_requires_grad(self.vae , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
set_requires_grad(self.vae , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :List[Any] ) -> List[str]:
'''simple docstring'''
set_requires_grad(self.unet , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[int] ) -> Dict:
'''simple docstring'''
set_requires_grad(self.unet , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :int ) -> int:
'''simple docstring'''
# get the original timestep using init_timestep
_a : List[Any] =min(int(num_inference_steps * strength ) , SCREAMING_SNAKE_CASE )
_a : Optional[int] =max(num_inference_steps - init_timestep , 0 )
_a : str =self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Optional[Any]=None ) -> Optional[Any]:
'''simple docstring'''
if not isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ):
raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(SCREAMING_SNAKE_CASE )}" )
_a : Union[str, Any] =image.to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE )
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
_a : int =[
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(SCREAMING_SNAKE_CASE )
]
_a : Tuple =torch.cat(SCREAMING_SNAKE_CASE , dim=0 )
else:
_a : Tuple =self.vae.encode(SCREAMING_SNAKE_CASE ).latent_dist.sample(SCREAMING_SNAKE_CASE )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_a : Union[str, Any] =0.18_215 * init_latents
_a : Optional[Any] =init_latents.repeat_interleave(SCREAMING_SNAKE_CASE , dim=0 )
_a : Any =randn_tensor(init_latents.shape , generator=SCREAMING_SNAKE_CASE , device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE )
# get latents
_a : List[str] =self.scheduler.add_noise(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Any =init_latents
return latents
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :List[Any] ) -> List[Any]:
'''simple docstring'''
_a : Tuple =self.coca_transform(SCREAMING_SNAKE_CASE ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
_a : Optional[int] =self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) )
_a : Optional[Any] =self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" )
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Dict ) -> int:
'''simple docstring'''
_a : Dict =self.feature_extractor.preprocess(SCREAMING_SNAKE_CASE )
_a : str =torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half()
_a : Tuple =self.clip_model.get_image_features(SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=SCREAMING_SNAKE_CASE )
_a : Tuple =image_embeddings_clip.repeat_interleave(SCREAMING_SNAKE_CASE , dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Dict , ) -> List[str]:
'''simple docstring'''
_a : Optional[Any] =latents.detach().requires_grad_()
_a : Optional[Any] =self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# predict the noise residual
_a : Dict =self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE ).sample
if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
_a : Union[str, Any] =self.scheduler.alphas_cumprod[timestep]
_a : Union[str, Any] =1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a : Optional[Any] =(latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
_a : Optional[int] =torch.sqrt(SCREAMING_SNAKE_CASE )
_a : List[str] =pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler , SCREAMING_SNAKE_CASE ):
_a : List[Any] =self.scheduler.sigmas[index]
_a : Union[str, Any] =latents - sigma * noise_pred
else:
raise ValueError(f"scheduler type {type(self.scheduler )} not supported" )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_a : Union[str, Any] =1 / 0.18_215 * sample
_a : Any =self.vae.decode(SCREAMING_SNAKE_CASE ).sample
_a : Optional[Any] =(image / 2 + 0.5).clamp(0 , 1 )
_a : Tuple =transforms.Resize(self.feature_extractor_size )(SCREAMING_SNAKE_CASE )
_a : Dict =self.normalize(SCREAMING_SNAKE_CASE ).to(latents.dtype )
_a : Union[str, Any] =self.clip_model.get_image_features(SCREAMING_SNAKE_CASE )
_a : Optional[int] =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=SCREAMING_SNAKE_CASE )
_a : str =spherical_dist_loss(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).mean() * clip_guidance_scale
_a : List[Any] =-torch.autograd.grad(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0]
if isinstance(self.scheduler , SCREAMING_SNAKE_CASE ):
_a : List[Any] =latents.detach() + grads * (sigma**2)
_a : Optional[Any] =noise_pred_original
else:
_a : Tuple =noise_pred_original - torch.sqrt(SCREAMING_SNAKE_CASE ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self :Any , SCREAMING_SNAKE_CASE :Union[torch.FloatTensor, PIL.Image.Image] , SCREAMING_SNAKE_CASE :Union[torch.FloatTensor, PIL.Image.Image] , SCREAMING_SNAKE_CASE :Optional[str] = None , SCREAMING_SNAKE_CASE :Optional[str] = None , SCREAMING_SNAKE_CASE :Optional[int] = 5_1_2 , SCREAMING_SNAKE_CASE :Optional[int] = 5_1_2 , SCREAMING_SNAKE_CASE :float = 0.6 , SCREAMING_SNAKE_CASE :Optional[int] = 5_0 , SCREAMING_SNAKE_CASE :Optional[float] = 7.5 , SCREAMING_SNAKE_CASE :Optional[int] = 1 , SCREAMING_SNAKE_CASE :float = 0.0 , SCREAMING_SNAKE_CASE :Optional[float] = 1_0_0 , SCREAMING_SNAKE_CASE :Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE :Optional[str] = "pil" , SCREAMING_SNAKE_CASE :bool = True , SCREAMING_SNAKE_CASE :float = 0.8 , SCREAMING_SNAKE_CASE :float = 0.1 , SCREAMING_SNAKE_CASE :float = 0.1 , ) -> List[Any]:
'''simple docstring'''
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) != batch_size:
raise ValueError(f"You have passed {batch_size} batch_size, but only {len(SCREAMING_SNAKE_CASE )} generators." )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." )
if isinstance(SCREAMING_SNAKE_CASE , torch.Generator ) and batch_size > 1:
_a : List[str] =[generator] + [None] * (batch_size - 1)
_a : Dict =[
("""model""", self.coca_model is None),
("""tokenizer""", self.coca_tokenizer is None),
("""transform""", self.coca_transform is None),
]
_a : Optional[int] =[x[0] for x in coca_is_none if x[1]]
_a : str =""", """.join(SCREAMING_SNAKE_CASE )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(SCREAMING_SNAKE_CASE ):
raise ValueError(
f"Content prompt is None and CoCa [{coca_is_none_str}] is None."
f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." )
_a : str =self.get_image_description(SCREAMING_SNAKE_CASE )
if style_prompt is None:
if len(SCREAMING_SNAKE_CASE ):
raise ValueError(
f"Style prompt is None and CoCa [{coca_is_none_str}] is None."
f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." )
_a : List[str] =self.get_image_description(SCREAMING_SNAKE_CASE )
# get prompt text embeddings for content and style
_a : Optional[int] =self.tokenizer(
SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE , return_tensors="""pt""" , )
_a : Dict =self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
_a : str =self.tokenizer(
SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE , return_tensors="""pt""" , )
_a : Dict =self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
_a : Union[str, Any] =slerp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# duplicate text embeddings for each generation per prompt
_a : str =text_embeddings.repeat_interleave(SCREAMING_SNAKE_CASE , dim=0 )
# set timesteps
_a : int ="""offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
_a : str ={}
if accepts_offset:
_a : str =1
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
_a , _a : Tuple =self.get_timesteps(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.device )
_a : str =timesteps[:1].repeat(SCREAMING_SNAKE_CASE )
# Preprocess image
_a : str =preprocess(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Dict =self.prepare_latents(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , text_embeddings.dtype , self.device , SCREAMING_SNAKE_CASE )
_a : Optional[Any] =preprocess(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Any =self.prepare_latents(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , text_embeddings.dtype , self.device , SCREAMING_SNAKE_CASE )
_a : str =slerp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if clip_guidance_scale > 0:
_a : Union[str, Any] =self.get_clip_image_embeddings(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Any =self.get_clip_image_embeddings(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : str =slerp(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
_a : Tuple =guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
_a : Union[str, Any] =content_text_input.input_ids.shape[-1]
_a : Dict =self.tokenizer([""""""] , padding="""max_length""" , max_length=SCREAMING_SNAKE_CASE , return_tensors="""pt""" )
_a : int =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
_a : List[str] =uncond_embeddings.repeat_interleave(SCREAMING_SNAKE_CASE , dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
_a : Union[str, Any] =torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
_a : str =(batch_size, self.unet.config.in_channels, height // 8, width // 8)
_a : Dict =text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
_a : Dict =torch.randn(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device="""cpu""" , dtype=SCREAMING_SNAKE_CASE ).to(
self.device )
else:
_a : str =torch.randn(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device=self.device , dtype=SCREAMING_SNAKE_CASE )
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" )
_a : Dict =latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
_a : Optional[int] =latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
_a : str ="""eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
_a : int ={}
if accepts_eta:
_a : Any =eta
# check if the scheduler accepts generator
_a : Optional[Any] ="""generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
_a : List[str] =generator
with self.progress_bar(total=SCREAMING_SNAKE_CASE ):
for i, t in enumerate(SCREAMING_SNAKE_CASE ):
# expand the latents if we are doing classifier free guidance
_a : Any =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_a : str =self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# predict the noise residual
_a : List[Any] =self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
_a , _a : Tuple =noise_pred.chunk(2 )
_a : str =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
_a : Tuple =(
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
_a , _a : Any =self.cond_fn(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , )
# compute the previous noisy sample x_t -> x_t-1
_a : Any =self.scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_a : List[str] =1 / 0.18_215 * latents
_a : List[Any] =self.vae.decode(SCREAMING_SNAKE_CASE ).sample
_a : Any =(image / 2 + 0.5).clamp(0 , 1 )
_a : int =image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_a : Optional[int] =self.numpy_to_pil(SCREAMING_SNAKE_CASE )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE , nsfw_content_detected=SCREAMING_SNAKE_CASE )
| 694 |
'''simple docstring'''
import argparse
import torch
from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert
from transformers.utils import logging
logging.set_verbosity_info()
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : int ) -> str:
# Initialise PyTorch model
_a : List[str] =RemBertConfig.from_json_file(_UpperCAmelCase )
print("""Building PyTorch model from configuration: {}""".format(str(_UpperCAmelCase ) ) )
_a : Dict =RemBertModel(_UpperCAmelCase )
# Load weights from tf checkpoint
load_tf_weights_in_rembert(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
# Save pytorch-model
print("""Save PyTorch model to {}""".format(_UpperCAmelCase ) )
torch.save(model.state_dict() ,_UpperCAmelCase )
if __name__ == "__main__":
A__: Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--rembert_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained RemBERT model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
A__: Tuple = parser.parse_args()
convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
| 694 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
from transformers.pipelines import AudioClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_torchaudio,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class A__ ( unittest.TestCase ):
__UpperCamelCase : Any = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
__UpperCamelCase : List[Any] = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Optional[Any] ) -> List[str]:
'''simple docstring'''
_a : List[str] =AudioClassificationPipeline(model=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE )
# test with a raw waveform
_a : str =np.zeros((3_4_0_0_0,) )
_a : Any =np.zeros((1_4_0_0_0,) )
return audio_classifier, [audioa, audio]
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Any ) -> List[str]:
'''simple docstring'''
_a , _a : Union[str, Any] =examples
_a : Union[str, Any] =audio_classifier(SCREAMING_SNAKE_CASE )
# by default a model is initialized with num_labels=2
self.assertEqual(
SCREAMING_SNAKE_CASE , [
{"""score""": ANY(SCREAMING_SNAKE_CASE ), """label""": ANY(SCREAMING_SNAKE_CASE )},
{"""score""": ANY(SCREAMING_SNAKE_CASE ), """label""": ANY(SCREAMING_SNAKE_CASE )},
] , )
_a : int =audio_classifier(SCREAMING_SNAKE_CASE , top_k=1 )
self.assertEqual(
SCREAMING_SNAKE_CASE , [
{"""score""": ANY(SCREAMING_SNAKE_CASE ), """label""": ANY(SCREAMING_SNAKE_CASE )},
] , )
self.run_torchaudio(SCREAMING_SNAKE_CASE )
@require_torchaudio
def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :List[str] ) -> Any:
'''simple docstring'''
import datasets
# test with a local file
_a : Optional[int] =datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" )
_a : Tuple =dataset[0]["""audio"""]["""array"""]
_a : int =audio_classifier(SCREAMING_SNAKE_CASE )
self.assertEqual(
SCREAMING_SNAKE_CASE , [
{"""score""": ANY(SCREAMING_SNAKE_CASE ), """label""": ANY(SCREAMING_SNAKE_CASE )},
{"""score""": ANY(SCREAMING_SNAKE_CASE ), """label""": ANY(SCREAMING_SNAKE_CASE )},
] , )
@require_torch
def __UpperCAmelCase ( self :Any ) -> Optional[int]:
'''simple docstring'''
_a : Optional[int] ="""anton-l/wav2vec2-random-tiny-classifier"""
_a : List[Any] =pipeline("""audio-classification""" , model=SCREAMING_SNAKE_CASE )
_a : Any =np.ones((8_0_0_0,) )
_a : List[Any] =audio_classifier(SCREAMING_SNAKE_CASE , top_k=4 )
_a : List[Any] =[
{"""score""": 0.0_842, """label""": """no"""},
{"""score""": 0.0_838, """label""": """up"""},
{"""score""": 0.0_837, """label""": """go"""},
{"""score""": 0.0_834, """label""": """right"""},
]
_a : Dict =[
{"""score""": 0.0_845, """label""": """stop"""},
{"""score""": 0.0_844, """label""": """on"""},
{"""score""": 0.0_841, """label""": """right"""},
{"""score""": 0.0_834, """label""": """left"""},
]
self.assertIn(nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] )
_a : List[str] ={"""array""": np.ones((8_0_0_0,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate}
_a : Tuple =audio_classifier(SCREAMING_SNAKE_CASE , top_k=4 )
self.assertIn(nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] )
@require_torch
@slow
def __UpperCAmelCase ( self :Any ) -> str:
'''simple docstring'''
import datasets
_a : int ="""superb/wav2vec2-base-superb-ks"""
_a : Optional[Any] =pipeline("""audio-classification""" , model=SCREAMING_SNAKE_CASE )
_a : List[Any] =datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" )
_a : Any =np.array(dataset[3]["""speech"""] , dtype=np.floataa )
_a : int =audio_classifier(SCREAMING_SNAKE_CASE , top_k=4 )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE , decimals=3 ) , [
{"""score""": 0.981, """label""": """go"""},
{"""score""": 0.007, """label""": """up"""},
{"""score""": 0.006, """label""": """_unknown_"""},
{"""score""": 0.001, """label""": """down"""},
] , )
@require_tf
@unittest.skip("""Audio classification is not implemented for TF""" )
def __UpperCAmelCase ( self :Tuple ) -> Tuple:
'''simple docstring'''
pass
| 694 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
A__: Optional[int] = logging.get_logger(__name__)
A__: Union[str, Any] = '''▁'''
A__: Any = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''}
A__: Optional[int] = {
'''vocab_file''': {
'''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''',
},
'''monolingual_vocab_file''': {
'''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''',
},
}
A__: Union[str, Any] = {'''vinai/bartpho-syllable''': 1024}
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Tuple = VOCAB_FILES_NAMES
__UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"]
def __init__( self :Dict , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Any="<s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE :int="</s>" , SCREAMING_SNAKE_CASE :Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE :Tuple="<unk>" , SCREAMING_SNAKE_CASE :Optional[Any]="<pad>" , SCREAMING_SNAKE_CASE :List[str]="<mask>" , SCREAMING_SNAKE_CASE :Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE :List[Any] , ) -> None:
'''simple docstring'''
# Mask token behave like a normal word, i.e. include the space before it
_a : str =AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token
_a : int ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , )
_a : Dict =vocab_file
_a : int =monolingual_vocab_file
_a : Dict =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(SCREAMING_SNAKE_CASE ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
_a : List[Any] ={}
_a : List[str] =0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids:
_a : Optional[Any] =cnt
cnt += 1
with open(SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f:
for line in f.readlines():
_a : int =line.strip().split()[0]
_a : str =len(self.fairseq_tokens_to_ids )
if str(SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids:
_a : Optional[int] =len(self.fairseq_tokens_to_ids )
_a : str ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self :int ) -> List[Any]:
'''simple docstring'''
_a : Optional[int] =self.__dict__.copy()
_a : Optional[Any] =None
_a : str =self.sp_model.serialized_model_proto()
return state
def __setstate__( self :Dict , SCREAMING_SNAKE_CASE :Any ) -> str:
'''simple docstring'''
_a : List[str] =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_a : Tuple ={}
_a : Any =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_a : Optional[int] =[self.cls_token_id]
_a : int =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None , SCREAMING_SNAKE_CASE :bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1]
def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :List[int] , SCREAMING_SNAKE_CASE :Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_a : List[str] =[self.sep_token_id]
_a : int =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def __UpperCAmelCase ( self :Optional[int] ) -> int:
'''simple docstring'''
return len(self.fairseq_ids_to_tokens )
def __UpperCAmelCase ( self :int ) -> Union[str, Any]:
'''simple docstring'''
_a : str ={self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :str ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Dict ) -> Any:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :Any ) -> Dict:
'''simple docstring'''
return self.fairseq_ids_to_tokens[index]
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_a : str ="""""".join(SCREAMING_SNAKE_CASE ).replace(SCREAMING_SNAKE_CASE , """ """ ).strip()
return out_string
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
_a : int =os.path.join(
SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_a : Any =os.path.join(
SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE , """wb""" ) as fi:
_a : Optional[Any] =self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
SCREAMING_SNAKE_CASE ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f"{str(SCREAMING_SNAKE_CASE )} \n" )
return out_vocab_file, out_monolingual_vocab_file
| 694 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
A__: Dict = {
'''configuration_audio_spectrogram_transformer''': [
'''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''ASTConfig''',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__: int = [
'''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ASTForAudioClassification''',
'''ASTModel''',
'''ASTPreTrainedModel''',
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__: List[Any] = ['''ASTFeatureExtractor''']
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
A__: List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 694 |
'''simple docstring'''
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 694 | 1 |
'''simple docstring'''
import json
import os
import torch
from diffusers import UNetaDModel
os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True)
os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True)
os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ) -> Union[str, Any]:
if hor == 128:
_a : List[Any] =("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
_a : Optional[Any] =(32, 128, 256)
_a : str =("""UpResnetBlock1D""", """UpResnetBlock1D""")
elif hor == 32:
_a : Union[str, Any] =("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
_a : Optional[int] =(32, 64, 128, 256)
_a : List[Any] =("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""")
_a : Any =torch.load(F"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" )
_a : Optional[int] =model.state_dict()
_a : Any ={
"""down_block_types""": down_block_types,
"""block_out_channels""": block_out_channels,
"""up_block_types""": up_block_types,
"""layers_per_block""": 1,
"""use_timestep_embedding""": True,
"""out_block_type""": """OutConv1DBlock""",
"""norm_num_groups""": 8,
"""downsample_each_block""": False,
"""in_channels""": 14,
"""out_channels""": 14,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""sample_size""": 65536,
"""mid_block_type""": """MidResTemporalBlock1D""",
"""act_fn""": """mish""",
}
_a : Optional[Any] =UNetaDModel(**_UpperCAmelCase )
print(F"length of state dict: {len(state_dict.keys() )}" )
print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" )
_a : Optional[int] =dict(zip(model.state_dict().keys() ,hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
_a : Optional[int] =state_dict.pop(_UpperCAmelCase )
hf_value_function.load_state_dict(_UpperCAmelCase )
torch.save(hf_value_function.state_dict() ,F"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" )
with open(F"hub/hopper-medium-v2/unet/hor{hor}/config.json" ,"""w""" ) as f:
json.dump(_UpperCAmelCase ,_UpperCAmelCase )
def SCREAMING_SNAKE_CASE_ ( ) -> str:
_a : Tuple ={
"""in_channels""": 14,
"""down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""),
"""up_block_types""": (),
"""out_block_type""": """ValueFunction""",
"""mid_block_type""": """ValueFunctionMidBlock1D""",
"""block_out_channels""": (32, 64, 128, 256),
"""layers_per_block""": 1,
"""downsample_each_block""": True,
"""sample_size""": 65536,
"""out_channels""": 14,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""use_timestep_embedding""": True,
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""norm_num_groups""": 8,
"""act_fn""": """mish""",
}
_a : List[Any] =torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" )
_a : Any =model
_a : Union[str, Any] =UNetaDModel(**_UpperCAmelCase )
print(F"length of state dict: {len(state_dict.keys() )}" )
print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" )
_a : Dict =dict(zip(state_dict.keys() ,hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
_a : List[str] =state_dict.pop(_UpperCAmelCase )
hf_value_function.load_state_dict(_UpperCAmelCase )
torch.save(hf_value_function.state_dict() ,"""hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" )
with open("""hub/hopper-medium-v2/value_function/config.json""" ,"""w""" ) as f:
json.dump(_UpperCAmelCase ,_UpperCAmelCase )
if __name__ == "__main__":
unet(32)
# unet(128)
value_function()
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list] ) -> list[list]:
_a : Dict =current_set.copy()
for row_index, row in enumerate(_UpperCAmelCase ):
_a : Any =row[0]
for column_index, column in enumerate(_UpperCAmelCase ):
if magnitude == 0:
_a : Any =column
continue
_a : Union[str, Any] =column / magnitude
# Subtract to cancel term
_a : Optional[Any] =current_set[0]
_a : List[Any] =[first_row]
_a : Tuple =current_set[1::]
for row in current_set:
_a : Any =[]
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(_UpperCAmelCase )
continue
for column_index in range(len(_UpperCAmelCase ) ):
temp_row.append(first_row[column_index] - row[column_index] )
final_set.append(_UpperCAmelCase )
# Create next recursion iteration set
if len(final_set[0] ) != 3:
_a : List[str] =final_set[0]
_a : Tuple =[]
_a : Tuple =[]
for row in final_set[1::]:
current_first_column.append(row[0] )
next_iteration.append(row[1::] )
_a : str =simplify(_UpperCAmelCase )
for i in range(len(_UpperCAmelCase ) ):
resultant[i].insert(0 ,current_first_column[i] )
resultant.insert(0 ,_UpperCAmelCase )
_a : List[Any] =resultant
return final_set
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[list] ) -> list:
if len(_UpperCAmelCase ) == 0:
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
_a : str =len(_UpperCAmelCase ) + 1
if any(len(_UpperCAmelCase ) != _length for item in equations ):
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
for row in equations:
if any(not isinstance(_UpperCAmelCase ,(int, float) ) for column in row ):
raise ValueError("""solve_simultaneous() requires lists of integers""" )
if len(_UpperCAmelCase ) == 1:
return [equations[0][-1] / equations[0][0]]
_a : str =equations.copy()
if any(0 in row for row in data_set ):
_a : Optional[int] =data_set.copy()
_a : str =[]
for row_index, row in enumerate(_UpperCAmelCase ):
if 0 not in row:
_a : List[Any] =data_set.pop(_UpperCAmelCase )
break
if not full_row:
raise ValueError("""solve_simultaneous() requires at least 1 full equation""" )
data_set.insert(0 ,_UpperCAmelCase )
_a : Dict =data_set.copy()
_a : Any =simplify(_UpperCAmelCase )
_a : Any =simplified[::-1]
_a : list =[]
for row in simplified:
_a : Optional[Any] =row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0 )
continue
solutions.append(current_solution / row[-2] )
continue
_a : Any =row.copy()[: len(_UpperCAmelCase ) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0 )
if len(_UpperCAmelCase ) == 0:
solutions.append(0 )
continue
_a : List[str] =temp_row[1::]
_a : int =temp_row[::-1]
for column_index, column in enumerate(_UpperCAmelCase ):
current_solution -= column * solutions[column_index]
solutions.append(_UpperCAmelCase )
_a : Tuple =[]
for item in solutions:
final.append(float(round(_UpperCAmelCase ,5 ) ) )
return final[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
A__: int = [
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))
print(solve_simultaneous([[4, 2]]))
| 694 | 1 |
'''simple docstring'''
A__: List[str] = 6_5521
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> int:
_a : List[Any] =1
_a : str =0
for plain_chr in plain_text:
_a : Dict =(a + ord(_UpperCAmelCase )) % MOD_ADLER
_a : Tuple =(b + a) % MOD_ADLER
return (b << 16) | a
| 694 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__: Dict = logging.get_logger(__name__)
A__: Optional[int] = {
'''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''',
'''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''',
}
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Tuple = "markuplm"
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :List[Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE :Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :int=3_0_7_2 , SCREAMING_SNAKE_CASE :Optional[int]="gelu" , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=5_1_2 , SCREAMING_SNAKE_CASE :Optional[Any]=2 , SCREAMING_SNAKE_CASE :Optional[int]=0.02 , SCREAMING_SNAKE_CASE :Any=1e-12 , SCREAMING_SNAKE_CASE :Any=0 , SCREAMING_SNAKE_CASE :List[Any]=0 , SCREAMING_SNAKE_CASE :Tuple=2 , SCREAMING_SNAKE_CASE :Optional[Any]=2_5_6 , SCREAMING_SNAKE_CASE :Optional[int]=1_0_2_4 , SCREAMING_SNAKE_CASE :Tuple=2_1_6 , SCREAMING_SNAKE_CASE :Dict=1_0_0_1 , SCREAMING_SNAKE_CASE :List[str]=3_2 , SCREAMING_SNAKE_CASE :List[str]=5_0 , SCREAMING_SNAKE_CASE :Dict="absolute" , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :Any=None , **SCREAMING_SNAKE_CASE :Tuple , ) -> Any:
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
_a : Any =vocab_size
_a : List[str] =hidden_size
_a : List[str] =num_hidden_layers
_a : Tuple =num_attention_heads
_a : Union[str, Any] =hidden_act
_a : Tuple =intermediate_size
_a : Optional[Any] =hidden_dropout_prob
_a : int =attention_probs_dropout_prob
_a : Any =max_position_embeddings
_a : List[Any] =type_vocab_size
_a : List[Any] =initializer_range
_a : List[Any] =layer_norm_eps
_a : Optional[int] =position_embedding_type
_a : List[Any] =use_cache
_a : List[str] =classifier_dropout
# additional properties
_a : int =max_depth
_a : Union[str, Any] =max_xpath_tag_unit_embeddings
_a : str =max_xpath_subs_unit_embeddings
_a : int =tag_pad_id
_a : List[Any] =subs_pad_id
_a : str =xpath_unit_hidden_size
| 694 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
A__: List[str] = {
'''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__: Optional[int] = ['''VivitImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__: Dict = [
'''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''VivitModel''',
'''VivitPreTrainedModel''',
'''VivitForVideoClassification''',
]
if TYPE_CHECKING:
from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_vivit import VivitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vivit import (
VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
VivitForVideoClassification,
VivitModel,
VivitPreTrainedModel,
)
else:
import sys
A__: Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 694 |
'''simple docstring'''
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
A__: Union[str, Any] = logging.get_logger('''transformers.models.speecht5''')
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Any ) -> Dict:
hf_model.apply_weight_norm()
_a : Any =checkpoint["""input_conv.weight_g"""]
_a : Union[str, Any] =checkpoint["""input_conv.weight_v"""]
_a : Optional[int] =checkpoint["""input_conv.bias"""]
for i in range(len(config.upsample_rates ) ):
_a : Optional[int] =checkpoint[F"upsamples.{i}.1.weight_g"]
_a : Optional[Any] =checkpoint[F"upsamples.{i}.1.weight_v"]
_a : List[Any] =checkpoint[F"upsamples.{i}.1.bias"]
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
_a : Optional[int] =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"]
_a : Tuple =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"]
_a : Union[str, Any] =checkpoint[F"blocks.{i}.convs1.{j}.1.bias"]
_a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"]
_a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"]
_a : Tuple =checkpoint[F"blocks.{i}.convs2.{j}.1.bias"]
_a : Dict =checkpoint["""output_conv.1.weight_g"""]
_a : str =checkpoint["""output_conv.1.weight_v"""]
_a : Union[str, Any] =checkpoint["""output_conv.1.bias"""]
hf_model.remove_weight_norm()
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : int=None ,_UpperCAmelCase : Tuple=None ,) -> List[Any]:
if config_path is not None:
_a : str =SpeechTaHifiGanConfig.from_pretrained(_UpperCAmelCase )
else:
_a : str =SpeechTaHifiGanConfig()
_a : Tuple =SpeechTaHifiGan(_UpperCAmelCase )
_a : int =torch.load(_UpperCAmelCase )
load_weights(orig_checkpoint["""model"""]["""generator"""] ,_UpperCAmelCase ,_UpperCAmelCase )
_a : Dict =np.load(_UpperCAmelCase )
_a : Union[str, Any] =stats[0].reshape(-1 )
_a : Any =stats[1].reshape(-1 )
_a : Tuple =torch.from_numpy(_UpperCAmelCase ).float()
_a : List[str] =torch.from_numpy(_UpperCAmelCase ).float()
model.save_pretrained(_UpperCAmelCase )
if repo_id:
print("""Pushing to the hub...""" )
model.push_to_hub(_UpperCAmelCase )
if __name__ == "__main__":
A__: Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''')
parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
A__: Tuple = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 694 | 1 |
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class A__ ( unittest.TestCase ):
def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any] ) -> Union[str, Any]:
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ):
_a : Union[str, Any] =model_result["""result"""][batch_size][sequence_length]
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Any ) -> List[Any]:
'''simple docstring'''
_a : int ="""sshleifer/tiny-gpt2"""
_a : Tuple =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE , inference=SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=SCREAMING_SNAKE_CASE , multi_process=SCREAMING_SNAKE_CASE , )
_a : Optional[Any] =TensorFlowBenchmark(SCREAMING_SNAKE_CASE )
_a : List[str] =benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self :List[Any] ) -> Optional[int]:
'''simple docstring'''
_a : List[Any] ="""sgugger/tiny-distilbert-classification"""
_a : Optional[int] =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE , inference=SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE , only_pretrain_model=SCREAMING_SNAKE_CASE , )
_a : Optional[Any] =TensorFlowBenchmark(SCREAMING_SNAKE_CASE )
_a : Optional[Any] =benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self :Tuple ) -> int:
'''simple docstring'''
_a : List[str] ="""sshleifer/tiny-gpt2"""
_a : Union[str, Any] =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE , inference=SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE , )
_a : Optional[Any] =TensorFlowBenchmark(SCREAMING_SNAKE_CASE )
_a : List[Any] =benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self :str ) -> Optional[Any]:
'''simple docstring'''
_a : Union[str, Any] ="""sshleifer/tiny-gpt2"""
_a : Union[str, Any] =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE )
_a : List[str] =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE , inference=SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=SCREAMING_SNAKE_CASE , multi_process=SCREAMING_SNAKE_CASE , )
_a : List[Any] =TensorFlowBenchmark(SCREAMING_SNAKE_CASE , [config] )
_a : int =benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self :List[str] ) -> Union[str, Any]:
'''simple docstring'''
_a : List[str] ="""sshleifer/tiny-gpt2"""
_a : Union[str, Any] =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE )
_a : Any =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE , inference=SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE , )
_a : Optional[int] =TensorFlowBenchmark(SCREAMING_SNAKE_CASE , [config] )
_a : int =benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self :List[str] ) -> List[str]:
'''simple docstring'''
_a : int ="""sshleifer/tiny-gpt2"""
_a : Any =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE , inference=SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE , )
_a : List[str] =TensorFlowBenchmark(SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self :Any ) -> List[Any]:
'''simple docstring'''
_a : List[str] ="""sshleifer/tiny-gpt2"""
_a : Tuple =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE )
_a : Dict =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE , inference=SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE , )
_a : Dict =TensorFlowBenchmark(SCREAMING_SNAKE_CASE , [config] )
_a : str =benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __UpperCAmelCase ( self :Dict ) -> Tuple:
'''simple docstring'''
_a : str ="""patrickvonplaten/t5-tiny-random"""
_a : List[Any] =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE )
_a : List[str] =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE , inference=SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE , )
_a : List[Any] =TensorFlowBenchmark(SCREAMING_SNAKE_CASE , configs=[config] )
_a : str =benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" )
def __UpperCAmelCase ( self :Dict ) -> Any:
'''simple docstring'''
_a : Union[str, Any] ="""sshleifer/tiny-gpt2"""
_a : Optional[int] =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE , inference=SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , use_xla=SCREAMING_SNAKE_CASE , multi_process=SCREAMING_SNAKE_CASE , )
_a : int =TensorFlowBenchmark(SCREAMING_SNAKE_CASE )
_a : Tuple =benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __UpperCAmelCase ( self :List[str] ) -> Tuple:
'''simple docstring'''
_a : Dict ="""sshleifer/tiny-gpt2"""
with tempfile.TemporaryDirectory() as tmp_dir:
_a : str =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=SCREAMING_SNAKE_CASE , save_to_csv=SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(SCREAMING_SNAKE_CASE , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(SCREAMING_SNAKE_CASE , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(SCREAMING_SNAKE_CASE , """env.csv""" ) , multi_process=SCREAMING_SNAKE_CASE , )
_a : Optional[Any] =TensorFlowBenchmark(SCREAMING_SNAKE_CASE )
benchmark.run()
self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE , """inf_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE , """inf_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE , """env.csv""" ) ).exists() )
def __UpperCAmelCase ( self :Dict ) -> Optional[int]:
'''simple docstring'''
_a : Dict ="""sshleifer/tiny-gpt2"""
def _check_summary_is_not_empty(SCREAMING_SNAKE_CASE :List[str] ):
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """sequential""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """cumulative""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """current""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """total""" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
_a : str =TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(SCREAMING_SNAKE_CASE , """log.txt""" ) , log_print=SCREAMING_SNAKE_CASE , trace_memory_line_by_line=SCREAMING_SNAKE_CASE , eager_mode=SCREAMING_SNAKE_CASE , multi_process=SCREAMING_SNAKE_CASE , )
_a : Optional[int] =TensorFlowBenchmark(SCREAMING_SNAKE_CASE )
_a : Any =benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE , """log.txt""" ) ).exists() )
| 694 |
'''simple docstring'''
class A__ :
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :List[str] ) -> List[str]:
'''simple docstring'''
_a : List[str] =None
_a : Optional[Any] =None
_a : str =graph
self._normalize_graph(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Optional[int] =len(SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =None
def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[str] ) -> Any:
'''simple docstring'''
if sources is int:
_a : Tuple =[sources]
if sinks is int:
_a : Optional[int] =[sinks]
if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) == 0:
return
_a : Union[str, Any] =sources[0]
_a : Tuple =sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(SCREAMING_SNAKE_CASE ) > 1 or len(SCREAMING_SNAKE_CASE ) > 1:
_a : Tuple =0
for i in sources:
max_input_flow += sum(self.graph[i] )
_a : List[Any] =len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
_a : Any =max_input_flow
_a : List[str] =0
_a : List[str] =len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
_a : str =max_input_flow
_a : Optional[Any] =size - 1
def __UpperCAmelCase ( self :Optional[int] ) -> Tuple:
'''simple docstring'''
if self.maximum_flow_algorithm is None:
raise Exception("""You need to set maximum flow algorithm before.""" )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Dict ) -> int:
'''simple docstring'''
_a : Tuple =algorithm(self )
class A__ :
def __init__( self :Tuple , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Dict:
'''simple docstring'''
_a : List[str] =flow_network
_a : List[Any] =flow_network.verticesCount
_a : str =flow_network.sourceIndex
_a : str =flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
_a : List[Any] =flow_network.graph
_a : Optional[int] =False
def __UpperCAmelCase ( self :List[Any] ) -> List[str]:
'''simple docstring'''
if not self.executed:
self._algorithm()
_a : Any =True
def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
pass
class A__ ( UpperCAmelCase__ ):
def __init__( self :int , SCREAMING_SNAKE_CASE :str ) -> int:
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE )
# use this to save your result
_a : List[Any] =-1
def __UpperCAmelCase ( self :Dict ) -> Tuple:
'''simple docstring'''
if not self.executed:
raise Exception("""You should execute algorithm before using its result!""" )
return self.maximum_flow
class A__ ( UpperCAmelCase__ ):
def __init__( self :str , SCREAMING_SNAKE_CASE :Tuple ) -> str:
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE )
_a : int =[[0] * self.verticies_count for i in range(self.verticies_count )]
_a : Union[str, Any] =[0] * self.verticies_count
_a : Optional[Any] =[0] * self.verticies_count
def __UpperCAmelCase ( self :Optional[int] ) -> Optional[Any]:
'''simple docstring'''
_a : int =self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
_a : Tuple =[
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
_a : List[Any] =0
while i < len(SCREAMING_SNAKE_CASE ):
_a : Any =vertices_list[i]
_a : str =self.heights[vertex_index]
self.process_vertex(SCREAMING_SNAKE_CASE )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE ) )
_a : List[str] =0
else:
i += 1
_a : Optional[int] =sum(self.preflow[self.source_index] )
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> List[str]:
'''simple docstring'''
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
self.relabel(SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :str ) -> List[str]:
'''simple docstring'''
_a : List[str] =min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Any ) -> List[Any]:
'''simple docstring'''
_a : int =None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
_a : Optional[Any] =self.heights[to_index]
if min_height is not None:
_a : Any =min_height + 1
if __name__ == "__main__":
A__: str = [0]
A__: Optional[Any] = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
A__: Tuple = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
A__: Union[str, Any] = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
A__: List[str] = flow_network.find_maximum_flow()
print(F"maximum flow is {maximum_flow}")
| 694 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class A__ ( unittest.TestCase ):
def __init__( self :int , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Tuple=3 , SCREAMING_SNAKE_CASE :Union[str, Any]=3_2 , SCREAMING_SNAKE_CASE :int=3 , SCREAMING_SNAKE_CASE :Optional[Any]=1_0 , SCREAMING_SNAKE_CASE :List[Any]=[1_0, 2_0, 3_0, 4_0] , SCREAMING_SNAKE_CASE :Optional[int]=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :Optional[int]="relu" , SCREAMING_SNAKE_CASE :Optional[Any]=3 , SCREAMING_SNAKE_CASE :List[str]=None , ) -> Optional[Any]:
'''simple docstring'''
_a : str =parent
_a : Tuple =batch_size
_a : Optional[Any] =image_size
_a : List[str] =num_channels
_a : str =embeddings_size
_a : Any =hidden_sizes
_a : Union[str, Any] =depths
_a : Any =is_training
_a : Dict =use_labels
_a : Tuple =hidden_act
_a : str =num_labels
_a : Dict =scope
_a : List[Any] =len(SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[int] ) -> str:
'''simple docstring'''
_a : int =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_a : List[Any] =self.get_config()
return config, pixel_values
def __UpperCAmelCase ( self :Dict ) -> int:
'''simple docstring'''
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :int ) -> str:
'''simple docstring'''
_a : Optional[Any] =FlaxRegNetModel(config=SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =model(SCREAMING_SNAKE_CASE )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :List[str] ) -> Optional[Any]:
'''simple docstring'''
_a : Optional[Any] =self.num_labels
_a : str =FlaxRegNetForImageClassification(config=SCREAMING_SNAKE_CASE )
_a : Dict =model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self :List[str] ) -> Dict:
'''simple docstring'''
_a : Tuple =self.prepare_config_and_inputs()
_a , _a : List[str] =config_and_inputs
_a : int ={"""pixel_values""": pixel_values}
return config, inputs_dict
@require_flax
class A__ ( UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : List[str] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
__UpperCamelCase : int = False
__UpperCamelCase : Any = False
__UpperCamelCase : Optional[int] = False
def __UpperCAmelCase ( self :Optional[Any] ) -> None:
'''simple docstring'''
_a : List[Any] =FlaxRegNetModelTester(self )
_a : List[str] =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Any ) -> List[str]:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __UpperCAmelCase ( self :Optional[int] ) -> int:
'''simple docstring'''
return
def __UpperCAmelCase ( self :Optional[int] ) -> List[str]:
'''simple docstring'''
_a : Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Union[str, Any] ) -> str:
'''simple docstring'''
_a : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE )
@unittest.skip(reason="""RegNet does not use inputs_embeds""" )
def __UpperCAmelCase ( self :str ) -> str:
'''simple docstring'''
pass
@unittest.skip(reason="""RegNet does not support input and output embeddings""" )
def __UpperCAmelCase ( self :Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
pass
def __UpperCAmelCase ( self :Dict ) -> str:
'''simple docstring'''
_a , _a : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a : int =model_class(SCREAMING_SNAKE_CASE )
_a : Tuple =inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_a : Any =[*signature.parameters.keys()]
_a : str =["""pixel_values"""]
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :int ) -> Tuple:
'''simple docstring'''
def check_hidden_states_output(SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :str ):
_a : List[str] =model_class(SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
_a : Tuple =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_a : Union[str, Any] =self.model_tester.num_stages
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 )
_a , _a : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a : Tuple =True
check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_a : Union[str, Any] =True
check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Union[str, Any] ) -> int:
'''simple docstring'''
_a , _a : Any =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_a : Optional[int] =self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =model_class(SCREAMING_SNAKE_CASE )
@jax.jit
def model_jitted(SCREAMING_SNAKE_CASE :Dict , **SCREAMING_SNAKE_CASE :str ):
return model(pixel_values=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
with self.subTest("""JIT Enabled""" ):
_a : Any =model_jitted(**SCREAMING_SNAKE_CASE ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_a : int =model_jitted(**SCREAMING_SNAKE_CASE ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) )
for jitted_output, output in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
self.assertEqual(jitted_output.shape , output.shape )
def SCREAMING_SNAKE_CASE_ ( ) -> Tuple:
_a : Tuple =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_flax
class A__ ( unittest.TestCase ):
@cached_property
def __UpperCAmelCase ( self :Tuple ) -> str:
'''simple docstring'''
return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None
@slow
def __UpperCAmelCase ( self :List[str] ) -> str:
'''simple docstring'''
_a : str =FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" )
_a : int =self.default_image_processor
_a : Dict =prepare_img()
_a : List[Any] =image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="""np""" )
_a : List[Any] =model(**SCREAMING_SNAKE_CASE )
# verify the logits
_a : Optional[Any] =(1, 1_0_0_0)
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE )
_a : int =jnp.array([-0.4_180, -1.5_051, -3.4_836] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 694 |
'''simple docstring'''
A__: Optional[int] = '''
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
A__: List[Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
A__: int = {
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 694 | 1 |
'''simple docstring'''
import unittest
from transformers import AutoTokenizer, FalconConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
)
class A__ :
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Optional[Any]=3 , SCREAMING_SNAKE_CASE :Tuple=7 , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :Optional[int]=True , SCREAMING_SNAKE_CASE :Optional[int]=False , SCREAMING_SNAKE_CASE :List[Any]=True , SCREAMING_SNAKE_CASE :List[str]=9_9 , SCREAMING_SNAKE_CASE :Union[str, Any]=3_2 , SCREAMING_SNAKE_CASE :List[str]=5 , SCREAMING_SNAKE_CASE :Union[str, Any]=4 , SCREAMING_SNAKE_CASE :Optional[int]=3_7 , SCREAMING_SNAKE_CASE :List[str]="gelu" , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=0.1 , SCREAMING_SNAKE_CASE :Dict=5_1_2 , SCREAMING_SNAKE_CASE :List[str]=1_6 , SCREAMING_SNAKE_CASE :str=2 , SCREAMING_SNAKE_CASE :int=0.02 , SCREAMING_SNAKE_CASE :Optional[Any]=3 , SCREAMING_SNAKE_CASE :int=4 , SCREAMING_SNAKE_CASE :Any=None , ) -> Any:
'''simple docstring'''
_a : Union[str, Any] =parent
_a : Optional[Any] =batch_size
_a : Optional[int] =seq_length
_a : Dict =is_training
_a : Optional[int] =use_input_mask
_a : List[Any] =use_token_type_ids
_a : Dict =use_labels
_a : Optional[Any] =vocab_size
_a : Union[str, Any] =hidden_size
_a : Optional[int] =num_hidden_layers
_a : int =num_attention_heads
_a : Optional[Any] =intermediate_size
_a : Tuple =hidden_act
_a : Any =hidden_dropout_prob
_a : int =attention_probs_dropout_prob
_a : Dict =max_position_embeddings
_a : int =type_vocab_size
_a : str =type_sequence_label_size
_a : List[str] =initializer_range
_a : List[Any] =num_labels
_a : List[Any] =num_choices
_a : Union[str, Any] =scope
def __UpperCAmelCase ( self :str ) -> Tuple:
'''simple docstring'''
_a : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a : List[str] =None
if self.use_input_mask:
_a : Tuple =random_attention_mask([self.batch_size, self.seq_length] )
_a : List[str] =None
_a : List[str] =None
_a : Dict =None
_a : int =None
if self.use_labels:
_a : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a : str =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_a : Dict =ids_tensor([self.batch_size] , self.num_choices )
_a : Dict =self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __UpperCAmelCase ( self :int ) -> Union[str, Any]:
'''simple docstring'''
return FalconConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=SCREAMING_SNAKE_CASE , )
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Any:
'''simple docstring'''
_a : str =FalconModel(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
_a : Dict =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE )
_a : str =model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Any , ) -> List[Any]:
'''simple docstring'''
_a : Optional[Any] =True
_a : List[str] =FalconModel(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
_a : List[str] =model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , )
_a : Optional[int] =model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , )
_a : Union[str, Any] =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any] , ) -> List[Any]:
'''simple docstring'''
_a : int =FalconForCausalLM(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
_a : int =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Optional[Any] , ) -> Dict:
'''simple docstring'''
_a : Dict =True
_a : Any =True
_a : Tuple =FalconForCausalLM(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
# first forward pass
_a : int =model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE , )
_a : Any =outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
_a : List[str] =ids_tensor((self.batch_size, 3) , config.vocab_size )
_a : Dict =ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
_a : int =torch.cat([input_ids, next_tokens] , dim=-1 )
_a : Optional[int] =torch.cat([input_mask, next_mask] , dim=-1 )
_a : Union[str, Any] =model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )["""hidden_states"""][0]
_a : str =model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )["""hidden_states"""][0]
# select random slice
_a : Dict =ids_tensor((1,) , output_from_past.shape[-1] ).item()
_a : List[str] =output_from_no_past[:, -3:, random_slice_idx].detach()
_a : Union[str, Any] =output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) )
def __UpperCAmelCase ( self :Optional[Any] ) -> int:
'''simple docstring'''
_a : Optional[Any] =self.prepare_config_and_inputs()
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) : int =config_and_inputs
_a : Dict ={"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class A__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : Optional[Any] = (
(
FalconModel,
FalconForCausalLM,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconForQuestionAnswering,
)
if is_torch_available()
else ()
)
__UpperCamelCase : Union[str, Any] = (FalconForCausalLM,) if is_torch_available() else ()
__UpperCamelCase : List[str] = (
{
"feature-extraction": FalconModel,
"text-classification": FalconForSequenceClassification,
"text-generation": FalconForCausalLM,
"question-answering": FalconForQuestionAnswering,
"token-classification": FalconForTokenClassification,
"zero-shot": FalconForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCamelCase : Union[str, Any] = False
__UpperCamelCase : Dict = False
def __UpperCAmelCase ( self :Optional[Any] ) -> str:
'''simple docstring'''
_a : str =FalconModelTester(self )
_a : str =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=3_7 )
def __UpperCAmelCase ( self :int ) -> Any:
'''simple docstring'''
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self :Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_a : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
_a , *_a : Optional[Any] =self.model_tester.prepare_config_and_inputs()
for alibi in [True, False]:
_a : int =alibi
self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Dict ) -> int:
'''simple docstring'''
_a , _a : Tuple =self.model_tester.prepare_config_and_inputs_for_common()
_a : int =3
_a : List[Any] =input_dict["""input_ids"""]
_a : Any =input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
_a : str =FalconForSequenceClassification(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
_a : str =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __UpperCAmelCase ( self :Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
_a , _a : Tuple =self.model_tester.prepare_config_and_inputs_for_common()
_a : str =3
_a : List[str] ="""single_label_classification"""
_a : List[str] =input_dict["""input_ids"""]
_a : int =input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE )
_a : Optional[int] =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
_a : Any =FalconForSequenceClassification(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
_a : Optional[Any] =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __UpperCAmelCase ( self :Optional[Any] ) -> List[Any]:
'''simple docstring'''
_a , _a : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common()
_a : Optional[int] =input_dict["""input_ids"""]
_a : Tuple =FalconForCausalLM(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
_a : Tuple =model(SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE )
_a : Any =input_ids.shape[0]
_a : Optional[Any] =model._convert_to_rw_cache(result.past_key_values )
_a : Tuple =model._convert_cache_to_standard_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for layer in range(len(SCREAMING_SNAKE_CASE ) ):
for tensor_idx in range(2 ):
self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 )
self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 )
self.assertTrue(
torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) )
def __UpperCAmelCase ( self :int ) -> Optional[Any]:
'''simple docstring'''
_a , _a : List[Any] =self.model_tester.prepare_config_and_inputs_for_common()
_a : Union[str, Any] =3
_a : List[Any] ="""multi_label_classification"""
_a : str =input_dict["""input_ids"""]
_a : Optional[Any] =input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE )
_a : Optional[int] =ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
_a : Optional[Any] =FalconForSequenceClassification(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
_a : Tuple =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __UpperCAmelCase ( self :int ) -> Dict:
'''simple docstring'''
# Falcon can have different numbers of KV-heads than the number of query heads, so we need
# to override this test to use the right head counts.
for model_class in self.all_generative_model_classes:
_a , _a : int =self.model_tester.prepare_config_and_inputs_for_common()
# If it doesn't support cache, pass the test
if not hasattr(SCREAMING_SNAKE_CASE , """use_cache""" ):
return
_a : List[str] =model_class(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE )
if "use_cache" not in inputs:
_a : int =True
_a : List[Any] =model(**SCREAMING_SNAKE_CASE )
# If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format)
if "past_key_values" not in outputs:
return
_a : Dict =(
getattr(SCREAMING_SNAKE_CASE , """decoder_layers""" , SCREAMING_SNAKE_CASE )
or getattr(SCREAMING_SNAKE_CASE , """num_decoder_layers""" , SCREAMING_SNAKE_CASE )
or config.num_hidden_layers
)
_a : Tuple =getattr(SCREAMING_SNAKE_CASE , """num_kv_heads""" , config.num_attention_heads )
_a : List[Any] =getattr(SCREAMING_SNAKE_CASE , """d_model""" , config.hidden_size )
_a : Dict =embed_dim // num_attention_heads
_a : Any =outputs["""past_key_values"""]
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
_a , _a : Optional[Any] =inputs["""input_ids"""].shape
for i in range(SCREAMING_SNAKE_CASE ):
if config.new_decoder_architecture:
_a : List[Any] =config.num_attention_heads
elif config.multi_query:
_a : int =1
self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2
self.assertEqual(
past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) )
self.assertEqual(
past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) )
@require_torch
class A__ ( unittest.TestCase ):
@slow
def __UpperCAmelCase ( self :Optional[int] ) -> List[str]:
'''simple docstring'''
_a : List[Any] =AutoTokenizer.from_pretrained("""Rocketknight1/falcon-rw-1b""" )
_a : List[str] =FalconForCausalLM.from_pretrained("""Rocketknight1/falcon-rw-1b""" )
model.eval()
model.to(SCREAMING_SNAKE_CASE )
_a : Any =tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE )
_a : Optional[Any] =(
"""My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday."""
)
_a : str =model.generate(**SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , max_new_tokens=1_9 )
_a : Any =tokenizer.batch_decode(SCREAMING_SNAKE_CASE )[0]
self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@slow
def __UpperCAmelCase ( self :Optional[Any] ) -> List[str]:
'''simple docstring'''
# The big models are way too big for the CI, so we use tiny random models that resemble their
# architectures but with much smaller and fewer layers
for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]:
_a : Optional[Any] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
_a : int =FalconForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE )
model.eval()
model.to(SCREAMING_SNAKE_CASE )
_a : Optional[int] =tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE )
# We just test that these run without errors - the models are randomly initialized
# and so the actual text outputs will be garbage
model.generate(**SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , max_new_tokens=4 )
model.generate(**SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , max_new_tokens=4 )
model.generate(**SCREAMING_SNAKE_CASE , num_beams=2 , max_new_tokens=4 )
@slow
def __UpperCAmelCase ( self :List[str] ) -> int:
'''simple docstring'''
# The big models are way too big for the CI, so we use tiny random models that resemble their
# architectures but with much smaller and fewer layers
with torch.no_grad():
for repo in [
"Rocketknight1/falcon-rw-1b",
"Rocketknight1/tiny-random-falcon-7b",
"Rocketknight1/tiny-random-falcon-40b",
]:
_a : Optional[Any] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
_a : Optional[int] =FalconForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE )
model.eval()
model.to(device=SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE )
# Test results are the same with and without cache
_a : List[Any] =model.generate(**SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , max_new_tokens=2_0 , use_cache=SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =model.generate(**SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , max_new_tokens=2_0 , use_cache=SCREAMING_SNAKE_CASE )
self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : float ,_UpperCAmelCase : float ) -> float:
return price * (1 + tax_rate)
if __name__ == "__main__":
print(F"{price_plus_tax(100, 0.25) = }")
print(F"{price_plus_tax(125.50, 0.05) = }")
| 694 | 1 |
'''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[str] ) -> Tuple:
for param in module.parameters():
_a : Tuple =False
def SCREAMING_SNAKE_CASE_ ( ) -> List[str]:
_a : Tuple ="""cuda""" if torch.cuda.is_available() else """cpu"""
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_a : List[str] ="""mps"""
if device == "mps":
print(
"""WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"""
""" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"""
""" with generations.""" )
return device
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ) -> Any:
_a : List[str] =plt.imshow(_UpperCAmelCase )
fig.axes.get_xaxis().set_visible(_UpperCAmelCase )
fig.axes.get_yaxis().set_visible(_UpperCAmelCase )
plt.show()
def SCREAMING_SNAKE_CASE_ ( ) -> List[str]:
_a : str =datetime.now()
_a : List[str] =current_time.strftime("""%H:%M:%S""" )
return timestamp
| 694 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class A__ ( unittest.TestCase ):
def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Any=1_3 , SCREAMING_SNAKE_CASE :Any=7 , SCREAMING_SNAKE_CASE :Any=True , SCREAMING_SNAKE_CASE :int=True , SCREAMING_SNAKE_CASE :Optional[int]=True , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :Optional[Any]=9_9 , SCREAMING_SNAKE_CASE :Tuple=3_2 , SCREAMING_SNAKE_CASE :Union[str, Any]=5 , SCREAMING_SNAKE_CASE :List[str]=4 , SCREAMING_SNAKE_CASE :int=3_7 , SCREAMING_SNAKE_CASE :Optional[Any]="gelu" , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=0.1 , SCREAMING_SNAKE_CASE :Dict=5_1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_6 , SCREAMING_SNAKE_CASE :Union[str, Any]=2 , SCREAMING_SNAKE_CASE :List[Any]=0.02 , SCREAMING_SNAKE_CASE :int=4 , ) -> Tuple:
'''simple docstring'''
_a : Optional[Any] =parent
_a : List[str] =batch_size
_a : List[str] =seq_length
_a : List[Any] =is_training
_a : Optional[int] =use_attention_mask
_a : List[Any] =use_token_type_ids
_a : List[Any] =use_labels
_a : Optional[Any] =vocab_size
_a : str =hidden_size
_a : List[Any] =num_hidden_layers
_a : List[Any] =num_attention_heads
_a : Union[str, Any] =intermediate_size
_a : int =hidden_act
_a : List[str] =hidden_dropout_prob
_a : Optional[int] =attention_probs_dropout_prob
_a : Dict =max_position_embeddings
_a : Any =type_vocab_size
_a : str =type_sequence_label_size
_a : str =initializer_range
_a : List[str] =num_choices
def __UpperCAmelCase ( self :Union[str, Any] ) -> Dict:
'''simple docstring'''
_a : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a : Dict =None
if self.use_attention_mask:
_a : Any =random_attention_mask([self.batch_size, self.seq_length] )
_a : Optional[int] =None
if self.use_token_type_ids:
_a : Any =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_a : Union[str, Any] =RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def __UpperCAmelCase ( self :Optional[Any] ) -> int:
'''simple docstring'''
_a : Tuple =self.prepare_config_and_inputs()
_a , _a , _a , _a : List[Any] =config_and_inputs
_a : Optional[int] ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def __UpperCAmelCase ( self :int ) -> str:
'''simple docstring'''
_a : List[Any] =self.prepare_config_and_inputs()
_a , _a , _a , _a : Optional[int] =config_and_inputs
_a : Tuple =True
_a : Optional[Any] =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_a : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class A__ ( UpperCAmelCase__ , unittest.TestCase ):
__UpperCamelCase : Union[str, Any] = True
__UpperCamelCase : Dict = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __UpperCAmelCase ( self :List[str] ) -> Optional[int]:
'''simple docstring'''
_a : Union[str, Any] =FlaxRobertaPreLayerNormModelTester(self )
@slow
def __UpperCAmelCase ( self :str ) -> int:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_a : Optional[int] =model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE )
_a : Dict =model(np.ones((1, 1) ) )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
@require_flax
class A__ ( unittest.TestCase ):
@slow
def __UpperCAmelCase ( self :Any ) -> str:
'''simple docstring'''
_a : str =FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE )
_a : List[Any] =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa )
_a : Dict =model(SCREAMING_SNAKE_CASE )[0]
_a : List[Any] =[1, 1_1, 5_0_2_6_5]
self.assertEqual(list(output.shape ) , SCREAMING_SNAKE_CASE )
# compare the actual values for a slice.
_a : Any =np.array(
[[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
@slow
def __UpperCAmelCase ( self :int ) -> int:
'''simple docstring'''
_a : Union[str, Any] =FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE )
_a : Any =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa )
_a : Optional[int] =model(SCREAMING_SNAKE_CASE )[0]
# compare the actual values for a slice.
_a : str =np.array(
[[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 694 | 1 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
A__: List[Any] = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
A__: Optional[Any] = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F"transformer.encoder.layers.{i}.self_attn.out_proj.weight", F"encoder.layers.{i}.self_attn.out_proj.weight")
)
rename_keys.append(
(F"transformer.encoder.layers.{i}.self_attn.out_proj.bias", F"encoder.layers.{i}.self_attn.out_proj.bias")
)
rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"encoder.layers.{i}.fc1.weight"))
rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"encoder.layers.{i}.fc1.bias"))
rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"encoder.layers.{i}.fc2.weight"))
rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"encoder.layers.{i}.fc2.bias"))
rename_keys.append(
(F"transformer.encoder.layers.{i}.norm1.weight", F"encoder.layers.{i}.self_attn_layer_norm.weight")
)
rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"encoder.layers.{i}.self_attn_layer_norm.bias"))
rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"encoder.layers.{i}.final_layer_norm.weight"))
rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"encoder.layers.{i}.final_layer_norm.bias"))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"decoder.layers.{i}.self_attn.out_proj.weight")
)
rename_keys.append(
(F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"decoder.layers.{i}.self_attn.out_proj.bias")
)
rename_keys.append(
(
F"transformer.decoder.layers.{i}.cross_attn.out_proj.weight",
F"decoder.layers.{i}.encoder_attn.out_proj.weight",
)
)
rename_keys.append(
(
F"transformer.decoder.layers.{i}.cross_attn.out_proj.bias",
F"decoder.layers.{i}.encoder_attn.out_proj.bias",
)
)
rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"decoder.layers.{i}.fc1.weight"))
rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"decoder.layers.{i}.fc1.bias"))
rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"decoder.layers.{i}.fc2.weight"))
rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"decoder.layers.{i}.fc2.bias"))
rename_keys.append(
(F"transformer.decoder.layers.{i}.norm1.weight", F"decoder.layers.{i}.self_attn_layer_norm.weight")
)
rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"decoder.layers.{i}.self_attn_layer_norm.bias"))
rename_keys.append(
(F"transformer.decoder.layers.{i}.norm2.weight", F"decoder.layers.{i}.encoder_attn_layer_norm.weight")
)
rename_keys.append(
(F"transformer.decoder.layers.{i}.norm2.bias", F"decoder.layers.{i}.encoder_attn_layer_norm.bias")
)
rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"decoder.layers.{i}.final_layer_norm.weight"))
rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"decoder.layers.{i}.final_layer_norm.bias"))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(F"transformer.decoder.layers.{i}.sa_qcontent_proj.weight", F"decoder.layers.{i}.sa_qcontent_proj.weight")
)
rename_keys.append(
(F"transformer.decoder.layers.{i}.sa_kcontent_proj.weight", F"decoder.layers.{i}.sa_kcontent_proj.weight")
)
rename_keys.append(
(F"transformer.decoder.layers.{i}.sa_qpos_proj.weight", F"decoder.layers.{i}.sa_qpos_proj.weight")
)
rename_keys.append(
(F"transformer.decoder.layers.{i}.sa_kpos_proj.weight", F"decoder.layers.{i}.sa_kpos_proj.weight")
)
rename_keys.append((F"transformer.decoder.layers.{i}.sa_v_proj.weight", F"decoder.layers.{i}.sa_v_proj.weight"))
rename_keys.append(
(F"transformer.decoder.layers.{i}.ca_qcontent_proj.weight", F"decoder.layers.{i}.ca_qcontent_proj.weight")
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(F"transformer.decoder.layers.{i}.ca_kcontent_proj.weight", F"decoder.layers.{i}.ca_kcontent_proj.weight")
)
rename_keys.append(
(F"transformer.decoder.layers.{i}.ca_kpos_proj.weight", F"decoder.layers.{i}.ca_kpos_proj.weight")
)
rename_keys.append((F"transformer.decoder.layers.{i}.ca_v_proj.weight", F"decoder.layers.{i}.ca_v_proj.weight"))
rename_keys.append(
(F"transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight", F"decoder.layers.{i}.ca_qpos_sine_proj.weight")
)
rename_keys.append(
(F"transformer.decoder.layers.{i}.sa_qcontent_proj.bias", F"decoder.layers.{i}.sa_qcontent_proj.bias")
)
rename_keys.append(
(F"transformer.decoder.layers.{i}.sa_kcontent_proj.bias", F"decoder.layers.{i}.sa_kcontent_proj.bias")
)
rename_keys.append((F"transformer.decoder.layers.{i}.sa_qpos_proj.bias", F"decoder.layers.{i}.sa_qpos_proj.bias"))
rename_keys.append((F"transformer.decoder.layers.{i}.sa_kpos_proj.bias", F"decoder.layers.{i}.sa_kpos_proj.bias"))
rename_keys.append((F"transformer.decoder.layers.{i}.sa_v_proj.bias", F"decoder.layers.{i}.sa_v_proj.bias"))
rename_keys.append(
(F"transformer.decoder.layers.{i}.ca_qcontent_proj.bias", F"decoder.layers.{i}.ca_qcontent_proj.bias")
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(F"transformer.decoder.layers.{i}.ca_kcontent_proj.bias", F"decoder.layers.{i}.ca_kcontent_proj.bias")
)
rename_keys.append((F"transformer.decoder.layers.{i}.ca_kpos_proj.bias", F"decoder.layers.{i}.ca_kpos_proj.bias"))
rename_keys.append((F"transformer.decoder.layers.{i}.ca_v_proj.bias", F"decoder.layers.{i}.ca_v_proj.bias"))
rename_keys.append(
(F"transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias", F"decoder.layers.{i}.ca_qpos_sine_proj.bias")
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
('''input_proj.weight''', '''input_projection.weight'''),
('''input_proj.bias''', '''input_projection.bias'''),
('''query_embed.weight''', '''query_position_embeddings.weight'''),
('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''),
('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''),
('''class_embed.weight''', '''class_labels_classifier.weight'''),
('''class_embed.bias''', '''class_labels_classifier.bias'''),
('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''),
('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''),
('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''),
('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''),
('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''),
('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''),
('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''),
('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''),
('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''),
('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''),
('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''),
('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''),
('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''),
('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''),
('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''),
('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''),
]
)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Any ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Optional[Any] ) -> Tuple:
_a : Union[str, Any] =state_dict.pop(_UpperCAmelCase )
_a : List[Any] =val
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[int] ) -> Any:
_a : Optional[int] =OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
_a : Tuple =key.replace("""backbone.0.body""" ,"""backbone.conv_encoder.model""" )
_a : Dict =value
else:
_a : Dict =value
return new_state_dict
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str=False ) -> Optional[int]:
_a : List[str] =""""""
if is_panoptic:
_a : Union[str, Any] ="""conditional_detr."""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
_a : Optional[Any] =state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" )
_a : Optional[Any] =state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" )
# next, add query, keys and values (in that order) to the state dict
_a : Union[str, Any] =in_proj_weight[:256, :]
_a : Tuple =in_proj_bias[:256]
_a : List[Any] =in_proj_weight[256:512, :]
_a : List[str] =in_proj_bias[256:512]
_a : int =in_proj_weight[-256:, :]
_a : Dict =in_proj_bias[-256:]
def SCREAMING_SNAKE_CASE_ ( ) -> Dict:
_a : Union[str, Any] ="""http://images.cocodataset.org/val2017/000000039769.jpg"""
_a : str =Image.open(requests.get(_UpperCAmelCase ,stream=_UpperCAmelCase ).raw )
return im
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : Dict ) -> Tuple:
_a : Optional[int] =ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
_a : Optional[Any] ="""resnet101"""
if "dc5" in model_name:
_a : Optional[Any] =True
_a : List[Any] ="""panoptic""" in model_name
if is_panoptic:
_a : int =250
else:
_a : Dict =91
_a : Optional[Any] ="""huggingface/label-files"""
_a : Optional[Any] ="""coco-detection-id2label.json"""
_a : Union[str, Any] =json.load(open(hf_hub_download(_UpperCAmelCase ,_UpperCAmelCase ,repo_type="""dataset""" ) ,"""r""" ) )
_a : Tuple ={int(_UpperCAmelCase ): v for k, v in idalabel.items()}
_a : List[Any] =idalabel
_a : List[Any] ={v: k for k, v in idalabel.items()}
# load image processor
_a : Tuple ="""coco_panoptic""" if is_panoptic else """coco_detection"""
_a : Optional[Any] =ConditionalDetrImageProcessor(format=_UpperCAmelCase )
# prepare image
_a : int =prepare_img()
_a : Union[str, Any] =image_processor(images=_UpperCAmelCase ,return_tensors="""pt""" )
_a : Tuple =encoding["""pixel_values"""]
logger.info(F"Converting model {model_name}..." )
# load original model from torch hub
_a : str =torch.hub.load("""DeppMeng/ConditionalDETR""" ,_UpperCAmelCase ,pretrained=_UpperCAmelCase ).eval()
_a : str =conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
_a : Union[str, Any] ="""conditional_detr.""" + src
rename_key(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase )
_a : List[Any] =rename_backbone_keys(_UpperCAmelCase )
# query, key and value matrices need special treatment
read_in_q_k_v(_UpperCAmelCase ,is_panoptic=_UpperCAmelCase )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
_a : Tuple ="""conditional_detr.model.""" if is_panoptic else """model."""
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("""conditional_detr""" )
and not key.startswith("""class_labels_classifier""" )
and not key.startswith("""bbox_predictor""" )
):
_a : Any =state_dict.pop(_UpperCAmelCase )
_a : Optional[Any] =val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
_a : Optional[int] =state_dict.pop(_UpperCAmelCase )
_a : int =val
elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ):
continue
else:
_a : Any =state_dict.pop(_UpperCAmelCase )
_a : List[str] =val
else:
if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ):
_a : List[str] =state_dict.pop(_UpperCAmelCase )
_a : str =val
# finally, create HuggingFace model and load state dict
_a : Union[str, Any] =ConditionalDetrForSegmentation(_UpperCAmelCase ) if is_panoptic else ConditionalDetrForObjectDetection(_UpperCAmelCase )
model.load_state_dict(_UpperCAmelCase )
model.eval()
model.push_to_hub(repo_id=_UpperCAmelCase ,organization="""DepuMeng""" ,commit_message="""Add model""" )
# verify our conversion
_a : List[Any] =conditional_detr(_UpperCAmelCase )
_a : Tuple =model(_UpperCAmelCase )
assert torch.allclose(outputs.logits ,original_outputs["""pred_logits"""] ,atol=1e-4 )
assert torch.allclose(outputs.pred_boxes ,original_outputs["""pred_boxes"""] ,atol=1e-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks ,original_outputs["""pred_masks"""] ,atol=1e-4 )
# Save model and image processor
logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." )
Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase )
model.save_pretrained(_UpperCAmelCase )
image_processor.save_pretrained(_UpperCAmelCase )
if __name__ == "__main__":
A__: str = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''conditional_detr_resnet50''',
type=str,
help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
A__: Optional[Any] = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 694 |
'''simple docstring'''
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
A__: Tuple = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any]=None ,_UpperCAmelCase : str=None ) -> Union[str, Any]:
return field(default_factory=lambda: default ,metadata=_UpperCAmelCase )
@dataclass
class A__ :
__UpperCamelCase : List[str] = list_field(
default=[] , metadata={
"help": (
"Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version"
" of all available models"
)
} , )
__UpperCamelCase : List[int] = list_field(
default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} )
__UpperCamelCase : List[int] = list_field(
default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Use FP16 to accelerate inference."} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Benchmark training of model"} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Verbose memory tracing"} )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={
"help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"
} , )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Trace memory line by line"} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Save result to a CSV file"} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Save all print statements in a log file"} )
__UpperCamelCase : bool = field(default=UpperCAmelCase__ , metadata={"help": "Whether to print environment information"} )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={
"help": (
"Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use"
" multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled"
" for debugging / testing and on TPU."
)
} , )
__UpperCamelCase : str = field(
default=f'''inference_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , )
__UpperCamelCase : str = field(
default=f'''inference_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , )
__UpperCamelCase : str = field(
default=f'''train_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , )
__UpperCamelCase : str = field(
default=f'''train_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , )
__UpperCamelCase : str = field(
default=f'''env_info_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , )
__UpperCamelCase : str = field(
default=f'''log_{round(time() )}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , )
__UpperCamelCase : int = field(default=3 , metadata={"help": "Times an experiment will be run."} )
__UpperCamelCase : bool = field(
default=UpperCAmelCase__ , metadata={
"help": (
"Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain"
" model weights."
)
} , )
def __UpperCAmelCase ( self :Union[str, Any] ) -> int:
'''simple docstring'''
warnings.warn(
f"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"
""" are deprecated in general and it is advised to use external Benchmarking libraries """
""" to benchmark Transformer models.""" , SCREAMING_SNAKE_CASE , )
def __UpperCAmelCase ( self :Optional[int] ) -> Dict:
'''simple docstring'''
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def __UpperCAmelCase ( self :Optional[int] ) -> List[str]:
'''simple docstring'''
if len(self.models ) <= 0:
raise ValueError(
"""Please make sure you provide at least one model name / model identifier, *e.g.* `--models"""
""" bert-base-cased` or `args.models = ['bert-base-cased'].""" )
return self.models
@property
def __UpperCAmelCase ( self :Optional[Any] ) -> int:
'''simple docstring'''
if not self.multi_process:
return False
elif self.is_tpu:
logger.info("""Multiprocessing is currently not possible on TPU.""" )
return False
else:
return True
| 694 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 1 ,_UpperCAmelCase : int = 1000 ) -> int:
_a : Dict =1
_a : Union[str, Any] =0
for divide_by_number in range(_UpperCAmelCase ,digit + 1 ):
_a : list[int] =[]
_a : int =numerator
for _ in range(1 ,digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(_UpperCAmelCase ):
_a : Optional[int] =len(_UpperCAmelCase )
_a : int =divide_by_number
else:
has_been_divided.append(_UpperCAmelCase )
_a : Optional[int] =now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 |
'''simple docstring'''
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class A__ ( UpperCAmelCase__ ):
def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Distribution , SCREAMING_SNAKE_CASE :int=None , SCREAMING_SNAKE_CASE :Tuple=None , SCREAMING_SNAKE_CASE :List[Any]=0 ) -> List[str]:
'''simple docstring'''
_a : int =1.0 if scale is None else scale
_a : Optional[Any] =0.0 if loc is None else loc
super().__init__(SCREAMING_SNAKE_CASE , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=SCREAMING_SNAKE_CASE )] )
@property
def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return self.base_dist.mean * self.scale + self.loc
@property
def __UpperCAmelCase ( self :Optional[int] ) -> Dict:
'''simple docstring'''
return self.base_dist.variance * self.scale**2
@property
def __UpperCAmelCase ( self :Any ) -> List[str]:
'''simple docstring'''
return self.variance.sqrt()
class A__ ( nn.Module ):
def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Dict[str, int] , SCREAMING_SNAKE_CASE :Callable[..., Tuple[torch.Tensor]] , **SCREAMING_SNAKE_CASE :Dict ) -> None:
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE )
_a : Tuple =args_dim
_a : Tuple =nn.ModuleList([nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for dim in args_dim.values()] )
_a : Dict =domain_map
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Tuple[torch.Tensor]:
'''simple docstring'''
_a : Tuple =[proj(SCREAMING_SNAKE_CASE ) for proj in self.proj]
return self.domain_map(*SCREAMING_SNAKE_CASE )
class A__ ( nn.Module ):
def __init__( self :Dict , SCREAMING_SNAKE_CASE :Tuple ) -> int:
'''simple docstring'''
super().__init__()
_a : List[Any] =function
def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Optional[int] , *SCREAMING_SNAKE_CASE :int ) -> List[Any]:
'''simple docstring'''
return self.function(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE )
class A__ :
__UpperCamelCase : type
__UpperCamelCase : int
__UpperCamelCase : Dict[str, int]
def __init__( self :Any , SCREAMING_SNAKE_CASE :int = 1 ) -> None:
'''simple docstring'''
_a : Any =dim
_a : List[Any] ={k: dim * self.args_dim[k] for k in self.args_dim}
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
if self.dim == 1:
return self.distribution_class(*SCREAMING_SNAKE_CASE )
else:
return Independent(self.distribution_class(*SCREAMING_SNAKE_CASE ) , 1 )
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , ) -> Distribution:
'''simple docstring'''
_a : str =self._base_distribution(SCREAMING_SNAKE_CASE )
if loc is None and scale is None:
return distr
else:
return AffineTransformed(SCREAMING_SNAKE_CASE , loc=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , event_dim=self.event_dim )
@property
def __UpperCAmelCase ( self :Optional[Any] ) -> Tuple:
'''simple docstring'''
return () if self.dim == 1 else (self.dim,)
@property
def __UpperCAmelCase ( self :Any ) -> int:
'''simple docstring'''
return len(self.event_shape )
@property
def __UpperCAmelCase ( self :Any ) -> float:
'''simple docstring'''
return 0.0
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :int ) -> nn.Module:
'''simple docstring'''
return ParameterProjection(
in_features=SCREAMING_SNAKE_CASE , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , )
def __UpperCAmelCase ( self :int , *SCREAMING_SNAKE_CASE :torch.Tensor ) -> Any:
'''simple docstring'''
raise NotImplementedError()
@staticmethod
def __UpperCAmelCase ( SCREAMING_SNAKE_CASE :torch.Tensor ) -> torch.Tensor:
'''simple docstring'''
return (x + torch.sqrt(torch.square(SCREAMING_SNAKE_CASE ) + 4.0 )) / 2.0
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1}
__UpperCamelCase : type = StudentT
@classmethod
def __UpperCAmelCase ( cls :int , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Union[str, Any]:
'''simple docstring'''
_a : Tuple =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps )
_a : Optional[Any] =2.0 + cls.squareplus(SCREAMING_SNAKE_CASE )
return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 )
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1}
__UpperCamelCase : type = Normal
@classmethod
def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Dict:
'''simple docstring'''
_a : List[str] =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps )
return loc.squeeze(-1 ), scale.squeeze(-1 )
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1}
__UpperCamelCase : type = NegativeBinomial
@classmethod
def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Optional[int]:
'''simple docstring'''
_a : int =cls.squareplus(SCREAMING_SNAKE_CASE )
return total_count.squeeze(-1 ), logits.squeeze(-1 )
def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Distribution:
'''simple docstring'''
_a , _a : Any =distr_args
if self.dim == 1:
return self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE )
else:
return Independent(self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE ) , 1 )
def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None ) -> Distribution:
'''simple docstring'''
_a , _a : Optional[int] =distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits) )
| 694 | 1 |
'''simple docstring'''
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Union[str, Any]=1 ) -> Any:
if n_shave_prefix_segments >= 0:
return ".".join(path.split(""".""" )[n_shave_prefix_segments:] )
else:
return ".".join(path.split(""".""" )[:n_shave_prefix_segments] )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : int=0 ) -> Tuple:
_a : Any =[]
for old_item in old_list:
_a : List[Any] =old_item.replace("""in_layers.0""" ,"""norm1""" )
_a : int =new_item.replace("""in_layers.2""" ,"""conv1""" )
_a : Dict =new_item.replace("""out_layers.0""" ,"""norm2""" )
_a : Dict =new_item.replace("""out_layers.3""" ,"""conv2""" )
_a : Any =new_item.replace("""emb_layers.1""" ,"""time_emb_proj""" )
_a : Tuple =new_item.replace("""skip_connection""" ,"""conv_shortcut""" )
_a : Optional[Any] =shave_segments(_UpperCAmelCase ,n_shave_prefix_segments=_UpperCAmelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : str=0 ) -> Optional[Any]:
_a : str =[]
for old_item in old_list:
_a : Union[str, Any] =old_item
_a : Union[str, Any] =new_item.replace("""norm.weight""" ,"""group_norm.weight""" )
_a : str =new_item.replace("""norm.bias""" ,"""group_norm.bias""" )
_a : List[Any] =new_item.replace("""proj_out.weight""" ,"""proj_attn.weight""" )
_a : Optional[Any] =new_item.replace("""proj_out.bias""" ,"""proj_attn.bias""" )
_a : Tuple =shave_segments(_UpperCAmelCase ,n_shave_prefix_segments=_UpperCAmelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[int] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Any=None ,_UpperCAmelCase : Union[str, Any]=None ,_UpperCAmelCase : Any=None ) -> List[Any]:
assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
_a : Dict =old_checkpoint[path]
_a : int =old_tensor.shape[0] // 3
_a : Any =(-1, channels) if len(old_tensor.shape ) == 3 else (-1)
_a : Union[str, Any] =old_tensor.shape[0] // config["""num_head_channels"""] // 3
_a : Dict =old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
_a , _a , _a : Union[str, Any] =old_tensor.split(channels // num_heads ,dim=1 )
_a : Optional[int] =query.reshape(_UpperCAmelCase )
_a : Union[str, Any] =key.reshape(_UpperCAmelCase )
_a : Any =value.reshape(_UpperCAmelCase )
for path in paths:
_a : List[str] =path["""new"""]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
_a : List[Any] =new_path.replace("""middle_block.0""" ,"""mid_block.resnets.0""" )
_a : str =new_path.replace("""middle_block.1""" ,"""mid_block.attentions.0""" )
_a : List[str] =new_path.replace("""middle_block.2""" ,"""mid_block.resnets.1""" )
if additional_replacements is not None:
for replacement in additional_replacements:
_a : Optional[Any] =new_path.replace(replacement["""old"""] ,replacement["""new"""] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
_a : Optional[int] =old_checkpoint[path["""old"""]][:, :, 0]
else:
_a : List[Any] =old_checkpoint[path["""old"""]]
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : str ) -> Dict:
_a : Dict ={}
_a : Optional[Any] =checkpoint["""time_embed.0.weight"""]
_a : Tuple =checkpoint["""time_embed.0.bias"""]
_a : List[str] =checkpoint["""time_embed.2.weight"""]
_a : int =checkpoint["""time_embed.2.bias"""]
_a : int =checkpoint["""input_blocks.0.0.weight"""]
_a : Union[str, Any] =checkpoint["""input_blocks.0.0.bias"""]
_a : Tuple =checkpoint["""out.0.weight"""]
_a : Dict =checkpoint["""out.0.bias"""]
_a : Union[str, Any] =checkpoint["""out.2.weight"""]
_a : Dict =checkpoint["""out.2.bias"""]
# Retrieves the keys for the input blocks only
_a : str =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} )
_a : str ={
layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key]
for layer_id in range(_UpperCAmelCase )
}
# Retrieves the keys for the middle blocks only
_a : Optional[Any] =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} )
_a : Tuple ={
layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key]
for layer_id in range(_UpperCAmelCase )
}
# Retrieves the keys for the output blocks only
_a : List[str] =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} )
_a : str ={
layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key]
for layer_id in range(_UpperCAmelCase )
}
for i in range(1 ,_UpperCAmelCase ):
_a : Union[str, Any] =(i - 1) // (config["""num_res_blocks"""] + 1)
_a : List[str] =(i - 1) % (config["""num_res_blocks"""] + 1)
_a : List[Any] =[key for key in input_blocks[i] if F"input_blocks.{i}.0" in key]
_a : Tuple =[key for key in input_blocks[i] if F"input_blocks.{i}.1" in key]
if F"input_blocks.{i}.0.op.weight" in checkpoint:
_a : str =checkpoint[
F"input_blocks.{i}.0.op.weight"
]
_a : Optional[int] =checkpoint[
F"input_blocks.{i}.0.op.bias"
]
continue
_a : int =renew_resnet_paths(_UpperCAmelCase )
_a : Union[str, Any] ={"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
_a : str ={"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""}
assign_to_checkpoint(
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,additional_replacements=[meta_path, resnet_op] ,config=_UpperCAmelCase )
if len(_UpperCAmelCase ):
_a : Any =renew_attention_paths(_UpperCAmelCase )
_a : List[str] ={
"""old""": F"input_blocks.{i}.1",
"""new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}",
}
_a : str ={
F"input_blocks.{i}.1.qkv.bias": {
"""key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias",
"""query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias",
"""value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias",
},
F"input_blocks.{i}.1.qkv.weight": {
"""key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight",
"""query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight",
"""value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight",
},
}
assign_to_checkpoint(
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,additional_replacements=[meta_path] ,attention_paths_to_split=_UpperCAmelCase ,config=_UpperCAmelCase ,)
_a : str =middle_blocks[0]
_a : Optional[Any] =middle_blocks[1]
_a : Tuple =middle_blocks[2]
_a : Union[str, Any] =renew_resnet_paths(_UpperCAmelCase )
assign_to_checkpoint(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,config=_UpperCAmelCase )
_a : List[str] =renew_resnet_paths(_UpperCAmelCase )
assign_to_checkpoint(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,config=_UpperCAmelCase )
_a : List[Any] =renew_attention_paths(_UpperCAmelCase )
_a : Optional[Any] ={
"""middle_block.1.qkv.bias""": {
"""key""": """mid_block.attentions.0.key.bias""",
"""query""": """mid_block.attentions.0.query.bias""",
"""value""": """mid_block.attentions.0.value.bias""",
},
"""middle_block.1.qkv.weight""": {
"""key""": """mid_block.attentions.0.key.weight""",
"""query""": """mid_block.attentions.0.query.weight""",
"""value""": """mid_block.attentions.0.value.weight""",
},
}
assign_to_checkpoint(
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,attention_paths_to_split=_UpperCAmelCase ,config=_UpperCAmelCase )
for i in range(_UpperCAmelCase ):
_a : int =i // (config["""num_res_blocks"""] + 1)
_a : str =i % (config["""num_res_blocks"""] + 1)
_a : List[Any] =[shave_segments(_UpperCAmelCase ,2 ) for name in output_blocks[i]]
_a : Optional[Any] ={}
for layer in output_block_layers:
_a , _a : Optional[Any] =layer.split(""".""" )[0], shave_segments(_UpperCAmelCase ,1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(_UpperCAmelCase )
else:
_a : int =[layer_name]
if len(_UpperCAmelCase ) > 1:
_a : Tuple =[key for key in output_blocks[i] if F"output_blocks.{i}.0" in key]
_a : List[Any] =[key for key in output_blocks[i] if F"output_blocks.{i}.1" in key]
_a : Optional[Any] =renew_resnet_paths(_UpperCAmelCase )
_a : str =renew_resnet_paths(_UpperCAmelCase )
_a : Any ={"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,additional_replacements=[meta_path] ,config=_UpperCAmelCase )
if ["conv.weight", "conv.bias"] in output_block_list.values():
_a : Any =list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] )
_a : Any =checkpoint[
F"output_blocks.{i}.{index}.conv.weight"
]
_a : Any =checkpoint[
F"output_blocks.{i}.{index}.conv.bias"
]
# Clear attentions as they have been attributed above.
if len(_UpperCAmelCase ) == 2:
_a : str =[]
if len(_UpperCAmelCase ):
_a : List[str] =renew_attention_paths(_UpperCAmelCase )
_a : Union[str, Any] ={
"""old""": F"output_blocks.{i}.1",
"""new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}",
}
_a : Dict ={
F"output_blocks.{i}.1.qkv.bias": {
"""key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias",
"""query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias",
"""value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias",
},
F"output_blocks.{i}.1.qkv.weight": {
"""key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight",
"""query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight",
"""value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight",
},
}
assign_to_checkpoint(
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,additional_replacements=[meta_path] ,attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None ,config=_UpperCAmelCase ,)
else:
_a : Optional[Any] =renew_resnet_paths(_UpperCAmelCase ,n_shave_prefix_segments=1 )
for path in resnet_0_paths:
_a : str =""".""".join(["""output_blocks""", str(_UpperCAmelCase ), path["""old"""]] )
_a : str =""".""".join(["""up_blocks""", str(_UpperCAmelCase ), """resnets""", str(_UpperCAmelCase ), path["""new"""]] )
_a : Optional[Any] =checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
A__: int = argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the architecture.''',
)
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
A__: str = parser.parse_args()
A__: Optional[Any] = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
A__: Any = json.loads(f.read())
A__: Tuple = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
A__: int = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
A__: Any = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1]))
A__: str = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1]))
A__: Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int:
return number | (1 << position)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int:
return number & ~(1 << position)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int:
return number ^ (1 << position)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> bool:
return ((number >> position) & 1) == 1
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int:
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 | 1 |
'''simple docstring'''
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : Any ) -> List[str]:
assert isinstance(_UpperCAmelCase ,_UpperCAmelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" ,[False, True] )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[str] ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Tuple ) -> List[Any]:
_a : int =tmp_path / """cache"""
_a : Any ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
_a : Tuple =JsonDatasetReader(_UpperCAmelCase ,cache_dir=_UpperCAmelCase ,keep_in_memory=_UpperCAmelCase ).read()
_check_json_dataset(_UpperCAmelCase ,_UpperCAmelCase )
@pytest.mark.parametrize(
"""features""" ,[
None,
{"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""},
{"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""},
{"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""},
{"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""},
] ,)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Any ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Any ) -> List[Any]:
_a : int =tmp_path / """cache"""
_a : Union[str, Any] ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_a : Union[str, Any] =features.copy() if features else default_expected_features
_a : Optional[int] =(
Features({feature: Value(_UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
_a : Tuple =JsonDatasetReader(_UpperCAmelCase ,features=_UpperCAmelCase ,cache_dir=_UpperCAmelCase ).read()
_check_json_dataset(_UpperCAmelCase ,_UpperCAmelCase )
@pytest.mark.parametrize(
"""features""" ,[
None,
{"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""},
] ,)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Optional[Any] ) -> str:
_a : List[str] =tmp_path / """cache"""
_a : int ={"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}
_a : Union[str, Any] =features.copy() if features else default_expected_features
_a : Union[str, Any] =(
Features({feature: Value(_UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
_a : List[str] =JsonDatasetReader(_UpperCAmelCase ,features=_UpperCAmelCase ,cache_dir=_UpperCAmelCase ).read()
assert isinstance(_UpperCAmelCase ,_UpperCAmelCase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Tuple ) -> List[str]:
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
_a : List[str] ={"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""}
_a : Optional[Any] =features.copy()
_a : Union[str, Any] =(
Features({feature: Value(_UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
_a : Optional[Any] =tmp_path / """cache"""
_a : Optional[Any] =JsonDatasetReader(_UpperCAmelCase ,features=_UpperCAmelCase ,cache_dir=_UpperCAmelCase ).read()
assert isinstance(_UpperCAmelCase ,_UpperCAmelCase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""split""" ,[None, NamedSplit("""train""" ), """train""", """test"""] )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[int] ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
_a : Optional[Any] =tmp_path / """cache"""
_a : str ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_a : Dict =JsonDatasetReader(_UpperCAmelCase ,cache_dir=_UpperCAmelCase ,split=_UpperCAmelCase ).read()
_check_json_dataset(_UpperCAmelCase ,_UpperCAmelCase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("""path_type""" ,[str, list] )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Dict ,_UpperCAmelCase : int ) -> Dict:
if issubclass(_UpperCAmelCase ,_UpperCAmelCase ):
_a : Any =jsonl_path
elif issubclass(_UpperCAmelCase ,_UpperCAmelCase ):
_a : Optional[int] =[jsonl_path]
_a : Dict =tmp_path / """cache"""
_a : Optional[int] ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_a : List[Any] =JsonDatasetReader(_UpperCAmelCase ,cache_dir=_UpperCAmelCase ).read()
_check_json_dataset(_UpperCAmelCase ,_UpperCAmelCase )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Any ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : List[Any]=("train",) ) -> str:
assert isinstance(_UpperCAmelCase ,_UpperCAmelCase )
for split in splits:
_a : List[str] =dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" ,[False, True] )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Union[str, Any] ) -> Any:
_a : Optional[int] =tmp_path / """cache"""
_a : List[str] ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
_a : Any =JsonDatasetReader({"""train""": jsonl_path} ,cache_dir=_UpperCAmelCase ,keep_in_memory=_UpperCAmelCase ).read()
_check_json_datasetdict(_UpperCAmelCase ,_UpperCAmelCase )
@pytest.mark.parametrize(
"""features""" ,[
None,
{"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""},
{"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""},
{"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""},
{"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""},
] ,)
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : Dict ,_UpperCAmelCase : int ) -> Any:
_a : Optional[Any] =tmp_path / """cache"""
_a : Optional[Any] ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_a : Optional[int] =features.copy() if features else default_expected_features
_a : Tuple =(
Features({feature: Value(_UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
_a : List[Any] =JsonDatasetReader({"""train""": jsonl_path} ,features=_UpperCAmelCase ,cache_dir=_UpperCAmelCase ).read()
_check_json_datasetdict(_UpperCAmelCase ,_UpperCAmelCase )
@pytest.mark.parametrize("""split""" ,[None, NamedSplit("""train""" ), """train""", """test"""] )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Dict ) -> Union[str, Any]:
if split:
_a : int ={split: jsonl_path}
else:
_a : List[Any] ="""train"""
_a : Optional[Any] ={"""train""": jsonl_path, """test""": jsonl_path}
_a : Optional[Any] =tmp_path / """cache"""
_a : Dict ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_a : Optional[int] =JsonDatasetReader(_UpperCAmelCase ,cache_dir=_UpperCAmelCase ).read()
_check_json_datasetdict(_UpperCAmelCase ,_UpperCAmelCase ,splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Any ) -> str:
return json.load(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Union[str, Any] ) -> List[Any]:
return [json.loads(_UpperCAmelCase ) for line in buffer]
class A__ :
@pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] )
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Optional[int] ) -> Tuple:
'''simple docstring'''
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , lines=SCREAMING_SNAKE_CASE ).write()
buffer.seek(0 )
_a : Optional[int] =load_json_function(SCREAMING_SNAKE_CASE )
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE )
assert len(SCREAMING_SNAKE_CASE ) == 1_0
@pytest.mark.parametrize(
"""orient, container, keys, len_at""" , [
("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None),
("""split""", dict, {"""columns""", """data"""}, """data"""),
("""index""", dict, set("""0123456789""" ), None),
("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""),
("""values""", list, None, None),
("""table""", dict, {"""schema""", """data"""}, """data"""),
] , )
def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Any ) -> Any:
'''simple docstring'''
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , lines=SCREAMING_SNAKE_CASE , orient=SCREAMING_SNAKE_CASE ).write()
buffer.seek(0 )
_a : Optional[int] =load_json(SCREAMING_SNAKE_CASE )
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE , """keys""" ) and not hasattr(exported_content[0] , """keys""" )
if len_at:
assert len(exported_content[len_at] ) == 1_0
else:
assert len(SCREAMING_SNAKE_CASE ) == 1_0
@pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] )
def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :List[Any] ) -> Tuple:
'''simple docstring'''
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , lines=SCREAMING_SNAKE_CASE , num_proc=2 ).write()
buffer.seek(0 )
_a : Any =load_json_function(SCREAMING_SNAKE_CASE )
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE )
assert len(SCREAMING_SNAKE_CASE ) == 1_0
@pytest.mark.parametrize(
"""orient, container, keys, len_at""" , [
("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None),
("""split""", dict, {"""columns""", """data"""}, """data"""),
("""index""", dict, set("""0123456789""" ), None),
("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""),
("""values""", list, None, None),
("""table""", dict, {"""schema""", """data"""}, """data"""),
] , )
def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Tuple ) -> List[str]:
'''simple docstring'''
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , lines=SCREAMING_SNAKE_CASE , orient=SCREAMING_SNAKE_CASE , num_proc=2 ).write()
buffer.seek(0 )
_a : Union[str, Any] =load_json(SCREAMING_SNAKE_CASE )
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE , """keys""" ) and not hasattr(exported_content[0] , """keys""" )
if len_at:
assert len(exported_content[len_at] ) == 1_0
else:
assert len(SCREAMING_SNAKE_CASE ) == 1_0
def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :Optional[int] ) -> List[str]:
'''simple docstring'''
with pytest.raises(SCREAMING_SNAKE_CASE ):
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=0 )
@pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] )
def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Tuple ) -> Optional[int]:
'''simple docstring'''
_a : Tuple =tmp_path_factory.mktemp("""data""" ) / f"test.json.{extension}"
_a : int =str(shared_datadir / f"test_file.json.{extension}" )
JsonDatasetWriter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , compression=SCREAMING_SNAKE_CASE ).write()
with fsspec.open(SCREAMING_SNAKE_CASE , """rb""" , compression="""infer""" ) as f:
_a : Tuple =f.read()
with fsspec.open(SCREAMING_SNAKE_CASE , """rb""" , compression="""infer""" ) as f:
_a : Tuple =f.read()
assert exported_content == original_content
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : list ) -> float:
_validate_point(_UpperCAmelCase )
_validate_point(_UpperCAmelCase )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError("""Both points must be in the same n-dimensional space""" )
return float(sum(abs(a - b ) for a, b in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[float] ) -> None:
if point:
if isinstance(_UpperCAmelCase ,_UpperCAmelCase ):
for item in point:
if not isinstance(_UpperCAmelCase ,(int, float) ):
_a : str =(
"""Expected a list of numbers as input, found """
F"{type(_UpperCAmelCase ).__name__}"
)
raise TypeError(_UpperCAmelCase )
else:
_a : List[Any] =F"Expected a list of numbers as input, found {type(_UpperCAmelCase ).__name__}"
raise TypeError(_UpperCAmelCase )
else:
raise ValueError("""Missing an input""" )
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : list ) -> float:
_validate_point(_UpperCAmelCase )
_validate_point(_UpperCAmelCase )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError("""Both points must be in the same n-dimensional space""" )
return float(sum(abs(x - y ) for x, y in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 694 | 1 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.