code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class snake_case_ ( __lowercase ): __lowerCAmelCase = '''trocr''' __lowerCAmelCase = ['''past_key_values'''] __lowerCAmelCase = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , a_=5_0_2_6_5 , a_=1_0_2_4 , a_=1_2 , a_=1_6 , a_=4_0_9_6 , a_="gelu" , a_=5_1_2 , a_=0.1 , a_=0.0 , a_=0.0 , a_=2 , a_=0.02 , a_=0.0 , a_=True , a_=False , a_=True , a_=True , a_=1 , a_=0 , a_=2 , **a_ , ): a_ : Optional[Any] = vocab_size a_ : Union[str, Any] = d_model a_ : List[Any] = decoder_layers a_ : Optional[Any] = decoder_attention_heads a_ : Optional[int] = decoder_ffn_dim a_ : Optional[int] = activation_function a_ : Dict = max_position_embeddings a_ : Optional[int] = dropout a_ : str = attention_dropout a_ : List[str] = activation_dropout a_ : str = init_std a_ : List[str] = decoder_layerdrop a_ : Any = use_cache a_ : int = scale_embedding a_ : List[Any] = use_learned_position_embeddings a_ : int = layernorm_embedding super().__init__( pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , decoder_start_token_id=a_ , **a_ , )
237
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets __UpperCamelCase = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" __UpperCamelCase = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" __UpperCamelCase = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any]=None ) -> Optional[int]: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(__magic_name__ , __magic_name__ , sample_weight=__magic_name__ ) ), }
26
0
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=3 , __UpperCamelCase=32 , __UpperCamelCase=3 , __UpperCamelCase=10 , __UpperCamelCase=[10, 20, 30, 40] , __UpperCamelCase=[1, 1, 2, 1] , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase="relu" , __UpperCamelCase=3 , __UpperCamelCase=None , ): A_ = parent A_ = batch_size A_ = image_size A_ = num_channels A_ = embeddings_size A_ = hidden_sizes A_ = depths A_ = is_training A_ = use_labels A_ = hidden_act A_ = num_labels A_ = scope A_ = len(__UpperCamelCase ) def lowercase_ ( self ): A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = self.get_config() return config, pixel_values def lowercase_ ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase ): A_ = FlaxRegNetModel(config=__UpperCamelCase ) A_ = model(__UpperCamelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase ): A_ = self.num_labels A_ = FlaxRegNetForImageClassification(config=__UpperCamelCase ) A_ = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self ): A_ = self.prepare_config_and_inputs() A_ , A_ = config_and_inputs A_ = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class lowerCamelCase ( __snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase_ ( self ): A_ = FlaxRegNetModelTester(self ) A_ = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def lowercase_ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ): return def lowercase_ ( self ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase_ ( self ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @unittest.skip(reason="RegNet does not use inputs_embeds" ) def lowercase_ ( self ): pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def lowercase_ ( self ): pass def lowercase_ ( self ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(__UpperCamelCase ) A_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowercase_ ( self ): def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): A_ = model_class(__UpperCamelCase ) A_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) A_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ = self.model_tester.num_stages self.assertEqual(len(__UpperCamelCase ) , expected_num_stages + 1 ) A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowercase_ ( self ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) A_ = model_class(__UpperCamelCase ) @jax.jit def model_jitted(__UpperCamelCase , **__UpperCamelCase ): return model(pixel_values=__UpperCamelCase , **__UpperCamelCase ) with self.subTest("JIT Enabled" ): A_ = model_jitted(**__UpperCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): A_ = model_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase ( )-> Optional[Any]: A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_flax class lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ): return AutoImageProcessor.from_pretrained("facebook/regnet-y-040" ) if is_vision_available() else None @slow def lowercase_ ( self ): A_ = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040" ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=__UpperCamelCase , return_tensors="np" ) A_ = model(**__UpperCamelCase ) # verify the logits A_ = (1, 1000) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) A_ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) )
608
from __future__ import annotations __magic_name__ : List[Any] = 8.9_8_8e9 # units = N * m^s * C^-2 def lowerCAmelCase ( snake_case__ : float , snake_case__ : float , snake_case__ : float , snake_case__ : float )-> dict[str, float]: A_ = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if distance < 0: raise ValueError("Distance cannot be negative" ) if force == 0: A_ = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: A_ = abs(snake_case__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: A_ = abs(snake_case__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: A_ = (COULOMBS_CONSTANT * charge_product / abs(snake_case__ )) ** 0.5 return {"distance": distance} raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
608
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _lowercase = logging.get_logger(__name__) class _lowercase ( __a ): def __init__( self , *A__ , **A__ ) -> None: warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , A__ , ) super().__init__(*A__ , **A__ )
342
'''simple docstring''' import math def __UpperCamelCase ( a : int ) ->list[int]: snake_case = [] snake_case = 2 snake_case = int(math.sqrt(a ) ) # Size of every segment snake_case = [True] * (end + 1) snake_case = [] while start <= end: if temp[start] is True: in_prime.append(a ) for i in range(start * start , end + 1 , a ): snake_case = False start += 1 prime += in_prime snake_case = end + 1 snake_case = min(2 * end , a ) while low <= n: snake_case = [True] * (high - low + 1) for each in in_prime: snake_case = math.floor(low / each ) * each if t < low: t += each for j in range(a , high + 1 , a ): snake_case = False for j in range(len(a ) ): if temp[j] is True: prime.append(j + low ) snake_case = high + 1 snake_case = min(high + end , a ) return prime print(sieve(10**6))
342
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : str ='ctrl' __lowerCamelCase : Any =['past_key_values'] __lowerCamelCase : Any ={ 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : str , __lowercase : Any=246534 , __lowercase : Tuple=256 , __lowercase : List[str]=1280 , __lowercase : Union[str, Any]=8192 , __lowercase : List[str]=48 , __lowercase : List[str]=16 , __lowercase : Tuple=0.1 , __lowercase : Optional[Any]=0.1 , __lowercase : List[str]=1E-6 , __lowercase : Union[str, Any]=0.02 , __lowercase : Tuple=True , **__lowercase : Optional[int] , ): '''simple docstring''' __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = dff __a = resid_pdrop __a = embd_pdrop __a = layer_norm_epsilon __a = initializer_range __a = use_cache super().__init__(**__lowercase )
547
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 3 , _SCREAMING_SNAKE_CASE : int = 7 , _SCREAMING_SNAKE_CASE : int = 100_0000 ): """simple docstring""" __a = 0 __a = 1 for current_denominator in range(1 , limit + 1 ): __a = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __a = current_numerator __a = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
547
1
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCAmelCase ( __lowerCAmelCase ) -> Tuple: """simple docstring""" snake_case__ : Any = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) snake_case__ : Dict = MaskFormerConfig(backbone_config=__lowerCAmelCase ) snake_case__ : Optional[int] = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok snake_case__ : Optional[int] = 847 snake_case__ : Tuple = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok snake_case__ : Tuple = 150 snake_case__ : Optional[Any] = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok snake_case__ : List[Any] = 171 snake_case__ : Union[str, Any] = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO snake_case__ : Tuple = 133 snake_case__ : Dict = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok snake_case__ : Dict = 19 snake_case__ : Any = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok snake_case__ : List[str] = 65 snake_case__ : Dict = '''mapillary-vistas-id2label.json''' snake_case__ : Any = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ : Dict = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} return config def _lowerCAmelCase ( __lowerCAmelCase ) -> Dict: """simple docstring""" snake_case__ : List[Any] = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: """simple docstring""" snake_case__ : Tuple = dct.pop(__lowerCAmelCase ) snake_case__ : str = val def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: """simple docstring""" snake_case__ : int = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): snake_case__ : List[str] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) snake_case__ : List[Any] = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) snake_case__ : List[str] = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : int = in_proj_weight[:dim, :] snake_case__ : Dict = in_proj_bias[: dim] snake_case__ : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] snake_case__ : List[str] = in_proj_bias[ dim : dim * 2 ] snake_case__ : Dict = in_proj_weight[ -dim :, : ] snake_case__ : List[Any] = in_proj_bias[-dim :] # fmt: on def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: """simple docstring""" snake_case__ : Dict = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) snake_case__ : List[str] = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) snake_case__ : Dict = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : List[str] = in_proj_weight[: hidden_size, :] snake_case__ : Any = in_proj_bias[:config.hidden_size] snake_case__ : str = in_proj_weight[hidden_size : hidden_size * 2, :] snake_case__ : List[str] = in_proj_bias[hidden_size : hidden_size * 2] snake_case__ : Dict = in_proj_weight[-hidden_size :, :] snake_case__ : Optional[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) snake_case__ : Optional[int] = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) snake_case__ : Dict = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Union[str, Any] = in_proj_weight[: hidden_size, :] snake_case__ : List[str] = in_proj_bias[:config.hidden_size] snake_case__ : Any = in_proj_weight[hidden_size : hidden_size * 2, :] snake_case__ : int = in_proj_bias[hidden_size : hidden_size * 2] snake_case__ : Optional[Any] = in_proj_weight[-hidden_size :, :] snake_case__ : Dict = in_proj_bias[-hidden_size :] # fmt: on def _lowerCAmelCase ( ) -> torch.Tensor: """simple docstring""" snake_case__ : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ : str = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ) -> int: """simple docstring""" snake_case__ : Dict = get_maskformer_config(__lowerCAmelCase ) # load original state_dict with open(__lowerCAmelCase , '''rb''' ) as f: snake_case__ : List[str] = pickle.load(__lowerCAmelCase ) snake_case__ : Union[str, Any] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys snake_case__ : Optional[int] = create_rename_keys(__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_swin_q_k_v(__lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): snake_case__ : Any = torch.from_numpy(__lowerCAmelCase ) # load 🤗 model snake_case__ : Tuple = MaskFormerForInstanceSegmentation(__lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(__lowerCAmelCase , param.shape ) snake_case__ , snake_case__ : Tuple = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__lowerCAmelCase ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results snake_case__ : str = prepare_img() if "vistas" in model_name: snake_case__ : Tuple = 65 elif "cityscapes" in model_name: snake_case__ : List[Any] = 65535 else: snake_case__ : Tuple = 255 snake_case__ : List[Any] = True if '''ade''' in model_name else False snake_case__ : Dict = MaskFormerImageProcessor(ignore_index=__lowerCAmelCase , reduce_labels=__lowerCAmelCase ) snake_case__ : str = image_processor(__lowerCAmelCase , return_tensors='''pt''' ) snake_case__ : List[str] = model(**__lowerCAmelCase ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": snake_case__ : Union[str, Any] = torch.tensor( [[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) A__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
252
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a ( unittest.TestCase ): def __lowerCamelCase ( self :Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCamelCase ( self :Dict ): snake_case__ : Optional[Any] = 1 snake_case__ : int = 3 snake_case__ : Optional[int] = (3_2, 3_2) snake_case__ : Any = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(__lowercase ) return image @property def __lowerCamelCase ( self :int ): torch.manual_seed(0 ) snake_case__ : List[Any] = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=7 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=3_2 ,attention_head_dim=8 ,use_linear_projection=__lowercase ,only_cross_attention=(True, True, False) ,num_class_embeds=1_0_0 ,) return model @property def __lowerCamelCase ( self :List[Any] ): torch.manual_seed(0 ) snake_case__ : Tuple = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) return model @property def __lowerCamelCase ( self :str ): torch.manual_seed(0 ) snake_case__ : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) return CLIPTextModel(__lowercase ) def __lowerCamelCase ( self :List[str] ): snake_case__ : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case__ : str = self.dummy_cond_unet_upscale snake_case__ : Optional[int] = DDPMScheduler() snake_case__ : Tuple = DDIMScheduler(prediction_type='''v_prediction''' ) snake_case__ : List[Any] = self.dummy_vae snake_case__ : Optional[int] = self.dummy_text_encoder snake_case__ : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ : Any = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] snake_case__ : List[str] = Image.fromarray(np.uinta(__lowercase ) ).convert('''RGB''' ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk snake_case__ : Union[str, Any] = StableDiffusionUpscalePipeline( unet=__lowercase ,low_res_scheduler=__lowercase ,scheduler=__lowercase ,vae=__lowercase ,text_encoder=__lowercase ,tokenizer=__lowercase ,max_noise_level=3_5_0 ,) snake_case__ : List[str] = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) snake_case__ : Tuple = '''A painting of a squirrel eating a burger''' snake_case__ : int = torch.Generator(device=__lowercase ).manual_seed(0 ) snake_case__ : Optional[Any] = sd_pipe( [prompt] ,image=__lowercase ,generator=__lowercase ,guidance_scale=6.0 ,noise_level=2_0 ,num_inference_steps=2 ,output_type='''np''' ,) snake_case__ : Optional[int] = output.images snake_case__ : Dict = torch.Generator(device=__lowercase ).manual_seed(0 ) snake_case__ : Tuple = sd_pipe( [prompt] ,image=__lowercase ,generator=__lowercase ,guidance_scale=6.0 ,noise_level=2_0 ,num_inference_steps=2 ,output_type='''np''' ,return_dict=__lowercase ,)[0] snake_case__ : List[str] = image[0, -3:, -3:, -1] snake_case__ : List[Any] = image_from_tuple[0, -3:, -3:, -1] snake_case__ : Any = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) snake_case__ : List[Any] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCamelCase ( self :int ): snake_case__ : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case__ : int = self.dummy_cond_unet_upscale snake_case__ : Optional[int] = DDPMScheduler() snake_case__ : str = DDIMScheduler(prediction_type='''v_prediction''' ) snake_case__ : Any = self.dummy_vae snake_case__ : Any = self.dummy_text_encoder snake_case__ : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ : int = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] snake_case__ : Union[str, Any] = Image.fromarray(np.uinta(__lowercase ) ).convert('''RGB''' ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk snake_case__ : Union[str, Any] = StableDiffusionUpscalePipeline( unet=__lowercase ,low_res_scheduler=__lowercase ,scheduler=__lowercase ,vae=__lowercase ,text_encoder=__lowercase ,tokenizer=__lowercase ,max_noise_level=3_5_0 ,) snake_case__ : Union[str, Any] = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) snake_case__ : str = '''A painting of a squirrel eating a burger''' snake_case__ : Tuple = sd_pipe( 2 * [prompt] ,image=2 * [low_res_image] ,guidance_scale=6.0 ,noise_level=2_0 ,num_inference_steps=2 ,output_type='''np''' ,) snake_case__ : Tuple = output.images assert image.shape[0] == 2 snake_case__ : Optional[Any] = torch.Generator(device=__lowercase ).manual_seed(0 ) snake_case__ : Dict = sd_pipe( [prompt] ,image=__lowercase ,generator=__lowercase ,num_images_per_prompt=2 ,guidance_scale=6.0 ,noise_level=2_0 ,num_inference_steps=2 ,output_type='''np''' ,) snake_case__ : Union[str, Any] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' ,'''This test requires a GPU''' ) def __lowerCamelCase ( self :Tuple ): snake_case__ : Tuple = self.dummy_cond_unet_upscale snake_case__ : Tuple = DDPMScheduler() snake_case__ : Dict = DDIMScheduler(prediction_type='''v_prediction''' ) snake_case__ : int = self.dummy_vae snake_case__ : List[Any] = self.dummy_text_encoder snake_case__ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ : Tuple = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] snake_case__ : Tuple = Image.fromarray(np.uinta(__lowercase ) ).convert('''RGB''' ).resize((6_4, 6_4) ) # put models in fp16, except vae as it overflows in fp16 snake_case__ : Optional[Any] = unet.half() snake_case__ : Any = text_encoder.half() # make sure here that pndm scheduler skips prk snake_case__ : Tuple = StableDiffusionUpscalePipeline( unet=__lowercase ,low_res_scheduler=__lowercase ,scheduler=__lowercase ,vae=__lowercase ,text_encoder=__lowercase ,tokenizer=__lowercase ,max_noise_level=3_5_0 ,) snake_case__ : str = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) snake_case__ : List[Any] = '''A painting of a squirrel eating a burger''' snake_case__ : Optional[int] = torch.manual_seed(0 ) snake_case__ : str = sd_pipe( [prompt] ,image=__lowercase ,generator=__lowercase ,num_inference_steps=2 ,output_type='''np''' ,).images snake_case__ : Optional[Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class a ( unittest.TestCase ): def __lowerCamelCase ( self :Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) snake_case__ : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) snake_case__ : int = '''stabilityai/stable-diffusion-x4-upscaler''' snake_case__ : Optional[Any] = StableDiffusionUpscalePipeline.from_pretrained(__lowercase ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) pipe.enable_attention_slicing() snake_case__ : List[str] = '''a cat sitting on a park bench''' snake_case__ : List[Any] = torch.manual_seed(0 ) snake_case__ : Any = pipe( prompt=__lowercase ,image=__lowercase ,generator=__lowercase ,output_type='''np''' ,) snake_case__ : Any = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-3 def __lowerCamelCase ( self :int ): snake_case__ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) snake_case__ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) snake_case__ : Tuple = '''stabilityai/stable-diffusion-x4-upscaler''' snake_case__ : Optional[Any] = StableDiffusionUpscalePipeline.from_pretrained( __lowercase ,torch_dtype=torch.floataa ,) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) pipe.enable_attention_slicing() snake_case__ : Union[str, Any] = '''a cat sitting on a park bench''' snake_case__ : Optional[int] = torch.manual_seed(0 ) snake_case__ : List[Any] = pipe( prompt=__lowercase ,image=__lowercase ,generator=__lowercase ,output_type='''np''' ,) snake_case__ : Tuple = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __lowerCamelCase ( self :Union[str, Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) snake_case__ : Optional[Any] = '''stabilityai/stable-diffusion-x4-upscaler''' snake_case__ : List[Any] = StableDiffusionUpscalePipeline.from_pretrained( __lowercase ,torch_dtype=torch.floataa ,) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case__ : List[Any] = '''a cat sitting on a park bench''' snake_case__ : List[Any] = torch.manual_seed(0 ) snake_case__ : Tuple = pipe( prompt=__lowercase ,image=__lowercase ,generator=__lowercase ,num_inference_steps=5 ,output_type='''np''' ,) snake_case__ : str = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
252
1
from __future__ import annotations def _lowerCAmelCase ( __magic_name__ :list[int] , __magic_name__ :list[int] , __magic_name__ :list[int] , __magic_name__ :list[list[str]] , __magic_name__ :int , ): UpperCAmelCase_ = len(__magic_name__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__magic_name__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __magic_name__ , __magic_name__ , ) def _lowerCAmelCase ( __magic_name__ :int ): UpperCAmelCase_ = [] depth_first_search([] , [] , [] , __magic_name__ , __magic_name__ ) # Print all the boards for board in boards: for column in board: print(__magic_name__ ) print('''''' ) print(len(__magic_name__ ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
407
from math import isqrt, loga def _lowerCAmelCase ( __magic_name__ :int ): UpperCAmelCase_ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __magic_name__ , __magic_name__ ): UpperCAmelCase_ = False return [i for i in range(2 , __magic_name__ ) if is_prime[i]] def _lowerCAmelCase ( __magic_name__ :int = 8_0_0_8_0_0 , __magic_name__ :int = 8_0_0_8_0_0 ): UpperCAmelCase_ = degree * loga(__magic_name__ ) UpperCAmelCase_ = int(__magic_name__ ) UpperCAmelCase_ = calculate_prime_numbers(__magic_name__ ) UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = len(__magic_name__ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"{solution() = }")
407
1
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A ( lowerCamelCase__ ): '''simple docstring''' lowerCamelCase : str = (EulerDiscreteScheduler,) lowerCamelCase : Any = 1_0 def UpperCAmelCase__ ( self : Tuple , **_UpperCamelCase : str): _lowercase: Union[str, Any] = { 'num_train_timesteps': 1_100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', } config.update(**__snake_case) return config def UpperCAmelCase__ ( self : str): for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=__snake_case) def UpperCAmelCase__ ( self : Tuple): for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]): self.check_over_configs(beta_start=__snake_case , beta_end=__snake_case) def UpperCAmelCase__ ( self : Dict): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__snake_case) def UpperCAmelCase__ ( self : Dict): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__snake_case) def UpperCAmelCase__ ( self : Any): _lowercase: Optional[int] = self.scheduler_classes[0] _lowercase: int = self.get_scheduler_config() _lowercase: Optional[Any] = scheduler_class(**__snake_case) scheduler.set_timesteps(self.num_inference_steps) _lowercase: Union[str, Any] = torch.manual_seed(0) _lowercase: Union[str, Any] = self.dummy_model() _lowercase: Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma _lowercase: Tuple = sample.to(__snake_case) for i, t in enumerate(scheduler.timesteps): _lowercase: int = scheduler.scale_model_input(__snake_case , __snake_case) _lowercase: List[str] = model(__snake_case , __snake_case) _lowercase: Dict = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case) _lowercase: Union[str, Any] = output.prev_sample _lowercase: Any = torch.sum(torch.abs(__snake_case)) _lowercase: List[Any] = torch.mean(torch.abs(__snake_case)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1e-3 def UpperCAmelCase__ ( self : Tuple): _lowercase: Optional[int] = self.scheduler_classes[0] _lowercase: List[Any] = self.get_scheduler_config(prediction_type="v_prediction") _lowercase: int = scheduler_class(**__snake_case) scheduler.set_timesteps(self.num_inference_steps) _lowercase: Tuple = torch.manual_seed(0) _lowercase: Union[str, Any] = self.dummy_model() _lowercase: List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowercase: int = sample.to(__snake_case) for i, t in enumerate(scheduler.timesteps): _lowercase: Tuple = scheduler.scale_model_input(__snake_case , __snake_case) _lowercase: Optional[int] = model(__snake_case , __snake_case) _lowercase: Union[str, Any] = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case) _lowercase: Optional[Any] = output.prev_sample _lowercase: Any = torch.sum(torch.abs(__snake_case)) _lowercase: List[Any] = torch.mean(torch.abs(__snake_case)) assert abs(result_sum.item() - 0.0_0_0_2) < 1e-2 assert abs(result_mean.item() - 2.2676e-06) < 1e-3 def UpperCAmelCase__ ( self : List[Any]): _lowercase: Optional[Any] = self.scheduler_classes[0] _lowercase: Tuple = self.get_scheduler_config() _lowercase: str = scheduler_class(**__snake_case) scheduler.set_timesteps(self.num_inference_steps , device=__snake_case) _lowercase: List[str] = torch.manual_seed(0) _lowercase: Dict = self.dummy_model() _lowercase: Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowercase: Optional[int] = sample.to(__snake_case) for t in scheduler.timesteps: _lowercase: int = scheduler.scale_model_input(__snake_case , __snake_case) _lowercase: List[str] = model(__snake_case , __snake_case) _lowercase: Optional[Any] = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case) _lowercase: int = output.prev_sample _lowercase: Optional[Any] = torch.sum(torch.abs(__snake_case)) _lowercase: List[str] = torch.mean(torch.abs(__snake_case)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1e-3 def UpperCAmelCase__ ( self : List[str]): _lowercase: Optional[int] = self.scheduler_classes[0] _lowercase: Dict = self.get_scheduler_config() _lowercase: Tuple = scheduler_class(**__snake_case , use_karras_sigmas=__snake_case) scheduler.set_timesteps(self.num_inference_steps , device=__snake_case) _lowercase: Optional[Any] = torch.manual_seed(0) _lowercase: int = self.dummy_model() _lowercase: Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowercase: Optional[int] = sample.to(__snake_case) for t in scheduler.timesteps: _lowercase: Tuple = scheduler.scale_model_input(__snake_case , __snake_case) _lowercase: Any = model(__snake_case , __snake_case) _lowercase: Dict = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case) _lowercase: str = output.prev_sample _lowercase: Tuple = torch.sum(torch.abs(__snake_case)) _lowercase: Union[str, Any] = torch.mean(torch.abs(__snake_case)) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1e-3
226
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__( lowerCamelCase__ , unittest.TestCase ): lowercase__ = CodeGenTokenizer lowercase__ = CodeGenTokenizerFast lowercase__ = True lowercase__ = {"""add_prefix_space""": True} lowercase__ = False def lowercase_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a : Any = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] a : Dict = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) a : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] a : List[str] = {'unk_token': '<unk>'} a : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) a : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def lowercase_ ( self : Tuple , **__snake_case : Dict ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def lowercase_ ( self : List[Any] , **__snake_case : List[str] ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case ) def lowercase_ ( self : Optional[int] , __snake_case : List[Any] ): a : Tuple = 'lower newer' a : str = 'lower newer' return input_text, output_text def lowercase_ ( self : str ): a : List[Any] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a : Dict = 'lower newer' a : int = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] a : List[str] = tokenizer.tokenize(__snake_case , add_prefix_space=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) a : Dict = tokens + [tokenizer.unk_token] a : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def lowercase_ ( self : List[Any] ): if not self.test_rust_tokenizer: return a : Optional[int] = self.get_tokenizer() a : Tuple = self.get_rust_tokenizer(add_prefix_space=__snake_case ) a : List[str] = 'lower newer' # Testing tokenization a : Optional[int] = tokenizer.tokenize(__snake_case , add_prefix_space=__snake_case ) a : Optional[Any] = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Testing conversion to ids without special tokens a : Tuple = tokenizer.encode(__snake_case , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) a : str = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Testing conversion to ids with special tokens a : Optional[int] = self.get_rust_tokenizer(add_prefix_space=__snake_case ) a : Optional[int] = tokenizer.encode(__snake_case , add_prefix_space=__snake_case ) a : Dict = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Testing the unknown token a : Any = tokens + [rust_tokenizer.unk_token] a : List[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def lowercase_ ( self : List[str] , *__snake_case : int , **__snake_case : str ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowercase_ ( self : List[str] , __snake_case : str=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a : List[Any] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) # Simple input a : Dict = 'This is a simple input' a : int = ['This is a simple input 1', 'This is a simple input 2'] a : Dict = ('This is a simple input', 'This is a pair') a : Dict = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(__snake_case , tokenizer_r.encode , __snake_case , max_length=__snake_case , padding='max_length' ) # Simple input self.assertRaises(__snake_case , tokenizer_r.encode_plus , __snake_case , max_length=__snake_case , padding='max_length' ) # Simple input self.assertRaises( __snake_case , tokenizer_r.batch_encode_plus , __snake_case , max_length=__snake_case , padding='max_length' , ) # Pair input self.assertRaises(__snake_case , tokenizer_r.encode , __snake_case , max_length=__snake_case , padding='max_length' ) # Pair input self.assertRaises(__snake_case , tokenizer_r.encode_plus , __snake_case , max_length=__snake_case , padding='max_length' ) # Pair input self.assertRaises( __snake_case , tokenizer_r.batch_encode_plus , __snake_case , max_length=__snake_case , padding='max_length' , ) def lowercase_ ( self : Optional[Any] ): a : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input a : Union[str, Any] = 'This is a simple input' a : Dict = ['This is a simple input looooooooong', 'This is a simple input'] a : int = ('This is a simple input', 'This is a pair') a : List[Any] = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] a : Optional[int] = tokenizer.pad_token_id a : List[Any] = tokenizer(__snake_case , padding='max_length' , max_length=30 , return_tensors='np' ) a : Union[str, Any] = tokenizer(__snake_case , padding=__snake_case , truncate=__snake_case , return_tensors='np' ) a : Optional[Any] = tokenizer(*__snake_case , padding='max_length' , max_length=60 , return_tensors='np' ) a : List[Any] = tokenizer(__snake_case , padding=__snake_case , truncate=__snake_case , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def lowercase_ ( self : Optional[int] ): a : int = '$$$' a : Dict = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__snake_case , add_bos_token=__snake_case ) a : int = 'This is a simple input' a : Tuple = ['This is a simple input 1', 'This is a simple input 2'] a : Any = tokenizer.bos_token_id a : Union[str, Any] = tokenizer(__snake_case ) a : Dict = tokenizer(__snake_case ) self.assertEqual(out_s.input_ids[0] , __snake_case ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) a : Optional[Any] = tokenizer.decode(out_s.input_ids ) a : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __snake_case ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowercase_ ( self : List[Any] ): a : Tuple = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) a : Union[str, Any] = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' a : Optional[Any] = '\nif len_a > len_b: result = a\nelse: result = b' a : Any = tokenizer.encode(__snake_case ) a : Union[str, Any] = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n'] a : List[str] = tokenizer.decode(__snake_case , truncate_before_pattern=__snake_case ) self.assertEqual(__snake_case , __snake_case ) def lowercase_ ( self : Any ): pass
526
0
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging A : Optional[int] = logging.get_logger(__name__) A : List[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED A : Any = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } A : Union[str, Any] = { """allenai/led-base-16384""": 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _a ( ): snake_case : Union[str, Any] =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) snake_case : Tuple =bs[:] snake_case : Any =0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase_ ) cs.append(2**8 + n ) n += 1 snake_case : int =[chr(lowerCamelCase_ ) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_ ) ) def _a ( lowerCamelCase_ ): snake_case : Optional[Any] =set() snake_case : Union[str, Any] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case : Optional[Any] =char return pairs class lowerCAmelCase_ ( a_ ): __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self : Optional[int], _snake_case : Optional[int], _snake_case : Optional[Any], _snake_case : str="replace", _snake_case : int="<s>", _snake_case : str="</s>", _snake_case : str="</s>", _snake_case : List[Any]="<s>", _snake_case : int="<unk>", _snake_case : List[str]="<pad>", _snake_case : str="<mask>", _snake_case : List[Any]=False, **_snake_case : List[str], ): '''simple docstring''' snake_case : Optional[Any] =AddedToken(_snake_case, lstrip=_snake_case, rstrip=_snake_case ) if isinstance(_snake_case, _snake_case ) else bos_token snake_case : Optional[Any] =AddedToken(_snake_case, lstrip=_snake_case, rstrip=_snake_case ) if isinstance(_snake_case, _snake_case ) else eos_token snake_case : Optional[int] =AddedToken(_snake_case, lstrip=_snake_case, rstrip=_snake_case ) if isinstance(_snake_case, _snake_case ) else sep_token snake_case : Dict =AddedToken(_snake_case, lstrip=_snake_case, rstrip=_snake_case ) if isinstance(_snake_case, _snake_case ) else cls_token snake_case : Tuple =AddedToken(_snake_case, lstrip=_snake_case, rstrip=_snake_case ) if isinstance(_snake_case, _snake_case ) else unk_token snake_case : str =AddedToken(_snake_case, lstrip=_snake_case, rstrip=_snake_case ) if isinstance(_snake_case, _snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case : Optional[Any] =AddedToken(_snake_case, lstrip=_snake_case, rstrip=_snake_case ) if isinstance(_snake_case, _snake_case ) else mask_token super().__init__( errors=_snake_case, bos_token=_snake_case, eos_token=_snake_case, unk_token=_snake_case, sep_token=_snake_case, cls_token=_snake_case, pad_token=_snake_case, mask_token=_snake_case, add_prefix_space=_snake_case, **_snake_case, ) with open(_snake_case, encoding='''utf-8''' ) as vocab_handle: snake_case : Optional[Any] =json.load(_snake_case ) snake_case : Optional[int] ={v: k for k, v in self.encoder.items()} snake_case : List[str] =errors # how to handle errors in decoding snake_case : str =bytes_to_unicode() snake_case : List[str] ={v: k for k, v in self.byte_encoder.items()} with open(_snake_case, encoding='''utf-8''' ) as merges_handle: snake_case : Optional[Any] =merges_handle.read().split('''\n''' )[1:-1] snake_case : str =[tuple(merge.split() ) for merge in bpe_merges] snake_case : List[Any] =dict(zip(_snake_case, range(len(_snake_case ) ) ) ) snake_case : int ={} snake_case : List[str] =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case : Optional[Any] =re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def __snake_case ( self : Union[str, Any] ): '''simple docstring''' return len(self.encoder ) def __snake_case ( self : Any ): '''simple docstring''' return dict(self.encoder, **self.added_tokens_encoder ) def __snake_case ( self : Dict, _snake_case : Optional[int] ): '''simple docstring''' if token in self.cache: return self.cache[token] snake_case : List[str] =tuple(_snake_case ) snake_case : Any =get_pairs(_snake_case ) if not pairs: return token while True: snake_case : List[str] =min(_snake_case, key=lambda _snake_case : self.bpe_ranks.get(_snake_case, float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break snake_case , snake_case : List[Any] =bigram snake_case : str =[] snake_case : Tuple =0 while i < len(_snake_case ): try: snake_case : Union[str, Any] =word.index(_snake_case, _snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case : Optional[int] =j if word[i] == first and i < len(_snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case : Tuple =tuple(_snake_case ) snake_case : Tuple =new_word if len(_snake_case ) == 1: break else: snake_case : Optional[Any] =get_pairs(_snake_case ) snake_case : Union[str, Any] =''' '''.join(_snake_case ) snake_case : Union[str, Any] =word return word def __snake_case ( self : str, _snake_case : List[str] ): '''simple docstring''' snake_case : Optional[Any] =[] for token in re.findall(self.pat, _snake_case ): snake_case : List[str] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_snake_case ).split(''' ''' ) ) return bpe_tokens def __snake_case ( self : List[str], _snake_case : str ): '''simple docstring''' return self.encoder.get(_snake_case, self.encoder.get(self.unk_token ) ) def __snake_case ( self : Optional[int], _snake_case : Dict ): '''simple docstring''' return self.decoder.get(_snake_case ) def __snake_case ( self : List[str], _snake_case : Optional[Any] ): '''simple docstring''' snake_case : Any =''''''.join(_snake_case ) snake_case : int =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''', errors=self.errors ) return text def __snake_case ( self : Dict, _snake_case : str, _snake_case : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case : int =os.path.join( _snake_case, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case : Optional[Any] =os.path.join( _snake_case, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_snake_case, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=_snake_case, ensure_ascii=_snake_case ) + '''\n''' ) snake_case : int =0 with open(_snake_case, '''w''', encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda _snake_case : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) snake_case : Union[str, Any] =token_index writer.write(''' '''.join(_snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file def __snake_case ( self : Union[str, Any], _snake_case : List[int], _snake_case : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case : Union[str, Any] =[self.cls_token_id] snake_case : Optional[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __snake_case ( self : Union[str, Any], _snake_case : List[int], _snake_case : Optional[List[int]] = None, _snake_case : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case, token_ids_a=_snake_case, already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] def __snake_case ( self : Any, _snake_case : List[int], _snake_case : Optional[List[int]] = None ): '''simple docstring''' snake_case : int =[self.sep_token_id] snake_case : List[str] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __snake_case ( self : List[str], _snake_case : Tuple, _snake_case : Union[str, Any]=False, **_snake_case : List[Any] ): '''simple docstring''' snake_case : Optional[int] =kwargs.pop('''add_prefix_space''', self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_snake_case ) > 0 and not text[0].isspace()): snake_case : int =''' ''' + text return (text, kwargs) def __snake_case ( self : List[str], _snake_case : Union[Dict[str, EncodedInput], BatchEncoding], _snake_case : Optional[int] = None, _snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD, _snake_case : Optional[int] = None, _snake_case : Optional[bool] = None, ): '''simple docstring''' snake_case : Optional[Any] =super()._pad( encoded_inputs=_snake_case, max_length=_snake_case, padding_strategy=_snake_case, pad_to_multiple_of=_snake_case, return_attention_mask=_snake_case, ) # Load from model defaults if return_attention_mask is None: snake_case : Dict ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case : Union[str, Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case : Union[str, Any] =len(encoded_inputs['''global_attention_mask'''] ) != len(_snake_case ) if needs_to_be_padded: snake_case : Any =len(_snake_case ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case : Union[str, Any] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": snake_case : Optional[Any] =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
136
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar A : Union[str, Any] = TypeVar("""T""") class lowerCAmelCase_ ( Generic[T] ): def __init__( self : Union[str, Any], _snake_case : bool = True ): '''simple docstring''' snake_case : dict[T, list[T]] ={} # dictionary of lists snake_case : List[str] =directed def __snake_case ( self : Any, _snake_case : T, _snake_case : T ): '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_snake_case ) self.adj_list[destination_vertex].append(_snake_case ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_snake_case ) snake_case : List[Any] =[source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(_snake_case ) snake_case : int =[destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: snake_case : Any =[destination_vertex] snake_case : str =[source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_snake_case ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_snake_case ) snake_case : str =[] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: snake_case : Optional[int] =[destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: snake_case : str =[destination_vertex] snake_case : Union[str, Any] =[] return self def __repr__( self : Tuple ): '''simple docstring''' return pformat(self.adj_list )
136
1
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def _SCREAMING_SNAKE_CASE ( *lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ : List[Any] = list(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): lowerCamelCase_ : str = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): lowerCamelCase_ : Dict = [ 'CUDA out of memory.', # CUDA OOM 'cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.', # CUDNN SNAFU 'DefaultCPUAllocator: can\'t allocate memory', # CPU OOM ] if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ = None ,lowerCAmelCase__ = 1_28 ): if function is None: return functools.partial(lowerCAmelCase__ ,starting_batch_size=lowerCAmelCase__ ) lowerCamelCase_ : List[str] = starting_batch_size def decorator(*lowerCAmelCase__ ,**lowerCAmelCase__ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() lowerCamelCase_ : int = list(inspect.signature(lowerCAmelCase__ ).parameters.keys() ) # Guard against user error if len(lowerCAmelCase__ ) < (len(lowerCAmelCase__ ) + 1): lowerCamelCase_ : Dict = ', '.join([F"{arg}={value}" for arg, value in zip(params[1:] ,args[1:] )] ) raise TypeError( F"Batch size was passed into `{function.__name__}` as the first argument when called." F"Remove this as the decorator already does so: `{function.__name__}({arg_str})`" ) while True: if batch_size == 0: raise RuntimeError('No executable batch size found, reached zero.' ) try: return function(lowerCAmelCase__ ,*lowerCAmelCase__ ,**lowerCAmelCase__ ) except Exception as e: if should_reduce_batch_size(lowerCAmelCase__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
364
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _lowercase : int =logging.get_logger(__name__) class UpperCamelCase_ ( snake_case__ ): def __init__( self : Tuple , *lowerCamelCase : List[Any] , **lowerCamelCase : Union[str, Any] ): warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
364
1
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def __UpperCAmelCase ( UpperCamelCase__ :dict , UpperCamelCase__ :str , UpperCamelCase__ :set , UpperCamelCase__ :set , UpperCamelCase__ :dict , UpperCamelCase__ :dict , UpperCamelCase__ :PriorityQueue , UpperCamelCase__ :dict , UpperCamelCase__ :float | int , ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case__ : Union[str, Any] = cst_fwd.get(UpperCamelCase__ , np.inf ) snake_case__ : str = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case__ : Any = new_cost_f snake_case__ : int = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case__ : Union[str, Any] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __UpperCAmelCase ( UpperCamelCase__ :str , UpperCamelCase__ :str , UpperCamelCase__ :dict , UpperCamelCase__ :dict ) -> int: snake_case__ : List[str] = -1 snake_case__ : str = set() snake_case__ : int = set() snake_case__ : str = {source: 0} snake_case__ : List[str] = {destination: 0} snake_case__ : Union[str, Any] = {source: None} snake_case__ : Tuple = {destination: None} snake_case__ : PriorityQueue[Any] = PriorityQueue() snake_case__ : PriorityQueue[Any] = PriorityQueue() snake_case__ : Any = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case__ , snake_case__ : Tuple = queue_forward.get() visited_forward.add(UpperCamelCase__ ) snake_case__ , snake_case__ : int = queue_backward.get() visited_backward.add(UpperCamelCase__ ) snake_case__ : Tuple = pass_and_relaxation( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) snake_case__ : Tuple = pass_and_relaxation( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case__ : Union[str, Any] = shortest_distance return shortest_path_distance _lowercase : Dict ={ "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } _lowercase : List[Any] ={ "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
574
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any ={ "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict =["ConditionalDetrFeatureExtractor"] _lowercase : Optional[int] =["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] =[ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
574
1
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class A: '''simple docstring''' UpperCamelCase = 42 # [batch_size x 3] UpperCamelCase = 42 # [batch_size x 3] UpperCamelCase = 42 # [batch_size x 3] UpperCamelCase = 42 # [batch_size x 3] UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def a__ ( self : List[Any] ) -> torch.Tensor: """simple docstring""" lowerCamelCase_ = torch.arange(self.height * self.width ) lowerCamelCase_ = torch.stack( [ pixel_indices % self.width, torch.div(A_ , self.width , rounding_mode='trunc' ), ] , axis=1 , ) return coords @property def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , *lowerCamelCase_ = self.shape lowerCamelCase_ = int(np.prod(A_ ) ) lowerCamelCase_ = self.get_image_coords() lowerCamelCase_ = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) lowerCamelCase_ = self.get_camera_rays(A_ ) lowerCamelCase_ = rays.view(A_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def a__ ( self : int , A_ : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowerCamelCase_ , *lowerCamelCase_ , lowerCamelCase_ = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] lowerCamelCase_ = coords.view(A_ , -1 , 2 ) lowerCamelCase_ = self.resolution() lowerCamelCase_ = self.fov() lowerCamelCase_ = (flat.float() / (res - 1)) * 2 - 1 lowerCamelCase_ = fracs * torch.tan(fov / 2 ) lowerCamelCase_ = fracs.view(A_ , -1 , 2 ) lowerCamelCase_ = ( self.z.view(A_ , 1 , 3 ) + self.x.view(A_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(A_ , 1 , 3 ) * fracs[:, :, 1:] ) lowerCamelCase_ = directions / directions.norm(dim=-1 , keepdim=A_ ) lowerCamelCase_ = torch.stack( [ torch.broadcast_to(self.origin.view(A_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(A_ , *A_ , 2 , 3 ) def a__ ( self : Any , A_ : int , A_ : int ) -> "DifferentiableProjectiveCamera": """simple docstring""" assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=A_ , height=A_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): lowerCamelCase_ = np.array([np.sin(lowercase ), np.cos(lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) lowerCamelCase_ = -z * 4 lowerCamelCase_ = np.array([np.cos(lowercase ), -np.sin(lowercase ), 0.0] ) lowerCamelCase_ = np.cross(lowercase , lowercase ) origins.append(lowercase ) xs.append(lowercase ) ys.append(lowercase ) zs.append(lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , width=lowercase , height=lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowercase )) , )
70
def _A ( lowerCamelCase = 200 ): a__ : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] a__ : Dict = [0] * (pence + 1) a__ : int = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCamelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_0_0) == 7_3_6_8_2
112
0
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Optional[int] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Dict ): super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase__ :int = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) @torch.no_grad() def __call__( self :List[Any] , lowerCamelCase__ :int = 1 , lowerCamelCase__ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ :float = 0.0 , lowerCamelCase__ :int = 50 , lowerCamelCase__ :Optional[bool] = None , lowerCamelCase__ :Optional[str] = "pil" , lowerCamelCase__ :bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: UpperCamelCase__ :Optional[Any] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCamelCase__ :str = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCamelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase__ :str = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase__ :Optional[Any] = self.scheduler.step( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , eta=lowerCamelCase__ , use_clipped_model_output=lowerCamelCase__ , generator=lowerCamelCase__ ).prev_sample UpperCamelCase__ :Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ :List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase__ :List[str] = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase__ )
717
from ...configuration_utils import PretrainedConfig UpperCamelCase = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Dict = """tapas""" def __init__( self :List[Any] , lowerCamelCase__ :List[str]=3_05_22 , lowerCamelCase__ :str=7_68 , lowerCamelCase__ :List[Any]=12 , lowerCamelCase__ :Any=12 , lowerCamelCase__ :Tuple=30_72 , lowerCamelCase__ :int="gelu" , lowerCamelCase__ :Dict=0.1 , lowerCamelCase__ :str=0.1 , lowerCamelCase__ :List[str]=10_24 , lowerCamelCase__ :List[Any]=[3, 2_56, 2_56, 2, 2_56, 2_56, 10] , lowerCamelCase__ :Tuple=0.02 , lowerCamelCase__ :str=1e-12 , lowerCamelCase__ :str=0 , lowerCamelCase__ :Optional[int]=10.0 , lowerCamelCase__ :int=0 , lowerCamelCase__ :Dict=1.0 , lowerCamelCase__ :Union[str, Any]=None , lowerCamelCase__ :Optional[int]=1.0 , lowerCamelCase__ :List[Any]=False , lowerCamelCase__ :Any=None , lowerCamelCase__ :Optional[int]=1.0 , lowerCamelCase__ :Union[str, Any]=1.0 , lowerCamelCase__ :Optional[int]=False , lowerCamelCase__ :List[Any]=False , lowerCamelCase__ :Any="ratio" , lowerCamelCase__ :int=None , lowerCamelCase__ :Union[str, Any]=None , lowerCamelCase__ :int=64 , lowerCamelCase__ :int=32 , lowerCamelCase__ :List[str]=False , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :str=False , lowerCamelCase__ :int=False , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Optional[Any]=False , lowerCamelCase__ :str=None , lowerCamelCase__ :List[Any]=None , **lowerCamelCase__ :Optional[Any] , ): super().__init__(pad_token_id=lowerCamelCase__ , **lowerCamelCase__ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCamelCase__ :List[Any] = vocab_size UpperCamelCase__ :Optional[int] = hidden_size UpperCamelCase__ :Any = num_hidden_layers UpperCamelCase__ :str = num_attention_heads UpperCamelCase__ :Dict = hidden_act UpperCamelCase__ :Tuple = intermediate_size UpperCamelCase__ :int = hidden_dropout_prob UpperCamelCase__ :List[str] = attention_probs_dropout_prob UpperCamelCase__ :Any = max_position_embeddings UpperCamelCase__ :List[Any] = type_vocab_sizes UpperCamelCase__ :List[Any] = initializer_range UpperCamelCase__ :List[str] = layer_norm_eps # Fine-tuning task hyperparameters UpperCamelCase__ :List[str] = positive_label_weight UpperCamelCase__ :int = num_aggregation_labels UpperCamelCase__ :str = aggregation_loss_weight UpperCamelCase__ :Optional[Any] = use_answer_as_supervision UpperCamelCase__ :Tuple = answer_loss_importance UpperCamelCase__ :Dict = use_normalized_answer_loss UpperCamelCase__ :Optional[Any] = huber_loss_delta UpperCamelCase__ :Any = temperature UpperCamelCase__ :Union[str, Any] = aggregation_temperature UpperCamelCase__ :Tuple = use_gumbel_for_cells UpperCamelCase__ :Tuple = use_gumbel_for_aggregation UpperCamelCase__ :Optional[int] = average_approximation_function UpperCamelCase__ :Optional[Any] = cell_selection_preference UpperCamelCase__ :Any = answer_loss_cutoff UpperCamelCase__ :Dict = max_num_rows UpperCamelCase__ :Optional[int] = max_num_columns UpperCamelCase__ :Tuple = average_logits_per_cell UpperCamelCase__ :Any = select_one_column UpperCamelCase__ :Dict = allow_empty_column_selection UpperCamelCase__ :Union[str, Any] = init_cell_selection_weights_to_zero UpperCamelCase__ :Optional[Any] = reset_position_index_per_cell UpperCamelCase__ :List[str] = disable_per_token_loss # Aggregation hyperparameters UpperCamelCase__ :Tuple = aggregation_labels UpperCamelCase__ :str = no_aggregation_label_index if isinstance(self.aggregation_labels , lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = {int(lowerCamelCase__ ): v for k, v in aggregation_labels.items()}
383
0
"""simple docstring""" import argparse import struct import unittest class lowercase : def __init__( self , lowercase ) -> None: lowerCAmelCase = data # Initialize hash values lowerCAmelCase = [ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants lowerCAmelCase = [ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] lowerCAmelCase = self.preprocessing(self.data ) self.final_hash() @staticmethod def _snake_case ( lowercase ) -> bytes: lowerCAmelCase = b"""\x80""" + (b"""\x00""" * (63 - (len(lowercase ) + 8) % 64)) lowerCAmelCase = struct.pack(""">Q""" , (len(lowercase ) * 8) ) return data + padding + big_endian_integer def _snake_case ( self ) -> None: # Convert into blocks of 64 bytes lowerCAmelCase = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowerCAmelCase = list(struct.unpack(""">16L""" , lowercase ) ) # add 48 0-ed integers words += [0] * 48 lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowerCAmelCase = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) lowerCAmelCase = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) lowerCAmelCase = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression lowerCAmelCase = self.ror(lowercase , 6 ) ^ self.ror(lowercase , 11 ) ^ self.ror(lowercase , 25 ) lowerCAmelCase = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g) lowerCAmelCase = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 lowerCAmelCase = self.ror(lowercase , 2 ) ^ self.ror(lowercase , 13 ) ^ self.ror(lowercase , 22 ) lowerCAmelCase = (a & b) ^ (a & c) ^ (b & c) lowerCAmelCase = (sa + maj) % 0X100_000_000 lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) lowerCAmelCase = [a, b, c, d, e, f, g, h] # Modify final values lowerCAmelCase = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes ) ] lowerCAmelCase = """""".join([hex(lowercase )[2:].zfill(8 ) for value in self.hashes] ) def _snake_case ( self , lowercase , lowercase ) -> int: return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> None: import hashlib lowerCAmelCase = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(lowercase ).hash , hashlib.shaaaa(lowercase ).hexdigest() ) def UpperCAmelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: lowerCAmelCase = f.read() else: lowerCAmelCase = bytes(SCREAMING_SNAKE_CASE , """utf-8""" ) print(SHAaaa(SCREAMING_SNAKE_CASE ).hash ) if __name__ == "__main__": main()
532
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key lowerCAmelCase = remove_duplicates(key.upper() ) lowerCAmelCase = len(SCREAMING_SNAKE_CASE ) # First fill cipher with key characters lowerCAmelCase = {alphabet[i]: char for i, char in enumerate(SCREAMING_SNAKE_CASE )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(SCREAMING_SNAKE_CASE ) , 26 ): lowerCAmelCase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 lowerCAmelCase = alphabet[i - offset] lowerCAmelCase = char return cipher_alphabet def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : dict[str, str] ): '''simple docstring''' return "".join(cipher_map.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for ch in message.upper() ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : dict[str, str] ): '''simple docstring''' lowerCAmelCase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for ch in message.upper() ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = input("""Enter message to encode or decode: """ ).strip() lowerCAmelCase = input("""Enter keyword: """ ).strip() lowerCAmelCase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: lowerCAmelCase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) lowerCAmelCase = create_cipher_map(SCREAMING_SNAKE_CASE ) print(func(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
532
1
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests a : List[str] = open # noqa: we just need to have a builtin inside this module to test it properly
85
"""simple docstring""" def lowercase__(A ) ->list[int]: """simple docstring""" lowercase__ : List[str]= len(A ) for i in range(A ): for j in range(i + 1 , A ): if numbers[j] < numbers[i]: lowercase__, lowercase__ : List[str]= numbers[j], numbers[i] return numbers if __name__ == "__main__": a : Dict = input("""Enter numbers separated by a comma:\n""").strip() a : List[str] = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
85
1
"""simple docstring""" import os import pytest from attr import dataclass __lowerCamelCase = "us-east-1" # defaults region @dataclass class _snake_case : '''simple docstring''' UpperCamelCase__ =42 UpperCamelCase__ ="""arn:aws:iam::558105141721:role/sagemaker_execution_role""" UpperCamelCase__ ={ """task_name""": """mnli""", """per_device_train_batch_size""": 16, """per_device_eval_batch_size""": 16, """do_train""": True, """do_eval""": True, """do_predict""": True, """output_dir""": """/opt/ml/model""", """overwrite_output_dir""": True, """max_steps""": 500, """save_steps""": 5500, } UpperCamelCase__ ={**hyperparameters, """max_steps""": 1000} @property def snake_case_ ( self : Optional[int] ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def snake_case_ ( self : Optional[Any] ): return f'{self.framework}-transfromers-test' @property def snake_case_ ( self : str ): return f'./tests/sagemaker/scripts/{self.framework}' @property def snake_case_ ( self : int ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='''class''' ) def a ( __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ :str = SageMakerTestEnvironment(framework=request.cls.framework )
608
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCamelCase = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
608
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase : Union[str, Any] = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
146
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class a : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=True , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = parent __SCREAMING_SNAKE_CASE: List[str] = batch_size __SCREAMING_SNAKE_CASE: Any = seq_length __SCREAMING_SNAKE_CASE: List[str] = is_training __SCREAMING_SNAKE_CASE: int = use_input_mask __SCREAMING_SNAKE_CASE: Union[str, Any] = use_token_type_ids __SCREAMING_SNAKE_CASE: Optional[int] = use_labels __SCREAMING_SNAKE_CASE: List[str] = vocab_size __SCREAMING_SNAKE_CASE: Any = hidden_size __SCREAMING_SNAKE_CASE: Optional[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE: int = num_attention_heads __SCREAMING_SNAKE_CASE: Any = intermediate_multiple_size __SCREAMING_SNAKE_CASE: Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE: str = hidden_dropout __SCREAMING_SNAKE_CASE: Optional[Any] = attention_dropout __SCREAMING_SNAKE_CASE: Optional[int] = weight_tying __SCREAMING_SNAKE_CASE: List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE: Optional[Any] = type_vocab_size __SCREAMING_SNAKE_CASE: List[str] = type_sequence_label_size __SCREAMING_SNAKE_CASE: Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE: List[Any] = num_labels __SCREAMING_SNAKE_CASE: List[str] = num_choices __SCREAMING_SNAKE_CASE: List[Any] = scope def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE: Tuple = None if self.use_input_mask: __SCREAMING_SNAKE_CASE: Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE: Optional[Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE: Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def snake_case_ ( self ): """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: int = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE: Any = True return config, input_ids, input_mask, token_labels def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: str = GPTNeoXJapaneseModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Optional[Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Tuple = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = True __SCREAMING_SNAKE_CASE: Union[str, Any] = GPTNeoXJapaneseModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Dict = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = GPTNeoXJapaneseForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Dict = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = True __SCREAMING_SNAKE_CASE: Optional[int] = GPTNeoXJapaneseForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # first forward pass __SCREAMING_SNAKE_CASE: Union[str, Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __SCREAMING_SNAKE_CASE: int = ids_tensor((self.batch_size, 3) , config.vocab_size ) __SCREAMING_SNAKE_CASE: Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __SCREAMING_SNAKE_CASE: str = torch.cat([input_ids, next_tokens] , dim=-1 ) __SCREAMING_SNAKE_CASE: Any = torch.cat([input_mask, next_mask] , dim=-1 ) __SCREAMING_SNAKE_CASE: List[str] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[Any] = output_from_no_past['''hidden_states'''][0] __SCREAMING_SNAKE_CASE: Optional[int] = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )['''hidden_states'''][0] # select random slice __SCREAMING_SNAKE_CASE: Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE: List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __SCREAMING_SNAKE_CASE: Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: str = config_and_inputs __SCREAMING_SNAKE_CASE: Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( __lowercase ,__lowercase ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ : List[str] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : List[str] = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : Tuple = ( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = False SCREAMING_SNAKE_CASE__ : List[Any] = False def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = GPTNeoXJapaneseModelTester(self ) __SCREAMING_SNAKE_CASE: str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def snake_case_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: int = self.model_tester.prepare_config_and_inputs_for_decoder() __SCREAMING_SNAKE_CASE: int = None self.model_tester.create_and_check_model_as_decoder(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowerCAmelCase ) @slow def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = '''abeja/gpt-neox-japanese-2.7b''' __SCREAMING_SNAKE_CASE: List[Any] = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] __SCREAMING_SNAKE_CASE: List[Any] = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] __SCREAMING_SNAKE_CASE: List[str] = GPTNeoXJapaneseTokenizer.from_pretrained(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Any = GPTNeoXJapaneseForCausalLM.from_pretrained(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = [] for prompt in prompts: __SCREAMING_SNAKE_CASE: Any = tokenizer(_lowerCAmelCase , return_tensors='''pt''' ).input_ids __SCREAMING_SNAKE_CASE: int = model.generate(_lowerCAmelCase , max_length=50 ) __SCREAMING_SNAKE_CASE: str = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
146
1
__snake_case : str ='\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __snake_case : Optional[Any] =[{'type': 'code', 'content': INSTALL_CONTENT}] __snake_case : List[str] ={ '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
647
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =KandinskyVaaPipeline snake_case_ =[ """image_embeds""", """negative_image_embeds""", ] snake_case_ =["""image_embeds""", """negative_image_embeds"""] snake_case_ =[ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] snake_case_ =False @property def lowerCAmelCase__ (self ) -> int: """simple docstring""" return 32 @property def lowerCAmelCase__ (self ) -> str: """simple docstring""" return 32 @property def lowerCAmelCase__ (self ) -> str: """simple docstring""" return self.time_input_dim @property def lowerCAmelCase__ (self ) -> str: """simple docstring""" return self.time_input_dim * 4 @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" return 1_00 @property def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowerCAmelCase__ : int = UNetaDConditionModel(**__lowerCamelCase ) return model @property def lowerCAmelCase__ (self ) -> int: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.dummy_unet lowerCAmelCase__ : int = self.dummy_movq lowerCAmelCase__ : str = DDIMScheduler( num_train_timesteps=10_00 ,beta_schedule='''linear''' ,beta_start=0.0_0085 ,beta_end=0.012 ,clip_sample=__lowerCamelCase ,set_alpha_to_one=__lowerCamelCase ,steps_offset=1 ,prediction_type='''epsilon''' ,thresholding=__lowerCamelCase ,) lowerCAmelCase__ : Any = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=0 ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( __lowerCamelCase ) if str(__lowerCamelCase ).startswith('''mps''' ): lowerCAmelCase__ : Dict = torch.manual_seed(__lowerCamelCase ) else: lowerCAmelCase__ : Optional[int] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : Any = '''cpu''' lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Optional[Any] = self.pipeline_class(**__lowerCamelCase ) lowerCAmelCase__ : str = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCAmelCase__ : int = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) lowerCAmelCase__ : Optional[Any] = output.images lowerCAmelCase__ : List[Any] = pipe( **self.get_dummy_inputs(__lowerCamelCase ) ,return_dict=__lowerCamelCase ,)[0] lowerCAmelCase__ : str = image[0, -3:, -3:, -1] lowerCAmelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : Optional[int] = np.array( [0.623_7976, 1.0, 0.3644_1332, 1.0, 0.7063_9634, 0.2987_7186, 0.8565_2125, 0.521_6843, 0.5445_4046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def lowerCAmelCase__ (self ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) lowerCAmelCase__ : Union[str, Any] = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' ,torch_dtype=torch.floataa ) pipe_prior.to(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' ,torch_dtype=torch.floataa ) lowerCAmelCase__ : List[Any] = pipeline.to(__lowerCamelCase ) pipeline.set_progress_bar_config(disable=__lowerCamelCase ) lowerCAmelCase__ : str = '''red cat, 4k photo''' lowerCAmelCase__ : Dict = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = pipe_prior( __lowerCamelCase ,generator=__lowerCamelCase ,num_inference_steps=5 ,negative_prompt='''''' ,).to_tuple() lowerCAmelCase__ : int = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowerCAmelCase__ : Any = pipeline( image_embeds=__lowerCamelCase ,negative_image_embeds=__lowerCamelCase ,generator=__lowerCamelCase ,num_inference_steps=1_00 ,output_type='''np''' ,) lowerCAmelCase__ : List[str] = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__lowerCamelCase ,__lowerCamelCase )
647
1
import torch from torch import nn class a__ ( nn.Module ): def __init__( self :Union[str, Any] , _lowerCamelCase :Optional[int] , _lowerCamelCase :Tuple , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :str , _lowerCamelCase :Optional[int]=1 , _lowerCamelCase :List[str]=False ): '''simple docstring''' super().__init__() UpperCamelCase_ : Optional[Any] =n_token UpperCamelCase_ : List[Any] =d_embed UpperCamelCase_ : Dict =d_proj UpperCamelCase_ : Dict =cutoffs + [n_token] UpperCamelCase_ : List[str] =[0] + self.cutoffs UpperCamelCase_ : Union[str, Any] =div_val UpperCamelCase_ : int =self.cutoffs[0] UpperCamelCase_ : Dict =len(self.cutoffs ) - 1 UpperCamelCase_ : Dict =self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCamelCase_ : Any =nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) UpperCamelCase_ : Any =nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCamelCase_ : int =nn.ModuleList() UpperCamelCase_ : str =nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_lowerCamelCase , _lowerCamelCase ) ) ) else: self.out_projs.append(_lowerCamelCase ) self.out_layers.append(nn.Linear(_lowerCamelCase , _lowerCamelCase ) ) else: for i in range(len(self.cutoffs ) ): UpperCamelCase_ : Union[str, Any] =self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase_ : Optional[int] =d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_lowerCamelCase , _lowerCamelCase ) ) ) self.out_layers.append(nn.Linear(_lowerCamelCase , r_idx - l_idx ) ) UpperCamelCase_ : Optional[Any] =keep_order def lowerCamelCase_ ( self :Dict , _lowerCamelCase :Dict , _lowerCamelCase :Dict , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :Union[str, Any] ): '''simple docstring''' if proj is None: UpperCamelCase_ : Any =nn.functional.linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCamelCase_ : Dict =nn.functional.linear(_lowerCamelCase , proj.t().contiguous() ) UpperCamelCase_ : Dict =nn.functional.linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def lowerCamelCase_ ( self :Tuple , _lowerCamelCase :List[str] , _lowerCamelCase :Tuple=None , _lowerCamelCase :Dict=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n UpperCamelCase_ : Dict =hidden[..., :-1, :].contiguous() UpperCamelCase_ : Dict =labels[..., 1:].contiguous() UpperCamelCase_ : int =hidden.view(-1 , hidden.size(-1 ) ) UpperCamelCase_ : Optional[Any] =labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: UpperCamelCase_ : Tuple =hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: UpperCamelCase_ : Any =self._compute_logit(_lowerCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: UpperCamelCase_ : List[str] =labels != -100 UpperCamelCase_ : List[Any] =torch.zeros_like(_lowerCamelCase , dtype=hidden.dtype , device=hidden.device ) UpperCamelCase_ : Optional[int] =( -nn.functional.log_softmax(_lowerCamelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCamelCase_ : Tuple =nn.functional.log_softmax(_lowerCamelCase , dim=-1 ) else: # construct weights and biases UpperCamelCase_ : List[str] =[], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase_ : Any =self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase_ : Optional[Any] =self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase_ : str =self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase_ : Union[str, Any] =self.out_layers[i].weight UpperCamelCase_ : Dict =self.out_layers[i].bias if i == 0: UpperCamelCase_ : List[str] =torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCamelCase_ : List[str] =torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_lowerCamelCase ) biases.append(_lowerCamelCase ) UpperCamelCase_ : Any =weights[0], biases[0], self.out_projs[0] UpperCamelCase_ : Optional[int] =self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCamelCase_ : str =nn.functional.log_softmax(_lowerCamelCase , dim=1 ) if labels is None: UpperCamelCase_ : Any =hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCamelCase_ : List[Any] =torch.zeros_like(_lowerCamelCase , dtype=hidden.dtype , device=hidden.device ) UpperCamelCase_ : Dict =0 UpperCamelCase_ : List[Any] =[0] + self.cutoffs for i in range(len(_lowerCamelCase ) - 1 ): UpperCamelCase_ : List[Any] =cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCamelCase_ : List[str] =(labels >= l_idx) & (labels < r_idx) UpperCamelCase_ : Optional[Any] =mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCamelCase_ : Any =labels.index_select(0 , _lowerCamelCase ) - l_idx UpperCamelCase_ : str =head_logprob.index_select(0 , _lowerCamelCase ) UpperCamelCase_ : int =hidden.index_select(0 , _lowerCamelCase ) else: UpperCamelCase_ : Dict =hidden if i == 0: if labels is not None: UpperCamelCase_ : Optional[int] =head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: UpperCamelCase_ : Union[str, Any] =head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase_ : int =weights[i], biases[i], self.out_projs[i] UpperCamelCase_ : Union[str, Any] =self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCamelCase_ : Union[str, Any] =nn.functional.log_softmax(_lowerCamelCase , dim=1 ) UpperCamelCase_ : Any =self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCamelCase_ : Any =head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: UpperCamelCase_ : int =head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCamelCase_ : Union[str, Any] =logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , _lowerCamelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def lowerCamelCase_ ( self :List[Any] , _lowerCamelCase :List[str] ): '''simple docstring''' if self.n_clusters == 0: UpperCamelCase_ : str =self._compute_logit(_lowerCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(_lowerCamelCase , dim=-1 ) else: # construct weights and biases UpperCamelCase_ : Union[str, Any] =[], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase_ : Union[str, Any] =self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase_ : int =self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase_ : int =self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase_ : str =self.out_layers[i].weight UpperCamelCase_ : Union[str, Any] =self.out_layers[i].bias if i == 0: UpperCamelCase_ : str =torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCamelCase_ : Dict =torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_lowerCamelCase ) biases.append(_lowerCamelCase ) UpperCamelCase_ : Optional[int] =weights[0], biases[0], self.out_projs[0] UpperCamelCase_ : str =self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCamelCase_ : int =hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCamelCase_ : List[str] =nn.functional.log_softmax(_lowerCamelCase , dim=1 ) UpperCamelCase_ : str =[0] + self.cutoffs for i in range(len(_lowerCamelCase ) - 1 ): UpperCamelCase_ : Any =cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCamelCase_ : Optional[int] =head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase_ : List[str] =weights[i], biases[i], self.out_projs[i] UpperCamelCase_ : str =self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCamelCase_ : Dict =nn.functional.log_softmax(_lowerCamelCase , dim=1 ) UpperCamelCase_ : Optional[int] =head_logprob[:, -i] + tail_logprob_i UpperCamelCase_ : str =logprob_i return out
708
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def A_ ( __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = False , ): UpperCamelCase_ : Dict =bnb_quantization_config.load_in_abit UpperCamelCase_ : List[str] =bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) UpperCamelCase_ : Tuple =[] # custom device map if isinstance(__lowercase , __lowercase ) and len(device_map.keys() ) > 1: UpperCamelCase_ : str =[key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: UpperCamelCase_ : Any =get_keys_to_not_convert(__lowercase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__lowercase ) UpperCamelCase_ : str =bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: UpperCamelCase_ : Optional[Any] =[] UpperCamelCase_ : Any =bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__lowercase ) # compatibility with peft UpperCamelCase_ : str =load_in_abit UpperCamelCase_ : Optional[int] =load_in_abit UpperCamelCase_ : Any =get_parameter_device(__lowercase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) UpperCamelCase_ : int =replace_with_bnb_layers(__lowercase , __lowercase , modules_to_not_convert=__lowercase ) # convert param to the right dtype UpperCamelCase_ : Dict =bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: UpperCamelCase_ : int =name.replace('.weight' , '' ).replace('.bias' , '' ) UpperCamelCase_ : Any =getattr(__lowercase , __lowercase , __lowercase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__lowercase ): param.to(__lowercase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): UpperCamelCase_ : List[Any] =replace_with_bnb_layers( __lowercase , __lowercase , modules_to_not_convert=__lowercase ) UpperCamelCase_ : int =get_quantized_model_device_map( __lowercase , __lowercase , __lowercase , max_memory=__lowercase , no_split_module_classes=__lowercase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): UpperCamelCase_ : Union[str, Any] =True UpperCamelCase_ : List[Any] =any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( __lowercase , __lowercase , __lowercase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__lowercase , offload_state_dict=__lowercase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__lowercase , device_map=__lowercase , offload_dir=__lowercase ) def A_ ( __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None ): if device_map is None: if torch.cuda.is_available(): UpperCamelCase_ : int ={'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(__lowercase , __lowercase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) UpperCamelCase_ : Optional[Any] ={} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) UpperCamelCase_ : List[str] ={} UpperCamelCase_ : Optional[int] =special_dtypes UpperCamelCase_ : Any =no_split_module_classes UpperCamelCase_ : str =bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": UpperCamelCase_ : Dict =get_balanced_memory( __lowercase , low_zero=(device_map == 'balanced_low_0') , max_memory=__lowercase , **__lowercase , ) UpperCamelCase_ : Any =max_memory UpperCamelCase_ : Optional[int] =infer_auto_device_map(__lowercase , **__lowercase ) if isinstance(__lowercase , __lowercase ): # check if don't have any quantized module on the cpu UpperCamelCase_ : Dict =bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules UpperCamelCase_ : Union[str, Any] ={ key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def A_ ( __lowercase , __lowercase , __lowercase=None , __lowercase=None ): if modules_to_not_convert is None: UpperCamelCase_ : int =[] UpperCamelCase_ , UpperCamelCase_ : List[Any] =_replace_with_bnb_layers( __lowercase , __lowercase , __lowercase , __lowercase ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def A_ ( __lowercase , __lowercase , __lowercase=None , __lowercase=None , ): UpperCamelCase_ : Optional[Any] =False for name, module in model.named_children(): if current_key_name is None: UpperCamelCase_ : Any =[] current_key_name.append(__lowercase ) if isinstance(__lowercase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` UpperCamelCase_ : Union[str, Any] ='.'.join(__lowercase ) UpperCamelCase_ : Any =True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: UpperCamelCase_ : Dict =False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: UpperCamelCase_ : str =bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__lowercase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: UpperCamelCase_ : Union[str, Any] =bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) UpperCamelCase_ : Union[str, Any] =module.weight.data if module.bias is not None: UpperCamelCase_ : str =module.bias.data bnb_module.requires_grad_(__lowercase ) setattr(__lowercase , __lowercase , __lowercase ) UpperCamelCase_ : Optional[int] =True if len(list(module.children() ) ) > 0: UpperCamelCase_ , UpperCamelCase_ : Any =_replace_with_bnb_layers( __lowercase , __lowercase , __lowercase , __lowercase ) UpperCamelCase_ : str =has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def A_ ( __lowercase ): # Create a copy of the model with init_empty_weights(): UpperCamelCase_ : int =deepcopy(__lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` UpperCamelCase_ : Optional[int] =find_tied_parameters(__lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowercase , __lowercase ): UpperCamelCase_ : List[Any] =sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCamelCase_ : List[Any] =sum(__lowercase , [] ) UpperCamelCase_ : Any =len(__lowercase ) > 0 # Check if it is a base model UpperCamelCase_ : Optional[Any] =False if hasattr(__lowercase , 'base_model_prefix' ): UpperCamelCase_ : List[Any] =not hasattr(__lowercase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase_ : Optional[int] =list(model.named_children() ) UpperCamelCase_ : Union[str, Any] =[list_modules[-1][0]] # add last module together with tied weights UpperCamelCase_ : Optional[int] =set(__lowercase ) - set(__lowercase ) UpperCamelCase_ : List[str] =list(set(__lowercase ) ) + list(__lowercase ) # remove ".weight" from the keys UpperCamelCase_ : Dict =['.weight', '.bias'] UpperCamelCase_ : Optional[Any] =[] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase_ : Dict =name.replace(__lowercase , '' ) filtered_module_names.append(__lowercase ) return filtered_module_names def A_ ( __lowercase ): for m in model.modules(): if isinstance(__lowercase , bnb.nn.Linearabit ): return True return False def A_ ( __lowercase ): return next(parameter.parameters() ).device def A_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(__lowercase , __lowercase , 0 , dtype=__lowercase , value=__lowercase ) UpperCamelCase_ : Any =param_name UpperCamelCase_ : Optional[int] =model if "." in tensor_name: UpperCamelCase_ : Union[str, Any] =tensor_name.split('.' ) for split in splits[:-1]: UpperCamelCase_ : Optional[Any] =getattr(__lowercase , __lowercase ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) UpperCamelCase_ : int =new_module UpperCamelCase_ : int =splits[-1] # offload weights UpperCamelCase_ : str =False offload_weight(module._parameters[tensor_name] , __lowercase , __lowercase , index=__lowercase ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , __lowercase , index=__lowercase , ) else: offload_weight(__lowercase , __lowercase , __lowercase , index=__lowercase ) offload_weight(__lowercase , param_name.replace('weight' , 'SCB' ) , __lowercase , index=__lowercase ) set_module_tensor_to_device(__lowercase , __lowercase , 'meta' , dtype=__lowercase , value=torch.empty(*param.size() ) )
395
0
import math def snake_case (UpperCamelCase : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case (UpperCamelCase : float = 0.1 ): '''simple docstring''' lowerCamelCase__ = 3 lowerCamelCase__ = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(UpperCamelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
165
import qiskit def snake_case (UpperCamelCase : int = 2 ): '''simple docstring''' lowerCamelCase__ = qubits # Using Aer's simulator lowerCamelCase__ = qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register lowerCamelCase__ = qiskit.QuantumCircuit(UpperCamelCase , UpperCamelCase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , UpperCamelCase ): # Adding CX (CNOT) gate circuit.cx(i - 1 , UpperCamelCase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(UpperCamelCase ) ) , list(range(UpperCamelCase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator lowerCamelCase__ = qiskit.execute(UpperCamelCase , UpperCamelCase , shots=1000 ) return job.result().get_counts(UpperCamelCase ) if __name__ == "__main__": print(f'''Total count for various states are: {quantum_entanglement(3)}''')
165
1
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_sentencepiece_available(): import sentencepiece as sp lowercase__ : int = 5 lowercase__ : Any = 10 @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = SpeechaTextTokenizer lowerCAmelCase = False lowerCAmelCase = True def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().setUp() __A : int = sp.SentencePieceProcessor() spm_model.Load(_UpperCAmelCase) __A : Tuple = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(_UpperCAmelCase))] __A : List[str] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase)))) __A : Optional[int] = Path(self.tmpdirname) save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['spm_file']) __A : Optional[int] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = '<pad>' __A : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase) , _UpperCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase) , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(_UpperCAmelCase) , 1001) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1001) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) __A : Optional[Any] = tokenizer.tokenize('This is a test') self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase) , [289, 50, 14, 174, 386] , ) __A : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) __A : List[str] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase) self.assertListEqual(_UpperCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8]) __A : str = tokenizer.convert_ids_to_tokens(_UpperCAmelCase) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = {'input_ids': [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class SCREAMING_SNAKE_CASE (unittest.TestCase ): lowerCAmelCase = '''valhalla/s2t_mustc_multilinguial_medium''' lowerCAmelCase = '''C\'est trop cool''' lowerCAmelCase = '''Esto es genial''' @classmethod def SCREAMING_SNAKE_CASE ( cls): '''simple docstring''' __A : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertEqual(self.tokenizer.vocab_size , 1_0000) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids) __A : List[str] = [ES_CODE, 4, 1601, 47, 7647, 2] __A : Any = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase) __A : int = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = 'fr' __A : Any = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , _UpperCAmelCase) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) __A : Optional[Any] = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
338
'''simple docstring''' lowercase__ : List[Any] = '''Input must be a string of 8 numbers plus letter''' lowercase__ : Optional[Any] = '''TRWAGMYFPDXBNJZSQVHLCKE''' def _lowerCAmelCase ( __snake_case : str ) -> bool: if not isinstance(__snake_case , __snake_case ): __A : str = f'Expected string as input, found {type(__snake_case ).__name__}' raise TypeError(__snake_case ) __A : Any = spanish_id.replace('-' , '' ).upper() if len(__snake_case ) != 9: raise ValueError(__snake_case ) try: __A : Optional[Any] = int(spanish_id_clean[0:8] ) __A : int = spanish_id_clean[8] except ValueError as ex: raise ValueError(__snake_case ) from ex if letter.isdigit(): raise ValueError(__snake_case ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
338
1
def a__ ( A_, A_ = " " ): '''simple docstring''' __magic_name__ = [] __magic_name__ = 0 for index, char in enumerate(UpperCamelCase__ ): if char == separator: split_words.append(string[last_index:index] ) __magic_name__ = index + 1 elif index + 1 == len(UpperCamelCase__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
529
"""simple docstring""" def lowerCamelCase_ (UpperCamelCase__ : str ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
506
0
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : List[str] = get_tests_dir('fixtures/test_sentencepiece.model') lowerCAmelCase : Optional[int] = get_tests_dir('fixtures/test_sentencepiece_bpe.model') lowerCAmelCase : Union[str, Any] = """pt""" if is_torch_available() else """tf""" @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase): lowerCAmelCase_ = CamembertTokenizer lowerCAmelCase_ = CamembertTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase = CamembertTokenizer(A_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = '<pad>' UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>NOTUSED' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(A_ ) , 1004 ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = CamembertTokenizer(A_ ) tokenizer.save_pretrained(self.tmpdirname ) UpperCamelCase = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) UpperCamelCase = 'I was born in 92000, and this is falsé.' UpperCamelCase = tokenizer.encode(A_ ) UpperCamelCase = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) UpperCamelCase = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) UpperCamelCase = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = 'I was born in 92000, and this is falsé.' UpperCamelCase = tokenizer.tokenize(A_ ) UpperCamelCase = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) UpperCamelCase = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = tokenizer.encode(A_ ) UpperCamelCase = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) @slow def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = {'input_ids': [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. UpperCamelCase = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='camembert-base' , revision='3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf' , sequences=A_ , )
706
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCAmelCase : Any = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( snake_case_): def UpperCAmelCase_ ( self , A_ )-> Any: '''simple docstring''' if isinstance(A_ , A_ ): UpperCamelCase = [label.strip() for label in labels.split(',' ) if label.strip()] return labels def __call__( self , A_ , A_ , A_ )-> List[str]: '''simple docstring''' if len(A_ ) == 0 or len(A_ ) == 0: raise ValueError('You must include at least one label and at least one sequence.' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. ' 'Make sure the passed template includes formatting syntax such as {{}} where the label should go.' ).format(A_ ) ) if isinstance(A_ , A_ ): UpperCamelCase = [sequences] UpperCamelCase = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A_ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(snake_case_) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_=ZeroShotClassificationArgumentHandler() , *A_ , **A_ )-> Tuple: '''simple docstring''' UpperCamelCase = args_parser super().__init__(*A_ , **A_ ) if self.entailment_id == -1: logger.warning( 'Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ' '-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.' ) @property def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('entail' ): return ind return -1 def UpperCAmelCase_ ( self , A_ , A_=True , A_=True , A_=TruncationStrategy.ONLY_FIRST , **A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( 'Tokenizer was not supporting padding necessary for zero-shot, attempting to use ' ' `pad_token=eos_token`' ) UpperCamelCase = self.tokenizer.eos_token try: UpperCamelCase = self.tokenizer( A_ , add_special_tokens=A_ , return_tensors=A_ , padding=A_ , truncation=A_ , ) except Exception as e: if "too short" in str(A_ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCamelCase = self.tokenizer( A_ , add_special_tokens=A_ , return_tensors=A_ , padding=A_ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def UpperCAmelCase_ ( self , **A_ )-> str: '''simple docstring''' if kwargs.get('multi_class' , A_ ) is not None: UpperCamelCase = kwargs['multi_class'] logger.warning( 'The `multi_class` argument has been deprecated and renamed to `multi_label`. ' '`multi_class` will be removed in a future version of Transformers.' ) UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = self._args_parser._parse_labels(kwargs['candidate_labels'] ) if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['hypothesis_template'] UpperCamelCase = {} if "multi_label" in kwargs: UpperCamelCase = kwargs['multi_label'] return preprocess_params, {}, postprocess_params def __call__( self , A_ , *A_ , **A_ , )-> int: '''simple docstring''' if len(A_ ) == 0: pass elif len(A_ ) == 1 and "candidate_labels" not in kwargs: UpperCamelCase = args[0] else: raise ValueError(F'''Unable to understand extra arguments {args}''' ) return super().__call__(A_ , **A_ ) def UpperCAmelCase_ ( self , A_ , A_=None , A_="This example is {}." )-> List[str]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self._args_parser(A_ , A_ , A_ ) for i, (candidate_label, sequence_pair) in enumerate(zip(A_ , A_ ) ): UpperCamelCase = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A_ ) - 1, **model_input, } def UpperCAmelCase_ ( self , A_ )-> int: '''simple docstring''' UpperCamelCase = inputs['candidate_label'] UpperCamelCase = inputs['sequence'] UpperCamelCase = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCamelCase = self.model(**A_ ) UpperCamelCase = { 'candidate_label': candidate_label, 'sequence': sequence, 'is_last': inputs['is_last'], **outputs, } return model_outputs def UpperCAmelCase_ ( self , A_ , A_=False )-> List[str]: '''simple docstring''' UpperCamelCase = [outputs['candidate_label'] for outputs in model_outputs] UpperCamelCase = [outputs['sequence'] for outputs in model_outputs] UpperCamelCase = np.concatenate([output['logits'].numpy() for output in model_outputs] ) UpperCamelCase = logits.shape[0] UpperCamelCase = len(A_ ) UpperCamelCase = N // n UpperCamelCase = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A_ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCamelCase = self.entailment_id UpperCamelCase = -1 if entailment_id == 0 else 0 UpperCamelCase = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCamelCase = np.exp(A_ ) / np.exp(A_ ).sum(-1 , keepdims=A_ ) UpperCamelCase = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCamelCase = reshaped_outputs[..., self.entailment_id] UpperCamelCase = np.exp(A_ ) / np.exp(A_ ).sum(-1 , keepdims=A_ ) UpperCamelCase = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
432
0
'''simple docstring''' import numpy as np def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
533
'''simple docstring''' import argparse import datetime def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } _SCREAMING_SNAKE_CASE : Optional[int] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(SCREAMING_SNAKE_CASE__ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month _SCREAMING_SNAKE_CASE : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) _SCREAMING_SNAKE_CASE : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day _SCREAMING_SNAKE_CASE : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator _SCREAMING_SNAKE_CASE : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year _SCREAMING_SNAKE_CASE : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation _SCREAMING_SNAKE_CASE : Optional[int] = datetime.date(int(SCREAMING_SNAKE_CASE__ ) , int(SCREAMING_SNAKE_CASE__ ) , int(SCREAMING_SNAKE_CASE__ ) ) # Start math if m <= 2: _SCREAMING_SNAKE_CASE : Union[str, Any] = y - 1 _SCREAMING_SNAKE_CASE : Optional[int] = m + 12 # maths var _SCREAMING_SNAKE_CASE : int = int(str(SCREAMING_SNAKE_CASE__ )[:2] ) _SCREAMING_SNAKE_CASE : int = int(str(SCREAMING_SNAKE_CASE__ )[2:] ) _SCREAMING_SNAKE_CASE : int = int(2.6 * m - 5.3_9 ) _SCREAMING_SNAKE_CASE : int = int(c / 4 ) _SCREAMING_SNAKE_CASE : int = int(k / 4 ) _SCREAMING_SNAKE_CASE : int = int(d + k ) _SCREAMING_SNAKE_CASE : int = int(t + u + v + x ) _SCREAMING_SNAKE_CASE : int = int(z - (2 * c) ) _SCREAMING_SNAKE_CASE : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response _SCREAMING_SNAKE_CASE : str = f"""Your date {date_input}, is a {days[str(SCREAMING_SNAKE_CASE__ )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Tuple = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) UpperCAmelCase_ : List[Any] = parser.parse_args() zeller(args.date_input)
533
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A_ : int =logging.get_logger(__name__) A_ : List[str] ='''▁''' A_ : Any ={'''vocab_file''': '''sentencepiece.bpe.model'''} A_ : List[str] ={ '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } A_ : List[Any] ={ '''facebook/xglm-564M''': 20_48, } class __UpperCAmelCase ( __a ): __A : Optional[int] = VOCAB_FILES_NAMES __A : Any = PRETRAINED_VOCAB_FILES_MAP __A : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Dict = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase = None , **_lowerCamelCase , ): lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowerCAmelCase_ = 7 lowerCAmelCase_ = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )] lowerCAmelCase_ = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCamelCase ) ) lowerCAmelCase_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase_ = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase_ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowerCAmelCase_ = len(self.sp_model ) lowerCAmelCase_ = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_lowerCamelCase ) lowerCAmelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): lowerCAmelCase_ = self.__dict__.copy() lowerCAmelCase_ = None lowerCAmelCase_ = self.sp_model.serialized_model_proto() return state def __setstate__( self , _lowerCamelCase ): lowerCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCAmelCase_ = {} lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowerCAmelCase_ = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ): lowerCAmelCase_ = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase_ ( self ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase_ ( self ): lowerCAmelCase_ = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase_ ( self , _lowerCamelCase ): return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase_ = self.sp_model.PieceToId(_lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase_ ( self , _lowerCamelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase_ ( self , _lowerCamelCase ): lowerCAmelCase_ = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase , ''' ''' ).strip() return out_string def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ): if not os.path.isdir(_lowerCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: lowerCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
606
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def snake_case_ ( __snake_case : Tuple) -> str: lowerCAmelCase_ = os.path.join(args.tf_model_dir , '''parameters.json''') lowerCAmelCase_ = json.loads(open(__snake_case).read()) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''') if not args.output.endswith('''.pt'''): lowerCAmelCase_ = args.output + '''.pt''' lowerCAmelCase_ = OrderedDict() with tf.device('''/CPU:0'''): lowerCAmelCase_ = tf.train.load_checkpoint(args.tf_model_dir) lowerCAmelCase_ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowerCAmelCase_ = reader.get_tensor(__snake_case).astype(np.floataa) if key_name.endswith('''/adam_m''') or key_name.endswith('''/adam_v'''): continue if key_name.startswith('''pasts/'''): if key_name.startswith('''pasts/mlp'''): lowerCAmelCase_ = int(key_name[9]) elif key_name.startswith('''pasts/out'''): lowerCAmelCase_ = 8 lowerCAmelCase_ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowerCAmelCase_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.startswith('''model/moe'''): lowerCAmelCase_ = int(key_name[9:].split('''/''')[0]) if key_name.endswith('''/switch_gating/kernel'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowerCAmelCase_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/softmlp/kernel'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowerCAmelCase_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/wo/kernel''') or key_name.endswith('''/wi/kernel'''): lowerCAmelCase_ = key_name[-9:-7] for i in range(16): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowerCAmelCase_ = ( vnp[i].transpose([1, 0]).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.startswith('''model/mlp'''): lowerCAmelCase_ = int(key_name[9:].split('''/''')[0]) if key_name.endswith('''/p1/kernel'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowerCAmelCase_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/p1/bias'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/p2/kernel'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowerCAmelCase_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/p2/bias'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.startswith('''model/ln'''): lowerCAmelCase_ = int(key_name[8:].split('''/''')[0]) if key_name.endswith('''/b'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.norm.bias''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/g'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.norm.weight''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.startswith('''model/att'''): lowerCAmelCase_ = int(key_name[9:].split('''/''')[0]) if key_name.endswith('''/qkv/kernel'''): lowerCAmelCase_ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowerCAmelCase_ = state[:, 0, :, :] lowerCAmelCase_ = state[:, 1, :, :] lowerCAmelCase_ = state[:, 2, :, :] lowerCAmelCase_ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]]) .transpose([1, 0]) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]]) .transpose([1, 0]) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]]) .transpose([1, 0]) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowerCAmelCase_ = torch.tensor(__snake_case) lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowerCAmelCase_ = torch.tensor(__snake_case) lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/o/kernel'''): lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowerCAmelCase_ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]]).transpose([1, 0]).copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.startswith('''model/an'''): lowerCAmelCase_ = int(key_name[8:].split('''/''')[0]) if key_name.endswith('''/b'''): lowerCAmelCase_ = '''model.blocks.%d.self_attn.norm.bias''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/g'''): lowerCAmelCase_ = '''model.blocks.%d.self_attn.norm.weight''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(__snake_case) elif ( key_name.startswith('''model/wte''') or key_name.startswith('''model/wpe''') or key_name.startswith('''model/ete''') ): lowerCAmelCase_ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowerCAmelCase_ = '''model.%s.weight''' % nlayer lowerCAmelCase_ = vnp.copy() # same in embedded lowerCAmelCase_ = torch.tensor(__snake_case) if key_name.startswith('''model/wte'''): lowerCAmelCase_ = '''lm_head.weight''' lowerCAmelCase_ = vnp.copy() # same in embedded lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.startswith('''model/wob'''): lowerCAmelCase_ = '''final_logits_bias''' lowerCAmelCase_ = vnp.copy() # same in embedded lowerCAmelCase_ = state.reshape((1, -1)) lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name == "model/dense/kernel": lowerCAmelCase_ = '''model.last_project.weight''' lowerCAmelCase_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name == "model/dense_1/bias": lowerCAmelCase_ = '''model.last_project.bias''' lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(__snake_case) torch.save(__snake_case , args.output) if __name__ == "__main__": A_ : Optional[Any] =argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') A_ : Union[str, Any] =parser.parse_args() convert_tf_gptsan_to_pt(args)
606
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class A__ : def __init__( self , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=64 , UpperCamelCase__=None ) -> Tuple: '''simple docstring''' A_ = np.random.default_rng(UpperCamelCase__ ) A_ = length A_ = rng.normal(size=(length,) ).astype(np.floataa ) A_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> Dict: '''simple docstring''' return self.length def __getitem__( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class A__ ( torch.nn.Module ): def __init__( self , UpperCamelCase__=0 , UpperCamelCase__=0 , UpperCamelCase__=False ) -> str: '''simple docstring''' super().__init__() A_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A_ = True def snake_case_ ( self , UpperCamelCase__=None ) -> Dict: '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) A_ = False return x * self.a[0] + self.b[0] class A__ ( torch.nn.Module ): def __init__( self , UpperCamelCase__=0 , UpperCamelCase__=0 , UpperCamelCase__=False ) -> List[Any]: '''simple docstring''' super().__init__() A_ = torch.nn.Parameter(torch.tensor(UpperCamelCase__ ).float() ) A_ = torch.nn.Parameter(torch.tensor(UpperCamelCase__ ).float() ) A_ = True def snake_case_ ( self , UpperCamelCase__=None ) -> Union[str, Any]: '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) A_ = False return x * self.a + self.b def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ = 16 ) -> Any: from datasets import load_dataset from transformers import AutoTokenizer A_ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) A_ = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} A_ = load_dataset("""csv""", data_files=UpperCAmelCase__ ) A_ = datasets["""train"""].unique("""label""" ) A_ = {v: i for i, v in enumerate(UpperCAmelCase__ )} def tokenize_function(UpperCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) A_ = tokenizer( examples["""sentence1"""], examples["""sentence2"""], truncation=UpperCAmelCase__, max_length=UpperCAmelCase__, padding="""max_length""" ) if "label" in examples: A_ = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A_ = datasets.map( UpperCAmelCase__, batched=UpperCAmelCase__, remove_columns=["""sentence1""", """sentence2""", """label"""], ) def collate_fn(UpperCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase__, padding="""max_length""", max_length=1_28, return_tensors="""pt""" ) return tokenizer.pad(UpperCAmelCase__, padding="""longest""", return_tensors="""pt""" ) # Instantiate dataloaders. A_ = DataLoader(tokenized_datasets["""train"""], shuffle=UpperCAmelCase__, collate_fn=UpperCAmelCase__, batch_size=2 ) A_ = DataLoader(tokenized_datasets["""validation"""], shuffle=UpperCAmelCase__, collate_fn=UpperCAmelCase__, batch_size=1 ) return train_dataloader, eval_dataloader
288
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class A__ ( _snake_case , _snake_case ): lowercase = "resnet" lowercase = ["basic", "bottleneck"] def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=64 , UpperCamelCase__=[256, 512, 1024, 2048] , UpperCamelCase__=[3, 4, 6, 3] , UpperCamelCase__="bottleneck" , UpperCamelCase__="relu" , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ) -> List[str]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) A_ = num_channels A_ = embedding_size A_ = hidden_sizes A_ = depths A_ = layer_type A_ = hidden_act A_ = downsample_in_first_stage A_ = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(UpperCamelCase__ ) + 1 )] A_ , A_ = get_aligned_output_features_output_indices( out_features=UpperCamelCase__ , out_indices=UpperCamelCase__ , stage_names=self.stage_names ) class A__ ( _snake_case ): lowercase = version.parse("1.11" ) @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def snake_case_ ( self ) -> float: '''simple docstring''' return 1e-3
288
1
'''simple docstring''' import qiskit def __snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): lowerCamelCase_ = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register lowerCamelCase_ = qiskit.QuantumCircuit(UpperCAmelCase_ , UpperCAmelCase_ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator lowerCamelCase_ = qiskit.execute(UpperCAmelCase_ , UpperCAmelCase_ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
718
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ : Dict = logging.get_logger(__name__) a_ : List[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} a_ : Optional[Any] = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } a_ : str = { """gpt-neox-20b""": 2048, } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase="<|endoftext|>" , UpperCamelCase="<|endoftext|>" , UpperCamelCase="<|endoftext|>" , UpperCamelCase=False , **UpperCamelCase , ): """simple docstring""" super().__init__( UpperCamelCase , UpperCamelCase , tokenizer_file=UpperCamelCase , unk_token=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , add_prefix_space=UpperCamelCase , **UpperCamelCase , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase ) != add_prefix_space: lowerCamelCase_ = getattr(UpperCamelCase , pre_tok_state.pop("type" ) ) lowerCamelCase_ = add_prefix_space lowerCamelCase_ = pre_tok_class(**UpperCamelCase ) lowerCamelCase_ = add_prefix_space def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) + [self.eos_token_id] ) if len(UpperCamelCase ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] return input_ids
445
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : Dict = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : List[Any] = 'rwkv' lowerCamelCase : Any = {'max_position_embeddings': 'context_length'} def __init__( self , SCREAMING_SNAKE_CASE_=5_02_77 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: __lowerCamelCase : Optional[int] = vocab_size __lowerCamelCase : Tuple = context_length __lowerCamelCase : str = hidden_size __lowerCamelCase : List[str] = num_hidden_layers __lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size __lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size __lowerCamelCase : Optional[Any] = layer_norm_epsilon __lowerCamelCase : int = rescale_every __lowerCamelCase : Tuple = use_cache __lowerCamelCase : int = bos_token_id __lowerCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
"""simple docstring""" import os def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]: '''simple docstring''' with open(os.path.dirname(snake_case ) + "/p022_names.txt" ) as file: UpperCAmelCase__ : Tuple = str(file.readlines()[0] ) UpperCAmelCase__ : str = names.replace("\"" , "" ).split("," ) names.sort() UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : List[str] = 0 for i, name in enumerate(snake_case ): for letter in name: name_score += ord(snake_case ) - 64 total_score += (i + 1) * name_score UpperCAmelCase__ : Optional[int] = 0 return total_score if __name__ == "__main__": print(solution())
438
0
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return EnvironmentCommand() class __SCREAMING_SNAKE_CASE ( UpperCamelCase_ ): '''simple docstring''' @staticmethod def UpperCamelCase( lowerCamelCase ): _snake_case = parser.add_parser("env" ) download_parser.set_defaults(func=lowerCamelCase ) def UpperCamelCase( self ): _snake_case = huggingface_hub.__version__ _snake_case = '''not installed''' _snake_case = '''NA''' if is_torch_available(): import torch _snake_case = torch.__version__ _snake_case = torch.cuda.is_available() _snake_case = '''not installed''' if is_transformers_available(): import transformers _snake_case = transformers.__version__ _snake_case = '''not installed''' if is_accelerate_available(): import accelerate _snake_case = accelerate.__version__ _snake_case = '''not installed''' if is_xformers_available(): import xformers _snake_case = xformers.__version__ _snake_case = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(lowerCamelCase ) ) return info @staticmethod def UpperCamelCase( lowerCamelCase ): return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
719
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ : Dict = logging.get_logger(__name__) __magic_name__ : Dict = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __SCREAMING_SNAKE_CASE ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : List[Any] = '''mobilenet_v1''' def __init__( self , lowerCamelCase=3 , lowerCamelCase=224 , lowerCamelCase=1.0 , lowerCamelCase=8 , lowerCamelCase="relu6" , lowerCamelCase=True , lowerCamelCase=0.999 , lowerCamelCase=0.02 , lowerCamelCase=0.001 , **lowerCamelCase , ): super().__init__(**lowerCamelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _snake_case = num_channels _snake_case = image_size _snake_case = depth_multiplier _snake_case = min_depth _snake_case = hidden_act _snake_case = tf_padding _snake_case = classifier_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps class __SCREAMING_SNAKE_CASE ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : int = version.parse('''1.11''' ) @property def UpperCamelCase( self ): return OrderedDict([("pixel_values", {0: "batch"})] ) @property def UpperCamelCase( self ): if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def UpperCamelCase( self ): return 1e-4
368
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) a = logging.getLogger(__name__) @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) UpperCAmelCase : Optional[str] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) UpperCAmelCase : Optional[int] = field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCAmelCase : Optional[int] = field( default=128 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCAmelCase : Optional[int] = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) UpperCAmelCase : Optional[int] = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCAmelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) UpperCAmelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) UpperCAmelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''Source language id for translation.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''Target language id for translation.'''} ) UpperCAmelCase : Optional[int] = field(default=__lowerCAmelCase , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def _snake_case ( _snake_case : Optional[Any] , _snake_case : int , _snake_case : Optional[Any] ) -> str: '''simple docstring''' logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(_snake_case , os.path.join(_snake_case , F'''{split}_results.json''' ) ) def _snake_case ( ) -> Tuple: '''simple docstring''' _A = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A = parser.parse_args_into_dataclasses() check_output_dir(_snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , _snake_case ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _A = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(_snake_case , _snake_case , _snake_case ): assert hasattr(_snake_case , _snake_case ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(_snake_case , _snake_case , getattr(_snake_case , _snake_case ) ) _A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _A = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=_snake_case , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_snake_case , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _A = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_snake_case , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_snake_case , _snake_case ): _A = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _A = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_snake_case ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _A = SeqaSeqDataset # Get datasets _A = ( dataset_class( _snake_case , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) _A = ( dataset_class( _snake_case , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _A = ( dataset_class( _snake_case , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer _A = ( build_compute_metrics_fn(data_args.task , _snake_case ) if training_args.predict_with_generate else None ) _A = SeqaSeqTrainer( model=_snake_case , args=_snake_case , data_args=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , data_collator=SeqaSeqDataCollator( _snake_case , _snake_case , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_snake_case , tokenizer=_snake_case , ) _A = {} # Training if training_args.do_train: logger.info('*** Train ***' ) _A = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _A = train_result.metrics _A = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , _snake_case , training_args.output_dir ) all_metrics.update(_snake_case ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _A = trainer.evaluate(metric_key_prefix='val' ) _A = data_args.n_val _A = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , _snake_case , training_args.output_dir ) all_metrics.update(_snake_case ) if training_args.do_predict: logger.info('*** Predict ***' ) _A = trainer.predict(test_dataset=_snake_case , metric_key_prefix='test' ) _A = test_output.metrics _A = data_args.n_test if trainer.is_world_process_zero(): _A = round(metrics['test_loss'] , 4 ) handle_metrics('test' , _snake_case , training_args.output_dir ) all_metrics.update(_snake_case ) if training_args.predict_with_generate: _A = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) _A = lmap(str.strip , _snake_case ) write_txt_file(_snake_case , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(_snake_case , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def _snake_case ( _snake_case : List[Any] ) -> int: '''simple docstring''' main() if __name__ == "__main__": main()
7
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
412
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
1
from __future__ import annotations def lowercase__ ( A_: list[int] ) -> bool: """simple docstring""" return len(set(A_ ) ) == len(A_ ) if __name__ == "__main__": import doctest doctest.testmod()
68
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Any = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(A__, A__ ) def a__ ( A__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = emb.weight.shape SCREAMING_SNAKE_CASE_ : List[Any] = nn.Linear(A__, A__, bias=A__ ) SCREAMING_SNAKE_CASE_ : Dict = emb.weight.data return lin_layer def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : List[Any] = torch.load(A__, map_location='cpu' ) SCREAMING_SNAKE_CASE_ : Tuple = mam_aaa['args'] or mam_aaa['cfg']['model'] SCREAMING_SNAKE_CASE_ : Any = mam_aaa['model'] remove_ignore_keys_(A__ ) SCREAMING_SNAKE_CASE_ : List[str] = state_dict['encoder.embed_tokens.weight'].shape[0] SCREAMING_SNAKE_CASE_ : Dict = MaMaaaConfig( vocab_size=A__, max_position_embeddings=1_0_2_4, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, encoder_layerdrop=args.encoder_layerdrop, decoder_layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='relu', ) SCREAMING_SNAKE_CASE_ : int = state_dict['decoder.embed_tokens.weight'] SCREAMING_SNAKE_CASE_ : Union[str, Any] = MaMaaaForConditionalGeneration(A__ ) model.model.load_state_dict(A__, strict=A__ ) SCREAMING_SNAKE_CASE_ : int = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase__ : Optional[Any] =parser.parse_args() lowerCAmelCase__ : int =convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
101
0
"""simple docstring""" import os import sys import unittest __A = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __A = os.path.join(git_repo_path, '''src''', '''diffusers''') class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : Optional[int] = find_backend(" if not is_torch_available():" ) self.assertEqual(UpperCAmelCase , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __lowerCamelCase : str = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(UpperCAmelCase , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __lowerCamelCase : Tuple = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(UpperCAmelCase , "torch_and_transformers_and_onnx" ) def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : Optional[Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , UpperCAmelCase ) self.assertIn("torch_and_transformers" , UpperCAmelCase ) self.assertIn("flax_and_transformers" , UpperCAmelCase ) self.assertIn("torch_and_transformers_and_onnx" , UpperCAmelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Union[str, Any] = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(UpperCAmelCase , "\nCONSTANT = None\n" ) __lowerCamelCase : Optional[Any] = create_dummy_object("function" , "'torch'" ) self.assertEqual( UpperCAmelCase , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) __lowerCamelCase : List[str] = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" __lowerCamelCase : Optional[int] = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : str = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" __lowerCamelCase : Union[str, Any] = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , UpperCAmelCase )
366
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata __A = '''''' if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class _snake_case ( tr.AbstractTransform ): def __init__( self : Optional[Any] , UpperCAmelCase : str = " " ): __lowerCamelCase : List[str] = sentence_delimiter def lowerCamelCase__ ( self : Tuple , UpperCAmelCase : str ): return list(UpperCAmelCase ) def lowerCamelCase__ ( self : Dict , UpperCAmelCase : List[str] ): __lowerCamelCase : Any = [] for sent_idx, sentence in enumerate(UpperCAmelCase ): chars.extend(self.process_string(UpperCAmelCase ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(UpperCAmelCase ) - 1: chars.append(self.sentence_delimiter ) return chars __A = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __A = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __A = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' __A = '''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' __A = ''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def lowerCamelCase__ ( self : Union[str, Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ] , ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str]=False ): if concatenate_texts: return jiwer.compute_measures( UpperCAmelCase , UpperCAmelCase , truth_transform=UpperCAmelCase , hypothesis_transform=UpperCAmelCase , )["wer"] __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : Optional[int] = 0 for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : Dict = jiwer.compute_measures( UpperCAmelCase , UpperCAmelCase , truth_transform=UpperCAmelCase , hypothesis_transform=UpperCAmelCase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
366
1
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger SCREAMING_SNAKE_CASE = get_logger(__name__) class A_ : '''simple docstring''' def __init__( self , _A = None) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = ( os.path.join(_A , config.EXTRACTED_DATASETS_DIR) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _UpperCAmelCase : int = Extractor def snake_case__ ( self , _A) -> str: """simple docstring""" from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _UpperCAmelCase : Union[str, Any] = os.path.abspath(_A) return os.path.join(self.extract_dir , hash_url_to_filename(_A)) def snake_case__ ( self , _A , _A) -> bool: """simple docstring""" return force_extract or ( not os.path.isfile(_A) and not (os.path.isdir(_A) and os.listdir(_A)) ) def snake_case__ ( self , _A , _A = False) -> str: """simple docstring""" _UpperCAmelCase : List[Any] = self.extractor.infer_extractor_format(_A) if not extractor_format: return input_path _UpperCAmelCase : Optional[int] = self._get_output_path(_A) if self._do_extract(_A , _A): self.extractor.extract(_A , _A , _A) return output_path class A_ ( __lowercase ): '''simple docstring''' @classmethod @abstractmethod def snake_case__ ( cls , _A , **_A) -> bool: """simple docstring""" ... @staticmethod @abstractmethod def snake_case__ ( _A , _A) -> None: """simple docstring""" ... class A_ ( __lowercase , __lowercase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : List[bytes] = [] @staticmethod def snake_case__ ( _A , _A) -> int: """simple docstring""" with open(_A , '''rb''') as f: return f.read(_A) @classmethod def snake_case__ ( cls , _A , _A = b"") -> bool: """simple docstring""" if not magic_number: _UpperCAmelCase : Any = max(len(_A) for cls_magic_number in cls.magic_numbers) try: _UpperCAmelCase : int = cls.read_magic_number(_A , _A) except OSError: return False return any(magic_number.startswith(_A) for cls_magic_number in cls.magic_numbers) class A_ ( __lowercase ): '''simple docstring''' @classmethod def snake_case__ ( cls , _A , **_A) -> bool: """simple docstring""" return tarfile.is_tarfile(_A) @staticmethod def snake_case__ ( _A , _A) -> Tuple: """simple docstring""" def resolved(_A) -> str: return os.path.realpath(os.path.abspath(_A)) def badpath(_A , _A) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_A , _A)).startswith(_A) def badlink(_A , _A) -> bool: # Links are interpreted relative to the directory containing the link _UpperCAmelCase : Any = resolved(os.path.join(_A , os.path.dirname(info.name))) return badpath(info.linkname , base=_A) _UpperCAmelCase : int = resolved(_A) for finfo in members: if badpath(finfo.name , _A): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''') elif finfo.issym() and badlink(_A , _A): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''') elif finfo.islnk() and badlink(_A , _A): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''') else: yield finfo @staticmethod def snake_case__ ( _A , _A) -> None: """simple docstring""" os.makedirs(_A , exist_ok=_A) _UpperCAmelCase : Any = tarfile.open(_A) tar_file.extractall(_A , members=TarExtractor.safemembers(_A , _A)) tar_file.close() class A_ ( __lowercase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Dict = [b"\x1F\x8B"] @staticmethod def snake_case__ ( _A , _A) -> None: """simple docstring""" with gzip.open(_A , '''rb''') as gzip_file: with open(_A , '''wb''') as extracted_file: shutil.copyfileobj(_A , _A) class A_ ( __lowercase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Any = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def snake_case__ ( cls , _A , _A = b"") -> bool: """simple docstring""" if super().is_extractable(_A , magic_number=_A): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_A , '''rb''') as fp: _UpperCAmelCase : int = _EndRecData(_A) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET]) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _UpperCAmelCase : List[Any] = fp.read(_A) # CD is where we expect it to be if len(_A) == sizeCentralDir: _UpperCAmelCase : Union[str, Any] = struct.unpack(_A , _A) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def snake_case__ ( _A , _A) -> None: """simple docstring""" os.makedirs(_A , exist_ok=_A) with zipfile.ZipFile(_A , '''r''') as zip_file: zip_file.extractall(_A) zip_file.close() class A_ ( __lowercase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Union[str, Any] = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def snake_case__ ( _A , _A) -> None: """simple docstring""" with lzma.open(_A) as compressed_file: with open(_A , '''wb''') as extracted_file: shutil.copyfileobj(_A , _A) class A_ ( __lowercase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Union[str, Any] = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def snake_case__ ( _A , _A) -> None: """simple docstring""" if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''') import rarfile os.makedirs(_A , exist_ok=_A) _UpperCAmelCase : Dict = rarfile.RarFile(_A) rf.extractall(_A) rf.close() class A_ ( __lowercase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[int] = [b"\x28\xb5\x2F\xFD"] @staticmethod def snake_case__ ( _A , _A) -> None: """simple docstring""" if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''') import zstandard as zstd _UpperCAmelCase : List[Any] = zstd.ZstdDecompressor() with open(_A , '''rb''') as ifh, open(_A , '''wb''') as ofh: dctx.copy_stream(_A , _A) class A_ ( __lowercase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Any = [b"\x42\x5A\x68"] @staticmethod def snake_case__ ( _A , _A) -> None: """simple docstring""" with bza.open(_A , '''rb''') as compressed_file: with open(_A , '''wb''') as extracted_file: shutil.copyfileobj(_A , _A) class A_ ( __lowercase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Union[str, Any] = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def snake_case__ ( _A , _A) -> None: """simple docstring""" if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''') import pyazr os.makedirs(_A , exist_ok=_A) with pyazr.SevenZipFile(_A , '''r''') as archive: archive.extractall(_A) class A_ ( __lowercase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Any = [b"\x04\x22\x4D\x18"] @staticmethod def snake_case__ ( _A , _A) -> None: """simple docstring""" if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''') import lza.frame with lza.frame.open(_A , '''rb''') as compressed_file: with open(_A , '''wb''') as extracted_file: shutil.copyfileobj(_A , _A) class A_ : '''simple docstring''' _SCREAMING_SNAKE_CASE : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def snake_case__ ( cls) -> Dict: """simple docstring""" return max( len(_A) for extractor in cls.extractors.values() if issubclass(_A , _A) for extractor_magic_number in extractor.magic_numbers) @staticmethod def snake_case__ ( _A , _A) -> List[Any]: """simple docstring""" try: return MagicNumberBaseExtractor.read_magic_number(_A , magic_number_length=_A) except OSError: return b"" @classmethod def snake_case__ ( cls , _A , _A = False) -> bool: """simple docstring""" warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=_A , ) _UpperCAmelCase : Union[str, Any] = cls.infer_extractor_format(_A) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def snake_case__ ( cls , _A) -> str: # <Added version="2.4.0"/> """simple docstring""" _UpperCAmelCase : List[Any] = cls._get_magic_number_max_length() _UpperCAmelCase : List[str] = cls._read_magic_number(_A , _A) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_A , magic_number=_A): return extractor_format @classmethod def snake_case__ ( cls , _A , _A , _A = None , _A = "deprecated" , ) -> None: """simple docstring""" os.makedirs(os.path.dirname(_A) , exist_ok=_A) # Prevent parallel extractions _UpperCAmelCase : Optional[Any] = str(Path(_A).with_suffix('''.lock''')) with FileLock(_A): shutil.rmtree(_A , ignore_errors=_A) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_A , _A): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=_A , ) _UpperCAmelCase : int = extractor if extractor != '''deprecated''' else extractor_format else: _UpperCAmelCase : Union[str, Any] = cls.extractors[extractor_format] return extractor.extract(_A , _A) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=_A , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_A): return extractor.extract(_A , _A)
485
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class A_ ( __lowercase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Any = "switch_transformers" _SCREAMING_SNAKE_CASE : int = ["past_key_values"] _SCREAMING_SNAKE_CASE : Optional[Any] = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , _A=32128 , _A=768 , _A=64 , _A=2048 , _A=64 , _A=12 , _A=3 , _A=12 , _A=3 , _A=12 , _A=8 , _A=False , _A=0.01 , _A="float32" , _A=False , _A=32 , _A=128 , _A=0.1 , _A=1e-6 , _A=0.001 , _A=0.001 , _A=1.0 , _A="relu" , _A=True , _A=False , _A=True , _A=0 , _A=1 , **_A , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = vocab_size _UpperCAmelCase : Tuple = d_model _UpperCAmelCase : Dict = d_kv _UpperCAmelCase : str = d_ff _UpperCAmelCase : int = num_sparse_encoder_layers _UpperCAmelCase : Dict = num_layers _UpperCAmelCase : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _UpperCAmelCase : Dict = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _UpperCAmelCase : int = self.num_layers // self.num_sparse_encoder_layers else: _UpperCAmelCase : Optional[int] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _UpperCAmelCase : Optional[Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: _UpperCAmelCase : Dict = self.num_decoder_layers # HACK: this will create 0 sparse layers _UpperCAmelCase : Any = num_heads _UpperCAmelCase : List[Any] = num_experts _UpperCAmelCase : List[str] = expert_capacity _UpperCAmelCase : List[str] = router_bias _UpperCAmelCase : Optional[Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''') _UpperCAmelCase : List[str] = router_dtype _UpperCAmelCase : Any = router_ignore_padding_tokens _UpperCAmelCase : Optional[Any] = relative_attention_num_buckets _UpperCAmelCase : Optional[int] = relative_attention_max_distance _UpperCAmelCase : List[Any] = dropout_rate _UpperCAmelCase : Optional[int] = layer_norm_epsilon _UpperCAmelCase : Union[str, Any] = initializer_factor _UpperCAmelCase : int = feed_forward_proj _UpperCAmelCase : List[str] = use_cache _UpperCAmelCase : Optional[int] = add_router_probs _UpperCAmelCase : Optional[int] = router_z_loss_coef _UpperCAmelCase : List[str] = router_aux_loss_coef _UpperCAmelCase : Union[str, Any] = self.feed_forward_proj.split('''-''') _UpperCAmelCase : int = act_info[-1] _UpperCAmelCase : int = act_info[0] == '''gated''' if len(_A) > 1 and act_info[0] != "gated" or len(_A) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''') # for backwards compatibility if feed_forward_proj == "gated-gelu": _UpperCAmelCase : Optional[Any] = '''gelu_new''' super().__init__( pad_token_id=_A , eos_token_id=_A , is_encoder_decoder=_A , **_A , )
485
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : List[Any] = { "configuration_autoformer": [ "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "AutoformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "AutoformerForPrediction", "AutoformerModel", "AutoformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
707
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device A : List[str] = False class lowerCamelCase (unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : Union[str, Any] ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : str ) -> Any: SCREAMING_SNAKE_CASE_ = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "A painting of a squirrel eating a burger " SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = VersatileDiffusionTextToImagePipeline.from_pretrained(__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) SCREAMING_SNAKE_CASE_ = generator.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __A ( self : int ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "A painting of a squirrel eating a burger " SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images SCREAMING_SNAKE_CASE_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
356
0
'''simple docstring''' from string import ascii_uppercase _UpperCAmelCase : List[str] = {str(ord(c) - 55): c for c in ascii_uppercase} def UpperCamelCase ( lowercase_ : int , lowercase_ : int ) -> str: '''simple docstring''' if isinstance(lowercase_ , lowercase_ ): raise TypeError('''int() can\'t convert non-string with explicit base''' ) if num < 0: raise ValueError('''parameter must be positive int''' ) if isinstance(lowercase_ , lowercase_ ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if isinstance(lowercase_ , lowercase_ ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if base in (0, 1): raise ValueError('''base must be >= 2''' ) if base > 3_6: raise ValueError('''base must be <= 36''' ) lowercase ='''''' lowercase =0 lowercase =0 while div != 1: lowercase , lowercase =divmod(lowercase_ , lowercase_ ) if base >= 1_1 and 9 < mod < 3_6: lowercase =ALPHABET_VALUES[str(lowercase_ )] else: lowercase =str(lowercase_ ) new_value += actual_value lowercase =num // base lowercase =div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(lowercase_ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(10_00): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
72
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[Any] = '''xmod''' def __init__( self : str , _UpperCAmelCase : Optional[Any]=30_522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Dict=3_072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=("en_XX",) , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[Any] , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = classifier_dropout _A = pre_norm _A = adapter_reduction_factor _A = adapter_layer_norm _A = adapter_reuse_layer_norm _A = ln_before_adapter _A = list(_UpperCAmelCase ) _A = default_language class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' @property def lowerCAmelCase_ ( self : Dict ): if self.task == "multiple-choice": _A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
7
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class A__ ( __UpperCAmelCase ): """simple docstring""" __A : torch.FloatTensor class A__ ( __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" @register_to_config def __init__( self , lowercase = 3 , lowercase = 3 , lowercase = ("DownEncoderBlock2D",) , lowercase = ("UpDecoderBlock2D",) , lowercase = (64,) , lowercase = 1 , lowercase = "silu" , lowercase = 3 , lowercase = 32 , lowercase = 256 , lowercase = 32 , lowercase = None , lowercase = 0.1_82_15 , lowercase = "group" , ) -> Optional[Any]: '''simple docstring''' super().__init__() # pass init params to Encoder a__ : List[Any] = Encoder( in_channels=lowercase , out_channels=lowercase , down_block_types=lowercase , block_out_channels=lowercase , layers_per_block=lowercase , act_fn=lowercase , norm_num_groups=lowercase , double_z=lowercase , ) a__ : int = vq_embed_dim if vq_embed_dim is not None else latent_channels a__ : Any = nn.Convad(lowercase , lowercase , 1) a__ : List[str] = VectorQuantizer(lowercase , lowercase , beta=0.25 , remap=lowercase , sane_index_shape=lowercase) a__ : Any = nn.Convad(lowercase , lowercase , 1) # pass init params to Decoder a__ : List[str] = Decoder( in_channels=lowercase , out_channels=lowercase , up_block_types=lowercase , block_out_channels=lowercase , layers_per_block=lowercase , act_fn=lowercase , norm_num_groups=lowercase , norm_type=lowercase , ) @apply_forward_hook def __lowercase ( self , lowercase , lowercase = True) -> VQEncoderOutput: '''simple docstring''' a__ : List[Any] = self.encoder(lowercase) a__ : Dict = self.quant_conv(lowercase) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase) @apply_forward_hook def __lowercase ( self , lowercase , lowercase = False , lowercase = True) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if not force_not_quantize: a__ : Dict = self.quantize(lowercase) else: a__ : List[Any] = h a__ : List[Any] = self.post_quant_conv(lowercase) a__ : Tuple = self.decoder(lowercase , quant if self.config.norm_type == 'spatial' else None) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase) def __lowercase ( self , lowercase , lowercase = True) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' a__ : int = sample a__ : Any = self.encode(lowercase).latents a__ : Optional[Any] = self.decode(lowercase).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase)
703
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowercase : List[str] = logging.get_logger("""transformers.models.encodec""") lowercase : Optional[Any] = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } lowercase : Tuple = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } lowercase : List[Any] = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } lowercase : int = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } lowercase : int = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } lowercase : Union[str, Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowercase : Optional[int] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowercase : Optional[int] = [] lowercase : Optional[int] = [] def A_ ( A__ , A__ , A__ , A__ , A__ ) -> Optional[Any]: for attribute in key.split('.' ): a__ : str = getattr(A__ , A__ ) if weight_type is not None: a__ : List[str] = getattr(A__ , A__ ).shape else: a__ : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": a__ : Tuple = value elif weight_type == "weight_g": a__ : Optional[Any] = value elif weight_type == "weight_v": a__ : Tuple = value elif weight_type == "bias": a__ : Tuple = value elif weight_type == "running_mean": a__ : List[Any] = value elif weight_type == "running_var": a__ : Optional[int] = value elif weight_type == "num_batches_tracked": a__ : Optional[int] = value elif weight_type == "weight_ih_l0": a__ : Dict = value elif weight_type == "weight_hh_l0": a__ : Any = value elif weight_type == "bias_ih_l0": a__ : Optional[int] = value elif weight_type == "bias_hh_l0": a__ : List[Any] = value elif weight_type == "weight_ih_l1": a__ : str = value elif weight_type == "weight_hh_l1": a__ : int = value elif weight_type == "bias_ih_l1": a__ : List[Any] = value elif weight_type == "bias_hh_l1": a__ : Any = value else: a__ : Tuple = value logger.info(F'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def A_ ( A__ , A__ ) -> Dict: for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: a__ , a__ : List[Any] = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def A_ ( A__ , A__ , A__ ) -> Union[str, Any]: a__ : Dict = [] if model_name == "encodec_24khz" or "encodec_32khz": a__ : Any = MAPPING_24K elif model_name == "encodec_48khz": a__ : Optional[int] = MAPPING_48K else: raise ValueError(F'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(A__ , A__ ): logger.info(F'{name} was ignored' ) continue a__ : Union[str, Any] = False for key, mapped_key in MAPPING.items(): if "*" in key: a__ , a__ : List[str] = key.split('.*.' ) if prefix in name and suffix in name: a__ : int = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue a__ : Dict = True if "*" in mapped_key: a__ : List[str] = name.split(A__ )[0].split('.' )[-2] a__ : str = mapped_key.replace('*' , A__ ) if "weight_g" in name: a__ : Any = 'weight_g' elif "weight_v" in name: a__ : List[str] = 'weight_v' elif "weight_ih_l0" in name: a__ : List[str] = 'weight_ih_l0' elif "weight_hh_l0" in name: a__ : List[str] = 'weight_hh_l0' elif "bias_ih_l0" in name: a__ : Optional[Any] = 'bias_ih_l0' elif "bias_hh_l0" in name: a__ : List[str] = 'bias_hh_l0' elif "weight_ih_l1" in name: a__ : str = 'weight_ih_l1' elif "weight_hh_l1" in name: a__ : Optional[Any] = 'weight_hh_l1' elif "bias_ih_l1" in name: a__ : Optional[int] = 'bias_ih_l1' elif "bias_hh_l1" in name: a__ : int = 'bias_hh_l1' elif "bias" in name: a__ : int = 'bias' elif "weight" in name: a__ : List[str] = 'weight' elif "running_mean" in name: a__ : Dict = 'running_mean' elif "running_var" in name: a__ : int = 'running_var' elif "num_batches_tracked" in name: a__ : Optional[Any] = 'num_batches_tracked' else: a__ : Tuple = None set_recursively(A__ , A__ , A__ , A__ , A__ ) continue if not is_used: unused_weights.append(A__ ) logger.warning(F'Unused weights: {unused_weights}' ) @torch.no_grad() def A_ ( A__ , A__ , A__ , A__=None , A__=None , ) -> List[Any]: if config_path is not None: a__ : Union[str, Any] = EncodecConfig.from_pretrained(A__ ) else: a__ : Union[str, Any] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": a__ : int = [8, 5, 4, 4] a__ : Tuple = [2.2] a__ : Optional[Any] = 64 a__ : int = 3_2000 a__ : int = 2048 a__ : Tuple = False a__ : int = False a__ : int = False elif model_name == "encodec_48khz": a__ : Tuple = [8, 5, 4, 2] a__ : Optional[int] = [3.0, 6.0, 12.0, 24.0] a__ : Any = 4_8000 a__ : List[Any] = 2 a__ : Union[str, Any] = False a__ : Tuple = 'time_group_norm' a__ : Tuple = True a__ : Optional[int] = 1.0 a__ : Tuple = 0.01 else: raise ValueError(F'Unknown model name: {model_name}' ) a__ : Optional[Any] = EncodecModel(A__ ) a__ : Optional[int] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(A__ ) a__ : int = torch.load(A__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights a__ : int = original_checkpoint['best_state'] recursively_load_weights(A__ , A__ , A__ ) model.save_pretrained(A__ ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(A__ ) model.push_to_hub(A__ ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowercase : str = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
392
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = "▁" __lowerCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} __lowerCAmelCase = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __lowerCAmelCase = { "facebook/xglm-564M": 2_0_4_8, } class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : int = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : int="<s>" , __UpperCamelCase : Dict="</s>" , __UpperCamelCase : List[Any]="</s>" , __UpperCamelCase : List[str]="<s>" , __UpperCamelCase : str="<unk>" , __UpperCamelCase : Dict="<pad>" , __UpperCamelCase : Optional[Dict[str, Any]] = None , **__UpperCamelCase : List[Any] , ): _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer _UpperCAmelCase = 7 _UpperCAmelCase = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )] _UpperCAmelCase = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) _UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCAmelCase = 1 # Mimic fairseq token-to-id alignment for the first 4 token _UpperCAmelCase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} _UpperCAmelCase = len(self.sp_model ) _UpperCAmelCase = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__UpperCamelCase ) _UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None _UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[Any] , __UpperCamelCase : Optional[int] ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a _UpperCAmelCase = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase__ ( self : Any , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) def UpperCAmelCase__ ( self : str , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase__ ( self : Any ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : str ): return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Dict ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase = self.sp_model.PieceToId(__UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Optional[Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase__ ( self : Any , __UpperCamelCase : Any ): _UpperCAmelCase = "".join(__UpperCamelCase ).replace(__UpperCamelCase , " " ).strip() return out_string def UpperCAmelCase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): if not os.path.isdir(__UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , "wb" ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
684
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=_lowercase): snake_case__ = ['''onnx'''] def __init__( self : Dict , *__UpperCamelCase : Any , **__UpperCamelCase : Union[str, Any] ) -> Optional[int]: requires_backends(self , ['''onnx'''] ) @classmethod def _UpperCamelCase ( cls : Optional[Any] , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : List[Any] ) -> List[str]: requires_backends(cls , ['''onnx'''] ) @classmethod def _UpperCamelCase ( cls : Any , *__UpperCamelCase : Any , **__UpperCamelCase : Dict ) -> Tuple: requires_backends(cls , ['''onnx'''] )
706
"""simple docstring""" def lowercase ( a__ : str , a__ : str ) -> float: def get_matched_characters(a__ : str , a__ : str ) -> str: _UpperCamelCase = [] _UpperCamelCase = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _UpperCamelCase = int(max(0 , i - limit ) ) _UpperCamelCase = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a__ ) _UpperCamelCase = F'''{_stra[0:_stra.index(a__ )]} {_stra[_stra.index(a__ ) + 1:]}''' return "".join(a__ ) # matching characters _UpperCamelCase = get_matched_characters(a__ , a__ ) _UpperCamelCase = get_matched_characters(a__ , a__ ) _UpperCamelCase = len(a__ ) # transposition _UpperCamelCase = ( len([(ca, ca) for ca, ca in zip(a__ , a__ ) if ca != ca] ) // 2 ) if not match_count: _UpperCamelCase = 0.0 else: _UpperCamelCase = ( 1 / 3 * ( match_count / len(a__ ) + match_count / len(a__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _UpperCamelCase = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
342
0
"""simple docstring""" import comet # From: unbabel-comet import torch import datasets A_ : Dict = datasets.logging.get_logger(__name__) A_ : Dict = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" A_ : int = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" A_ : int = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCamelCase (datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://unbabel.github.io/COMET/html/index.html""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """sources""": datasets.Value("""string""" , id="""sequence""" ), """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/Unbabel/COMET"""] , reference_urls=[ """https://github.com/Unbabel/COMET""", """https://www.aclweb.org/anthology/2020.emnlp-main.213/""", """http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6""", ] , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : Optional[Any] ) -> Tuple: if self.config_name == "default": SCREAMING_SNAKE_CASE__ = comet.load_from_checkpoint(comet.download_model("""wmt20-comet-da""" ) ) else: SCREAMING_SNAKE_CASE__ = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : int=None , __UpperCAmelCase : Optional[int]=False ) -> Union[str, Any]: if gpus is None: SCREAMING_SNAKE_CASE__ = 1 if torch.cuda.is_available() else 0 SCREAMING_SNAKE_CASE__ = {"""src""": sources, """mt""": predictions, """ref""": references} SCREAMING_SNAKE_CASE__ = [dict(zip(__UpperCAmelCase , __UpperCAmelCase ) ) for t in zip(*data.values() )] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.scorer.predict(__UpperCAmelCase , gpus=__UpperCAmelCase , progress_bar=__UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
196
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCamelCase (unittest.TestCase ): def __init__( self : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Any=7 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : Any=1_8 , __UpperCAmelCase : Tuple=3_0 , __UpperCAmelCase : List[Any]=4_0_0 , __UpperCAmelCase : Dict=True , __UpperCAmelCase : int=None , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Any=None , __UpperCAmelCase : Any=True , ) -> Tuple: SCREAMING_SNAKE_CASE__ = size if size is not None else {"""shortest_edge""": 2_0} SCREAMING_SNAKE_CASE__ = crop_size if crop_size is not None else {"""height""": 1_8, """width""": 1_8} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_center_crop SCREAMING_SNAKE_CASE__ = crop_size SCREAMING_SNAKE_CASE__ = do_flip_channel_order def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class lowerCamelCase (A__ ,unittest.TestCase ): lowerCamelCase__ : Tuple = MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """size""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """center_crop""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """do_flip_channel_order""" ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 2_0} ) self.assertEqual(image_processor.crop_size , {"""height""": 1_8, """width""": 1_8} ) SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2} ) self.assertEqual(image_processor.crop_size , {"""height""": 8_4, """width""": 8_4} ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: pass def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
196
1
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) lowercase__ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowercase__ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): for attribute in key.split('.' ): UpperCAmelCase : Tuple = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) if weight_type is not None: UpperCAmelCase : List[str] = getattr(UpperCAmelCase_ , UpperCAmelCase_ ).shape else: UpperCAmelCase : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase : Optional[Any] = value elif weight_type == "weight_g": UpperCAmelCase : Union[str, Any] = value elif weight_type == "weight_v": UpperCAmelCase : str = value elif weight_type == "bias": UpperCAmelCase : str = value else: UpperCAmelCase : str = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = [] UpperCAmelCase : Optional[int] = fairseq_model.state_dict() UpperCAmelCase : List[str] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight UpperCAmelCase : Dict = None for name, value in fairseq_dict.items(): UpperCAmelCase : List[Any] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCAmelCase : Any = True elif name.split('.' )[0] == "proj": UpperCAmelCase : List[Any] = fairseq_model.proj UpperCAmelCase : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: UpperCAmelCase : int = name.split(UpperCAmelCase_ )[0].split('.' )[-2] UpperCAmelCase : Union[str, Any] = mapped_key.replace('*' , UpperCAmelCase_ ) if "weight_g" in name: UpperCAmelCase : Optional[Any] = 'weight_g' elif "weight_v" in name: UpperCAmelCase : Any = 'weight_v' elif "bias" in name: UpperCAmelCase : Dict = 'bias' elif "weight" in name: UpperCAmelCase : Optional[int] = 'weight' else: UpperCAmelCase : Union[str, Any] = None set_recursively(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) continue if not is_used: unused_weights.append(UpperCAmelCase_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) return proj_weight def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : str = full_name.split('conv_layers.' )[-1] UpperCAmelCase : Optional[Any] = name.split('.' ) UpperCAmelCase : List[str] = int(items[0] ) UpperCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCAmelCase : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = emb.weight.shape UpperCAmelCase : List[str] = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ , bias=UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = emb.weight.data return lin_layer def UpperCamelCase( UpperCAmelCase_ ): with open(UpperCAmelCase_ , 'r' , encoding='utf-8' ) as f: UpperCAmelCase : Dict = f.readlines() UpperCAmelCase : List[str] = [line.split(' ' )[0] for line in lines] UpperCAmelCase : int = len(UpperCAmelCase_ ) UpperCAmelCase : int = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(UpperCAmelCase_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = SpeechaTextaConfig.from_pretrained( UpperCAmelCase_ , vocab_size=UpperCAmelCase_ , decoder_layers=UpperCAmelCase_ , do_stable_layer_norm=UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) UpperCAmelCase : Optional[Any] = model[0].eval() # set weights for wav2vec2 encoder UpperCAmelCase : Any = WavaVecaModel(UpperCAmelCase_ ) UpperCAmelCase : str = recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase_ ) UpperCAmelCase : int = SpeechaTextaForCausalLM(UpperCAmelCase_ ) UpperCAmelCase , UpperCAmelCase : List[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase_ ) # set output linear layer unexpected_keys.remove('embed_out' ) UpperCAmelCase : str = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) UpperCAmelCase : List[str] = SpeechEncoderDecoderModel(encoder=UpperCAmelCase_ , decoder=UpperCAmelCase_ ) UpperCAmelCase : Any = False # add projection layer UpperCAmelCase : Optional[Any] = nn.Parameter(projection_layer.weight ) UpperCAmelCase : List[str] = nn.Parameter(projection_layer.bias ) UpperCAmelCase : Tuple = create_vocab_dict(UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , 'vocab.json' ) , 'w' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = SpeechaTextaTokenizer(os.path.join(UpperCAmelCase_ , 'vocab.json' ) ) tokenizer.save_pretrained(UpperCAmelCase_ ) UpperCAmelCase : str = hf_wavavec.config.to_dict() UpperCAmelCase : int = tokenizer.pad_token_id UpperCAmelCase : str = tokenizer.bos_token_id UpperCAmelCase : Union[str, Any] = tokenizer.eos_token_id UpperCAmelCase : Any = 'speech_to_text_2' UpperCAmelCase : Any = 'wav2vec2' UpperCAmelCase : str = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase_ ) hf_wavavec.save_pretrained(UpperCAmelCase_ ) feature_extractor.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") lowercase__ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
695
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
1
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase__ : """simple docstring""" a = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be trained."} ) a = field( default="./" , metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) a = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path of training dataset."} ) a = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) a = field(default=2 , metadata={"help": "Batch size for training."} ) a = field(default=2 , metadata={"help": "Batch size for evaluation."} ) a = field(default=0.1 , metadata={"help": "Value of weight decay."} ) a = field( default=1_00_00 , metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) a = field(default=2e-4 , metadata={"help": "Learning rate fo training."} ) a = field(default="cosine" , metadata={"help": "Learning rate."} ) a = field( default=7_50 , metadata={"help": "Number of warmup steps in the learning rate schedule."} ) a = field( default=16 , metadata={"help": "Number of gradient accumulation steps."} ) a = field( default=A__ , metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) a = field(default=5_00_00 , metadata={"help": "Maximum number of training steps."} ) a = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) a = field(default=10_24 , metadata={"help": "Sequence lengths used for training."} ) a = field(default=1 , metadata={"help": "Training seed."} ) a = field( default=10_24 , metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} , ) a = field( default=A__ , metadata={"help": "States path if the training should continue from a checkpoint folder."} ) a = field(default=A__ , metadata={"help": "If True the data is pretokenized."} ) @dataclass class UpperCAmelCase__ : """simple docstring""" a = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) a = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) a = field(default=2 , metadata={"help": "Batch size used for evaluation."} ) a = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) a = field(default=10_24 , metadata={"help": "Length of sequences to be evaluated."} ) a = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) @dataclass class UpperCAmelCase__ : """simple docstring""" a = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) a = field(default=A__ , metadata={"help": "Number of workers used for code evaluation."} ) a = field( default=A__ , metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} , ) a = field( default=A__ , metadata={"help": "Sample from the language model's output distribution."} ) a = field(default=0.2 , metadata={"help": "Sampling temperature used for generation."} ) a = field(default=2_56 , metadata={"help": "Maximum number of newly generated tokens."} ) a = field(default=0 , metadata={"help": "Top-k parameter used for generation."} ) a = field(default=0.9_5 , metadata={"help": "Top-p parameter used for nucleus sampling."} ) a = field(default=10 , metadata={"help": "Number of generations to run in parallel."} ) a = field( default=2_00 , metadata={"help": "Number of completions to generate for each sample."} ) a = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) a = field( default="eval_results.json" , metadata={"help": "Random seed used for evaluation."} ) a = field( default="0" , metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) a = field( default=-1 , metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) } , ) @dataclass class UpperCAmelCase__ : """simple docstring""" a = field( default=A__ , metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." } , ) a = field( default="transformersbook/codeparrot" , metadata={"help": "Folder or name of dataset to process."} ) a = field( default="codeparrot-clean" , metadata={"help": "Folder to save processed processed dataset."} ) a = field( default=10_00_00 , metadata={"help": "Number of files to save per JSON output file."} ) a = field(default="content" , metadata={"help": "Column containing text data to process."} ) a = field( default=10_00 , metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) a = field( default=1_00 , metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) a = field( default=0.2_5 , metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) a = field( default=1.5 , metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) a = field( default=0.7 , metadata={"help": "Probability for filtering config, test and uncommon files."} ) a = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} , ) a = field( default=A__ , metadata={"help": "If True, near-duplicate samples are removed."} ) a = field( default=0.8_5 , metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class UpperCAmelCase__ : """simple docstring""" a = field( default="gpt2" , metadata={"help": "Base tokenizer to build new tokenizer from."} ) a = field( default="transformersbook/codeparrot-train" , metadata={"help": "Dataset to train tokenizer on."} ) a = field(default="content" , metadata={"help": "Column containing text data to process."} ) a = field(default=20_00_00 , metadata={"help": "Number of examples to train tokenizer on."} ) a = field( default=3_27_68 , metadata={"help": "Number of examples to train the tokenizer on."} ) a = field(default="codeparrot" , metadata={"help": "Name of new tokenizer."} ) a = field(default=A__ , metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class UpperCAmelCase__ : """simple docstring""" a = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} ) a = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path to the dataset to pretokenize."} ) a = field( default="tokenized-codeparrot-train" , metadata={"help": "Repo name of the pretokenized data."} ) a = field(default=A__ , metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class UpperCAmelCase__ : """simple docstring""" a = field( default="gpt2-large" , metadata={"help": "Configuration to use for model initialization."} ) a = field( default="codeparrot/codeparrot" , metadata={"help": "Tokenizer attached to model."} ) a = field(default="codeparrot" , metadata={"help": "Name of the created model."} ) a = field(default=A__ , metadata={"help": "Push saved tokenizer to the hub."} )
493
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase__ ( A__ ): """simple docstring""" a = 42 a = None def UpperCAmelCase_ ( _A , _A=0.9_9_9 , _A="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -1_2.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) SCREAMING_SNAKE_CASE__ = [] for i in range(_A ): SCREAMING_SNAKE_CASE__ = i / num_diffusion_timesteps SCREAMING_SNAKE_CASE__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ) , _A ) ) return torch.tensor(_A , dtype=torch.floataa ) class UpperCAmelCase__ ( A__ , A__ ): """simple docstring""" a = 1 @register_to_config def __init__( self : Dict , __lowerCamelCase : int = 1000 , __lowerCamelCase : float = 0.0001 , __lowerCamelCase : float = 0.02 , __lowerCamelCase : str = "linear" , __lowerCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : int = 0 , __lowerCamelCase : str = "epsilon" , __lowerCamelCase : float = 1.0 , **__lowerCamelCase : str , ) -> Optional[Any]: if kwargs.get('''set_alpha_to_one''' , __lowerCamelCase ) is not None: SCREAMING_SNAKE_CASE__ = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __lowerCamelCase , standard_warn=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = kwargs['''set_alpha_to_one'''] if trained_betas is not None: SCREAMING_SNAKE_CASE__ = torch.tensor(__lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": SCREAMING_SNAKE_CASE__ = torch.linspace(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. SCREAMING_SNAKE_CASE__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __lowerCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule SCREAMING_SNAKE_CASE__ = betas_for_alpha_bar(__lowerCamelCase ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) SCREAMING_SNAKE_CASE__ = 1.0 - self.betas SCREAMING_SNAKE_CASE__ = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. SCREAMING_SNAKE_CASE__ = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE__ = 1.0 # setable values SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = torch.from_numpy(np.arange(0 , __lowerCamelCase ).copy().astype(np.intaa ) ) def lowercase_ ( self : Optional[int] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : Optional[int] = None ) -> torch.FloatTensor: return sample def lowercase_ ( self : int , __lowerCamelCase : int , __lowerCamelCase : Union[str, torch.device] = None ) -> Union[str, Any]: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) SCREAMING_SNAKE_CASE__ = num_inference_steps SCREAMING_SNAKE_CASE__ = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE__ = (np.arange(0 , __lowerCamelCase ) * step_ratio).round().copy().astype(np.intaa ) SCREAMING_SNAKE_CASE__ = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase ) self.timesteps += self.config.steps_offset def lowercase_ ( self : List[Any] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : int , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : float = 0.0 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) SCREAMING_SNAKE_CASE__ = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process SCREAMING_SNAKE_CASE__ = self.alphas_cumprod[timestep] SCREAMING_SNAKE_CASE__ = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) SCREAMING_SNAKE_CASE__ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 SCREAMING_SNAKE_CASE__ = model_output elif self.config.prediction_type == "sample": SCREAMING_SNAKE_CASE__ = model_output SCREAMING_SNAKE_CASE__ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": SCREAMING_SNAKE_CASE__ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output SCREAMING_SNAKE_CASE__ = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: SCREAMING_SNAKE_CASE__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf SCREAMING_SNAKE_CASE__ = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf SCREAMING_SNAKE_CASE__ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__lowerCamelCase , pred_original_sample=__lowerCamelCase ) def __len__( self : List[str] ) -> Union[str, Any]: return self.config.num_train_timesteps
493
1
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __lowercase ( snake_case, snake_case, snake_case = 1_0**-1_0 ): """simple docstring""" __magic_name__ :Tuple = a while True: __magic_name__ :Any = Decimal(snake_case ) - ( Decimal(eval(snake_case ) ) / Decimal(eval(str(diff(snake_case ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(snake_case ) ) < precision: # noqa: S307 return float(snake_case ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(f"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") # Find Square Root of 5 print(f"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") # Exponential Roots print(f"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")
180
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''', ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''', ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''', [None, '''v2'''] ) def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" __magic_name__ :Tuple = hf_hub_url(repo_id=snake_case, path=snake_case, revision=snake_case ) assert url == f'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(snake_case )}'''
180
1
"""simple docstring""" from scipy.stats import pearsonr import datasets __UpperCamelCase : Tuple = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' __UpperCamelCase : Tuple = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' __UpperCamelCase : Any = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" if return_pvalue: lowerCAmelCase = pearsonr(_snake_case , _snake_case ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(_snake_case , _snake_case )[0] )}
4
"""simple docstring""" import pytest import datasets # Import fixture modules as plugins __UpperCAmelCase = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def lowercase__ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str ) -> str: '''simple docstring''' # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["integration", "unit"] ): continue item.add_marker(pytest.mark.unit ) def lowercase__ ( lowerCAmelCase__ : List[Any] ) -> Any: '''simple docstring''' config.addinivalue_line("markers" , "torchaudio_latest: mark test to run with torchaudio>=0.12" ) @pytest.fixture(autouse=lowerCAmelCase__ ) def lowercase__ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict ) -> List[str]: '''simple docstring''' # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? a__ : Dict = tmp_path_factory.getbasetemp() / "cache" a__ : int = test_hf_cache_home / "datasets" a__ : Tuple = test_hf_cache_home / "metrics" a__ : Any = test_hf_cache_home / "modules" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE" , str(lowerCAmelCase__ ) ) monkeypatch.setattr("datasets.config.HF_METRICS_CACHE" , str(lowerCAmelCase__ ) ) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE" , str(lowerCAmelCase__ ) ) a__ : Optional[int] = test_hf_datasets_cache / "downloads" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH" , str(lowerCAmelCase__ ) ) a__ : Tuple = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(lowerCAmelCase__ ) ) @pytest.fixture(autouse=lowerCAmelCase__ , scope="session" ) def lowercase__ ( ) -> Union[str, Any]: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowerCAmelCase__ ) def lowercase__ ( lowerCAmelCase__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' # don't take tests into account when counting downloads monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS" , lowerCAmelCase__ ) @pytest.fixture def lowercase__ ( lowerCAmelCase__ : Optional[Any] ) -> str: '''simple docstring''' # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING" , lowerCAmelCase__ )
642
0
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __snake_case =["""text""", """image""", """audio"""] def a_ ( lowerCamelCase : List[str] ): lowerCAmelCase = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(lowerCamelCase , lowerCamelCase ): inputs.append(create_inputs(lowerCamelCase ) ) else: raise ValueError(f'''Invalid type requested: {input_type}''' ) return inputs def a_ ( lowerCamelCase : List ): lowerCAmelCase = [] for output in outputs: if isinstance(lowerCamelCase , (str, AgentText) ): output_types.append('text' ) elif isinstance(lowerCamelCase , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(lowerCamelCase , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(f'''Invalid output: {output}''' ) return output_types @is_tool_test class UpperCAmelCase_ : def __UpperCAmelCase ( self : Optional[int] ) -> Dict: self.assertTrue(hasattr(self.tool , 'inputs' ) ) self.assertTrue(hasattr(self.tool , 'outputs' ) ) lowerCAmelCase = self.tool.inputs for _input in inputs: if isinstance(_input , UpperCAmelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: lowerCAmelCase = create_inputs(self.tool.inputs ) lowerCAmelCase = self.tool(*UpperCAmelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase = [outputs] self.assertListEqual(output_types(UpperCAmelCase__ ) , self.tool.outputs ) def __UpperCAmelCase ( self : Optional[Any] ) -> str: self.assertTrue(hasattr(self.tool , 'description' ) ) self.assertTrue(hasattr(self.tool , 'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def __UpperCAmelCase ( self : Tuple ) -> Tuple: lowerCAmelCase = create_inputs(self.tool.inputs ) lowerCAmelCase = self.tool(*UpperCAmelCase__ ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = [outputs] self.assertEqual(len(UpperCAmelCase__ ) , len(self.tool.outputs ) ) for output, output_type in zip(UpperCAmelCase__ , self.tool.outputs ): lowerCAmelCase = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) ) def __UpperCAmelCase ( self : str ) -> int: lowerCAmelCase = create_inputs(self.tool.inputs ) lowerCAmelCase = [] for _input, input_type in zip(UpperCAmelCase__ , self.tool.inputs ): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase = self.tool(*UpperCAmelCase__ ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = [outputs] self.assertEqual(len(UpperCAmelCase__ ) , len(self.tool.outputs ) )
513
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __snake_case =logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Union[str, Any] = ['''pixel_values'''] def __init__( self : int , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : Dict , ) -> None: super().__init__(**UpperCAmelCase__ ) lowerCAmelCase = size if size is not None else {'height': 3_8_4, 'width': 3_8_4} lowerCAmelCase = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = resample lowerCAmelCase = do_rescale lowerCAmelCase = rescale_factor lowerCAmelCase = do_normalize lowerCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase = do_convert_rgb def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Union[str, Any] , ) -> np.ndarray: lowerCAmelCase = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) lowerCAmelCase = (size['height'], size['width']) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[int, float] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[int] , ) -> str: return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : List[Any] , ) -> np.ndarray: return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Dict[str, int]] = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[float] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : int , ) -> PIL.Image.Image: lowerCAmelCase = do_resize if do_resize is not None else self.do_resize lowerCAmelCase = resample if resample is not None else self.resample lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase = image_mean if image_mean is not None else self.image_mean lowerCAmelCase = image_std if image_std is not None else self.image_std lowerCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase = size if size is not None else self.size lowerCAmelCase = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) lowerCAmelCase = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase = [convert_to_rgb(UpperCAmelCase__ ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: lowerCAmelCase = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: lowerCAmelCase = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] if do_normalize: lowerCAmelCase = [self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) for image in images] lowerCAmelCase = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] lowerCAmelCase = BatchFeature(data={'pixel_values': images} , tensor_type=UpperCAmelCase__ ) return encoded_outputs
513
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class _A ( UpperCAmelCase_ ): @staticmethod @abstractmethod def a ( lowerCamelCase__ : ArgumentParser ): """simple docstring""" raise NotImplementedError() @abstractmethod def a ( self : List[str] ): """simple docstring""" raise NotImplementedError()
269
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( UpperCAmelCase_ , unittest.TestCase ): lowercase_ : int = KandinskyVaaPipeline lowercase_ : Union[str, Any] = [ '''image_embeds''', '''negative_image_embeds''', ] lowercase_ : int = ['''image_embeds''', '''negative_image_embeds'''] lowercase_ : str = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase_ : str = False @property def a ( self : int ): """simple docstring""" return 32 @property def a ( self : str ): """simple docstring""" return 32 @property def a ( self : Optional[int] ): """simple docstring""" return self.time_input_dim @property def a ( self : Optional[int] ): """simple docstring""" return self.time_input_dim * 4 @property def a ( self : Optional[Any] ): """simple docstring""" return 1_00 @property def a ( self : str ): """simple docstring""" torch.manual_seed(0 ) __UpperCamelCase : int = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __UpperCamelCase : Any = UNetaDConditionModel(**lowerCamelCase__ ) return model @property def a ( self : Union[str, Any] ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a ( self : int ): """simple docstring""" torch.manual_seed(0 ) __UpperCamelCase : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def a ( self : Tuple ): """simple docstring""" __UpperCamelCase : str = self.dummy_unet __UpperCamelCase : Optional[int] = self.dummy_movq __UpperCamelCase : List[str] = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=lowerCamelCase__ , ) __UpperCamelCase : str = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a ( self : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any=0 ): """simple docstring""" __UpperCamelCase : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __UpperCamelCase : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCamelCase__ ) if str(lowerCamelCase__ ).startswith("""mps""" ): __UpperCamelCase : Optional[int] = torch.manual_seed(lowerCamelCase__ ) else: __UpperCamelCase : int = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __UpperCamelCase : Dict = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def a ( self : Dict ): """simple docstring""" __UpperCamelCase : Dict = """cpu""" __UpperCamelCase : Dict = self.get_dummy_components() __UpperCamelCase : Union[str, Any] = self.pipeline_class(**lowerCamelCase__ ) __UpperCamelCase : int = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : List[Any] = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) __UpperCamelCase : List[Any] = output.images __UpperCamelCase : int = pipe( **self.get_dummy_inputs(lowerCamelCase__ ) , return_dict=lowerCamelCase__ , )[0] __UpperCamelCase : List[str] = image[0, -3:, -3:, -1] __UpperCamelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCamelCase : int = np.array( [0.623_7976, 1.0, 0.3644_1332, 1.0, 0.7063_9634, 0.2987_7186, 0.8565_2125, 0.521_6843, 0.5445_4046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class _A ( unittest.TestCase ): def a ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : List[Any] ): """simple docstring""" __UpperCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy""" ) __UpperCamelCase : List[str] = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase__ ) __UpperCamelCase : int = KandinskyVaaPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) __UpperCamelCase : Optional[int] = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Optional[Any] = """red cat, 4k photo""" __UpperCamelCase : Tuple = torch.Generator(device="""cuda""" ).manual_seed(0 ) __UpperCamelCase , __UpperCamelCase : Union[str, Any] = pipe_prior( lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __UpperCamelCase : Any = torch.Generator(device="""cuda""" ).manual_seed(0 ) __UpperCamelCase : Union[str, Any] = pipeline( image_embeds=lowerCamelCase__ , negative_image_embeds=lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=1_00 , output_type="""np""" , ) __UpperCamelCase : Any = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ )
269
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=64 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ): UpperCAmelCase__ : Any = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : Any = seq_length UpperCAmelCase__ : int = is_training UpperCAmelCase__ : List[str] = use_input_mask UpperCAmelCase__ : Dict = use_token_type_ids UpperCAmelCase__ : List[str] = use_labels UpperCAmelCase__ : Dict = vocab_size UpperCAmelCase__ : List[str] = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : Union[str, Any] = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase__ : int = max_position_embeddings UpperCAmelCase__ : Any = type_vocab_size UpperCAmelCase__ : Optional[Any] = type_sequence_label_size UpperCAmelCase__ : int = initializer_range UpperCAmelCase__ : Optional[Any] = num_labels UpperCAmelCase__ : str = num_choices UpperCAmelCase__ : Optional[int] = scope UpperCAmelCase__ : List[Any] = vocab_size - 1 def snake_case__ ( self): UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase__ : int = None if self.use_input_mask: UpperCAmelCase__ : Dict = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase__ : List[Any] = None if self.use_labels: UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCAmelCase__ : Union[str, Any] = self.get_config() return config, input_ids, input_mask, token_labels def snake_case__ ( self): return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def snake_case__ ( self): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = self.prepare_config_and_inputs() UpperCAmelCase__ : Dict = True return config, input_ids, input_mask, token_labels def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Tuple = GPTNeoXModel(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase) UpperCAmelCase__ : List[str] = model(_lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : int = True UpperCAmelCase__ : List[str] = GPTNeoXModel(_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : int = model(_lowerCamelCase , attention_mask=_lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : int = GPTNeoXForCausalLM(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : str = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : int = self.num_labels UpperCAmelCase__ : int = GPTNeoXForQuestionAnswering(_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : List[str] = model(_lowerCamelCase , attention_mask=_lowerCamelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Dict = self.num_labels UpperCAmelCase__ : Any = GPTNeoXForSequenceClassification(_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase__ : Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : List[Any] = self.num_labels UpperCAmelCase__ : Tuple = GPTNeoXForTokenClassification(_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : Tuple = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : str = GPTNeoXForCausalLM(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() # first forward pass UpperCAmelCase__ : Dict = model(_lowerCamelCase , attention_mask=_lowerCamelCase , use_cache=_lowerCamelCase) UpperCAmelCase__ : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size) UpperCAmelCase__ : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and UpperCAmelCase__ : str = torch.cat([input_ids, next_tokens] , dim=-1) UpperCAmelCase__ : List[str] = torch.cat([input_mask, next_mask] , dim=-1) UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , output_hidden_states=_lowerCamelCase) UpperCAmelCase__ : List[Any] = output_from_no_past["""hidden_states"""][0] UpperCAmelCase__ : Optional[Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase , output_hidden_states=_lowerCamelCase , )["""hidden_states"""][0] # select random slice UpperCAmelCase__ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1]).item() UpperCAmelCase__ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase__ : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3)) def snake_case__ ( self): UpperCAmelCase__ : Tuple = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = config_and_inputs UpperCAmelCase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _snake_case ( a__ , a__ , a__ , unittest.TestCase ): lowerCAmelCase :Dict = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase :Tuple = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCAmelCase :List[str] = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase :List[str] = False lowerCAmelCase :str = False lowerCAmelCase :Dict = False lowerCAmelCase :Optional[int] = False def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = GPTNeoXModelTester(self) UpperCAmelCase__ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=64 , num_attention_heads=8) def snake_case__ ( self): self.config_tester.run_common_tests() def snake_case__ ( self): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) def snake_case__ ( self): # This regression test was failing with PyTorch < 1.3 UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase__ : Union[str, Any] = None self.model_tester.create_and_check_model_as_decoder(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase) @unittest.skip(reason="""Feed forward chunking is not implemented""") def snake_case__ ( self): pass @parameterized.expand([("""linear""",), ("""dynamic""",)]) def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Any = ids_tensor([1, 10] , config.vocab_size) UpperCAmelCase__ : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase__ : Optional[int] = GPTNeoXModel(_lowerCamelCase) original_model.to(_lowerCamelCase) original_model.eval() UpperCAmelCase__ : Any = original_model(_lowerCamelCase).last_hidden_state UpperCAmelCase__ : Optional[int] = original_model(_lowerCamelCase).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase__ : Dict = {"""type""": scaling_type, """factor""": 10.0} UpperCAmelCase__ : List[Any] = GPTNeoXModel(_lowerCamelCase) scaled_model.to(_lowerCamelCase) scaled_model.eval() UpperCAmelCase__ : str = scaled_model(_lowerCamelCase).last_hidden_state UpperCAmelCase__ : Any = scaled_model(_lowerCamelCase).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-5)) else: self.assertFalse(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-5)) @require_torch class _snake_case ( unittest.TestCase ): @slow def snake_case__ ( self): UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""") for checkpointing in [True, False]: UpperCAmelCase__ : Dict = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""") if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(_lowerCamelCase) UpperCAmelCase__ : Any = tokenizer("""My favorite food is""" , return_tensors="""pt""").to(_lowerCamelCase) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 UpperCAmelCase__ : List[Any] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" UpperCAmelCase__ : Union[str, Any] = model.generate(**_lowerCamelCase , do_sample=_lowerCamelCase , max_new_tokens=20) UpperCAmelCase__ : int = tokenizer.batch_decode(_lowerCamelCase)[0] self.assertEqual(_lowerCamelCase , _lowerCamelCase)
113
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __A ={ 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
113
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __magic_name__ = logging.get_logger(__name__) class _lowerCAmelCase ( lowerCamelCase ): lowercase_ : int = ['''pixel_values'''] def __init__( self , a_ = True , a_ = 32 , a_=PILImageResampling.BILINEAR , a_ = True , **a_ , ) -> None: _UpperCAmelCase = do_resize _UpperCAmelCase = do_rescale _UpperCAmelCase = size_divisor _UpperCAmelCase = resample super().__init__(**a_ ) def _a ( self , a_ , a_ , a_ , a_ = None , **a_ ) -> np.ndarray: _UpperCAmelCase , _UpperCAmelCase = get_image_size(a_ ) # Rounds the height and width down to the closest multiple of size_divisor _UpperCAmelCase = height // size_divisor * size_divisor _UpperCAmelCase = width // size_divisor * size_divisor _UpperCAmelCase = resize(a_ , (new_h, new_w) , resample=a_ , data_format=a_ , **a_ ) return image def _a ( self , a_ , a_ , a_ = None , **a_ ) -> np.ndarray: return rescale(image=a_ , scale=a_ , data_format=a_ , **a_ ) def _a ( self , a_ , a_ = None , a_ = None , a_=None , a_ = None , a_ = None , a_ = ChannelDimension.FIRST , **a_ , ) -> BatchFeature: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = size_divisor if size_divisor is not None else self.size_divisor _UpperCAmelCase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("size_divisor is required for resizing" ) _UpperCAmelCase = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError("Invalid image(s)" ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(a_ ) for img in images] if do_resize: _UpperCAmelCase = [self.resize(a_ , size_divisor=a_ , resample=a_ ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(a_ , scale=1 / 255 ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(a_ , a_ ) for image in images] _UpperCAmelCase = {"pixel_values": images} return BatchFeature(data=a_ , tensor_type=a_ )
657
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) class _lowerCAmelCase ( lowerCamelCase ): lowercase_ : Optional[Any] = '''upernet''' def __init__( self , a_=None , a_=512 , a_=0.02 , a_=[1, 2, 3, 6] , a_=True , a_=0.4 , a_=384 , a_=256 , a_=1 , a_=False , a_=255 , **a_ , ) -> List[Any]: super().__init__(**a_ ) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _UpperCAmelCase = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"] ) elif isinstance(a_ , a_ ): _UpperCAmelCase = backbone_config.get("model_type" ) _UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase = config_class.from_dict(a_ ) _UpperCAmelCase = backbone_config _UpperCAmelCase = hidden_size _UpperCAmelCase = initializer_range _UpperCAmelCase = pool_scales _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_in_channels _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = loss_ignore_index def _a ( self ) -> int: _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
657
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['PerceiverFeatureExtractor'] lowerCAmelCase_ = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
122
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCAmelCase_ = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.0_1), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class __A ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCAmelCase ( cls : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Any = TOKEN HfFolder.save_token(_snake_case ) @classmethod def UpperCAmelCase ( cls : List[str] ) -> str: """simple docstring""" try: delete_repo(token=cls._token ,repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='''test-dynamic-config''' ) except HTTPError: pass def UpperCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('''test-config''' ,use_auth_token=self._token ) lowercase__ : Any = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case ,getattr(_snake_case ,_snake_case ) ) # Reset repo delete_repo(token=self._token ,repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_snake_case ,repo_id='''test-config''' ,push_to_hub=_snake_case ,use_auth_token=self._token ) lowercase__ : List[str] = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case ,getattr(_snake_case ,_snake_case ) ) def UpperCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" lowercase__ : List[str] = BertConfig( vocab_size=99 ,hidden_size=32 ,num_hidden_layers=5 ,num_attention_heads=4 ,intermediate_size=37 ) config.push_to_hub('''valid_org/test-config-org''' ,use_auth_token=self._token ) lowercase__ : Union[str, Any] = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case ,getattr(_snake_case ,_snake_case ) ) # Reset repo delete_repo(token=self._token ,repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _snake_case ,repo_id='''valid_org/test-config-org''' ,push_to_hub=_snake_case ,use_auth_token=self._token ) lowercase__ : Union[str, Any] = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case ,getattr(_snake_case ,_snake_case ) ) def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" CustomConfig.register_for_auto_class() lowercase__ : int = CustomConfig(attribute=42 ) config.push_to_hub('''test-dynamic-config''' ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map ,{'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) lowercase__ : Optional[Any] = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" ,trust_remote_code=_snake_case ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ ,'''CustomConfig''' ) self.assertEqual(new_config.attribute ,42 ) class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" lowercase__ : List[str] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowercase__ : Tuple = c.n_embd + 1 # int lowercase__ : int = c.resid_pdrop + 1.0 # float lowercase__ : str = not c.scale_attn_weights # bool lowercase__ : Union[str, Any] = c.summary_type + '''foo''' # str c.update_from_string( f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(_snake_case ,c.n_embd ,'''mismatch for key: n_embd''' ) self.assertEqual(_snake_case ,c.resid_pdrop ,'''mismatch for key: resid_pdrop''' ) self.assertEqual(_snake_case ,c.scale_attn_weights ,'''mismatch for key: scale_attn_weights''' ) self.assertEqual(_snake_case ,c.summary_type ,'''mismatch for key: summary_type''' ) def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" lowercase__ : List[str] = PretrainedConfig() lowercase__ : Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _snake_case ,['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) lowercase__ : Tuple = [key for key, value in config_common_kwargs.items() if value == getattr(_snake_case ,_snake_case )] if len(_snake_case ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' f""" {", ".join(_snake_case )}.""" ) def UpperCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" with self.assertRaises(_snake_case ): # config is in subfolder, the following should not work without specifying the subfolder lowercase__ : Optional[int] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) lowercase__ : str = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ,subfolder='''bert''' ) self.assertIsNotNone(_snake_case ) def UpperCAmelCase ( self : str ) -> Dict: """simple docstring""" lowercase__ : Any = mock.Mock() lowercase__ : Dict = 500 lowercase__ : Any = {} lowercase__ : Optional[int] = HTTPError lowercase__ : Optional[int] = {} # Download this model to make sure it's in the cache. lowercase__ : str = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' ,return_value=_snake_case ) as mock_head: lowercase__ : Tuple = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def UpperCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" lowercase__ : Dict = AutoConfig.from_pretrained('''bert-base-cased''' ) lowercase__ : int = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_snake_case ) lowercase__ : Optional[int] = 2 json.dump(configuration.to_dict() ,open(os.path.join(_snake_case ,'''config.4.0.0.json''' ) ,'''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowercase__ : Union[str, Any] = AutoConfig.from_pretrained(_snake_case ) self.assertEqual(new_configuration.hidden_size ,2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowercase__ : Dict = ['''config.42.0.0.json'''] lowercase__ : Optional[Any] = 768 configuration.save_pretrained(_snake_case ) shutil.move(os.path.join(_snake_case ,'''config.4.0.0.json''' ) ,os.path.join(_snake_case ,'''config.42.0.0.json''' ) ) lowercase__ : List[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertEqual(new_configuration.hidden_size ,768 ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[int] = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers lowercase__ : Optional[int] = '''v4.0.0''' lowercase__ , lowercase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( _snake_case ,return_unused_kwargs=_snake_case ) self.assertEqual(new_configuration.hidden_size ,2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_snake_case ,{} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowercase__ : Optional[Any] = '''v3.0.0''' lowercase__ : Union[str, Any] = old_transformers.models.auto.AutoConfig.from_pretrained(_snake_case ) self.assertEqual(old_configuration.hidden_size ,768 )
122
1
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: _a : Optional[Any] =ArgumentParser("""Transformers CLI tool""" ,usage="""transformers-cli <command> [<args>]""" ) _a : Any =parser.add_subparsers(help="""transformers-cli command helpers""" ) # Register commands ConvertCommand.register_subcommand(_UpperCAmelCase ) DownloadCommand.register_subcommand(_UpperCAmelCase ) EnvironmentCommand.register_subcommand(_UpperCAmelCase ) RunCommand.register_subcommand(_UpperCAmelCase ) ServeCommand.register_subcommand(_UpperCAmelCase ) UserCommands.register_subcommand(_UpperCAmelCase ) AddNewModelCommand.register_subcommand(_UpperCAmelCase ) AddNewModelLikeCommand.register_subcommand(_UpperCAmelCase ) LfsCommands.register_subcommand(_UpperCAmelCase ) PTtoTFCommand.register_subcommand(_UpperCAmelCase ) # Let's go _a : str =parser.parse_args() if not hasattr(_UpperCAmelCase ,"""func""" ): parser.print_help() exit(1 ) # Run _a : Dict =args.func(_UpperCAmelCase ) service.run() if __name__ == "__main__": main()
694
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 4000000 ) -> int: _a : Optional[Any] =[] _a , _a : Union[str, Any] =0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_UpperCAmelCase ) _a , _a : Optional[Any] =b, a + b return sum(_UpperCAmelCase ) if __name__ == "__main__": print(F"{solution() = }")
694
1
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class a : """simple docstring""" def __init__( self : Dict , snake_case_ : Tuple , snake_case_ : List[str]=1_3 , snake_case_ : Dict=7 , snake_case_ : int=True , snake_case_ : Tuple=True , snake_case_ : int=True , snake_case_ : Any=True , snake_case_ : Union[str, Any]=9_9 , snake_case_ : List[Any]=2_4 , snake_case_ : Optional[Any]=2 , snake_case_ : Union[str, Any]=6 , snake_case_ : Any=3_7 , snake_case_ : Any="gelu" , snake_case_ : Dict=0.1 , snake_case_ : List[str]=0.1 , snake_case_ : Dict=5_1_2 , snake_case_ : Any=1_6 , snake_case_ : Optional[int]=2 , snake_case_ : Union[str, Any]=0.0_2 , snake_case_ : int=3 , snake_case_ : int=None , snake_case_ : Union[str, Any]=1_0_0_0 , ): '''simple docstring''' snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : List[str] = seq_length snake_case__ : List[Any] = is_training snake_case__ : Optional[Any] = use_input_mask snake_case__ : Optional[Any] = use_token_type_ids snake_case__ : Tuple = use_labels snake_case__ : List[Any] = vocab_size snake_case__ : Union[str, Any] = hidden_size snake_case__ : Optional[int] = num_hidden_layers snake_case__ : Any = num_attention_heads snake_case__ : str = intermediate_size snake_case__ : Optional[int] = hidden_act snake_case__ : List[Any] = hidden_dropout_prob snake_case__ : Union[str, Any] = attention_probs_dropout_prob snake_case__ : Dict = max_position_embeddings snake_case__ : int = type_vocab_size snake_case__ : Tuple = type_sequence_label_size snake_case__ : Optional[Any] = initializer_range snake_case__ : Union[str, Any] = num_labels snake_case__ : Dict = scope snake_case__ : Tuple = range_bbox def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' snake_case__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : str = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case__ : Optional[int] = bbox[i, j, 3] snake_case__ : Dict = bbox[i, j, 1] snake_case__ : List[str] = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case__ : Dict = bbox[i, j, 2] snake_case__ : List[str] = bbox[i, j, 0] snake_case__ : Dict = t snake_case__ : int = None if self.use_input_mask: snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) snake_case__ : str = None if self.use_token_type_ids: snake_case__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Tuple = None snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __magic_name__ ( self : List[Any] ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __magic_name__ ( self : Optional[int] , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Tuple , ): '''simple docstring''' snake_case__ : Optional[Any] = LiltModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Dict = model(snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) snake_case__ : Optional[Any] = model(snake_case_ , bbox=snake_case_ , token_type_ids=snake_case_ ) snake_case__ : Union[str, Any] = model(snake_case_ , bbox=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ ( self : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : int , snake_case_ : int , snake_case_ : Tuple , ): '''simple docstring''' snake_case__ : List[Any] = self.num_labels snake_case__ : str = LiltForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : List[Any] = model( snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Dict , snake_case_ : int , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : int , ): '''simple docstring''' snake_case__ : Optional[int] = LiltForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Optional[int] = model( snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' snake_case__ : Dict = self.prepare_config_and_inputs() ( snake_case__ ) : Tuple = config_and_inputs snake_case__ : List[Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __UpperCAmelCase = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def __magic_name__ ( self : List[str] , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : Dict , snake_case_ : str , snake_case_ : Any ): '''simple docstring''' return True def __magic_name__ ( self : Dict ): '''simple docstring''' snake_case__ : List[Any] = LiltModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def __magic_name__ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' snake_case__ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ : int = type self.model_tester.create_and_check_model(*snake_case_ ) def __magic_name__ ( self : Optional[int] ): '''simple docstring''' snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) @slow def __magic_name__ ( self : str ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : List[str] = LiltModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @slow class a ( unittest.TestCase ): """simple docstring""" def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ : Any = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(snake_case_ ) snake_case__ : int = torch.tensor([[1, 2]] , device=snake_case_ ) snake_case__ : List[str] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=snake_case_ ) # forward pass with torch.no_grad(): snake_case__ : Optional[int] = model(input_ids=snake_case_ , bbox=snake_case_ ) snake_case__ : Tuple = torch.Size([1, 2, 7_6_8] ) snake_case__ : Dict = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=snake_case_ , ) self.assertTrue(outputs.last_hidden_state.shape , snake_case_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , snake_case_ , atol=1e-3 ) )
709
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class a : """simple docstring""" def __init__( self : Any , snake_case_ : str , snake_case_ : Optional[Any]=1_3 , snake_case_ : int=7 , snake_case_ : int=True , snake_case_ : Optional[Any]=True , snake_case_ : Dict=True , snake_case_ : int=True , snake_case_ : Optional[Any]=9_9 , snake_case_ : int=6_4 , snake_case_ : Dict=5 , snake_case_ : List[Any]=4 , snake_case_ : Union[str, Any]=3_7 , snake_case_ : Dict="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Dict=0.1 , snake_case_ : Any=5_1_2 , snake_case_ : Any=1_6 , snake_case_ : Any=2 , snake_case_ : Dict=0.0_2 , snake_case_ : List[str]=3 , snake_case_ : Optional[int]=4 , snake_case_ : str=None , ): '''simple docstring''' snake_case__ : List[Any] = parent snake_case__ : int = batch_size snake_case__ : Dict = seq_length snake_case__ : int = is_training snake_case__ : Optional[Any] = use_input_mask snake_case__ : Optional[Any] = use_token_type_ids snake_case__ : Dict = use_labels snake_case__ : int = vocab_size snake_case__ : Any = hidden_size snake_case__ : int = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : List[Any] = intermediate_size snake_case__ : int = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : Optional[int] = max_position_embeddings snake_case__ : Optional[int] = type_vocab_size snake_case__ : Any = type_sequence_label_size snake_case__ : str = initializer_range snake_case__ : List[str] = num_labels snake_case__ : Dict = num_choices snake_case__ : Union[str, Any] = scope snake_case__ : List[Any] = vocab_size - 1 def __magic_name__ ( self : List[Any] ): '''simple docstring''' snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Optional[int] = None if self.use_input_mask: snake_case__ : int = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Dict = self.get_config() return config, input_ids, input_mask, token_labels def __magic_name__ ( self : List[Any] ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = self.prepare_config_and_inputs() snake_case__ : List[str] = True return config, input_ids, input_mask, token_labels def __magic_name__ ( self : Tuple , snake_case_ : Any , snake_case_ : str , snake_case_ : str ): '''simple docstring''' snake_case__ : Any = GPTNeoXModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Union[str, Any] = model(snake_case_ , attention_mask=snake_case_ ) snake_case__ : int = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : List[Any] , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Optional[int] ): '''simple docstring''' snake_case__ : Union[str, Any] = True snake_case__ : Tuple = GPTNeoXModel(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Dict = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Any , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : List[Any] ): '''simple docstring''' snake_case__ : Union[str, Any] = GPTNeoXForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Tuple = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : Optional[int] , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : List[str] ): '''simple docstring''' snake_case__ : Dict = self.num_labels snake_case__ : List[Any] = GPTNeoXForQuestionAnswering(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Any = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : List[Any] , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Dict ): '''simple docstring''' snake_case__ : str = self.num_labels snake_case__ : List[str] = GPTNeoXForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : str = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : Dict , snake_case_ : Optional[int] ): '''simple docstring''' snake_case__ : Any = self.num_labels snake_case__ : Any = GPTNeoXForTokenClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Union[str, Any] , snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : Tuple ): '''simple docstring''' snake_case__ : Optional[Any] = True snake_case__ : Union[str, Any] = GPTNeoXForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() # first forward pass snake_case__ : int = model(snake_case_ , attention_mask=snake_case_ , use_cache=snake_case_ ) snake_case__ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , output_hidden_states=snake_case_ ) snake_case__ : Union[str, Any] = output_from_no_past['''hidden_states'''][0] snake_case__ : str = model( snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ , output_hidden_states=snake_case_ , )['''hidden_states'''][0] # select random slice snake_case__ : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : str = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1e-3 ) ) def __magic_name__ ( self : Optional[int] ): '''simple docstring''' snake_case__ : Dict = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ : Tuple = config_and_inputs snake_case__ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) __UpperCAmelCase = (GPTNeoXForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def __magic_name__ ( self : int ): '''simple docstring''' snake_case__ : Optional[int] = GPTNeoXModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=snake_case_ , hidden_size=6_4 , num_attention_heads=8 ) def __magic_name__ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self : Dict ): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : Dict ): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case__ : Optional[int] = None self.model_tester.create_and_check_model_as_decoder(snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : Optional[int] ): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : int ): '''simple docstring''' snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*snake_case_ ) def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def __magic_name__ ( self : Any ): '''simple docstring''' snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def __magic_name__ ( self : List[Any] ): '''simple docstring''' snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __magic_name__ ( self : Optional[int] , snake_case_ : Optional[Any] ): '''simple docstring''' snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict = ids_tensor([1, 1_0] , config.vocab_size ) snake_case__ : List[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : Tuple = GPTNeoXModel(snake_case_ ) original_model.to(snake_case_ ) original_model.eval() snake_case__ : Any = original_model(snake_case_ ).last_hidden_state snake_case__ : List[str] = original_model(snake_case_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : Optional[Any] = {'''type''': scaling_type, '''factor''': 1_0.0} snake_case__ : Optional[Any] = GPTNeoXModel(snake_case_ ) scaled_model.to(snake_case_ ) scaled_model.eval() snake_case__ : Optional[int] = scaled_model(snake_case_ ).last_hidden_state snake_case__ : List[str] = scaled_model(snake_case_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1e-5 ) ) @require_torch class a ( unittest.TestCase ): """simple docstring""" @slow def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ : Dict = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: snake_case__ : str = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(snake_case_ ) snake_case__ : Tuple = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(snake_case_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 snake_case__ : List[str] = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' snake_case__ : Optional[int] = model.generate(**snake_case_ , do_sample=snake_case_ , max_new_tokens=2_0 ) snake_case__ : Tuple = tokenizer.batch_decode(snake_case_ )[0] self.assertEqual(snake_case_ , snake_case_ )
502
0
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class A ( SCREAMING_SNAKE_CASE__ ): def __get__( self : List[Any] , __magic_name__ : Dict , __magic_name__ : Union[str, Any]=None ): """simple docstring""" if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) lowerCAmelCase__ = "__cached_" + self.fget.__name__ lowerCAmelCase__ = getattr(__magic_name__ , __magic_name__ , __magic_name__ ) if cached is None: lowerCAmelCase__ = self.fget(__magic_name__ ) setattr(__magic_name__ , __magic_name__ , __magic_name__ ) return cached def A ( UpperCamelCase_ : List[str] ) -> str: '''simple docstring''' lowerCAmelCase__ = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"""invalid truth value {val!r}""" ) def A ( UpperCamelCase_ : List[Any] ) -> Any: '''simple docstring''' if is_torch_fx_proxy(UpperCamelCase_ ): return True if is_torch_available(): import torch if isinstance(UpperCamelCase_ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(UpperCamelCase_ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(UpperCamelCase_ , (jnp.ndarray, Tracer) ): return True return isinstance(UpperCamelCase_ , np.ndarray ) def A ( UpperCamelCase_ : Any ) -> Any: '''simple docstring''' return isinstance(UpperCamelCase_ , np.ndarray ) def A ( UpperCamelCase_ : str ) -> Union[str, Any]: '''simple docstring''' return _is_numpy(UpperCamelCase_ ) def A ( UpperCamelCase_ : Union[str, Any] ) -> Dict: '''simple docstring''' import torch return isinstance(UpperCamelCase_ , torch.Tensor ) def A ( UpperCamelCase_ : str ) -> Optional[Any]: '''simple docstring''' return False if not is_torch_available() else _is_torch(UpperCamelCase_ ) def A ( UpperCamelCase_ : Union[str, Any] ) -> str: '''simple docstring''' import torch return isinstance(UpperCamelCase_ , torch.device ) def A ( UpperCamelCase_ : Any ) -> str: '''simple docstring''' return False if not is_torch_available() else _is_torch_device(UpperCamelCase_ ) def A ( UpperCamelCase_ : Optional[Any] ) -> List[str]: '''simple docstring''' import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ): if hasattr(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase__ = getattr(UpperCamelCase_ , UpperCamelCase_ ) else: return False return isinstance(UpperCamelCase_ , torch.dtype ) def A ( UpperCamelCase_ : int ) -> Any: '''simple docstring''' return False if not is_torch_available() else _is_torch_dtype(UpperCamelCase_ ) def A ( UpperCamelCase_ : str ) -> Tuple: '''simple docstring''' import tensorflow as tf return isinstance(UpperCamelCase_ , tf.Tensor ) def A ( UpperCamelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' return False if not is_tf_available() else _is_tensorflow(UpperCamelCase_ ) def A ( UpperCamelCase_ : Optional[int] ) -> str: '''simple docstring''' import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(UpperCamelCase_ , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(UpperCamelCase_ ) return type(UpperCamelCase_ ) == tf.Tensor def A ( UpperCamelCase_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCamelCase_ ) def A ( UpperCamelCase_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' import jax.numpy as jnp # noqa: F811 return isinstance(UpperCamelCase_ , jnp.ndarray ) def A ( UpperCamelCase_ : Union[str, Any] ) -> str: '''simple docstring''' return False if not is_flax_available() else _is_jax(UpperCamelCase_ ) def A ( UpperCamelCase_ : List[str] ) -> Tuple: '''simple docstring''' if isinstance(UpperCamelCase_ , (dict, UserDict) ): return {k: to_py_obj(UpperCamelCase_ ) for k, v in obj.items()} elif isinstance(UpperCamelCase_ , (list, tuple) ): return [to_py_obj(UpperCamelCase_ ) for o in obj] elif is_tf_tensor(UpperCamelCase_ ): return obj.numpy().tolist() elif is_torch_tensor(UpperCamelCase_ ): return obj.detach().cpu().tolist() elif is_jax_tensor(UpperCamelCase_ ): return np.asarray(UpperCamelCase_ ).tolist() elif isinstance(UpperCamelCase_ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def A ( UpperCamelCase_ : Tuple ) -> Optional[Any]: '''simple docstring''' if isinstance(UpperCamelCase_ , (dict, UserDict) ): return {k: to_numpy(UpperCamelCase_ ) for k, v in obj.items()} elif isinstance(UpperCamelCase_ , (list, tuple) ): return np.array(UpperCamelCase_ ) elif is_tf_tensor(UpperCamelCase_ ): return obj.numpy() elif is_torch_tensor(UpperCamelCase_ ): return obj.detach().cpu().numpy() elif is_jax_tensor(UpperCamelCase_ ): return np.asarray(UpperCamelCase_ ) else: return obj class A ( SCREAMING_SNAKE_CASE__ ): def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = fields(self ) # Safety and consistency checks if not len(__magic_name__ ): raise ValueError(f"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"""{self.__class__.__name__} should not have more than one required field.""" ) lowerCAmelCase__ = getattr(self , class_fields[0].name ) lowerCAmelCase__ = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__magic_name__ ): if isinstance(__magic_name__ , __magic_name__ ): lowerCAmelCase__ = first_field.items() lowerCAmelCase__ = True else: try: lowerCAmelCase__ = iter(__magic_name__ ) lowerCAmelCase__ = True except TypeError: lowerCAmelCase__ = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__magic_name__ ): if ( not isinstance(__magic_name__ , (list, tuple) ) or not len(__magic_name__ ) == 2 or not isinstance(element[0] , __magic_name__ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute lowerCAmelCase__ = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: lowerCAmelCase__ = element[1] elif first_field is not None: lowerCAmelCase__ = first_field else: for field in class_fields: lowerCAmelCase__ = getattr(self , field.name ) if v is not None: lowerCAmelCase__ = v def __delitem__( self : Union[str, Any] , *__magic_name__ : Tuple , **__magic_name__ : Dict ): """simple docstring""" raise Exception(f"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def __SCREAMING_SNAKE_CASE ( self : Tuple , *__magic_name__ : Tuple , **__magic_name__ : Dict ): """simple docstring""" raise Exception(f"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def __SCREAMING_SNAKE_CASE ( self : int , *__magic_name__ : Union[str, Any] , **__magic_name__ : Union[str, Any] ): """simple docstring""" raise Exception(f"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , *__magic_name__ : List[Any] , **__magic_name__ : List[Any] ): """simple docstring""" raise Exception(f"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self : Union[str, Any] , __magic_name__ : Optional[int] ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): lowerCAmelCase__ = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__magic_name__ , __magic_name__ ) super().__setattr__(__magic_name__ , __magic_name__ ) def __setitem__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[Any] ): """simple docstring""" super().__setitem__(__magic_name__ , __magic_name__ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" return tuple(self[k] for k in self.keys() ) class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): @classmethod def __SCREAMING_SNAKE_CASE ( cls : int , __magic_name__ : Optional[int] ): """simple docstring""" raise ValueError( f"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :int = 'longest' snake_case__ :Optional[Any] = 'max_length' snake_case__ :str = 'do_not_pad' class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = 'pt' snake_case__ :Union[str, Any] = 'tf' snake_case__ :Any = 'np' snake_case__ :List[str] = 'jax' class A : def __init__( self : Dict , __magic_name__ : List[ContextManager] ): """simple docstring""" lowerCAmelCase__ = context_managers lowerCAmelCase__ = ExitStack() def __enter__( self : str ): """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(__magic_name__ ) def __exit__( self : Dict , *__magic_name__ : Dict , **__magic_name__ : int ): """simple docstring""" self.stack.__exit__(*__magic_name__ , **__magic_name__ ) def A ( UpperCamelCase_ : Dict ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = infer_framework(UpperCamelCase_ ) if framework == "tf": lowerCAmelCase__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCAmelCase__ = inspect.signature(model_class.forward ) # PyTorch models else: lowerCAmelCase__ = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def A ( UpperCamelCase_ : int ) -> int: '''simple docstring''' lowerCAmelCase__ = model_class.__name__ lowerCAmelCase__ = infer_framework(UpperCamelCase_ ) if framework == "tf": lowerCAmelCase__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCAmelCase__ = inspect.signature(model_class.forward ) # PyTorch models else: lowerCAmelCase__ = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def A ( UpperCamelCase_ : MutableMapping , UpperCamelCase_ : str = "" , UpperCamelCase_ : str = "." ) -> List[Any]: '''simple docstring''' def _flatten_dict(UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int]="" , UpperCamelCase_ : Any="." ): for k, v in d.items(): lowerCAmelCase__ = str(UpperCamelCase_ ) + delimiter + str(UpperCamelCase_ ) if parent_key else k if v and isinstance(UpperCamelCase_ , UpperCamelCase_ ): yield from flatten_dict(UpperCamelCase_ , UpperCamelCase_ , delimiter=UpperCamelCase_ ).items() else: yield key, v return dict(_flatten_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ) @contextmanager def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : bool = False ) -> Any: '''simple docstring''' if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any]=None ) -> Tuple: '''simple docstring''' if is_numpy_array(UpperCamelCase_ ): return np.transpose(UpperCamelCase_ , axes=UpperCamelCase_ ) elif is_torch_tensor(UpperCamelCase_ ): return array.T if axes is None else array.permute(*UpperCamelCase_ ) elif is_tf_tensor(UpperCamelCase_ ): import tensorflow as tf return tf.transpose(UpperCamelCase_ , perm=UpperCamelCase_ ) elif is_jax_tensor(UpperCamelCase_ ): return jnp.transpose(UpperCamelCase_ , axes=UpperCamelCase_ ) else: raise ValueError(F"""Type not supported for transpose: {type(UpperCamelCase_ )}.""" ) def A ( UpperCamelCase_ : str , UpperCamelCase_ : int ) -> Dict: '''simple docstring''' if is_numpy_array(UpperCamelCase_ ): return np.reshape(UpperCamelCase_ , UpperCamelCase_ ) elif is_torch_tensor(UpperCamelCase_ ): return array.reshape(*UpperCamelCase_ ) elif is_tf_tensor(UpperCamelCase_ ): import tensorflow as tf return tf.reshape(UpperCamelCase_ , UpperCamelCase_ ) elif is_jax_tensor(UpperCamelCase_ ): return jnp.reshape(UpperCamelCase_ , UpperCamelCase_ ) else: raise ValueError(F"""Type not supported for reshape: {type(UpperCamelCase_ )}.""" ) def A ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str]=None ) -> Optional[int]: '''simple docstring''' if is_numpy_array(UpperCamelCase_ ): return np.squeeze(UpperCamelCase_ , axis=UpperCamelCase_ ) elif is_torch_tensor(UpperCamelCase_ ): return array.squeeze() if axis is None else array.squeeze(dim=UpperCamelCase_ ) elif is_tf_tensor(UpperCamelCase_ ): import tensorflow as tf return tf.squeeze(UpperCamelCase_ , axis=UpperCamelCase_ ) elif is_jax_tensor(UpperCamelCase_ ): return jnp.squeeze(UpperCamelCase_ , axis=UpperCamelCase_ ) else: raise ValueError(F"""Type not supported for squeeze: {type(UpperCamelCase_ )}.""" ) def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' if is_numpy_array(UpperCamelCase_ ): return np.expand_dims(UpperCamelCase_ , UpperCamelCase_ ) elif is_torch_tensor(UpperCamelCase_ ): return array.unsqueeze(dim=UpperCamelCase_ ) elif is_tf_tensor(UpperCamelCase_ ): import tensorflow as tf return tf.expand_dims(UpperCamelCase_ , axis=UpperCamelCase_ ) elif is_jax_tensor(UpperCamelCase_ ): return jnp.expand_dims(UpperCamelCase_ , axis=UpperCamelCase_ ) else: raise ValueError(F"""Type not supported for expand_dims: {type(UpperCamelCase_ )}.""" ) def A ( UpperCamelCase_ : List[str] ) -> Dict: '''simple docstring''' if is_numpy_array(UpperCamelCase_ ): return np.size(UpperCamelCase_ ) elif is_torch_tensor(UpperCamelCase_ ): return array.numel() elif is_tf_tensor(UpperCamelCase_ ): import tensorflow as tf return tf.size(UpperCamelCase_ ) elif is_jax_tensor(UpperCamelCase_ ): return array.size else: raise ValueError(F"""Type not supported for expand_dims: {type(UpperCamelCase_ )}.""" ) def A ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] ) -> Dict: '''simple docstring''' for key, value in auto_map.items(): if isinstance(UpperCamelCase_ , (tuple, list) ): lowerCAmelCase__ = [F"""{repo_id}--{v}""" if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: lowerCAmelCase__ = F"""{repo_id}--{value}""" return auto_map def A ( UpperCamelCase_ : str ) -> Any: '''simple docstring''' for base_class in inspect.getmro(UpperCamelCase_ ): lowerCAmelCase__ = base_class.__module__ lowerCAmelCase__ = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"""Could not infer framework from class {model_class}.""" )
48
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=None , ) -> Any: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 1 def __lowercase( self ) -> Optional[Any]: __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = self.get_config() return config, pixel_values, labels def __lowercase( self ) -> str: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: __UpperCamelCase = TFViTModel(config=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = model(_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. __UpperCamelCase = self.image_size // 2 __UpperCamelCase = pixel_values[:, :, :image_size, :image_size] __UpperCamelCase = model(_SCREAMING_SNAKE_CASE , interpolate_pos_encoding=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = TFViTForImageClassification(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. __UpperCamelCase = self.image_size // 2 __UpperCamelCase = pixel_values[:, :, :image_size, :image_size] __UpperCamelCase = model(_SCREAMING_SNAKE_CASE , interpolate_pos_encoding=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = TFViTForImageClassification(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowercase( self ) -> Dict: __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () UpperCAmelCase__ = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def __lowercase( self ) -> List[str]: __UpperCamelCase = TFViTModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowercase( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def __lowercase( self ) -> str: pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def __lowercase( self ) -> Tuple: pass def __lowercase( self ) -> int: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , tf.keras.layers.Layer ) ) def __lowercase( self ) -> Dict: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> str: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> str: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def __lowercase( self ) -> List[Any]: __UpperCamelCase = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _a ( ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase( self ) -> List[Any]: return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def __lowercase( self ) -> Dict: __UpperCamelCase = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='tf' ) # forward pass __UpperCamelCase = model(**_SCREAMING_SNAKE_CASE ) # verify the logits __UpperCamelCase = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) __UpperCamelCase = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 )
383
0
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _UpperCAmelCase (UpperCamelCase_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase : str = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def _UpperCAmelCase (UpperCamelCase_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase : Optional[int] = emb.weight.shape _lowerCAmelCase : Any = nn.Linear(__snake_case , __snake_case , bias=__snake_case ) _lowerCAmelCase : Dict = emb.weight.data return lin_layer def _UpperCAmelCase (UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any=None ): '''simple docstring''' _lowerCAmelCase : Any = {} for old_key in state_dict.keys(): _lowerCAmelCase : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: _lowerCAmelCase : Union[str, Any] = key.replace("""moe_layer.experts.0""" , F"ffn.experts.expert_{expert_idx}" ) else: _lowerCAmelCase : Dict = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: _lowerCAmelCase : Optional[int] = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: _lowerCAmelCase : int = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: _lowerCAmelCase : Union[str, Any] = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: _lowerCAmelCase : List[Any] = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: _lowerCAmelCase : Optional[Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: _lowerCAmelCase : Optional[int] = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) _lowerCAmelCase : Optional[int] = state_dict[old_key] return new_dict def _UpperCAmelCase (UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str = WEIGHTS_NAME ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Union[str, Any] = 0 os.makedirs(__snake_case , exist_ok=__snake_case ) for expert in range(__snake_case ): _lowerCAmelCase : Optional[Any] = switch_checkpoint_path + F"-rank-{expert}.pt" if os.path.isfile(__snake_case ): _lowerCAmelCase : Optional[int] = torch.load(__snake_case )["model"] remove_ignore_keys_(__snake_case ) _lowerCAmelCase : Dict = rename_fairseq_keys(__snake_case , __snake_case ) _lowerCAmelCase : Optional[int] = os.path.join( __snake_case , weights_name.replace(""".bin""" , F"-{len(__snake_case )+1:05d}-of-???.bin" ) ) torch.save(__snake_case , __snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__snake_case )[0]].dtype ) # Add the last block _lowerCAmelCase : List[Any] = os.path.join(__snake_case , weights_name.replace(""".bin""" , F"-{len(__snake_case )+1:05d}-of-???.bin" ) ) _lowerCAmelCase : List[Any] = torch.load(switch_checkpoint_path + """-shared.pt""" )["model"] remove_ignore_keys_(__snake_case ) _lowerCAmelCase : Optional[Any] = rename_fairseq_keys(__snake_case , __snake_case ) _lowerCAmelCase : int = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__snake_case ) == 1: _lowerCAmelCase : int = os.path.join(__snake_case , __snake_case ) torch.save(__snake_case , __snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__snake_case , __snake_case ) # Otherwise, let's build the index _lowerCAmelCase : Any = {} for idx, shard in enumerate(__snake_case ): _lowerCAmelCase : Optional[Any] = weights_name.replace(""".bin""" , F"-{idx+1:05d}-of-{len(__snake_case ):05d}.bin" ) _lowerCAmelCase : List[Any] = os.path.join(__snake_case , weights_name.replace(""".bin""" , F"-{idx+1:05d}-of-???.bin" ) ) os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) ) for key in shard: _lowerCAmelCase : Optional[int] = shard_file # Add the metadata _lowerCAmelCase : Tuple = {"total_size": total_size} _lowerCAmelCase : Optional[Any] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(__snake_case , __snake_case ) , """w""" , encoding="""utf-8""" ) as f: _lowerCAmelCase : List[Any] = json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + "\n" f.write(__snake_case ) return metadata, index if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) _lowerCamelCase : Optional[int] = parser.parse_args() _lowerCamelCase : Any = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_2_8, args.dtype, ) _lowerCamelCase : int = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase : List[Any] = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
713
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _lowerCamelCase : str = get_logger(__name__) class __snake_case : def __init__( self : Optional[int] , _UpperCAmelCase : Optional[str] = None ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Optional[Any] = ( os.path.join(_UpperCAmelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _lowerCAmelCase : Optional[int] = Extractor def SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCAmelCase : str ) -> str: '''simple docstring''' from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _lowerCAmelCase : List[Any] = os.path.abspath(_UpperCAmelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : bool ) -> bool: '''simple docstring''' return force_extract or ( not os.path.isfile(_UpperCAmelCase ) and not (os.path.isdir(_UpperCAmelCase ) and os.listdir(_UpperCAmelCase )) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> str: '''simple docstring''' _lowerCAmelCase : str = self.extractor.infer_extractor_format(_UpperCAmelCase ) if not extractor_format: return input_path _lowerCAmelCase : int = self._get_output_path(_UpperCAmelCase ) if self._do_extract(_UpperCAmelCase , _UpperCAmelCase ): self.extractor.extract(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return output_path class __snake_case (_a ): @classmethod @abstractmethod def SCREAMING_SNAKE_CASE ( cls : Tuple , _UpperCAmelCase : Union[Path, str] , **_UpperCAmelCase : Optional[int] ) -> bool: '''simple docstring''' ... @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' ... class __snake_case (_a , _a ): lowerCAmelCase__ = [] @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : int ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , """rb""" ) as f: return f.read(_UpperCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : bytes = b"" ) -> bool: '''simple docstring''' if not magic_number: _lowerCAmelCase : Optional[int] = max(len(_UpperCAmelCase ) for cls_magic_number in cls.magic_numbers ) try: _lowerCAmelCase : Union[str, Any] = cls.read_magic_number(_UpperCAmelCase , _UpperCAmelCase ) except OSError: return False return any(magic_number.startswith(_UpperCAmelCase ) for cls_magic_number in cls.magic_numbers ) class __snake_case (_a ): @classmethod def SCREAMING_SNAKE_CASE ( cls : str , _UpperCAmelCase : Union[Path, str] , **_UpperCAmelCase : Dict ) -> bool: '''simple docstring''' return tarfile.is_tarfile(_UpperCAmelCase ) @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' def resolved(_UpperCAmelCase : str ) -> str: return os.path.realpath(os.path.abspath(_UpperCAmelCase ) ) def badpath(_UpperCAmelCase : str , _UpperCAmelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ).startswith(_UpperCAmelCase ) def badlink(_UpperCAmelCase : Optional[int] , _UpperCAmelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link _lowerCAmelCase : Tuple = resolved(os.path.join(_UpperCAmelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCAmelCase ) _lowerCAmelCase : List[Any] = resolved(_UpperCAmelCase ) for finfo in members: if badpath(finfo.name , _UpperCAmelCase ): logger.error(f"Extraction of {finfo.name} is blocked (illegal path)" ) elif finfo.issym() and badlink(_UpperCAmelCase , _UpperCAmelCase ): logger.error(f"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}" ) elif finfo.islnk() and badlink(_UpperCAmelCase , _UpperCAmelCase ): logger.error(f"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}" ) else: yield finfo @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) _lowerCAmelCase : str = tarfile.open(_UpperCAmelCase ) tar_file.extractall(_UpperCAmelCase , members=TarExtractor.safemembers(_UpperCAmelCase , _UpperCAmelCase ) ) tar_file.close() class __snake_case (_a ): lowerCAmelCase__ = [b"\x1F\x8B"] @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' with gzip.open(_UpperCAmelCase , """rb""" ) as gzip_file: with open(_UpperCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) class __snake_case (_a ): lowerCAmelCase__ = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def SCREAMING_SNAKE_CASE ( cls : Dict , _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : bytes = b"" ) -> bool: '''simple docstring''' if super().is_extractable(_UpperCAmelCase , magic_number=_UpperCAmelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCAmelCase , """rb""" ) as fp: _lowerCAmelCase : Union[str, Any] = _EndRecData(_UpperCAmelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _lowerCAmelCase : List[Any] = fp.read(_UpperCAmelCase ) # CD is where we expect it to be if len(_UpperCAmelCase ) == sizeCentralDir: _lowerCAmelCase : int = struct.unpack(_UpperCAmelCase , _UpperCAmelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with zipfile.ZipFile(_UpperCAmelCase , """r""" ) as zip_file: zip_file.extractall(_UpperCAmelCase ) zip_file.close() class __snake_case (_a ): lowerCAmelCase__ = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' with lzma.open(_UpperCAmelCase ) as compressed_file: with open(_UpperCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) class __snake_case (_a ): lowerCAmelCase__ = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) _lowerCAmelCase : str = rarfile.RarFile(_UpperCAmelCase ) rf.extractall(_UpperCAmelCase ) rf.close() class __snake_case (_a ): lowerCAmelCase__ = [b"\x28\xb5\x2F\xFD"] @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd _lowerCAmelCase : Any = zstd.ZstdDecompressor() with open(_UpperCAmelCase , """rb""" ) as ifh, open(_UpperCAmelCase , """wb""" ) as ofh: dctx.copy_stream(_UpperCAmelCase , _UpperCAmelCase ) class __snake_case (_a ): lowerCAmelCase__ = [b"\x42\x5A\x68"] @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' with bza.open(_UpperCAmelCase , """rb""" ) as compressed_file: with open(_UpperCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) class __snake_case (_a ): lowerCAmelCase__ = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with pyazr.SevenZipFile(_UpperCAmelCase , """r""" ) as archive: archive.extractall(_UpperCAmelCase ) class __snake_case (_a ): lowerCAmelCase__ = [b"\x04\x22\x4D\x18"] @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(_UpperCAmelCase , """rb""" ) as compressed_file: with open(_UpperCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) class __snake_case : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) lowerCAmelCase__ = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def SCREAMING_SNAKE_CASE ( cls : str ) -> Optional[int]: '''simple docstring''' return max( len(_UpperCAmelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCAmelCase , _UpperCAmelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : int ) -> Any: '''simple docstring''' try: return MagicNumberBaseExtractor.read_magic_number(_UpperCAmelCase , magic_number_length=_UpperCAmelCase ) except OSError: return b"" @classmethod def SCREAMING_SNAKE_CASE ( cls : int , _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : bool = False ) -> bool: '''simple docstring''' warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=_UpperCAmelCase , ) _lowerCAmelCase : str = cls.infer_extractor_format(_UpperCAmelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , _UpperCAmelCase : Union[Path, str] ) -> str: # <Added version="2.4.0"/> '''simple docstring''' _lowerCAmelCase : str = cls._get_magic_number_max_length() _lowerCAmelCase : Dict = cls._read_magic_number(_UpperCAmelCase , _UpperCAmelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCAmelCase , magic_number=_UpperCAmelCase ): return extractor_format @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[BaseExtractor] = "deprecated" , ) -> None: '''simple docstring''' os.makedirs(os.path.dirname(_UpperCAmelCase ) , exist_ok=_UpperCAmelCase ) # Prevent parallel extractions _lowerCAmelCase : Tuple = str(Path(_UpperCAmelCase ).with_suffix(""".lock""" ) ) with FileLock(_UpperCAmelCase ): shutil.rmtree(_UpperCAmelCase , ignore_errors=_UpperCAmelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=_UpperCAmelCase , ) _lowerCAmelCase : List[str] = extractor if extractor != """deprecated""" else extractor_format else: _lowerCAmelCase : List[Any] = cls.extractors[extractor_format] return extractor.extract(_UpperCAmelCase , _UpperCAmelCase ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=_UpperCAmelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCAmelCase ): return extractor.extract(_UpperCAmelCase , _UpperCAmelCase )
196
0
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __snake_case ( _lowercase): def __init__( self : List[Any] , __lowerCAmelCase : NestedDataStructureLike[PathLike] , __lowerCAmelCase : Optional[NamedSplit] = None , __lowerCAmelCase : Optional[Features] = None , __lowerCAmelCase : str = None , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : Optional[int] = None , **__lowerCAmelCase : Optional[Any] , ): """simple docstring""" super().__init__( __lowerCAmelCase , split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , num_proc=__lowerCAmelCase , **__lowerCAmelCase , ) _lowerCamelCase : Any = field _lowerCamelCase : Any = path_or_paths if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else {self.split: path_or_paths} _lowerCamelCase : Optional[int] = Json( cache_dir=__lowerCAmelCase , data_files=__lowerCAmelCase , features=__lowerCAmelCase , field=__lowerCAmelCase , **__lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" if self.streaming: _lowerCamelCase : Union[str, Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowerCamelCase : List[Any] = None _lowerCamelCase : Any = None _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : List[str] = None self.builder.download_and_prepare( download_config=__lowerCAmelCase , download_mode=__lowerCAmelCase , verification_mode=__lowerCAmelCase , base_path=__lowerCAmelCase , num_proc=self.num_proc , ) _lowerCamelCase : List[Any] = self.builder.as_dataset( split=self.split , verification_mode=__lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset class __snake_case : def __init__( self : Optional[int] , __lowerCAmelCase : Dataset , __lowerCAmelCase : Union[PathLike, BinaryIO] , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[int] = None , **__lowerCAmelCase : Dict , ): """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) _lowerCamelCase : Any = dataset _lowerCamelCase : Any = path_or_buf _lowerCamelCase : Any = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _lowerCamelCase : str = num_proc _lowerCamelCase : Optional[int] = '''utf-8''' _lowerCamelCase : Optional[Any] = to_json_kwargs def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : int = self.to_json_kwargs.pop('''path_or_buf''' , __lowerCAmelCase ) _lowerCamelCase : List[str] = self.to_json_kwargs.pop('''orient''' , '''records''' ) _lowerCamelCase : str = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) _lowerCamelCase : Tuple = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) _lowerCamelCase : Dict = self.to_json_kwargs.pop('''compression''' , __lowerCAmelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=__lowerCAmelCase ) as buffer: _lowerCamelCase : List[str] = self._write(file_obj=__lowerCAmelCase , orient=__lowerCAmelCase , lines=__lowerCAmelCase , index=__lowerCAmelCase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' ''' was passed. Please provide a local path instead.''' ) _lowerCamelCase : List[str] = self._write( file_obj=self.path_or_buf , orient=__lowerCAmelCase , lines=__lowerCAmelCase , index=__lowerCAmelCase , **self.to_json_kwargs ) return written def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = args _lowerCamelCase : Any = query_table( table=self.dataset.data , key=slice(__lowerCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) _lowerCamelCase : Any = batch.to_pandas().to_json( path_or_buf=__lowerCAmelCase , orient=__lowerCAmelCase , lines=__lowerCAmelCase , index=__lowerCAmelCase , **__lowerCAmelCase ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : BinaryIO , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , **__lowerCAmelCase : Optional[Any] , ): """simple docstring""" _lowerCamelCase : int = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): _lowerCamelCase : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(__lowerCAmelCase ) else: _lowerCamelCase , _lowerCamelCase : str = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __lowerCAmelCase , __lowerCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(__lowerCAmelCase ) return written
83
"""simple docstring""" import os import time import numpy as np import onnxruntime as ort lowerCAmelCase__ = '''1''' lowerCAmelCase__ = '''0''' lowerCAmelCase__ = '''1''' lowerCAmelCase__ = ort.SessionOptions() lowerCAmelCase__ = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('''Create inference session...''') lowerCAmelCase__ = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider'''] lowerCAmelCase__ = ort.InferenceSession('''model.onnx''', sess_options=sess_opt, providers=execution_provider) lowerCAmelCase__ = ort.RunOptions() lowerCAmelCase__ = 128 lowerCAmelCase__ = 1 lowerCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) lowerCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) lowerCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) print('''Warm up phase...''') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Start inference...''') lowerCAmelCase__ = time.time() lowerCAmelCase__ = 2000 lowerCAmelCase__ = {} for iter in range(max_iters): lowerCAmelCase__ = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Average Inference Time = {:.3f} ms'''.format((time.time() - start_time) * 1000 / max_iters))
83
1
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[int] =(CMStochasticIterativeScheduler,) a_ : Any =10 def UpperCamelCase_ ( self : Union[str, Any] , **UpperCamelCase : Any ): '''simple docstring''' _snake_case : Optional[Any] = { 'num_train_timesteps': 2_01, 'sigma_min': 0.0_02, 'sigma_max': 80.0, } config.update(**UpperCamelCase ) return config def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : List[str] = 10 _snake_case : Tuple = self.get_scheduler_config() _snake_case : Optional[Any] = self.scheduler_classes[0](**UpperCamelCase ) scheduler.set_timesteps(UpperCamelCase ) _snake_case : List[str] = scheduler.timesteps[0] _snake_case : Union[str, Any] = scheduler.timesteps[1] _snake_case : Any = self.dummy_sample _snake_case : List[str] = 0.1 * sample _snake_case : Tuple = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase ).prev_sample _snake_case : Union[str, Any] = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=UpperCamelCase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Optional[int] = self.scheduler_classes[0] _snake_case : Dict = self.get_scheduler_config() _snake_case : List[Any] = scheduler_class(**UpperCamelCase ) _snake_case : Tuple = 1 scheduler.set_timesteps(UpperCamelCase ) _snake_case : Any = scheduler.timesteps _snake_case : Dict = torch.manual_seed(0 ) _snake_case : Optional[int] = self.dummy_model() _snake_case : Any = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(UpperCamelCase ): # 1. scale model input _snake_case : Optional[int] = scheduler.scale_model_input(UpperCamelCase , UpperCamelCase ) # 2. predict noise residual _snake_case : Optional[Any] = model(UpperCamelCase , UpperCamelCase ) # 3. predict previous sample x_t-1 _snake_case : Any = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , generator=UpperCamelCase ).prev_sample _snake_case : Tuple = pred_prev_sample _snake_case : List[str] = torch.sum(torch.abs(UpperCamelCase ) ) _snake_case : Optional[Any] = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_sum.item() - 1_92.76_14 ) < 1e-2 assert abs(result_mean.item() - 0.25_10 ) < 1e-3 def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : str = self.scheduler_classes[0] _snake_case : str = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**UpperCamelCase ) _snake_case : Optional[int] = [1_06, 0] scheduler.set_timesteps(timesteps=UpperCamelCase ) _snake_case : Optional[Any] = scheduler.timesteps _snake_case : Any = torch.manual_seed(0 ) _snake_case : Union[str, Any] = self.dummy_model() _snake_case : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _snake_case : int = scheduler.scale_model_input(UpperCamelCase , UpperCamelCase ) # 2. predict noise residual _snake_case : Union[str, Any] = model(UpperCamelCase , UpperCamelCase ) # 3. predict previous sample x_t-1 _snake_case : Optional[int] = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , generator=UpperCamelCase ).prev_sample _snake_case : Union[str, Any] = pred_prev_sample _snake_case : Union[str, Any] = torch.sum(torch.abs(UpperCamelCase ) ) _snake_case : Tuple = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_sum.item() - 3_47.63_57 ) < 1e-2 assert abs(result_mean.item() - 0.45_27 ) < 1e-3 def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Any = self.scheduler_classes[0] _snake_case : Optional[Any] = self.get_scheduler_config() _snake_case : Optional[int] = scheduler_class(**UpperCamelCase ) _snake_case : Optional[Any] = [39, 30, 12, 15, 0] with self.assertRaises(UpperCamelCase , msg='`timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.scheduler_classes[0] _snake_case : List[Any] = self.get_scheduler_config() _snake_case : int = scheduler_class(**UpperCamelCase ) _snake_case : Dict = [39, 30, 12, 1, 0] _snake_case : Union[str, Any] = len(UpperCamelCase ) with self.assertRaises(UpperCamelCase , msg='Can only pass one of `num_inference_steps` or `timesteps`.' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase , timesteps=UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = self.scheduler_classes[0] _snake_case : str = self.get_scheduler_config() _snake_case : int = scheduler_class(**UpperCamelCase ) _snake_case : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=UpperCamelCase )
708
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
0
'''simple docstring''' # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def _a( UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =[False] * len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[Any] =[-1] * len(UpperCamelCase__ ) def dfs(UpperCamelCase__ : Optional[int], UpperCamelCase__ : Tuple ): SCREAMING_SNAKE_CASE__ : List[str] =True SCREAMING_SNAKE_CASE__ : Optional[Any] =c for u in graph[v]: if not visited[u]: dfs(UpperCamelCase__, 1 - c ) for i in range(len(UpperCamelCase__ ) ): if not visited[i]: dfs(UpperCamelCase__, 0 ) for i in range(len(UpperCamelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph a_ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
296
'''simple docstring''' from __future__ import annotations def _a( UpperCamelCase__ : list, UpperCamelCase__ : int ): '''simple docstring''' if len(UpperCamelCase__ ) <= 1 or n <= 1: return insert_next(UpperCamelCase__, n - 1 ) rec_insertion_sort(UpperCamelCase__, n - 1 ) def _a( UpperCamelCase__ : list, UpperCamelCase__ : int ): '''simple docstring''' if index >= len(UpperCamelCase__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple =( collection[index], collection[index - 1], ) insert_next(UpperCamelCase__, index + 1 ) if __name__ == "__main__": a_ = input('Enter integers separated by spaces: ') a_ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
296
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : str = logging.get_logger(__name__) __A : Union[str, Any] = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' __magic_name__ : Dict = """gpt_bigcode""" __magic_name__ : str = ["""past_key_values"""] __magic_name__ : Union[str, Any] = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any , UpperCamelCase__ : Optional[int]=50257 , UpperCamelCase__ : Optional[int]=1024 , UpperCamelCase__ : Any=768 , UpperCamelCase__ : List[Any]=12 , UpperCamelCase__ : int=12 , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Union[str, Any]="gelu_pytorch_tanh" , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Any=1E-5 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Dict=50256 , UpperCamelCase__ : str=50256 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : int=True , **UpperCamelCase__ : List[str] , ): A__ : Any =vocab_size A__ : Optional[int] =n_positions A__ : Tuple =n_embd A__ : Optional[int] =n_layer A__ : Optional[int] =n_head A__ : Tuple =n_inner A__ : List[str] =activation_function A__ : List[Any] =resid_pdrop A__ : Optional[Any] =embd_pdrop A__ : List[Any] =attn_pdrop A__ : Optional[int] =layer_norm_epsilon A__ : Any =initializer_range A__ : List[Any] =scale_attn_weights A__ : Optional[int] =use_cache A__ : List[Any] =attention_softmax_in_fpaa A__ : Any =scale_attention_softmax_in_fpaa A__ : int =multi_query A__ : Tuple =bos_token_id A__ : List[str] =eos_token_id super().__init__(bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
595
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Dict = { "configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ["RemBertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = ["RemBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
595
1
"""simple docstring""" import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case ( self : Optional[Any] ): __lowercase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __lowercase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __lowercase : List[str] = 'xvjiarui/stable-diffusion-2-inpainting' __lowercase : Tuple = FlaxStableDiffusionInpaintPipeline.from_pretrained(_UpperCAmelCase , safety_checker=_UpperCAmelCase ) __lowercase : List[str] = 'Face of a yellow cat, high resolution, sitting on a park bench' __lowercase : Any = jax.random.PRNGKey(0 ) __lowercase : Any = 5_0 __lowercase : Optional[int] = jax.device_count() __lowercase : List[Any] = num_samples * [prompt] __lowercase : Dict = num_samples * [init_image] __lowercase : Dict = num_samples * [mask_image] __lowercase : List[Any] = pipeline.prepare_inputs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # shard inputs and rng __lowercase : Any = replicate(_UpperCAmelCase ) __lowercase : Tuple = jax.random.split(_UpperCAmelCase , jax.device_count() ) __lowercase : Union[str, Any] = shard(_UpperCAmelCase ) __lowercase : List[Any] = shard(_UpperCAmelCase ) __lowercase : List[str] = shard(_UpperCAmelCase ) __lowercase : Optional[int] = pipeline( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase ) __lowercase : Dict = output.images.reshape(_UpperCAmelCase , 5_1_2 , 5_1_2 , 3 ) __lowercase : Optional[Any] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] __lowercase : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase : Optional[int] = jnp.array( [0.3_6_1_1_3_0_7, 0.3_7_6_4_9_7_3_6, 0.3_7_5_7_4_0_8, 0.3_8_2_1_3_9_5_3, 0.3_9_2_9_5_1_6_7, 0.3_8_4_1_6_3_1, 0.4_1_5_5_4_9_7_8, 0.4_1_3_7_4_7_5, 0.4_2_1_7_0_8_4] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
575
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase : Optional[str] = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowerCamelCase : Optional[int] = field( default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowerCamelCase : Optional[int] = field( default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase : Optional[int] = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} ) lowerCamelCase : Optional[int] = field( default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase : Optional[int] = field( default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase : Optional[int] = field( default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[float] = field( default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase : Optional[float] = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase : Optional[int] = field( default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase : Optional[str] = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
687
0
'''simple docstring''' import argparse import os import re lowercase__ : Optional[Any] = "src/diffusers" # Pattern that looks at the indentation in a line. lowercase__ : Any = re.compile(R"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ : Tuple = re.compile(R"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ : str = re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ : List[str] = re.compile(R"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ : Tuple = re.compile(R"\[([^\]]+)\]") def __lowerCamelCase ( _UpperCamelCase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ = _re_indent.search(lowercase__ ) return "" if search is None else search.groups()[0] def __lowerCamelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int="" , _UpperCamelCase : int=None , _UpperCamelCase : str=None ): '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowercase__ ): index += 1 UpperCAmelCase_ = ['''\n'''.join(lines[:index] )] else: UpperCAmelCase_ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). UpperCAmelCase_ = [lines[index]] index += 1 while index < len(lowercase__ ) and (end_prompt is None or not lines[index].startswith(lowercase__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowercase__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowercase__ ) ) if index < len(lowercase__ ) - 1: UpperCAmelCase_ = [lines[index + 1]] index += 1 else: UpperCAmelCase_ = [] else: blocks.append('''\n'''.join(lowercase__ ) ) UpperCAmelCase_ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowercase__ ) > 0: blocks.append('''\n'''.join(lowercase__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowercase__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def __lowerCamelCase ( _UpperCamelCase : Dict ): '''simple docstring''' def _inner(_UpperCamelCase : int ): return key(lowercase__ ).lower().replace('''_''' , '''''' ) return _inner def __lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : str=None ): '''simple docstring''' def noop(_UpperCamelCase : List[Any] ): return x if key is None: UpperCAmelCase_ = noop # Constants are all uppercase, they go first. UpperCAmelCase_ = [obj for obj in objects if key(lowercase__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. UpperCAmelCase_ = [obj for obj in objects if key(lowercase__ )[0].isupper() and not key(lowercase__ ).isupper()] # Functions begin with a lowercase, they go last. UpperCAmelCase_ = [obj for obj in objects if not key(lowercase__ )[0].isupper()] UpperCAmelCase_ = ignore_underscore(lowercase__ ) return sorted(lowercase__ , key=lowercase__ ) + sorted(lowercase__ , key=lowercase__ ) + sorted(lowercase__ , key=lowercase__ ) def __lowerCamelCase ( _UpperCamelCase : Dict ): '''simple docstring''' def _replace(_UpperCamelCase : List[str] ): UpperCAmelCase_ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" UpperCAmelCase_ = [part.strip().replace('''\"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCAmelCase_ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowercase__ )] ) + "]" UpperCAmelCase_ = import_statement.split('''\n''' ) if len(lowercase__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. UpperCAmelCase_ = 2 if lines[1].strip() == '''[''' else 1 UpperCAmelCase_ = [(i, _re_strip_line.search(lowercase__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] UpperCAmelCase_ = sort_objects(lowercase__ , key=lambda _UpperCamelCase : x[1] ) UpperCAmelCase_ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowercase__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: UpperCAmelCase_ = _re_bracket_content.sub(_replace , lines[1] ) else: UpperCAmelCase_ = [part.strip().replace('''\"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCAmelCase_ = keys[:-1] UpperCAmelCase_ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowercase__ )] ) return "\n".join(lowercase__ ) else: # Finally we have to deal with imports fitting on one line UpperCAmelCase_ = _re_bracket_content.sub(_replace , lowercase__ ) return import_statement def __lowerCamelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Dict=True ): '''simple docstring''' with open(lowercase__ , '''r''' ) as f: UpperCAmelCase_ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 UpperCAmelCase_ = split_code_in_indented_blocks( lowercase__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowercase__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. UpperCAmelCase_ = main_blocks[block_idx] UpperCAmelCase_ = block.split('''\n''' ) # Get to the start of the imports. UpperCAmelCase_ = 0 while line_idx < len(lowercase__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: UpperCAmelCase_ = len(lowercase__ ) else: line_idx += 1 if line_idx >= len(lowercase__ ): continue # Ignore beginning and last line: they don't contain anything. UpperCAmelCase_ = '''\n'''.join(block_lines[line_idx:-1] ) UpperCAmelCase_ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. UpperCAmelCase_ = split_code_in_indented_blocks(lowercase__ , indent_level=lowercase__ ) # We have two categories of import key: list or _import_structure[key].append/extend UpperCAmelCase_ = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. UpperCAmelCase_ = [(pattern.search(lowercase__ ).groups()[0] if pattern.search(lowercase__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. UpperCAmelCase_ = [(i, key) for i, key in enumerate(lowercase__ ) if key is not None] UpperCAmelCase_ = [x[0] for x in sorted(lowercase__ , key=lambda _UpperCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. UpperCAmelCase_ = 0 UpperCAmelCase_ = [] for i in range(len(lowercase__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: UpperCAmelCase_ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(lowercase__ ) count += 1 # And we put our main block back together with its first and last line. UpperCAmelCase_ = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(lowercase__ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(lowercase__ , '''w''' ) as f: f.write('''\n'''.join(lowercase__ ) ) def __lowerCamelCase ( _UpperCamelCase : Optional[Any]=True ): '''simple docstring''' UpperCAmelCase_ = [] for root, _, files in os.walk(lowercase__ ): if "__init__.py" in files: UpperCAmelCase_ = sort_imports(os.path.join(lowercase__ , '''__init__.py''' ) , check_only=lowercase__ ) if result: UpperCAmelCase_ = [os.path.join(lowercase__ , '''__init__.py''' )] if len(lowercase__ ) > 0: raise ValueError(F"""Would overwrite {len(lowercase__ )} files, run `make style`.""" ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") lowercase__ : str = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
719
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __lowerCamelCase ( _UpperCamelCase : Union[str, Any] ): '''simple docstring''' for param in module.parameters(): UpperCAmelCase_ = False def __lowerCamelCase ( ): '''simple docstring''' UpperCAmelCase_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCAmelCase_ = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def __lowerCamelCase ( _UpperCamelCase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ = plt.imshow(_UpperCamelCase ) fig.axes.get_xaxis().set_visible(_UpperCamelCase ) fig.axes.get_yaxis().set_visible(_UpperCamelCase ) plt.show() def __lowerCamelCase ( ): '''simple docstring''' UpperCAmelCase_ = datetime.now() UpperCAmelCase_ = current_time.strftime('''%H:%M:%S''' ) return timestamp
43
0
import argparse from collections import defaultdict import yaml __lowercase = '''docs/source/en/_toctree.yml''' def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[int] = defaultdict(__UpperCAmelCase ) for doc in model_doc: counts[doc["local"]] += 1 __UpperCamelCase :Any = [key for key, value in counts.items() if value > 1] __UpperCamelCase :int = [] for duplicate_key in duplicates: __UpperCamelCase :Union[str, Any] = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(__UpperCAmelCase ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(__UpperCAmelCase , key=lambda SCREAMING_SNAKE_CASE : s["title"].lower() ) def lowerCamelCase ( SCREAMING_SNAKE_CASE=False ): '''simple docstring''' with open(__UpperCAmelCase , encoding='''utf-8''' ) as f: __UpperCamelCase :int = yaml.safe_load(f.read() ) # Get to the API doc __UpperCamelCase :Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCamelCase :int = content[api_idx]['''sections'''] # Then to the model doc __UpperCamelCase :int = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __UpperCamelCase :Optional[int] = api_doc[model_idx]['''sections'''] __UpperCamelCase :Dict = [(idx, section) for idx, section in enumerate(__UpperCAmelCase ) if '''sections''' in section] __UpperCamelCase :Optional[int] = False for idx, modality_doc in modalities_docs: __UpperCamelCase :List[str] = modality_doc['''sections'''] __UpperCamelCase :Dict = clean_model_doc_toc(__UpperCAmelCase ) if old_modality_doc != new_modality_doc: __UpperCamelCase :str = True if overwrite: __UpperCamelCase :Optional[int] = new_modality_doc if diff: if overwrite: __UpperCamelCase :List[str] = model_doc __UpperCamelCase :Optional[Any] = api_doc with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(__UpperCAmelCase , allow_unicode=__UpperCAmelCase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __lowercase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
167
"""simple docstring""" import math def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 1_0_0 ) -> int: lowercase__: Dict = sum(i * i for i in range(1 , n + 1 ) ) lowercase__: int = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
586
0
SCREAMING_SNAKE_CASE = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): assert len(str(lowerCAmelCase__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __a = year // 100 __a = (5 * (century % 4) + 2) % 7 __a = year % 100 __a = centurian % 12 __a = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __a = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) __a = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
209
from math import pow def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count __a = int(pow(lowerCAmelCase__ , lowerCAmelCase__ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n __a , __a = backtrack( lowerCAmelCase__ , lowerCAmelCase__ , current_number + 1 , lowerCAmelCase__ , lowerCAmelCase__ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. __a , __a = backtrack( lowerCAmelCase__ , lowerCAmelCase__ , current_number + 1 , lowerCAmelCase__ , lowerCAmelCase__ ) return current_sum, solutions_count def a (lowerCAmelCase__ , lowerCAmelCase__ ): if not (1 <= needed_sum <= 1_000 and 2 <= power <= 10): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(lowerCAmelCase__ , lowerCAmelCase__ , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
209
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self , __snake_case , __snake_case=7 , __snake_case=3 , __snake_case=1_8 , __snake_case=3_0 , __snake_case=4_0_0 , __snake_case=True , __snake_case=None , __snake_case=True , ): snake_case = size if size is not None else {'''height''': 1_8, '''width''': 1_8} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = image_size snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size snake_case = apply_ocr def a_ ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A__ ( snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a_ ( self ): snake_case = LayoutLMvaImageProcessingTester(self ) @property def a_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def a_ ( self ): snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(__snake_case , '''size''' ) ) self.assertTrue(hasattr(__snake_case , '''apply_ocr''' ) ) def a_ ( self ): snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8} ) snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2} ) def a_ ( self ): pass def a_ ( self ): # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , __snake_case ) self.assertIsInstance(encoding.boxes , __snake_case ) # Test batched snake_case = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a_ ( self ): # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a_ ( self ): # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched snake_case = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a_ ( self ): # with apply_OCR = True snake_case = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) snake_case = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) snake_case = image_processing(__snake_case , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 snake_case = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __snake_case ) self.assertListEqual(encoding.boxes , __snake_case ) # with apply_OCR = False snake_case = LayoutLMvaImageProcessor(apply_ocr=__snake_case ) snake_case = image_processing(__snake_case , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
550
import os from distutils.util import strtobool def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" for e in env_keys: snake_case = int(os.environ.get(UpperCamelCase_ ,-1 ) ) if val >= 0: return val return default def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_=False ): """simple docstring""" snake_case = os.environ.get(UpperCamelCase_ ,str(UpperCamelCase_ ) ) return strtobool(UpperCamelCase_ ) == 1 # As its name indicates `strtobool` actually returns an int... def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_="no" ): """simple docstring""" snake_case = os.environ.get(UpperCamelCase_ ,str(UpperCamelCase_ ) ) return value
550
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase_ = { """configuration_chinese_clip""": [ """CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ChineseCLIPConfig""", """ChineseCLIPOnnxConfig""", """ChineseCLIPTextConfig""", """ChineseCLIPVisionConfig""", ], """processing_chinese_clip""": ["""ChineseCLIPProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""ChineseCLIPFeatureExtractor"""] UpperCamelCase_ = ["""ChineseCLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ChineseCLIPModel""", """ChineseCLIPPreTrainedModel""", """ChineseCLIPTextModel""", """ChineseCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
718
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) UpperCamelCase_ = logging.getLogger(__name__) UpperCamelCase_ = tf.data.AUTOTUNE def _lowerCAmelCase ( ) -> Any: lowercase : Dict =argparse.ArgumentParser(description='''Train a masked language model on TPU.''' ) parser.add_argument( '''--pretrained_model_config''' , type=__magic_name__ , default='''roberta-base''' , help='''The model config to use. Note that we don\'t copy the model\'s weights, only the config!''' , ) parser.add_argument( '''--tokenizer''' , type=__magic_name__ , default='''unigram-tokenizer-wikitext''' , help='''The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.''' , ) parser.add_argument( '''--per_replica_batch_size''' , type=__magic_name__ , default=8 , help='''Batch size per TPU core.''' , ) parser.add_argument( '''--no_tpu''' , action='''store_true''' , help='''If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.''' , ) parser.add_argument( '''--tpu_name''' , type=__magic_name__ , help='''Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.''' , default='''local''' , ) parser.add_argument( '''--tpu_zone''' , type=__magic_name__ , help='''Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.''' , ) parser.add_argument( '''--gcp_project''' , type=__magic_name__ , help='''Google cloud project name. Only used for non-Colab TPU nodes.''' ) parser.add_argument( '''--bfloat16''' , action='''store_true''' , help='''Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.''' , ) parser.add_argument( '''--train_dataset''' , type=__magic_name__ , help='''Path to training dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--shuffle_buffer_size''' , type=__magic_name__ , default=2**18 , help='''Size of the shuffle buffer (in samples)''' , ) parser.add_argument( '''--eval_dataset''' , type=__magic_name__ , help='''Path to evaluation dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--num_epochs''' , type=__magic_name__ , default=1 , help='''Number of epochs to train for.''' , ) parser.add_argument( '''--learning_rate''' , type=__magic_name__ , default=1E-4 , help='''Learning rate to use for training.''' , ) parser.add_argument( '''--weight_decay_rate''' , type=__magic_name__ , default=1E-3 , help='''Weight decay rate to use for training.''' , ) parser.add_argument( '''--max_length''' , type=__magic_name__ , default=512 , help='''Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py''' , ) parser.add_argument( '''--mlm_probability''' , type=__magic_name__ , default=0.1_5 , help='''Fraction of tokens to mask during training.''' , ) parser.add_argument('''--output_dir''' , type=__magic_name__ , required=__magic_name__ , help='''Path to save model checkpoints to.''' ) parser.add_argument('''--hub_model_id''' , type=__magic_name__ , help='''Model ID to upload to on the Hugging Face Hub.''' ) lowercase : Union[str, Any] =parser.parse_args() return args def _lowerCAmelCase ( __magic_name__ : List[str] ) -> List[Any]: try: if args.tpu_name: lowercase : Dict =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowercase : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( '''Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ''' '''--gcp_project. When running on a TPU VM, use --tpu_name local.''' ) tf.config.experimental_connect_to_cluster(__magic_name__ ) tf.tpu.experimental.initialize_tpu_system(__magic_name__ ) return tpu def _lowerCAmelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: lowercase : str =0 for file in file_list: lowercase : List[str] =file.split('''/''' )[-1] lowercase : Union[str, Any] =re.search(R'''-\d+-(\d+)\.tfrecord''' , __magic_name__ ).group(1 ) lowercase : int =int(__magic_name__ ) num_samples += sample_count return num_samples def _lowerCAmelCase ( __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int]=None ) -> str: lowercase : int =count_samples(__magic_name__ ) lowercase : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__magic_name__ ) if shuffle: lowercase : Union[str, Any] =dataset.shuffle(len(__magic_name__ ) ) lowercase : Any =tf.data.TFRecordDataset(__magic_name__ , num_parallel_reads=__magic_name__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowercase : Optional[int] =dataset.apply(tf.data.experimental.assert_cardinality(__magic_name__ ) ) lowercase : str =dataset.map(__magic_name__ , num_parallel_calls=__magic_name__ ) if shuffle: assert shuffle_buffer_size is not None lowercase : int =dataset.shuffle(args.shuffle_buffer_size ) lowercase : Optional[int] =dataset.batch(__magic_name__ , drop_remainder=__magic_name__ ) lowercase : int =dataset.map(__magic_name__ , num_parallel_calls=__magic_name__ ) lowercase : Union[str, Any] =dataset.prefetch(__magic_name__ ) return dataset def _lowerCAmelCase ( __magic_name__ : Any ) -> str: if not args.no_tpu: lowercase : Optional[Any] =initialize_tpu(__magic_name__ ) lowercase : Any =tf.distribute.TPUStrategy(__magic_name__ ) else: lowercase : Optional[Any] =tf.distribute.OneDeviceStrategy(device='''/gpu:0''' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('''mixed_bfloat16''' ) lowercase : Any =AutoTokenizer.from_pretrained(args.tokenizer ) lowercase : Union[str, Any] =AutoConfig.from_pretrained(args.pretrained_model_config ) lowercase : Optional[Any] =tokenizer.vocab_size lowercase : str =tf.io.gfile.glob(os.path.join(args.train_dataset , '''*.tfrecord''' ) ) if not training_records: raise ValueError(f'''No .tfrecord files found in {args.train_dataset}.''' ) lowercase : Optional[int] =tf.io.gfile.glob(os.path.join(args.eval_dataset , '''*.tfrecord''' ) ) if not eval_records: raise ValueError(f'''No .tfrecord files found in {args.eval_dataset}.''' ) lowercase : Any =count_samples(__magic_name__ ) lowercase : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowercase : Union[str, Any] =steps_per_epoch * args.num_epochs with strategy.scope(): lowercase : List[Any] =TFAutoModelForMaskedLM.from_config(__magic_name__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowercase , lowercase : Dict =create_optimizer( num_train_steps=__magic_name__ , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__magic_name__ , metrics=['''accuracy'''] ) def decode_fn(__magic_name__ : Optional[Any] ): lowercase : Union[str, Any] ={ '''input_ids''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), '''attention_mask''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(__magic_name__ , __magic_name__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowercase : str =DataCollatorForLanguageModeling( tokenizer=__magic_name__ , mlm_probability=args.mlm_probability , mlm=__magic_name__ , return_tensors='''tf''' ) def mask_with_collator(__magic_name__ : Dict ): # TF really needs an isin() function lowercase : int =( ~tf.cast(batch['''attention_mask'''] , tf.bool ) | (batch['''input_ids'''] == tokenizer.cls_token_id) | (batch['''input_ids'''] == tokenizer.sep_token_id) ) lowercase , lowercase : Union[str, Any] =data_collator.tf_mask_tokens( batch['''input_ids'''] , vocab_size=len(__magic_name__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=__magic_name__ , ) return batch lowercase : List[str] =args.per_replica_batch_size * strategy.num_replicas_in_sync lowercase : Dict =prepare_dataset( __magic_name__ , decode_fn=__magic_name__ , mask_fn=__magic_name__ , batch_size=__magic_name__ , shuffle=__magic_name__ , shuffle_buffer_size=args.shuffle_buffer_size , ) lowercase : Union[str, Any] =prepare_dataset( __magic_name__ , decode_fn=__magic_name__ , mask_fn=__magic_name__ , batch_size=__magic_name__ , shuffle=__magic_name__ , ) lowercase : Tuple =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=__magic_name__ ) ) model.fit( __magic_name__ , validation_data=__magic_name__ , epochs=args.num_epochs , callbacks=__magic_name__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": UpperCamelCase_ = parse_args() main(args)
88
0
'''simple docstring''' import numpy as np def UpperCAmelCase_ ( A ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
120
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : Tuple = """sew""" def __init__( self , lowerCamelCase_=3_2 , lowerCamelCase_=7_6_8 , lowerCamelCase_=1_2 , lowerCamelCase_=1_2 , lowerCamelCase_=3_0_7_2 , lowerCamelCase_=2 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.0 , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-5 , lowerCamelCase_="group" , lowerCamelCase_="gelu" , lowerCamelCase_=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowerCamelCase_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase_=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase_=False , lowerCamelCase_=1_2_8 , lowerCamelCase_=1_6 , lowerCamelCase_=True , lowerCamelCase_=0.05 , lowerCamelCase_=1_0 , lowerCamelCase_=2 , lowerCamelCase_=0.0 , lowerCamelCase_=1_0 , lowerCamelCase_=0 , lowerCamelCase_="mean" , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=2_5_6 , lowerCamelCase_=0 , lowerCamelCase_=1 , lowerCamelCase_=2 , **lowerCamelCase_ , ) -> Tuple: super().__init__(**lowerCamelCase_ , pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) _a : Optional[int] = hidden_size _a : int = feat_extract_norm _a : Optional[int] = feat_extract_activation _a : str = list(lowerCamelCase_ ) _a : Union[str, Any] = list(lowerCamelCase_ ) _a : List[Any] = list(lowerCamelCase_ ) _a : Union[str, Any] = conv_bias _a : Optional[int] = num_conv_pos_embeddings _a : Dict = num_conv_pos_embedding_groups _a : str = len(self.conv_dim ) _a : Any = num_hidden_layers _a : List[Any] = intermediate_size _a : Tuple = squeeze_factor _a : Tuple = hidden_act _a : Any = num_attention_heads _a : Optional[int] = hidden_dropout _a : List[str] = attention_dropout _a : Optional[Any] = activation_dropout _a : str = feat_proj_dropout _a : str = final_dropout _a : str = layerdrop _a : Optional[Any] = layer_norm_eps _a : Optional[Any] = initializer_range _a : Any = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a : str = apply_spec_augment _a : List[Any] = mask_time_prob _a : Optional[Any] = mask_time_length _a : Union[str, Any] = mask_time_min_masks _a : List[str] = mask_feature_prob _a : List[str] = mask_feature_length _a : str = mask_feature_min_masks # ctc loss _a : Any = ctc_loss_reduction _a : Optional[Any] = ctc_zero_infinity # sequence classification _a : List[Any] = use_weighted_layer_sum _a : Tuple = classifier_proj_size @property def __UpperCamelCase ( self ) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1 )
120
1
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _snake_case : Optional[Any] = logging.get_logger('transformers.models.speecht5') def snake_case_ (UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : Dict ): '''simple docstring''' hf_model.apply_weight_norm() _a = checkpoint['''input_conv.weight_g'''] _a = checkpoint['''input_conv.weight_v'''] _a = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): _a = checkpoint[f'upsamples.{i}.1.weight_g'] _a = checkpoint[f'upsamples.{i}.1.weight_v'] _a = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): _a = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] _a = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] _a = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] _a = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] _a = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] _a = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] _a = checkpoint['''output_conv.1.weight_g'''] _a = checkpoint['''output_conv.1.weight_v'''] _a = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def snake_case_ (UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str] , UpperCamelCase : Any=None , UpperCamelCase : Tuple=None , ): '''simple docstring''' if config_path is not None: _a = SpeechTaHifiGanConfig.from_pretrained(UpperCamelCase ) else: _a = SpeechTaHifiGanConfig() _a = SpeechTaHifiGan(UpperCamelCase ) _a = torch.load(UpperCamelCase ) load_weights(orig_checkpoint['''model''']['''generator'''] , UpperCamelCase , UpperCamelCase ) _a = np.load(UpperCamelCase ) _a = stats[0].reshape(-1 ) _a = stats[1].reshape(-1 ) _a = torch.from_numpy(UpperCamelCase ).float() _a = torch.from_numpy(UpperCamelCase ).float() model.save_pretrained(UpperCamelCase ) if repo_id: print('''Pushing to the hub...''' ) model.push_to_hub(UpperCamelCase ) if __name__ == "__main__": _snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _snake_case : List[Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
377
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case : Tuple = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class A ( _a ,unittest.TestCase ): lowercase_ = PegasusTokenizer lowercase_ = PegasusTokenizerFast lowercase_ = True lowercase_ = True def __lowerCAmelCase ( self : str ) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _a = PegasusTokenizer(lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def __lowerCAmelCase ( self : Optional[int] , **lowerCAmelCase_ : List[str] ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[str] ) -> Any: """simple docstring""" return ("This is a test", "This is a test") def __lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _a = '''</s>''' _a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" _a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(lowerCAmelCase_ ) , 11_03 ) def __lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 11_03 ) def __lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _a = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _a = self.tokenizer_class.from_pretrained(self.tmpdirname ) _a = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) _a = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ).input_ids[0] _a = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ).input_ids[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _a = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _a = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' _a = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] _a = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ ).input_ids[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" _a = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 _a = '''To ensure a smooth flow of bank resolutions.''' _a = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] _a = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ ).input_ids[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _a = ['''This is going to be way too long.''' * 1_50, '''short example'''] _a = ['''not super long but more than 5 tokens''', '''tiny'''] _a = self._large_tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' ) _a = self._large_tokenizer( text_target=lowerCAmelCase_ , max_length=5 , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(lowerCAmelCase_ ) == 2 # input_ids, attention_mask. @slow def __lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" _a = {'''input_ids''': [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class A ( _a ,unittest.TestCase ): lowercase_ = PegasusTokenizer lowercase_ = PegasusTokenizerFast lowercase_ = True lowercase_ = True def __lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _a = PegasusTokenizer(lowerCAmelCase_ , offset=0 , mask_token_sent=lowerCAmelCase_ , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def __lowerCAmelCase ( self : Optional[int] , **lowerCAmelCase_ : Tuple ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" return ("This is a test", "This is a test") def __lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _a = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _a = self.tokenizer_class.from_pretrained(self.tmpdirname ) _a = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) _a = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ).input_ids[0] _a = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ).input_ids[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_torch def __lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" _a = ['''This is going to be way too long.''' * 10_00, '''short example'''] _a = ['''not super long but more than 5 tokens''', '''tiny'''] _a = self._large_tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' ) _a = self._large_tokenizer( text_target=lowerCAmelCase_ , max_length=5 , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(lowerCAmelCase_ ) == 2 # input_ids, attention_mask. def __lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" _a = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) _a = self._large_tokenizer(lowerCAmelCase_ ).input_ids self.assertListEqual( lowerCAmelCase_ , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
377
1
"""simple docstring""" from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class _lowerCAmelCase ( a ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = SMALL_MODEL_IDENTIFIER lowerCAmelCase__ :List[Any] = 'pt' lowerCAmelCase__ :Optional[Any] = 'tf' def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = TFAutoModel.from_pretrained(self.test_model , from_pt=__UpperCAmelCase ) model_tf.save_pretrained(__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = 'mock_framework' # Framework provided - return whatever the user provides lowerCAmelCase__ :Dict = FeaturesManager.determine_framework(self.test_model , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__UpperCAmelCase ) lowerCAmelCase__ :int = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = FeaturesManager.determine_framework(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = FeaturesManager.determine_framework(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = FeaturesManager.determine_framework(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ :Union[str, Any] = FeaturesManager.determine_framework(__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = MagicMock(return_value=__UpperCAmelCase ) with patch('transformers.onnx.features.is_tf_available' , __UpperCAmelCase ): lowerCAmelCase__ :List[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow lowerCAmelCase__ :List[Any] = MagicMock(return_value=__UpperCAmelCase ) with patch('transformers.onnx.features.is_torch_available' , __UpperCAmelCase ): lowerCAmelCase__ :Union[str, Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch lowerCAmelCase__ :Any = MagicMock(return_value=__UpperCAmelCase ) lowerCAmelCase__ :int = MagicMock(return_value=__UpperCAmelCase ) with patch('transformers.onnx.features.is_tf_available' , __UpperCAmelCase ), patch( 'transformers.onnx.features.is_torch_available' , __UpperCAmelCase ): lowerCAmelCase__ :str = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCAmelCase , self.framework_pt ) # Both not in environment -> raise error lowerCAmelCase__ :Optional[Any] = MagicMock(return_value=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = MagicMock(return_value=__UpperCAmelCase ) with patch('transformers.onnx.features.is_tf_available' , __UpperCAmelCase ), patch( 'transformers.onnx.features.is_torch_available' , __UpperCAmelCase ): with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ :Union[str, Any] = FeaturesManager.determine_framework(self.test_model )
93
"""simple docstring""" import re def __A (_SCREAMING_SNAKE_CASE ) ->list: """simple docstring""" return [char.split() for char in re.split(r'[^ a-z A-Z 0-9 \s]' , str_ )] def __A (_SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" lowerCAmelCase__ :Optional[Any] = split_input(str_ ) return "".join( [''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" try: lowerCAmelCase__ :Any = split_input(_SCREAMING_SNAKE_CASE ) if upper: lowerCAmelCase__ :str = ''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: lowerCAmelCase__ :int = ''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def __A (_SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" return to_simple_case(_SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" try: lowerCAmelCase__ :str = to_simple_case(_SCREAMING_SNAKE_CASE ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" return to_complex_case(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '_' ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" return to_complex_case(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '-' ) if __name__ == "__main__": __import__("""doctest""").testmod()
93
1
"""simple docstring""" def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> int: if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError("String lengths must match!" ) a_ : Optional[Any] = 0 for chara, chara in zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
705
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
370
0
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(lowerCamelCase__ ) * abs(lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
463
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def SCREAMING_SNAKE_CASE_( self ) -> str: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def SCREAMING_SNAKE_CASE_( self ) -> torch.Tensor: lowerCamelCase_ = torch.arange(self.height * self.width ) lowerCamelCase_ = torch.stack( [ pixel_indices % self.width, torch.div(lowercase , self.width , rounding_mode="trunc" ), ] , axis=1 , ) return coords @property def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ , *lowerCamelCase_ = self.shape lowerCamelCase_ = int(np.prod(lowercase ) ) lowerCamelCase_ = self.get_image_coords() lowerCamelCase_ = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) lowerCamelCase_ = self.get_camera_rays(lowercase ) lowerCamelCase_ = rays.view(lowercase , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def SCREAMING_SNAKE_CASE_( self , lowercase ) -> torch.Tensor: lowerCamelCase_ , *lowerCamelCase_ , lowerCamelCase_ = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] lowerCamelCase_ = coords.view(lowercase , -1 , 2 ) lowerCamelCase_ = self.resolution() lowerCamelCase_ = self.fov() lowerCamelCase_ = (flat.float() / (res - 1)) * 2 - 1 lowerCamelCase_ = fracs * torch.tan(fov / 2 ) lowerCamelCase_ = fracs.view(lowercase , -1 , 2 ) lowerCamelCase_ = ( self.z.view(lowercase , 1 , 3 ) + self.x.view(lowercase , 1 , 3 ) * fracs[:, :, :1] + self.y.view(lowercase , 1 , 3 ) * fracs[:, :, 1:] ) lowerCamelCase_ = directions / directions.norm(dim=-1 , keepdim=lowercase ) lowerCamelCase_ = torch.stack( [ torch.broadcast_to(self.origin.view(lowercase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(lowercase , *lowercase , 2 , 3 ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=lowercase , height=lowercase , x_fov=self.x_fov , y_fov=self.y_fov , ) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): lowerCamelCase_ = np.array([np.sin(lowerCamelCase__ ), np.cos(lowerCamelCase__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) lowerCamelCase_ = -z * 4 lowerCamelCase_ = np.array([np.cos(lowerCamelCase__ ), -np.sin(lowerCamelCase__ ), 0.0] ) lowerCamelCase_ = np.cross(lowerCamelCase__ , lowerCamelCase__ ) origins.append(lowerCamelCase__ ) xs.append(lowerCamelCase__ ) ys.append(lowerCamelCase__ ) zs.append(lowerCamelCase__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , width=lowerCamelCase__ , height=lowerCamelCase__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowerCamelCase__ )) , )
463
1
"""simple docstring""" from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' lowercase_ : int = """pixel_values""" lowercase_ : str = False lowercase_ : Any = TimmBackboneConfig def __init__( self , snake_case_ , **snake_case_ ): """simple docstring""" requires_backends(self , 'timm' ) super().__init__(snake_case_ ) A_ : Any = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(F"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(snake_case_ , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) A_ : str = getattr(snake_case_ , 'use_pretrained_backbone' , snake_case_ ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. A_ : Dict = config.out_indices if getattr(snake_case_ , 'out_indices' , snake_case_ ) is not None else (-1,) A_ : str = timm.create_model( config.backbone , pretrained=snake_case_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=snake_case_ , **snake_case_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. A_ : Any = self._backbone.return_layers A_ : Union[str, Any] = {layer['module']: str(snake_case_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(snake_case_ ) @classmethod def lowerCamelCase_ ( cls , snake_case_ , *snake_case_ , **snake_case_ ): """simple docstring""" requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig A_ : str = kwargs.pop('config' , TimmBackboneConfig() ) A_ : Optional[Any] = kwargs.pop('use_timm_backbone' , snake_case_ ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) A_ : Union[str, Any] = kwargs.pop('num_channels' , config.num_channels ) A_ : Optional[int] = kwargs.pop('features_only' , config.features_only ) A_ : Any = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) A_ : int = kwargs.pop('out_indices' , config.out_indices ) A_ : Optional[Any] = TimmBackboneConfig( backbone=snake_case_ , num_channels=snake_case_ , features_only=snake_case_ , use_pretrained_backbone=snake_case_ , out_indices=snake_case_ , ) return super()._from_config(snake_case_ , **snake_case_ ) def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" pass def lowerCamelCase_ ( self , snake_case_ , snake_case_=None , snake_case_=None , snake_case_=None , **snake_case_ ): """simple docstring""" A_ : int = return_dict if return_dict is not None else self.config.use_return_dict A_ : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone A_ : Dict = self._all_layers A_ : List[str] = self._backbone(snake_case_ , **snake_case_ ) A_ : List[str] = self._return_layers A_ : Optional[int] = tuple(hidden_states[i] for i in self.out_indices ) else: A_ : Tuple = self._backbone(snake_case_ , **snake_case_ ) A_ : List[Any] = None A_ : Union[str, Any] = tuple(snake_case_ ) A_ : List[str] = tuple(snake_case_ ) if hidden_states is not None else None if not return_dict: A_ : Tuple = (feature_maps,) if output_hidden_states: A_ : Dict = output + (hidden_states,) return output return BackboneOutput(feature_maps=snake_case_ , hidden_states=snake_case_ , attentions=snake_case_ )
302
"""simple docstring""" import sys def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : Dict = len(_UpperCAmelCase ) A_ : int = [[0 for x in range(_UpperCAmelCase )] for x in range(_UpperCAmelCase )] A_ : Tuple = [[0 for x in range(_UpperCAmelCase )] for x in range(_UpperCAmelCase )] for chain_length in range(2 , _UpperCAmelCase ): for a in range(1 , n - chain_length + 1 ): A_ : Optional[Any] = a + chain_length - 1 A_ : List[str] = sys.maxsize for c in range(_UpperCAmelCase , _UpperCAmelCase ): A_ : Any = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: A_ : Optional[Any] = cost A_ : Optional[int] = c return matrix, sol def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if i == j: print('A' + str(_UpperCAmelCase ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(_UpperCAmelCase , _UpperCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(_UpperCAmelCase , optimal_solution[i][j] + 1 , _UpperCAmelCase ) print(')' , end=' ' ) def UpperCAmelCase__ ( ): """simple docstring""" A_ : Optional[Any] = [30, 35, 15, 5, 10, 20, 25] A_ : Optional[Any] = len(_UpperCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 A_ , A_ : int = matrix_chain_order(_UpperCAmelCase ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(_UpperCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
302
1
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : list[int] ) -> int: """simple docstring""" if not nums: return 0 _UpperCAmelCase = nums[0] _UpperCAmelCase = 0 for num in nums[1:]: _UpperCAmelCase , _UpperCAmelCase = ( max_excluding + num, max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), ) return max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
32
"""simple docstring""" __A : Optional[int] = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
602
0
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class snake_case__ ( UpperCamelCase): a_ = "char" a_ = "bpe" a_ = "wp" _UpperCamelCase : str = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class snake_case__ ( UpperCamelCase): a_ = ["image_processor", "char_tokenizer"] a_ = "ViTImageProcessor" a_ = "MgpstrTokenizer" def __init__( self : List[str] , _A : Any=None , _A : List[Any]=None , **_A : int ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _A , ) UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) UpperCAmelCase_ : Optional[int] = tokenizer UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained('''gpt2''' ) UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained('''bert-base-uncased''' ) super().__init__(_A , _A ) def __call__( self : Optional[Any] , _A : Any=None , _A : Dict=None , _A : int=None , **_A : str ) -> str: if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: UpperCAmelCase_ : Optional[Any] = self.image_processor(_A , return_tensors=_A , **_A ) if text is not None: UpperCAmelCase_ : Optional[Any] = self.char_tokenizer(_A , return_tensors=_A , **_A ) if text is None: return inputs elif images is None: return encodings else: UpperCAmelCase_ : int = encodings['''input_ids'''] return inputs def A ( self : Optional[int] , _A : List[Any] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = sequences UpperCAmelCase_ : Dict = char_preds.size(0 ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._decode_helper(_A , '''char''' ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self._decode_helper(_A , '''bpe''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._decode_helper(_A , '''wp''' ) UpperCAmelCase_ : int = [] UpperCAmelCase_ : int = [] for i in range(_A ): UpperCAmelCase_ : List[Any] = [char_scores[i], bpe_scores[i], wp_scores[i]] UpperCAmelCase_ : str = [char_strs[i], bpe_strs[i], wp_strs[i]] UpperCAmelCase_ : List[str] = scores.index(max(_A ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) UpperCAmelCase_ : int = {} UpperCAmelCase_ : Tuple = final_strs UpperCAmelCase_ : int = final_scores UpperCAmelCase_ : Union[str, Any] = char_strs UpperCAmelCase_ : int = bpe_strs UpperCAmelCase_ : List[Any] = wp_strs return out def A ( self : Any , _A : Union[str, Any] , _A : Optional[Any] ) -> Dict: if format == DecodeType.CHARACTER: UpperCAmelCase_ : List[str] = self.char_decode UpperCAmelCase_ : int = 1 UpperCAmelCase_ : Tuple = '''[s]''' elif format == DecodeType.BPE: UpperCAmelCase_ : List[str] = self.bpe_decode UpperCAmelCase_ : Dict = 2 UpperCAmelCase_ : List[str] = '''#''' elif format == DecodeType.WORDPIECE: UpperCAmelCase_ : List[Any] = self.wp_decode UpperCAmelCase_ : int = 1_02 UpperCAmelCase_ : Tuple = '''[SEP]''' else: raise ValueError(F"Format {format} is not supported." ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = [], [] UpperCAmelCase_ : Optional[Any] = pred_logits.size(0 ) UpperCAmelCase_ : Any = pred_logits.size(1 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = pred_logits.topk(1 , dim=-1 , largest=_A , sorted=_A ) UpperCAmelCase_ : int = preds_index.view(-1 , _A )[:, 1:] UpperCAmelCase_ : Optional[int] = decoder(_A ) UpperCAmelCase_ , UpperCAmelCase_ : int = torch.nn.functional.softmax(_A , dim=2 ).max(dim=2 ) UpperCAmelCase_ : int = preds_max_prob[:, 1:] for index in range(_A ): UpperCAmelCase_ : List[Any] = preds_str[index].find(_A ) UpperCAmelCase_ : List[str] = preds_str[index][:pred_eos] UpperCAmelCase_ : Optional[int] = preds_index[index].cpu().tolist() UpperCAmelCase_ : List[str] = pred_index.index(_A ) if eos_token in pred_index else -1 UpperCAmelCase_ : Tuple = preds_max_prob[index][: pred_eos_index + 1] UpperCAmelCase_ : Optional[Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(_A ) conf_scores.append(_A ) return dec_strs, conf_scores def A ( self : Dict , _A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : Optional[int] = [seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(_A )] return decode_strs def A ( self : Optional[int] , _A : str ) -> List[Any]: return self.bpe_tokenizer.batch_decode(_A ) def A ( self : List[str] , _A : Union[str, Any] ) -> str: UpperCAmelCase_ : Union[str, Any] = [seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(_A )] return decode_strs
216
'''simple docstring''' _UpperCamelCase : Optional[int] = [ (1_000, 'M'), (900, 'CM'), (500, 'D'), (400, 'CD'), (100, 'C'), (90, 'XC'), (50, 'L'), (40, 'XL'), (10, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def __UpperCAmelCase ( A : str ) -> int: UpperCAmelCase_ : Union[str, Any] = {'''I''': 1, '''V''': 5, '''X''': 1_0, '''L''': 5_0, '''C''': 1_0_0, '''D''': 5_0_0, '''M''': 1_0_0_0} UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : Union[str, Any] = 0 while place < len(A ): if (place + 1 < len(A )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __UpperCAmelCase ( A : int ) -> str: UpperCAmelCase_ : Any = [] for arabic, roman in ROMAN: ((UpperCAmelCase_) , (UpperCAmelCase_)) : Dict = divmod(A , A ) result.append(roman * factor ) if number == 0: break return "".join(A ) if __name__ == "__main__": import doctest doctest.testmod()
216
1
'''simple docstring''' from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = """EncodecFeatureExtractor""" snake_case = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) _A = self.feature_extractor _A = False def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : int=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=__UpperCAmelCase , language=__UpperCAmelCase , no_timestamps=__UpperCAmelCase ) def __call__( self : Any , *__UpperCAmelCase : int , **__UpperCAmelCase : List[Any] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase ) _A = kwargs.pop("audio" , __UpperCAmelCase ) _A = kwargs.pop("sampling_rate" , __UpperCAmelCase ) _A = kwargs.pop("text" , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: _A = args[0] _A = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: _A = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase ) if audio is not None: _A = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase ) if audio is None: return inputs elif text is None: return audio_inputs else: _A = audio_inputs["input_values"] if "padding_mask" in audio_inputs: _A = audio_inputs["padding_mask"] return inputs def lowerCAmelCase ( self : Dict , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Tuple ): '''simple docstring''' _A = kwargs.pop("audio" , __UpperCAmelCase ) _A = kwargs.pop("padding_mask" , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: _A = args[0] _A = args[1:] if audio_values is not None: return self._decode_audio(__UpperCAmelCase , padding_mask=__UpperCAmelCase ) else: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[Any] , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Any ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] = None ): '''simple docstring''' _A = to_numpy(__UpperCAmelCase ) _A , _A , _A = audio_values.shape if padding_mask is None: return list(__UpperCAmelCase ) _A = to_numpy(__UpperCAmelCase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _A = seq_len - padding_mask.shape[-1] _A = 1 - self.feature_extractor.padding_value _A = np.pad(__UpperCAmelCase , ((0, 0), (0, difference)) , "constant" , constant_values=__UpperCAmelCase ) _A = audio_values.tolist() for i in range(__UpperCAmelCase ): _A = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _A = sliced_audio.reshape(__UpperCAmelCase , -1 ) return audio_values
330
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def _lowerCamelCase( a , a = "cpu" , a = None ): __a = torch.load(a , map_location=a ) for k, v in tqdm(state_dict.items() ): if not isinstance(a , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) __a = v.half() if save_path is None: # overwrite src_path __a = src_path torch.save(a , a ) if __name__ == "__main__": fire.Fire(convert)
528
0
'''simple docstring''' def _a ( lowerCAmelCase_ ): """simple docstring""" if len(lowerCAmelCase_ ) < 2: return collection def circle_sort_util(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> bool: _snake_case : List[str] = False if low == high: return swapped _snake_case : Any = low _snake_case : Optional[int] = high while left < right: if collection[left] > collection[right]: _snake_case , _snake_case : Union[str, Any] = ( collection[right], collection[left], ) _snake_case : List[str] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _snake_case , _snake_case : Optional[Any] = ( collection[right + 1], collection[left], ) _snake_case : List[Any] = True _snake_case : Union[str, Any] = low + int((high - low) / 2 ) _snake_case : Dict = circle_sort_util(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Optional[Any] = circle_sort_util(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ ) return swapped or left_swap or right_swap _snake_case : int = True while is_not_sorted is True: _snake_case : List[str] = circle_sort_util(lowerCAmelCase_ , 0 , len(lowerCAmelCase_ ) - 1 ) return collection if __name__ == "__main__": UpperCAmelCase : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
47
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = 0 if start < end: _snake_case : List[Any] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Any = a[end] _snake_case : List[str] = a[pivot] _snake_case : Optional[int] = temp _snake_case , _snake_case : List[Any] = _in_place_partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) count += _in_place_quick_sort(lowerCAmelCase_ , lowerCAmelCase_ , p - 1 ) count += _in_place_quick_sort(lowerCAmelCase_ , p + 1 , lowerCAmelCase_ ) return count def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = 0 _snake_case : Optional[int] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = a[end] _snake_case : Optional[Any] = a[pivot] _snake_case : Union[str, Any] = temp _snake_case : Union[str, Any] = start - 1 for index in range(lowerCAmelCase_ , lowerCAmelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _snake_case : Optional[int] = new_pivot_index + 1 _snake_case : Optional[Any] = a[new_pivot_index] _snake_case : Tuple = a[index] _snake_case : str = temp _snake_case : Any = a[new_pivot_index + 1] _snake_case : str = a[end] _snake_case : Optional[int] = temp return new_pivot_index + 1, count UpperCAmelCase : Dict = TemporaryFile() UpperCAmelCase : Dict = 1_0_0 # 1000 elements are to be sorted UpperCAmelCase, UpperCAmelCase : str = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array UpperCAmelCase : int = np.load(outfile) UpperCAmelCase : Optional[int] = len(M) - 1 UpperCAmelCase : str = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
47
1
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = MvpTokenizer lowerCAmelCase_ : List[str] = MvpTokenizerFast lowerCAmelCase_ : str = True lowerCAmelCase_ : List[str] = filter_roberta_detectors def A__ ( self ): super().setUp() UpperCAmelCase_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCAmelCase_ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) UpperCAmelCase_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCAmelCase_ = {"unk_token": "<unk>"} UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase ) ) def A__ ( self , **lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def A__ ( self , **lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): return "lower newer", "lower newer" @cached_property def A__ ( self ): return MvpTokenizer.from_pretrained("RUCAIBox/mvp" ) @cached_property def A__ ( self ): return MvpTokenizerFast.from_pretrained("RUCAIBox/mvp" ) @require_torch def A__ ( self ): UpperCAmelCase_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCAmelCase_ = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase_ = tokenizer(lowerCAmelCase , max_length=len(lowerCAmelCase ) , padding=lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # Test that special tokens are reset @require_torch def A__ ( self ): UpperCAmelCase_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase_ = tokenizer(lowerCAmelCase , padding=lowerCAmelCase , return_tensors="pt" ) # check if input_ids are returned and no labels self.assertIn("input_ids" , lowerCAmelCase ) self.assertIn("attention_mask" , lowerCAmelCase ) self.assertNotIn("labels" , lowerCAmelCase ) self.assertNotIn("decoder_attention_mask" , lowerCAmelCase ) @require_torch def A__ ( self ): UpperCAmelCase_ = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase_ = tokenizer(text_target=lowerCAmelCase , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def A__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase_ = tokenizer( ["I am a small frog" * 1024, "I am a small frog"] , padding=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def A__ ( self ): UpperCAmelCase_ = ["A long paragraph for summarization."] UpperCAmelCase_ = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase_ = tokenizer(lowerCAmelCase , text_target=lowerCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = inputs["input_ids"] UpperCAmelCase_ = inputs["labels"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def A__ ( self ): pass def A__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = self.tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = "A, <mask> AllenNLP sentence." UpperCAmelCase_ = tokenizer_r.encode_plus(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_token_type_ids=lowerCAmelCase ) UpperCAmelCase_ = tokenizer_p.encode_plus(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_token_type_ids=lowerCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCAmelCase_ = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCAmelCase_ = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowerCAmelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
579
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): SCREAMING_SNAKE_CASE = "pt" elif is_tf_available(): SCREAMING_SNAKE_CASE = "tf" else: SCREAMING_SNAKE_CASE = "jax" class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = PerceiverTokenizer lowerCAmelCase_ : List[Any] = False def A__ ( self ): super().setUp() UpperCAmelCase_ = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A__ ( self ): return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def A__ ( self , **lowerCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=20 , lowerCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. UpperCAmelCase_ = [] for i in range(len(lowerCAmelCase ) ): try: UpperCAmelCase_ = tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCAmelCase_ = list(filter(lambda lowerCAmelCase : re.match(r"^[ a-zA-Z]+$" , t[1] ) , lowerCAmelCase ) ) UpperCAmelCase_ = list(filter(lambda lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCAmelCase ) , lowerCAmelCase ) ) if max_length is not None and len(lowerCAmelCase ) > max_length: UpperCAmelCase_ = toks[:max_length] if min_length is not None and len(lowerCAmelCase ) < min_length and len(lowerCAmelCase ) > 0: while len(lowerCAmelCase ) < min_length: UpperCAmelCase_ = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase_ = [t[0] for t in toks] # Ensure consistency UpperCAmelCase_ = tokenizer.decode(lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase ) if " " not in output_txt and len(lowerCAmelCase ) > 1: UpperCAmelCase_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCAmelCase ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCAmelCase ) ) if with_prefix_space: UpperCAmelCase_ = " " + output_txt UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) return output_txt, output_ids def A__ ( self ): UpperCAmelCase_ = self.perceiver_tokenizer UpperCAmelCase_ = "Unicode €." UpperCAmelCase_ = tokenizer(lowerCAmelCase ) UpperCAmelCase_ = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["input_ids"] , lowerCAmelCase ) # decoding UpperCAmelCase_ = tokenizer.decode(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , "[CLS]Unicode €.[SEP]" ) UpperCAmelCase_ = tokenizer("e è é ê ë" ) UpperCAmelCase_ = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["input_ids"] , lowerCAmelCase ) # decoding UpperCAmelCase_ = tokenizer.decode(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , "[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "[CLS]e è é ê ë[SEP]" ) def A__ ( self ): UpperCAmelCase_ = self.perceiver_tokenizer UpperCAmelCase_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off UpperCAmelCase_ = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on UpperCAmelCase_ = tokenizer(lowerCAmelCase , padding=lowerCAmelCase , return_tensors=lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) if FRAMEWORK != "jax": UpperCAmelCase_ = list(batch.input_ids.numpy()[0] ) else: UpperCAmelCase_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A__ ( self ): UpperCAmelCase_ = self.perceiver_tokenizer UpperCAmelCase_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCAmelCase_ = tokenizer(lowerCAmelCase , padding=lowerCAmelCase , return_tensors=lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , lowerCAmelCase ) self.assertIn("attention_mask" , lowerCAmelCase ) self.assertNotIn("decoder_input_ids" , lowerCAmelCase ) self.assertNotIn("decoder_attention_mask" , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.perceiver_tokenizer UpperCAmelCase_ = [ "Summary of the text.", "Another summary.", ] UpperCAmelCase_ = tokenizer( text_target=lowerCAmelCase , max_length=32 , padding="max_length" , truncation=lowerCAmelCase , return_tensors=lowerCAmelCase ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def A__ ( self ): # safety check on max_len default value so we are sure the test works UpperCAmelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = " He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) tokenizer.save_pretrained(lowerCAmelCase ) UpperCAmelCase_ = tokenizer.__class__.from_pretrained(lowerCAmelCase ) UpperCAmelCase_ = after_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) shutil.rmtree(lowerCAmelCase ) UpperCAmelCase_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) UpperCAmelCase_ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) tokenizer.save_pretrained(lowerCAmelCase ) UpperCAmelCase_ = tokenizer.__class__.from_pretrained(lowerCAmelCase ) UpperCAmelCase_ = after_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ = tokenizer.__class__.from_pretrained(lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ = json.load(lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ = json.load(lowerCAmelCase ) UpperCAmelCase_ = [f'''<extra_id_{i}>''' for i in range(125 )] UpperCAmelCase_ = added_tokens_extra_ids + [ "an_additional_special_token" ] UpperCAmelCase_ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(lowerCAmelCase , lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(lowerCAmelCase , lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ = tokenizer_class.from_pretrained( lowerCAmelCase , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=lowerCAmelCase )] UpperCAmelCase_ = tokenizer_class.from_pretrained( lowerCAmelCase , additional_special_tokens=lowerCAmelCase , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def A__ ( self ): UpperCAmelCase_ = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , "�" ) def A__ ( self ): pass def A__ ( self ): pass def A__ ( self ): pass def A__ ( self ): pass def A__ ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens UpperCAmelCase_ = self.get_tokenizers(fast=lowerCAmelCase , do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCAmelCase_ = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] UpperCAmelCase_ = tokenizer.convert_tokens_to_string(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase )
579
1
from __future__ import annotations from typing import Any class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 0 ) -> None: lowerCAmelCase__ = row, column lowerCAmelCase__ = [[default_value for c in range(lowerCamelCase_ )] for r in range(lowerCamelCase_ )] def __str__( self ) -> str: lowerCAmelCase__ = F"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier lowerCAmelCase__ = 0 for row_vector in self.array: for obj in row_vector: lowerCAmelCase__ = max(lowerCamelCase_ , len(str(lowerCamelCase_ ) ) ) lowerCAmelCase__ = F"""%{max_element_length}s""" # Make string and return def single_line(lowerCamelCase_ ) -> str: nonlocal string_format_identifier lowerCAmelCase__ = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(lowerCamelCase_ ) for row_vector in self.array ) return s def __repr__( self ) -> str: return str(self ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> bool: if not (isinstance(lowerCamelCase_ , (list, tuple) ) and len(lowerCamelCase_ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , lowerCamelCase_ ) -> Any: assert self.validate_indicies(lowerCamelCase_ ) return self.array[loc[0]][loc[1]] def __setitem__( self , lowerCamelCase_ , lowerCamelCase_ ) -> None: assert self.validate_indicies(lowerCamelCase_ ) lowerCAmelCase__ = value def __add__( self , lowerCamelCase_ ) -> Matrix: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert self.row == another.row and self.column == another.column # Add lowerCAmelCase__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase__ = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: lowerCAmelCase__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase__ = -self[r, c] return result def __sub__( self , lowerCamelCase_ ) -> Matrix: return self + (-another) def __mul__( self , lowerCamelCase_ ) -> Matrix: if isinstance(lowerCamelCase_ , (int, float) ): # Scalar multiplication lowerCAmelCase__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase__ = self[r, c] * another return result elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): # Matrix multiplication assert self.column == another.row lowerCAmelCase__ = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCAmelCase__ = F"""Unsupported type given for another ({type(lowerCamelCase_ )})""" raise TypeError(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Matrix: lowerCAmelCase__ = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase__ = self[r, c] return result def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Any: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCAmelCase__ = v.transpose() lowerCAmelCase__ = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _snake_case ( ) -> int: lowerCAmelCase__ = Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCAmelCase__ = 1 print(F"""a^(-1) is {ainv}""" ) # u, v lowerCAmelCase__ = Matrix(3 , 1 , 0 ) lowerCAmelCase__ = 1, 2, -3 lowerCAmelCase__ = Matrix(3 , 1 , 0 ) lowerCAmelCase__ = 4, -2, 5 print(F"""u is {u}""" ) print(F"""v is {v}""" ) print(F"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(F"""(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}""" ) def _snake_case ( ) -> Any: import doctest doctest.testmod() testa()
704
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } __UpperCAmelCase = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _snake_case ( A , A , A , A , A ) -> Optional[Any]: for attribute in key.split('''.''' ): lowerCAmelCase__ = getattr(A , A ) if weight_type is not None: lowerCAmelCase__ = getattr(A , A ).shape else: lowerCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase__ = value elif weight_type == "weight_g": lowerCAmelCase__ = value elif weight_type == "weight_v": lowerCAmelCase__ = value elif weight_type == "bias": lowerCAmelCase__ = value elif weight_type == "running_mean": lowerCAmelCase__ = value elif weight_type == "running_var": lowerCAmelCase__ = value elif weight_type == "num_batches_tracked": lowerCAmelCase__ = value elif weight_type == "inv_freq": lowerCAmelCase__ = value else: lowerCAmelCase__ = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _snake_case ( A , A , A ) -> Any: lowerCAmelCase__ = [] lowerCAmelCase__ = fairseq_model.state_dict() lowerCAmelCase__ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase__ = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == '''group''' , ) lowerCAmelCase__ = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase__ = '''wav2vec2_conformer.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowerCAmelCase__ = True if "*" in mapped_key: lowerCAmelCase__ = name.split(A )[0].split('''.''' )[-2] lowerCAmelCase__ = mapped_key.replace('''*''' , A ) if "pos_bias_u" in name: lowerCAmelCase__ = None elif "pos_bias_v" in name: lowerCAmelCase__ = None elif "weight_g" in name: lowerCAmelCase__ = '''weight_g''' elif "weight_v" in name: lowerCAmelCase__ = '''weight_v''' elif "bias" in name: lowerCAmelCase__ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase__ = '''weight''' elif "running_mean" in name: lowerCAmelCase__ = '''running_mean''' elif "inv_freq" in name: lowerCAmelCase__ = '''inv_freq''' elif "running_var" in name: lowerCAmelCase__ = '''running_var''' elif "num_batches_tracked" in name: lowerCAmelCase__ = '''num_batches_tracked''' else: lowerCAmelCase__ = None set_recursively(A , A , A , A , A ) continue if not is_used: unused_weights.append(A ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _snake_case ( A , A , A , A , A ) -> Tuple: lowerCAmelCase__ = full_name.split('''conv_layers.''' )[-1] lowerCAmelCase__ = name.split('''.''' ) lowerCAmelCase__ = int(items[0] ) lowerCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(A ) @torch.no_grad() def _snake_case ( A , A , A=None , A=None , A=True ) -> Optional[int]: if config_path is not None: lowerCAmelCase__ = WavaVecaConformerConfig.from_pretrained(A , hidden_act='''swish''' ) else: lowerCAmelCase__ = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowerCAmelCase__ = '''rotary''' if is_finetuned: if dict_path: lowerCAmelCase__ = Dictionary.load(A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase__ = target_dict.pad_index lowerCAmelCase__ = target_dict.bos_index lowerCAmelCase__ = target_dict.eos_index lowerCAmelCase__ = len(target_dict.symbols ) lowerCAmelCase__ = os.path.join(A , '''vocab.json''' ) if not os.path.isdir(A ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(A ) ) return os.makedirs(A , exist_ok=A ) lowerCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 with open(A , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(A , A ) lowerCAmelCase__ = WavaVecaCTCTokenizer( A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=A , ) lowerCAmelCase__ = True if config.feat_extract_norm == '''layer''' else False lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) lowerCAmelCase__ = WavaVecaProcessor(feature_extractor=A , tokenizer=A ) processor.save_pretrained(A ) lowerCAmelCase__ = WavaVecaConformerForCTC(A ) else: lowerCAmelCase__ = WavaVecaConformerForPreTraining(A ) if is_finetuned: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: lowerCAmelCase__ = argparse.Namespace(task='''audio_pretraining''' ) lowerCAmelCase__ = fairseq.tasks.setup_task(A ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=A ) lowerCAmelCase__ = model[0].eval() recursively_load_weights(A , A , not is_finetuned ) hf_wavavec.save_pretrained(A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __UpperCAmelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
98
0
def __UpperCAmelCase( lowercase_ , lowercase_ , lowercase_ ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(UpperCAmelCase__ ) ) def __UpperCAmelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ ): # Base Case if index == len(UpperCAmelCase__ ): return True # Recursive Step for i in range(UpperCAmelCase__ ): if valid_coloring(graph[index] , UpperCAmelCase__ , UpperCAmelCase__ ): # Color current vertex _lowerCamelCase : Any = i # Validate coloring if util_color(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , index + 1 ): return True # Backtrack _lowerCamelCase : int = -1 return False def __UpperCAmelCase( lowercase_ , lowercase_ ): _lowerCamelCase : Any = [-1] * len(UpperCAmelCase__ ) if util_color(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , 0 ): return colored_vertices return []
114
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class A__ ( _snake_case ): lowercase = ["image_processor", "tokenizer"] lowercase = "OwlViTImageProcessor" lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCamelCase__ , ) A_ = kwargs.pop("""feature_extractor""" ) A_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="max_length" , UpperCamelCase__="np" , **UpperCamelCase__ ) -> int: '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(UpperCamelCase__ , UpperCamelCase__ ) or (isinstance(UpperCamelCase__ , UpperCamelCase__ ) and not isinstance(text[0] , UpperCamelCase__ )): A_ = [self.tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ )] elif isinstance(UpperCamelCase__ , UpperCamelCase__ ) and isinstance(text[0] , UpperCamelCase__ ): A_ = [] # Maximum number of queries across batch A_ = max([len(UpperCamelCase__ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(UpperCamelCase__ ) != max_num_queries: A_ = t + [""" """] * (max_num_queries - len(UpperCamelCase__ )) A_ = self.tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) encodings.append(UpperCamelCase__ ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": A_ = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) A_ = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp A_ = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) A_ = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch A_ = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) A_ = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf A_ = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) A_ = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) A_ = BatchEncoding() A_ = input_ids A_ = attention_mask if query_images is not None: A_ = BatchEncoding() A_ = self.image_processor( UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ).pixel_values A_ = query_pixel_values if images is not None: A_ = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and images is not None: A_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: A_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' return self.image_processor.post_process(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return self.image_processor.post_process_object_detection(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , UpperCamelCase__ , ) return self.image_processor_class @property def snake_case_ ( self ) -> List[str]: '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , UpperCamelCase__ , ) return self.image_processor
288
0
"""simple docstring""" from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : """simple docstring""" def __init__( self , snake_case_ , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , snake_case_=0.6 , snake_case_=None , ) -> str: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = mask_ratio _UpperCAmelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __A ( self ) -> Union[str, Any]: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def __A ( self ) -> Any: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __A ( self , snake_case_ , snake_case_ , snake_case_ ) -> Dict: _UpperCAmelCase = TFViTMAEModel(config=snake_case_ ) _UpperCAmelCase = model(snake_case_ , training=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: _UpperCAmelCase = TFViTMAEForPreTraining(snake_case_ ) _UpperCAmelCase = model(snake_case_ , training=snake_case_ ) # expected sequence length = num_patches _UpperCAmelCase = (self.image_size // self.patch_size) ** 2 _UpperCAmelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = TFViTMAEForPreTraining(snake_case_ ) _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(snake_case_ , training=snake_case_ ) _UpperCAmelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __A ( self ) -> Optional[Any]: _UpperCAmelCase = self.prepare_config_and_inputs() ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = config_and_inputs _UpperCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class a ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" A__ : Optional[Any] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () A__ : List[str] = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} A__ : str = False A__ : Dict = False A__ : List[Any] = False A__ : Dict = False def __A ( self ) -> Any: _UpperCAmelCase = TFViTMAEModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def __A ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def __A ( self ) -> Optional[int]: pass def __A ( self ) -> str: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , tf.keras.layers.Layer ) ) def __A ( self ) -> int: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ) _UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case_ ) def __A ( self ) -> Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __A ( self ) -> str: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case_ ) def __A ( self ) -> List[str]: # make the mask reproducible np.random.seed(2 ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = int((config.image_size // config.patch_size) ** 2 ) _UpperCAmelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ) _UpperCAmelCase = self._prepare_for_class(snake_case_ , snake_case_ ) _UpperCAmelCase = model(snake_case_ , noise=snake_case_ ) _UpperCAmelCase = copy.deepcopy(self._prepare_for_class(snake_case_ , snake_case_ ) ) _UpperCAmelCase = model(**snake_case_ , noise=snake_case_ ) _UpperCAmelCase = outputs_dict[0].numpy() _UpperCAmelCase = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 ) def __A ( self ) -> List[Any]: # make the mask reproducible np.random.seed(2 ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = int((config.image_size // config.patch_size) ** 2 ) _UpperCAmelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(snake_case_ ): _UpperCAmelCase = {} for k, v in inputs_dict.items(): if tf.is_tensor(snake_case_ ): _UpperCAmelCase = v.numpy() else: _UpperCAmelCase = np.array(snake_case_ ) return inputs_np_dict for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ) _UpperCAmelCase = self._prepare_for_class(snake_case_ , snake_case_ ) _UpperCAmelCase = prepare_numpy_arrays(snake_case_ ) _UpperCAmelCase = model(snake_case_ , noise=snake_case_ ) _UpperCAmelCase = model(**snake_case_ , noise=snake_case_ ) self.assert_outputs_same(snake_case_ , snake_case_ ) def __A ( self , snake_case_ , snake_case_ , snake_case_ ) -> Dict: # make masks reproducible np.random.seed(2 ) _UpperCAmelCase = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) _UpperCAmelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _UpperCAmelCase = tf.constant(snake_case_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _UpperCAmelCase = tf_noise super().check_pt_tf_models(snake_case_ , snake_case_ , snake_case_ ) def __A ( self ) -> Optional[int]: # make mask reproducible np.random.seed(2 ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(snake_case_ ) if module_member_name.endswith("MainLayer" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("MainLayer" )] == model_class.__name__[: -len("Model" )] for module_member in (getattr(snake_case_ , snake_case_ ),) if isinstance(snake_case_ , snake_case_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(snake_case_ , "_keras_serializable" , snake_case_ ) } _UpperCAmelCase = int((config.image_size // config.patch_size) ** 2 ) _UpperCAmelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _UpperCAmelCase = tf.convert_to_tensor(snake_case_ ) inputs_dict.update({"noise": noise} ) for main_layer_class in tf_main_layer_classes: _UpperCAmelCase = main_layer_class(snake_case_ ) _UpperCAmelCase = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } _UpperCAmelCase = tf.keras.Model(snake_case_ , outputs=main_layer(snake_case_ ) ) _UpperCAmelCase = model(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(snake_case_ , "keras_model.h5" ) model.save(snake_case_ ) _UpperCAmelCase = tf.keras.models.load_model( snake_case_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(snake_case_ , tf.keras.Model ) _UpperCAmelCase = model(snake_case_ ) self.assert_outputs_same(snake_case_ , snake_case_ ) @slow def __A ( self ) -> List[str]: # make mask reproducible np.random.seed(2 ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = int((config.image_size // config.patch_size) ** 2 ) _UpperCAmelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ) _UpperCAmelCase = self._prepare_for_class(snake_case_ , snake_case_ ) _UpperCAmelCase = model(snake_case_ , noise=snake_case_ ) if model_class.__name__ == "TFViTMAEModel": _UpperCAmelCase = outputs.last_hidden_state.numpy() _UpperCAmelCase = 0 else: _UpperCAmelCase = outputs.logits.numpy() _UpperCAmelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) _UpperCAmelCase = model_class.from_pretrained(snake_case_ ) _UpperCAmelCase = model(snake_case_ , noise=snake_case_ ) if model_class.__name__ == "TFViTMAEModel": _UpperCAmelCase = after_outputs["last_hidden_state"].numpy() _UpperCAmelCase = 0 else: _UpperCAmelCase = after_outputs["logits"].numpy() _UpperCAmelCase = 0 _UpperCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1e-5 ) def __A ( self ) -> Dict: # make mask reproducible np.random.seed(2 ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = int((config.image_size // config.patch_size) ** 2 ) _UpperCAmelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ) _UpperCAmelCase = self._prepare_for_class(snake_case_ , snake_case_ ) _UpperCAmelCase = model(snake_case_ , noise=snake_case_ ) _UpperCAmelCase = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(snake_case_ ) _UpperCAmelCase = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config _UpperCAmelCase = model_class.from_config(model.config ) _UpperCAmelCase = new_model(snake_case_ ) # Build model new_model.set_weights(model.get_weights() ) _UpperCAmelCase = new_model(snake_case_ , noise=snake_case_ ) self.assert_outputs_same(snake_case_ , snake_case_ ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def __A ( self ) -> Union[str, Any]: pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def __A ( self ) -> Optional[int]: pass @slow def __A ( self ) -> Optional[Any]: _UpperCAmelCase = TFViTMAEModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(snake_case_ ) def A__ ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self ) -> int: return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def __A ( self ) -> Tuple: # make random mask reproducible across the PT and TF model np.random.seed(2 ) _UpperCAmelCase = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=snake_case_ , return_tensors="tf" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _UpperCAmelCase = ViTMAEConfig() _UpperCAmelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _UpperCAmelCase = np.random.uniform(size=(1, num_patches) ) # forward pass _UpperCAmelCase = model(**snake_case_ , noise=snake_case_ ) # verify the logits _UpperCAmelCase = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , snake_case_ ) _UpperCAmelCase = tf.convert_to_tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , snake_case_ , atol=1e-4 )
579
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" A__ : int = "luke" def __init__( self , snake_case_=50267 , snake_case_=500000 , snake_case_=768 , snake_case_=256 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1e-1_2 , snake_case_=True , snake_case_=None , snake_case_=1 , snake_case_=0 , snake_case_=2 , **snake_case_ , ) -> Any: super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) _UpperCAmelCase = vocab_size _UpperCAmelCase = entity_vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = entity_emb_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = use_entity_aware_attention _UpperCAmelCase = classifier_dropout
579
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A__ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 1_00 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , ) -> Union[AudioPipelineOutput, Tuple]: if audio_length_in_s is None: __lowerCamelCase : int = self.unet.config.sample_size / self.unet.config.sample_rate __lowerCamelCase : Any = audio_length_in_s * self.unet.config.sample_rate __lowerCamelCase : Optional[Any] = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'{audio_length_in_s} is too small. Make sure it\'s bigger or equal to' f' {3 * down_scale_factor / self.unet.config.sample_rate}.' ) __lowerCamelCase : Tuple = int(SCREAMING_SNAKE_CASE_ ) if sample_size % down_scale_factor != 0: __lowerCamelCase : Dict = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled' f' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising' ' process.' ) __lowerCamelCase : List[Any] = int(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = next(iter(self.unet.parameters() ) ).dtype __lowerCamelCase : str = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE_ )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) __lowerCamelCase : str = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=audio.device ) __lowerCamelCase : Tuple = self.scheduler.timesteps.to(SCREAMING_SNAKE_CASE_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __lowerCamelCase : Optional[Any] = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample # 2. compute previous image: x_t -> t_t-1 __lowerCamelCase : Optional[Any] = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample __lowerCamelCase : List[str] = audio.clamp(-1 , 1 ).float().cpu().numpy() __lowerCamelCase : Tuple = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=SCREAMING_SNAKE_CASE_ )
13
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) # TODO Update this A__ : Tuple = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Tuple = 'esm' def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = vocab_size __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : str = num_hidden_layers __lowerCamelCase : List[str] = num_attention_heads __lowerCamelCase : Any = intermediate_size __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : Optional[int] = max_position_embeddings __lowerCamelCase : str = initializer_range __lowerCamelCase : Optional[int] = layer_norm_eps __lowerCamelCase : List[str] = position_embedding_type __lowerCamelCase : int = use_cache __lowerCamelCase : Optional[Any] = emb_layer_norm_before __lowerCamelCase : Optional[Any] = token_dropout __lowerCamelCase : str = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) __lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) __lowerCamelCase : List[str] = get_default_vocab_list() else: __lowerCamelCase : Optional[Any] = vocab_list else: __lowerCamelCase : Dict = None __lowerCamelCase : Optional[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Any = super().to_dict() if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : int = self.esmfold_config.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str = None lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : float = 0 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : int = 1_2_8 lowerCamelCase : "TrunkConfig" = None def lowercase_ ( self ) -> Any: if self.trunk is None: __lowerCamelCase : List[str] = TrunkConfig() elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = TrunkConfig(**self.trunk ) def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[int] = asdict(self ) __lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 4_8 lowerCamelCase : int = 1_0_2_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : float = 0 lowerCamelCase : float = 0 lowerCamelCase : bool = False lowerCamelCase : int = 4 lowerCamelCase : Optional[int] = 1_2_8 lowerCamelCase : "StructureModuleConfig" = None def lowercase_ ( self ) -> Optional[int]: if self.structure_module is None: __lowerCamelCase : Dict = StructureModuleConfig() elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' f' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) __lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width __lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : List[str] = asdict(self ) __lowerCamelCase : int = self.structure_module.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 3_8_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_6 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_2 lowerCamelCase : int = 4 lowerCamelCase : int = 8 lowerCamelCase : float = 0.1 lowerCamelCase : int = 8 lowerCamelCase : int = 1 lowerCamelCase : int = 2 lowerCamelCase : int = 7 lowerCamelCase : int = 1_0 lowerCamelCase : float = 1e-8 lowerCamelCase : float = 1e5 def lowercase_ ( self ) -> Any: return asdict(self ) def UpperCAmelCase__ ( ) -> Optional[Any]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
13
1
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __magic_name__ = logging.get_logger(__name__) class a__ ( _snake_case ): """simple docstring""" def __init__( self :Optional[Any] , *lowercase__ :Any , **lowercase__ :List[Any] ): warnings.warn( 'The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DeiTImageProcessor instead.' , lowercase__ , ) super().__init__(*lowercase__ , **lowercase__ )
314
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __snake_case ( _UpperCAmelCase ): """simple docstring""" lowercase = int(number**0.5 ) return number == sq * sq def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowercase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowercase = x_den * y_den * z_den lowercase = gcd(_UpperCAmelCase , _UpperCAmelCase ) top //= hcf bottom //= hcf return top, bottom def __snake_case ( _UpperCAmelCase = 35 ): """simple docstring""" lowercase = set() lowercase = 42 lowercase = Fraction(0 ) lowercase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 lowercase = x_num * y_den + x_den * y_num lowercase = x_den * y_den lowercase = gcd(_UpperCAmelCase , _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) # n=2 lowercase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowercase = x_den * x_den * y_den * y_den if is_sq(_UpperCAmelCase ) and is_sq(_UpperCAmelCase ): lowercase = int(sqrt(_UpperCAmelCase ) ) lowercase = int(sqrt(_UpperCAmelCase ) ) lowercase = gcd(_UpperCAmelCase , _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) # n=-1 lowercase = x_num * y_num lowercase = x_den * y_num + x_num * y_den lowercase = gcd(_UpperCAmelCase , _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) # n=2 lowercase = x_num * x_num * y_num * y_num lowercase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_UpperCAmelCase ) and is_sq(_UpperCAmelCase ): lowercase = int(sqrt(_UpperCAmelCase ) ) lowercase = int(sqrt(_UpperCAmelCase ) ) lowercase = gcd(_UpperCAmelCase , _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) for num, den in unique_s: total += Fraction(_UpperCAmelCase , _UpperCAmelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
314
1
import numpy # List of input, output pairs lowerCamelCase__ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) lowerCamelCase__ = (((515, 22, 13), 555), ((61, 35, 49), 150)) lowerCamelCase__ = [2, 4, 1, 5] lowerCamelCase__ = len(train_data) lowerCamelCase__ = 0.0_09 def __A(lowerCAmelCase , lowerCAmelCase="train" ) -> Any: """simple docstring""" return calculate_hypothesis_value(lowerCAmelCase , lowerCAmelCase ) - output( lowerCAmelCase , lowerCAmelCase ) def __A(lowerCAmelCase ) -> Dict: """simple docstring""" _UpperCamelCase = 0 for i in range(len(lowerCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def __A(lowerCAmelCase , lowerCAmelCase ) -> Dict: """simple docstring""" if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def __A(lowerCAmelCase , lowerCAmelCase ) -> List[Any]: """simple docstring""" if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def __A(lowerCAmelCase , lowerCAmelCase=m ) -> int: """simple docstring""" _UpperCamelCase = 0 for i in range(lowerCAmelCase ): if index == -1: summation_value += _error(lowerCAmelCase ) else: summation_value += _error(lowerCAmelCase ) * train_data[i][0][index] return summation_value def __A(lowerCAmelCase ) -> Dict: """simple docstring""" _UpperCamelCase = summation_of_cost_derivative(lowerCAmelCase , lowerCAmelCase ) / m return cost_derivative_value def __A() -> List[str]: """simple docstring""" global parameter_vector # Tune these values to set a tolerance value for predicted output _UpperCamelCase = 0.000002 _UpperCamelCase = 0 _UpperCamelCase = 0 while True: j += 1 _UpperCamelCase = [0, 0, 0, 0] for i in range(0 , len(lowerCAmelCase ) ): _UpperCamelCase = get_cost_derivative(i - 1 ) _UpperCamelCase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCAmelCase , lowerCAmelCase , atol=lowerCAmelCase , rtol=lowerCAmelCase , ): break _UpperCamelCase = temp_parameter_vector print(("""Number of iterations:""", j) ) def __A() -> Union[str, Any]: """simple docstring""" for i in range(len(lowerCAmelCase ) ): print(("""Actual output value:""", output(lowerCAmelCase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(lowerCAmelCase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
612
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class lowerCAmelCase__ ( __lowercase ): def __init__( self , a=0.01 , a=10_00 ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = p_stop _UpperCamelCase = max_length def __iter__( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = 0 _UpperCamelCase = False while not stop and count < self.max_length: yield count count += 1 _UpperCamelCase = random.random() < self.p_stop class lowerCAmelCase__ ( unittest.TestCase ): def A_ ( self , a , a , a=False , a=True ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = [ BatchSamplerShard(a , 2 , a , split_batches=a , even_batches=a ) for i in range(2 ) ] _UpperCamelCase = [list(a ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(a ) for shard in batch_sampler_shards] , [len(a ) for e in expected] ) self.assertListEqual(a , a ) def A_ ( self ) -> Any: '''simple docstring''' _UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(a , a ) _UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=a ) # Expected shouldn't change self.check_batch_sampler_shards(a , a ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(a , a ) _UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(a , a ) _UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(a , a ) _UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a ) # Check the shards when the dataset is very small. _UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(a , a ) _UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [[], []] self.check_batch_sampler_shards(a , a ) def A_ ( self ) -> Tuple: '''simple docstring''' _UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(a , a , split_batches=a ) _UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=a ) # Expected shouldn't change self.check_batch_sampler_shards(a , a , split_batches=a ) # Check the shards when the dataset is not a round multiple of batch size. _UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(a , a , split_batches=a ) _UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(a , a , split_batches=a ) _UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a ) # Check the shards when the dataset is very small. _UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(a , a , split_batches=a ) _UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [[], []] self.check_batch_sampler_shards(a , a , split_batches=a ) def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) _UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=a ) # Expected shouldn't change self.check_batch_sampler_shards(a , a , even_batches=a ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) _UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) _UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) _UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) # Check the shards when the dataset is very small. _UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(a , a , even_batches=a ) _UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [[], []] self.check_batch_sampler_shards(a , a , even_batches=a ) def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) _UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=a ) # Expected shouldn't change self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) # Check the shards when the dataset is not a round multiple of batch size. _UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) _UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) _UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) # Check the shards when the dataset is very small. _UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) _UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [[], []] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) def A_ ( self ) -> List[Any]: '''simple docstring''' _UpperCamelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _UpperCamelCase = [BatchSamplerShard(a , 2 , a , even_batches=a ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def A_ ( self , a , a , a , a=False , a=2 , a=False ) -> Any: '''simple docstring''' random.seed(a ) _UpperCamelCase = list(a ) _UpperCamelCase = [ IterableDatasetShard( a , batch_size=a , drop_last=a , num_processes=a , process_index=a , split_batches=a , ) for i in range(a ) ] _UpperCamelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(a ) iterable_dataset_lists.append(list(a ) ) _UpperCamelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _UpperCamelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(a ) , len(a ) ) self.assertTrue(len(a ) % shard_batch_size == 0 ) _UpperCamelCase = [] for idx in range(0 , len(a ) , a ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(a ) < len(a ): reference += reference self.assertListEqual(a , reference[: len(a )] ) def A_ ( self ) -> int: '''simple docstring''' _UpperCamelCase = 42 _UpperCamelCase = RandomIterableDataset() self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) # Edge case with a very small dataset _UpperCamelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) def A_ ( self ) -> Any: '''simple docstring''' _UpperCamelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = SkipBatchSampler(a , 2 ) self.assertListEqual(list(a ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A_ ( self ) -> Tuple: '''simple docstring''' _UpperCamelCase = DataLoader(list(range(16 ) ) , batch_size=4 ) _UpperCamelCase = skip_first_batches(a , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def A_ ( self ) -> Optional[Any]: '''simple docstring''' Accelerator() _UpperCamelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
612
1
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') _lowerCamelCase = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[int] = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _SCREAMING_SNAKE_CASE : int = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _SCREAMING_SNAKE_CASE : Any = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _SCREAMING_SNAKE_CASE : List[Any] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) _SCREAMING_SNAKE_CASE : List[Any] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) _SCREAMING_SNAKE_CASE : int = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) _SCREAMING_SNAKE_CASE : Any = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class UpperCAmelCase__ : '''simple docstring''' _SCREAMING_SNAKE_CASE : Tuple = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "The input training data file (a text file)."} ) _SCREAMING_SNAKE_CASE : str = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) _SCREAMING_SNAKE_CASE : Tuple = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "The number of processes to use for the preprocessing."} , ) _SCREAMING_SNAKE_CASE : Any = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) _SCREAMING_SNAKE_CASE : Optional[Any] = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) _SCREAMING_SNAKE_CASE : Dict = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase__ ( self ): if self.train_file is not None: a =self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: a =self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class UpperCAmelCase__ : '''simple docstring''' _SCREAMING_SNAKE_CASE : Any = 42 _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : str = None _SCREAMING_SNAKE_CASE : Union[str, Any] = None def __call__( self , _lowerCAmelCase ): a ='''label''' if '''label''' in features[0].keys() else '''labels''' a =[feature.pop(UpperCamelCase__ ) for feature in features] a =len(UpperCamelCase__ ) a =len(features[0]["""input_ids"""] ) a =[ [{k: v[i] for k, v in feature.items()} for i in range(UpperCamelCase__ )] for feature in features ] a =list(chain(*UpperCamelCase__ ) ) a =self.tokenizer.pad( UpperCamelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten a ={k: v.view(UpperCamelCase__ , UpperCamelCase__ , -1 ) for k, v in batch.items()} # Add back labels a =torch.tensor(UpperCamelCase__ , dtype=torch.intaa ) return batch def lowerCamelCase ( )-> int: a =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , __UpperCamelCase , __UpperCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() a =training_args.get_process_log_level() logger.setLevel(__UpperCamelCase ) datasets.utils.logging.set_verbosity(__UpperCamelCase ) transformers.utils.logging.set_verbosity(__UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: a ={} if data_args.train_file is not None: a =data_args.train_file if data_args.validation_file is not None: a =data_args.validation_file a =data_args.train_file.split(""".""" )[-1] a =load_dataset( __UpperCamelCase , data_files=__UpperCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. a =load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) a =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) a =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. a =[F'''ending{i}''' for i in range(4 )] a ='''sent1''' a ='''sent2''' if data_args.max_seq_length is None: a =tokenizer.model_max_length if max_seq_length > 1024: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) a =1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) a =min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(UpperCAmelCase_ : int ): a =[[context] * 4 for context in examples[context_name]] a =examples[question_header_name] a =[ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(__UpperCamelCase ) ] # Flatten out a =list(chain(*__UpperCamelCase ) ) a =list(chain(*__UpperCamelCase ) ) # Tokenize a =tokenizer( __UpperCamelCase , __UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__UpperCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) a =raw_datasets['''train'''] if data_args.max_train_samples is not None: a =min(len(__UpperCamelCase ) , data_args.max_train_samples ) a =train_dataset.select(range(__UpperCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): a =train_dataset.map( __UpperCamelCase , batched=__UpperCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) a =raw_datasets['''validation'''] if data_args.max_eval_samples is not None: a =min(len(__UpperCamelCase ) , data_args.max_eval_samples ) a =eval_dataset.select(range(__UpperCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): a =eval_dataset.map( __UpperCamelCase , batched=__UpperCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator a =( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__UpperCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(UpperCAmelCase_ : List[Any] ): a =eval_predictions a =np.argmax(__UpperCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer a =Trainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCamelCase , data_collator=__UpperCamelCase , compute_metrics=__UpperCamelCase , ) # Training if training_args.do_train: a =None if training_args.resume_from_checkpoint is not None: a =training_args.resume_from_checkpoint elif last_checkpoint is not None: a =last_checkpoint a =trainer.train(resume_from_checkpoint=__UpperCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload a =train_result.metrics a =( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCamelCase ) ) a =min(__UpperCamelCase , len(__UpperCamelCase ) ) trainer.log_metrics("""train""" , __UpperCamelCase ) trainer.save_metrics("""train""" , __UpperCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) a =trainer.evaluate() a =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCamelCase ) a =min(__UpperCamelCase , len(__UpperCamelCase ) ) trainer.log_metrics("""eval""" , __UpperCamelCase ) trainer.save_metrics("""eval""" , __UpperCamelCase ) a ={ '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCamelCase ) else: trainer.create_model_card(**__UpperCamelCase ) def lowerCamelCase ( UpperCAmelCase_ : int )-> Tuple: main() if __name__ == "__main__": main()
711
from __future__ import annotations def lowerCamelCase ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int )-> None: """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): a , a =array[indexa], array[indexa] def lowerCamelCase ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int )-> None: """simple docstring""" if length > 1: a =int(length / 2 ) for i in range(UpperCAmelCase_ , low + middle ): comp_and_swap(UpperCAmelCase_ , UpperCAmelCase_ , i + middle , UpperCAmelCase_ ) bitonic_merge(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) bitonic_merge(UpperCAmelCase_ , low + middle , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int )-> None: """simple docstring""" if length > 1: a =int(length / 2 ) bitonic_sort(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , 1 ) bitonic_sort(UpperCAmelCase_ , low + middle , UpperCAmelCase_ , 0 ) bitonic_merge(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": _lowerCamelCase = input('''Enter numbers separated by a comma:\n''').strip() _lowerCamelCase = [int(item.strip()) for item in user_input.split(''',''')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('''\nSorted array in ascending order is: ''', end='''''') print(*unsorted, sep=''', ''') bitonic_merge(unsorted, 0, len(unsorted), 0) print('''Sorted array in descending order is: ''', end='''''') print(*unsorted, sep=''', ''')
321
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file A : Dict = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def __lowerCAmelCase ( a__=None ) -> List[Any]: if subparsers is not None: __a = subparsers.add_parser('''tpu-config''' , description=_description ) else: __a = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments __a = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=a__ , default=a__ , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=a__ , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=a__ , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) __a = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=a__ , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=a__ ) return parser def __lowerCAmelCase ( a__ ) -> Optional[Any]: __a = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(a__ ): __a = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __a = defaults.command_file if not args.command and defaults.commands is not None: __a = defaults.commands if not args.tpu_name: __a = defaults.tpu_name if not args.tpu_zone: __a = defaults.tpu_zone if args.accelerate_version == "dev": __a = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": __a = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , a__ ): __a = F"""accelerate=={args.accelerate_version}""" if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: __a = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , a__ ): __a = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __a = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [F"""pip install {args.accelerate_version}"""] new_cmd += args.command __a = '''; '''.join(a__ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __a = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"""Running {' '.join(a__ )}""" ) return subprocess.run(a__ ) print('''Successfully setup pod.''' ) def __lowerCAmelCase ( ) -> str: __a = tpu_command_parser() __a = parser.parse_args() tpu_command_launcher(a__ )
219
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A : Optional[int] = logging.get_logger(__name__) class __A( a ): snake_case_ = ['''pixel_values'''] def __init__( self , _snake_case = True , _snake_case = None , _snake_case = PILImageResampling.BICUBIC , _snake_case = True , _snake_case = None , _snake_case = True , _snake_case = 1 / 255 , _snake_case = True , _snake_case = IMAGENET_DEFAULT_MEAN , _snake_case = IMAGENET_DEFAULT_STD , **_snake_case , ) -> None: '''simple docstring''' super().__init__(**_snake_case ) __a = size if size is not None else {'''shortest_edge''': 224} __a = get_size_dict(_snake_case , default_to_square=_snake_case ) __a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __a = get_size_dict(_snake_case , param_name='''crop_size''' ) __a = do_resize __a = size __a = resample __a = do_center_crop __a = crop_size __a = do_rescale __a = rescale_factor __a = do_normalize __a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __a = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = PILImageResampling.BICUBIC , _snake_case = None , **_snake_case , ) -> np.ndarray: '''simple docstring''' __a = get_size_dict(_snake_case , default_to_square=_snake_case ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __a = int((256 / 224) * size['''shortest_edge'''] ) __a = get_resize_output_image_size(_snake_case , size=_snake_case , default_to_square=_snake_case ) __a = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( _snake_case , size=(size_dict['''height'''], size_dict['''width''']) , resample=_snake_case , data_format=_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ) -> np.ndarray: '''simple docstring''' __a = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_snake_case , size=(size['''height'''], size['''width''']) , data_format=_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ) -> np.ndarray: '''simple docstring''' return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case = None , **_snake_case , ) -> np.ndarray: '''simple docstring''' return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = ChannelDimension.FIRST , **_snake_case , ) -> BatchFeature: '''simple docstring''' __a = do_resize if do_resize is not None else self.do_resize __a = resample if resample is not None else self.resample __a = do_center_crop if do_center_crop is not None else self.do_center_crop __a = do_rescale if do_rescale is not None else self.do_rescale __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = do_normalize if do_normalize is not None else self.do_normalize __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = size if size is not None else self.size __a = get_size_dict(_snake_case , default_to_square=_snake_case ) __a = crop_size if crop_size is not None else self.crop_size __a = get_size_dict(_snake_case , param_name='''crop_size''' ) __a = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __a = [to_numpy_array(_snake_case ) for image in images] if do_resize: __a = [self.resize(_snake_case , _snake_case , _snake_case ) for image in images] if do_center_crop: __a = [self.center_crop(_snake_case , _snake_case ) for image in images] if do_rescale: __a = [self.rescale(_snake_case , _snake_case ) for image in images] if do_normalize: __a = [self.normalize(_snake_case , _snake_case , _snake_case ) for image in images] __a = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] __a = {'''pixel_values''': images} return BatchFeature(data=_snake_case , tensor_type=_snake_case )
219
1
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __snake_case ( unittest.TestCase): """simple docstring""" @slow def __lowercase ( self : int ) -> List[str]: lowerCAmelCase_ : int = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) lowerCAmelCase_ : int = AutoTokenizer.from_pretrained("""google/mt5-small""" ) lowerCAmelCase_ : Any = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids lowerCAmelCase_ : int = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids lowerCAmelCase_ : int = shift_tokens_right(lowerCamelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) lowerCAmelCase_ : Optional[int] = model(lowerCamelCase , decoder_input_ids=lowerCamelCase ).logits lowerCAmelCase_ : List[Any] = optax.softmax_cross_entropy(lowerCamelCase , onehot(lowerCamelCase , logits.shape[-1] ) ).mean() lowerCAmelCase_ : Any = -(labels.shape[-1] * loss.item()) lowerCAmelCase_ : Optional[int] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
398
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __snake_case ( unittest.TestCase): """simple docstring""" def __lowercase ( self : str ) -> Any: lowerCAmelCase_ : Union[str, Any] = ["""a""", """b""", """c"""] # Defaults to last layer if both are None lowerCAmelCase_, lowerCAmelCase_ : List[str] = get_aligned_output_features_output_indices(lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.assertEqual(lowerCamelCase , ["""c"""] ) self.assertEqual(lowerCamelCase , [2] ) # Out indices set to match out features lowerCAmelCase_, lowerCAmelCase_ : List[str] = get_aligned_output_features_output_indices(["""a""", """c"""] , lowerCamelCase , lowerCamelCase ) self.assertEqual(lowerCamelCase , ["""a""", """c"""] ) self.assertEqual(lowerCamelCase , [0, 2] ) # Out features set to match out indices lowerCAmelCase_, lowerCAmelCase_ : List[str] = get_aligned_output_features_output_indices(lowerCamelCase , [0, 2] , lowerCamelCase ) self.assertEqual(lowerCamelCase , ["""a""", """c"""] ) self.assertEqual(lowerCamelCase , [0, 2] ) # Out features selected from negative indices lowerCAmelCase_, lowerCAmelCase_ : Any = get_aligned_output_features_output_indices(lowerCamelCase , [-3, -1] , lowerCamelCase ) self.assertEqual(lowerCamelCase , ["""a""", """c"""] ) self.assertEqual(lowerCamelCase , [-3, -1] ) def __lowercase ( self : List[str] ) -> Optional[int]: # Stage names must be set with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , lowerCamelCase ) # Out features must be a list with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""] ) # Out features must be a subset of stage names with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""] ) # Out indices must be a list or tuple with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(lowerCamelCase , 0 , ["""a""", """b"""] ) # Out indices must be a subset of stage names with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(lowerCamelCase , (0, 1) , ["""a"""] ) # Out features and out indices must be the same length with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""] ) # Out features should match out indices with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""] ) # Out features and out indices should be in order with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""] ) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""] ) def __lowercase ( self : Dict ) -> Union[str, Any]: lowerCAmelCase_ : List[str] = BackboneMixin() lowerCAmelCase_ : List[str] = ["""a""", """b""", """c"""] lowerCAmelCase_ : Tuple = ["""a""", """c"""] lowerCAmelCase_ : Optional[Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly lowerCAmelCase_ : int = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""] ) self.assertEqual(backbone.out_indices , [0, 1] ) lowerCAmelCase_ : Dict = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [-3, -1] )
398
1
'''simple docstring''' def __snake_case ( lowerCAmelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __UpperCAmelCase = sorted(string.lower() ) return len(lowerCAmelCase ) == len(set(lowerCAmelCase ) ) if __name__ == "__main__": _UpperCamelCase : List[str] = input('Enter a string ').strip() _UpperCamelCase : List[Any] = is_isogram(input_str) print(f"{input_str} is {'an' if isogram else 'not an'} isogram.")
396
'''simple docstring''' import argparse from collections import defaultdict import yaml _UpperCamelCase : int = 'docs/source/en/_toctree.yml' def __snake_case ( lowerCAmelCase : Union[str, Any] ): __UpperCAmelCase = defaultdict(lowerCAmelCase ) __UpperCAmelCase = [] __UpperCAmelCase = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(lowerCAmelCase ) __UpperCAmelCase = new_doc_list __UpperCAmelCase = [key for key, value in counts.items() if value > 1] __UpperCAmelCase = [] for duplicate_key in duplicates: __UpperCAmelCase = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(lowerCAmelCase ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) __UpperCAmelCase = sorted(lowerCAmelCase , key=lambda lowerCAmelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowerCAmelCase ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(lowerCAmelCase ) # Sort return overview_doc def __snake_case ( lowerCAmelCase : Union[str, Any]=False ): with open(lowerCAmelCase , encoding='utf-8' ) as f: __UpperCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc __UpperCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCAmelCase = content[api_idx]['sections'] # Then to the model doc __UpperCAmelCase = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 __UpperCAmelCase = api_doc[scheduler_idx]['sections'] __UpperCAmelCase = clean_doc_toc(lowerCAmelCase ) __UpperCAmelCase = False if new_scheduler_doc != scheduler_doc: __UpperCAmelCase = True if overwrite: __UpperCAmelCase = new_scheduler_doc if diff: if overwrite: __UpperCAmelCase = api_doc with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(lowerCAmelCase , allow_unicode=lowerCAmelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def __snake_case ( lowerCAmelCase : Tuple=False ): with open(lowerCAmelCase , encoding='utf-8' ) as f: __UpperCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc __UpperCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCAmelCase = content[api_idx]['sections'] # Then to the model doc __UpperCAmelCase = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 __UpperCAmelCase = False __UpperCAmelCase = api_doc[pipeline_idx]['sections'] __UpperCAmelCase = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: __UpperCAmelCase = pipeline_doc['section'] __UpperCAmelCase = clean_doc_toc(lowerCAmelCase ) if overwrite: __UpperCAmelCase = new_sub_pipeline_doc new_pipeline_docs.append(lowerCAmelCase ) # sort overall pipeline doc __UpperCAmelCase = clean_doc_toc(lowerCAmelCase ) if new_pipeline_docs != pipeline_docs: __UpperCAmelCase = True if overwrite: __UpperCAmelCase = new_pipeline_docs if diff: if overwrite: __UpperCAmelCase = api_doc with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(lowerCAmelCase , allow_unicode=lowerCAmelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": _UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _UpperCamelCase : Union[str, Any] = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
396
1
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = prime_factors(__A ) if is_square_free(__A ): return -1 if len(__A ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
714
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class __a ( _snake_case ): __UpperCamelCase : Tuple = 'camembert' def __init__( self : int ,lowerCamelCase : List[Any]=3_0522 ,lowerCamelCase : List[Any]=768 ,lowerCamelCase : str=12 ,lowerCamelCase : List[str]=12 ,lowerCamelCase : Optional[Any]=3072 ,lowerCamelCase : Tuple="gelu" ,lowerCamelCase : List[str]=0.1 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=512 ,lowerCamelCase : Dict=2 ,lowerCamelCase : Tuple=0.02 ,lowerCamelCase : List[Any]=1E-1_2 ,lowerCamelCase : Union[str, Any]=1 ,lowerCamelCase : Optional[Any]=0 ,lowerCamelCase : List[Any]=2 ,lowerCamelCase : List[str]="absolute" ,lowerCamelCase : int=True ,lowerCamelCase : Any=None ,**lowerCamelCase : Optional[Any] ,): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout class __a ( _snake_case ): @property def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
13
0
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class snake_case : def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=36 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=10_00 , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = text_seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_input_mask SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = coordinate_size SCREAMING_SNAKE_CASE_ = shape_size SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = num_choices SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) SCREAMING_SNAKE_CASE_ = text_seq_length SCREAMING_SNAKE_CASE_ = (image_size // patch_size) ** 2 + 1 SCREAMING_SNAKE_CASE_ = self.text_seq_length + self.image_seq_length def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE_ = bbox[i, j, 3] SCREAMING_SNAKE_CASE_ = bbox[i, j, 1] SCREAMING_SNAKE_CASE_ = t if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE_ = bbox[i, j, 2] SCREAMING_SNAKE_CASE_ = bbox[i, j, 0] SCREAMING_SNAKE_CASE_ = t SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.text_seq_length] ) SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = LayoutLMvaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() # text + image SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE_ , pixel_values=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = model( SCREAMING_SNAKE_CASE_ , bbox=SCREAMING_SNAKE_CASE_ , pixel_values=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE_ , bbox=SCREAMING_SNAKE_CASE_ , pixel_values=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE_ , bbox=SCREAMING_SNAKE_CASE_ , pixel_values=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only SCREAMING_SNAKE_CASE_ = model(pixel_values=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = LayoutLMvaForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() SCREAMING_SNAKE_CASE_ = model( SCREAMING_SNAKE_CASE_ , bbox=SCREAMING_SNAKE_CASE_ , pixel_values=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = LayoutLMvaForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() SCREAMING_SNAKE_CASE_ = model( SCREAMING_SNAKE_CASE_ , bbox=SCREAMING_SNAKE_CASE_ , pixel_values=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = LayoutLMvaForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() SCREAMING_SNAKE_CASE_ = model( SCREAMING_SNAKE_CASE_ , bbox=SCREAMING_SNAKE_CASE_ , pixel_values=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) ,( SCREAMING_SNAKE_CASE_ ) ,( SCREAMING_SNAKE_CASE_ ) ,( SCREAMING_SNAKE_CASE_ ) ,( SCREAMING_SNAKE_CASE_ ) ,( SCREAMING_SNAKE_CASE_ ) ,( SCREAMING_SNAKE_CASE_ ) ,( SCREAMING_SNAKE_CASE_ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE_ = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class snake_case ( __lowercase , __lowercase , unittest.TestCase ): UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase__ = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" return True def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = LayoutLMvaModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ = copy.deepcopy(SCREAMING_SNAKE_CASE_ ) if model_class in get_values(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) elif model_class in get_values(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) elif model_class in [ *get_values(SCREAMING_SNAKE_CASE_ ), ]: SCREAMING_SNAKE_CASE_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) elif model_class in [ *get_values(SCREAMING_SNAKE_CASE_ ), ]: SCREAMING_SNAKE_CASE_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ , ) return inputs_dict def _lowercase (self ): """simple docstring""" self.config_tester.run_common_tests() def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) @slow def _lowercase (self ): """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = LayoutLMvaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def _lowerCamelCase ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class snake_case ( unittest.TestCase ): @cached_property def _lowercase (self ): """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=SCREAMING_SNAKE_CASE_ ) if is_vision_available() else None @slow def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values.to(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = torch.tensor([[1, 2]] ) SCREAMING_SNAKE_CASE_ = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass SCREAMING_SNAKE_CASE_ = model( input_ids=input_ids.to(SCREAMING_SNAKE_CASE_ ) , bbox=bbox.to(SCREAMING_SNAKE_CASE_ ) , pixel_values=pixel_values.to(SCREAMING_SNAKE_CASE_ ) , ) # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
626
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class snake_case ( __lowercase ): UpperCAmelCase__ = (UnCLIPScheduler,) def _lowercase (self , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = { '''num_train_timesteps''': 10_00, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**SCREAMING_SNAKE_CASE_ ) return config def _lowercase (self ): """simple docstring""" for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for time_step in [0, 5_00, 9_99]: for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_ , prev_timestep=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config(variance_type='''fixed_small_log''' ) SCREAMING_SNAKE_CASE_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0e-1_0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_54_96_25 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.9_99_49_87 ) ) < 1e-5 def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config(variance_type='''learned_range''' ) SCREAMING_SNAKE_CASE_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=SCREAMING_SNAKE_CASE_ ) - -10.1_71_27_90 < 1e-5 assert scheduler._get_variance(4_87 , predicted_variance=SCREAMING_SNAKE_CASE_ ) - -5.7_99_80_52 < 1e-5 assert scheduler._get_variance(9_99 , predicted_variance=SCREAMING_SNAKE_CASE_ ) - -0.0_01_00_11 < 1e-5 def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = scheduler.timesteps SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) for i, t in enumerate(SCREAMING_SNAKE_CASE_ ): # 1. predict noise residual SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample SCREAMING_SNAKE_CASE_ = pred_prev_sample SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1e-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1e-3 def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(25 ) SCREAMING_SNAKE_CASE_ = scheduler.timesteps SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) for i, t in enumerate(SCREAMING_SNAKE_CASE_ ): # 1. predict noise residual SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if i + 1 == timesteps.shape[0]: SCREAMING_SNAKE_CASE_ = None else: SCREAMING_SNAKE_CASE_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE_ = scheduler.step( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prev_timestep=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample SCREAMING_SNAKE_CASE_ = pred_prev_sample SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1e-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1e-3 def _lowercase (self ): """simple docstring""" pass def _lowercase (self ): """simple docstring""" pass
626
1
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , ): """simple docstring""" if config_name_or_path is None: lowerCAmelCase__ : Dict = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: lowerCAmelCase__ : Any = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowerCAmelCase__ : str = question_encoder_name_or_path lowerCAmelCase__ : Optional[Any] = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. lowerCAmelCase__ : Optional[Any] = RagConfig.from_pretrained(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(UpperCamelCase ) lowerCAmelCase__ : Dict = AutoConfig.from_pretrained(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = gen_config lowerCAmelCase__ : Dict = question_encoder_config lowerCAmelCase__ : List[str] = model_class.from_pretrained_question_encoder_generator( UpperCamelCase , UpperCamelCase , config=UpperCamelCase ) rag_model.save_pretrained(UpperCamelCase ) # Sanity check. model_class.from_pretrained(UpperCamelCase ) # Save tokenizers. lowerCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(UpperCamelCase ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) lowerCAmelCase__ : str = AutoTokenizer.from_pretrained(UpperCamelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
160
'''simple docstring''' import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def _SCREAMING_SNAKE_CASE ( *UpperCamelCase ): """simple docstring""" if not isinstance(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : List[Any] = list(UpperCamelCase ) for i in range(len(UpperCamelCase ) ): lowerCAmelCase__ : Dict = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(UpperCamelCase , UpperCamelCase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def _SCREAMING_SNAKE_CASE ( UpperCamelCase = None , UpperCamelCase = 128 ): """simple docstring""" if function is None: return functools.partial(UpperCamelCase , starting_batch_size=UpperCamelCase ) lowerCAmelCase__ : Any = starting_batch_size def decorator(*UpperCamelCase , **UpperCamelCase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() lowerCAmelCase__ : Optional[Any] = list(inspect.signature(UpperCamelCase ).parameters.keys() ) # Guard against user error if len(UpperCamelCase ) < (len(UpperCamelCase ) + 1): lowerCAmelCase__ : Any = """, """.join([f"""{arg}={value}""" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f"""Batch size was passed into `{function.__name__}` as the first argument when called.""" f"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(UpperCamelCase , *UpperCamelCase , **UpperCamelCase ) except Exception as e: if should_reduce_batch_size(UpperCamelCase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
160
1
"""simple docstring""" import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' _a : int = AutoConfig.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) _a : Any = AutoModelForSeqaSeqLM.from_config(UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) AutoTokenizer.from_pretrained(UpperCamelCase__ ).save_pretrained(UpperCamelCase__ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
389
"""simple docstring""" from collections.abc import Sequence def lowerCAmelCase__ ( UpperCamelCase__ = None ): '''simple docstring''' if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) _a : List[Any] = nums[0] for i in range(1 , len(UpperCamelCase__ ) ): _a : int = nums[i] _a : Any = max(UpperCamelCase__ , ans + num , UpperCamelCase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _snake_case = int(input('Enter number of elements : ').strip()) _snake_case = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
389
1
from __future__ import annotations from typing import Any class lowerCamelCase : def __init__(self : Optional[int] , _A : int ) -> None: snake_case = num_of_nodes snake_case = [] snake_case = {} def UpperCAmelCase(self : int , _A : int , _A : int , _A : int ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCAmelCase(self : Optional[int] , _A : int ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCAmelCase(self : str , _A : int ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: snake_case = self.find_component(_A ) def UpperCAmelCase(self : Union[str, Any] , _A : list[int] , _A : int , _A : int ) -> None: if component_size[u_node] <= component_size[v_node]: snake_case = v_node component_size[v_node] += component_size[u_node] self.set_component(_A ) elif component_size[u_node] >= component_size[v_node]: snake_case = self.find_component(_A ) component_size[u_node] += component_size[v_node] self.set_component(_A ) def UpperCAmelCase(self : int ) -> None: snake_case = [] snake_case = 0 snake_case = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) snake_case = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: snake_case , snake_case , snake_case = edge snake_case = self.m_component[u] snake_case = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): snake_case = [u, v, w] for edge in minimum_weight_edge: if isinstance(_A , _A ): snake_case , snake_case , snake_case = edge snake_case = self.m_component[u] snake_case = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_A , _A , _A ) print(f'Added edge [{u} - {v}]\nAdded weight: {w}\n' ) num_of_components -= 1 snake_case = [-1] * self.m_num_of_nodes print(f'The total weight of the minimal spanning tree is: {mst_weight}' ) def lowercase_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
294
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class lowerCamelCase ( A_ ): def UpperCAmelCase(self : str ) -> Dict: snake_case = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def UpperCAmelCase(self : Optional[int] ) -> Optional[int]: with self.assertRaises(_A ): snake_case = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def UpperCAmelCase(self : Dict ) -> str: with self.assertRaises(_A ): snake_case = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) ) def UpperCAmelCase(self : List[Any] ) -> List[str]: snake_case = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def UpperCAmelCase(self : Tuple ) -> List[Any]: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) ) def UpperCAmelCase(self : List[Any] ) -> Dict: snake_case = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def UpperCAmelCase(self : Optional[int] ) -> Optional[int]: snake_case = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) ) self.assertEqual(arr.type , pa.string() ) def UpperCAmelCase(self : Any ) -> Tuple: snake_case = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def UpperCAmelCase(self : str ) -> Union[str, Any]: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) ) def UpperCAmelCase(self : Optional[int] ) -> Tuple: snake_case = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def UpperCAmelCase(self : str ) -> Dict: snake_case = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def UpperCAmelCase(self : Optional[int] ) -> Any: import PIL.Image snake_case = PIL.Image.fromarray(np.arange(1_0 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=_A ) as mock_cast_to_python_objects: snake_case = pa.array(TypedSequence([{"path": None, "bytes": b"image_bytes"}, pil_image] , type=Image() ) ) snake_case , snake_case = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , _A ) self.assertFalse(kwargs["optimize_list_casting"] ) def lowercase_ ( A__ , A__ ) -> Tuple: """simple docstring""" snake_case = pa.BufferReader(A__ ) if isinstance(A__ , pa.Buffer ) else pa.memory_map(A__ ) snake_case = pa.ipc.open_stream(A__ ) snake_case = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def lowercase_ ( A__ , A__ ) -> Optional[int]: """simple docstring""" snake_case = pa.BufferOutputStream() snake_case = pa.schema(A__ ) if fields else None with ArrowWriter(stream=A__ , schema=A__ , writer_batch_size=A__ ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) snake_case , snake_case = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(A__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowercase_ ( ) -> str: """simple docstring""" snake_case = pa.BufferOutputStream() snake_case = Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=A__ , features=A__ ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) snake_case , snake_case = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata snake_case = pa.BufferReader(output.getvalue() ) snake_case = pa.ipc.open_stream(A__ ) snake_case = f.read_all() snake_case = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(A__ ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) def lowercase_ ( A__ ) -> int: """simple docstring""" snake_case = pa.BufferOutputStream() with ArrowWriter( stream=A__ , writer_batch_size=A__ , hash_salt="split_name" , check_duplicates=A__ , ) as writer: with pytest.raises(A__ ): writer.write({"col_1": "foo", "col_2": 1} , key=[1, 2] ) snake_case , snake_case = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def lowercase_ ( A__ ) -> str: """simple docstring""" snake_case = pa.BufferOutputStream() with ArrowWriter( stream=A__ , writer_batch_size=A__ , hash_salt="split_name" , check_duplicates=A__ , ) as writer: with pytest.raises(A__ ): writer.write({"col_1": "foo", "col_2": 1} , key=10 ) writer.write({"col_1": "bar", "col_2": 2} , key=10 ) snake_case , snake_case = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def lowercase_ ( A__ ) -> Optional[int]: """simple docstring""" snake_case = pa.BufferOutputStream() with ArrowWriter( stream=A__ , writer_batch_size=A__ , hash_salt="split_name" , check_duplicates=A__ , ) as writer: writer.write({"col_1": "foo", "col_2": 1} , key=1 ) writer.write({"col_1": "bar", "col_2": 2} , key=2 ) snake_case , snake_case = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def lowercase_ ( A__ , A__ ) -> Dict: """simple docstring""" snake_case = pa.BufferOutputStream() snake_case = pa.schema(A__ ) if fields else None with ArrowWriter(stream=A__ , schema=A__ , writer_batch_size=A__ ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) snake_case , snake_case = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(A__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def lowercase_ ( A__ , A__ ) -> Union[str, Any]: """simple docstring""" snake_case = pa.BufferOutputStream() snake_case = pa.schema(A__ ) if fields else None with ArrowWriter(stream=A__ , schema=A__ , writer_batch_size=A__ ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) snake_case , snake_case = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(A__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def lowercase_ ( A__ , A__ ) -> List[Any]: """simple docstring""" snake_case = pa.BufferOutputStream() snake_case = pa.schema(A__ ) if fields else None with ArrowWriter(stream=A__ , schema=A__ , writer_batch_size=A__ ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) snake_case , snake_case = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(A__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowercase_ ( ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: snake_case = {"col_1": pa.string(), "col_2": pa.intaa()} snake_case = os.path.join(A__ , "test.arrow" ) with ArrowWriter(path=A__ , schema=pa.schema(A__ ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) snake_case , snake_case = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(A__ , metadata=writer._schema.metadata ) _check_output(A__ , 1 ) def lowercase_ ( A__ ) -> int: """simple docstring""" if pa.types.is_list(A__ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def lowercase_ ( A__ , A__ ) -> Any: """simple docstring""" if isinstance(lst[0] , A__ ): change_first_primitive_element_in_list(lst[0] , A__ ) else: snake_case = value @pytest.mark.parametrize("optimized_int_type, expected_dtype" , [(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowercase_ ( A__ , A__ , A__ ) -> Tuple: """simple docstring""" snake_case = pa.array(TypedSequence(A__ , optimized_int_type=A__ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype" , [ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ] , ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowercase_ ( A__ , A__ , A__ ) -> List[str]: """simple docstring""" snake_case = pa.array(OptimizedTypedSequence(A__ , col=A__ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications snake_case = copy.deepcopy(A__ ) snake_case = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(A__ , A__ ) snake_case = pa.array(OptimizedTypedSequence(A__ , col=A__ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception" , [False, True] ) def lowercase_ ( A__ , A__ ) -> Optional[Any]: """simple docstring""" snake_case = str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=A__ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def lowercase_ ( A__ ) -> Optional[int]: """simple docstring""" snake_case = "mock://dataset-train.arrow" with ArrowWriter(path=A__ , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(A__ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) snake_case , snake_case = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(A__ ) def lowercase_ ( ) -> Tuple: """simple docstring""" snake_case = pa.BufferOutputStream() with ParquetWriter(stream=A__ ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) snake_case , snake_case = writer.finalize() assert num_examples == 2 assert num_bytes > 0 snake_case = pa.BufferReader(output.getvalue() ) snake_case = pq.read_table(A__ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files" , [False, True] ) def lowercase_ ( A__ , A__ ) -> Dict: """simple docstring""" import PIL.Image snake_case = str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(A__ , format="png" ) snake_case = pa.BufferOutputStream() with ParquetWriter( stream=A__ , features=Features({"image": Image()} ) , embed_local_files=A__ ) as writer: writer.write({"image": image_path} ) writer.finalize() snake_case = pa.BufferReader(output.getvalue() ) snake_case = pq.read_table(A__ ) snake_case = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"] , A__ ) with open(A__ , "rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def lowercase_ ( ) -> List[Any]: """simple docstring""" snake_case = pa.schema([pa.field("col_1" , pa.string() , nullable=A__ )] ) snake_case = pa.BufferOutputStream() with ArrowWriter(stream=A__ ) as writer: writer._build_writer(inferred_schema=A__ ) assert writer._schema == pa.schema([pa.field("col_1" , pa.string() )] )
294
1
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def __magic_name__ ( lowercase , lowercase ) -> List[Any]: """simple docstring""" assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __magic_name__ ( lowercase , lowercase , lowercase , lowercase ) -> Any: """simple docstring""" lowercase_ : List[Any] = tmp_path / """cache""" lowercase_ : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase_ : Tuple = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_sql_dataset(lowercase , lowercase ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __magic_name__ ( lowercase , lowercase , lowercase , lowercase ) -> Tuple: """simple docstring""" lowercase_ : Tuple = tmp_path / """cache""" lowercase_ : List[str] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase_ : Dict = features.copy() if features else default_expected_features lowercase_ : int = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase_ : Union[str, Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=lowercase , cache_dir=lowercase ).read() _check_sql_dataset(lowercase , lowercase ) def __magic_name__ ( lowercase ) -> Any: """simple docstring""" with contextlib.closing(sqlitea.connect(lowercase ) ) as con: lowercase_ : Tuple = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def __magic_name__ ( lowercase , lowercase , lowercase ) -> int: """simple docstring""" lowercase_ : Optional[Any] = tmp_path / """cache""" lowercase_ : int = os.path.join(lowercase , """tmp.sql""" ) lowercase_ : Any = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowercase ).read() SqlDatasetWriter(lowercase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() lowercase_ : List[str] = iter_sql_file(lowercase ) lowercase_ : Dict = iter_sql_file(lowercase ) for rowa, rowa in zip(lowercase , lowercase ): assert rowa == rowa @require_sqlalchemy def __magic_name__ ( lowercase , lowercase , lowercase ) -> Optional[int]: """simple docstring""" lowercase_ : Any = tmp_path / """cache""" lowercase_ : Optional[Any] = os.path.join(lowercase , """tmp.sql""" ) lowercase_ : List[Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowercase ).read() SqlDatasetWriter(lowercase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() lowercase_ : Any = iter_sql_file(lowercase ) lowercase_ : Tuple = iter_sql_file(lowercase ) for rowa, rowa in zip(lowercase , lowercase ): assert rowa == rowa @require_sqlalchemy def __magic_name__ ( lowercase , lowercase , lowercase ) -> Dict: """simple docstring""" lowercase_ : Dict = tmp_path / """cache""" lowercase_ : List[str] = os.path.join(lowercase , """tmp.sql""" ) lowercase_ : int = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowercase ).read() with pytest.raises(lowercase ): SqlDatasetWriter(lowercase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
458
"""simple docstring""" import os import pytest from attr import dataclass SCREAMING_SNAKE_CASE__:List[str] = """us-east-1""" # defaults region @dataclass class snake_case__ : _snake_case : str _snake_case : Optional[Any] = """arn:aws:iam::558105141721:role/sagemaker_execution_role""" _snake_case : Optional[Any] = { """task_name""": """mnli""", """per_device_train_batch_size""": 16, """per_device_eval_batch_size""": 16, """do_train""": True, """do_eval""": True, """do_predict""": True, """output_dir""": """/opt/ml/model""", """overwrite_output_dir""": True, """max_steps""": 500, """save_steps""": 5_500, } _snake_case : List[str] = {**hyperparameters, """max_steps""": 1_000} @property def a__ ( self ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def a__ ( self ): return F"{self.framework}-transfromers-test" @property def a__ ( self ): return F"./tests/sagemaker/scripts/{self.framework}" @property def a__ ( self ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def _lowerCamelCase( a ): __a = SageMakerTestEnvironment(framework=request.cls.framework )
528
0
'''simple docstring''' import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int lowerCAmelCase__ : Any = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _A ( datasets.BuilderConfig ): '''simple docstring''' _lowercase = None def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase , ): """simple docstring""" import pyspark def generate_fn(): snake_case__ : Optional[Any] = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: snake_case__ : List[Any] = df_with_partition_id.select("""*""" ).where(f"""part_id = {partition_id}""" ).drop("""part_id""" ) snake_case__ : Dict = partition_df.collect() snake_case__ : Any = 0 for row in rows: yield f"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class _A ( _BaseExamplesIterable ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : "pyspark.sql.DataFrame" , lowerCamelCase : Optional[Any]=None , )-> Any: snake_case__ : int = df snake_case__ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) snake_case__ : str = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : int )-> Union[str, Any]: yield from self.generate_examples_fn() def __lowerCAmelCase ( self : Tuple , lowerCamelCase : np.random.Generator )-> "SparkExamplesIterable": snake_case__ : Optional[Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase ) return SparkExamplesIterable(self.df , partition_order=lowerCamelCase ) def __lowerCAmelCase ( self : List[str] , lowerCamelCase : int , lowerCamelCase : int )-> "SparkExamplesIterable": snake_case__ : Dict = self.split_shard_indices_by_worker(lowerCamelCase , lowerCamelCase ) return SparkExamplesIterable(self.df , partition_order=lowerCamelCase ) @property def __lowerCAmelCase ( self : List[str] )-> int: return len(self.partition_order ) class _A ( datasets.DatasetBuilder ): '''simple docstring''' _lowercase = SparkConfig def __init__( self : Tuple , lowerCamelCase : "pyspark.sql.DataFrame" , lowerCamelCase : str = None , lowerCamelCase : str = None , **lowerCamelCase : Dict , )-> str: import pyspark snake_case__ : str = pyspark.sql.SparkSession.builder.getOrCreate() snake_case__ : Optional[int] = df snake_case__ : Tuple = working_dir super().__init__( cache_dir=lowerCamelCase , config_name=str(self.df.semanticHash() ) , **lowerCamelCase , ) def __lowerCAmelCase ( self : Optional[Any] )-> Optional[Any]: # Returns the path of the created file. def create_cache_and_write_probe(lowerCamelCase : Dict ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=lowerCamelCase ) snake_case__ : Union[str, Any] = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase , """a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: snake_case__ : Optional[Any] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(lowerCamelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def __lowerCAmelCase ( self : Union[str, Any] )-> str: return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self : Optional[int] , lowerCamelCase : datasets.download.download_manager.DownloadManager )-> List[str]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __lowerCAmelCase ( self : Any , lowerCamelCase : Optional[int] )-> Optional[int]: import pyspark def get_arrow_batch_size(lowerCamelCase : Union[str, Any] ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) snake_case__ : Union[str, Any] = self.df.count() snake_case__ : Any = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. snake_case__ : Any = ( self.df.limit(lowerCamelCase ) .repartition(1 ) .mapInArrow(lowerCamelCase , """batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) snake_case__ : List[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. snake_case__ : Any = min(lowerCamelCase , int(approx_total_size / max_shard_size ) ) snake_case__ : Any = self.df.repartition(lowerCamelCase ) def __lowerCAmelCase ( self : Optional[int] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : int , )-> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark snake_case__ : List[Any] = ParquetWriter if file_format == """parquet""" else ArrowWriter snake_case__ : str = os.path.join(self._working_dir , os.path.basename(lowerCamelCase ) ) if self._working_dir else fpath snake_case__ : int = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. snake_case__ : Optional[Any] = self.config.features snake_case__ : int = self._writer_batch_size snake_case__ : List[Any] = self._fs.storage_options def write_arrow(lowerCamelCase : Any ): # Within the same SparkContext, no two task attempts will share the same attempt ID. snake_case__ : Tuple = pyspark.TaskContext().taskAttemptId() snake_case__ : Union[str, Any] = next(lowerCamelCase , lowerCamelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) snake_case__ : Optional[int] = 0 snake_case__ : List[Any] = writer_class( features=lowerCamelCase , path=working_fpath.replace("""SSSSS""" , F"""{shard_id:05d}""" ).replace("""TTTTT""" , F"""{task_id:05d}""" ) , writer_batch_size=lowerCamelCase , storage_options=lowerCamelCase , embed_local_files=lowerCamelCase , ) snake_case__ : List[Any] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: snake_case__ : Optional[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) shard_id += 1 snake_case__ : Dict = writer_class( features=writer._features , path=working_fpath.replace("""SSSSS""" , F"""{shard_id:05d}""" ).replace("""TTTTT""" , F"""{task_id:05d}""" ) , writer_batch_size=lowerCamelCase , storage_options=lowerCamelCase , embed_local_files=lowerCamelCase , ) snake_case__ : Optional[int] = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase ) if writer._num_bytes > 0: snake_case__ : Optional[int] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase ) ): snake_case__ : Optional[int] = os.path.join(os.path.dirname(lowerCamelCase ) , os.path.basename(lowerCamelCase ) ) shutil.move(lowerCamelCase , lowerCamelCase ) snake_case__ : Any = ( self.df.mapInArrow(lowerCamelCase , """task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __lowerCAmelCase ( self : Dict , lowerCamelCase : "datasets.SplitGenerator" , lowerCamelCase : str = "arrow" , lowerCamelCase : Optional[Union[str, int]] = None , lowerCamelCase : Optional[int] = None , **lowerCamelCase : List[str] , )-> Optional[int]: self._validate_cache_dir() snake_case__ : Optional[int] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase ) snake_case__ : int = not is_remote_filesystem(self._fs ) snake_case__ : List[Any] = os.path.join if is_local else posixpath.join snake_case__ : Union[str, Any] = """-TTTTT-SSSSS-of-NNNNN""" snake_case__ : str = F"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" snake_case__ : str = path_join(self._output_dir , lowerCamelCase ) snake_case__ : Dict = 0 snake_case__ : Optional[int] = 0 snake_case__ : Tuple = 0 snake_case__ : Union[str, Any] = [] snake_case__ : Optional[int] = [] for task_id, content in self._prepare_split_single(lowerCamelCase , lowerCamelCase , lowerCamelCase ): ( snake_case__ ) : str = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase ) snake_case__ : str = total_num_examples snake_case__ : Optional[int] = total_num_bytes # should rename everything at the end logger.debug(F"""Renaming {total_shards} shards.""" ) if total_shards > 1: snake_case__ : Union[str, Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. snake_case__ : Any = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , ): rename( lowerCamelCase , fpath.replace("""SSSSS""" , F"""{shard_id:05d}""" ).replace("""TTTTT""" , F"""{task_id:05d}""" ) , fpath.replace("""TTTTT-SSSSS""" , F"""{global_shard_id:05d}""" ).replace("""NNNNN""" , F"""{total_shards:05d}""" ) , ) snake_case__ : Optional[Any] = [] snake_case__ : str = 0 for i in range(len(lowerCamelCase ) ): snake_case__ : Optional[Any] = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase , len(lowerCamelCase ) ).map(lambda lowerCamelCase : _rename_shard(*lowerCamelCase ) ).collect() else: # don't use any pattern snake_case__ : Tuple = 0 snake_case__ : Dict = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" , F"""{shard_id:05d}""" ).replace("""TTTTT""" , F"""{task_id:05d}""" ) , fpath.replace(lowerCamelCase , """""" ) , ) def __lowerCAmelCase ( self : int , lowerCamelCase : "datasets.SplitGenerator" , )-> SparkExamplesIterable: return SparkExamplesIterable(self.df )
709
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _A ( unittest.TestCase ): '''simple docstring''' _lowercase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowercase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def __lowerCAmelCase ( self : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : List[str] , lowerCamelCase : Dict )-> str: snake_case__ : List[Any] = TextaTextGenerationPipeline(model=lowerCamelCase , tokenizer=lowerCamelCase ) return generator, ["Something to write", "Something else"] def __lowerCAmelCase ( self : Any , lowerCamelCase : int , lowerCamelCase : Any )-> str: snake_case__ : Tuple = generator("""Something there""" ) self.assertEqual(lowerCamelCase , [{"""generated_text""": ANY(lowerCamelCase )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) snake_case__ : Any = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=lowerCamelCase ) self.assertEqual( lowerCamelCase , [ [{"""generated_text""": ANY(lowerCamelCase )}, {"""generated_text""": ANY(lowerCamelCase )}], [{"""generated_text""": ANY(lowerCamelCase )}, {"""generated_text""": ANY(lowerCamelCase )}], ] , ) snake_case__ : int = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCamelCase ) self.assertEqual( lowerCamelCase , [ [{"""generated_text""": ANY(lowerCamelCase )}, {"""generated_text""": ANY(lowerCamelCase )}], [{"""generated_text""": ANY(lowerCamelCase )}, {"""generated_text""": ANY(lowerCamelCase )}], ] , ) with self.assertRaises(lowerCamelCase ): generator(4 ) @require_torch def __lowerCAmelCase ( self : List[str] )-> Optional[int]: snake_case__ : str = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility snake_case__ : int = generator("""Something there""" , do_sample=lowerCamelCase ) self.assertEqual(lowerCamelCase , [{"""generated_text""": """"""}] ) snake_case__ : List[Any] = 3 snake_case__ : Any = generator( """Something there""" , num_return_sequences=lowerCamelCase , num_beams=lowerCamelCase , ) snake_case__ : int = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(lowerCamelCase , lowerCamelCase ) snake_case__ : Tuple = generator("""This is a test""" , do_sample=lowerCamelCase , num_return_sequences=2 , return_tensors=lowerCamelCase ) self.assertEqual( lowerCamelCase , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) snake_case__ : Any = generator.model.config.eos_token_id snake_case__ : Optional[Any] = """<pad>""" snake_case__ : Tuple = generator( ["""This is a test""", """This is a second test"""] , do_sample=lowerCamelCase , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCamelCase , ) self.assertEqual( lowerCamelCase , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def __lowerCAmelCase ( self : Dict )-> Dict: snake_case__ : Optional[Any] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility snake_case__ : List[str] = generator("""Something there""" , do_sample=lowerCamelCase ) self.assertEqual(lowerCamelCase , [{"""generated_text""": """"""}] )
172
0
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) lowerCamelCase = logging.getLogger(__name__) def a_ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' _lowerCamelCase : str =np.argmax(A_ , axis=1 ) return np.sum(outputs == labels ) def a_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' with open(A_ , encoding='utf_8' ) as f: _lowerCamelCase : Dict =csv.reader(A_ ) _lowerCamelCase : Optional[int] =[] next(A_ ) # skip the first line for line in tqdm(A_ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def a_ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' _lowerCamelCase : str =[] for dataset in encoded_datasets: _lowerCamelCase : Union[str, Any] =len(A_ ) _lowerCamelCase : List[Any] =np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) _lowerCamelCase : List[Any] =np.zeros((n_batch, 2) , dtype=np.intaa ) _lowerCamelCase : Union[str, Any] =np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) _lowerCamelCase : Optional[int] =np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(A_ ): _lowerCamelCase : str =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _lowerCamelCase : List[Any] =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _lowerCamelCase : Union[str, Any] =with_conta _lowerCamelCase : Any =with_conta _lowerCamelCase : Any =len(A_ ) - 1 _lowerCamelCase : List[Any] =len(A_ ) - 1 _lowerCamelCase : Tuple =with_conta _lowerCamelCase : str =with_conta _lowerCamelCase : List[Any] =mc_label _lowerCamelCase : Any =(input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(A_ ) for t in all_inputs ) ) return tensor_datasets def a_ ( ): '''simple docstring''' _lowerCamelCase : List[str] =argparse.ArgumentParser() parser.add_argument('--model_name' , type=A_ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=A_ , type=A_ , required=A_ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=A_ , default='' ) parser.add_argument('--eval_dataset' , type=A_ , default='' ) parser.add_argument('--seed' , type=A_ , default=42 ) parser.add_argument('--num_train_epochs' , type=A_ , default=3 ) parser.add_argument('--train_batch_size' , type=A_ , default=8 ) parser.add_argument('--eval_batch_size' , type=A_ , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=A_ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=A_ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=A_ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=A_ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=A_ , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=A_ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=A_ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=A_ , default=0.01 ) parser.add_argument('--lm_coef' , type=A_ , default=0.9 ) parser.add_argument('--n_valid' , type=A_ , default=374 ) parser.add_argument('--server_ip' , type=A_ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=A_ , default='' , help='Can be used for distant debugging.' ) _lowerCamelCase : Union[str, Any] =parser.parse_args() print(A_ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=A_ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) _lowerCamelCase : Optional[int] =torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) _lowerCamelCase : Tuple =torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(A_ , A_ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset _lowerCamelCase : List[str] =['_start_', '_delimiter_', '_classify_'] _lowerCamelCase : Dict =OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(A_ ) _lowerCamelCase : int =tokenizer.convert_tokens_to_ids(A_ ) _lowerCamelCase : str =OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(A_ ) ) model.to(A_ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE__ : Optional[int] ): if isinstance(A_ , A_ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(A_ ) ) elif isinstance(A_ , A_ ): return obj return [tokenize_and_encode(A_ ) for o in obj] logger.info('Encoding dataset...' ) _lowerCamelCase : Tuple =load_rocstories_dataset(args.train_dataset ) _lowerCamelCase : Optional[Any] =load_rocstories_dataset(args.eval_dataset ) _lowerCamelCase : Optional[int] =(train_dataset, eval_dataset) _lowerCamelCase : Tuple =tokenize_and_encode(A_ ) # Compute the max input length for the Transformer _lowerCamelCase : Any =model.config.n_positions // 2 - 2 _lowerCamelCase : Dict =max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) _lowerCamelCase : List[str] =min(A_ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders _lowerCamelCase : int =pre_process_datasets(A_ , A_ , A_ , *A_ ) _lowerCamelCase , _lowerCamelCase : List[str] =tensor_datasets[0], tensor_datasets[1] _lowerCamelCase : List[Any] =TensorDataset(*A_ ) _lowerCamelCase : Union[str, Any] =RandomSampler(A_ ) _lowerCamelCase : Tuple =DataLoader(A_ , sampler=A_ , batch_size=args.train_batch_size ) _lowerCamelCase : int =TensorDataset(*A_ ) _lowerCamelCase : Union[str, Any] =SequentialSampler(A_ ) _lowerCamelCase : List[str] =DataLoader(A_ , sampler=A_ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: _lowerCamelCase : str =args.max_steps _lowerCamelCase : Any =args.max_steps // (len(A_ ) // args.gradient_accumulation_steps) + 1 else: _lowerCamelCase : Tuple =len(A_ ) // args.gradient_accumulation_steps * args.num_train_epochs _lowerCamelCase : Tuple =list(model.named_parameters() ) _lowerCamelCase : int =['bias', 'LayerNorm.bias', 'LayerNorm.weight'] _lowerCamelCase : Tuple =[ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] _lowerCamelCase : int =AdamW(A_ , lr=args.learning_rate , eps=args.adam_epsilon ) _lowerCamelCase : Optional[Any] =get_linear_schedule_with_warmup( A_ , num_warmup_steps=args.warmup_steps , num_training_steps=A_ ) if args.do_train: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] =0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): _lowerCamelCase : str =0 _lowerCamelCase : Optional[int] =0 _lowerCamelCase : Any =tqdm(A_ , desc='Training' ) for step, batch in enumerate(A_ ): _lowerCamelCase : Dict =tuple(t.to(A_ ) for t in batch ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] =batch _lowerCamelCase : Any =model(A_ , mc_token_ids=A_ , lm_labels=A_ , mc_labels=A_ ) _lowerCamelCase : Tuple =args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() _lowerCamelCase : Optional[Any] =( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 _lowerCamelCase : Union[str, Any] ='Training loss: {:.2e} lr: {:.2e}'.format(A_ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer _lowerCamelCase : Dict =model.module if hasattr(A_ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` _lowerCamelCase : Optional[Any] =os.path.join(args.output_dir , A_ ) _lowerCamelCase : str =os.path.join(args.output_dir , A_ ) torch.save(model_to_save.state_dict() , A_ ) model_to_save.config.to_json_file(A_ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned _lowerCamelCase : Union[str, Any] =OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) _lowerCamelCase : Any =OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(A_ ) if args.do_eval: model.eval() _lowerCamelCase , _lowerCamelCase : int =0, 0 _lowerCamelCase , _lowerCamelCase : List[Any] =0, 0 for batch in tqdm(A_ , desc='Evaluating' ): _lowerCamelCase : Union[str, Any] =tuple(t.to(A_ ) for t in batch ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any =batch with torch.no_grad(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict =model( A_ , mc_token_ids=A_ , lm_labels=A_ , mc_labels=A_ ) _lowerCamelCase : Any =mc_logits.detach().cpu().numpy() _lowerCamelCase : List[Any] =mc_labels.to('cpu' ).numpy() _lowerCamelCase : str =accuracy(A_ , A_ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 _lowerCamelCase : Dict =eval_loss / nb_eval_steps _lowerCamelCase : Union[str, Any] =eval_accuracy / nb_eval_examples _lowerCamelCase : Union[str, Any] =tr_loss / nb_tr_steps if args.do_train else None _lowerCamelCase : Union[str, Any] ={'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} _lowerCamelCase : Tuple =os.path.join(args.output_dir , 'eval_results.txt' ) with open(A_ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , A_ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
464
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) __lowerCAmelCase : List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : int = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase : Any = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase : List[Any] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase : Any = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } __lowerCAmelCase : Optional[int] = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } __lowerCAmelCase : Optional[int] = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } __lowerCAmelCase : List[str] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } __lowerCAmelCase : str = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } __lowerCAmelCase : Dict = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP a__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION a__ = DPRContextEncoderTokenizer class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP a__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a__ = DPRQuestionEncoderTokenizer __lowerCAmelCase : Optional[int] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __lowerCAmelCase : Union[str, Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __lowerCAmelCase : str = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_A ) class UpperCAmelCase_ : '''simple docstring''' def __call__( self : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Union[bool, str] = False , UpperCamelCase__ : Union[bool, str] = False , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Optional[bool] = None , **UpperCamelCase__ : List[str] , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) elif titles is None or texts is None: __magic_name__ = titles if texts is None else texts return super().__call__( UpperCamelCase__ , UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) __magic_name__ = titles if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) else [titles] __magic_name__ = texts if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) else [texts] __magic_name__ = len(UpperCamelCase__ ) __magic_name__ = questions if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) else [questions] * n_passages assert len(UpperCamelCase__ ) == len( UpperCamelCase__ ), F'''There should be as many titles than texts but got {len(UpperCamelCase__ )} titles and {len(UpperCamelCase__ )} texts.''' __magic_name__ = super().__call__(UpperCamelCase__ , UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ )["""input_ids"""] __magic_name__ = super().__call__(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ )["""input_ids"""] __magic_name__ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCamelCase__ , UpperCamelCase__ ) ] } if return_attention_mask is not False: __magic_name__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __magic_name__ = attention_mask return self.pad(UpperCamelCase__ , padding=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) def _lowercase ( self : List[Any] , UpperCamelCase__ : BatchEncoding , UpperCamelCase__ : DPRReaderOutput , UpperCamelCase__ : int = 16 , UpperCamelCase__ : int = 64 , UpperCamelCase__ : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" __magic_name__ = reader_input["""input_ids"""] __magic_name__ , __magic_name__ , __magic_name__ = reader_output[:3] __magic_name__ = len(UpperCamelCase__ ) __magic_name__ = sorted(range(UpperCamelCase__ ) , reverse=UpperCamelCase__ , key=relevance_logits.__getitem__ ) __magic_name__ = [] for doc_id in sorted_docs: __magic_name__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __magic_name__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __magic_name__ = sequence_ids.index(self.pad_token_id ) else: __magic_name__ = len(UpperCamelCase__ ) __magic_name__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCamelCase__ , top_spans=UpperCamelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCamelCase__ , start_index=UpperCamelCase__ , end_index=UpperCamelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(UpperCamelCase__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _lowercase ( self : Optional[int] , UpperCamelCase__ : List[int] , UpperCamelCase__ : List[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , ) -> List[DPRSpanPrediction]: """simple docstring""" __magic_name__ = [] for start_index, start_score in enumerate(UpperCamelCase__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __magic_name__ = sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : x[1] , reverse=UpperCamelCase__ ) __magic_name__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F'''Wrong span indices: [{start_index}:{end_index}]''' __magic_name__ = end_index - start_index + 1 assert length <= max_answer_length, F'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(UpperCamelCase__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_A ) class UpperCAmelCase_ ( _A , _A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = READER_PRETRAINED_VOCAB_FILES_MAP a__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = READER_PRETRAINED_INIT_CONFIGURATION a__ = ["""input_ids""", """attention_mask"""] a__ = DPRReaderTokenizer
529
0
'''simple docstring''' from math import factorial def _SCREAMING_SNAKE_CASE( snake_case_ : int = 20 ) ->int: '''simple docstring''' _lowercase : Optional[int] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... _lowercase : str = n // 2 return int(factorial(snake_case_ ) / (factorial(snake_case_ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: lowerCamelCase__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
411
'''simple docstring''' def _SCREAMING_SNAKE_CASE( snake_case_ : float ) ->float: '''simple docstring''' if edge <= 0 or not isinstance(snake_case_ , snake_case_ ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _SCREAMING_SNAKE_CASE( snake_case_ : float ) ->float: '''simple docstring''' if edge <= 0 or not isinstance(snake_case_ , snake_case_ ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
411
1
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
33
'''simple docstring''' lowerCAmelCase__ = 'Alexander Joslin' import operator as op from .stack import Stack def __UpperCAmelCase ( lowerCamelCase_) -> int: UpperCamelCase__ : List[str] = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} UpperCamelCase__ : Stack[int] = Stack() UpperCamelCase__ : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowerCamelCase_)) elif i in operators: # RULE 2 operator_stack.push(lowerCamelCase_) elif i == ")": # RULE 4 UpperCamelCase__ : Optional[Any] = operator_stack.peek() operator_stack.pop() UpperCamelCase__ : Optional[Any] = operand_stack.peek() operand_stack.pop() UpperCamelCase__ : List[Any] = operand_stack.peek() operand_stack.pop() UpperCamelCase__ : List[Any] = operators[opr](lowerCamelCase_ , lowerCamelCase_) operand_stack.push(lowerCamelCase_) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCAmelCase__ = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
596
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCAmelCase_ : str = get_logger(__name__) def UpperCamelCase ( _A : Dict , _A : str , _A : Optional[int] , _A : Union[str, Any] , _A : List[Any]=0 )-> str: """simple docstring""" os.makedirs(_A , exist_ok=_A ) with FSDP.state_dict_type( _A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): A__ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: A__ = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" A__ = os.path.join(_A , _A ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(_A , _A ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: A__ = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) A__ = os.path.join(_A , _A ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(_A , _A ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: A__ = os.path.join(_A , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(_A , exist_ok=_A ) logger.info(f"""Saving model to {ckpt_dir}""" ) A__ = {"model": state_dict} dist_cp.save_state_dict( state_dict=_A , storage_writer=dist_cp.FileSystemWriter(_A ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def UpperCamelCase ( _A : Optional[Any] , _A : Optional[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Tuple=0 )-> List[Any]: """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( _A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_A ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return A__ = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" A__ = os.path.join(_A , _A ) logger.info(f"""Loading model from {input_model_file}""" ) A__ = torch.load(_A ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: A__ = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) A__ = os.path.join(_A , _A ) logger.info(f"""Loading model from {input_model_file}""" ) A__ = torch.load(_A ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: A__ = ( os.path.join(_A , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) A__ = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=_A , storage_reader=dist_cp.FileSystemReader(_A ) , planner=DefaultLoadPlanner() , ) A__ = state_dict["model"] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(_A ) def UpperCamelCase ( _A : Optional[int] , _A : Any , _A : Any , _A : Optional[int] , _A : int , _A : Optional[Any]=0 )-> Tuple: """simple docstring""" os.makedirs(_A , exist_ok=_A ) with FSDP.state_dict_type( _A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): A__ = FSDP.optim_state_dict(_A , _A ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: A__ = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) A__ = os.path.join(_A , _A ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(_A , _A ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: A__ = os.path.join(_A , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(_A , exist_ok=_A ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(_A ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def UpperCamelCase ( _A : Any , _A : Optional[Any] , _A : Union[str, Any] , _A : Union[str, Any] , _A : int , _A : Any=0 )-> Union[str, Any]: """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( _A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: A__ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: A__ = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) A__ = os.path.join(_A , _A ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) A__ = torch.load(_A ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: A__ = ( os.path.join(_A , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) A__ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(_A ) , ) A__ = optim_state["optimizer"] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) A__ = FSDP.optim_state_dict_to_load(_A , _A , _A ) optimizer.load_state_dict(_A )
232
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def UpperCamelCase ( _A : int , _A : List[str] )-> List[str]: """simple docstring""" A__ = checkpoint A__ = {} A__ = vae_state_dict["encoder.conv_in.weight"] A__ = vae_state_dict["encoder.conv_in.bias"] A__ = vae_state_dict["encoder.conv_out.weight"] A__ = vae_state_dict["encoder.conv_out.bias"] A__ = vae_state_dict["encoder.norm_out.weight"] A__ = vae_state_dict["encoder.norm_out.bias"] A__ = vae_state_dict["decoder.conv_in.weight"] A__ = vae_state_dict["decoder.conv_in.bias"] A__ = vae_state_dict["decoder.conv_out.weight"] A__ = vae_state_dict["decoder.conv_out.bias"] A__ = vae_state_dict["decoder.norm_out.weight"] A__ = vae_state_dict["decoder.norm_out.bias"] A__ = vae_state_dict["quant_conv.weight"] A__ = vae_state_dict["quant_conv.bias"] A__ = vae_state_dict["post_quant_conv.weight"] A__ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only A__ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) A__ = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(_A ) } # Retrieves the keys for the decoder up blocks only A__ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) A__ = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(_A ) } for i in range(_A ): A__ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: A__ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) A__ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) A__ = renew_vae_resnet_paths(_A ) A__ = {"old": f"""down.{i}.block""", "new": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(_A , _A , _A , additional_replacements=[meta_path] , config=_A ) A__ = [key for key in vae_state_dict if "encoder.mid.block" in key] A__ = 2 for i in range(1 , num_mid_res_blocks + 1 ): A__ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] A__ = renew_vae_resnet_paths(_A ) A__ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(_A , _A , _A , additional_replacements=[meta_path] , config=_A ) A__ = [key for key in vae_state_dict if "encoder.mid.attn" in key] A__ = renew_vae_attention_paths(_A ) A__ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(_A , _A , _A , additional_replacements=[meta_path] , config=_A ) conv_attn_to_linear(_A ) for i in range(_A ): A__ = num_up_blocks - 1 - i A__ = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: A__ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] A__ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] A__ = renew_vae_resnet_paths(_A ) A__ = {"old": f"""up.{block_id}.block""", "new": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(_A , _A , _A , additional_replacements=[meta_path] , config=_A ) A__ = [key for key in vae_state_dict if "decoder.mid.block" in key] A__ = 2 for i in range(1 , num_mid_res_blocks + 1 ): A__ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] A__ = renew_vae_resnet_paths(_A ) A__ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(_A , _A , _A , additional_replacements=[meta_path] , config=_A ) A__ = [key for key in vae_state_dict if "decoder.mid.attn" in key] A__ = renew_vae_attention_paths(_A ) A__ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(_A , _A , _A , additional_replacements=[meta_path] , config=_A ) conv_attn_to_linear(_A ) return new_checkpoint def UpperCamelCase ( _A : str , _A : str , )-> str: """simple docstring""" A__ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) A__ = io.BytesIO(r.content ) A__ = OmegaConf.load(_A ) A__ = 512 A__ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open A__ = {} with safe_open(_A , framework="pt" , device="cpu" ) as f: for key in f.keys(): A__ = f.get_tensor(_A ) else: A__ = torch.load(_A , map_location=_A )["state_dict"] # Convert the VAE model. A__ = create_vae_diffusers_config(_A , image_size=_A ) A__ = custom_convert_ldm_vae_checkpoint(_A , _A ) A__ = AutoencoderKL(**_A ) vae.load_state_dict(_A ) vae.save_pretrained(_A ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") UpperCAmelCase_ : List[str] = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
232
1
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( __lowercase : Optional[Any] , __lowercase : List[Any] , __lowercase : Dict ) -> List[str]: """simple docstring""" if openai_config_file == "": __A = OpenAIGPTConfig() else: __A = OpenAIGPTConfig.from_json_file(UpperCamelCase_ ) __A = OpenAIGPTModel(UpperCamelCase_ ) # Load weights from numpy load_tf_weights_in_openai_gpt(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model __A = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME __A = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , UpperCamelCase_ ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __a : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) __a : Dict = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
637
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
632
0
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class SCREAMING_SNAKE_CASE__ : """simple docstring""" _snake_case = BlenderbotSmallConfig _snake_case = {} _snake_case = 'gelu' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=20 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , )-> List[Any]: '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCamelCase = prepare_blenderbot_small_inputs_dict(_a , _a , _a ) return config, inputs_dict def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = TFBlenderbotSmallModel(config=_a ).get_decoder() __UpperCamelCase = inputs_dict['''input_ids'''] __UpperCamelCase = input_ids[:1, :] __UpperCamelCase = inputs_dict['''attention_mask'''][:1, :] __UpperCamelCase = inputs_dict['''head_mask'''] __UpperCamelCase = 1 # first forward pass __UpperCamelCase = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) __UpperCamelCase , __UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __UpperCamelCase = model(_a , attention_mask=_a )[0] __UpperCamelCase = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] __UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1E-3 ) def A_ ( snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : Dict , snake_case : Any=None , snake_case : str=None , snake_case : Dict=None , snake_case : Optional[int]=None , snake_case : str=None , ) -> Dict: '''simple docstring''' if attention_mask is None: __UpperCamelCase = tf.cast(tf.math.not_equal(lowerCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _snake_case = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) _snake_case = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () _snake_case = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) _snake_case = True _snake_case = False _snake_case = False def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = TFBlenderbotSmallModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=_a ) def A__ ( self )-> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self )-> List[Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" _snake_case = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] _snake_case = 'facebook/blenderbot_small-90M' @cached_property def A__ ( self )-> Optional[Any]: '''simple docstring''' return BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) @cached_property def A__ ( self )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.tokenizer(self.src_text , return_tensors='''tf''' ) __UpperCamelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_a , ) __UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
721
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : Union[str, Any] = 1_6 lowercase__ : Tuple = 3_2 def A_ ( snake_case : Accelerator , snake_case : int = 16 ) -> List[Any]: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __UpperCamelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case : Tuple ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case , max_length=snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase = datasets.map( snake_case , batched=snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase = 16 elif accelerator.mixed_precision != "no": __UpperCamelCase = 8 else: __UpperCamelCase = None return tokenizer.pad( snake_case , padding='''longest''' , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. __UpperCamelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) __UpperCamelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : List[str] = mocked_dataloaders # noqa: F811 def A_ ( snake_case : str , snake_case : Optional[Any] ) -> Optional[int]: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case ) == "1": __UpperCamelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: __UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['''lr'''] __UpperCamelCase = int(config['''num_epochs'''] ) __UpperCamelCase = int(config['''seed'''] ) __UpperCamelCase = int(config['''batch_size'''] ) set_seed(snake_case ) __UpperCamelCase , __UpperCamelCase = get_dataloaders(snake_case , snake_case ) __UpperCamelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE __UpperCamelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer __UpperCamelCase = AdamW(params=model.parameters() , lr=snake_case ) # Instantiate scheduler __UpperCamelCase = get_linear_schedule_with_warmup( optimizer=snake_case , num_warmup_steps=100 , num_training_steps=(len(snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __UpperCamelCase = os.path.split(snake_case )[-1].split('''.''' )[0] accelerator.init_trackers(snake_case , snake_case ) # Now we train the model for epoch in range(snake_case ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __UpperCamelCase = 0 for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.logits.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case , references=snake_case , ) __UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , snake_case ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(snake_case ), '''epoch''': epoch, } , step=snake_case , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def A_ ( ) -> int: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case , default=snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=snake_case , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(snake_case , snake_case ) if __name__ == "__main__": main()
451
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ : Optional[int] = logging.get_logger(__name__) __magic_name__ : List[Any] = { '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class UpperCamelCase__ ( lowerCamelCase__ ): """simple docstring""" UpperCAmelCase__ = 'biogpt' def __init__( self : List[str] , __A : List[Any]=4_2_3_8_4 , __A : Dict=1_0_2_4 , __A : Union[str, Any]=2_4 , __A : Union[str, Any]=1_6 , __A : int=4_0_9_6 , __A : Dict="gelu" , __A : Optional[Any]=0.1 , __A : Any=0.1 , __A : List[str]=1_0_2_4 , __A : List[str]=0.0_2 , __A : Union[str, Any]=1e-12 , __A : Optional[int]=True , __A : Optional[Any]=True , __A : Optional[int]=0.0 , __A : Optional[int]=0.0 , __A : Dict=1 , __A : int=0 , __A : List[Any]=2 , **__A : Optional[Any] , ): """simple docstring""" _lowercase = vocab_size _lowercase = max_position_embeddings _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = intermediate_size _lowercase = hidden_act _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = initializer_range _lowercase = layer_norm_eps _lowercase = scale_embedding _lowercase = use_cache _lowercase = layerdrop _lowercase = activation_dropout super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A )
497
'''simple docstring''' import sys from collections import defaultdict class UpperCamelCase__ : """simple docstring""" def __init__( self : List[str] ): """simple docstring""" _lowercase = [] def snake_case ( self : Optional[Any] , __A : List[str] ): """simple docstring""" return self.node_position[vertex] def snake_case ( self : Any , __A : Dict , __A : List[str] ): """simple docstring""" _lowercase = pos def snake_case ( self : Optional[int] , __A : Any , __A : List[Any] , __A : Union[str, Any] , __A : Any ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _lowercase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _lowercase = 2 * start + 1 else: _lowercase = 2 * start + 2 if heap[smallest_child] < heap[start]: _lowercase , _lowercase = heap[smallest_child], positions[smallest_child] _lowercase , _lowercase = ( heap[start], positions[start], ) _lowercase , _lowercase = temp, tempa _lowercase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __A ) self.top_to_bottom(__A , __A , __A , __A ) def snake_case ( self : Dict , __A : Tuple , __A : Union[str, Any] , __A : Union[str, Any] , __A : Union[str, Any] ): """simple docstring""" _lowercase = position[index] while index != 0: _lowercase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _lowercase = heap[parent] _lowercase = position[parent] self.set_position(position[parent] , __A ) else: _lowercase = val _lowercase = temp self.set_position(__A , __A ) break _lowercase = parent else: _lowercase = val _lowercase = temp self.set_position(__A , 0 ) def snake_case ( self : int , __A : List[str] , __A : List[str] ): """simple docstring""" _lowercase = len(__A ) // 2 - 1 for i in range(__A , -1 , -1 ): self.top_to_bottom(__A , __A , len(__A ) , __A ) def snake_case ( self : int , __A : Optional[int] , __A : str ): """simple docstring""" _lowercase = positions[0] _lowercase = sys.maxsize self.top_to_bottom(__A , 0 , len(__A ) , __A ) return temp def A__ ( A_ ) -> int: _lowercase = Heap() _lowercase = [0] * len(A_ ) _lowercase = [-1] * len(A_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _lowercase = [] # Heap of Distance of vertices from their neighboring vertex _lowercase = [] for vertex in range(len(A_ ) ): distance_tv.append(sys.maxsize ) positions.append(A_ ) heap.node_position.append(A_ ) _lowercase = [] _lowercase = 1 _lowercase = sys.maxsize for neighbor, distance in adjacency_list[0]: _lowercase = 0 _lowercase = distance heap.heapify(A_ , A_ ) for _ in range(1 , len(A_ ) ): _lowercase = heap.delete_minimum(A_ , A_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _lowercase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(A_ )] ): _lowercase = distance heap.bottom_to_top( A_ , heap.get_position(A_ ) , A_ , A_ ) _lowercase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __magic_name__ : List[str] = int(input('''Enter number of edges: ''').strip()) __magic_name__ : List[Any] = defaultdict(list) for _ in range(edges_number): __magic_name__ : Union[str, Any] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
497
1
from __future__ import annotations def lowerCAmelCase_ ( __a ): """simple docstring""" lowerCamelCase__: List[Any] =str(__a ) return len(__a ) == 9 and set(__a ) == set("123456789" ) def lowerCAmelCase_ ( ): """simple docstring""" for base_num in range(9999 , 4999 , -1 ): lowerCamelCase__: Optional[int] =100002 * base_num if is_9_pandigital(__a ): return candidate for base_num in range(333 , 99 , -1 ): lowerCamelCase__: Any =1002003 * base_num if is_9_pandigital(__a ): return candidate return None if __name__ == "__main__": print(f'{solution() = }')
701
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __A = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = 42 lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: List[str] =_str_to_version_tuple(self.version_str) def __repr__(self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' return F"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}""" @property def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]: '''simple docstring''' return self.major, self.minor, self.patch def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_): return Version(UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): return other raise TypeError(F"""{other} (type {type(UpperCAmelCase_)}) cannot be compared to version.""") def __eq__(self : Optional[Any] , UpperCAmelCase_ : Tuple) ->List[str]: '''simple docstring''' try: lowerCamelCase__: List[Any] =self._validate_operand(UpperCAmelCase_) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__(self : Dict , UpperCAmelCase_ : List[str]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Tuple =self._validate_operand(UpperCAmelCase_) return self.tuple < other.tuple def __hash__(self : Any) ->Dict: '''simple docstring''' return hash(_version_tuple_to_str(self.tuple)) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: str ={f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in dic.items() if k in field_names}) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->str: '''simple docstring''' return self.version_str def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Optional[int] =_VERSION_REG.match(__a ) if not res: raise ValueError(F"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" ) return tuple(int(__a ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] ) def lowerCAmelCase_ ( __a ) -> Dict: """simple docstring""" return ".".join(str(__a ) for v in version_tuple )
437
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = "mobilenet_v1" def __init__( self , _a=3 , _a=2_2_4 , _a=1.0 , _a=8 , _a="relu6" , _a=True , _a=0.999 , _a=0.02 , _a=0.001 , **_a , ) -> List[Any]: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _a : Tuple = num_channels _a : str = image_size _a : Tuple = depth_multiplier _a : Any = min_depth _a : int = hidden_act _a : Optional[Any] = tf_padding _a : str = classifier_dropout_prob _a : Optional[int] = initializer_range _a : Any = layer_norm_eps class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = version.parse("1.11" ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __lowercase ( self ) -> float: return 1e-4
14
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase ( __a : Tuple ,__a : Dict ,__a : List[str] ,__a : Optional[Any] ,__a : Tuple ) -> Dict: """simple docstring""" with open(__a ) as metadata_file: _a : Optional[Any] = json.load(__a ) _a : List[Any] = LukeConfig(use_entity_aware_attention=__a ,**metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _a : Optional[Any] = torch.load(__a ,map_location='''cpu''' )['''module'''] # Load the entity vocab file _a : Any = load_original_entity_vocab(__a ) # add an entry for [MASK2] _a : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _a : Dict = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _a : Optional[int] = AddedToken('''<ent>''' ,lstrip=__a ,rstrip=__a ) _a : Tuple = AddedToken('''<ent2>''' ,lstrip=__a ,rstrip=__a ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__a ) with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''r''' ) as f: _a : List[str] = json.load(__a ) _a : Tuple = '''MLukeTokenizer''' with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''w''' ) as f: json.dump(__a ,__a ) with open(os.path.join(__a ,MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) ,'''w''' ) as f: json.dump(__a ,__a ) _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) # Initialize the embeddings of the special tokens _a : str = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _a : Tuple = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _a : Any = state_dict['''embeddings.word_embeddings.weight'''] _a : Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) _a : Any = word_emb[enta_init_index].unsqueeze(0 ) _a : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _a : Tuple = state_dict[bias_name] _a : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _a : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) _a : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _a : Tuple = F"""encoder.layer.{layer_index}.attention.self.""" _a : List[Any] = state_dict[prefix + matrix_name] _a : Dict = state_dict[prefix + matrix_name] _a : List[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _a : Union[str, Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] _a : Optional[int] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _a : int = state_dict['''entity_predictions.bias'''] _a : int = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _a : Optional[int] = LukeForMaskedLM(config=__a ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _a : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _a : Optional[int] = state_dict[key] else: _a : Tuple = state_dict[key] _a , _a : int = model.load_state_dict(__a ,strict=__a ) if set(__a ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ,task='''entity_classification''' ) _a : int = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _a : List[Any] = (0, 9) _a : Tuple = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : int = model(**__a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _a : List[str] = torch.Size((1, 33, 768) ) _a : Union[str, Any] = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _a : str = torch.Size((1, 1, 768) ) _a : List[Any] = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) _a : Dict = '''Tokyo is the capital of <mask>.''' _a : List[str] = (24, 30) _a : Optional[int] = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : Optional[Any] = model(**__a ) _a : Any = encoding['''input_ids'''][0].tolist() _a : Optional[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _a : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__a ) _a : Any = outputs.entity_logits[0][0].argmax().item() _a : Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__a ) ) model.save_pretrained(__a ) def __UpperCAmelCase ( __a : List[Any] ) -> int: """simple docstring""" _a : Union[str, Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _a : int = [json.loads(__a ) for line in open(__a )] _a : List[Any] = {} for entry in data: _a : int = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _a : List[Any] = entity_id break _a : Dict = F"""{language}:{entity_name}""" _a : int = entity_id return new_mapping if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) a__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
14
1
"""simple docstring""" from collections import defaultdict def UpperCAmelCase ( A__: int ) -> int: __lowerCamelCase : int = 1 __lowerCamelCase : Optional[Any] = True for v in tree[start]: if v not in visited: ret += dfs(A__ ) if ret % 2 == 0: cuts.append(A__ ) return ret def UpperCAmelCase ( ) -> Tuple: dfs(1 ) if __name__ == "__main__": a_ , a_ : Dict = 10, 9 a_ : Optional[int] = defaultdict(list) a_ : dict[int, bool] = {} a_ : list[int] = [] a_ : int = 0 a_ : List[Any] = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
263
"""simple docstring""" import random from typing import Any def UpperCAmelCase ( A__: list ) -> list[Any]: for _ in range(len(A__ ) ): __lowerCamelCase : List[Any] = random.randint(0 , len(A__ ) - 1 ) __lowerCamelCase : Optional[Any] = random.randint(0 , len(A__ ) - 1 ) __lowerCamelCase , __lowerCamelCase : Any = data[b], data[a] return data if __name__ == "__main__": a_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] a_ : int = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
263
1